
On Space-Stretch Trade-Offs: Lower Bounds

Ittai Abraham
School of Computer Science

and Engineering
Hebrew University of

Jerusalem
Jerusalem, Israel

ittaia@cs.huji.ac.il

Cyril Gavoille∗

Laboratoire Bordelais de
Recherche en Informatique

University of Bordeaux
Bordeaux, France

gavoille@labri.fr

Dahlia Malkhi
School of Computer Science

and Engineering
Hebrew University of

Jerusalem
and Microsoft Research,

Silicon Valley Center

dalia@microsoft.com

ABSTRACT
One of the fundamental trade-offs in compact routing
schemes is between the space used to store the routing table
on each node and the stretch factor of the routing scheme
– the ratio between the cost of the route induced by the
scheme and the cost of a minimum cost path between the
same pair. Using a distributed Kolmogorov Complexity ar-
gument, we give a lower bound for the name-independent
model that applies even to single-source schemes and does
not require a girth conjecture. For any integer k ≥ 1 we
prove that any routing scheme for networks with arbitrary
weights and arbitrary node names (even a single-source rout-
ing scheme) with maximum stretch strictly less than 2k + 1

requires Ω((n log n)1/k)-bit routing tables. We extend our
results to lower bound the average-stretch, showing that for
any integer k ≥ 1 any name-independent routing scheme
with (n/(9k))1/k-bit routing tables has average-stretch of at
least k/4 + 7/8. This result is in sharp contrast to recent
results on the average-stretch of labeled routing schemes.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign – Distributed networks; G.2.2 [Discrete Mathematics]:
Graph Theory – Network problems, Graph labeling.

General Terms: Algorithms, Theory.

Keywords: Compact Routing.

1. INTRODUCTION
One of the most basic functionalities of any distributed

network is the ability to route messages between pairs of
nodes. Given that each node has an arbitrary network iden-
tifier, a routing scheme allows any source node to route mes-
sages to any destination node, given the destination’s net-
work identifier. It is natural to consider a weighted network

∗Supported by the projects “PairAPair” and “GeoComp” of
the ACI Masses de Données.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’06, July 30–August 2, 2006, Cambridge, Massachusetts, USA.
Copyright 2006 ACM 1-59593-452-9/06/0007 ...$5.00.

in which the cost of routing a message is proportional to the
cost of the path taken from source to destination. In such
a model it is desirable to minimize routing costs by routing
on short paths. Given a source s and a destination t let
stretch(s, t) be the ratio between the cost of routing from
the source to the destination and the cost of a minimum cost
path between s and t. Let

max-stretch = max
s 6=t

stretch(s, t)

average-stretch =
1

n(n− 1)

X
s 6=t

stretch(s, t)

The efficiency of a routing scheme is measured by its
stretch factor, the max-stretch (or average-stretch)1. The
trivial solution to routing on shortest paths with stretch
factor 1 is for each node to store a routing table with (n−1)
entries that contains the next hop of an all pairs shortest
path algorithm. This solution is very expensive as it re-
quires each node to store Ω(n log n) bits. Thus, network
designers are faced with two conflicting goals: reduce both
the stretch factor and the size of the routing tables.

For a weak variant of this problem, called labeled rout-
ing, asymptotically tight lower bounds and upper bounds
are known for max-stretch (see [14]). In this version of the
problem, the designer of a solution may pick node names
that contain (bounded size) information about their loca-
tion in the network. This variant is useful in many aspects
of network theory, but less so in practice: Knowledge of
the labels needs to be disseminated to all potential senders,
as these labels are not the addresses by which nodes of an
existing network, e.g., an IP network, are known. Further-
more, if the network may admit new joining nodes, all the
labels may need to be re-computed and distributed to any
potential sender. Finally, various recent applications pose
constraints on nodes addresses that cannot be satisfied by
existing labeled-routing schemes. E.g., Distributed Hash Ta-
bles (DHTs) require nodes names in the range [1..n], or ones
that form a binary prefix.

In this paper we assume a network with arbitrary node
names and arbitrary edge weights. This model is called the
name-independent model because the designer of the rout-
ing scheme has no control over node names. This routing
problem may appear daunting: In order to route to a node,
we must first somehow gain knowledge about its location

1When we speak of stretch without a prefix we mean max-
stretch.

207

in the network, but we must do so without exceeding the
distance to the target.

1.1 Our contributions
We first prove that for any integer k ≥ 1, any routing

scheme for networks with arbitrary weights and arbitrary
node names (even a single-source routing scheme) with less

than Ω((n log n)1/k) space routing tables must have net-
works in which the stretch is at least 2k + 1.

Theorem 1. For each integer k ≥ 1 there is an n-
node star with edge weights 1 or k for which every single-
source name-independent routing scheme with less than
1
9
(n log n)1/k bits of memory requirements has stretch fac-

tor at least 2k + 1.

