
Strong-Diameter Decompositions of Minor Free Graphs

Ittai Abraham
Hebrew University of

Jerusalem
Jerusalem, Israel

ittaia@cs.huji.ac.il

Cyril Gavoille∗
Laboratoire Bordelais de

Recherche en Informatique
University of Bordeaux

Bordeaux, France
gavoille@labri.fr

Dahlia Malkhi
School of Computer Science

and Engineering
Hebrew University of

Jerusalem
and Microsoft Research,

Silicon Valley Center

dalia@microsoft.com
Udi Wieder

Microsoft Research, Silicon
Valley Center

uwieder@microsoft.com

ABSTRACT
We provide the first sparse covers and probabilistic parti-
tions for graphs excluding a fixed minor that have strong
diameter bounds; i.e. each set of the cover/partition has a
small diameter as an induced sub-graph. Using these results
we provide improved distributed name-independent routing
schemes. Specifically, given a graph excluding a minor on
r vertices and a parameter ρ > 0 we obtain the flowing
results: (1) a polynomial algorithm that constructs a set
of clusters such that each cluster has a strong-diameter of
O(r2ρ) and each vertex belongs to 2O(r)r! clusters; (2) a
name-independent routing scheme with a stretch of O(r2)

and tables of size 2O(r)r! log4 n bits; (3) a randomized algo-
rithm that partitions the graph such that each cluster has
strong-diameter O(r6rρ) and the probability an edge (u, v)
is cut is O(r d(u, v)/ρ).

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign – Distributed networks; G.2.2 [Discrete Mathematics]:
Graph Theory – Network problems, Graph labeling.

General Terms: Algorithms, Theory.

Keywords: Compact Routing, Minor Free Graphs.

1. INTRODUCTION
As networks grow large and complex, a key approach in

managing information and constructing algorithms is to de-
compose the network into locality-preserving clusters. Then,
information and/or management can be divided between the

∗Supported by the projects “GeoComp” and “Alpage”of the
ACI Masses de Données.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

clusters, such that every node is responsible only for clusters
for which it belongs. Such decompositions into locality sen-
sitive clusters have become key tools in network and graph
theory and span a large body of literature.

Consider an undirected weighted graphG = (V,E, ω), i.e.,
E ⊆ V × V and ω : E → R+. Let dG(u, v) be the cost of
a minimum cost path between u and v where the cost of
a path is the sum of weights of its edges. Let diam(G) =
maxu,v dG(u, v). Given U ⊆ V , let G[U] be the induced
subgraph whose nodes are U and whose edges are the edges
in G whose endpoints both belong to U . Let BG(u, ρ) =
{v | dG(u, v) ≤ ρ}. For A ⊆ V and v ∈ V let dG(A, v) =
minu∈A dG(u, v). When G is clear from the context we omit
the subscript and write d(u, v).

A sparse cover is a set of subsets (clusters) of graph nodes
introduced by Awerbuch and Peleg in [8] with the following
properties.

Definition 1. A (k, τ, ρ) sparse cover is a set of clusters
C ⊂ 2V with the following properties:

1. [Cover]: ∀v ∈ V , ∃C ∈ C such that B(v, ρ) ⊆ C.
2. [Small strong-diameter]: ∀C ∈ C, diam(G[C]) ≤ kρ.
3. [Sparsity]: ∀u ∈ V , | {C ∈ C | u ∈ C} | ≤ τ .

When a (k, τ, ρ) sparse covers exists for any ρ we say that
the graphs admits a (k, τ) sparse cover scheme.

Sparse covers are used as a building block for a variety
of applications. These include distance coordinates, routing
with succinct routing tables [8, 3], mobile user tracking [8],
resource allocation [6], synchronization in distributed algo-
rithms [7], and others.

For general graphs, the seminal construction in [8] pro-

vides a (2k−1, 2k ·n1/k) sparse cover scheme for any integer
k ≥ 1. This result asymptotically matches known lower
bound that arise from dense graphs with high girth [18].
For certain restricted families of graphs, better covers are
known to exist. For example, if the graph is α doubling1

then (1 + ε, (1 + 1/ε)O(log(α))) sparse cover scheme can be
constructed for any ε > 0.
1A graph is α doubling (or of doubling dimension logα) if
every ball of radius r can be covered by at most α balls of
radius r/2.

16

Minor-free graphs
The contraction of an edge e = (u, v) is the replacement of
nodes u, v with a new vertex whose incident edges are the
edges other than e that were incident to u or v. A graph H
is a minor of G if H is a subgraph of a graph obtained by
a series of edge contractions of G. A celebrated theorem of
Robertson and Seymour states that every (possibly infinite)
set of graphs G that is closed under edge contractions and
edge removals could be characterized by a finite set of graphs
called its obstruction set, where a graph G is in the set G if
and only if none of its minors is contained in the obstruction
set.

For example it is well known that planar graphs are ex-
actly all the graphs whose set of minors exclude K3,3

2 and
K5. It is natural is ask whether graphs that exclude some
fixed minor have better sparse covers than general graphs.

A (k, τ) weak-diameter sparse cover scheme is defined as
above with one important change: the diameter bound is
now imposed on distances in the original graph. That is, a
short path between cluster nodes may contain nodes which
are outside the cluster. Previous work had shown that
graphs excluding a fixed minor have an improved weak-
diameter sparse covers. By iteratively applying the parti-
tions of Klein et al [15] (KPR for short) one can obtain
a (O(r2), O(2r)) weak-diameter sparse cover scheme, where
r is the maximal number of vertices in the set of excluded
minors. In fact, there are simple planar graphs in which
the KPR construction yields clusters with arbitrarily high
diameter (see Section 2 below). The challenge of providing
minor-free graph decompositions whose clusters have strong-
diameter bounds remained open, and is addressed by the
present work. Our first result is stated in the following the-
orem:

Theorem 1. Every weighted graph excluding a Kr,r mi-
nor has a (O(r2), 2O(r)r!) sparse cover scheme constructible
in polynomial time.

During the preparation of this note it has been brought
to our knowledge that independent work in progress [10]
has achieved a (4, O(logn)) sparse cover scheme for graphs
excluding a fixed minor, and a (O(1), O(1)) sparse cover
scheme for planar graphs.

Compact Routing
As mentioned above, many applications of sparse covers are
known. We highlight one in particular in this paper: the
classical problem of compact, loop-free routing. In this prob-
lem we consider a distributed network of nodes connected
via a network in which each node has an arbitrary network
identifier. A routing scheme assigns a routing table to each
node such that any source node can route messages to any
destination node, given the destination’s network identifier.
The fundamental trade-off in compact routing schemes is
between the space used to store the routing table on each
node and the stretch factor of the routing scheme. The
stretch factor is defined as the maximum ratio over all pairs
between the length of the route induced by the scheme and
the length of a shortest-path between the same pair.

