
Theory Comput Syst (2010) 47: 837–855
DOI 10.1007/s00224-010-9283-6

Strong-Diameter Decompositions of Minor Free Graphs

Ittai Abraham · Cyril Gavoille · Dahlia Malkhi ·
Udi Wieder

Published online: 27 August 2010
© Springer Science+Business Media, LLC 2010

Abstract We provide the first sparse covers and probabilistic partitions for graphs
excluding a fixed minor that have strong diameter bounds; i.e. each set of the
cover/partition has a small diameter as an induced sub-graph. Using these results
we provide improved distributed name-independent routing schemes. Specifically,
given a graph excluding a minor on r vertices and a parameter ρ > 0 we obtain the
following results: (1) a polynomial algorithm that constructs a set of clusters such
that each cluster has a strong-diameter of O(r2ρ) and each vertex belongs to 2O(r)r!
clusters; (2) a name-independent routing scheme with a stretch of O(r2), headers of
O(logn + r log r) bits, and tables of size 2O(r)r! log4 n/ log logn bits; (3) a random-
ized algorithm that partitions the graph such that each cluster has strong-diameter
O(r6rρ) and the probability an edge (u, v) is cut is O(r d(u, v)/ρ).
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1 Introduction

As networks grow large and complex, a key approach in managing information and
constructing algorithms is to decompose the network into locality-preserving clus-
ters. Then, information and/or management can be divided between the clusters, such
that every node is responsible only for clusters for which it belongs. Such decompo-
sitions into locality sensitive clusters have become key tools in network and graph
theory and span a large body of literature.

Consider an undirected weighted graph G = (V ,E,ω), i.e., E ⊆ V × V and ω :
E → R

+. Let dG(u, v) be the cost of a minimum cost path between u and v where
the cost of a path is the sum of weights of its edges. Let diam(G) = maxu,v dG(u, v).
Given U ⊆ V , let G[U ] be the induced subgraph whose nodes are U and whose
edges are the edges in G whose endpoints both belong to U . Let CC(G) be the
set of connected components of G. Let BG(u,ρ) = {v | dG(u, v) ≤ ρ}. For U ⊆ V

and v ∈ V , let dG(U,v) = minu∈U dG(u, v), and let BG(U,ρ) = {v | dG(U,v) ≤ ρ}.
When G is clear from the context we omit the subscript and write d(u, v).

We continue by defining the various combinatorial objects which play a role in the
paper.

Sparse Covers

Sparse covers were introduced by Awerbuch and Peleg in [8] and serve as a build-
ing block for a variety of applications. These include distance coordinates, routing
with succinct routing tables [4, 8], mobile user tracking [8], resource allocation [6],
synchronization in distributed algorithms [7], and others.

Definition 1 A (k, τ, ρ) sparse cover is a set of clusters C ⊂ 2V with the following
properties:

1. [Cover]: ∀u ∈ V , ∃C ∈ C such that B(u,ρ) ⊆ C.
2. [Smallstrong-diameter]: ∀C ∈ C , diam(G[C]) ≤ kρ.
3. [Sparsity]: ∀u ∈ V , |{C ∈ C | u ∈ C}| ≤ τ .

When a (k, τ, ρ) sparse covers exists for any ρ we say that the graphs admits a
(k, τ ) sparse cover scheme.

For general graphs, the seminal construction in [16] provides a (2k − 1,2k · n1/k)

sparse cover scheme for any integer k ≥ 1. This result asymptotically matches known
lower bound that arise from dense graphs with high girth [16]. For certain restricted
families of graphs, better covers are known to exist. For example, if the graph is
α doubling1 then for any ρ, ε > 0 one can greedily choose an ερ-net N and take
the balls {B(u, (1 + ε)ρ) | u ∈ N}. It is easy to see that this forms a (1 + ε, (1 +
1/ε)O(logα)) sparse cover scheme.

1A graph is α doubling (or of doubling dimension logα) if every ball of radius r can be covered by at
most α balls of radius r/2.
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Minor-Free Graphs

The contraction of an edge e = (u, v) is the replacement of nodes u,v with a new
vertex whose incident edges are the edges other than e that were incident to u or v.
A graph H is a minor of G if H is a subgraph of a graph obtained by a series of
edge contractions of G. A celebrated theorem of Robertson and Seymour states that
every (possibly infinite) set of graphs G that is closed under edge contractions and
edge removals could be characterized by a finite set of graphs called its obstruction
set, where a graph G is in the set G if and only if none of its minors is contained in
the obstruction set.

For example it is well known that planar graphs are exactly all the graphs whose
set of minors exclude K3,3 and K5 (where Kr,r is the complete bipartite graph with r

nodes in each set). It is natural is ask whether graphs that exclude some fixed minor
have better sparse covers than general graphs.

Recall that a (k, τ ) weak-diameter sparse cover scheme is defined as a sparse
cover scheme with one important change: the diameter bound is now imposed on dis-
tances in the original graph. That is, a short path between cluster nodes may contain
nodes which are outside the cluster. Previous work had shown that graphs excluding
a fixed minor indeed allow for improved weak-diameter sparse covers. Klein, Plotkin
and Rao [13] (KPR for short) show a (O(r2),O(2r )) weak-diameter sparse cover
scheme, where r is the maximal number of vertices in the set of excluded minors.
The requirement that the bound is over weak-diameters is necessary. We show in
Sect. 2 a simple planar graph for which the KPR construction yields clusters with
arbitrarily high diameter. The challenge of providing minor-free graph decomposi-
tions with clusters of bounded strong-diameter remained open and is addressed by the
present work. During the preparation of the previous version of this paper it had been
brought to our knowledge that independent work [10] has achieved a (4,O(logn))

sparse cover scheme for graphs excluding a fixed minor, and a (O(1),O(1)) sparse
cover scheme for planar graphs.

