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Abstract
The Freeze-Tag Problem, introduced in Arkin et al. (SODA’02) consists of waking up a swarm
of n robots, starting from a single active robot. In the basic geometric version, every robot is given
coordinates in the plane. As soon as a robot is awakened, it can move towards inactive robots to
wake them up. The goal is to minimize the makespan of the last robot, the makespan.

Despite significant progress on the computational complexity of this problem and on approxi-
mation algorithms, the characterization of exact bounds on the makespan remains one of the main
open questions. In this paper, we settle this question for the ℓ1-norm, showing that a makespan
of at most 5r can always be achieved, where r is the maximum distance between the initial active
robot and any sleeping robot. Moreover, a schedule achieving a makespan of at most 5r can be
computed in time O(n). Both bounds, the time and the makespan are optimal. Our results also
imply for the ℓ2-norm a new upper bound of 5

√
2r ≈ 7.07r on the makespan, improving the best

known bound of (5 + 2
√

2 +
√

5)r ≈ 10.06r.
Along the way, we introduce new linear time wake-up strategies, that apply to any norm and

show that an optimal bound on the makespan can always be achieved by a schedule computable in
linear time.
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1 Introduction

In a collaborative swarm of robots, individual robots often have limited capacities in terms
of energy, sensing, computation, movement or communication. They cooperate in order to
achieve global tasks like exploring a network [11] or planning the motion of each individual
robot without conflict [24]. As the robots energy is limited, it may be necessary to switch
them off and wake them up later, which requires an efficient way to do so.
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9:2 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

The Freeze-Tag Problem (FTP) is an optimization problem that consists of activating
as fast as possible a swarm of robots represented by points in some metric space (in general,
not necessarily Euclidean). Active (or awake) robots can move towards any point of the
space at a constant speed, whereas inactive robots are asleep (or frozen) and can be activated
only by a robot moving to their position. Initially, there are n sleeping robots and one awake
robot. The goal is to determine a schedule whose makespan is minimized; that is, the time
until all the robots have been activated is minimized. FTP has applications not only in
robotics, e.g. with group formation, searching, and recruitment, but also in network design,
e.g. with broadcast and IP multicast problems. See [4, 3, 18] and references therein.

State of the art. FTP is NP-Hard in high dimension metrics like centroid metrics [3]
(based on weighted star n-vertex graphs) or unweighted graph metrics with a robot per
node [4]. Many subsequent works have extended this hardness result to constant dimensional
metric spaces, including the Euclidian ones. A series of papers [1, 15, 21] proves that FTP is
actually NP-Hard in (R3, ℓp), for every p ≥ 1, i.e., in 3D with any ℓp-norm1. For 2D spaces,
this remains NP-Hard in L2 = (R2, ℓ2), leaving open the question for other norms [1]. It
is believed, see [3, Conjecture 28], that FTP remains NP-Hard in L1 = (R2, ℓ1). Beyond
being interesting from a theoretical point of view, the L1 case corresponds to the case where
movements are restricted to be orthogonal. This is the case for swarms of robots in certain
warehouses.

Several approximation algorithms and heuristics were designed. In their seminal work,
[3] developed a 14-approximation for centroid metrics, and a PTAS for (Rd, ℓp). The authors
of [4] presented a O(1)-approximation for unweighted graph metrics with one robot per
node, and a greedy strategy analyzed in [25] gives a O(log1−1/d n)-approximation in (Rd, ℓp).
For general metrics, the best approximation ratio is O(

√
log n ) [18]. For heuristics, several

experimental results can be found in [9, 10, 17]. See [5, 20, 14, 8] for generalizations and
variants of the problem, including the important online version.

As observed by [2], the FTP can be rephrased as finding a rooted spanning tree on a
set of points with minimum depth, where the root node (corresponding to the awake robot)
has one child and all the other nodes (corresponding to the n sleeping robots) have at most
two children (see Figure 1). Each edge has a non-negative length, representing the distance
in the metric space between its endpoints. Such a tree is called a wake-up tree, and its
weighted-depth is called the makespan.

This problem can be approached by constructing a bounded-degree B minimum diameter
spanning tree (BDST), whose best known approximation is O(

√
logB n) [18]. As shown in [3],

the BDST problem for B = 2 can be approximated within a constant using approximation
algorithms for Traveling Salesman Problem, in its metric version (hereafter, simply
TSP). Moreover, the Path-TSP, a generalization of TSP in which one asks for finding a
minimum path length spanning a point set from given start and end points, provides a valid
wake-up tree and thus a solution for FTP. The link with TSP is reenforced by the recent
approximated reduction of Path-TSP to TSP [26]. In fact, as shown by [18], the BDST
problem for B = 3, implies the same guarantee for FTP, i.e., O(

√
log n) times the optimal.