Our lower bound is obtained using a novel distributed
Kolmogorov Complexity argument. Previous lower bounds
for routing schemes with stretch of at least 2k +1 either ob-
tain a trade-off with a forth-root less memory, Ω(n1/(4k+4))
by Peleg and Upfal [13]. Or, as in Thorup and Zwick [14]

obtain Ω(n1/k) but their proof relies on an unproven Erdös
girth Conjecture [4]. Moreover, our lower bound has a subtle

(log n)1/k factor that was not obtained by [14]. Furthermore,
all previous lower bounds apply only for all-pair routing
schemes. In contrast, our lower bound uses a local argument
that applies even to single-source name-independent routing
schemes. Therefore it also proves that Laing’s stretch 2k−1
single-source scheme [9] is optimal up to polylogarithmic
storage factors.

Our lower bound technique for name-independent routing
can be applied to average-stretch.

Theorem 2. For each integer k ≥ 1 there is a weighted
n-node star for which every name-independent routing
scheme with less than (n/(9k))1/k bits of memory require-
ments has average-stretch at least k/4 + 7/8.

This results is in sharp contrast with the labeled case
where is was recently show in [1] that there exists labeled
routing schemes with polylogarithmic storage factors and
O(1) average-stretch. Unlike the max-stretch case where

with eO(n1/k) storage2 both labeled and name-independent
models have max-stretch Ω(k), our results provides a clear
separation on the average-stretch between labeled Θ(1) and
name-independent routing schemes Θ(k).

1.2 Related work
Labeled routing on a trees is explored in [5, 14], achieving

stretch 1 with O(log2 n/ log log n) bits for local tables and
for headers, and this is tight [6]. Laing [9] presents a routing
scheme on trees with arbitrary names that obtains stretch

2k − 1 with eO(n1/k)-bit routing tables. With the same bit
complexity the author gives a single-source routing scheme
with stretch 2k − 1.

Independently from our work, Rajaraman and Laing [10]
give a lower bound showing that max-stretch 3 name-
independent schemes require Ω(

√
n) bit of storage. Our re-

sults are stronger as they show that any max-stretch below
5 requires Ω(

√
n) bit of storage. In addition, our results are

parameterized for any integer k ≥ 1, we note that the cases

2The notation eO(·) indicates complexity similar to O(·) up
to poly-logarithmic factors.

k > 1 are the ones that require the novel distributed Kol-
mogorov complexity argument. Finally our results apply to
average-stretch as well.

1.3 Techniques
Our lower bound technique to prove Theorem 1 is new and

is interesting in its own right. All previous lower bounds in
the field of compact routing [13, 7, 8, 3, 14] are based on
structural information of some worst-case graphs. Roughly
speaking, the previous technique requires to construct a suit-
able family of Ω(2m) graphs, and then to argue that from
any compact routing scheme on any graph of the family,
one can identify every edge of the graph, therefore forcing
the memory requirement of the scheme to be at least Ω(m)
bits in total, in the worst case graph of the family, and thus
Ω(m/n) for at least one node. Typically, for lower bounds
on stretched routing schemes, the family is chosen to contain
only graphs of girth at least 2k +2. And so the route of any
routing scheme of stretch < 2k + 1 between adjacent nodes
is forced to traverse a given edge. With this technique, [13]
and then [14] have showed that, for each integer k ≥ 1, any

routing scheme has stretch at least Θ(k) if less than Ω(n1/k)
bits of memory requirements is used. The exact lower bound
on the stretch is 2k + 1 assuming that the maximum num-
ber of edges in n-node graphs of girth at least 2k + 2 is
Ω(n1+1/k) (or equivalently the number of such graphs is

2Ω(n1+1/k)). This is related to an 1963 Erdös Conjecture [4]
that has been proven only for k = 1, 2, 3 and 5. Currently,
the best lower bound on the number of edges that holds for
every k is Ω(n1+1/(3bk/2c−1)) [11]. Although it applies on
both labeled and name-independent routing schemes, this
technique cannot be used to prove Theorem 1, for several
reasons. First, the technique provides a lower bound for
the total memory requirement. However, the total memory
requirement for the single-source name-independent routing

problem is no more than eO(n) bits with stretch 1, since the
source only needs to store an n-entry translation table be-
tween the name and a tree-routing label of a node. And,

labeling routing schemes with eO(1)-bit labels are known for
trees [5, 14]. Secondly, the total amount of structural infor-
mation available in a tree is O(n log n) bits. Therefore, no
lower bound on the total memory requirement better than
this can be established using the standard technique. Fi-
nally, the standard technique does not apply to single-source
routing schemes.