Our first result is stated in the following theorem:

Theorem 1 Every weighted graph excluding a Kr,r minor has a (O(r2),2O(r)r!)
sparse cover scheme constructible in polynomial time.

Compact Routing

As mentioned above, many applications of sparse covers are known. We highlight
one in particular in this paper: the classical problem of compact routing. In this prob-
lem we consider a distributed network of nodes connected via a network in which
each node has an arbitrary network identifier. A routing scheme assigns a routing
table to each node such that any source node can route messages to any destination
node, given the destination’s network identifier. The fundamental trade-off in com-
pact routing schemes is between the space used to store the routing table on each
node and the stretch factor of the routing scheme. The stretch factor is defined as the
maximum ratio over all pairs between the length of the route induced by the scheme
and the length of a shortest-path between the same pair.
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In this paper we assume a network with arbitrary node names. This model is re-
ferred as the name-independent model because the designer of the routing scheme
has no control over node names and thus node names cannot encode any topological
information. A model which allows the network designer to choose node names is
called the labeled routing model. In this version of the problem, the designer of a
solution may pick node names that contain (polylogarithmic size) information about
their location in the network, like for instance the X,Y -coordinates in a geographic
network. Labeled routing is useful in many aspects of network theory, but less so in
practice. Knowledge of the labels needs to be disseminated to all potential senders,
as these labels are not the addresses by which nodes of an existing network, e.g. an IP
network, are known. Furthermore, if the network may admit new joining nodes, all
the labels might need to be re-computed and distributed to any potential sender. Fi-
nally, various recent applications pose constraints on nodes addresses that cannot be
satisfied by existing labeled routing schemes. E.g., Distributed Hash Tables (DHTs)
require nodes names in the range [1, n], or ones that form a binary prefix.

Thorup [15] addressed the problem of labeled routing schemes in planar graphs
(in fact in planar weighted digraphs). He shows the existence of a polylog(n) mem-
ory 1+ ε stretch labeled routing scheme. Abraham and Gavoille [1] extend this result
to any minor free family. These results cannot be extended to the name-independent
domain since in that case it is known that a stretch of 3 is required for unweighted
trees if less than �(n logn) bits are used [3]. For name-independent routing scheme,
Abraham et al. provide in [4] the following result. For every n-node unweighted
graph excluding a fixed Kr,r minor, there exists a polynomial time constructible
name-independent routing scheme with constant stretch factor, in which every node
requires routing tables of polylog(n) bits and O(log2 n/ log logn)-bit headers. The
latter scheme, based on a particular weak-diameter sparse cover, is rather involved
and provides routing tables of at least log6 n bits.

Our strong-diameter sparse cover scheme leads to a considerably simplification
over previous solutions [4], moreover with improved performance. Our next contri-
bution is stated in the following theorem.

Theorem 2 For every n-node unweighted graph of diameter D excluding a Kr,r

minor, there is a polynomial time constructible name-independent routing scheme, in
the fixed port model,2 with stretch O(r2) and using O(logn+ r log r)-bit headers, in
which every node requires tables of 2O(r)r! · logD · log3 n/ log logn bits.

Sparse Partitions and Probabilistic Partitions

Another approach for graph decomposition is to consider partitions of a graph
into disjoint clusters. More precisely, we have the following definitions. A strong-
diameter ρ bounded partition of G is a partition of V into disjoint clusters C1,C2, . . .

such that for each cluster Ci , diam(G[Ci]) ≤ ρ. Given a partition P and a node u, let
P(u) be the unique cluster that contains u.

2I.e., the port number around each node u is an arbitrary permutation of {1, . . . ,deg(u)} that, as well as
the node names, cannot be changed during the design of the routing scheme.
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We can now define the notion of a probabilistic partition that is used in network
approximations and metric embeddings.

Definition 2 A (k, η,ρ) probabilistic partition is a distribution Pr on a set of parti-
tions P with the following properties:

1. [Small diameter]: ∀P ∈ P , P is a strong-diameter kρ bounded partition of G.
2. [Small probability of cutting an edge]: ∀u,v ∈ V ,

Pr[P(u) 
= P(v)] ≤ η d(u, v)/ρ .

When a (k, η,ρ) probabilistic partition exists for any ρ we say that the graphs admits
a (k, η) probabilistic partition scheme. If the partitions produced have only a weak-
diameter bound we say that the resulting scheme is a weak-diameter probabilistic
partition scheme.

Closely related to the notion of probabilistic partitions is that of a sparse partition.

Definition 3 A (k, η,ρ) sparse partition is a partition P with the following proper-
ties:

1. [Small diameter]: P is a strong-diameter kρ bounded partition of G.
2. [Sparse]:

|{(u, v) ∈ E | P(u) 
= P(v)}| ≤ η|E|/ρ.

When a (k, η,ρ) sparse partition exists for any ρ we say that the graphs admits a
(k, η) sparse partition scheme. If the partition has only a weak-diameter bound we
say that the resulting scheme is a weak-diameter sparse partition scheme.

Probabilistic partitions and sparse partitions play a key role in approximation al-
gorithms, such as multi-commodity flow optimization problems [13]. Klein et al.
provide a (O(r3),O(r)) weak-diameter sparse partition scheme for graphs exclud-
ing a Kr,r minor. Fakcharoenphol and Talwar improve in [12] to a (O(r2),O(r))

weak-diameter sparse partition scheme. Both results can be transformed into a weak-
diameter probabilistic partition scheme.

Our improvement is to provide a strong-diameter bound, as follows.

