
A Fast Network-Decomposition Algorithm

and Its Applications to Constant-Time
Distributed Computation�

(Extended Abstract)

Leonid Barenboim1,��, Michael Elkin2,� � �, and Cyril Gavoille3

1 Open University of Israel, Israel
leonidb@openu.ac.il

2 Ben-Gurion University of the Negev, Israel
elkinm@cs.bgu.ac.il

3 LaBRI - Universite de Bordeaux, Bordeaux, France
gavoille@labri.fr

Abstract. A partition (C1, C2, ..., Cq) of G = (V,E) into clusters of
strong (respectively, weak) diameter d, such that the supergraph ob-
tained by contracting each Ci is �-colorable is called a strong (resp.,
weak) (d, �)-network-decomposition. Network-decompositions were intro-
duced in a seminal paper by Awerbuch, Goldberg, Luby and Plotkin
in 1989. Awerbuch et al. showed that strong (exp{O(

√
log n log log n)},

exp{O(
√
log n log log n)})-network-decompositions can be computed in

distributed deterministic time exp{O(
√
log n log log n)}. Even more im-

portantly, they demonstrated that network-decompositions can be used
for a great variety of applications in the message-passing model of dis-
tributed computing. Much more recently Barenboim (2012) devised a
distributed randomized constant-time algorithm for computing strong
network decompositions with d = O(1). However, the parameter � in his
result is O(n1/2+ε).

In this paper we drastically improve the result of Barenboim and de-
vise a distributed randomized constant-time algorithm for computing
strong (O(1), O(nε))-network-decompositions. As a corollary we derive
a constant-time randomized O(nε)-approximation algorithm for the dis-
tributed minimum coloring problem. This improves the best previously-
known O(n1/2+ε) approximation guarantee. We also derive other im-
proved distributed algorithms for a variety of problems.

Most notably, for the extremely well-studied distributed minimum
dominating set problem currently there is no known deterministic poly-

� A full version of this paper with all proofs omitted from the current version due
to lack of space is available online [10].

�� Part of this work has been performed while the author was a postdoctoral fellow at
a joint program of the Simons Institute at UC Berkeley and I-Core at Weizmann
Institute.

� � � This research has been supported by the Israeli Academy of Science, grant 593/11,
and by the Binational Science Foundation, grant 2008390.

c© Springer International Publishing Switzerland 2015
C. Scheideler (Ed.): SIROCCO 2015, LNCS 9439, pp. 209–223, 2015.
DOI: 10.1007/978-3-319-25258-2_15

210 L. Barenboim, M. Elkin, and C. Gavoille

logarithmic -time algorithm. We devise a deterministic polylogarithmic-
time approximation algorithm for this problem, addressing an open prob-
lem of Lenzen and Wattenhofer (2010).

1 Introduction

1.1 Network-Decompositions

In the distributed message-passing model a communication network is repre-
sented by an n-vertex graph G = (V,E). The vertices of the graph host proces-
sors that communicate over the edges. Each vertex has a unique identity number
(ID) consisting of O(log n) bits. We consider a synchronous setting: computation
proceeds in rounds, and each message sent over an edge arrives by the beginning
of the next round. The running time of an algorithm is the number of rounds
from the beginning until all vertices terminate. Local computation is free.

A strong (respectively, weak) diameter of a cluster C ⊆ V is the maxi-
mum distance distG(C)(u, v) (resp., distG(u, v)) between a pair of vertices u, v ∈
C, measured in the induced subgraph G(C) of C (resp., in G). A partition
(C1, C2, ..., Cq) of G = (V,E) into clusters of strong (resp., weak) diameter d,
such that the supergraph G = (V , E), V = {C1, C2, ..., Cq}, E = {(Ci, Cj) | Ci, Cj

∈ V , i �= j, ∃vi ∈ Ci, vj ∈ Cj , (vi, vj) ∈ E} obtained by contracting each Ci is
�-colorable is called a strong (resp., weak) (d, �)-network-decomposition.

Network-decompositions were introduced in a seminal paper by Awerbuch et
al. [3]. The authors of this paper showed that strong (exp{O(

√
logn log logn)},

exp{O(
√
logn log logn)})-network-decompositions can be computed in deter-

ministic distributed exp{O(
√
log log log n)} time. Even more importantly they

demonstrated that many pivotal problems in the distributed message passing
model can be efficiently solved if one can efficiently compute (d, �)-network-
decompositions with sufficiently small parameters. In particular, this is the case
for Maximal Independent Set, Maximal Matching, and (Δ+1)-Vertex-Coloring.

The result of [3] was improved a few years later by Panconesi and Srinivasan
[46] who devised a deterministic algorithm for computing strong (exp{O(

√
logn)},

exp{O(
√
logn)})-network-decompositions in exp{O(

√
logn)} time. Awerbuch et

al. [1] devised a deterministic algorithm for computing strong (O(log n), O(log n))-
network-decomposition in time exp{O(

√
logn)}. Around the same time Linial and

Saks [40] devised a randomized algorithm for weak (O(log n), O(log n))-network-
decompositions with O(log2 n) time. More generally, the algorithm of Linial and
Saks [40] can compute weak (λ,O(n1/λ logn))-network-decompositions or weak
(O(n1/λ), λ)-network-decompositions in time O(λ · n1/λ logn).