In this paper we assume a network with arbitrary node
names. This model is referred as the name-independent

2Let Kr,r be the complete bipartite graph with r nodes in
each set.

model because the designer of the routing scheme has no
control over node names and thus node names cannot en-
code any topological information. A model which allows the
network designer to choose node names is called the labeled
routing model. In this version of the problem, the designer of
a solution may pick node names that contain (polylogarith-
mic size) information about their location in the network,
like for instance the X,Y -coordinates in a geographic net-
work. Labeled routing is useful in many aspects of network
theory, but less so in practice. Knowledge of the labels needs
to be disseminated to all potential senders, as these labels
are not the addresses by which nodes of an existing network,
e.g. an IP network, are known. Furthermore, if the network
may admit new joining nodes, all the labels might need to
be re-computed and distributed to any potential sender. Fi-
nally, various recent applications pose constraints on nodes
addresses that cannot be satisfied by existing labeled rout-
ing schemes. E.g., Distributed Hash Tables (DHTs) require
nodes names in the range [1, n], or ones that form a binary
prefix.

Abraham et al. provide in [3] the following result. For
every n-node unweighted graph excluding a fixed Kr,r mi-
nor, there exists a polynomial time constructible name-
independent routing scheme with constant stretch factor, in
which every node v requires routing tables of polylog(n) bits
and O(log2 n/ log logn)-bit headers. Thorup [17] addressed
the problem of labeled routing schemes in planar graphs. He
shows the existence of a polylog(n) memory 1+ε stretch la-
beled routing scheme. Abraham et al [1] extend this result to
any minor free family. These results cannot be extended to
the name-independent domain since in that case it is known
that a stretch of 3 is required for trees if less than Ω(n logn)
bits are used [5].

Our next contribution is stated in the following theorem.

Theorem 2. For every n-node unweighted graph of di-
ameter D excluding a Kr,r minor, there is a polynomial time
constructible name-independent routing scheme, in the fixed
port model3, with stretch O(r2) and using O(logn)-bit head-

ers, in which every node requires tables of 2O(r)r! · logD ·
log3 n/ log logn bits.

Probabilistic Sparse Partitions
Another approach for decomposing a graph is to partition
it to disjoint clusters by removing a small number of edges.
More precisely, we have the following definitions. A strong-
diameter ρ bounded partition of G is a partition of V into
disjoint clusters C1, C2, . . . such that for each cluster Ci,
diam(G[Ci]) ≤ ρ. Given a partition P and a node u, let
P (u) be the unique cluster that contains u.

Definition 2. A (k, η, ρ) probabilistic sparse partition is
a distribution P on partitions with the following properties:

1. [Small diameter]: ∀P ∈ P, P is a strong-diameter kρ
bounded partition of G.

2. [Small probability of cutting an edge]: ∀u, v ∈ V ,

Pr
P∼P

[P (u) 6= P (v)] ≤ η d(u, v)/ρ .

3I.e., the port number around each node u is an arbitrary
permutation of {1, . . . ,deg(u)} that, as well as the node
names, cannot be changed during the design of the rout-
ing scheme.

17

When a (k, η, ρ) probabilistic sparse partition exists for any
ρ we say that the graphs admits a (k, η) probabilistic sparse
partition scheme. If the partitions produced has only a
weak-diameter bound we say that the resulting scheme is
a weak-diameter probabilistic sparse partition scheme.

Sparse partitions play a key role in approximation algo-
rithms, such as multi-commodity flow optimization prob-
lems [15]. Klein et al. provide a (O(r3), O(r)) weak-
diameter probabilistic sparse partition scheme for graphs
excluding a Kr,r minor. Fakcharoenphol and Talwar im-
prove in [13] to a (O(r2), O(r)) weak-diameter probabilistic
sparse partition scheme.

Our improvement is to provide a strong-diameter bound,
as follows.

Theorem 3. For every weighted graph excluding a
Kr,r minor there exists a polynomial time sampleable
(O(r6r), O(r)) strong-diameter probabilistic sparse partition
scheme.

Furthermore, for any ρ > 0, it is possible to find in
polynomial time a partition with strong-diameter O(r6rρ),
where the total weight of edges crossing the partition is
O(

∑
(u,v)∈E dG(u, v)/ρ).

We envision that this result may play an important role
in further optimization problems and graph embeddings into
dominating trees.

1.1 Summary of Contributions
In summary, the paper provides the following results for

any Kr,r-minor-free graph.

• There is a sparse cover of the radius-ρ balls around
every node, for every ρ > 0, such that each cluster in
the cover has strong-diameter O(r2ρ), and every node

belongs to 2O(r)r! clusters.

• There is a name-independent routing scheme with
O(r2) stretch and tables of size less than 2O(r)r! log4 n
bits.

• There is a sparse partition where, for every ρ > 0, the
probability an edge (u, v) is cut is O(r d(u, v)/ρ) and
the strong-diameter of each cluster O(r6rρ).

All the schemes are polynomially constructible, and do not
assume that r is known is advance.

2. LARGE DIAMETER KPR CLUSTERS
In this section, we briefly review the KPR [15] algorithm,

and exemplify its unbounded diameter.
For planar graphs, KPR performs three recursive tree cuts

into stripes of height ρ. Each tree is a breadth-first search
tree (BFS) of a connected component that is left from the
previous cut.

More precisely, initially start with G1, the whole graph.
Select an offset h1 ∈ [0, ρ − 1] uniformly at random. Build
a BFS tree T1 on G1, rooted at an arbitrary node τ1. Slice
T1 into stripes of height ρ: The i-th stripe contains nodes
whose BFS distance from the root of T1 is between h1 + iρ
and h1 +(i+1)ρ− 1. Recurse on any connected component
G2 contained within any stripe. The recursion continues for
r phases.

G2 cut

G1 cut

p2

p4τ4

p1

p3τ3

G3 cut

τ1

τ2

Figure 1: Example graph in which KPR partition
has arbitrarily large diameter.

Figure 1 depicts a simple outerplanar graph (so exclud-
ing K2,3 and K4) in which the KPR cut for r = 3 results
in a final cluster containing nodes τ4 and p4 whose strong-
diameter is arbitrarily large. This example also shows that
adding more iterations of KPR-cuts, say an arbitrary r > 3,
does not remedy the situation even in the planar case.

