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Abstract. Given a weighted undirected network with arbitrary node names, we present a compact

routing scheme, using a Õ(
√

n ) space routing table at each node, and routing along paths of stretch

3, that is, at most thrice as long as the minimum cost paths. This is optimal in a very strong sense. It

is known that no compact routing using o(n) space per node can route with stretch below 3. Also, it

is known that any stretch below 5 requires �(
√

n ) space per node.
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1. Introduction

Consider an n-node weighted undirected graph G = (V, E, ω). Each node in V is

given an arbitrary unique name with O( log n) bits. In addition, for each node u ∈ V ,

each out going edge is given an arbitrary unique port name in {1, · · ·, deg(u)}.
A routing scheme is a distributed algorithm that, given a destination node’s name,

allows any node to route messages that will eventually arrive at the destination

node. Specifically, a routing scheme can be viewed as a function on each node

that maps from a given header and incoming port number to an outgoing port

number and new message header. For example, the trivial solution to routing on

minimum cost paths is for each node to store for each of the possible (n − 1)

destinations, a port number leading the next node on a minimum cost path to the

destination. This solution requires each node to store �(n log n) bits of routing

information and thus does not scale well as the number of nodes in the system

increases.

In order to reduce memory overhead and incur routing costs that are proportional

to the actual distances between interacting parties, there are two parameters that

routing schemes aim to minimize:

—Stretch: The maximum ratio over all source-destination pairs between the cost

of the path taken by the routing scheme and the cost of a minimum cost path for

the same source-destination pair.

—Memory: The maximum over all nodes of the number of bits stored for the routing

scheme.

Routing schemes that require nodes to store a linear number of bits are not

scalable. The challenge is to construct in polynomial time a compact routing scheme
that minimizes the stretch bound for any weighted graph while requiring only o(n)

bits of routing information per node. We refer the reader to Peleg’s book [Peleg

2000] and to the surveys of Gavoille and Peleg [Gavoille 2001; Gavoille and Peleg

2003] for comprehensive background on compact routing schemes.

Gavoille and Gengler [2001] show that compact routing schemes must have

stretch of at least 3. Specifically they prove that there exist n node networks in

which any scheme with stretch less than 3 requires a total of �(n2) bits of routing

information. Thorup and Zwick [2005] show that any scheme with stretch less than 5

must have networks which require �(n3/2) bits of routing information. These lower

bounds imply that compact routing schemes must have at least stretch 3 and that

stretch 3 routing schemes require at least �(
√

n) bits per node.

The problem of devising compact routing schemes has two basic variants: labeled
routing and name-independent routing. Awerbuch et al. [1989] were the first to

distinguish between solutions that allow/disallow the designer to choose destination

labels for nodes as part of the solution. The variant that allows the designer to name
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nodes with arbitrary destination labels is called labeled routing. A packet carries

the chosen label of the destination in its header, and we can use the label to code

topological information useful for routing. The power to choose destination labels

of polylogarithmic size tends to make the routing much easier.

The variant that does not allow labeling of nodes in this way is called name-
independent routing. In this variant node destination names are given as part of

the input, for example, these could be standard IP addresses. Generally this makes

routing harder: Intuitively, the routing algorithm must first discover information

about the location of the target, and only then route to it.

Indeed, optimal stretch compact routing schemes for labeled routing are already

known. Eilam et al. [2003] present a stretch 5 labeled scheme with Õ(n1/2) memory,1

whereas Cowen [1999] presents a stretch 3 labeled scheme with Õ(n2/3) mem-

ory. Later, Thorup and Zwick [2001b] achieve the optimal stretch of 3 using only

Õ(n1/2) bits. They also give a generalization of their scheme and using tech-

niques from their distance oracles [Thorup and Zwick 2001a, 2005], obtain-

ing labeled schemes with stretch 4k − 5 (and 2k − 1 with handshaking) using

Õ(n1/k)-bit routing tables. Additionally, there exist various labeled routing schemes

suitable only for certain restricted forms of graphs. For example, routing in a tree

is explored, for example, in Fraigniaud and Gavoille [2001] and Thorup and Zwick

[2001b], achieving optimal routing. This routing requires O( log 2n/ log log n)

bits for local tables and for headers, and this is tight [Fraigniaud and Gavoille

2002].