This being said, there are significant differences between TSP and FTP, the latter being
considered as a cooperative TSP version where awake robots can help in visiting unvisited
cities. First, from an algorithmic point of view, the best lower bound on the approximation

1 The ℓp-norm of a given a vector u = (u1, . . . , ud) ∈ Rd is defined by ℓp(u) = (
∑d

i=1 |ui|p)1/p. We denote
by (Rd, ℓp) the d-dimensional normed linear space where the distance between two points u, v ∈ Rd is
given by ℓp(u − v). We denote by Lp the 2D normed linear space (R2, ℓp).
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Figure 1 Example of a (here, Euclidean) instance of FTP (on the left). The robot at p0 must
wake up n = 11 sleeping robots at p1, . . . , pn. In this example, positions are normalized in the unit
ℓ2-disk, p0 being at the center. An optimal solution, depicted by arrows, can be represented as a
binary weighted tree (right). The makespan is the length of the longest (weighted) branch in that
tree, here 2.594, corresponding to the path (p0, p1, p2, p8, p9). Observe that, even if the sleeping
robots are in a convex configuration, the optimal solution may have multiple edge crossings.

factor are 5/3 − ε for FTP [3], and only 123/122 − ε for TSP [16] (assuming P ̸= NP). On the
other side, the time complexity for PTAS in (Rd, ℓp) is n(log n)(d/ε)O(d) for TSP [6, 22, 19]
vs. O(n log n) + 2(d/ε)O(d) for FTP [3], subject to ε ≤ εd, where εd depends on the number
of dimensions d. Second, and perhaps more fundamentally, it is well known that, even in
the unit ball in (Rd, ℓp), the shortest spanning path (or tour) has unbounded length in the
worst-case (it depends on n), whereas the makespan for FTP is bounded by a constant (that
does not depend on n). For TSP, the worst-case length is Θd(n1−1/d) [12], whereas for FTP
the worst-case optimal makespan is no more than some constant ρd, independent of n [3].

The constant ρd plays an important role for PTAS and approximation algorithms. For
instance, it drives the condition “ε ≤ εd” in the grid refinement approach of [3], where local
solutions in radius-(1/ε) balls have to be constructed. For (R2, ℓ2), the constant ρ2 coming
from the approach of [3] has been proved to be at most 57 by [27]. The latter authors also
construct in time O(n) a wake-up tree of makespan at most 5 + 2

√
2 +

√
5 ≈ 10.06, which is

the best known upper bound for ρ2.

Main contributions. Although some of our results hold for arbitrary norms η, we mostly
focus on the ℓ1-norm assuming that robots are spread in the plane R2 within a normalized
disk of radius 1 centered at its initial awake robot of coordinate (0, 0). Note that the unit
ℓ2-disk is a usual disk whereas the unit ℓ1-disk is a square, rotated by 45 degrees with respect
to the coordinate axes.

Our results are summarized in Table 1 and deal with lower and upper bounds on the
makespan for different norms, as well as their algorithmic solutions. For ℓp-norms, the upper
bounds mainly come from our new upper bound for ℓ1 (Theorem 1). Moreover, we show
how to build, in linear time, a wake-up tree achieving a makespan of at most the best upper
bounds known for arbitrary norm (Theorem 2).

More precisely, we get:

▶ Theorem 1. A robot at the origin can wake up any set of n sleeping robots in the unit
ℓ1-disk with a makespan of at most 5. The wake-up tree can be constructed in O(n) time.

DISC 2024



9:4 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

Table 1 Lower and upper bounds on the makespan denoyed by the wake-up constant γ(η) for
different norms η. The number π(η) ∈ [3, 4] (resp.

V

(η) ∈ [2, π(η)]) is the half-perimeter of a unit
η-disk (resp. of the largest inscribed parallelogram in the unit η-disk), measured in the η-metric.
φ = (1 +

√
5)/2 is the golden ratio. Note that by Theorem 2, all our upper bounds are complemented

with a linear time algorithm constructing wake-up trees of makespan no more than these bounds.

Norm Lower bounds (Theorem 10) Upper bounds References
ℓ1,ℓ∞ 5 5 Theorem 1, Section 3

ℓ2 5 + 2
√

2 +
√

5 ≈ 10.06 [27]
ℓ2 1 + 2

√
2 ≈ 3.83 5

√
2 ≈ 7.07 Corollary 13, Section 5

ℓp 1 + 21+max(1/p,1−1/p) 5 · 2min(1/p,1−1/p) Corollary 13, Section 5
Arbitrary η 1 +

V

(η) ∈ [3, 1 + π(η)] ⊆ [3, 5] 3 + φπ(η) ≤ 9.473 Corollary 11, Section 5

Obviously, if the awake robot is at distance at most r from all the sleeping robots, then by
scaling the unit disk with their positions, and by using Theorem 1, one can construct a wake-
up tree of makespan of at most 5r. By a loose argument, this yields also a 5-approximation
O(n) time algorithm for (R2, ℓ1), since r is a trivial lower bound on the makespan. A similar
statement holds for (R2, ℓ∞).

Both bounds in Theorem 1 are optimal: the makespan of 5, and obviously the linear
time construction of the wake-up tree. The upper bound of 5 is reached with n = 4 sleeping
robots at positions (±1, 0) and (0, ±1).

By a simple argument, Theorem 1 immediately improves the best known upper bound
for the ℓ2-norm. Indeed (see also Corollary 13), by scaling the unit ℓ2-disk, we can use
the construction of Theorem 1 to obtain a makespan of 5

√
2 ≈ 7.07 for the unit ℓ2-disk,

improving upon the previous 10.06 upper bound of [27].
Our second result concerns algorithmic aspects of the FTP. Theorem 2 (and its simplified

version in Corollary 12) states that there is a linear time algorithm that can match the best
known upper bound to wake up a unit disk. The result is general enough to hold in any
normed linear space (R2,η), a.k.a. Minkowski plane.

