On Space-Stretch Trade-Offs: Lower Bounds

Ittai Abraham¹ Cyril Gavoille² Dahlia Malkhi^{1,3}

¹Hebrew University of Jerusalem, Israel

²University of Bordeaux, France

³Microsoft Research

SPAA 2006

The Compact Routing Problem

Input: a network G (a weighted connected graph)

Ouput: a **routing scheme** for G

A routing scheme is a distributed algorithm that allows **any** source node to route messages to **any** destination node, given the destination's network identifier

The Compact Routing Problem

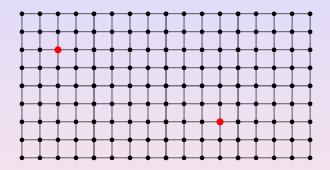
Input: a network G (a weighted connected graph)

Ouput: a routing scheme for G

A routing scheme is a distributed algorithm that allows **any** source node to route messages to **any** destination node, given the destination's network identifier

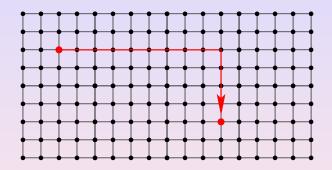
Goal: to minimize the size of the routing tables

Example: Grid with X,Y-coordinates



Routing algorithm: X,Y-routing

Example: Grid with X,Y-coordinates



Routing algorithm: X,Y-routing

Space = size of the largest local routing tables

Space = size of the largest local routing tables (more precisely, size of the smallest local routing algorithm including all constants and data-structures) In the example: space = $O(\log n)$ bits

Space = size of the largest local routing tables

(more precisely, size of the smallest local routing algorithm including all constants and data-structures)

In the example: space $= O(\log n)$ bits

Stretch = ratio between length of the route and distance

 $|\mathsf{route}(x,y)| \leqslant \mathsf{stretch} \cdot \mathsf{dist}(x,y)$

In the example: stretch = 1 (shortest path)

Space = size of the largest local routing tables

(more precisely, size of the smallest local routing algorithm including all constants and data-structures)

In the example: space $= O(\log n)$ bits

Stretch = ratio between length of the route and distance

$$|\mathsf{route}(x,y)| \leqslant \mathsf{stretch} \cdot \mathsf{dist}(x,y)$$

In the example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best space-stretch trade-off

Two variants: Name-independent vs. Labeled

The destination enters the network with its **name**, which is determined by either the designer of the routing scheme (labeled), or an advesary (name-independent).

Labeled: the designer is free to name the nodes according to the topology and the edge weights of the graph Name-independent: the input is a graph with fixed node manes

Labels are of polylogarithmic size
$$\tilde{O}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$$
 network stretch space/node (bits) arbitrary $1 \quad \tilde{O}(n)$ [folk]

Labels are of polylogarithmic size $\tilde{O}(f(n)) = f(n) \cdot polylog(n)$			
network	stretch	space/noo	de (bits)
arbitrary	$\frac{1}{4k-5}$	$ ilde{O}(n) \ ilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]

Labels are of polylogarithmic size $\tilde{O}(f(n)) = f(n) \cdot polylog(n)$				
network	stretch	space/no	de (bits)	
arbitrary	$\frac{1}{4k-5}$	$ ilde{O}(n) \ ilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]	
tree	1	$ ilde{O}(1)$	[TZ/Fraigniaud,G.]	

Labels are of polylogarithmic size $\tilde{O}(f(n)) = f(n) \cdot polylog(n)$				
network	stretch	space/no	de (bits)	
arbitrary	$\frac{1}{4k-5}$	$ ilde{O}(n) \ ilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]	
tree	1	$ ilde{O}(1)$	[TZ/Fraigniaud,G.]	
doubling- α dim.	$1 + \varepsilon$	$\log \Delta$ $ ilde{O}(1)$ [Ch	[Talwar/Slivkins] an et al./Abraham et al.]	

Labels are of polylogarithmic size
$$\tilde{O}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$$
 network stretch space/node (bits)
$$\frac{1}{\operatorname{arbitrary}} \quad \frac{\tilde{O}(n)}{4k-5} \quad \begin{array}{c} [\operatorname{folk}] \\ \tilde{O}(n^{1/k}) \\ \end{array} \quad \begin{array}{c} [\operatorname{Forup}, \operatorname{Zwick}] \\ \operatorname{tree} \quad 1 \quad \tilde{O}(1) \\ \operatorname{doubling-}\alpha \text{ dim.} \quad 1+\varepsilon \quad \log \Delta \quad [\operatorname{Talwar/Slivkins}] \\ \tilde{O}(1) \quad [\operatorname{Chan \ et \ al./Abraham \ et \ al.}] \\ \operatorname{planar} \quad 1+\varepsilon \quad \tilde{O}(1) \quad [\operatorname{Thorup}]$$