Observe, however, that all these algorithms [3,46,40] require super-logarithmic
time, for all choices of parameters. In ICALP’12 the first-named author of
the current paper [5] devised a randomized algorithm for computing strong
(O(1), n1/2+ε)-network-decomposition in O(1/ε) time. Unlike the algorithms of
[3,46,40], the algorithm of [5] requires constant time. Its drawback however is its
very high parameter � = n1/2+ε. In the current paper we alleviate this drawback,
and devise a randomized algorithm for computing strong (exp{O(λ)}, n1/λ)-
network-decomposition in time exp{O(λ)}. In other words, the parameter λ of

A Fast Network-Decomposition Algorithm 211

our new decompositions can be made nε, for an arbitrarily small constant ε > 0,
while the running time is still constant (specifically, exp{O(1/ε)}).

1.2 Constant-Time Distributed Algorithms

In their seminal paper titled “What can be computed locally?” [44] Naor and
Stockmeyer posed the following question: which distributed tasks can be solved
in constant time? This question is appealing both from theoretical and practical
perspectives. From the latter viewpoint it is justified by the emergence of huge
networks. The number of vertices in the latter networks may be so large that
even mildest dependence of the running time on n may make the algorithm
prohibitively slow.

Naor and Stockmeyer themselves [44] showed that certain types of weak col-
orings can be computed in constant time. A major breakthrough in the study
of distributed constant time algorithms was achieved though a decade after the
paper of [44] by Kuhn and Wattenhofer [35]. Specifically, Kuhn and Wattenhofer

[35] showed that an O(
√
kΔ1/

√
k logΔ)-approximate minimum dominating set1

can be computed in O(k) randomized time. Here Δ = Δ(G) is the maximum
degree of the input graph G, and k is a positive possibly constant parameter.

An approximation algorithm for another fundamental optimization prob-
lem, specifically, for the minimum coloring problem, was devised by Barenboim
[5] as an application of his aforementioned algorithm for computing network-
decompositions. Specifically, it is shown in [5] that an O(n1/2+ε)-approximation
for the minimum coloring problem can be computed in O(1/ε) randomized time.
(In the minimum coloring problem one wishes to color the vertices of the graph
properly with as few colors as possible.) Observe that since approximating the
minimum coloring problem up to a factor of n1−ε is NP-hard [28,25,50], the
algorithm of [5] inevitably has to employ very heavy local computations.

In the current paper we employ our improved network-decomposition pro-
cedure to come up with a significantly improved constant-time approximation
algorithm for the minimum coloring problem. Specifically, our randomized al-
gorithm provides an O(nε)-approximation for the minimum coloring problem
in exp{O(1/ε)} time, for an arbitrarily small constant ε > 0. We also devise a
randomized O(nε)-approximation algorithm for the minimum t-spanner problem
with running time exp{O(1/ε)}+O(t), for any arbitarily small constant ε > 0.
(A subgraph G′ = (V,H) of a graph G = (V,E), H ⊆ E, is a t-spanner of G
if for every u, v ∈ V , distG′(u, v) ≤ t · distG(u, v). In the minimum t-spanner
problem the objective is to compute a t-spanner of the input graph G with as
few edges as possible.)

Ajtai et al. [2] demonstrated that triangle-free n-vertex graphs admit an
O(

√
n/

√
log n)-coloring. Kim [30] showed that this existential bound is tight.

We devise a randomized O(n1/2+ε)-coloring algorithm for triangle-free graphs

1 A subset U ⊆ V in a graph G = (V,E) is a dominating set if for every v ∈ V \ U
there exists u ∈ U , such that (u, v) ∈ E. In theminimum dominating set (henceforth,
MDS) problem the goal is to find a minimum-cardinality dominating set of G.

212 L. Barenboim, M. Elkin, and C. Gavoille

with running time O(1/ε). More generally, we devise a randomized O(n1/k+ε)-
coloring algorithm for graphs of girth greater than g = 2k, k ≥ 2, with running
time O(1/ε2). Both results apply for any arbitrarily small ε > 0, and, in partic-
ular, they show that such graph can be colored with a reasonably small number
of colors in constant time. Together with our drastically improved constant-time
approximation algorithm for the minimum coloring problem, these results sig-
nificantly expand the set of distributed problems solvable in constant time.

Most our algorithms for constructing network-decompositions use only short
messages (i.e., messages of size O(log n) bits), and employ only polynomially-
bounded local computations. Although in general graphs our algorithms for
O(n1/ε)-approximate minimum coloring require large messages, our O(n1/2+ε)-
coloring and O(n1/k+ε)-coloring algorithms for triangle-free graphs and graphs
of large girth employ short messages. Hence the latter coloring algorithms are
suitable to serve as building blocks for various tasks. Despite that the number
of colors is superconstant, in many tasks it does not affect the overall running
time, so the entire task can be performed very quickly. For example, if the colors
are used for frequency assignment or code assignment tasks, the running time
will not be affected by the number of colors. Instead, the range of frequencies or
codes will be affected. However, this is unavoidable in the worst case, in view of
the lower bounds on the chromatic number of triangle free graphs and graph of
large girth.

1.3 The Minimum Dominating Set Problem

The MDS problem is one of the most fundamental classical problems of dis-
tributed graph algorithms. Jia et al. [29] devised the first efficient random-
ized O(logΔ)-approximation algorithm for the MDS problem with running time
O(log n logΔ). Their result was improved and generalized by Kuhn and Wat-

tenhofer [35] who devised a randomized O(
√
kΔ1/

√
k logΔ)-approximation algo-

rithm for the problem with time O(k).
The results of [29,35] spectacularly advanced our understanding of the dis-

tributed complexity of the MDS problem. However, both these algorithms [29,35]
are randomized, and no efficient deterministic distributed algorithms with a non-
trivial approximation guarantee for general graphs are currently known. Lenzen
and Wattenhofer [38] devised such algorithms for graphs with bounded arboric-
ity. Below we provide a quote from their paper:
”To the best of our knowledge, the deterministic distributed complexity of MDS
approximation on general graphs is more or less a blind spot, as so far neither
fast (polylogarithmic time) algorithms nor stronger lower bounds are known”.