A contrario, we overcome the need to rely on the Erdös
Conjecture using a completely different approach. In
essence, all the previous lower bounds were based on static
information contained in some graphs. Here we use the fact
that during the routing of a message from the source to the
destination, the header cannot accumulate information too
quickly without violating the memory bound of the nodes,
though there are no restrictions on the header length. E.g.,
the information transported by the header of a message leav-
ing the first node, intuitively, cannot exceed the memory
bound of the source. A fine analysis of this dynamic behav-
ior of all the routes allows us to conclude with the bound.
Note that we also improve by a (log n)1/k factor previous

lower bounds. No bounds better than Ω(n1/k) are possible
with the previous proof techniques since there are less than

2
1
2 n1+1/k

graphs of girth 2k + 2 or more. Indeed, a simple
argument shows that any graph with at least 1

2
n1+1/k edges

contains a cycle of length at most 2k (cf. [2]).

208

We present below the formal proof that makes an original
use of Kolmogorov Complexity. We first define in Section 2
precisely the routing scheme model and its memory require-
ments. Then, in Section 3 we provide background on Kol-
mogorov Complexity, and we describe the counter-example
in Section 4. Finally, the proof of the final theorem is given
in Section 5.

2. ROUTING SCHEME MODEL
AND MEMORY REQUIREMENTS

We use a general and standard model for routing schemes,
originally introduced by Peleg and Upfal in [13]. A routing
scheme is a function that associates with each graph G:

1. a name to each node u of G, denoted by name(u);
2. a port number to each ordered pair (u, v) of adjacent

nodes of G, denoted by port(u, v), such a way the
neighbors of u gets distinct port numbers taken from
{1, . . . , deg(u)}; and

3. a routing function R for G, described below.

Roughly speaking, when a message with header hi arrives
at some node xi through the input port qi, then xi computes
the pair (hi+1, pi+1) = R(xi, hi, qi) thanks to R. Then, xi

attaches to the message the new header hi+1, and forwards
it through the output port pi+1 to get the next node xi+1

(see Figure 1).
More formally, a routing function R for a graph G with

name and port assignments must satisfy that for every
source-destination pair u, v of G there exists a walk u =
x0, . . . , xt = v from u to v in G, a sequence h0, . . . , ht

of headers, and two sequences q0, . . . , qt and p1, . . . , pt+1

of ports numbers such that: for every i ∈ {0, . . . , t− 1},
R(xi, hi, qi) = (hi+1, pi+1) with h0 = name(v), q0 = pt+1 =
0, pi+1 = port(xi, xi+1), and qi+1 = port(xi+1, xi). Ob-
serve that the destination is always given at the source by
its name. The condition q0 = pt+1 = 0 is just a convention.
In general, for an edge u, v, we have port(u, v) 6= port(v, u).
However, input and output ports corresponding to the same
incident edge at any node xi must match, i.e., we have
qi = pi+1 if the ports use the same edge in xi.

xi+1

hi+1

hi+2

pi+1

pi+2
hi

qi+1xi

qi

Figure 1: Model of a routing function: R(xi, hi, qi) =
(hi+1, pi+1).

The restriction of R at node u is denoted by Ru. The
memory requirement of a routing function R at node u is
the length (in bits) of the smallest program, say, written in
C, Java, Lisp, or Fortran, that implements the function
Ru. This program includes all the constants and the data
structures needed to compute Ru.

3. KOLMOGOROV COMPLEXITY
BACKGROUND

In the lower bound proof we propose it is quite convenient
to speak in terms of Kolmogorov Complexity to formally

quantify the “information” contained in a routing table or
in some headers. We give a short background of the required
definitions and notations (see [12] for a more comprehensive
introduction to this concept).

Given a finite binary string S, we denote by C(S) the Kol-
mogorov Complexity of S, that is the length (in bits) of the
smallest program, written in a fixed language3, that outputs
S and halts. By extension, if A is an integer, a sequence of
integers, or any object that can be canonically mapped to
binary strings (so any element of a given enumerable set),
we denote by C(A) the Kolmogorov Complexity of its bi-
nary string canonical4 representative. E.g., the Kolmogorov
Complexity of an integer is the Kolmogorov Complexity of
its binary representation. By counting the number of dis-
tinct programs of length at most a given size, it is clear that
any set of cardinality at least n should possess an element
S with C(S) ≥ log2 n. More generally we define C(A | B)
as the Kolmogorov Complexity of A given B, that is the
size of the smallest program with input B that prints out A
and halts. Finally, the Kolmogorov Complexity of a couple
(A, B) is denoted by C(A, B), that is the length of a pro-
gram that prints out both A and B, and a way to tell them
apart.