To make the statement of Theorem 2 precise, let us define γn(η) as the worst-case optimal
makespan of a wake-up tree for any set of n sleeping robots in the unit η-disk and rooted
at the origin. In other words, γn(η) is the best possible upper bound of the makespan to
wake up n sleeping robots from an awake robot placed at the origin, in the unit η-disk, all
distances being measured according to the η-metric. Finally, let us introduce the wake-up
constant w.r.t. the η-norm defined by

γ(η) = sup
n∈N

γn(η) .

Note that the constant ρ2 introduced above is simply γ(ℓ2), the ℓ2 wake-up constant.

▶ Theorem 2. Let η be any norm and let τ > 3 be any real such that τ ≥ γ(η). In time
O(n), a wake-up tree of makespan at most τ , rooted at the origin, can be built for any set of
n points in the unit η-disk.

So, if one plugs η = ℓ1 and τ = 5 in Theorem 2, then proving that γ(ℓ1) ≤ 5 becomes
sufficient to obtain a linear time construction of a wake-up tree of makespan at most 5 as
claimed in Theorem 1. In other words, given Theorem 2, the main Theorem 1 can simply be
restated as: γ(ℓ1) ≤ 5. Furthermore, as already explained, the bound of 5 is attained for
n = 4 sleeping robots, so γ(ℓ1) ≥ γ4(ℓ1) = 5, and the wake-up constant in ℓ1-norm is thus 5.

To prove Theorem 1 and Theorem 2, we need several intermediate results, which we
believe are of independent interest.
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Table 2 Makespan and complexity to wake-up, from the origin, n sleeping robots in a cone of
arc-length w in the unit η-disk.

Strategy Makespan Complexity References
Heap-Strategy 1 + w log2 n O(n) Proposition 7, Section 4.1
Split-Cone-Strategy 1 + φw O(n log n) Proposition 8, Section 5.1
Linear-Split-Strategy 1 + φw + O(w · (log3 n)/n) O(n) Proposition 9, Section 5.1

In particular, we show how to build efficiently wake-up trees with a small makespan in
subregions of the unit disk, like truncated cones (that is the part of a cone within the unit
disk) of arc length w. The algorithms presented in Table 2 are named with respect to their
underlying strategies. The complexity and makespan of Linear-Split-Strategy come from
a non-trivial combination of two strategies: Heap-Strategy and Split-Cone-Strategy,
introduced in this paper.

Outline. The proof of Theorem 1 is divided into two parts: (1) the upper bound is
presented in Section 3 and its proof, based on a strategy called L1-Strategy, is construc-
tive; (2) the linear complexity of the construction is then proved in Section 4, based on
Heap-Strategy. Theorem 2 is proved by the use of similar strategies. In Section 5, we
describe Split-Cone-Strategy and show how these strategies can be combined to get new
bounds for arbitrary norms. Due to space limitations, some of the proofs are deferred to the
Full Version [7], while providing a summary of the main ideas in the body of the paper.

2 Preliminaries: from cones to triangles and squares

Most of our algorithms are based on a partitioning of the unit disk into several shapes. The
basic shape is a cone centered at the initial awake robot p0 = O. Given two points A, B of
the unit circle centered at the origin O, we denote by arc(A, B) the part of the circle that
is traversed anti-clockwise from A to B. The length of arc(A, B) is denoted by |arc(A, B)|,
and is called arc-length. We have |arc(A, B)| ∈ [0, 2π(η)), where π(η) is the half-perimeter
of a unit η-disk. Note that arc-length and half-perimeter are measured in the η-norm. For
instance, π(ℓ2) = 3.14... and π(ℓ1) = 4. Then, cone(A, w), where w = |arc(A, B)|, is the
region of the unit η-disk bounded by arc(A, B) and the segments [OA] and [OB].

Let us focus on L1. The unit ℓ1-disk has a four-fold symmetry and has perimeter
2π(ℓ1) = 8. We consider two specific cones: squares and triangles. See Figure 2. More
precisely, and up to scaling and symmetry along the four axis, a square is a cone(P, 2)
with a point P = (1/2, −1/2), whereas a triangle is a cone(Q, 1) where Q = (1, 0). In the
unit ℓ1-disk, each sides of a square has length 1, as well as its diameter (its diagonals). A
triangle has also diameter 1 (its hypotenuse), with both sides of length 1, and it forms an
isosceles right triangle. Thus, each square region represents a fourth of the unit disk, possibly
subdivided further into two equal triangles.

3 The makespan for L1 is at most 5

At a high level, the proof consists of recruiting first a team of robots in a dense subregion,
then these robots can wake up the other regions in parallel. The difficult part is to select
these regions (triangles and squares) appropriately, depending on the number of sleeping
robots and their distribution, and to prove that the bound holds in all the cases.

DISC 2024



9:6 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

Figure 2 The unit ℓ1-disk, divided into squares and triangles of diameter 1.