As for name-independent routing, the situation is quite different. Initial results

in Awerbuch et al. [1990] provide stretch 3 noncompact name-independent routing

with Õ(n3/2) total memory. However, this scheme is unbalanced, �(
√

n) nodes

must store �(n) bits of routing information. Awerbuch and Peleg [1990] were the

first to show that constant-stretch is possible to achieve with o(n) memory per node,

albeit with a large constant. Arias et al. [2003] significantly reduce the stretch to

5 with Õ(
√

n ) memory per node. This article closes the gap between these results

and the known lower bound of stretch 3.

1.1. OUR RESULTS. We present the first optimal compact name-independent

routing scheme for arbitrary undirected graphs. The scheme has stretch 3, and

requires O(log2/ log log n)-bit headers and Õ(
√

n ) bits of routing information per

node. When routing along our stretch 3 paths, each routing decision is performed

in constant time. Given the graph and the node names, we can construct the routing

information in Õ(n|E |) time.

Besides improving the stretch of Arias et al. [2003] from 5 to 3, our results

answer affirmatively the challenge of optimal name-independent routing that was

open since the initial statement of the problem in 1989 [Awerbuch et al. 1990].

Surprisingly, our results show that with Õ(
√

n ) bits of routing information per

node, allowing the designer to label the nodes does not improve the stretch factor

compared to the task when node labels are predetermined by an adversary.

We note that our solution does not contain any strikingly new technique. Rather

our new scheme is a nontrivial combination of simple standard techniques.

1 We use the notation Õ( f (n)) = f (n)(logn)O(1) to hide poly-logarithmic factors.
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2. Preliminaries

Consider a set V of n nodes wishing to participate in a distributed routing scheme.

We assume the nodes are labeled with an arbitrary unique identifier that can be

represented by O( log n) bits.

We assume a graph G = (V, E, ω) with positive edge cost ω. For u, v ∈ V , let

d(u, v) denote the cost of a minimum cost path from u to v in G, where the cost of

a path is the sum of the weights along its edges.

Each node has, for each outgoing edge, a unique port name from the set of integers

{1, . . . , n}. We assume the fixed-port model [Fraigniaud and Gavoille 2001]. In this

model, the name of each outgoing edge is fixed by the adversary. Thus the name

of the outgoing edge may have no connection to the label of the node on the other

side of the edge.

We assume that initially the sender only knows the name of the destination node.

This destination is written in the header of the message. We require writable packet
headers, namely, we allow the routing algorithm to write a reasonable amount of

information into the headers of messages as they are routed. In our case, we use

O( log 2n/ log log n)-bit headers.

We note that our use of headers aims at useful tradeoffs between current tech-

niques used in the real world: source-directed routing, where the source puts

the whole path to the destination in the header, and routing with a fixed header,

where each router knows how to forward packets to any destination. For source-

directed routing, the header may be very large, and for routing with a fixed

header, the routing tables may become huge. In either case, we have problems

with scaling. Our point here is that writing a small amount of information in

the header can dramatically reduce the amount of information needed at the

routers.

It is no coincidence that our scheme and indeed all previous name-independent

schemes use writable packet headers. A scheme that does not rewrite packet headers

must be loop free and thus must have stretch 1 on any tree. Clearly, in a tree that

is a star the center would have to code a permutation using �(n log n) bits on the

average.

LEMMA 2.1. There do not exist loop-free name-independent routing schemes
with o(n) bits for each node on every graph.

As for lower bounds for compact routing, note that for the related problem of la-

beled routing, the work of Gavoille and Gengler [2001] shows that any stretch

< 3 scheme must use a total of �(n2) bits. Thus, it cannot be the case that

all nodes use o(n) bits. Clearly, this bound holds also for the name-independent

model.