For arbitrary r < ρ iterations, the graph is composed of
r + 1 paths τ1 → p1, τ2 → p2, . . . , τr+1 → pr+1 of length
respectively hi + kρ − 1 where k ≥ 1 is an arbitrary large
integer, and hi ∈ [0, ρ − 1] is an offset. In addition there
edges are between pi and each node of the path τi+1 → pi+1,
i ∈ [1, r]. We now explain the example in detail.

In the original graph G1, the BFS tree T1 is rooted at
τ1. We note that node p1 has distance less than ρ to all the
nodes below the cut line marked ‘G1 cut’. The distance in
G1 from τ1 to p1 is dG1(τ1, p1) = h1+kρ−1. Hence, choosing
an offset of h1, the k-th stripe of T1 may consists of all nodes
under the G1 cut, which forms a connected component G2

induced by the nodes of G1 \ (τ1 → p1).
Note that, despite the fact that nodes τ2 and p2 have

distance two in G1 (going through p1), their distance in G2

is arbitrarily large (dG2(τ2, p2) = h2 + kρ− 1).
Continuing on, we build the next steps in a similar man-

ner. The tree cut of T2 rooted at τ2 in G2 might perform
the cut marked as ‘G2 cut’ by choosing the offset h2, leav-
ing all nodes below it as the connected component G3. And
so on. Finally, the distance in Gr+1 between the nodes of
the bottom path τr+1 → pr+1 (τ4 → p4 on the picture)
have arbitrarily large distance: All the nodes p1, . . . , pr that
shorten the distance from τr+1 to pr+1 have been cut away
from the cluster.

Observe that the unbounded strong-diameter of the
KPR decomposition occurs for a specific choice of offsets
h1, . . . , hr. However we can consolidate the counter-example

18

by rebuilding the previous graph for every offset sequences,
and by identifying all the nodes τ1. The resulting graph
is still outerplanar. Clearly, any choice of r offsets during
the randomization provides at least an unbounded strong-
diameter component.

3. SPARSE COVER WITH STRONG
DIAMETER

We provide a graph cover procedure that yields clusters
have a bounded strong-diameter. The algorithm uses the
KPR [15] paradigm: recursively cutting strips from BFS
trees. Unlike KPR, our algorithm takes at each iteration,
not only the desired strip, but also grows balls around de-
sired “core” portions of the strip. Our construction and
proof can be seen as an enhancement of the arguments in [3].
Intuitively, our construction ensures that each final cluster
Gr+1 will have a “core” denoted Hr+1, such that (1) each
node in Gr+1 is “close” to Hr+1 (2) each node in Hr+1 is
“far” from G \Gr+1. Hence if Gr+1 has a long enough path
then (1) would imply that there exist r nodes in the Hr+1

that are far away from each other. Then (2) would imply
the exitance of a Kr,r minor.

The main result of this section is stated in the following
theorem.

Theorem 1. Every weighted graph excluding a Kr,r mi-
nor has a (O(r2), 2O(r)r!) sparse cover scheme constructible
in polynomial time.

Proof. The algorithm receives a graph G and a param-
eter ρ. We begin with some notation. In order to be con-
sistent we fix an arbitrary labeling of the vertices. Given a
subgraph Gi ⊆ G, let τi be the vertex with minimal label in
Gi. Let Ti be the unique breadth-first-search (BFS) span-
ning tree of Gi, rooted at τi where parent vertices have the
minimal possible label. We can now slice Ti to slices of size
ρ, let Si,j be the jth slice of Ti

Si,j = {v ∈ Gi | jρ ≤ dGi(τi, v) < (j + 1)ρ}

For a set U in a graph G and a distance c let
BG(U, c) = {v | ∃u ∈ U, dG(u, v) ≤ c}.

Cover algorithm:
Initially G = G1 = H1.
cover-(Gi, Hi): If i = r + 1 then return Gi as one of the

clusters of the cover. Otherwise, for every integer j and
every connected component G′ of the set

BGi(Si,j ∩Hi, iρ)

set Gi+1 = G′ , Hi+1 := G′ ∩ Si,j ∩Hi and execute cover-
(Gi+1, Hi+1).

Claim 1. For every v there exists unique indexes
j1, . . . , jr such that v ∈ Hr+1.

Proof. By induction. Clearly v ∈ H1. Given v ∈ Hi

there exist a unique index ji such that v ∈ Si,ji . Let Gi+1 be
the connected component of BGi(Si,ji∩Hi, iρ) that contains
v ∈ Hi so that v ∈ Hi+1 = Gi+1∩Si,ji ∩Hi as required.

So given v ∈ Hr+1 this implicitly defines a series of sub-
graphs G1, H1, . . . , Gr, Hr, Gr+1, Hr+1 induced by the cover
algorithm.

Property 1. (Cover). From Claim 1 there existsHr+1 3 v.
By induction, given BG(v, ρ) ⊆ Gi and v ∈ Hi+1 it follows
from the definition of Gi+1 that BG(v, ρ) ⊆ Gi+1

Property 2. (Sparse clusters). For each graph Gi that v
belongs to, it belongs to at most (2i+ 1) graphs Gi+1 with
different indexes j due to the use of a ball of radius iρ on
each stripe Si,j . Hence for each i ∈ [1, r], by induction, a
node belongs to at most

∏
1≤j≤i(2j + 1) ≤ 2i(i+ 1)! graphs

Gi. Therefore a node belongs to at most 2O(r)r! clusters.
Property 3. (Strong-diameter). Fix some cluster Gr+1.

We will now show that if Gr+1 has a strong diameter of
more than 4(r+1)2ρ then G contains a Kr,r minor. If there
exist two nodes such that dGr+1(y1, yr) > 4(r + 1)2ρ then
their shortest path in Gr+1 can be partitioned into r − 1
segments using r points y1, . . . , yr ∈ Gr+1 such that the
balls BGr+1(yi, 2(r + 1)ρ) are pairwise disjoint. Let xi be
the closest point in Hr+1 to yi (so d(xi, yi) ≤ (r+ 1)ρ) then
by the construction of Gr+1, the balls BGr+1(xi, (r + 1)ρ)
are pairwise disjoint.

We conclude the theorem by using the following lemma.

Lemma 1. If there exists points x1, . . . , xr ∈ Hr+1 such
that the balls BGr+1(xi, (r + 1)ρ) are pairwise disjoint then
G contains a Kr,r minor.

Proof. Such a minor is composed of r sets called the
left super-nodes, denoted as L1, L2, . . . , Lr, such that xi ∈
Li; and from r sets called the right super-nodes, denoted
V1, V2, . . . , Vr. Each super-node is a connected sub-graph of
G, all sets are pairwise disjoint and there is an edge con-
necting each set from the first group with a each set from
the second group.