Theorem 3 For every weighted graph excluding a Kr,r minor there exists a polyno-
mial time sampleable (O(r6r ),O(r)) strong-diameter probabilistic partition scheme
and a (O(r6r ),O(r)) strong-diameter sparse partition scheme.

We envision that this result may play a role in further optimization problems and
graph embeddings into dominating trees.

1.1 Summary of Contributions

In summary, the paper provides the following results for any Kr,r -minor-free graph.

• There is a sparse cover of the radius-ρ balls around every node, for every ρ > 0,
such that each cluster in the cover has strong-diameter O(r2ρ), and every node
belongs to at most 2O(r)r! clusters.
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• There is a name-independent routing scheme with O(r2) stretch, O(logn +
r log r)-bit headers, and tables of size 2O(r)r! log4 n/ log logn bits.

• There is a probabilistic partition scheme where, for every ρ > 0, the probability
an edge (u, v) is cut is O(r d(u, v)/ρ) and the strong-diameter of each cluster
O(r6rρ).

All the schemes are polynomially constructible, and do not assume that r is known is
advance.

2 Large Diameter KPR Clusters

In this section, we briefly review the KPR [13] algorithm, and give an example where
the clusters created have an unbounded strong diameter.

For planar graphs, KPR performs three recursive tree cuts into stripes of height ρ.
Each tree is a breadth-first search tree (BFS) of a connected component that remains
from the previous cut. In this section we will use the probabilistic partitions version
of the KPR algorithm. We note that the same example can be given for the sparse
partition version.

More precisely, initially start with G1, the whole graph. Select an offset h1 ∈
[0, ρ − 1] uniformly at random. Build a BFS tree T1 on G1, rooted at an arbitrary
node τ1. Slice T1 into stripes of height ρ: The i-th stripe contains nodes whose BFS
distance from the root of T1 is between h1 + iρ and h1 + (i + 1)ρ − 1. Recurse on
any connected component G2 contained within any stripe. The recursion continues
for r phases.

Figure 1 depicts a simple outerplanar graph (so excluding K2,3 and K4) in which
the KPR cut for r = 3 results in a final cluster containing nodes τ4 and p4 whose
strong-diameter is arbitrarily large. This example also shows that adding more itera-
tions of KPR-cuts, say an arbitrary r > 3, does not remedy the situation even in the
planar case.

For arbitrary r < ρ iterations, the graph is composed of r + 1 paths τ1 → p1,
τ2 → p2, . . . , τr+1 → pr+1 of length respectively hi + kρ − 1 where k ≥ 1 is an
arbitrary large integer, and hi ∈ [0, ρ − 1] is an offset. In addition there are edges
between pi and each node of the path τi+1 → pi+1, i ∈ [1, r]. We now explain the
example in detail.

In the original graph G1, the BFS tree T1 is rooted at τ1. We note that node p1 has
distance less than ρ to all the nodes below the cut line marked ‘G1 cut’. The distance
in G1 from τ1 to p1 is dG1(τ1,p1) = h1 +kρ −1. Hence, choosing an offset of h1, the
k-th stripe of T1 may consist of all nodes under the G1 cut, which forms a connected
component G2 induced by the nodes of G1 \ (τ1 → p1).

Note that, despite the fact that nodes τ2 and p2 have distance two in G1 (going
through p1), their distance in G2 is arbitrarily large (dG2(τ2,p2) = h2 + kρ − 1).

Continuing on, we build the next steps in a similar manner. The tree cut of T2

rooted at τ2 in G2 might perform the cut marked as ‘G2 cut’ by choosing the offset
h2, leaving all nodes below it as the connected component G3. And so on. Finally,
the distance in Gr+1 between the nodes of the bottom path τr+1 → pr+1 (τ4 → p4
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Fig. 1 Example graph in which
KPR partition has arbitrarily
large diameter

on the picture) have arbitrarily large distance: All the nodes p1, . . . , pr that shorten
the distance from τr+1 to pr+1 have been cut away from the cluster.

Observe that the unbounded strong-diameter of the KPR decomposition occurs
for a specific choice of offsets h1, . . . , hr . However we can consolidate the counter-
example by rebuilding the previous graph for all offset sequences, and by identifying
all the nodes τ1. The resulting graph is still outerplanar. Clearly, any choice of r

offsets during the randomization provides at least one unbounded strong-diameter
component.

3 Sparse Cover with Strong Diameter

We now provide a graph cover procedure that yields clusters with a bounded strong-
diameter. The algorithm uses the KPR [13] paradigm: recursively cutting strips from
BFS trees. Unlike the KPR procedure, at each iteration our algorithm does not cut the
exact strip, but pads it by growing balls around central portions of the strip, referred
to as “cores”. Our construction and proof can be seen as an enhancement of the ar-
guments in [4]. Intuitively, our construction ensures that each final cluster Gr+1 has
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a “core” denoted Hr+1, such that (1) each node in Gr+1 is “close” to Hr+1; (2) each
node in Hr+1 is “far” from G \ Gr+1. Given these two properties we show that each
cluster Gr+1 has a small strong-diameter in the following way: If Gr+1 has a long
enough path then by (1) we know that there exist r nodes in Hr+1 that are far away
from each other. Then, (2) implies the existence of a Kr,r minor.

The main result of this section is stated in the following theorem.

Theorem 4 Every weighted graph excluding a Kr,r minor has a (O(r2),2O(r)r!)
sparse cover scheme constructible in polynomial time.

Proof Our proof strategy focuses first on probabilistic partitions for an unweighted
graph. Later, in Sect. 6, we detail the reduction from the weighted case to this con-
struction. Henceforth, assume G is unweighted.