In this paper we address this blind spot and devise a deterministic O(n1/k)-
approximation algorithm for the MDS problem with time O((log n)k−1). Simi-
larly to our approximation algorithms for the minimum coloring and the mini-
mum t-spanner problems, this algorithm is also a consequence of our algorithms
for constructing network-decompositions. However, for the MDS we use a deter-
ministic version of these algorithms, while for the minimum coloring and mini-
mum t-spanner problems we use a randomized version. Also, we present a variant

A Fast Network-Decomposition Algorithm 213

of our MDS approximation algorithm that employs only polynomially-bounded
local computations, requires O((log n)k−1) time, and provides an O(n1/k logΔ)
approximation.

1.4 Additional Results

We also use our algorithms for computing network-decompositions for devising
algorithms for computing low-intersecting partitions. Low-intersecting partitions
were introduced by Busch et al. [16] in a paper on universal Steiner trees. A low-
intersecting (α, β, γ)-partition P of a graph G is the partition of the vertex set
V such that: (1) Every cluster C in P has strong diameter at most α · γ.
(2) For every vertex v ∈ V , a ball Bγ(v) of radius γ around v intersects at most
β clusters of P .

Busch et al. showed that given a hierarchy of low-intersecting partitions with
certain properties (see [16] for details) one can construct a universal Steiner
tree. (See [16] for the definition of universal Steiner tree.) Also, vice versa, given
universal Steiner tree they showed that one can construct a low-intersecting
partition. They constructed a low-intersecting partition with α = 4k, β = k·n1/k,
and arbitrary γ.

We devise a distributed randomized algorithm that constructs low-intersecting
((O(γ)k, n1/k, γ)-partitions in time (O(γ))k log2/3 n in general graphs and in
(O(γ))k · exp{O(

√
log logn)} time in graphs of girth g ≥ 6. This algorithm

employs only short messages and polynomially-bounded local computations.
Comparing this result with the algorithm of Busch et al. [16] we note that

the partition of [16] has smaller radius. (It is γ · (O(1))k instead of (O(γ))k in
our case.) On the other hand, the intersection parameter β of our partitions is
smaller. (It is n1/k instead of k · n1/k.) In particular, the intersection parameter
in the construction of [16] is always Ω(logn), while ours can be as small as
one wishes. Finally, and perhaps most importantly, the algorithm of [16] is not
distributed, and seems inherently sequential.

1.5 Comparison of Our and Previous Techniques

Basically, our algorithms for computing network-decompositions can be viewed
as a randomized variant of the deterministic algorithm of Awerbuch et al. [3].
The algorithm of Awerbuch et al. [3] computes iteratively ruling sets for subsets
of high-degree vertices in a number of supergraphs. These supergraphs are in-
duced by certain graph partitions which are computed during the algorithm. (A
subset U ⊆ V of vertices is called an (α, β)-ruling set if any two distinct vertices
u, u′ ∈ U are at distance at least α one from another, and every v ∈ V \U not in
a ruling set has a ”ruler” u ∈ U at distance at most β from v.) As a result of the
computation the algorithm of [3] constructs a partition into clusters of diameter
at most α, such that the supergraph induced by this partition has arboricity at
most β. The algorithm of [3] then colors this partition with O(β) colors in time
O(β logn) · O(α). (The running time of the algorithm is O(β logn) when run-
ning on an ordinary graph. The running time is multiplied by a factor of O(α),
because the coloring algorithm is simulated on a supergraph whose vertices are

214 L. Barenboim, M. Elkin, and C. Gavoille

clusters of diameter O(α).) The fact that the running time in the result of [3] is
(roughly speaking) the product α ·β of the parameters of the resulting network-
decomposition is the reason that Awerbuch et al [3] made an effort to balance
these parameters, and set both of them to be equal to exp{O(

√
logn log logn)}.

The algorithm of Panconesi and Srinivasan [46] is closely related to that of [3]
except that it invokes a sophisticated doubly-recursive scheme for computing
ruling sets via network-decompositions, and vice versa. This ingenious idea en-
ables [46] to balance the parameters and running time better. Specifically, they

are all equal to 2O(
√
logn).

Our algorithm is different from [3,46] in two respects. First, we replace a quite
slow (it requires O(logn) time) deterministic procedure for computing ruling sets
by a constant-time randomized one. Note that generally computing (O(1), O(1))-
ruling sets requires Ω(log∗ n) time [39], but we only need to compute them for
high-degree vertices of certain supergraphs. This can be easily done in randomized
constant time. Second, instead of coloring the resulting partition with O(β)
colors in O(β logn) · O(α) time, we color it in O(β · nε) colors in O(1/ε) · O(α)

time by a simple randomized procedure, or in O(β2 log(t) n) colors in O(t) ·O(α)
time, for a parameter t > 0, by a deterministic algorithm Arb-Linial [6]. Hence
the number of colors is somewhat greater than in [3,46], but the running time is
constant.

The algorithm of Linial and Saks [40] is inherently different from both [3,46]
and from our algorithm. It runs for O(log n) phases, each of which constructs a
collection of clusters of diameter O(log n) at pairwise distance at least 2 which
covers at least half of all remaining vertices. The running time of the algorithm of
[40], similarly to [3] and [46], is the product of the number of phases and clusters’
diameter. Hence the approach of [40] appears to be inherently incapable to give
rise to a constant time algorithm.