For the analysis we use the following notation: for u ∈
Gi+1 let taili(u) be the unique path on Ti ∩ Gi+1 from u
towards the root τi.

The left super-nodes: For each i ∈ [1, r], let Li =⋃
j∈[1,r] tailj(xi). For any i, j ∈ [1, r], by construction,

tailj(xi) ⊆ Gj+1 and its length in Gj+1 is at most (j + 1)ρ.
Observe that each Li is a set of paths in G that are con-
nected at xi.

The right super-nodes: For all i ∈ [1, r] let Ui denote
the subtree of Ti formed by the paths on Ti for all j ∈ [1, r]
from each xj to τi. The right super nodes are Vi for i ∈
[1, r], where Vi = Ui \Gi+1. Observe that each Vi induces a
connected subtree of G.

The super edges are the edges in Ti connecting each Vi

with each taili(xj) ∈ Lj for each i, j ∈ [1, r].
We now show that the sets are pairwise disjoint.
For any i, j ∈ [1, r] and j < ` we claim that tailj(xi) ⊆ G`

and that tailj(xi) is disjoint from the right node V`−1. The
proof is by by induction on `. For ` = j + 1 this is true by
construction.

For j + 1 < `, by the induction hypothesis we have
tailj(xi) ⊆ G`−1. Since xi ∈ H` and the length of tailj(xi)
is at most (j + 1)ρ it follows that tailj(xi) ⊆ G` and that it
is disjoint from V`−1. This follows since j + 1 ≤ ` − 1 and
the fact that BG`−1(xi, (`− 1)ρ) ⊆ G`.

Therefore the set Li is contained in BGr+1(xi, (r + 1)ρ)
so for all ` ∈ [1, r] and all i < j ∈ [1, r], Li ∩ Lj = ∅ due
to the assumptions that the balls BGr+1(xi, (r + 1)ρ) are

19

pairwise disjoint. From the inductive claim above, for all
i ∈ [1, r] and all j ≤ ` ∈ [1, r], tailj(xi) ∩ V` = ∅. Finally,
for all i ∈ [1, r] and all ` < j ∈ [1, r], the set V` is clearly
disjoint from tailj(xi) and from Vj since by construction
V` = U` \G`+1 and Vj ∪ tailj(xi) ⊆ Gj ⊆ G`+1.

4. NAME-INDEPENDENT ROUTING
In this part we consider the problem of routing messages

between any pair of nodes of an unweighted graph G with
precomputed compact routing tables. The performances of
the routing scheme is measured in term of the size of the
local routing tables and the maximum stretch, i.e., the ratio
between the length of the route from x to y and the minimum
possible route length, dG(x, y).

We concentrate our attention on name-independent rout-
ing schemes, that is node names cannot be relabeled to opti-
mize routing tables. Labeled routing scheme of stretch 1 + ε
and with polylogarithmic size routing tables, labels, and
headers are known for weighted graphs excluding a fixed
minor [1], whereas any name-independent routing scheme
on unweighted stars (depth one trees, so excluding K3) re-
quires a stretch at least 3 if less than Ω(n logn) bits per
node are used [5].

We assume that G is unweighted, since it has been proved
in [4] that there are stars with edge cost 1 or k for which
every name-independent routing scheme of stretch < 2k +
1 requires routing tables of Ω((n logn)1/k) bits, for every
integer k ≥ 1.

In the remaining of the paper, we will assume that the n
node names of G range arbitrary in {1, . . . , nO(1)}, i.e., are
on O(logn) bits. The scheme extends easily to longer names
by the use of hashing techniques.

Thanks to Theorem 1 we can show:

Theorem 2. For every n-node unweighted graph of di-
ameter D excluding a Kr,r minor, there is a polynomial time
constructible name-independent routing scheme, in the fixed
port model4, with stretch O(r2) and using O(logn)-bit head-

ers, in which every node requires tables of 2O(r)r! · logD ·
log3 n/ log logn bits.

First let us outline the technique of hierarchical routing
schemes introduced by Awerbuch and Peleg [8, 9]. Let us
assume that there exist k and τ such that, for every ρ > 0,
the graph G has a (k, ρ, τ) sparse cover, and let Cρ denote
this cover. Then, routing in G can be done by considering
the family of covers F = {C1, . . . , C2i , . . . , C2dlog De}. More
precisely, for each cover C2i ∈ F and for each cluster C ∈ C,
we root a shortest path spanning tree TC ofG[C], so of depth
at most k2i. Let us call T the collection of all these trees.
Roughly speaking, the routing task for a source u consists
in seeking the target v in each tree of T it belongs to.

Actually, u needs to seek v only in dlogDe + 1 trees in
nondecreasing depth, each tree spanning the ball BG(u, 2i)
for some i ∈ {0, . . . , dlogDe}. If each try can be done within
a route of length proportional to the depth of the tree, then
it is not difficult to check that the resulting stretch of the
route from u to v is O(k), the cluster covering BG(u, 2i)
being of diameter at most k2i. Overall, if a tree routing

4I.e., the port number around each node u is an arbitrary
permutation of {1, . . . ,deg(u)} that, as well as the node
names, cannot be changed during the design of the rout-
ing scheme.

scheme for seeking v can be implemented withM -bit routing
tables, then the routing scheme for G uses at most O(τ ·
logD ·M) bits, each node participating in at most τ tree
routings for each of the O(logD) covers of F .

By Theorem 1, we have τ = 2O(r)r! and k = O(r2).
Therefore Theorem 2 can be proved by designing a rout-
ing scheme with M = O(log3 n/ log logn)-bit routing tables
for seeking any destination in a tree along routes of length
proportional to its depth. Unfortunately, such tree routing
schemes cannot be applied as a black box and plugged to
the hierarchical scheme for G. Indeed, routing from u to
v in some partial tree T of G inevitably requires to visit
some nodes outside T : forcing routing to use only edges of
T is equivalent to routing in a weighted tree T ′ spanning
G where edges of T ′ \ T have some large costs. And we
have seen that routing trees with edge weights in {1, k} re-

quires Ω((n logn)1/k) bits for stretch Θ(k) [4]. It follows
that routing in a cluster C interact with nodes not in C.
This is source of several complications since a node might
be concerned with (and its routing table possibly charged
for) the routing to some trees in which it does not belong
to. Potential a node maybe a neighbor of all the |T| = Ω(n)
trees. To solve the problem, we will use a modified version
of the single-source unweighted tree routing of [2] combined
with the low density of minor-free graphs to balance rout-
ing information. This last step makes our routing scheme
available only for unweighted graphs.