Actually, a slightly stronger memory bound of �(n2 log n) bits for stretch < 3

can be proven for the name-independent model. This, is derived by examining

the complete bipartite graph Kn/2,n/2 with uniform weights (likewise, the metric

space it induces). For stretch < 3, each node must route optimally to its distance

one neighbors. By counting all the permutations on names it is clear that each node

must use �(n log n) bits.

LEMMA 2.2. Any name-independent routing scheme with o(n log n) bits per
node must have stretch at least 3.
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3. The Stretch 3 Scheme

In Sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, we will first present some simple ingredients

for our optimal stretch 3 scheme. Then, in Section 3.8, we will combine them in our

optimal solution. Finally, in Section 3.9, we prove that the scheme has the optimal

stretch of 3.

3.1. VICINITY BALLS. For every integer κ ≥ 1, and for a node u ∈ V , let the

vicinity of u, denoted by Bκ (u), be the set consisting of u and the κ closest nodes

to u, breaking ties by lexicographical order of node names. Vicinities satisfy the

following Monotonicity Property:

PROPERTY 3.1 (AWERBUCH ET AL. 1990). If v ∈ Bκ (u) and w is on a mini-
mum cost path from u to v, then v ∈ Bκ (w).

PROOF. Seeking a contradiction, suppose v �∈ Bκ (w). For any z ∈ Bκ (w),

we have d(w, z) < d(w, v) (or d(w, z) = d(w, v) and z < v). So d(u, z) <
d(u, w) + d(w, v) (or d(u, z) = d(u, w) + d(w, v) and z < v). Since w is on a

minimum cost path from u to v , d(u, z) < d(u, v) (or d(u, z) = d(u, v) and z < v),

hence Bκ (w) ⊆ Bκ (u). But since v ∈ Bκ (u) \ Bκ (w) we have |Bκ (w)| < |Bκ (u)| a

contradiction.

Hereafter, the size of the vicinities is set to κ = [4
√

n log n] and denote simply

by B(u) = Bκ (u). Let b(u) denote the radius of B(u), b(u) = maxw∈B(u) d(u, w).

As in previous compact routing schemes (see, e.g., Awerbuch et al. [1989] and

Cowen [1999]), each node u will know its vicinity B(u). We assume that u has a

standard dictionary over the names in B(u) so that in constant time it can check

membership and look up associated information.

3.2. COLORING. Our construction uses a partition of nodes into sets C1, . . . ,
C√

n , called color-sets, with the following two properties:

PROPERTY 3.2.

(1) Every color-set has at most 2
√

n nodes.
(2) Every node has in its vicinity at least one node from every color-set.

From here on, if node u ∈ Ci we say that it has “color i”, and denote c(u) = i .

By standard Chernoff bounds and a union bound Property 3.2 clearly holds with

high probability if every node independently chooses a random color. Constructing

a polynomial-time coloring satisfying Property 3.2 is discussed in Section 4.

3.3. HASHING NAMES TO COLORS. We shall assume a mapping h from node

names to colors that is balanced in the sense that at most O(
√

n) names map to the

same color. Each node u should be able to compute h(w) for any destination w . If

the names were a permutation of {1, . . . , n}, we could just extract 1
2

log n bits from

the name, but we want to deal with arbitrary names such as IP addresses. Arias et

al. [2003] use a ( log n)-universal hash function for a similar purpose. In Section 5,

we will present a function h that can be computed in constant time.

3.4. STRETCH 3 FOR COMPLETE GRAPHS. To illustrate the use of these first

three ingredients, we here observe a very simple stretch 3 scheme with Õ(
√

n ) bits

per node given a complete graph whose edge weights satisfy the triangle inequality.
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Every node u stores the following:

(1) The names of all the nodes in the vicinity B(u) and what port number to use to

reach them.

(2) The names of all the nodes v such that c(u) = h(v) and what port number to

use to reach them.

Routing from u to v is done in the following manner:

(1) If v ∈ B(u) or c(u) = h(v), then u routes directly to v with stretch 1.