The proof relies on three key lemmas dealing with different wake-up processes in specific
subregions, namely:

▶ Lemma 3. A robot located at a corner of a square of diameter one can wake up any number
n ≤ 5 of robots in the square in two time units.

Unfortunately, Lemma 3 cannot be extended beyond 5 robots. We can show that
a makespan of 13/6 is required to wake up some configurations with 6 robots. It seems
unavoidable to consider a case-based proof, which motivates the distinction between Lemma 3
and Lemma 4.

▶ Lemma 4. A robot located at a corner of a square of diameter one can wake up 6 robots
in the square and return to the origin with these robots in three time units.

▶ Lemma 5. A robot located at any of the three corners of a triangle T of diameter one, or
two robots located at a same point on a side of T (not the hypotenuse) can wake up all the
robots in T in two time units.

A significant part of the paper is devoted to proving these lemmas. In particular, the
proof of Lemma 5 is based on a complex recursive algorithm which is divided into 13 subcases.

Equipped with these lemmas, the proof of the main statement can be described as follows.

3.1 Proof of Theorem 1
It is based on the following strategy, called L1-Strategy, that is split into four scenarios as
follows, depending on the number n0 of robots in the densest square:

n0 = 1. In this case, there are at most four robots to be awakened. The initiator
wakes up one of them in one time unit. We now have two awake robots. Each of them
independently wakes up another sleeping robot (if needed), in at most two time units
(largest possible distance within the unit ℓ1-disk). Then, any of the awake robots wakes
up the last robot (if any) in at most two time units, which gives a total makespan of at
most 1 + 2 + 2 = 5.
2 ≤ n0 ≤ 5. We recruit n0 robots from the densest square S in two time units
(Lemma 3), then come back to the origin (by time 2 + 1 = 3) with n0 + 1 ≥ 3 awake
robots. Since S is the densest square, three of the awake robots at the origin can each
wake up one of the remaining squares (Lemma 3) in two time units, which gives a total
of at most 3 + 2 = 5.
6 ≤ n0 ≤ 10. We recruit 6 robots (chosen arbitrarily) in the densest square S and move
them to the origin in 3 time units (Lemma 4). Together with the initiator, this makes
7 robots. One of them wakes up the remaining robots in S, of which there are at most
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4, in two time units (Lemma 3). The 6 others split into three teams of two robots, one
team for each remaining square, and each robot wakes up half of the sleeping robots in
its assigned square, again in two time units (Lemma 3), which gives a total of at most
3 + 2 = 5.
n0 ≥ 11. The densest square S must contain a triangle T with at least ⌈n0/2⌉ ≥ 6
sleeping robots. We wake up all the robots of T in 2 time units (Lemma 5) and move
them to the origin. This makes at least 7 awaken robots at the origin. Each of them
wakes up a remaining triangle in 2 time units (Lemma 5 again), which gives a total of at
most 2 + 1 + 2 = 5 time units.

This completes the upper bound of 5 on the makespan for L1. Thanks to Theorem 2, a
wake-up tree with such a makespan can be constructed in linear time, which completes the
proof of Theorem 1.

3.2 Lemmas 3 and 4: monotonic paths
The full proofs of these lemmas are given in the Full Version [7]. We give here a summary of
the main ideas. A path (p0, p1, . . . , pt) is monotonic if it is both x-monotonic and y-monotonic.
An essential feature of the ℓ1-norm is that all monotonic paths are shortest paths. In other
words, the length of a monotonic path equals the distance between its endpoints. A path
is k-monotonic if it can be subdivided into at most k consecutive monotonic paths. A key
remark is that within a region of diameter δ, the length of a k-monotonic path is at most kδ.

For Lemma 3, we establish that for any set of at most 5 points, there exists a wake-up
tree such that every branch is 2-monotonic.

For Lemma 4, a similar approach is taken by incorporating segments that return to the
starting point and demonstrating that the resulting paths are 3-monotonic.

Observe that the monotonic nature of a path is solely determined by the relative ar-
rangement of points in terms of their x and y coordinates. Therefore, our considerations are
confined to a finite number of configurations (that can be indexed by permutations). See
Figure 3.

p0

p2

p1

p5

p6

p3

p4

Figure 3 Illustration of a case of Lemma 4, the awake robot being at position p0. Robots are
first ordered w.r.t. their x-coordinate. p0, p2, p3, p6 is a 1-monotonic path whereas p0, p2, p3, p4 is
a 2-monotonic path. p0, p2, p5, p1, p0 is a 3-monotonic path. This wake-up tree is valid for any set
of sleeping robots whose orders relative to the axes correspond to the permutation (3246517): the
relative y-order of p0 is 3, the one of p1 is 2, . . . , the one of p6 is 7.

DISC 2024



9:8 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

3.3 Lemma 5: recursive wake-up in triangles
Lemma 5 establishes that an arbitrary number of sleeping robots in a triangle T of diameter 1
can be woken up within two time units. The approach is inductive. Namely, waking
up a triangle often reduces to waking up smaller nested triangles (containing strictly less
sleeping robots), which explains why the statement of the lemma addresses several starting
configurations. We present here a representative subset of three cases (out of thirteen). The
other cases are presented in the Full Version [7].

