
Freeze-Tag in L1 has Wake-up Time Five
with Linear Complexity

N. Bonichon A. Casteigts C. Gavoille N. Hanusse

38th International Symposium on Distributed Computing (DISC)
Madrid, Spain – October 1st, 2024

Context

A robot in charge of awaking
a team of asleep robots.

Subject to:

awaking by contacts (need a move to meet)

awaked robots can help to awake others

robots move in the Euclidean plane

constant velocity moves

Goal:

to minimize the makespan, the wake-up time of the last robot

with a schedule computable efficiently [demo]

https://dept-info.labri.fr/~gavoille/ftp.mp4

Example (basic) (1/2)

Example (basic) (1/2)

Example (convex) 2/2

Example (convex) 2/2

https://topp.openproblem.net/p35

https://topp.openproblem.net/p35

Problem statement

Freeze-Tag Problem (FTP)

Input: a source s ∈R2

a set P ⊆R
2 of n points

Output: a wake-up tree for (s ,P)
with minimum makespan

A wake-up tree for (s ,P) is a binary tree spanning {s} ∪ P of root s
which has at most 1 child. Makespan is its weighted-depth w.r.t.
`2-norm.

Variants: `p-norm, metric-spaces, weighted graphs, R3, ...

Known results: hardness (1/3)

[ABFMS06] NP-Hard for moves restricted to weighted star graphs,
from Numerical 3D Matching, and for unweighted trees,
from 3-Partition (asleep robots at leaves)

[AY16,J17] NP-Hard for (R3, `2), from Hamiltonian Path in 2D Subgrid

[DR17] NP-Hard for (R3, `p), p > 1, from Dominating Set

[AAJ17] NP-Hard for (R2, `2), from Monotone 3SAT

[PdOS23] NP-Hard for (R3, `1), from Monotone 3SAT

—

[ABFMS02] Conjecture. NP-Hard for (R2, `1).

Known results: hardness (1/3)

[ABFMS06] NP-Hard for moves restricted to weighted star graphs,
from Numerical 3D Matching, and for unweighted trees,
from 3-Partition (asleep robots at leaves)

[AY16,J17] NP-Hard for (R3, `2), from Hamiltonian Path in 2D Subgrid

[DR17] NP-Hard for (R3, `p), p > 1, from Dominating Set

[AAJ17] NP-Hard for (R2, `2), from Monotone 3SAT

[PdOS23] NP-Hard for (R3, `1), from Monotone 3SAT

—

[ABFMS02] Conjecture. NP-Hard for (R2, `1).

Known results: hardness (1/3)

[ABFMS06] NP-Hard for moves restricted to weighted star graphs,
from Numerical 3D Matching, and for unweighted trees,
from 3-Partition (asleep robots at leaves)

[AY16,J17] NP-Hard for (R3, `2), from Hamiltonian Path in 2D Subgrid

[DR17] NP-Hard for (R3, `p), p > 1, from Dominating Set

[AAJ17] NP-Hard for (R2, `2), from Monotone 3SAT

[PdOS23] NP-Hard for (R3, `1), from Monotone 3SAT

—

[ABFMS02] Conjecture. NP-Hard for (R2, `1).

Known results: approximation (2/3)

[ABFMS06] O(logn)-approximation for locally-bounded weighted
graphs (bounded aspect ratio for incident edges)

[ABFMS06] (1+ ε)-approximation for (Rd , `p) for fixed d and any p , in

time O(n logn)+2(1/ε)O(1)

if ε < 1/57

TSP-inspired scheme:
Lowest level: wake-up
tree of depth Od ,p(ε)

The Freeze-Tag Problem 217

0v

P

Fig. 9. PTAS for geometric instances. Rescale so that all robots lie in a unit square. Look at the m-by-m grid
of pixels, where m = O(1/ε). Consider an enumeration over a special class of wake-up trees on a set P of
representative points, one per occupied pixel.

and we subdivide the square into an m-by-m grid of pixels, each of side length 1/m. (We
will select m to be O(1/ε).) We say that a pixel is empty if it contains no robots. (See
Figure 9.)

Our algorithm is based on approximately optimizing over a restricted set of solutions,
namely those for which all of the robots within a pixel are awakened before any robot
leaves that pixel. Note that by Theorem 22, once one robot in a pixel has been awakened,
all of the robots in the pixel can be awakened within additional time O(1/m), because
this is the diameter of the pixel.