An L-error reporting routing scheme for a subgraph C of
G is a routing scheme such that, for all u ∈ C and v of G:
if v ∈ C, then the route from u to v has cost at most L,
and if v /∈ C, then the routing from u to v reports to u a
failure mark in the header after a loop of cost at most L. In
order to prove Theorem 2, our goal is to construct, for each
depth-h tree T ∈ T, a space efficient O(h)-error reporting
routing scheme (cf. Lemma 3 below).

An α-orientation of a graph is an orientation of its edges
such that every node has out-degree at most α.

Lemma 2. Any graph excluding a Kr,r minor has an
Θ(r

√
log r)-orientation that can be computed in linear time.

Proof. Graph excluding a fixed minor are closed under
taking induced subgraphs. It is known that the n-node
graphs excluding a Kr minor have no more that f(r) · n
edges [16] where f(r) = Θ(r

√
log r). Therefore, an f(r)-

orientation can be easily obtained in linear time by pruning
the graph with the minimum degree node. Now, the fam-
ily of graphs excluding a K2r minor contains all the graphs
excluding a Kr,r minor. Thus any n-node graph excluding
a Kr,r minor has no more than f(2r) · n edges, and so an
Θ(r

√
log r)-orientation computable in linear time.

The sparsity of a collection of trees of a graph G is the
maximum number of trees a node of G belongs to. The key
lemma is the following:

Lemma 3. Let T be a collection of trees of sparsity σ in
an n-node graph G with an α-orientation. Then, one can
construct in polynomial time for each node of G a routing
table of O(σ ·logn·(α+log2 n/ log logn)) bits, such that each
depth-h tree of T has a 8h-error reporting routing scheme
using O(logn)-bit headers.

The proof of Theorem 2 is completed thanks to Lemma 3
by observing that the sparsity of the collection T is σ =

20

2O(r)r! · logD, and that α = O(r
√

log r) (Lemma 2), so

providing a 2O(r)r!·logD·log3 n/ log logn-bit routing scheme
for G as claimed.

Proof. Let U be the set of node names for G, |U| ≤
nO(1). Consider a depth-h rooted tree T of T, and let m ≤
n be the number of nodes of T , and s be the root for T .
Consider a source u of T , and let v be any node of G. For
simplicity, we confuse the nodes with their names, that is
we assume that u, v ∈ U.

Let ψ : U → P be some universal hashing function map-
ping the names of U to P = {1, . . . , p} where p is some
prime such that m ≤ p < 2m. Such function ψ can be
implemented with a degree-O(log p) polynomial of the field
Zp such that there are at most O(log p) collisions [11], thus
using O(log2m) bits.

The outline of the L-error reporting scheme for T from u
to v is the following:

1. Node u hashes v in ψ(v) ∈ P.
2. Node u routes a message to a node w of T , thanks to

a labeled tree routing scheme L1, whose label in L1 is
precisely ψ(v).

3. Node w is in charge of the labels, for a tree routing
scheme L2, of all the nodes z of T such that ψ(z) =
ψ(v).

4. If v is not one of such node z of T , then a failure mark
is sent back from w to u using routing L1.

5. Otherwise, w routes to v using routing L2.

The routing schemes L1,L2 are based on a specific port
labeling of T , called virtual port labeling w.r.t. T . They
requires that ports number i of u leads to the i-th heaviest
child of u in T (the port to the parent of u is fixed to 0). So,
given the label of the current node x and the label of the
destination y, say `2(x) and `2(y), the scheme L2 computes
the virtual port number i of the edge on the path from x to
y in T . For the scheme L2, we will use the label tree routing
scheme of [14], that uses O(logm)-bit labels.

Unfortunately, real port numbers of u are fixed and range
in {1, . . . ,degG(u)}, and degG(u) 6= degT (u) in general. To
overcome this problem we distribute a translation table from
virtual to real port numbers over all the neighbors of u,
potentially charging some nodes of G that are not in T . To
prevent the overload of some nodes, we use the α-orientation
of G.

Let port(x, y) be the real port number of the edge from
x to y in G. Consider a node z with directed neighbors
(according to the α-orientation) z1, . . . , zα, and let zi be
the i-th heaviest child of z.

For the port translation, node z stores: 1) the real port
number of its parent for each tree of T it belongs to; 2) the
real port to zp with p = port(z, zi) for each i ∈ {1, . . . , α},
and for each tree of T node z belongs to; 3) port(zi, zi

p),

where p = port(zi, z), for each i ∈ {1, . . . , α}, and for each
tree of T node zi belongs to. We check that overall the
memory requirements for the port translation is O(σ · α ·
logn) bits per node of G.

The port translation in a node x of T is performed as
follows: if the virtual port is 0, then the real port of the
parent of T is returned. If the virtual port is one of the real
port to x1, . . . , xα, then the real port is returned. Otherwise,
if the virtual port is p, then a message from x on port p,
specifying the tree T of T, is sent, and let z be its neighbor.

Note that this edge is incoming in x in the orientation, and
outgoing from z. Therefore, z knows the real port number
of the p-th child of x in the tree T . In other words, the
routing from x to its parent is done in 1 step, whereas for a
child it is done in at most three steps.

The L-error reporting routing scheme from u to v in T
has the following performances: 1) if v /∈ T , then the route
has length L ≤ dT (u, s)+3dT (s, w)+dT (w, s)+3dT (s, u) ≤
8h. 2) if v ∈ T , then the route has length L ≤ dT (u, s) +
3dT (s, w)+dT (w, s)+3dT (s, v) ≤ 8h. Therefore, the scheme
is 8h-error reporting.

It remains to describe the tree routing scheme L1 (see [2]
for details). The scheme is based on two numbers, c(x) and
q(x), we assign with each node x of T . The first, called
the charge of x, represents the total number of values ψ(v)
mapped on the nodes of Tx, the subtree T of root x. (So
for the root s, c(s) = |P| = p). The second one denotes the
number of values ψ(v) that are mapped to node x. These
two numbers satisfy that, for every x, c(x) =

∑
y∈Tx

q(y).

Given the numbers c(x) and q(x) one can then route
through a modified DFS number f(x) associated with each
x and defined by: for the root f(s) := 1, and f(xi) :=
f(x) + q(x) +

∑
j<i c(xj), where xi is the i-th child of x.

(This matches to the standard DFS numbering if q(x) = 1
for every x.)

Now the routing L1 is done similarly to Interval Routing
Scheme. Let w be the node in charge of ψ(v). Assume that
w is a descendant of some node x, initially x = s. It is easy
to see that:

1. either ψ(v) ∈ [f(x), f(x) + q(x)), and w = x, i.e., the
key of v is stored by x;

2. or w is a descendant of xi where ψ(v) ∈
[f(xi), f(xi+1)), and thus the routing in x must an-
swer port i.