▶ Lemma 5. A robot located at any of the three corners of a triangle T of diameter one, or
two robots located at a same point on a side of T (not the hypotenuse) can wake up all the
robots in T in two time units.

Because the unit ℓ1-disk has a four-fold symmetry, we assume that the triangle T is
oriented as in Figure 4, with vertices ABC and hypotenuse [BC].

A

TA

T0
TB TC

F E

D

B C

Figure 4 The triangle T with vertices B = (0, 0), C = (1, 0) and A = (1/2, 1/2). Subdivision of
the triangle T .

The goal is to show that all sleeping robots in T can be woken up in two time units, for
each of the possible starting configurations. Up to symmetry, these configurations are: Case
A: one awake robot is located in A; Case B: one awake robot is located in B; Case C: two
awake robots are located at a same point along segment [AB].

The strategy depends critically on how the robots are distributed within the triangle,
which gives rise to a number of subcases (13 overall). Our proof is fully constructive (i.e., it
yields an actual quadratic time algorithm that we have implemented) and we show in the Full
Version [7] how to get a linear time algorithm. Technically, we proceed by induction on the
number of sleeping robots in T . For cases A and B, at least one sleeping robot, at position
p1 in T , will be awake by the robot at p0 ∈ {A, B}. For Case C, this is not necessarilly the
case as an awake robot may simply move to another location without waking up any other
robot. However, after one application of Case C, we check that Case C cannot immediately
reapply. In other words, after two steps of induction, cases A or B will apply with one less
sleeping robot.

The proof of Case B and C, and their subcases, relies on a regular subdivision of T into
four smaller triangles of equal size. Call D, E, F the middle points of segments [BC], [CA]
and [AB], respectively, and let TA, TB , TC , T0 be the triangles AFE, BDF , CED, and DEF

(see Figure 4). Each of these triangles has diameter 1/2. Let ♢ PB be the parallelogram
BDEF . The diameter of ♢ PB is 1.

We now present three of the thirteen cases (see Figure 5). These three cases are
representative of the different arguments used. In these cases, the awake robot starts at
point B, also referred to as p0. The case analysis depends on the number of sleeping robots
in ♢ PB . Namely, we apply Case B0 if it is empty, B1 if it contains one robot, and B2 if it
contains two robots. A graphical summary of these three subcases is shown in Figure 5.
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p0
p1

A′
C′

Case B0

p0
p1

Case B1

p0

p1

p2

Case B2

Figure 5 The subcases B0, B1 and B2 of Case B for Lemma 5. Regions in blue correspond to
region where recursion occurs. Outgoing purple arrows indicates that the region will be woken up
from the head location. A thick edge indicates that two awake robots follow the same path.

Case B0. ♢ PB is empty. We increase the size of ♢ PB homothetically, keeping one of
its corners at B, until a point p1 is found (see Figure 5 - B0). The new parallelogram
intersects with [AC] in two points C ′ and A′, where C ′ is the closest to A. This
forms two smaller triangles which are homothetic to ABC. Because they result from
intersecting a parallelogram, these triangles have the same size; namely, they have
diameter d = |AC ′| = |A′C|, which also implies that |C ′A′| = 1 − 2d.
The wake-up tree is as follows. The initial robot wakes up p1. Depending on what side
of the parallelogram p1 lies on, both robots reach C ′ or A′ using a path that is still
monotonic from p0, so they arrive before one time unit. One of them then reaches the
other point (C ′ or A′) in time 1−2d. Finally, each robot wakes up one of the two triangles
(separately) in time 2d, recursing into case A and B (respectively). Overall, the makespan
is thus 1 + (1 − 2d) + 2d = 2.
Case B1. ♢ PB contains one robot. The robot at p0 wakes up this robot, then both
robots move to E before one time unit, since the path (p0, p1, E) is monotonic. Finally,
one of them wakes up TA (recursing in Case B) and the other TC (recursing in Case A).
These triangles have half the size of T , thus the makespan is at most 1 + 2 · (1/2) = 2.
Case B2. ♢ PB contains two robots at p1 and p2. W.l.o.g., assume p1 ≤x p2. If
(p0, p1, p2) is monotonic, the strategy is the same as in Case B1: the robots reach point E

in one time unit, then two of them wake up TA and TC independently. Otherwise, there
exists a point C∗ of [DE] such that (p1, p2, C∗) is 1-monotonic. In this case, the initial
robot wakes up the robot in p1, then moves to E before one time unit and wakes up TA

in 2 · (1/2) = 1 time unit. Meanwhile, the robot in p1 wakes up the robot in p2 and both
move to C∗.

▷ Claim 6. The 2-monotonic path (p0, p1, p2, C∗) has length at most one.

Proof. Let p1 = (x, y) and C∗ = (x′, y′). By 2-monotonicity, the length of the path is
|p0p1| + |p1C∗| = (x + y) + ((x′ − x) + (y − y′)) = 2y + x′ − y′. In terms of y-coordinate,
the height of T is 1/2, thus the height of ♢ PB is 1/4, and y ≤ 1/4. Moreover, because
C∗ lies on [DE], we have y′ = x′ − 1/2, so 2y + x′ − y′ ≤ 1/2 + x′ − (x′ − 1/2) = 1. ◁
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We thus have two robots located at C∗ before one time unit. These robots can wake up
TC (of diameter 1/2) in one time unit, by recursing in Case C.