(2) Otherwise, u forwards the packet to w ∈ B(u) such that c(w) = h(v). Then

from w the packet goes directly to v . The stretch is at most 3 since d(u, w) +
d(w, v) ≤ d(u, v) + 2d(u, v).

Note that in a general graph the main difficulty is in implementing the path from

w to v .

3.5. ROUTING ON TREES. We make use of the following labeled routing scheme

for trees:

LEMMA 3.3 (FRAIGNIAUD AND GAVOILLE 2001; THORUP AND ZWICK 2001B).

For every weighted tree T with n nodes, in the fixed-port model, there exists a
labeled routing scheme that, given any destination label, routes optimally on T
from any source to the destination. The storage per node in T , the label size, and
the header size are O( log 2n/ log log n) bits. Given the stored information of a
node and the label of the destination, routing decisions take constant time.

For a tree T containing a node v , let μ(T, v) denote the routing information

stored at node v and λ(T, v) denote the destination label of v in T as defined by the

labeled routing scheme of Lemma 3.3.

We shall apply the scheme Lemma 3.3 to several trees in the graph. Each node

will participate in Õ(
√

n ) trees, so its total tree routing information will be of size

Õ(
√

n ).

3.6. LANDMARKS. Designate one color to be special and call it the landmark

color. Let L denote the set of nodes with the chosen color. By Property 3.2, we have

|L| ≤ 2
√

n and for every v ∈ V , B(v) ∩ L �= ∅. For a node v ∈ V , let �v denote

the closest landmark node in B(v) (breaking ties by lexicographical order of node

names).

3.7. PARTIAL SHORTEST PATH TREES. For any node u, let T (u) denote a single-

source minimum-cost-path tree rooted at u. In a partial shortest path tree, every node

v maintains μ(T (u), v) if and only if u ∈ B(v). Notice that the set of nodes that

maintain μ(T (u), ·) is a subtree of T (u) that contains u.

LEMMA 3.4. If x ∈ B(y), then given the label λ(T (x), y), node x can route to
node y along a minimum cost path.

PROOF. By Property 3.1 for any node w on the minimum cost path of T (x)

between x and y we have x ∈ B(w). Thus, every node w on this path maintains

μ(T (x), w).

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 37, Publication date: June 2008.



Compact Name-Independent Routing with Minimum Stretch 37:7

3.8. THE STRETCH 3 SCHEME. Every node u stores the following:

(1) For every w ∈ B(u), the name w and the port name u → y, where (u → y) is

the port number to use to get to node y, which is the next hop on a minimum

cost path from x to w .

(2) For every landmark node � ∈ L , routing information μ(T (�), u) and label

λ(T (�), �) of the tree T (�).

(3) For every node x ∈ B(u), routing information μ(T (x), u) of the tree T (x).

(4) For every node v such that c(u) = h(v), store one of the following two options

that produces the minimum cost path out of the two:

(a) Store the labels 〈 λ(T (�v ), �v ), λ(T (�v ), v) 〉. The routing path in this case

would be from u to �v ∈ B(v) using λ(T (�v ), �v ) on the tree T (�v ), and

from �v to v using λ(T (�v ), v) on the same tree T (�v ).

(b) Let P(u, w, v) be a path from u to v composed of a minimum cost path

from u to w , and of a minimum cost path from w to v with the following

properties: u ∈ B(w), and there exists an edge (x, y) along the minimum

cost path from w to v such that x ∈ B(w) and y ∈ B(v). If such paths

exists, choose the lowest cost path P(u, w, v) among all these paths and

store the labels 〈 λ(T (u), w), x, (x → y), λ(T (y), v) 〉.
The routing path in this case would be from u to w on T (u) using

λ(T (u), w). This part is possible by Lemma 3.4 on u ∈ B(w). Then from

w to y since x ∈ B(w) and the port number (x → y) is stored. Finally

from y to v on T (y) using λ(T (y), v). This part is possible by Lemma 3.4

on y ∈ B(v).

Routing from u to v is done in the following manner:

(1) If v ∈ B(u) or v ∈ L (v is a landmark node) or c(u) = h(v), then u routes to v
using its own information.