Our deterministic variant of the network-decomposition procedure is the
basis for our deterministic approximation algorithm for MDS. Our deterministic
variant is closer to the algorithm of [3] than our randomized one. The main
difference between our deterministic variant and the algorithm of [3] is that we
use a different much faster coloring procedure for the supergraph induced by the
ultimate partition.

1.6 Related Work

Network-decompositions for general graphs were studied in [1,4]. Dubhashi et al.
[20] used network decompositions for constructing low-stretch dominating sets.
Recently, Kutten et al. [36] extended Linial-Saks network-decompositions to hy-
pergraphs. Many authors [26,34,49] studied network-decompositions for graphs
with bounded growth. Distributed approximation algorithms is a vivid research
area. See, e.g., [43] and the references therein. Distributed graph coloring is
also a very active research area. See a recent monograph [9], and the references
therein. Schneider et al. [48] devised a distributed coloring algorithm whose per-
formance depends on the chromatic number of the input graph. However, the

A Fast Network-Decomposition Algorithm 215

algorithm of [48] provides no non-trivial approximation guarantee. Efficient dis-
tributed algorithms for constructing sparse undirected spanners can be found
in [21,18]. Baswana and Sen [12] devised an approximation algorithm for the
minimum t-spanner problem that computes a solution with O(tn1+2/(t+1)) ex-
pected edges in O(t2) rounds. For centralized approximation algorithms for the
minimum t-spanner problem, see [31,23,12,13].

2 Preliminaries

For a subset V ′ ⊆ V , the graph G(V ′) denotes the subgraph of G induced by V ′.
The degree of a vertex v in a graph G = (V,E), denoted degG(v), is the number
of edges incident on v. A vertex u such that (u, v) ∈ E is called a neighbor of v
in G. The neighborhood of v in G, denoted ΓG(v), is the set of neighbors of v in
G. If the graph G can be understood from context, then we omit the underscript

G. For a vertex v ∈ V , the set v ∪ Γ (V) is denoted by Γ+(v). For a set W ⊆ V ,
we denote by Γ+(W) the set W ∪⋃

w∈W Γ (w). The distance between a pair of
vertices u, v ∈ V , denoted distG(u, v), is the length of the shortest path between
u and v in G. The diameter of G is the maximum distance between a pair of
vertices in G. The chromatic number χ(G) of a graph G is the minimum number
of colors that can be used in a proper coloring of the vertices of G.

3 Network Decomposition

3.1 Procedure Decompose

In this section we devise an algorithm for computing an (O(1), O(nε))-network-
decomposition in O(1) rounds, for an arbitrarily small constant ε > 0. More gen-
erally, our algorithm computes a (3k, O(k ·n2/k · log2 n))-network-decomposition
Q in O(3k · log∗ n) rounds, for any positive parameter k, 1 ≤ k ≤ logn, along
with an O(k · n2/k · log2 n)-coloring ϕ of the supergraph induced by Q. (The
log∗ n term can be eliminated from the running time at the expense of increas-
ing the number of colors used by ϕ by a multiplicative factor of log(t) n, for an
arbitrarily large constant t. We will later show that the multiplicative factor of
k in the second parameter of the network decomposition can also be eliminated
without affecting other parameters.) The algorithm is called Procedure Decom-
pose. The procedure runs on some supergraph Ĝ = (V̂ , Ê) of the original graph
G. Each vertex C ∈ V̂ is a cluster (i.e., a subset of vertices) of the original graph
G = (V,E), and different clusters are disjoint. Observe that generally it may
happen that V �= ∪C∈V̂ C. The procedure accepts as input the supergraph Ĝ,
the number of vertices n of G, the parameter k, and an upper bound s on the
number of vertices of the supergraph Ĝ. It also accepts as input two numerical
parameters ε and t. The parameter ε > 0 is a sufficiently small positive con-
stant and t > 0 is a sufficiently large integer constant. Initially the supergraph
is G itself, with each vertex v forming a singleton cluster {v}. Hence initially it
holds that n = s. The procedure is invoked recursively. After each invocation the

216 L. Barenboim, M. Elkin, and C. Gavoille

current supergraph Ĝ is replaced with a supergraph on fewer vertices, and s is
updated accordingly. The parameter n, however, remains unchanged throughout
the entire execution.) As a result of an execution of Procedure Decompose every
vertex v in Ĝ is assigned a label label(v). The value of label(v) is equal to the
color ϕ(Cv) of the cluster Cv of Q which contains v.

Procedure Decompose partitions the graph Ĝ into two vertex-disjoint sub-
graphs with certain helpful properties. Specifically, one of the subgraphs has a
sufficiently small maximum degree that allows us to compute a network decom-
position in it directly and efficiently. The other subgraph can be partitioned
into a sufficiently small number of clusters with bounded diameter. The latter
property is used to construct a supergraph whose vertices are formed from the
clusters. Since the number of clusters is sufficiently small, the number of vertices
of the supergraph is small as well. Then our algorithm proceeds recursively to
compute a network decomposition of the new supergraph, using fresh labels that
have not been used yet. The recursion continues for k levels. Then each vertex is
assigned the label of the supernode it belongs to. (Supernodes of distinct recur-
sion levels may be nested one inside the other. In this case an inner supernode
receives the label of an outer supernode. A vertex of the original graphG receives
the (same) label of all supernodes it belongs to. Notice that a vertex belongs to
exactly one supernode in each recursion level.) This completes the description
of the algorithm. Its pseudocode is provided below. (See Algorithm 1.)