4 Linear time algorithm

4.1 Heap-Strategy and linear time for L1

A crude analysis of L1-Strategy shows that its complexity is quadratic. Even if we use
a suitable data structure, we believe that the current proof cannot lead to a better than
Ω(n log n) time algorithm.

To obtain a linear algorithm, we will combine it with an algorithm that runs in linear
time and achieves a makespan of 3 + O((log n)/

√
n ). Therefore, for small values of n (up to

a characterized constant), we use L1-Strategy, and for larger values, we use the latter.
The strategy, called Generic-Strategy, is as follows: in a first phase, we divide the disk

into
√

n cones of arc-length w = 2π(ℓ1)/
√

n = 8/
√

n. Initially, we awake the robots in the
densest cone using a strategy called Heap-Strategy. This particular cone contains at least√

n robots. In a second phase, we assign one awake robot to each of the remaining cones,
in parallel, every ”sleeping” cone is awaken using Heap-Strategy again. Therefore, the
makespan of the Generic-Strategy is no more than 1 + 2C(w,

√
n) = 1 + 2C(8/

√
n,

√
n),

where C(w, n) is the wake-up time for n points in a cone of arc-length w.

O

Γ

Figure 6 On the left, an arbitrary partition of the unit ℓ1-disk into cones. In the middle, a
wake-up tree computed using Heap-Strategy for an arbitrary cone (Γ represents an arc for an
arbitrary norm). On the right, the analysis of the length of a branch drawn in black. In blue (resp.
red) the radial (resp. angular) displacement of each edge.

To wake up a cone from p0 containing points p1, p2, . . . , pn, we use the Heap-Strategy
that simply constructs a minimum heap (binary) tree whose key is the ℓ1-distance from the
origin. By design, every path from p0 to a point pi has a non-decreasing distance property of
the nodes w.r.t. the root.

More precisely, Heap-Strategy consists in building a minimum (binary) heap tree H for
{p1, . . . , pn} where the key of pi is the distance from p0 to pi. The wake-up tree rooted at p0
is then composed of H itself, plus the edge connecting p0 to the root of H (its top element),
i.e., the closest point from p0. Using the standard “build-heap” and “heapify” routines, H

and thus the wake-up tree can be constructed in time O(n).
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Although we focus on L1 in this section, the following proposition holds for any norm η:

▶ Proposition 7. If P is contained in a cone of arc-length w, then Heap-Strategy constructs
in time O(n) a wake-up tree for P , rooted at the origin, with makespan at most 1+w ⌊log2 n⌋.

Proof. We can bound the length of an edge by the radial displacement plus the angular
displacement. For each edge, the angular displacement is bounded by the arc-length w (see
Figure 6). Furthermore, along a branch, the total radial displacement is bounded by the
depth of the cone. Since the wake-up tree is a binary tree, each branch has at most ⌊log2 n⌋
edges. Hence we obtain a makespan of 1 + w ⌊log2 n⌋ for the Heap-Strategy on a cone of
arc-length w. ◀

Thus, from Proposition 7, we have C(w, n) = 1 + w ⌊log2 n⌋, and the makespan of the
Generic-Strategy for L1 is smaller than 3 + 16 log2 n/

√
n. So, for n large enough, that is

as soon a 3 + 16 log2 n/
√

n ≤ 5, we can use this generic strategy to get a linear time for L1,
and we use the L1-Strategy otherwise, both with a guarantee of 5 on the makespan.

4.2 Linear time for arbitrary norms
We can generalize the generic strategy to arbitrary norms for any admissible bound on the
makespan. The main difference is that the threshold n0 ≤ n to use the generic algorithm
depends on the wanted upper bound τ > 3 assuming that τ ≥ γ(η). For L1, we know that
γ(ℓ1) = 5 and we show a solution for τ = 5.

Thus we get:

▶ Theorem 2. Let η be any norm and let τ > 3 be any real such that τ ≥ γ(η). In time
O(n), a wake-up tree of makespan at most τ , rooted at the origin, can be built for any set of
n points in the unit η-disk.

Proof. Assume that τ > 3 and τ ≥ γ(η). We use the generic strategy presented for
L1. Since it is well-known that π(η) ∈ [3, 4], we compute the least integer n0 such that2

3 + 16 log2 n0/
√

n0 ≤ τ . Note that n0 is a fixed constant, independent of n.