We now describe the algorithm. We select an arbitrary representative point in each
nonempty pixel. We pretend that all robots in the pixel are at this point, and we enumerate
over all possible wake-up trees on the set, P , of representative points. (If there are r robots
in a given pixel, then we only enumerate wake-up trees whose corresponding out-degree
at that pixel is at most min{m2− 1, r + 1}.) Because there are only a constant number of
such trees (at most 2O(m2 log m), because |P| ≤ m2), this operation takes time 2O(m2 log m),
which is a constant independent of n. Recall that a wake-up tree is pseudo-balanced if
each root-to-leaf path in the tree has O(log2 m) nodes. Among those wake-up trees for
P that are pseudo-balanced, we select one, T ∗b (P), of minimum makespan, t∗b (P). We
convert T ∗b (P) into a wake-up tree for all of the input points R by replacing each p ∈ P
with an O(1)-approximate wake-up tree for points of R within p’s pixel, according
to Theorem 22. This step takes total time O(n log n). The total running time of the
algorithm is therefore O(2O(m2 log m)+n log n). Correctness is established in the following
lemmas.

LEMMA 24. There is a choice of representative points P such that the makespan of an
optimal wake-up tree of P is at most t∗(R).

Known results: wake-up constant (3/3)

r = distance to the farest asleep robot

[Folklore] Lower bound: makespan > r .

[ABFMS06] ∃ wake-up tree of depth 6 αr , for wake-up constant α.

L2 = (R2, `2)

r = 1

FTP(n) =Θ(1) TSP(n) =Θ(
√
n)

[ABFMS06] Wake-up constant for L2 is α(`2) < 57

[YBMK15] Wake-up constant for L2 is α(`2) < 5+2
√

2+
√

5 ≈ 10.06

Known results: wake-up constant (3/3)

r = distance to the farest asleep robot

[Folklore] Lower bound: makespan > r .

[ABFMS06] ∃ wake-up tree of depth 6 αr , for wake-up constant α.

L2 = (R2, `2)

r = 1

FTP(n) =Θ(1) TSP(n) =Θ(
√
n)

[ABFMS06] Wake-up constant for L2 is α(`2) < 57

[YBMK15] Wake-up constant for L2 is α(`2) < 5+2
√

2+
√

5 ≈ 10.06

Known results: wake-up constant (3/3)

r = distance to the farest asleep robot

[Folklore] Lower bound: makespan > r .

[ABFMS06] ∃ wake-up tree of depth 6 αr , for wake-up constant α.

L2 = (R2, `2)

r = 1

FTP(n) =Θ(1) TSP(n) =Θ(
√
n)

[ABFMS06] Wake-up constant for L2 is α(`2) < 57

[YBMK15] Wake-up constant for L2 is α(`2) < 5+2
√

2+
√

5 ≈ 10.06

Contributions
L1 = (R2, `1), `1 = Manhattan distance

robot moves ∈ {↔,l}

Theorem (Main)

The wake-up constant for L1 is α(`1) = 5.

⇒ The wake-up constant for L2 is α(`2) 6 5
√

2 ≈ 7.07

Theorem (Generic Algorithm, and more – not in this talk)

∀norm η, (1) wake-up tree of depth 6 α(η) can be constructed in linear

time; (2) α(η) 6 3+ϕ ·π(η) < 9.48, where ϕ = 1+
√

5
2 and π(η) ∈ [3,4].

Contributions
L1 = (R2, `1), `1 = Manhattan distance

robot moves ∈ {↔,l}

Theorem (Main)

The wake-up constant for L1 is α(`1) = 5.

⇒ The wake-up constant for L2 is α(`2) 6 5
√

2 ≈ 7.07

Theorem (Generic Algorithm, and more – not in this talk)

∀norm η, (1) wake-up tree of depth 6 α(η) can be constructed in linear

time; (2) α(η) 6 3+ϕ ·π(η) < 9.48, where ϕ = 1+
√

5
2 and π(η) ∈ [3,4].

Contributions
L1 = (R2, `1), `1 = Manhattan distance

robot moves ∈ {↔,l}

Theorem (Main)

The wake-up constant for L1 is α(`1) = 5.