(2) Otherwise, u forwards the packet to w ∈ B(u) such that c(w) = h(v). Then

from w the packet goes to v using w’s routing information.

3.9. ANALYSIS.

THEOREM 3.5. Let s, t ∈ V be any two nodes. The route of the above scheme
from s to t has stretch at most 3.

PROOF. There are three cases to consider (see Figure 1):

(1) If t ∈ B(s) or t ∈ L , then s routes on a minimum cost path directly to t .

Otherwise, denote d = d(s, t), let z be a node such that z ∈ B(s) and c(z) = h(t).
For the case c(s) = h(t), we set z = s. Let p(z, t) be the cost of the path chosen by

z as the lowest cost path from z to t among options 4(a) and 4(b) of Section 3.8.

2. On every minimum cost path from s to t there is a node y such that y �∈
B(s) and y �∈ B(t). In this case, b(s) + b(t) ≤ d(s, t) (recall that b(u) =
maxw∈B(u) d(u, w)).

By examining option 4(a) the cost d(s, z) + p(z, t) of the path taken by our

routing scheme is bounded by the cost of the path s � z � �t � t , where

u � v denotes a minimum cost path from u to v . Thus d(s, z) + p(z, t) ≤
d(s, z) + d(z, �t ) + d(�t , t) ≤ b(s) + [b(s) + d + b(t)] + b(t) ≤ 3d.
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FIG. 1. The three cases in the proof of Theorem 3.5: (1) target is inside the source vicinity, (2) source

and target vicinities are far apart, (3) source and target vicinities are close.

3. There exists a minimum cost path, in which every node is in B(s) ∪ B(t). Let

(x, y) be an edge of this path such that x ∈ B(s) and y ∈ B(t).
By examining the best choice in option 4(b), the cost d(s, z) + p(z, t) of

the path taken by our routing scheme is bounded by the cost of the path s �
z � s � x → y � t . Thus, d(s, z) + p(z, t) ≤ d(s, z) + d(z, s) + d(s, t) ≤
b(s) + b(s) + d ≤ 3d.

4. On Polynomial Time Coloring

In this section, we discuss how to “derandomize” the coloring discussed in Sec-

tion 3.2. This is done via the method of conditional probabilities using pessimistic

estimators [Raghavan 1988]. Let C = {1, . . . ,
√

n}. We begin with a simple analysis

of the randomized algorithm.

—For every v ∈ V and c ∈ C let bv,c be a {0, 1} random variable that equals

0 if and only if there exists u ∈ B(v) with c(u) = c. Note that for any bv,c,

E[bv,c] = Pr[bv,c > 0] ≤ (1 − 1/
√

n)4
√

n log n ≤ n−4.

—For every c ∈ C let ec be a {0, 1} random variable that equals 0 if and only if

|{u | c(u) = c|} ≤ 2
√

n.

—For every c ∈ C and v ∈ V let fc,v be a {0, 1} random variable that equals 1 if

and only if c(v) = c.

Using Chernoff bounds and its analysis (see Motwani and Raghavan [1995, Chap.

4, Theorem 4.1, and Eq. (4.3)]), we have

Pr[ec > 0] ≤ Pr

[∑
v∈V

fc,v > 2
√

n

]
< αE

[
et

∑
v∈V fc,v

]
(1)

for t = ln 2 and α = e−2t
√

n . It follows that αE[et
∑

v∈V fc,v ] is a pessimistic es-

timator for ec. Let A = ∑
v∈V,c∈C bv,c + α

∑
c∈C et

∑
v∈V fc,v . We now show that

the four requirements for the method of conditional probabilities with pessimistic

estimators are fulfilled. When no node is colored yet, using union and Chernoff

bounds, E[A] < 1. For any partial coloring, the expression E[A] can be computed

in polynomial time. Since E[A] is an expectation of a random variable then any
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partial coloring can be extended by one more node with a color that does not

increase E[A]. Finally, since Eq. (1) is true for any partial coloring, then for the

full coloring
∑

bv,c + ∑
ec < E[A] < 1 as required.