For the lower bound we need a technical result about
the existence of sequences in which every subset and sub-
sequence has high Kolmogorov Complexity relative to its
cardinality. Specifically, let L be a sequence, i.e., an ordered
list of items. We denote by L[i] the ith item of L and by |L|
its length. A sub-sequence of L is a sequence that can be ob-
tained from L by removing some elements of L, and the set
of distinct items of L is denoted by L∗ = {L[i] | 1 ≤ i ≤ |L|}.

We first need the following technical lemma (see Section 7
for the proof):

Lemma 3. For every n large enough, there is a sequence
L of bn/2c distinct integers taken from {1, . . . , n} such that:

1. every subset A of L∗ has |A| ≤ C(A) + 2 log n; and
2. every sub-sequence B of L has |B| ≤ (2C(B) +

4 log n)/ log(C(B) + 2 log n).

4. THE STAR NETWORK
We consider a weighted “star” with n nodes, that is a tree

with root r and n − 1 leaves labeled from 1 to n − 1. The
port numbers of the incident edges of r are fixed according
to a sequence L satisfying Lemma 3 (but with parameter
n− 1 instead of n). For short, we set ` = |L| = b(n− 1)/2c.
More precisely, for y ∈ {1, . . . , `}, port(r, y) = L[y], and all
the other ports are fixed arbitrarily (but still keeping the
conventions, in particular, all the ports of r are distinct and
port(y, r) = 1 for each leaf y). We put weight 1 on all edges
(r, y) with y ∈ {1, . . . , `}, and k on the other edges, where
k ≥ 1 is an integral parameter.

We assume now that R is any routing function for the star
provided by any routing scheme which is name-independent
in the fixed port model. Namely, the routing scheme is not

3It is easy to show that the language chosen in the above
definition affects the value of C() by an additive term only
which depends on the language but is independent of S.
4Again this complexity depends with only on the canonical
definition mapping, a constant additive term independent of
an individual object.

209

allowed to change names of nodes and of ports. Note that
we do not claim any assumption on header size. Let us
denote by M = M(n, k) the maximum memory requirement
for R on the star. In other words, M is the smallest integer
such that, for every node u, the routing function Ru can be
computed by a program of size at most M bits.

5. THE PROOF
The main idea is to construct all the headers and port

numbers generated by the routing from r to all the destina-
tions at distance 1, i.e., for destinations y ∈ {1, . . . , `}. We
upper bound the “total amount of information” carried by
all the sequences of headers and ports up to the (2k − 1)th

first steps, and we argue that if M < Θ((n log n)1/k) then
the stretch factor of R is at least 2k + 1, or equivalently,
if the stretch is < 2k + 1 then M = Ω((n log n)1/k). The
main difficulty is to evaluate and to make precise sense of
the notion “total amount of information”.

For every destination y, we denote by
x0(y), x1(y), . . . , xt(y) the walk in the star from the
source r = x0(y) to y = xt(y) induced by the routing
function R. We also denote by h0(y), . . . , ht(y), by
q0(y), . . . , qt(y) and by p1(y), . . . , pt+1(y) respectively the
sequences of headers, input port and output port numbers
generated by R from the source r to the destination y. For
instance, for destination y = 1, 2, 3, . . . , we may obtain the
following array of nodes:

x0(1) x1(1) x2(1) x3(1)
x0(2) x1(2)
x0(3) x1(3) x2(3) x3(3) x4(3) x5(3)

...

In this example, the route from r to y = 1 is done in three
steps (that is the walk r, x1(1), x2(1) = r, 1), the route to
y = 2 is done directly to node 2, the route to y = 3 is done
along 5 edges, and so on. Note that each row must begin
with x0(y) = r and must end with some xt(y) = y. The
length of the route from r to y is then t.

Similarly, for headers and port numbers, we may obtain
the arrays:

h0(1) h1(1) h2(1) h3(1)
h0(2) h1(2)
h0(3) h1(3) h2(3) h3(3) h4(3) h5(3)

...
q0(1) q1(1) q2(1) q3(1)
q0(2) q1(2)
q0(3) q1(3) q2(3) q3(3) q4(3) q5(3)

...
p1(1) p2(1) p3(1) 0
p1(2) 0
p1(3) p2(3) p3(3) p4(3) p5(3) 0

...

We now concentrate our attention only on destinations
y ∈ {1, . . . , `}, thus all the nodes that are at distance 1
exactly from the source.

For every i ≥ 0, let Wi ⊆ {1, . . . , `} be the subset of
destinations reached by R from r after a walk of length at
most 2i + 1 (all routes have odd lengths by the topology).
Formally, Wi = {y ∈ {1, . . . , `} | ∃j ≤ i, x2j+1(y) = y}. Let

imax be the index such that |Wimax | = `. By definition, if
|Wi| < `, then at least one destination of {1, . . . , `} cannot
be reached after 2i + 1 steps from the source. As the graph
is bipartite, at least two more steps are needed resulting in
a stretch ≥ 2i + 3 for R. In other words,

Claim 1. If the stretch of R is < 2k + 1, then imax < k.