The algorithm employs two auxiliary procedures that are described in detail in
the full version of this paper [10]. The procedures succeed with high probability,
i.e., with probability 1 − 1/nc, for an arbitrarily large constant c. The first
procedure is called Procedure Dec-Small. It accepts a graph G with at most n
vertices and maximum degree at most d. Procedure Dec-Small accepts also as
input two numerical parameters, ε and t, which are relayed to it from Procedure
Decompose. Recall that ε > 0 is a sufficiently small constant and t is a sufficiently
large integer constant. The procedure computes an O(min{d · nε, d2})-coloring
of G in O(log∗ n) time. (The time is O(1) if d > nε. Another variant of this

procedure computes an O(d2 log(t) n)-coloring in O(t) time, for an arbitrarily
large positive integer t.) Observe that for any integer p > 0, a proper p-coloring
of a graph G is also a (0, p)-network-decomposition of G. (There are p labels, and
each cluster consists of a single vertex. Thus the diameter of the decomposition
is 0.) Procedure Dec-Small returns a (0, p)-network-decomposition S on line 5.
It also returns a labeling function labelS for vertices of a subset A. (We will soon
describe how this subset is obtained.) The labeling labelS also serves as a proper
coloring for the supergraph induced by S.

The second procedure which is invoked by our algorithm is called Procedure
Partition. This randomized procedure accepts as input an s-vertex supergraph

Ĝ = (V̂ , Ê) and a parameter q < |V̂ |
2c·logn , and partitions V̂ into two subsets A and

B, such that Ĝ(A) and Ĝ(B) have the following properties. The subgraph Ĝ(A)
has maximum degree O(q logn). The subgraph Ĝ(B) consists of O(|V |/q) =
O(s/q) clusters of diameter at most 2 with respect to Ĝ. The procedure contracts
each such cluster into a supernode. Let B denote the resulting set of supernodes

A Fast Network-Decomposition Algorithm 217

and G(B) = (B, E(B)) the resulting supergraph. Specifically, the vertex set of
G(B) is B, and its edge set is E(B) = {(C,C ′) | C,C′ ∈ B, ∃u ∈ C, u′ ∈
C′, such that (u, u′) ∈ Ê}. Procedure Partition returns the subset A ⊆ V̂ and
the set of supernodes B.

The clusters in B are obtained by computing a dominating set D of B of size
O(|V |/q). Each vertex in D becomes a leader of a distinct cluster. Each vertex
in B \D selects an arbitrary neighbor in D and joins the cluster of this neighbor.
Consequently, in all clusters all vertices are at distance at most 1 from the leader
of their cluster. Hence all clusters have diameter at most 2. Initially, each vertex
of V joins the set D with probability 1/q. Then the set B is formed by the
vertices of D and their neighbors. Finally, the set A is formed by the remaining
vertices, i.e., A = V \ B. In this stage the procedure returns the set of nodes
A and the set of supernodes B which is obtained from B, and terminates. This
completes the description of Procedure Partition.

Algorithm 1. Procedure Decompose(Ĝ, n, k, s, ε, t)

1: /* c is an arbitrarily large positive constant */
2: if s ≤ 2c · n1/k log n then
3: return Dec-Small(Ĝ, n, s, ε, t)

/* Compute directly a (0, O(s2))-network-decomposition of Ĝ. */
4: else
5: (A,B) := Partition(Ĝ, q := n1/k)

/* Partition Ĝ into A and B. The maximum degree of Ĝ(A) is O(n1/k log n).*/
6: (S, labelS) := Dec-Small(Ĝ(A), n, n1/k log n, ε, t)

/* Compute directly a (0, O(n2/k · log2 n))-network-decomposition of Ĝ(A). */
7: (L, labelL) := Decompose(G(B), n, k, s

n1/k)
/* A recursive invocation on the supergraph G(B) that contains at most s

n1/k

supernodes. */
8: for each vertex v of Ĝ, in parallel, do
9: if v ∈ S then
10: label(v) := labelS(v)
11: else if v ∈ L then
12: label(v) := labelL(v) + Λ

/* Λ = γ ·
⌊
n2/k · log2 n

⌋
, where γ is a sufficiently large constant to be

determined later. */
13: end if

/* The labeling function label on S ∪ L is defined by: for a cluster C ∈ S
(respectively, C ∈ L) it applies to it the function labelS() (resp., labelL()+Λ).
*/

14: end for
15: return (S ∪ L, label)
16: end if

The recursive invocation of Procedure Decompose on line 7 returns a network
decomposition L for the supergraph G(B). The for-loop (lines 8-14) adds (in
parallel) Λ = γ · ⌊n2/k log2 n

⌋
to the color of each cluster of the network decom-

position L0 of G(B), where γ is a sufficiently large constant to be determined

218 L. Barenboim, M. Elkin, and C. Gavoille

later. Since the number of colors used in each recursive level is at most Λ, this
loop guarantees that colors used for clusters created on different recursion levels
are different. This is because the labeling returned by procedure Dec-Small on
line 6 for clusters of S employs the palette [Λ] while the labeling computed in
lines 11 - 13 for clusters of L employs labels which are greater than Λ. The ter-
mination condition of the procedure is the case s = O(n1/k log n), i.e., when the
number s of vertices in the supergraph Ĝ is already small. At this point the max-
imum degree of Ĝ is small as well (at most s−1), and so coloring the supergraph
(by Procedure Dec-Small) results in a sufficiently good network decomposition.

Observe that our main algorithm will invoke the procedure on the original
graph G. Hence in the first level of the recursion Ĝ = G, and each supernode
is actually a node of G. In the second recursion level it is executed on the
supernodes of nodes of the original graph G. In the third level it is executed on
supernodes of supernodes, etc. Consequently, starting from the second recursion
level supernodes have to be simulated using original nodes of the network. To
this end each cluster that forms a supernode selects a leader which is used for
simulating the supernodes. Moreover, the leader is used to simulate all nested
supernodes to which it belongs. Our supernodes are obtained by at most k levels
of nesting. In each level of nesting a supernode is a cluster of diameter at most
2 in a graph whose nodes are lower-level supernodes. Hence a simulation of a
single round on such a supergraph will require up to 3k+1 rounds.