So the routing from x to ψ(v) is well defined if x is aware
of f(x), q(x), and of the vector ~c(x) = (c(x1), c(x2), . . .)
of charges of x’s children. Indeed the numbers f(xi) and
f(xi+1) can be computed from f(x), q(x), and from ~c(x).

It is proved in [2] that c(x) and q(x) can be
polynomially computed in a particular way so that
q(x) = O(logm/ log logm) and ~c(x) contains at most
O(log2m/ log logm) distinct values, and so coded with
O(log3m/ log logm) bits.

A node x belonging to T stores q(x), c(x), ~c(x), and
all the labels and names for which x is in charge: this is
O(q(x) logm) values, since there are O(logm) nodes of T
that can collide in the same node x. Labels and names
are on O(logm) bits, therefore the storage for L1 in x is
O(log3m/ log logm) bits for T .

Thus a node of G stores O(σ · log3 n/ log logn) bits for L1

plus O(σ · α · logn) bits for the port translation table and
the scheme L2. Hashing functions for each tree represents
O(σ · log2 n) bits. In total, a node of G stores O(σ · logn(α+
log2 n/ log logn)) bits as claimed.

We check that all the headers are on O(logn) bits, com-
pleting the proof of the lemma.

5. PROBABILISTIC SPARSE PARTITIONS
In this section we present probabilistic sparse partitions

with strong-diameter guarantees. The overall approach is
again similar in sprit to KPR. However there are three ma-
jor differences. First, our phase i stripes are of width 6iρ,

21

while KPR always chooses width ρ. Second, after the initial
cuts we use a cone based approach (see [12]) to “carve out”
an appropriate “core” from each stripe. Third and most im-
portantly, some nodes end up associated with clusters that
are outside of their stripe! specifically, the nodes of a stripe
i that do no get assigned to the ith “core” will be associated
with the nodes of the (i+ 1) stripe.

Theorem 3. For every weighted graph excluding a
Kr,r minor there exists a polynomial time sampleable
(O(r6r), O(r)) strong-diameter probabilistic sparse partition
scheme.

Furthermore, for any ρ > 0, it is possible to find in
polynomial time a partition with strong-diameter O(r6rρ),
where the total weight of edges crossing the partition is
O(

∑
(u,v)∈E dG(u, v)/ρ).

Our proof strategy focuses on an unweighted graph first.
We describe the partition procedure which is to be per-
formed r times. The following describes the k-th iteration
step by step where k ∈ [1, r].

1. Denote by Gk−1 the current graph. G0 = (V,E) is
the base of the recursion. Sample two numbers hk, `k
uniformly and independently from [0, ρ− 1].

2. Perform BFS from an arbitrary root node s ∈ Gk−1:
Tk = BFS(Gk−1, s)

3. Divide into layers: Lk(i) = {u | ibkρ + `k ≤
dGk−1(u, s) < (i+1)bkρ+ `k}, where bk = 6bk−1 = 6k.
We omit i in most cases below, and mention it explic-
itly only when needed.

4. For each layer Lk(i) let M(Lk(i)) be the
set of nodes at its middle, i.e., M(Lk(i)) ={
u ∈ Lk(i) | dGk−1(u, Lk(i− 1)) = (bk/2)ρ

}
. When

Lk(i) is clear from the context we may abbreviate
notation and write Mk.

5. Define a “cone” distance function γk(·, ·) on the di-
rected edges of Gk with respect to Tk. Specifically
for a directed edge u → v let γk(u, v) = 0 if u is the
unique parent of v in the tree Tk and otherwise the dis-
tance equals the original distance γk(u, v) = ω(u, v) =
dG(u, v). Notice that γk is not symmetric.

We can extend γk to nodes that are not connected
by an edge. Specifically, let `k(u, v) be the cost of
the minimal cost directed path from u to v where the
cost of a directed path is the sum of the weights of its
directed edges according to γk. We can also extend the
notion of a ball to a cone by defining for a set U and
a distance c, BG(U, c, γk) = {v | ∃u ∈ U, `k(u, v) ≤ c}.

6. Define S+
k (i) to be the set of nodes within Lk(i) with

γk distance of at most bkρ/2 + hk from M(Lk(i)).
S+

k (i) = BLk(i)(M(Lk(i)), bkρ/2 + hk, γk) =
{u | u ∈ Lk(i), γk(M(Lk(i)), u) ≤ bkρ/2 + hk}. Note
that S+

k (i) is a set grown around Mk which is at the
middle of Lk(i). It may not include all of Lk(i) but it
has the property that if u is included then so are its
children in Ti ∩ Lk(i).

7. After performing the previous steps to all layers in
the decomposition, add all unassigned nodes from

L(i+ 1) which were not included in S+
k (i+ 1) into the

set Sk(i).
Sk(i) = S+

k (i) ∪
{
Lk(i+ 1) \ S+

k (i+ 1)
}

8. Note that now the sets Sk(i) partitions Gk−1. For each
i recurse on every connected component Xi of Sk(i):
Gk ∈ Xi.

Claim 2. In any iteration k ∈ [1, r] of the algorithm, if
u, v ∈ Gk−1 then the probability that the k-th iteration cuts
an edge (u, v) into different clusters is at most 2/ρ.

Proof. In each execution of the procedure there are two
ways an edge u, v could be cut. The first is that u, v are
cut in stage (3); i.e. u ∈ Lk(i) while v ∈ Lk(i+ 1) for some
i. The probability the edge is cut by the layers is at most
1/ρ due to the randomness of `k. The second way in which
(u, v) might be cut, given u, v ∈ Lk(i), is if u ∈ S+

k (i) and
v 6∈ S+

k (i). In other words it must be the case that one of
the nodes (say w.l.o.g u) has a small γk distance from Mk

while node v has a large γk distance from Mk. Note however
that

|γk(Mk, u)− γk(Mk, v)| ≤ dG(u, v)

The threshold distance for inclusion in S+
k (i) is bkρ/2+hk

where hk ∈ [0, ρ − 1] is chosen uniformly at random. It
follows that given that u, v ∈ Lk(i), the probability (u, v) is
cut at most 1/ρ, which concludes the proof of the lemma.

There are a r recursive calls so by the union bound
the probability of an edge (u, v) being cut is at most
2r · dG(u, v)/ρ.