We begin with some notation. In order to be consistent we fix an arbitrary labeling
of the vertices. Given a subgraph Gi ⊆ G, let τi be the vertex with minimal label
in Gi . Let Ti be the unique breadth-first-search (BFS) spanning tree of Gi , rooted
at τi where parent vertices have the minimal possible label. We can now slice Ti to
slices of height ρ. Let Si,j be the j th slice of Ti , so

Si,j = {v ∈ Gi | jρ ≤ dGi
(τi, v) < (j + 1)ρ}.

cover algorithm:

We fix two global parameters ρ and r . The algorithm C = cover(G) receives a
graph G and returns a set of clusters C ⊂ 2V . The cover algorithm invokes the
algorithm C = cut-stripe(G,G,1) and returns the set of clusters output by it.

cut-stripe algorithm:

The algorithm cut-stripe(Gi,Hi, i) receives a graph Gi , a subgraph Hi ⊆ Gi

and a parameter i (implicitly it also has access to the global parameters ρ, r) and
returns a set of clusters Ci ⊂ 2Gi :

• If i = r + 1 then return {Gi}.
• Otherwise, for every integer j let

Gj = CC
(
G

[
BGi

(Si,j ∩ Hi, iρ)
])

return
⋃

j,G′∈Gj

cut-stripe(G′,G′ ∩ Si,j ∩ Hi, i + 1).

Note that G′ ∈ Gj may contains nodes outside Si,j . It is this padding which is the
main difference from the KPR procedure.

From now on we will fix some node v ∈ G and prove that the cover produced by
the algorithm has all the properties with respect to v.
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Claim 1 There exists unique indexes j1, . . . , jr and subgraphs G1,H1, . . . ,Gr,Hr,

Gr+1,Hr+1 such that for all 1 ≤ i ≤ r : Gi+1 is a connected component of
G[BGi

(Si,ji
∩ Hi, iρ)] and v ∈ Hi+1 = Gi+1 ∩ Si,ji

∩ Hi .

Proof The proof is by induction. Clearly v ∈ H1 = G. Given v ∈ Hi there exist
a unique index ji such that v ∈ Si,ji

. Let Gi+1 be the connected component of
BGi

(Si,ji
∩ Hi, iρ) that contains v ∈ Hi so that v ∈ Hi+1 = Gi+1 ∩ Si,ji

∩ Hi as
required. �

So given v this implicitly defines a series of subgraphs G1,H1, . . . ,Gr,Hr,Gr+1,

Hr+1 induced by the cover algorithm such that v ∈ Hr+1 ⊆ . . . ⊆ H1.

Property 1 (Cover) We show that for the cluster Gi+1, B = B(v,ρ) ⊆ Gi+1. The
proof is by simple induction. In the base case B ⊆ G1. Given B ⊆ Gi and v ∈ Hi+1
it follows from the definition of Gi+1 that B ⊆ Gi+1.

Property 2 (Sparse clusters) For each graph Gi that v belongs to, it belongs to at
most (2i + 1) graphs Gi+1 with different indexes j due to the use of a ball of radius
iρ on each stripe Si,j . Hence for each i ∈ [1, r], by induction, a node belongs to at
most

∏
1≤j≤i (2j +1) ≤ 2i (i +1)! graphs Gi . Therefore each node belongs to at most

2O(r)r! clusters.

Property 3 (Strong-diameter) Fix some cluster Gr+1. We will now show that if Gr+1
has a strong diameter of more than 4(r + 1)2ρ then G contains a Kr,r minor. If there
exist two nodes y1, yr such that dGr+1(y1, yr ) > 4(r +1)2ρ then their shortest path in
Gr+1 can be partitioned into r − 1 segments using r points y1, . . . , yr ∈ Gr+1 such
that the balls BGr+1(yi,2(r + 1)ρ) are pairwise disjoint. Let xi be a closest point
in Hr+1 to yi (so d(xi, yi) ≤ (r + 1)ρ) then by the construction of Gr+1, the balls
BGr+1(xi, (r + 1)ρ) are pairwise disjoint.

We conclude the theorem by using the following lemma.

Lemma 5 If there exist points x1, . . . , xr ∈ Hr+1 such that the balls BGr+1(xi, (r +
1)ρ) are pairwise disjoint then G contains a Kr,r minor.

Proof Such a minor is composed of r sets called the left super-nodes, denoted as
L1,L2, . . . ,Lr , such that xi ∈ Li ; and from r sets called the right super-nodes, de-
noted V1,V2, . . . , Vr . Each super-node is a connected sub-graph of G, all sets are
pairwise disjoint and there is an edge connecting each set from the first group with
each set from the second group.

For the analysis we use the following notation: for u ∈ Gi+1 let taili (u) be the
unique path on Ti ∩ Gi+1 from u towards the root τi .

The left super-nodes: For each i ∈ [1, r], let Li = ⋃
j∈[1,r] tailj (xi). For any

i, j ∈ [1, r], by construction, tailj (xi) ⊆ Gj+1 and its length in Gj+1 is at most
(j + 1)ρ. Observe that each Li is a set of paths in G that are connected at xi .
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The right super-nodes: For all i ∈ [1, r] let Ui denote the subtree of Ti formed by
the paths on Ti for all j ∈ [1, r] from each xj to τi . The right super nodes are Ri for
i ∈ [1, r], where Ri = Ui \ Gi+1. Observe that each Ri induces a connected subtree
of G.

The super edges are the edges in Ti connecting each Ri with each taili (xj ) ∈ Lj

for each i, j ∈ [1, r].
We now show that the sets are pairwise disjoint.
For any i, j ∈ [1, r] and 	 > j we claim that tailj (xi) ⊆ G	 and that tailj (xi) is

disjoint from the right node R	−1. The proof is by induction on 	. For 	 = j + 1 this
is true by construction.