Computing this derandomization can be done in Õ(n2) time. There are n stages

in the process. At each stage, we are given a partial coloring that induces some value

A and an uncolored node u. For each color c ∈ C , we need to compute A[u, c]

(the value of A induced by the partial coloring extended by coloring u with c) and

choose the color with the minimum A[u, c].

For a given node u, the cost of checking if bv,c needs to change requires scanning

|{v | u ∈ B(v)}| balls for each color. So the total is
√

n
∑

u∈V |{v | u ∈ B(v)}| =√
n

∑
v∈V |B(v)| = Õ(n2).

Computing the changes in fc,v from one color c′ to another c′′ can be done in

Õ(
√

n) time, since for each color c ∈ C only two terms in et
∑

v∈V f (c,v) change. So

the total cost of computing the changes in fc,v is Õ(n2) as required.

5. On Hashing in Constant Time

In this section, we will implement a constant time hashing function h from n
arbitrary names to

√
n colors, as assumed in Section 3.3. The constant time assumes

that we can perform standard arithmetic operations on names in constant time, hence

that each name is stored in a constant number of words. For example, these names

could be IP addresses. The representation of our hash function will take O(
√

n)

space. We can store such a representation with each node without violating our

space bounds.

Previous work of Arias et al. [2003] used a ( log n)-universal hash function, but

with current implementations via degree-( log n) polynomials, the evaluation of this

function takes more than constant time. With the constant time hash function we

propose, each routing decision is made in constant time.

We will now give a randomized construction of the hash function which works

with high probability. For simplicity, we assume
√

n is a power of two so that

( log n)/2 is an integer. First, we use a standard universal hash function h0 mapping

names into {1, . . . , n2.5} in constant time. With high probability this mapping is

collision free (see, e.g., Motwani and Raghavan [1995, Sect. 8.4.1]).

Set q = ( log n)/2. We are now dealing with n distinct reduced names of 5q
bits, and we want to get down to colors of q bits. We will use an idea of

Tarjan and Yao [1979]. For i = 1, . . . , 4, let Ti be a random table mapping q
bits into iq bits. Note that each table has 2q = √

n entries. We then hash a (5q)-bit

reduced name x as follows.

Let x4 = x , for i = 4, . . . , 1, let yi be the q least significant bits of xi , let zi
be the remaining iq bits of xi . Set xi−1 = Ti [yi ] ⊕ zi (where ⊕ is the bit-wise xor

operator). At the end, x0 has only q = ( log n)/2 bits which we return as the color.

The above computation of colors from reduced names takes constant time. We

will now bound the number of reduced names mapping to each color.

LEMMA 5.1. With high probability, there are O(
√

n) reduced names mapping
to each of the

√
n colors.

PROOF. We start with n unique 5q-bit reduced names. In each of 4 iterations,

the names get further reduced by q bits. In this process, some names collide. We
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will use Chernoff and union bounds four times iteratively to show that no more

than 3
√

n original names are reduced to each of the
√

n colors.

For each i = 4, 3, 2, 1 and each iq-bit name x let ai,x be the number of origi-

nal names reduced to x at the i th iteration. Let α5 = 1, α4 = e, α3 = 2e2, α2 =
log n, α1 = 3

√
n. Let B(i) = {0, 1}iq be the set of all iq-bit names. Let Mi

be the event that at most αi original names are mapped to each iq-bit name,

Mi = {maxx∈B(i) ai,x ≤ αi }. Given nonnegative values {ai+1,x}x∈B(i+1) such that∑
x∈B(i+1) ai+1,x = n then for any v ∈ B(i), we have

E[ai,v ] =
∑

y∈B(1),z∈B(i)

Pr[v = Ti (y) ⊕ z]ai+1,yz = 2−iq
∑

x∈B(i+1)

ai+1,x = n2−iq .