⇒ The wake-up constant for L2 is α(`2) 6 5
√

2 ≈ 7.07

Theorem (Generic Algorithm, and more – not in this talk)

∀norm η, (1) wake-up tree of depth 6 α(η) can be constructed in linear

time; (2) α(η) 6 3+ϕ ·π(η) < 9.48, where ϕ = 1+
√

5
2 and π(η) ∈ [3,4].

Lower bound (1/2)

α(`2) > 1+2
√

2 ≈ 3.83 α(`1) > 1+2 ·2 = 5

Lower bound (2/2)

V

(η) := sup
u ,v∈R2

η(u),η(v)61

{ η(u + v)+η(u − v) } ∈ [2,π(η)]

[½-perimeter of the largest inscribed parallelogram in the unit η-disk]

Theorem (Real 2D Normed Spaces)

∀norm η, the wake-up constant for (R2,η) is α(η) > 1+

V

(η).

η is a norm⇔ unit
η-disk is a centrally
symmetric convex

Upper bound for L1

Strategy. Depends on n0 = #robots in the densest square.

E.g., n0 = 1.

Upper bound for L1

Strategy. Depends on n0 = #robots in the densest square.

E.g., n0 = 1.

Key lemmas for n0 > 1

Lemma (S5)
One can wake up n0 6 5 robots in a square in
time 2.

Lemma (S6)
One can wake up n0 6 6 robots in a square
and gathering at the origin in time 3.

Lemma (T)
One can wake up k robots in a isosceles right
triangle with side d in time 2d.

Key lemmas for n0 > 1

Lemma (S5)
One can wake up n0 6 5 robots in a square in
time 2.

Lemma (S6)
One can wake up n0 6 6 robots in a square
and gathering at the origin in time 3.

Lemma (T)
One can wake up k robots in a isosceles right
triangle with side d in time 2d.

Key lemmas for n0 > 1

Lemma (S5)
One can wake up n0 6 5 robots in a square in
time 2.

Lemma (S6)
One can wake up n0 6 6 robots in a square
and gathering at the origin in time 3.

Lemma (T)
One can wake up k robots in a isosceles right
triangle with side d in time 2d.

Key lemmas for n0 > 1

Lemma (S5)
One can wake up n0 6 5 robots in a square in
time 2.

Lemma (S6)
One can wake up n0 6 6 robots in a square
and gathering at the origin in time 3.

Lemma (T)
One can wake up k robots in a isosceles right
triangle with side d in time 2d.

Key lemmas for n0 > 1

Lemma (S5)
One can wake up n0 6 5 robots in a square in
time 2.

Lemma (S6)
One can wake up n0 6 6 robots in a square
and gathering at the origin in time 3.

Lemma (T)
One can wake up k robots in a isosceles right
triangle with side d in time 2d.

Putting it all together

If n0 = 1, use any strategy.
If n0 = 2,3,4,5, use Lemma (S5) twice.
If n0 = 6, 7 ,8,9,10, use Lemma (S6), then Lemma (S5).
If n0 > 11, use Lemma (T) with k > 6. (This case⇔ n > 41.)

Running the algorithm with Lemma (T)

Conclusion & Problems

We have proved:

α(`1) = 1+

V

(`1) = 5 (= α(`∞))

∀norm η, 1+

V

(η) 6 α(η) < 9.48

Wake-up trees of depth α(η) can be constructed in linear time

Problems and Conjecture.

Is α(`2) = 1+

V

(`2) = 1+2
√

2? α(`2) 6 7.07 4.63 [CCCG ’24]
True, if n > 280 or in convex position. What about n = 8?

∀η, α(η) = 1+

V

(η)?
[Conjecture. Wake up n robots is quicker than wake up four.]

"This problem is infectious and it is quite deceptively difficult."
– Anonymous referee.

Conclusion & Problems

We have proved:

α(`1) = 1+

V

(`1) = 5 (= α(`∞))

∀norm η, 1+

V

(η) 6 α(η) < 9.48

Wake-up trees of depth α(η) can be constructed in linear time

Problems and Conjecture.

Is α(`2) = 1+

V

(`2) = 1+2
√

2? α(`2) 6 7.07 4.63 [CCCG ’24]
True, if n > 280 or in convex position. What about n = 8?

∀η, α(η) = 1+

V

(η)?
[Conjecture. Wake up n robots is quicker than wake up four.]

"This problem is infectious and it is quite deceptively difficult."
– Anonymous referee.