For 	 > j + 1, by the induction hypothesis we have tailj (xi) ⊆ G	−1. Since
xi ∈ H	 and the length of tailj (xi) is at most (j + 1)ρ it follows that tailj (xi) ⊆ G	

and that it is disjoint from R	−1. This follows since j + 1 ≤ 	 − 1 and the fact that
BG	−1(xi, (	 − 1)ρ) ⊆ G	.

Therefore the set Li is contained in BGr+1(xi, (r + 1)ρ) so for all 	 ∈ [1, r] and all
i < j ∈ [1, r], Li ∩ Lj = ∅ due to the assumptions that the balls BGr+1(xi, (r + 1)ρ)

are pairwise disjoint. From the inductive claim above, for all i ∈ [1, r] and all j ≤ 	 ∈
[1, r], tailj (xi) ∩ R	 = ∅. Finally, for all i ∈ [1, r] and all 	 < j ∈ [1, r], the set R	

is clearly disjoint from tailj (xi) and from Rj since by construction R	 = U	 \ G	+1

and Rj ∪ tailj (xi) ⊆ Gj ⊆ G	+1. �

4 Name-Independent Routing

In this part we consider the problem of routing messages between any pair of nodes of
an unweighted graph G with precomputed compact routing tables. The performances
of the routing scheme is measured in terms of the size of the local routing tables and
the maximum stretch, i.e., the ratio between the length of the route from x to y and
the minimum possible route length, dG(x, y).

We concentrate our attention on name-independent routing schemes, that is node
names cannot be relabeled to optimize routing tables. Labeled routing scheme of
stretch 1 + ε and with polylogarithmic size routing tables, labels, and headers
are known for weighted graphs excluding a fixed minor [1], whereas any name-
independent routing scheme on unweighted stars (depth one trees, so excluding K3)
requires a stretch at least 3 if less than �(n logn) bits per node are used [3].

We assume that G is unweighted, since it has been proved in [5] that there are stars
with edge cost 1 or k for which every name-independent routing scheme of stretch
< 2k + 1 requires routing tables of �((n logn)1/k) bits, for every integer k ≥ 1.

In the remainder of this section, we will assume that the n node names of G have
arbitrary names in {1, . . . , nO(1)}, i.e., are on O(logn) bits. The scheme extends eas-
ily to longer names by the use of hashing techniques.

Thanks to Theorem 1 we can show:

Theorem 5 For every n-node unweighted graph of diameters D excluding a Kr,r

minor, there is a polynomial time constructible name-independent routing scheme, in
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the fixed part model,3 wit stretch O(r2) and using O(logn + r log r)-but headers, in
which every node requires tables of 2O(r)r! · logD · log3 v/ log logn bits.

First let us outline the technique of hierarchical routing schemes introduced by
Awerbuch and Peleg [8, 9]. Let us assume that there exist k and τ such that,
for every ρ > 0, the graph G has a (k, τ, ρ) sparse cover, and let Cρ denote this
cover. Then, routing in G can be done by considering the family of covers F =
{C1, . . . , C2i , . . . , C2�logD� }. More precisely, for each cover C2i ∈ F and for each clus-
ter C ∈ C , we root a shortest path spanning tree TC of G[C], so of depth at most k2i .
Let us call T the collection of all these trees. For any scale i, although u belongs to
many clusters C ∈ C2i , it suffices to look at only one cluster that contains BG(u,2i ).
Roughly speaking, the routing task for a source u consists of seeking the target v in
trees of T that correspond to clusters that contain BG(u,2i ).

Specifically, u needs to seek v only in �logD� + 1 trees in nondecreasing depth,
each tree spanning the ball BG(u,2i ) for some i ∈ {0, . . . , �logD�}. If each try can
be done within a route of length proportional to the depth of the tree, then it is not
difficult to check that the resulting stretch of the route from u to v is O(k), since
the tree of the cluster covering BG(u,2i ) is of depth at most k2i . Overall, if a tree
routing scheme for seeking v can be implemented with M-bit routing tables, and
B-bit headers, then the routing scheme for G uses at most O(τ · logD · M) bits for
routing tables and B + O(log |T |) bits for headers. Indeed, each node participates in
at most τ tree routings for each of the �logD� + 1 covers in F , and the headers need
to be enlarged by a tree identifier.

An L-error reporting routing scheme for a subgraph C of G is a routing scheme
such that, for all u ∈ C and v of G: if v ∈ C, then the route from u to v has cost at
most L, and if v /∈ C, then the routing from u to v reports to u a failure mark in the
header after a loop of cost at most L.

In order to prove Theorem 2, our goal is to use for each depth-h tree T ∈ T , a
space efficient O(h)-error reporting routing scheme. We will use a modified4 version
of the single-source unweighted tree routing of [2] combined with the low density of
minor-free graphs to balance routing information. Recall that an α-orientation of a
graph is an orientation of its edges such that every node has out-degree at most α.

Lemma 6 [2] Let T be a collection of trees in an n-node graph G with an α-
orientation. Then, one can construct in polynomial time for each node u of G a
routing table of O(log3 n/ log logn + α logn) bits per tree of T containing u, such
that each depth-h tree of T has a 8h-error reporting routing scheme using O(logn)-
bit headers. Moreover, the first header construction takes O(logn) time at the source,
and all the other routing decisions take O(log logn) time.

We also need of the following well-known fact:

3I.e. the port number around each node u is an arbitrary permutation of {1, . . . ,deg(u)} that as well as the
mode names, cannot be changed during the design of the routing scheme.
4The modified version appears in the full version of [2].
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Lemma 7 Any graph excluding a Kr,r minor has a 
(r
√

log r)-orientation that can
be computed in linear time.