Labels are of polylogarithmic size $\tilde{O}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$			
network	stretch	space/no	de (bits)
arbitrary	$\frac{1}{4k-5}$	$ ilde{O}(n) \ ilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]
tree	1	$ ilde{O}(1)$	[TZ/Fraigniaud,G.]
doubling- α dim.	$1+\varepsilon$	$\log \Delta \ ilde{O}(1)$ [Ch	[Talwar/Slivkins] an et al./Abraham et al.]
planar	$1 + \varepsilon$	$ ilde{O}(1)$	[Thorup]
$H\operatorname{-minor-free}$	$1 + \varepsilon$	$ ilde{O}(1)$	[Abraham,G.]

network	stretch	space/node	e (bits)
bounded growth	$1+\varepsilon$	$ ilde{O}(1)$	[Abraham et al.]

network	stretch	space/node (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
$\operatorname{doubling-}\alpha \operatorname{dim}.$	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod et al./Abraham et al.]

network	stretch	space/node (bits)
bounded growth doubling- α dim.	1+arepsilon $9+arepsilon$	$ ilde{O}(1)$ [Abraham et al.] $ ilde{O}(1)$ [Konjevod et al./Abraham et al.]
H-minor-free (unweighted)	O(1)	$ ilde{O}(1)$ [Abraham et al.]

network	stretch	space/node	e (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$	[Abraham et al.]
$\operatorname{doubling-}\alpha \operatorname{dim}.$	$9 + \varepsilon$	$ ilde{O}(1)$ [Konj	evod et al./Abraham et al.]
H-minor-free (unweighted)	O(1)	$ ilde{O}(1)$	[Abraham et al.]
trees	$2^{k} - 1$	$\tilde{O}(n^{1/k})$	[Laing]

network	stretch	space/node	(bits)
bounded growth	$1+\varepsilon$	$ ilde{O}(1)$	[Abraham et al.]
doubling- α dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konje	evod et al./Abraham et al.]
H-minor-free (unweighted)	<i>O</i> (1)	$ ilde{O}(1)$	[Abraham et al.]
trees	2^k-1	$\tilde{O}(n^{1/k})$	[Laing]
arbitrary	$O(k^2 2^k)$	$ ilde{O}(n^{1/k})$ [A	rias et al./Awerbuch,Peleg]
	O(k)	$\tilde{O}(n^{1/k})$	[next talk]

Rem: lower bound for labeled \Rightarrow lower bound for name-indep

Rem: lower bound for	$labeled \Rightarrow$	lower bound for name-indep
network	stretch	space/node (bits)
arbitrary	< 1.4	$\Omega(n \log n)$ [G.,Pérennès.]
	< 3	$\Omega(n)$ [G.,Gengler]
(only $k = 1, 2, 3, 5$)	< 2k + 1	$\Omega(n^{1/k})$ [Thorup,Zwick]

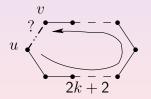
Rem: lower bound for labeled \Rightarrow lower bound for name-indep			
network	stretch	space/node (bits)	
arbitrary	< 1.4	$\Omega(n \log n)$ [G.,Pérennès.]	
	< 3	$\Omega(n)$ [G.,Gengler]	
(only $k = 1, 2, 3, 5$)	< 2k + 1	$\Omega(n^{1/k})$ [Thorup,Zwick]	
trees	€ 3	$\Omega(\sqrt{n})$ [Laing,Rajaraman]	
	$\leq 9 - \varepsilon$	$\Omega(n^{(arepsilon/60)^2})$ [Konjevod et al.]	

Rem: lower bound for labeled \Rightarrow lower bound for name-indep				
network	stretch	space/node (bits)		
arbitrary	< 1.4	$\Omega(n \log n)$ [G.,Pérennès.]		
	< 3	$\Omega(n)$ [G.,Gengler]		
(only $k = 1, 2, 3, 5$)	< 2k + 1	$\Omega(n^{1/k})$ [Thorup,Zwick]		
trees	≼ 3	$\Omega(\sqrt{n})$ [Laing,Rajaraman]		
	\leq 9 $-\varepsilon$	$\Omega(n^{(arepsilon/60)^2})$ [Konjevod et al.]		
for all $k\geqslant 1$	< 2k + 1	$\Omega((n \log n)^{1/k})$ [this paper]		

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- ② Any name-indep. routing scheme using $<(n/k)^{1/k}$ bits/node has an **average stretch** $\ge k/4$ for some graph.