If n ≥ n0, then we can apply Generic-Strategy providing a makespan that is less than τ .
If n < n0, then we use can brute-force algorithm for finding an optimal wake-up tree
whose makespan is at most γ(η) by definition of γ(η). This is also at most τ by
the choice of τ . The number of wake-up trees we have to consider in a brute-force
algorithm is at most the number of labeled binary trees on n vertices that is n! · Cn =
(2n)!/(n + 1)! ≤ (2n0)!/(n0 + 1)! = O(1) since n0 is constant, where Cn =

(2n
n

)
/(n + 1)

is the nth Catalan’s number. And, checking the makespan of each of these trees costs
O(n) = O(n0) = O(1). ◀

5 Wake-up constants for other norms

Observe that Heap-Strategy suffers from having an unbounded makespan of 1 + w log2 n

if w = ω(1/ log n). We address this as follows. First, we introduce a new strategy:
Split-Cone-Strategy in order to remove this dependency to get a makespan of3 1 + φw but

2 For η = ℓ1, this integer appears to be n0 = 11 665. In the detailed proof of Theorem 2, in the Full
Version [7], we show that we can use Linear-Split-Strategy instead of Split-Cone-Strategy in the
Generic-Strategy, and that it is enough to choose the least n0 such that 3 + 26/

√
n0 ≤ τ . For η = ℓ1,

this improved strategy gives an n0 = 169.
3 Recall that φ = (1 +

√
5)/2 is the golden ratio.

DISC 2024



9:12 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

running in time O(n log n). Then, we use Split-Cone-Strategy to get new bounds on the
makespan for arbitrary norms. At the end of the section, we give some hints to get a linear
time version of Split-Cone-Strategy, the full proof being presented in the Full Version [7].

Notations for arbitrary norms. In this paper, we concentrate our attention to the plane
R2. Given a norm η, the unit disk w.r.t. η, or the unit η-disk for short, is the normed linear
subspace of (R2,η) induced by all the points at distance at most one from the origin, where
distances are measured according to η, the distance between u and v being η(v − u). The
unit η-disk can be an arbitrary convex body that is symmetric about the origin. Note that
the unit ℓ2-disk4 is a usual disk whereas the unit ℓ1-disk is a square, rotated by 45 degrees
with respect to the coordinate axes.

5.1 Split-Cone-Strategy

Let us describe the construction of the wake-up tree corresponding to Split-Cone-Strategy:
(1) the initial awake robot located at this origin, wakes up the closest robot located at position
p1 w.r.t. the η-distance; (2) we split the current cone of arc-length w into two subcones of
arc-length w/φ and (1 − 1/φ)w; (3) the current point p is linked to the closest point in the
non-decreasing order in each of the two subcones; (4) each subcone is subdivided recursively
according to Steps 2 and 3 until every point of the initial cone belongs to the binary wake-up
tree.

It turns out that the subcone assigned to a point at depth i in the wake-up tree
has an arc-length at most w/φi. After a precise analysis of the wake-up tree defined
by Split-Cone-Strategy, we get:

▶ Proposition 8. If P is contained in a cone of arc-length w, then Split-Cone-Strategy
constructs in time O(n log n) a wake-up tree for P , rooted at the origin, of makespan at most
1 + φw.

O

Γ

Figure 7 Illustration of the Split-Cone-Strategy, producing non-decreasing wake-up trees. The
arc Γ is of length w in the η-norm. Note that edges can cross in such wake-up trees.

Let us sketch the proof of Proposition 8. To analyze the length of the longest branch of
the wake-up tree (the makespan), we proceed as in the case of Heap-Strategy: we bound
the length of each edge by its radial movement plus its lateral movement. The sum of the
radial movements of a branch is at most the radius of the cone, that is 1. In addition, the
lateral movement of the i-th edge is at most w/φi−1. So the sum of the lateral movements
along a branch is at most φw. Hence the makespan of Split-Cone-Strategy is at most
1 + φw.

4 For convenience, and to avoid extra notation, we use the same “unit η-disk” terminology to denote the
normed subspace and, like here, its support, that is the set of all points/vectors of norm at most 1 (the
unit disk).
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If we combine Split-Cone-Strategy on the O(n/ log n) closest points from the initial
position and Heap-Strategy on the remaining points in tiny subcones, we have (see the Full
Version [7] for the proofs):

▶ Proposition 9. If P is contained in a cone of arc-length w, the Linear-Split-Strategy
constructs in time O(λn) a wake-up tree for P , rooted at the origin, with makespan at most
1 + φw + w · (log2 n)3/(λn), for every λ ≥ 1.

5.2 Lower bounds
In L1, consider four sleeping robots at positions (±1, 0) and (0, ±1). Any wake-up tree
spanning more than four points must have (unweighted) a depth at least 3. Then, the first
hop has length 1, and the next two hops have length 2 (as the four points are mutually at
distance 2), which overall gives a makespan of at least 5 for any wake-up tree. In Theorem 10,
we give a generalization of this argument for any norm η, leading to an intriguing open
question of matching this lower bound for other norms (see Conjecture 14).

Given a norm η, let us define

V

(η) as half the perimeter of the largest inscribed par-
allelogram in the unit η-disk measured in the η-metric. (For the ℓ1-norm, this perimeter
corresponds to the circumference of the disk itself, and so

V

(ℓ1) = 4.) This is a classical
parameter of 2D normed spaces. It can be formally defined by (see [23, 13]),

V

(η) = sup
u,v∈R2

η(u),η(v)≤1

{ η(u + v) + η(u − v) } .

It is easy to check that

V

(η) ∈ [2, 4]. For general norms, the constant

V

(η) can be difficult to
calculate precisely. However, it is known (see [13, Proposition 1] for instance), that, for every
p ∈ [1, ∞],

V
(ℓp) = 21+max(1/p,1−1/p). In particular,

V
(ℓ1) =

V
(ℓ∞) = 4 and

V
(ℓ2) = 2

√
2.