For every i ≥ 0, let Hi be the sequence of headers ob-
tained by extracting the ith column from the above array of
headers. Note that the Hi’s may have different length since
the walks from r use possibly different number of edges. On
the previous example,

H0 = h0(1) h0(2) h0(3) . . .
H1 = h1(1) h1(2) h1(3) . . .
H2 = h2(1) h2(3) . . .

...

We define similarly the sequences Qi and Pi. Observe
that by construction, each item of P2i+1, i ≥ 0, is a port
number leading from the root to a leaf of the star, whereas
P2i+2 is composed of 0’s or of 1’s only. Recall that for a
sequence such as P2i+1, the notation P ∗

2i+1 denotes the set
of elements that appear in the sequence.

x2i+1(y) x2i+1(y
′)

q2i+2(y
′)

r

h2i+1(y)

p2i+1(y)

h2i+2(y
′)

p2i+2(y
′)q2i+1(y)

Figure 2: A step of the walks to y and y′ in the star
network.

Lemma 4. For every i ≥ 0, |Wi| ≤
Pj≤i

j=0 |P
∗
2j+1|.

Proof. At the source, there are |P ∗
2j+1| distinct port

numbers generated by R. So only at most |P ∗
2j+1| desti-

nations can be reached at each j. So, a total of at mostPj≤i
j=0 |P

∗
2j+1| destinations can be reached by a walk of length

at most 2i + 1. By definition of Wi, this sum must be an
upper bound on |Wi|.

Lemma 5. If the stretch of R is < 2k + 1, then P ∗
2i+1 ⊆

L∗ for every i ≥ 0. Moreover, P2imax+1 is a sub-sequence of
L.

Proof. Assume that there is some p ∈ P ∗
2i+1 such that

p /∈ L∗. Then, the port p necessarily leads to a node w /∈
{1, . . . , `}. Since P2i+1 concerns routing from r to the nodes
in {1, . . . , `}, it follows that there is a walk from r to a node
y0 ∈ {1, . . . , `} going through w /∈ {1, . . . , `}. Since the cost
of the edge (r, w) is k, the resulting cost of the route from
r to y0 is at least 2k + 1: a contradiction with a stretch
< 2k + 1, r and y0 are at distance 1.

Let Yi be the sequence constructed by R as follows: 1)
Y0 = 1, 2, . . . , `; and 2) Yi is the sequence obtained from Yi−1

210

by removing all the items of Wi. We have (by induction): 1)
Yi a sequence of destinations non-reached after 2i steps; and
2) all the items of Yi appear in increasing order. Consider
now P2imax+1. Each port of this sequence leads to some
destinations of Yimax . By definition of imax, this represents
the last step of the walks, and so the jth port of P2imax+1

leads precisely to the leaf named Yimax [j]. Because items
of Yi are in increasing order, P2imax+1 is a sub-sequence of
L.

Lemma 6. There is a constant c such that ∀i ≥ 0,

1. C(H0, Q0 | `) ≤ c.
2. C(Q2i+2 | P2i+1, P2i+2) ≤ c
3. C(H2i+1, P2i+1 | H2i, Q2i) ≤ M + c.
4. C(H2i+2, P2i+2 | H2i+1, P2i+1, M) ≤ |P ∗

2i+1|·(M +1)+
c.

Proof. By convention, h0(y) = y and q0(y) = 0 for ev-
ery y ∈ {1, . . . , `}. So, H0 = 1, 2, . . . , `, and Q0 = 0, . . . , 0.
Given `, a trivial program of constant size suffices to con-
struct (H0, Q0), proving Property 1. To prove Property 2,
we remark that the sequence Q2i+2 can be computed by re-
moving from P2i+1 the 0’s entries of P2i+2. For concreteness,
let us consider the following example where all destinations,
except y1, . . . , y6, have been reached before 2i+1 steps, and
that P2i+1 and P2i+2 are given by:

y1 y2 y3 y4 y5 y6

P2i+1 = 2 3 3 1 2 2
P2i+2 = 1 0 1 1 1 0

It means that the walk to y2 and y6 have ended at step 2i+1.
Because the input and output port numbers are the same
if they correspond to the same incident edge, we obtain in
this example:

y1 y3 y4 y5

Q2i+1 = 2 3 1 2

In other words, C(Q2i+2 | P2i+1, P2i+2) ≤ O(1), proving
Property 2.