In addition, given Mi+1, then ai,v is a sum of independent variables, where

each such random variable is dominated by αi+1Yv,x where Yv,x is an indepen-

dent {0, 1} Bernoulli random variable with px = ai+1,x 2−iq/αi+1. Observe that

E[
∑

x∈B(i) Yv,x | Mi+1] = n1−i/2/αi+1

Using standard Chernoff bounds (see, e.g., Motwani and Raghavan [1995, eq.

(4.10)]), it follows that for each v ∈ B(i),

Pr[ai,v > αi | Mi+1] ≤ Pr

[ ∑
x∈B(i)

Yv,x >
αi

αi+1

n1−i/2/αi+1

n1−i/2/αi+1

| Mi+1

]

≤
(

e

αi ni/2−1

)αi /αi+1

.

Using a union bound, it can be checked that, for each i = 4, 3, 2, 1, we have

Pr[Mi | Mi+1] ≥ 1 −
∑

v∈B(v)

Pr[ai,v > αi | Mi+1] ≥ 1 − ni/2

(
e

αi ni/2−1

)αi /αi+1

≥ 1 − n2−e.

So we conclude that M1 occurs with high probability.

Thus, it follows that we expect a maximum of O(
√

n) reduced names to map to

the same color. Moreover, the mapping took constant time, and its representation

took O(
√

n) space. This completes our randomized construction of the desired hash

function. The construction uses the same ingredients as are used for the deterministic

dictionaries of Hagerup et al. [2001]. Using the techniques from Hagerup et al.

[2001], we can derandomize our construction to run in O(n log n) time.

6. Combining the Ingredients

THEOREM 6.1. Given a network with n nodes and m edges, in which nodes
have arbitrary unique names and arbitrary port name permutations, there exists an
algorithm that runs in Õ(mn) time and produces a routing scheme which requires
O(

√
n log 3n/ log log n)-bit routing tables per node and O( log 2n/ log log n)

headers that performs routing decisions in constant time and routes along paths of
stretch at most 3.
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PROOF. We combine the results of the previous sections:

Running Time. Since the graph is undirected and weights are positive, performing

APSP takes O(mn) time. Computing B(u) for all u ∈ V takes Õ(n3/2) time using

results of Roditty et al. [2005]. Finding the coloring via derandomization takes

Õ(n2) time as shown in Section 4. Then building the tree routing scheme requires

Õ(n) time for each of the n trees. Computing the routing scheme information

requires Õ(n2) time. For each node, computing items 1, 2, 3 of Section 3.8 takes

Õ(n) time. In addition, for item 4, each node v is queried by each node u ∈ B(v) at

most
√

n times. Hence, the number of queries is at most
√

n
∑

v∈V |B(v)| = Õ(n2)

and the time is Õ(n2).

Storage. From Section 3.8, each node u stores: (1) O(
√

n log n)O( log n) bits

for the names of all the nodes in the vicinity B(u) and what link to use to

reach them, (2) O(
√

n)O( log 2n/ log log n) bits for storing μ(T (�), u) of the

tree T (�) for every landmark node � ∈ L , (3) O(
√

n log n)O( log 2n/ log log n)

bits for storing μ(T (x), u) of the tree T (x) for every node x ∈ B(u),

(4) O(
√

n)O( log 2n/ log log n) for storing either 〈 λ(T (�v ), �v ), λ(T (�v ), v) 〉 or
〈 λ(T (u), w), x, (x → y), λ(T (y), v) 〉 for every node v such that c(u) = h(v).

Headers. Observe that messages headers always contain a constant number of

port numbers, node names, and tree labels. Hence, by Lemma 3.3 headers require

O( log 2n/ log log n) bits.

Decision Time. Follows from Section 5.

Stretch. Follows from Theorem 3.5.

7. Conclusion

For any integer k ≥ 2, consider schemes with Õ(n1/k)-bit routing tables. For labeled

routing, the best-known schemes obtain stretch 4k −5, while for name-independent

routing the best-known schemes obtain stretch C · k where C is a large constant.

In this article, we give optimal bounds on the stretch for k = 2. A natural open

question is to obtain tighter bounds on stretch for k > 2.
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