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- ② Any name-indep. routing scheme using $<(n/k)^{1/k}$ bits/node has an **average stretch** $\ge k/4$ for some graph.

Rem 1: All previous lower bounds for labeled case (Peleg, Upfal / G., Pérennès / G., Gengler / Kranakis, Krizanc / Thorup, Zwick) are based on the construction of **dense large girth** graphs



if stretch< 2k + 1, then u is forced to "know" the edge (u, v)

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- ② Any name-indep. routing scheme using $<(n/k)^{1/k}$ bits/node has an **average stretch** $\ge k/4$ for some graph.

Erdös Conjecture: \exists graph of girth 2k+2 with $\Omega(n^{1+1/k})$ edges (proved only for k=1,2,3,5). So, the extra $(\log n)^{1/k}$ term **cannot** be obtained with a girth approach.

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- ② Any name-indep. routing scheme using $<(n/k)^{1/k}$ bits/node has an **average stretch** $\ge k/4$ for some graph.

Rem 2: It makes a clear separation between labeled and name-independent routing.

In the **labelel** model, $O(\operatorname{polylog}(n))$ space and O(1) average stretch exsits for every graph! [Abraham, Bartal, Chan, Gupta, Kleinberg et al. (FOCS05)]

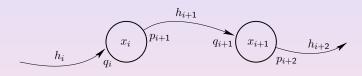
In the **name-indep** model, if space is $O(\operatorname{polylog}(n))$, then the average stretch must be $\Omega(\log n/\log\log n)$ for some graphs.

Proof: The model

(only point 1)

$$R(x_i, h_i, q_i) = (h_{i+1}, p_{i+1})$$

 $R(x_i, \cdot, \cdot)$ describes the routing algorithm in x_i

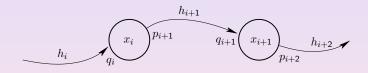


Proof: The model

(only point 1)

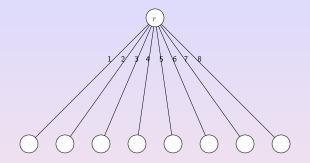
$$R(x_i, h_i, q_i) = (h_{i+1}, p_{i+1})$$

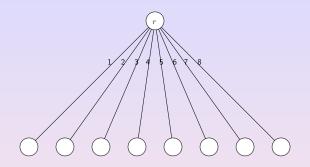
 $R(x_i, \cdot, \cdot)$ describes the routing algorithm in x_i



Definition (Kolmogorov Complexity)

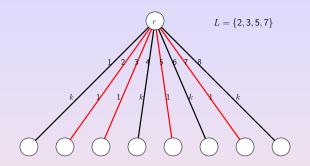
Given an object P, let $\mathcal{K}(P)$ denote the length of the smallest program that prints P and halts.





Lemma

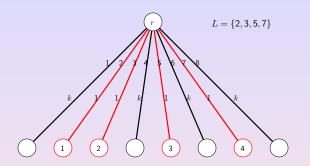
 $\exists L \subset \{1, ..., n\}$ with |L| = n/2 such that every $P \subset L$ satisfies $|P| \leq \mathcal{K}(P) + 2 \log n$.



Lemma

 $\exists L \subset \{1, ..., n\}$ with |L| = n/2 such that every $P \subset L$ satisfies $|P| \leqslant \mathcal{K}(P) + 2 \log n$.

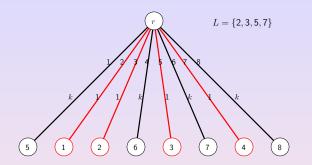
Edge weight is 1 or k: w(e) = 1 iff $port(e) \in L$.



Lemma

 $\exists L \subset \{1, ..., n\}$ with |L| = n/2 such that every $P \subset L$ satisfies $|P| \leqslant \mathcal{K}(P) + 2 \log n$.

Edge weight is 1 or k: w(e) = 1 iff $port(e) \in L$. Node naming: light (=red) edges lead to name $\leq n/2$

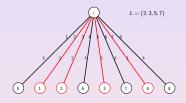


Lemma

 $\exists L \subset \{1,\ldots,n\}$ with |L|=n/2 such that every $P \subset L$ satisfies $|P| \leqslant \mathcal{K}(P) + 2\log n$.

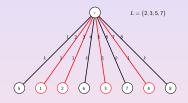
Edge weight is 1 or k: w(e) = 1 iff $port(e) \in L$. Node naming: light (=red) edges lead to name $\leq n/2$

Assume any R is given (no limits on the headers), and uses $\leqslant M$ bits at every node



Idea: To analyze all the walks from the root to all light destinations (names $\leq n/2$).