The wake-up constants for n ∈ {0, 1, 2, 3} are easy to calculate. We have γ0(η) = 0,
γ1(η) = 1, γ2(η) = γ3(η) = 3, and also γn(η) ≥ 3 for all5 n ≥ 3. Our next result gives the
exact value for γ4(η).

▶ Theorem 10. For any norm η, γ4(η) = 1 +

V

(η).

This implies a general lower bound of γ(η) ≥ 1 +

V

(η), for any norm η.

5.3 Upper bounds, ℓp-norms, and the conjecture
Wake-up cones of arc-length w with a makespan 1 + φw allow us to state a first general
upper bound: once two robots are awake at the origin (this can be done in at most two time
units), each one can wake up half of the unit disk with arc-length π(η). By this way, we can
bound the wake-up constant for every norm:

▶ Corollary 11. For any norm η, γ(η) < 3 + φπ(η) ≤ 9.473.

Note that since

V

(η) ≥ 2, by letting τ = 1 +

V

(η), Theorem 2 simplifies and rewrites in
the following meta-theorem:

▶ Corollary 12. For any norm η with

V

(η) > 2, one can construct in time O(n) a wake-up
tree of makespan at most γ(η) for any set of n points in the unit η-disk and rooted at the
origin.

5 For n ≥ 2, it is enough to place one sleeping robot at (1, 0) and the n − 1 others at (−1, 0).
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Now, combining Theorem 1, Theorem 10 (with η = ℓp), and standard inclusion arguments
of unit ℓp-disk, we get the following bounds for the ℓp wake-up constant, which are better
than what one can get by Corollary 11 with π(ℓp):

▶ Corollary 13. For every p ∈ [1, ∞], 1 + 21+max(1/p,1−1/p) ≤ γ(ℓp) ≤ 5 · 2min(1/p,1−1/p).

In the light of the lower bound γ(η) ≥ 1 +

V

(η) implied by Theorem 10, we propose the
following natural conjecture.

▶ Conjecture 14. For any norm η, γ(η) = 1 +

V

(η).

According to Theorem 10, which states that the bound 1 +

V

(η) is reached by n = 4
robots and doing some experiments, Conjecture 14 can be captured in the aphorism:

Wake up n robots is quicker than wake up four.

Theorem 1 and Corollary 13 prove the conjecture for η ∈ {ℓ1, ℓ∞}. For η = ℓ2, if true,
Conjecture 14 combined with Theorem 2 implies that in time O(n) one can construct a wake-
up tree of makespan 1 + 2

√
2 ≈ 3.82. Using an analysis of the Generic-Strategy combined

with the Split-Cone-Strategy (see the Full Version [7]), we can show that Conjecture 14
is true for ℓ2 whenever n ≥ 551.

6 Conclusion

In this article, we showed that a wake-up tree can be built in linear time with a makespan at
most five for robots in L1. This wake-up constant “five” is optimal: no strategy can guarantee
less than five times the radius under the ℓ1-norm. Our results imply a new upper bound
of 7.07 for the ℓ2-norm, improving upon the existing bound of 10.06, and so, in linear time.
Some of our results are general enough to apply to every norm, implying an upper bound
of 9.473 for every norm by introducing new algorithmic strategies, namely Heap-Strategy
and Split-Cone-Strategy. We also showed how to get in linear time a wake-up tree of
makespan no more than the wake-up constant, for every norm. The construction could be
used in another setting since it provides a subcubic geometric graph with small diameter,
namely at most 2γ(η) < 2 · (3 + φπ(η)) times the radius of the point set (Corollary 11).

Along the way, we conjecture that, for every norm η, the wake-up constant is 1 +

V

(η),
where

V

(η) is half the perimeter of the largest inscribed parallelogram in the unit disk of
(R2,η). According to our results, the conjecture is equivalent to saying that waking up n

robots is always faster than waking up four robots. This conjecture is proved for the special
cases of ℓ1 and ℓ∞ norms. As a first step towards proving the full conjecture, it would be
interesting to determine the status of the ℓ2-norm whose wake-up constant, according to our
conjecture, should be 1 + 2

√
2 ≈ 3.82. Among ℓp-norms, ℓ2 is the norm whose current gap

between the upper and lower bounds is the largest.
We also showed that the wake-up constant for fixed n asymptotically decreases with n,

i.e., γn(ℓ2) < γ4(ℓ2) for large n (above 500), but we were unable to show that this inequality
occurs for small n (say, 10). Surprisingly, some experiments that we conducted (see the Full
Version [7]) show that at least one of the two following statements is wrong: (1) the wake-up
constant is reached for points that are equally distributed along the boundary of the unit
circle; and (2) for every n ≥ 4, γn+2(ℓ2) < γn(ℓ2).
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In summary, the main open questions are the following:
Is the wake-up constant of the ℓ2-norm equal to 1 + 2

√
2?

Is the wake-up constant of the regular-hexagonal-norm6 equal to 4?
Is Conjecture 14 true for all ℓp-norms? And if so, is it true every norm?
Does a linear time PTAS exists?
What is the status of higher dimensions?
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