Next we provide several lemmas that will be used for the analysis of the
algorithm. We leave the parameters ε and t unspecified in all lemmas in this
section, because they have no effect on the analysis.

Lemma 31. Suppose that all invocations of auxiliary procedures of Procedure
Decompose have succeeded. Then the invocation computes a (3k−1−1, O(k ·n2/k ·
log2 n))-network-decomposition.

Recall that the auxiliary procedures Dec-Small and Partition succeed with
probability 1 − 1/nc, for an arbitrarily large constant c. Each of these proce-
dures is invoked at most k ≤ log n times during the execution of Procedure De-
compose. Therefore, the probability that all executions of Procedure Dec-Small
and Procedure Partition succeed is at least (1 − 1/nc)2 logn ≈ 1 − 1

nc/2 log n .

Since c is an arbitrarily large constant, all executions of the auxiliary proce-
dures succeed, with high probability. Hence Procedure Decompose computes a
(3k, O(k · n2/k · log2 n))-network-decomposition, with high probability.

The next lemma analyzes the running time of the algorithm.

Lemma 32. Let Tpart(n, q) (respectively, Tdec(n, d)) denote the running time
of Procedure Partition invoked with parameters n and q (resp., Procedure Dec-
Small invoked with parameters n and d). We will assume that both these running
times are monotone non-decreasing in both parameters. Then the running time
of Procedure Decompose is O(3k · (Tpart(n, n

1/k) + Tdec(n, 2c · n1/k logn))).

Procedure Dec-Small and Procedure Partition are provided and analyzed in
the full version of this paper[10]. Next we state the main results obtained by
plugging these procedures into Procedure Decompose. See [10] for the proofs.

A Fast Network-Decomposition Algorithm 219

Theorem 33. For any parameter k, 1 ≤ k ≤ logn, Procedure Decompose com-
putes a (3k, O(k ·n2/k · log2 n))-network-decomposition along with the correspond-
ing O(k·n2/k ·log2 n)-labeling function in time O(3k ·log∗ n), with high probability.
Alternatively, one can also have the second parameter equal to O(k · n2/k logn)
and the running time O(3k · k).

It follows that an (O(1), nδ)-network-decomposition of an arbitrary n-vertex
graph along with a proper nδ-labeling for it can be computed by a random-
ized algorithm, in O(1) time, with high probability. Additional variants of the
algorithm can be found in [10].

4 Applications

We use our network-decomposition techniques to obtain improved algorithms for
a variety of problems. The full description of all these applications appear [10].
Due to lack of space we provide here just a few notable results.

4.1 An Approximation Algorithm for the Coloring Problem

The results described in the previous sections (Theroem 33) imply an approx-
imation algorithm for the optimization variant of the coloring problem. A dis-
tributed approximation algorithm for the graph coloring problem (based on an
(O(1), O(n1/2+ε))-network decomposition) was given in [5]. We describe here a
generalization of that algorithm which works with any network-decomposition.
The generalized algorithm starts by computing a (3k−1, O(n1/k logn))-network-
decomposition Q with an O(n2/k log n)-labeling label(·) for it. Then in each
cluster C the entire induced subgraph G(C) is collected into the leader ver-
tex vC of C. The leader vertex vC computes locally the optimum coloring ϕC

for C. Finally, vC broadcasts (a table representation of ϕC) to all vertices of
C. Each vertex u that receives this broadcast computes its final color ψ(u) by
ψ(u) = 〈ϕC(u), label(u)〉. The running time of this algorithm is the sum of the
time required to compute the decomposition Q (i.e., O(3k · k2)) with the time
required for the computation of the colorings ϕC . The latter is dominated by
the diameter of Q, times a small constant. The overall running time is therefore
O(3k · k2). The result is summarized below.

Theorem 41. For any n-vertex graph G = (V,E) and an integer parameter
k = 1, 2, ..., an O(n2/k logn)-approximation of the optimal coloring for G can be
computed in O(3k · k2) time.

In particular, by setting the parameter k to be an arbitrarily large constant
we get a distributed O(nε)-approximation algorithm for the coloring problem
with a constant running time, for an arbitrarily small constant ε > 0. (The
running time is O(3�1/ε� · 1

ε2).) This greatly improves the current state-of-the-art
constant-time distributed approximation algorithm for the coloring problem due
to [5], which provides an approximation guarantee of O(n1/2+ε).

Note that the algorithm in Theorem 41 requires very heavy (exponential in n)
local computations and large messages. The heavy computations are inevitable,

220 L. Barenboim, M. Elkin, and C. Gavoille

because unless NP = P , the coloring problem cannot be approximated (in
polynomial time) up to a ratio of n1−ε, for any constant ε > 0 [28,25,50]. On
the other hand, in triangle-free graphs we can obtain an algorithm with short
messages and polynomially-bounded local computation. See [10].

Theorem 42. An O(n1/2+ε)-coloring of triangle-free n-vertex graph can be com-
putedinO(1/ε)distributedrandomizedtime, usingshortmessagesandpolynomially-
bounded local computations.