The sequences H2i+1 and P2i+1 are respectively head-
ers and output port numbers of messages that have en-
tered and have left the source r (cf. Figure 2). Thus
(h2i+1, p2i+1) = R(r, h2i, q2i) for all h2i ∈ H2i and q2i ∈ Q2i.
Because Rr (the function R at r) is a program of length at
most M , C(H2i+1, P2i+1 | H2i, Q2i) ≤ M + O(1), prov-
ing Property 3. Let us now prove Property 4. Recall
that port(r, y) = L[y] for all y ∈ {1, . . . , `}. Let us de-
note by yp the unique destination of {1, . . . , `} such that
port(r, yp) = p.

The sequences H2i+2 and P2i+2 are respectively headers
and output port numbers of messages that have entered and
have left some leaves (cf. Figure 2). The leaves concerned
are the nodes yp’s such that p ∈ P2i+1. The jth item of
H2i+2 and P2i+2, and thus the whole sequences, can be com-
puted as follows: for every j = 1, . . . , |H2i+1|

(H2i+2[j], P2i+2[j]) = R(yP2i+1[j], H2i+1[j], 1) (1)

noting that the sequences H2i+1, H2i+2, P2i+1, P2i+2 have
same length, and that the input port of a message enter-
ing in a leaf is necessary 1.

The number of different leaves used in the calculation of
Eq. (1) is t = |P ∗

2i+1|. So, given P2i+1, H2i+1, Eq. (1) can be
computed thanks to an extra table T = (Ryp(1) , . . . , Ryp(t))

of local routing functions where p(r) denotes the rth small-
est port number of P2i+1. The index p(r), for every r ∈
{1, . . . , t}, can be easily computed from P2i+1.

Each entry of T is a program of length at most M . We
code each of them with a binary string of M + 1 exactly,
by padding some 0’s and a 1 to the code. So the code for
the rth entry, say Sr, is 0M−|Sr|1Sr (Sr can be extracted
by first reading and counting all the 0’s (if any) and then
by removing the first 1). Therefore, given M , T is coded
with t · (M + 1) = |P ∗

2i+1| · (M + 1) bits. Overall, we have
shown that C(H2i+2, P2i+2 | H2i+1, P2i+1, M) ≤ |P ∗

2i+1| ·
(M + 1) + O(1), proving Property 4 and completing the
proof of Lemma 6.

We have now all the material to prove Theorem 1. Intu-
itively, during the walks to the destinations, the Kolmogorov
Complexity of the header and port sequences increases with
the number of steps. However, this increment is controlled
by Lemma 6, and is mainly limited by Eq. 4. If the stretch is
< 2k +1, then the port sequence is a subset of L∗, and thus
Lemma 3 indicates that, in this case, the number of distinct
ports in that sequence (|P ∗

2i+1|) and its Kolmogorov Com-
plexity are closely related. All together this leads to the fact
that the number of destinations reachable in at most 2i + 1
steps is |Wi| = O(M i+1). In particular, for the very last
step i = imax, |Wimax | = n/2 = O(M imax+1) implying that

M = Ω(nimax+1) = Ω(n1/k) since by Claim 1, imax < k.

The claimed lower bound of Ω((n log n)1/k) is a refinement
of the proof process sketched above, and it is obtained by
analyzing in a different way the very last step imax.

We can now prove the following.

Theorem 1. For each integer k ≥ 1 there is an n-
node star with edge weights 1 or k for which every single-
source name-independent routing scheme with less than
1
9
(n log n)1/k bits of memory requirements has stretch fac-

tor at least 2k + 1.

Proof. Assume, by way of contradiction, that the
stretch factor of R (the max-stretch) is < 2k + 1. We first
need to prove some technical results which is standard for
reader familiar with the Kolmogorov Complexity. Some ob-
jects used in the proof are determined by two or more other
objects, and we will need to code them in a self-delimiting
way, that is using prefix-free codes. Indeed, this will allow us
to concatenate and to compose them. The prefix-free codes
guarantees that each part can be then extracted from the
whole concatenation.

Claim 2. Any non-null integer w has a self-delimiting
coding of length less than 2 log w bits. In particular, any
object X with C(X) ≥ 1 has a self-delimiting coding of length
at most C(X) + 2 log C(X).

Proof. Let B be the standard binary string represen-
tation of w. As w ≥ 1, B begins with a 1 followed by
dlog we − 1 = b bits. If b = 0, i.e., w = 1 then w is coded by
a single 0. If b ≥ 1, then the code for w is the word 0b−1B.
We check that w can be self-extracted by first reading all
the 0’s of the code (it will stop at the first 1 of B). Its
length is (b− 1)+1+ b = 2(dlog we− 1) < 2 log w. The self-
delimiting coding of any object X consists in preceding any
coding of X of length C(X) with a self-delimiting coding of
the integer w = C(X).

211

Claim 3. There is a constant c such that, for all ob-
jects X and Y , C(X, Y) ≤ C(X | Y) + C(Y) +
2min {log C(X | Y), log C(Y)}+ c.