Assume any R is given (no limits on the headers), and uses $\leqslant M$ bits at every node

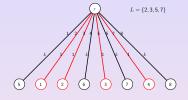


Idea: To analyze all the walks from the root to all light

destinations (names $\leq n/2$).

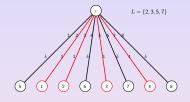
Basic fact: If stretch < 2k + 1, then no heavy edge is used

Assume now the stretch of R is < 2k + 1



 $P_i = \{\text{all ports in alive walks after } i\text{th routing decision of } r\}$

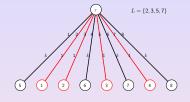
Assume now the stretch of R is < 2k + 1



 $P_i = \{\text{all ports in alive walks after } i\text{th routing decision of } r\}$

• $P_i \subset L$ for all i

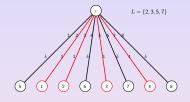
Assume now the stretch of R is < 2k + 1



 $P_i = \{ \text{all ports in alive walks after } i \text{th routing decision of } r \}$

- $P_i \subset L$ for all i
- $\mathcal{K}(P_1) \leqslant M$ (why?)

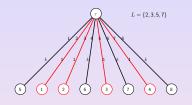
Assume now the stretch of R is < 2k + 1



 $P_i = \{\text{all ports in alive walks after } i\text{th routing decision of } r\}$

- $P_i \subset L$ for all i
- $\mathcal{K}(P_1) \leqslant M$ (why?)
- $\mathcal{K}(P_{i+1}) \leqslant M \cdot (|P_i| + 1)$ (why?)

Assume now the stretch of R is < 2k + 1



 $P_i = \{\text{all ports in alive walks after } i \text{th routing decision of } r\}$

- $P_i \subset L$ for all i
- $\mathcal{K}(P_1) \leqslant M$ (why?)
- $\mathcal{K}(P_{i+1}) \leqslant M \cdot (|P_i| + 1)$ (why?)

So, $\mathcal{K}(P_{i+1}) \leqslant M \cdot (\mathcal{K}(P_i) + 2 \log n + 1)$, and therefore

$$|P_{i+1}| \leqslant \mathcal{K}(P_{i+1}) + 2\log n + 1 \leqslant (1 + o(1)) \cdot M^{i+1}$$

$$|P_{i+1}| \leqslant (1+o(1)) \cdot M^{i+1}$$

 $W_t = \{ \text{ light destinations reached after the } t \text{th routing decision of } r \}$

$$|P_{i+1}| \leqslant (1+o(1)) \cdot M^{i+1}$$

 $W_t = \{ \text{ light destinations reached after the } t \text{th routing decision of } r \}$

• $|W_t| \le |P_1| + |P_2| + \dots + |P_t|$

$$|P_{i+1}| \leqslant (1+o(1)) \cdot M^{i+1}$$

 $W_t = \{ \text{ light destinations reached after the } t \text{th routing decision of } r \}$

- $|W_t| \le |P_1| + |P_2| + \dots + |P_t|$
- If $|W_t| < n/2$, then stretch $\geqslant 2t+1$. So, stretch < 2k+1 implies $|W_k| \geqslant n/2$.

$$|P_{i+1}| \leqslant (1 + o(1)) \cdot M^{i+1}$$

 $W_t = \{ \text{ light destinations reached after the } t \text{th routing decision of } r \}$

- $|W_t| \le |P_1| + |P_2| + \dots + |P_t|$
- If $|W_t| < n/2$, then stretch $\ge 2t + 1$. So, stretch < 2k + 1 implies $|W_k| \ge n/2$.

Combining: $n/2 \leq \sum_{i=1}^{k} (1 + o(1)) \cdot M^i = O(M^k)$, i.e., $M = \Omega(n^{1/k})$.

$$|P_{i+1}| \leqslant (1 + o(1)) \cdot M^{i+1}$$

 $W_t = \{ \text{ light destinations reached after the } t \text{th routing decision of } r \}$

- $|W_t| \le |P_1| + |P_2| + \dots + |P_t|$
- If $|W_t| < n/2$, then stretch $\geqslant 2t+1$. So, stretch < 2k+1 implies $|W_k| \geqslant n/2$.

Combining:
$$n/2 \leqslant \sum_{i=1}^{k} (1 + o(1)) \cdot M^i = O(M^k)$$
, i.e., $M = \Omega(n^{1/k})$.

Actually, a finer argument yields $M = \Omega((n \log n)^{1/k})$. QED

Thank you!