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Input: a network G (a weighted connected graph)
Ouput: a routing scheme for G

A routing scheme is a distributed algorithm that allows any
source node to route messages to any destination node, given
the destination’s network identifier

Goal: to minimize the size of the routing tables
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Complexity Measures: Space & Stretch

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing
algorithm including all constants and data-structures)

In the example: space = O(logn) bits

Stretch = ratio between length of the route and distance
[route(z, y)| < stretch - dist(z, y)

In the example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off



Two variants: Name-independent vs. Labeled

The destination enters the network with its name, which is
determined by either the designer of the routing scheme
(labeled), or an advesary (name-independent).

Labeled: the designer is free to name the nodes according
to the topology and the edge weights of the graph

Name-independent: the input is a graph with fixed node
manes
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An overview: Labeled model

Labels are of polylogarithmic size
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An overview: Name-independent model

network stretch

space/node (bits)

bounded growth 1+¢
doubling-a dim.  9+¢
H-minor-free O(1)

(unweighted)
trees 2k —1
arbitrary O(k?2F)

O(k)

O(l) [Abraham et al.]

ON(l) [Konjevod et al./Abraham et al.]
0(1) [Abraham et al.]
O(nl/k) [Laing]

O(n'/*) [Arias et al./Awerbuch,Peleg]
ON(nl/k) [next talk]
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Lower bounds for name-independent

Rem: lower bound for labeled = lower bound for name-indep

network stretch space/node (bits)
arbitrary <1l4 Q(nlogn) [G.Pérennes.]
<3 Q(n) [G.,Gengler]

(only k =1,2,3,5) <2k+1 Q(n'*) [Thorup,Zwick]

trees <3 Q(y/n) [Laing,Rajaraman]
<9—¢c  Q(n/%)) [Konjevod et al]
forall k>1 <2k+1 Q((nlogn)*) [this paper]
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@ Any name-indep. routing scheme using < (n logn)'/*
bits/node has a max stretch > 2k + 1 for some graph.

@ Any name-indep. routing scheme using < (n/k)/*
bits/node has an average stretch > k /4 for some graph.

Rem 1: All previous lower bounds for labeled case (Peleg,Upfal
/ G.,Pérennés / G.,Gengler / Kranakis,Krizanc / Thorup,Zwick)
are based on the construction of dense large girth graphs

(%

[ if stretch< 2k + 1, then
U o Q w is forced to "know”
\ the edge (u,v)

2k +2



@ Any name-indep. routing scheme using < (n logn)'/*
bits/node has a max stretch > 2k + 1 for some graph.

@ Any name-indep. routing scheme using < (n/k)/*
bits/node has an average stretch > k /4 for some graph.

Erdos Conjecture: 3 graph of girth 2k 42 with Q(n'*'/*) edges
(proved only for k = 1,2,3,5). So, the extra (logn)'/* term
cannot be obtained with a girth approach.



@ Any name-indep. routing scheme using < (n logn)'/*
bits/node has a max stretch > 2k + 1 for some graph.

@ Any name-indep. routing scheme using < (n/k)/*

bits/node has an average stretch > k /4 for some graph.

Rem 2: It makes a clear separation between labeled and name-
independent routing.

In the labelel model, O(polylog(n)) space and O(1) average
stretch exsits for every graph! [Abraham, Bartal, Chan, Gupta,
Kleinberg et al. (FOCS05)]

In the name-indep model, if space is O(polylog(n)), then the
average stretch must be Q(logn/ loglogn) for some graphs.
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Proof: The model

(only point 1)

R(flfi, hi, Qi) = (hi+17pi+1)
R(z;,-,-) describes the routing algorithm in x;

hit1

\M qi Pi+2

Definition (Kolmogorov Complexity)

Given an object P, let K(P) denote the length of the smallest
program that prints P and halts.
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Proof: Analysis 1/3

Assume any R is given (no limits on the headers), and uses
< M bits at every node

L=1{2357}

Idea: To analyze all the walks from the root to all light
destinations (names < n/2).
Basic fact: If stretch < 2k + 1, then no heavy edge is used
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Proof: Analysis 2/3

Assume now the stretch of R is < 2k + 1

P, = {all ports in alive walks after ith routing decision of r}
@ P, C L forallz
o K(P) <M (why?)
o K(Pin) < M- (1P| +1)  (why?)

So, K(Pi11) < M - (K(P;) + 2logn + 1), and therefore

|Pii1| K K(Piy1) +2logn+1< (L +o0(1)) - M
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Proof: Analysis 3/3

|[Pia| < (1+0(1)) - M

W, = { light destinations reached after the tth routing
decision of r}
o Wi <P+ [Pl +-+|F
o If |IW:| < n/2, then stretch > 2t + 1.
So, stretch < 2k + 1 implies |Wy| > n/2.
Combining: /2 < 3% (14 0(1)) - M? = O(M¥), ie.,
M = Q(nl/*).
Actually, a finer argument yields M = Q((n log n)'/*).
QED



Thank you!