Proof Graphs excluding a fixed minor are closed under taking induced subgraphs. It
is known that the n-node graphs excluding a Kr minor have no more that f (r) · n

edges [14] where f (r) = 
(r
√

log r). Therefore, an f (r)-orientation can be easily
obtained in linear time by pruning the graph with the minimum degree node. Now,
the family of graphs excluding a K2r minor contains all the graphs excluding a Kr,r

minor. Thus any n-node graph excluding a Kr,r minor has no more than f (2r) · n

edges, and so a 
(r
√

log r)-orientation computable in linear time. �

The proof of Theorem 2 is completed thanks to Lemma 6 by observing that each
node belongs to at most τ · logD = 2O(r)r! · logD trees of the collection T , and
that α = O(r

√
log r) (Lemma 7). From the above discussion the name-independent

routing scheme uses tables of 2O(r)r! · logD · log3 n/ log logn bits and O(logn +
r log r)-bit headers (since log |T | = O(r log r + log logD)). The whole construction
of the routing scheme takes a polynomial time since the sparse cover (Theorem 1),
the orientation (Lemma 6), and the error-reporting routing scheme (Lemma 7) take a
polynomial time.

5 Probabilistic Partitions and Sparse Partitions

In this section we present probabilistic partitions and Sparse Partitions with strong-
diameter guarantees. The overall approach is again similar in sprit to KPR. However
there are three major differences. First, our phase i stripes are of width 6iρ, while
KPR always chooses width ρ. Second, after the initial cuts we use a cone based
approach (see [11]) to “carve out” an appropriate “core” from each stripe. Third and
most importantly, some nodes end up associated with clusters that are outside of their
stripe! Specifically, the nodes of a stripe i that do no get assigned to the ith “core”
will be associated with the nodes of the (i + 1) stripe.

Theorem 6 For every weighted graph excluding a Kr,r minor there exists a poly-
nomial time sampleable (O(r6r ),O(r)) strong-diameter probabilistics partition
scheme and a (O(r6r ),O(r)) strong-diameter sparse partitional scheme.

Our proof strategy focuses first on probabilistic partitions for an unweighted graph.
Later, in Sect. 6, we detail the reduction from the weighted case to this construction.
Henceforth, assume G is unweighted.

partition algorithm:

We fix two global parameters ρ and r . The algorithm P = partition(G) receives
a graph G and returns a partition P of V . The partition algorithm invokes the
algorithm P = cut-and-merge(G,1) and returns the partition output by it.
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cut-and-merge algorithm:

The algorithm P = cut-and-merge(Gk−1, k) receives a base graph Gk−1, and a
parameter k (implicitly it also has access to the global parameters ρ, r) and returns a
partition of Gk−1:

1. if k = r + 1 then return {Gk−1}. Otherwise, sample two integers hk, 	k uniformly
and independently from [0, ρ − 1].

2. Perform BFS from an arbitrary root node s ∈ Gk−1: Tk = BFS(Gk−1, s)

3. Divide into layers: Lk(i) = {u | ibkρ+	k ≤ dGk−1(u, s) < (i+1)bkρ+	k}, where
bk = 6bk−1 = 6k .
We omit i in most cases below, and mention it explicitly only when needed.

4. For each layer Lk(i) let M(Lk(i)) be the set of nodes at its middle, i.e.,
M(Lk(i)) = {u ∈ Lk(i) | dGk−1(u,Lk(i − 1)) = (bk/2)ρ}. When Lk(i) is clear
from the context we may abbreviate notation and write Mk .

5. Define a “cone” distance function γk(·, ·) on the directed edges of Gk with respect
to Tk . Specifically for a directed edge u → v let γk(u, v) = 0 if u is the unique
parent of v in the tree Tk and otherwise the distance equals the original distance
γk(u, v) = dG(u, v). Notice that γk is not symmetric.
We can extend γk to nodes that are not connected by an edge. Specifically, let
	k(u, v) be the cost of the minimal cost directed path from u to v where the cost
of a directed path is the sum of the weights of its directed edges according to γk .
We can also extend the notion of a ball to a cone by defining for a set U and a
distance c, BG(U, c, γk) = {v | ∃u ∈ U,	k(u, v) ≤ c}.

6. Define S+
k (i) to be the set of nodes within Lk(i) with γk distance of at most

bkρ/2 + hk from M(Lk(i)).
S+

k (i) = BLk(i)(M(Lk(i)), bkρ/2 + hk, γk) = {u | u ∈ Lk(i), γk(M(Lk(i)), u) ≤
bkρ/2 + hk}. Note that S+

k (i) is a set grown around Mk which is at the middle of
Lk(i). It may not include all of Lk(i) but it has the property that if u is included
then so are its children in Ti ∩ Lk(i).

We say that a node u ∈ Lk(i) is assigned if u ∈ S+
k (i).

7. After performing the previous steps to all layers in the decomposition, add all
unassigned nodes from L(i + 1) (that were not included in S+

k (i + 1)) into the
set Sk(i).
Sk(i) = S+

k (i) ∪ {Lk(i + 1) \ S+
k (i + 1)}. See Figs. 2 and 3.

8. Note that now the sets Sk(i) partition Gk−1. For each i recurse on every connected
component G′ of CC(G[Sk(i)]).

Return
⋃

i,G′∈CC(G[Sk(i)])
cut-and-merge(G′, k + 1).

See Fig. 2.

Claim 2 In any iteration k ∈ [1, r] of the algorithm, if (u, v) ∈ E and u,v ∈ Gk−1

then the probability that the k-th iteration cuts the edge (u, v) is at most 2/ρ.