Remark 1. The expected total weight of a cut in each
iteration k is 2Wk/ρ where Wk is the total weight of edges
in Gk. There are ρ2 possibilities for a choice of hk, `k. At
least one value of hk, `k yields a partition where the weight
of cut edges is at most 2Wk/ρ. Thus an exhaustive search
would yield a cut with this value. If this is done in every
recursive call then the total weight of cut edges is at most
2rW0/ρ.

We are now left with proving that the diameter of each
component is O(ρ). We do this by showing that if there are
two nodes in Gr such that the distance between any two of
them is greater than 12rbrρ (a constant which depends on
r but not on |V (G)|) then the graph contains a Kr,r minor.

From now one we omit the notation that states which
stripe we are talking about (the subscript i in the previous
section). The following lemma characterizes the properties
we will need in order to show the existence of theKr,r minor.
Fix some iteration k.

Lemma 4. Each node u ∈ Gk has an anchor ak(u) ∈Mk

such that ak(u) ∈ Gk and dGk (u, ak(u)) ≤ (3bk/2 + 2)ρ.

Proof. Consider the construction of Gk out of Gk−1.
The node u can be assigned to Gk either in Step (6) or Step
(7) of the construction. If it were assigned in Step (6) then
there is a node a(u) such that γk(a(u), u) ≤ (bk/2 + 1)ρ.

The shortest path includes at most bk
2
ρ+(bk

2
+1)ρ edges of

Tk which have a γk distance of 0, therefore dGk (a(u), u) ≤
(bk + 1 + bk/2 + 1)ρ = (3bk/2 + 2)ρ.

If u was assigned to Gk in Step (7) then all its parents in
the BFS tree were also assigned to Gk, therefore the path to
the root of Tk reaches a node in Mk after distance at most
bkρ.

22

Lemma 5. Let u ∈ Mk. For every v ∈ Gk−1 such that
dGk−1(u, v) ≤ bkρ/2 it holds that v ∈ Gk. In other words a
ball around u in Gk−1 of radius bkρ/2 is contained in Gk.

Proof. Step (6) above includes in S+
k all the nodes at

distance bkρ/2, thus v ∈ S+
k . The lemma then follows since

the path between u and v is contained in Sk.

5.1 The Super-nodes
Assume there are two nodes x, y ∈ Gr such that

dGr (x, y) ≥ 12rbrρ. There must be therefore r nodes
x = x1, x2, . . . , xr = y in Gr such that dGr (xi, xj) ≥ 12brρ
for every i 6= j. We show that this implies that the graph
contains aKr,r minor which contradicts the assumption that
G is Kr,r free. Such a minor is composed of r sets denoted
as B1, . . . , Br such that xi ∈ Bi and r sets R1, . . . , Rr such
that each set is a connected sub-graph of G, all sets are
disjoint and there is an edge connecting Bi and Rj for ev-
ery i, j. This yields a contradiction since each set could be
contracted to a single node creating a Kr,r minor.

The Set Bi

The node xi has an anchor in ar(xi) ∈ Mr. Call this node
ar (for brevity we omit the subscript i), and denote by Ar

the path between xi and ar . The node ar has an anchor
ar−1(ar) ∈Mr−1. Call this node ar−1 and define recursively
aj−1 = aj−1(aj), and Aj to be the path between aj−1 and
aj .

Let u ∈ Mk. Define tailk(u) to be the path in Tk which
connects u to the upper boundary of L. In other words
tailk(u) is a path of length at most bk/2 in Tk starting from
u towards the root. Now define:

B(k) =

k⋃
j=1

Aj ∪ tailj(aj)

The set Bi is now defined as B(r). Clearly the induced
graph G[Bi] is connected. This however turns out not to be
enough.

Lemma 6. All the nodes in Bi belong to Gr. Furthermore
diamGr (Bi) ≤ 3brρ.

Proof. We prove that B(k) ⊆ Gk by induction on k. For
the base case we have B(1) = A1 ∪ tail1(a1) where A1 ⊆ G1

by Lemma 4. We have that tail1(a1) ⊆ G1 by Lemma 5.
By the induction hypothesis we have that B(r− 1) ⊆ Gr−1.
Furthermore, Lemma 4 implies that Ar ⊆ Gr and Lemma 5
implies that tailr(ar) ⊆ Gr. It remains therefore to show
that B(r − 1) ⊆ Gr. Let u ∈ B(r − 1). By the in-
duction hypothesis dGr−1(ar, u) ≤ 3br−1ρ. We have that
3br−1 ≤ br/2 so by Lemma 5 B(r − 1) ⊆ Gr. Furthermore
diamGrB(r) ≤ (3br/2 + 1)ρ+ 3br−1ρ ≤ 3brρ.

The Set Rj

The Set Rj is constructed by pruning the tree Tj at Gj . In
other words, u ∈ Rj if u 6∈ Gj and there is a node v ∈ Gj

such that u is an ancestor of v in Tj . Clearly the following
holds:

Lemma 7. The set Rj has the following properties:

1. The induced subgraph G[Rj] is connected.
2. Rj ⊆ Gj−1.
3. Rj ∩Gj = ∅.

5.2 Putting It All Together
We defined 2r sets Bi and Ri. In order to complete the

construction of the Kr,r minor we have to show the follow-
ing.

Lemma 8. If there are two nodes x, y in Gr such that
dGr (x, y) ≥ 12rbrρ then the 2r sets of nodes Bi, Ri, i ∈
[1, r], have the following properties:

1. For every i the subgraph G[Bi] and the subgraph G[Ri]
are connected.

2. The sets Bi and Ri, i ∈ [1, r], are all mutually disjoint.
3. For every i, j there are nodes u ∈ Bi and v ∈ Rj such

that (u, v) is an edge in G.

First we show why Lemma 8 suffices to prove Theorem 3.
Since all the sets are connected in G and they are all mutu-
ally disjoint, each one of the sets could be contracted into a
different single node using only minor operations. Property
(3) of the lemma implies that the resulting graph contains
a Kr,r minor contradicting the fact that G is Kr,r free. We
conclude that it must be that the strong-diameter of each
Gr is bounded by 12rbrρ.

Proof. The first assertion of the Lemma is immediate
from the previous Section.

To see why the third Assertion is true consider two sets
Ri, Bj . The set Bj contains the path taili(ai) which is de-
fined to be a BFS path in Ti. The set Ri is the remaining
part of Ti thus the last node in taili(ai) is connected to a
node in Ti.

It remains to show that all the sets are mutually disjoint.
We do this case by case:

First, for every i 6= j it holds that Ri ∩ Rj = ∅. Assume
w.l.o.g that i ≤ j−1. By Lemma 7 it holds that Ri∩Gj−1 =
∅ while Rj ⊆ Gj−1. Conclude that Ri ∩Rj = ∅.