4.2 An Approximation Algorithm for the Minimum Dominating
Set Problem

In this section we employ our network-decomposition algorithm in order to derive
approximation algorithms for the minimum dominating set problem. We need
the following notion. For positive integer parameters α, β, σ, an (α, β)-network-
decomposition Q of a graph G = (V,E) is called σ-separated if the clusters
of Q can be β-colored in such a way that every pair of clusters C,C′ ∈ Q
which are colored by the same color are at distance at least σ from one another,
i.e., distG(C,C

′) ≥ σ. Observe that an ordinary network decomposition is 2-
separated.

Suppose that we are given a 3-separated (d, �)-network-decomposition Q of a
graph G. For each cluster C ∈ Q, we compute in parallel a dominating set D ⊆
Γ+(C) of C, such that D has minimum cardinality among all dominating sets
D′ ⊆ Γ+(C) of C. The computation ofD is performed by collecting the topology
of the clusters and their neighborhoods by the leaders of respective clusters,
performing the computation locally using exhaustive search2, and broadcasting
the results to the vertices of the clusters and their neighbors. Since the weak
diameter of the clusters is at most d, this requires O(d) rounds. The next lemma
show that the resulting set obtained by taking the union of the dominating sets
in all clusters constitutes an �-approximate minimum dominating set of the input
graph G.

Lemma 43. For a 3-separated (d, �)-network-decomposition Q, suppose that we
have computed a minimum dominating set DC ⊆ Γ+(C) of C, for each cluster
C ∈ Q. Then |⋃{DC | C ∈ Q}| ≤ � · |MDS(G)|.

In the full version of this paper [10] we devise a routine that computes a strong
((O(log n))k−1, n1/k)-network-decomposition in deterministic time (O(log n))k−1,
for any k = 1, 2, Using this network-decomposition in conjunction with Lemma
43 we obtain the following theorem.

Theorem 44. For an n-vertex graph G, and a positive integer parameter k an
O(n1/k)-approximation for the minimum dominating set problem can be com-
puted in deterministic time (O(log n))k−1.

2 One can employ polynomial-time local computations instead of exhaustive search in
the expense of increasing the approximation ratio by a factor of O(logΔ). See the
discussion following Theorem 44 .

A Fast Network-Decomposition Algorithm 221

To avoid heavy local computations by leaders of clusters, we can run a cen-
tralized O(logΔ)-approximation algorithm for the MDS problem in each cluster.
(More precisely, since we need a dominating set for C which can use vertices of
Γ+(C), we in fact obtain an instance of the Set Cover problem. This instance
has left and right degrees bounded by Δ + 1, and thus one can compute an
O(logΔ)-approximate set cover for this instance in centralized polynomial time.
As a result the approximation ratio becomes O(n1/k logΔ), while the time stays
(O(log n))k−1.

In the full version of this paper[10] we employ our network-decompositions
for coloring triangle-free graphs. We also show how our network-decomposition
algorithm can be employed to obtain low-intersecting partitions. The latter par-
titions were used in [16] to construct universal Steiner trees. Finally, we devise
a distributed approximation algorithm for the minimum t-spanner problem.

Acknowledgments. The authors are grateful to David Peleg for fruitful dis-
cussions that helped obtain some of the results in this paper.

References

1. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Fast Distributed Network Decom-
positions and Covers. J. of Parallel and Distr. Computing 39(2), 105–114 (1996)

2. Ajtai, M., Komlos, J., Szemeredi, E.: A note on Ramsey numbers. Journal of Com-
binatorial Theory, Series A 29, 354–360 (1980)

3. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.: Network decomposition and
locality in distributed computation. In: Proc. of the 30th Annual Symposium on
Foundations of Computer Science, pp. 364–369 (1989)

4. Awerbuch, B., Peleg, D.: Sparse partitions. In: Proc. of the 31st IEEE Symp. on
Foundations of Computer Science, pp. 503–513 (1990)

5. Barenboim, L.: On the locality of some NP-complete problems. In: Czumaj, A.,
Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS,
vol. 7392, pp. 403–415. Springer, Heidelberg (2012)

6. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. In: Proc. of the 27th ACM Symp. on
Principles of Distributed Computing, pp. 25–34 (2008)

7. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in Δ) time. In:
Proc. of the 41st ACM Symp. on Theory of Computing, pp. 111–120 (2009)

8. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polyloga-
rithmic time. In: Proc. 29th ACM Symp. on Principles of Distributed Computing,
pp. 410–419 (2010)

9. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Re-
cent Developments. Morgan-Claypool Synthesis Lectures on Distributed Comput-
ing Theory (2013)

10. Barenboim, L., Elkin, M., Gavoille, C.: A Fast Network-Decomposition Al-
gorithm and its Applications to Constant-Time Distributed Computation,
http://arxiv.org/abs/1505.05697

11. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. In: Proc. of the 53rd Annual Symposium on Foundations of
Computer Science, pp. 321–330 (2012)

http://arxiv.org/abs/1505.05697

222 L. Barenboim, M. Elkin, and C. Gavoille

12. Baswana, S., Sen, S.: A simple and linear time randomized algorithm for computing
sparse spanners in weighted graphs. Random Structures and Algorithms 30(4),
532–563 (2007)

13. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavt-
sev, G.: Improved approximation for the directed spanner problem. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 1–12.
Springer, Heidelberg (2011)

14. Bisht, T., Kothapalli, K., Pemmaraju, S.: Super-fast t-ruling sets (Brief Announce-
ment). In: Proc. of the 33th ACM Symposium on Principles of Distributed Com-
puting, pp. 379–381 (2014)

15. Bollobas, B.: Extremal Graph Theory. Dover Publications (2004)
16. Busch, C., Dutta, C., Radhakrishnan, J., Rajaraman, R., Srinivasagopalan, S.:

Split and join: strong partitions and universal Steiner trees for graphs. In: Proc. of
53rd Annual IEEE Symp. on Foundations of Computer Science, pp. 81–90 (2012)

17. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Information and Control 70(1), 32–53 (1986)

18. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of distributed
sparse spanner construction. In: Proc. of the 27th ACM Symp. on Principles of
Distributed Computing, pp. 273–282 (2008)

19. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs.
In: Proc. of the 43rd ACM Symp. on Theory of Computing, pp. 323–332 (2011)

20. Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast dis-
tributed algorithms for (weakly) connected dominating sets and linear-size skele-
tons. Journal of Computer and System Sciences 71(4), 467–479 (2005)

21. Elkin, M.: A near-optimal distributed fully dynamic algorithm for maintaining
sparse spanners. In: Proc. of the 26th ACM Symp. on Principles of Distributed
Computing, pp. 185–194 (2007)

22. Elkin, M., Peleg, D.: The client-server 2-spanner problem with applications to
network design. In: Proc. of the 8th International Colloquium on Structural Infor-
mation and Communication Complexity, pp. 117–132 (2001)

23. Elkin, M., Peleg, D.: Approximating k-spanner problems for k ≥ 2. Theoretical
Computer Science 337(1-3), 249–277 (2005)

24. Erdős, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel Journal of Mathematics 51, 79–89 (1985)

25. Feige, U., Kilian, J.: Zero Knowledge and the chromatic number. Journal of Com-
puter and System Sciences 57, 187–199 (1998)

26. Gfeller, B., Vicari, E.: A randomized distributed algorithm for the maximal inde-
pendent set problem in growth-bounded graphs. In: Proc. of the 26th ACM Symp.
on Principles of Distributed Computing, pp. 53–60 (2007)

27. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse
graphs. SIAM Journal on Discrete Mathematics 1(4), 434–446 (1988)

28. Hastad, J.: Clique is Hard to Approximate Within n1−ε. In: Proc. of the 37th
Annual Symposium on Foundations of Computer Science, pp. 627–636 (1996)

29. Jia, L., Rajaraman, R., Suel, R.: An efficient distributed algorithm for construct-
ing small dominating sets. In: Proc. of the 20th ACM Symp. on Principles of
Distributed Computing, pp. 33–42 (2001)

30. Kim, J.H.: The Ramsey number R(3, t) has order of magnitude t2/ log t. Random
Structures and Algorithms 7, 173–207 (1995)

31. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. Journal of Algorithms 17(2),
222–236 (1994)

A Fast Network-Decomposition Algorithm 223

32. Kothapalli, K., Pemmaraju, S.: Super-fast 3-ruling sets. In: Proc. of the 32nd
IARCS International Conference on Foundations of Software Technology and The-
oretical Computer Science, pp. 136–147 (2012)

33. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In:
Proc. of the 21st ACM Symposium on Parallel Algorithms and Architectures,
pp. 138–144 (2009)

34. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In:
Proc. of the 24th ACM Symp. on Principles of Distributed Computing, pp. 60–68
(2005)

35. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approxima-
tion. Distributed Computing 17(4), 303–310 (2005)

36. Kutten, S., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed symme-
try breaking in hypergraphs. In: Proc. of the 28th International Symposium on
Distributed Computing, pp. 469–483 (2014)

37. Lenzen, C., Oswald, Y., Wattenhofer, R.: What can be approximated locally? case
study: dominating sets in planar graphs. In: Proc 20th ACM Symp. on Parallelism
in Algorithms and Architectures, pp. 46–54 (2010). See also TIK report number
331, ETH Zurich, 2010

38. Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of
bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 510–524. Springer, Heidelberg (2010)

39. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

40. Linial, N., Saks, M.: Low diameter graph decomposition. Combinatorica 13,
441–454 (1993)

41. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15, 1036–1053 (1986)

42. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

43. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Proc. of the 46th ACM Symp. on Theory of Computing, pp. 565–573 (2014)

44. Naor, M., Stockmeyer, L.: What can be computed locally? In: Proc. 25th ACM
Symp. on Theory of Computing, pp. 184–193 (1993)

45. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.
Distributed Computing 14(2), 97–100 (2001)

46. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decompo-
sition. Journal of Algorithms 20(2), 581–592 (1995)

47. Saket, R., Sviridenko, M.: New and improved bounds for the minimum set
cover problem. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) AP-
PROX/RANDOM 2012. LNCS, vol. 7408, pp. 288–300. Springer, Heidelberg (2012)

48. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking depending on the
chromatic number or the neighborhood growth. Theoretical Computer Science 509,
40–50 (2013)

49. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set al-
gorithm for growth bounded graphs. In: Proc. of the 27th ACM Symp. on Principles
of Distributed Computing, pp. 35–44 (2008)

50. Zuckerman, D.: Linear Degree Extractors and the Inapproximability of Max Clique
and Chromatic Number. Theory of Computing 3(1), 103–128 (2007)

51. http://www.disco.ethz.ch/lectures/ss04/distcomp/lecture/chapter12.pdf

http://www.disco.ethz.ch/lectures/ss04/distcomp/lecture/chapter12.pdf

	A Fast Network-Decomposition Algorithm and Its Applications to Constant-Time Distributed Computation
	1 Introduction
	1.1 Network-Decompositions
	1.2 Constant-Time Distributed Algorithms
	1.3 The Minimum Dominating Set Problem
	1.4 Additional Results
	1.5 Comparison of Our and Previous Techniques
	1.6 Related Work

	2 Preliminaries
	3 Network Decomposition
	3.1 Procedure Decompose

	4 Applications
	4.1 An Approximation Algorithm for the Coloring Problem
	4.2 An Approximation Algorithm for the Minimum Dominating Set Problem

	References