850 Theory Comput Syst (2010) 47: 837–855

Fig. 2 Steps (6) and (7) in the
Sparse Partition procedure.
Figure 3 depicts step (6) in
greater detail

Fig. 3 The bold edges are tree
edges which are oriented down,
and node u is in the center. The
black nodes indicate a ball
around u of cone distance 3.
Note that v is of cone distance 3
from u, while w is of distance 4

Proof In each execution of the procedure there are two ways an edge (u, v) could
be separated. The first is that u,v are separated in stage (3); i.e. u ∈ Lk(i) while
v ∈ Lk(i + 1) for some i. The probability the edge is cut by the layers is at most 1/ρ

due to the randomness of 	k . The second way in which (u, v) might be cut, given
u,v ∈ Lk(i), is if u ∈ S+

k (i) and v 
∈ S+
k (i). In other words it must be the case that

one of the nodes (say w.l.o.g u) has a small γk distance from Mk while node v has a
large γk distance from Mk . Note however that

|γk(Mk,u) − γk(Mk, v)| ≤ dG(u, v) = 1.
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The threshold distance for inclusion in S+
k (i) is bkρ/2 + hk where hk ∈ [0, ρ − 1]

is chosen uniformly at random. It follows that given that u,v ∈ Lk(i), the probability
(u, v) is cut at most 1/ρ, which concludes the proof of the claim. �

Claim 3 For all u,v ∈ V ,

Pr[P(u) 
= P(v)] ≤ 2r dG(u, v)/ρ.

Proof The probability that u and v are first separated in the kth iteration is bounded
by the probability that any edge on the shortest path between u and v is cut. By union
bound on Claim 2 this probability is at most 2dG(u, v)/ρ. Since there are at most r

recursive calls then a union bound concludes the proof of the claim. �

We are now left with proving that the diameter of each component is O(ρ). We
do this by showing that if there are two nodes in a cluster Gr such that the distance
between them is greater than 12rbrρ (a constant which depends on r but not on
|V (G)|) then the graph contains a Kr,r minor.

Lemma 10 If there are two nodes x, y in a cluster Gr such that dGr (x, y) ≥ 12rbrρ

then there exist 2r sets of nodes Bi,Ri , i ∈ [1, r], that have the following properties:

1. For every i the subgraph G[Bi] and the subgraph G[Ri] are connected.
2. The sets Bi and Ri , i ∈ [1, r], are all mutually disjoint.
3. For every i, j there are nodes u ∈ Bi and v ∈ Rj such that (u, v) is an edge in G.

First we show why Lemma 10 suffices to prove Theorem 3. Since all the sets
are connected in G and they are all mutually disjoint, each one of the sets could be
contracted into a different single node using only minor operations. Property (3) of
the lemma implies that the resulting graph contains a Kr,r minor contradicting the
fact that G is Kr,r free. We conclude that it must be that the strong-diameter of each
cluster Gr is bounded by 12rbrρ.

From now one we omit the notation that states which stripe we are talking about
(the subscript i in the previous section). The following two claims characterize the
properties we will need in order to show the existence of the Kr,r minor. Fix some
iteration k.

Claim 4 Each node u ∈ Gk has an anchor node ak(u) ∈ Mk such that ak(u) ∈ Gk

and dGk
(u, ak(u)) ≤ (3bk/2 + 2)ρ.

Proof Consider the construction of Gk out of Gk−1. The node u can be assigned to
Gk either in Step (6) or Step (7) of the construction. If it were assigned in Step (6)
then there is a node a(u) such that γk(a(u),u) ≤ (bk/2 + 1)ρ. The shortest path
includes at most bk

2 ρ + (
bk

2 +1)ρ edges of Tk which have a γk distance of 0, therefore
dGk

(a(u),u) ≤ (bk + 1 + bk/2 + 1)ρ = (3bk/2 + 2)ρ.
If u was assigned to Gk in Step (7) then all its parents in the BFS tree were also

assigned to Gk , therefore the path to the root of Tk reaches a node in Mk after distance
at most bkρ. �
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Claim 5 Let u ∈ Mk . For every v ∈ Gk−1 such that dGk−1(u, v) ≤ bkρ/2 it holds that
v ∈ Gk . In other words a ball around u in Gk−1 of radius bkρ/2 is contained in Gk .

Proof Step (6) above includes in S+
k all the nodes at distance bkρ/2, thus v ∈ S+

k .
The lemma then follows since the path between u and v is contained in Sk . �

We now proceed to prove Lemma 10. Assume there are two nodes x, y ∈ Gr such
that dGr (x, y) ≥ 12rbrρ. There must be therefore r nodes x = x1, x2, . . . , xr = y in
Gr such that dGr (xi, xj ) ≥ 12brρ for every i 
= j . We show that this implies that the
graph contains a Kr,r minor which contradicts the assumption that G is Kr,r free.
Such a minor is composed of r sets denoted as B1, . . . ,Br such that xi ∈ Bi and r

sets R1, . . . ,Rr such that each set is a connected sub-graph of G, all sets are disjoint
and there is an edge connecting Bi and Rj for every i, j . This yields a contradiction
since each set could be contracted to a single node creating a Kr,r minor.

The Set Bi

The node xi has an anchor in ar(xi) ∈ Mr . Call this node ar (for brevity we omit the
subscript i), and denote by Ar the path between xi and ar . The node ar has an anchor
ar−1(ar ) ∈ Mr−1. Call this node ar−1 and define recursively aj−1 = aj−1(aj ), and
Aj to be the path between aj−1 and aj .

Let u ∈ Mk . Define tailk(u) to be the path in Tk which connects u to the upper
boundary of L. In other words tailk(u) is a path of length at most bk/2 in Tk starting
from u towards the root. Now define:

Bi(k) =
k⋃

j=1

Aj ∪ tailj (aj ).