Second, for every i, j it holds that Bi ∩ Rj = ∅. By
Lemma 7 the set Rj is disjoint from Gr while by Lemma 6
the set Bi is contained in Gr.

Finally, for every i 6= j it holds that Bi ∩ Bj = ∅. This
follows since x1, x2, . . . , xr are far from one another in Gr,
yet each Bi has a small radius in Gr. To be precise, the
radius of each Bi is bounded by 3brρ while the distance
between xi and xj is at least 12brρ.

5.3 The Weighted Case
We now present the reduction from the weighted graph

case to the unweighted construction above. It is first worth-
while illuminating the key aspects of the above construction
that are affected by having non-uniform edge weights. First,
we need to find a node in Mk, the middle-strip, whenever
two connected nodes cross Mk. Second, for two nodes u, v
whose distance is larger than r, we need to find r nodes
along the shortest path from u to v at distance d(u, v)/r
apart. Finally, we need the distances in G to uphold the
triangle inequality; without it, the construction above may
not yield the required cluster diameter bound.

We address all of these issues with the following reduc-
tion. Scale weights so that every edge weighs at least 1.
Round up edge weights to the nearest integer. Note that
edge weights increase by at most 2 by these transforma-
tions. Introduce virtual intermediate nodes along each edge,
at intervals of length 1. Remove all weights. Let the new

23

unweighted graph be denoted G′. It is easy to see that vir-
tual nodes do not change the topological properties of the
graph. Hence, if G excludes Kr,r, then so does G′. Now,
perform the probabilistic sparse partition above on G′, and
let the resulting clusters in G′ be C′1, ..., C

′
m. Output the set

of clusters G[C′1], ..., G[C′m] induced by G′’s clusters.
To see that the resulting partition satisfies the required

properties, first observe that for any u, v,∈ C′, distances
satisfy dG(u, v) ≤ dC′(u, v). Hence, any bound on the diam-
eters of the C′ clusters is maintained in the clusters induced
on G.

Second, let us consider the probability that an edge
(u, v) ∈ G is cut by the partition. This edge is repre-
sented in G′ by at most bdG(u, v) + 2c unweighted edges.
By union bound, the probability that (u, v) is cut is at most

bdG(u, v) + 2c 2
ρ
≤ 6dG(u,v)

ρ
.

We remark that the time complexity of the construction
does suffer from the transformation, by a factor that is pro-
portional to the aspect ratio of G.

6. OPEN PROBLEMS
The results of this paper could be utilized and optimized

in several ways. The work suggests two main open problems.
First, all our theorems have an exponential dependency

on the size of the forbidden minor. When weak-diameter
is concerned it is possible to achieve a polynomial depen-
dency [15]. It would be interesting to find sparse covers and
sparse partitions with strong-diameter and a polynomial de-
pendency in r. Note that the exponential dependency is an
artifact of the technique of doubling the width of the cut-
ting stripes each iteration. This is a key ingredient of our
approach, thus such an improvement would probably require
a different approach.

Finally, can Theorem 3 be extended to star-
decompositions (see [12])? Can it be used to improve
results in approximation algorithms? Natural candidates
are metric embeddings and building spanners.

7. REFERENCES
[1] Ittai Abraham and Cyril Gavoille. Object location

using path separators. In 25th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 188–197. ACM Press, July 2006.

[2] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi.
Routing with improved communication-space
trade-off. In 18th International Symposium on
Distributed Computing (DISC), volume 3274 of
Lecture Notes in Computer Science, pages 305–319.
Springer, October 2004.

[3] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi.
Compact routing for graphs excluding a fixed minor.
In 19th International Symposium on Distributed
Computing (DISC), volume 3724 of Lecture Notes in
Computer Science, pages 442–456. Springer,
September 2005.

[4] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On
space-stretch trade-offs: Lower bounds. In 18th

Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 217–224. ACM Press,
July 2006.

[5] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam
Nisan, and Mikkel Thorup. Compact
name-independent routing with minimum stretch. In
16th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 20–24. ACM Press,
July 2004.

[6] Baruch Awerbuch and David Peleg. Locality-sensitive
resource allocation. Technical Report CS90-27,
Weizmann Institute, November 1990.

[7] Baruch Awerbuch and David Peleg. Network
synchronization with polylogarithmic overhead. In
IEEE Symposium on Foundations of Computer
Science (FOCS), pages 514–522, 1990.

[8] Baruch Awerbuch and David Peleg. Sparse partitions.
In 31th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 503–513. IEEE
Computer Society Press, October 1990.

[9] Baruch Awerbuch and David Peleg. Routing with
polynomial communication-space trade-off. SIAM J.
Discret. Math., 5(2):151–162, 1992.

[10] Costas Busch, Ryan LaFortune, and Srikanta
Tirthapura. Improved sparse covers for graphs
excluding a fixed minor. Technical Report 06-16,
Department of Computer Science, Rensselaer
Polytechnic Institute, November 2006.

[11] J. Lawrence Carter and Mark N. Wegman. Universal
hash functions. Journal of Computer and System
Sciences, 18(2):143–154, 1979.

[12] Michael Elkin, Yuval Emek, Daniel A. Spielman, and
Shang-Hua Teng. Lower-stretch spanning trees. In
STOC ’05: Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages
494–503, New York, NY, USA, 2005. ACM Press.

[13] Jittat Fakcharoenphol and Kunal Talwar. An
improved decomposition theorem for graphs excluding
a fixed minor. In RANDOM-APPROX, pages 36–46,
2003.

[14] Pierre Fraigniaud and Cyril Gavoille. Routing in trees.
In 28th International Colloquium on Automata,
Languages and Programming (ICALP), volume 2076
of Lecture Notes in Computer Science, pages 757–772.
Springer, July 2001.

[15] Philip Klein, Serge A. Plotkin, and Satish Rao.
Excluded minors, network decomposition, and
multicommodity flow. In 25th Annual ACM
Symposium on Theory of Computing (STOC), pages
682–690. ACM Press, 1993.

[16] Andrew Thomason. The extremal function for
complete minors. Journal of Combinatorial Theory,
Series B, 81(2):318–338, 2001.

[17] Mikkel Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. Journal of
the ACM, 51(6):993–1024, November 2004.

[18] Mikkel Thorup and Uri Zwick. Approximate distance
oracles. J. ACM, 52(1):1–24, 2005.

24

	Introduction
	Summary of Contributions

	Large Diameter KPR Clusters
	Sparse Cover with Strong Diameter
	Name-Independent Routing
	Probabilistic Sparse Partitions
	The Super-nodes
	Putting It All Together
	The Weighted Case

	Open Problems
	REFERENCES -9pt