The set Bi is now defined as Bi = Bi(r).

Lemma 13 The set Bi has the following properties:

1. The induced subgraph G[Bi] is connected.
2. Bi ⊆ Gr .
3. diamGr (Bi) ≤ 3brρ.

Proof Clearly the induced graph G[Bi] is connected. We omit the index i when clear
from context and prove that B(k) ⊆ Gk by induction on k. For the base case we have
B(1) = A1 ∪ tail1(a1) where A1 ⊆ G1 by Claim 4. We have that tail1(a1) ⊆ G1 by
Claim 5. By the induction hypothesis we have that B(r − 1) ⊆ Gr−1. Furthermore,
Claim 4 implies that Ar ⊆ Gr and Claim 5 implies that tailr (ar ) ⊆ Gr . It remains
therefore to show that B(r − 1) ⊆ Gr . Let u ∈ B(r − 1). By the induction hypothesis
dGr−1(ar , u) ≤ 3br−1ρ. We have that 3br−1 ≤ br/2 so by Claim 5 B(r − 1) ⊆ Gr .
Furthermore diamGr B(r) ≤ (3br/2 + 1)ρ + 3br−1ρ ≤ 3brρ. �
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The Set Ri

The set Ri is constructed by pruning the tree Ti at Gi . In other words, u ∈ Ri if
u 
∈ Gi and there is a node v ∈ Gi such that u is an ancestor of v in Ti . Clearly the
following holds:

Claim 14 The set Ri has the following properties:

1. The induced subgraph G[Ri] is connected.
2. Ri ⊆ Gi−1.
3. Ri ∩ Gi = ∅.

Proof of Lemma 10 We have defined 2r sets {Bi | i ∈ [1..r]} and {Ri | i ∈ [1..r]}.
The first assertion of the Lemma stating that each set induces a connected subgraph
follows from Lemma 13(1) and Claim 14 (1).

To see why the third assertion is true consider two sets Ri,Bj . The set Bj contains
the path taili (ai) which is defined to be a BFS path in Ti . The set Ri is the remaining
part of Ti thus the last node in taili (ai) is connected to a node in Ti .

It remains to show the second assertion, that all the sets are mutually disjoint. We
do this by considering three different cases:

First, for every i 
= j consider the sets Ri,Rj . Assume w.l.o.g that i ≤ j − 1. By
Claim 14 it follows that Ri ∩Gj−1 = ∅ while Rj ⊆ Gj−1. Conclude that Ri ∩Rj = ∅.

Second, for every i, j it holds that Bi ∩ Rj = ∅. By Claim 14 (3) the set Rj is
disjoint from Gr while by Lemma 13 (2) the set Bi is contained in Gr .

Finally, for every i 
= j it holds that Bi ∩Bj = ∅. This follows since x1, x2, . . . , xr

are far from one another in Gr , yet each Bi has a small radius in Gr . To be precise,
the radius of each Bi is bounded by 3brρ while the distance between xi and xj is at
least 12brρ. �

5.1 Sparse Partitions

The randomized algorithm cut-and-merge can easily be modified into a deter-
ministic algorithm that returns one sparse partition. In each iteration k, instead of
choosing hk, 	k at random, we choose hk, 	k out of the ρ2 possible values such that
a minimal number of edges are cut.

If the total edge weight at the beginning of the kth iteration is Wk then there must
exist a choice of hk, 	k that yields a partition where the weight of cut edges is at most
2Wk/ρ. As this is done in every recursive call then the total weight of cut edges is
at most 2rW/ρ where W is the initial edge weight. This concludes the last part of
Theorem 3.

6 The Weighted Case

We reduce the weighted case to the unweighted case in the following standard way:
Scale weights so that every edge weights at least 1. Round up edge weights to the
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nearest integer. Note that edge weights increase by at most 2 by these transforma-
tions. Introduce virtual intermediate nodes along each edge, at intervals of length 1.
Remove all weights. Let the new unweighted graph be denoted G′. It is easy to see
that virtual nodes do not change the topological properties of the graph. Hence, if G

excludes Kr,r , then so does G′. Now, perform the probabilistic sparse partition above
on G′, and let the resulting clusters in G′ be C′

1, . . . ,C
′
m. Output the set of clusters

G[C′
1], . . . ,G[C′

m] induced by G′’s clusters.
To see that the resulting partition satisfies the required properties, first observe that

for any u,v,∈ C′, distances satisfy dG(u, v) ≤ dC′(u, v). Hence, any bound on the
diameters of the C′ clusters is maintained in the clusters induced on G.

For Theorem 3, let us consider the probability that an edge (u, v) ∈ G is cut by
the partition. This edge is represented in G′ by at most �dG(u, v) + 2� unweighted
edges. By union bound, the probability that (u, v) is cut is at most �dG(u, v) + 2� 2

ρ
≤

6dG(u,v)
ρ

since dG(u, v) ≥ 1.

We remark that the time complexity of the construction does suffer from the trans-
formation, by a factor that is proportional to the aspect ratio of G.

7 Open Problems

The results of this paper could be utilized and optimized in several ways. The work
suggests two main open problems.

First, all our theorems have an exponential dependency on the size of the forbid-
den minor. When weak-diameter is concerned it is possible to achieve a polynomial
dependency [13]. It would be interesting to find sparse covers and sparse partitions
with strong-diameter and a polynomial dependency in r . Note that the exponential
dependency is an artifact of the technique of doubling the width of the cutting stripes
each iteration. This is a key ingredient of our approach, thus such an improvement
would probably require a different approach.

Finally, can Theorem 3 be extended to star-decompositions (see [11])? Can it be
used to improve results in approximation algorithms? Natural candidates are metric
embeddings and building spanners.
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