Proof. Let P be a minimal length program that, given
Y as input, outputs X. The length of P is C(X | Y). The
couple (X, Y) can be represented by the concatenation of a
self-delimiting coding for Y followed by P , or alternatively,
by a self-delimiting coding for P followed by Y . This choice
is coded by an extra bit. By Claim 2, the length of this cod-
ing is C(X | Y)+C(Y)+2min {log C(X | Y), log C(Y)}+1,
proving the claim.

Observe that, since C(X | Y) ≤ C(X), Claim 3
directly implies that C(X, Y) ≤ C(X) + C(Y) +
2min {log C(X), log C(Y)}+ c.

Claim 4. There is a constant c such that, for all ob-
jects X, Y, Z, C(X | Z) ≤ C(X | Y) + C(Y | Z) +
2min {log C(X | Y), log C(Y | Z)}+ c.

Proof. We need to construct a shortest program P that
outputs X with input Z. For such a program one can
concatenate and combine two minimal programs: one that
outputs Y from Z, say program P1 of length C(Y | Z),
and one that outputs X from Y , say program P2 of length
C(X | Y). Clearly, the length of P is C(X | Z) ≤
C(P1, P2) + O(1), which is bounded by C(Y | Z) + C(X |
Y) + 2min {log C(Y | Z), log C(X | Y)}+ O(1) by Claim 3,
completing the proof of the claim.

Plugging Z = ε (the empty string) in Claim 4,
we have that C(X) ≤ C(X | Y) + C(Y) +
2min {log C(X | Y), log C(Y)} + c. For notational conve-
nience, we assume hereafter along the proof that n, `, k and
M are given parameters. For instance, whenever C(X | Y)
is used in a formula, it stands for C(X | Y, n, `, k, M).

Combining Claim 3 with Property 4 of Lemma 6, we ob-
tain for every i ≥ 0:

C(H2i+2, P2i+2) ≤ C(H2i+2, P2i+2 | H2i+1, P2i+1) (2)

+C(H2i+1, P2i+1) + 2 log C(H2i+2, P2i+2 | H2i+1, P2i+1) (3)

+O(1) ≤ |P ∗
2i+1| · (M + 1) + C(H2i+1, P2i+1) (4)

+2 log (|P ∗
2i+1| · (M + 1)) + O(1) (5)

Since the stretch is < 2k + 1, one can apply Lemma 3
to P ∗

2i+1, and thus we have |P ∗
2i+1| ≤ C(P ∗

2i+1) + 2 log n.
Clearly, P ∗

2i+1 can be computed given P2i+1, i.e., C(P ∗
2i+1) ≤

C(P2i+1) + O(1). Hence,

|P ∗
2i+1| ≤ C(P ∗

2i+1) + 2 log n + O(1) .

We have also that |P ∗
2i+1| ≤ n/2 so that |P ∗

2i+1| · (M + 1) ≤
nM . Combining these with Ineq. (5), we obtain:

C(H2i+2, P2i+2) ≤ (C(P2i+1) + 2 log n + O(1)) · (M + 1)

+C(H2i+1, P2i+1) + 2 log(nM) + O(1) ≤ C(H2i+1, P2i+1) +

(M + 1) · (C(P2i+1) + 2 log n) + O(M + log n)

In other words, for every i ≥ 1, we have:

C(H2i, P2i) ≤ C(H2i−1, P2i−1) + (6)

(M + 1) · (C(P2i−1) + 2 log n) + (7)

O(M + log n) (8)

Combining Properties 2 and 3 of Lemma 6 with Claim 4, we
have that for every i ≥ 1,

C(H2i+1, P2i+1 | H2i, P2i, P2i−1) ≤ M + O(1)

Therefore, applying several times Claim 3,

C(H2i+1, P2i+1) ≤ C(H2i+1, P2i+1 | H2i, P2i, P2i−1) +

C(H2i, P2i, P2i−1)

+2 log C(H2i+1, P2i+1 | H2i, P2i, P2i−1) + O(1)

≤ C(H2i, P2i, P2i−1) + M + 2 log M + O(1)

≤ C(H2i, P2i) + C(P2i−1) + 2 log C(P2i−1) + O(M)

Observe that C(P2i−1) ≤ n log n + O(1), since P2i−1 is a
sequence of at most ` integers taken from {1, . . . , n− 1}.
So, for every i ≥ 1,

C(H2i+1, P2i+1) ≤ C(H2i, P2i) + C(P2i−1) + (9)

2 log(n log n) + O(M) (10)

≤ C(H2i, P2i) + C(P2i−1) + O(M + log n) (11)

Plugging Ineq. (8) in Ineq. (11), we obtain for every i ≥ 1:

C(H2i+1, P2i+1) ≤ C(H2i−1, P2i−1) +

(M + 1) · (C(P2i−1) + 2 log n) + C(P2i−1) +

O(M + log n) ≤ C(H2i−1, P2i−1) +

(M + 2) · (C(P2i−1) + 2 log n) + O(M + log n)

≤ C(H1, P1) +
iX

j=1

((M + 2) · (C(P2j−1) + 2 log n) + O(M + log n))

Combining Claim 3 with Property 3 (for i = 0), and Prop-
erty 1 of Lemma 6 we have:

C(H1, P1) ≤ C(H1, P1 | H0, Q0) + C(H0, Q0) (12)

+2 log C(H0, Q0) + O(1) (13)

≤ M + O(1) (14)

Note that there is a program of length C(A, B) that prints
out A and B, and can tell them apart. In particular,
C(A) ≤ C(A, B) + O(1). It follows that C(P2i+1) ≤
C(H2i+1, P2i+1)+O(1), thus, for a constant c large enough,
we have:

C(P2i+1) + 2 log n ≤ (15)

(M + 2)

iX
j=1

(C(P2j−1) + 2 log n + c(M + log n)) (16)

≤ (1 + ε)(M + 2)

iX
j=1

(C(P2j−1) + 2 log n) (17)

where ε is chosen such that c(M +log n) ≤ ε(M +2)(2 log n).
Note that ε = Ω(1/ log n + 1/M). Setting Cj = C(P2j−1) +
2 log n, Ineq. (17) rewrites in,

∀ i ≥ 1, Ci+1 ≤ (1 + ε)(M + 2)

iX
j=1

Cj (18)

Claim 5. For every i ≥ 0,

Ci+1 ≤ (α(M + 2))i+1 where α = 1 + ε +
1

M + 2
.

212

Proof. By induction. Because C(P1) ≤ C(H1, P1) +
O(1), Ineq. (14) yields C(P1) ≤ M + O(1). Hence C(P1) +
2 log n ≤ (1 + ε)(M + 2) by the choice of ε. So, C1 ≤
(1+ ε)(M +2) and Claim 5 holds for i = 0. Assume it holds
for every 1 ≤ j ≤ i. We have:

(1 + ε)(M + 2)

iX
j=1

Cj ≤ (1 + ε)(M + 2)C1
(α(M + 2))i − 1

α(M + 2)− 1

≤ ((1 + ε)(M + 2))2
(α(M + 2))i − 1

(1 + ε)(M + 2)

< (1 + ε)αi(M + 2)i+1

≤
�

α− 1

M + 2

�
αi(M + 2)i+1 < αi+1(M + 2)i+1

Therefore, by Ineq. (18), Ci+1 ≤ (1 + ε)(M + 2)
Pi

j=1 Cj ≤
(α(M + 2))i+1 completing the proof Claim 5.

The stretch is < 2k + 1, thus by Lemma 3 and Claim 5,

iX
j=0

|P ∗
2j+1| ≤

iX
j=0

(C(P ∗
2j+1) + 2 log n)

≤
iX

j=0

(C(P2j+1) + 2 log n + O(1))

= O(i) +

i+1X
j=1

Cj

From the proof of Claim 5, we have directly that

i+1X
j=1

Cj <
(α(M + 2))i+2

(1 + ε)(M + 2)
=

αi+2

1 + ε
· (M + 2)i+1

By Lemma 4, for M large enough, i.e., M = Ω(log n), α > 1,
and ε > 0.

∀ i ≥ 0, |Wi| ≤
iX

j=0

|P ∗
2j+1| (19)

< O(i) +
αi+2

1 + ε
· (M + 2)i+1 (20)

< αi+2 · (M + 2)i+1 (21)

In particular, for i = imax,

` = |Wi| ≤
iX

j=0

|P ∗
2j+1| = |P ∗

2imax+1|+
imax−1X

j=0

|P ∗
2j+1|

< |P ∗
2imax+1|+ αi+2 · (M + 2)i+1

from Lemma 5, P2imax is a sub-sequence of L, and since L is
composed of distinct elements, |P ∗

2imax+1| = |P2imax+1|, and
so Lemma 3 can be applied. It turns out:

` <
2C(P2imax+1) + 4 log n

log(C(P2imax+1) + 2 log n)
+ αimax+1 · (M + 2)imax

Noting that 2C(P2imax+1) + 4 log n = 2Cimax , one can ap-
plied Claim 5, and hence (as αimax+1 ≥ 1):

` <
2αimax+1 · (M + 2)imax+1

log((M + 2)imax+1)
+ αimax+1 · (M + 2)imax

Now, because the stretch factor of R is < 2k+1, imax ≤ k−1
by Claim 1. Thus,

` <
2αk · (M + 2)k

log((M + 2)k)
+ αk · (M + 2)k−1

because for M = Ω(log n) large enough, one can choose
ε = c/ log n, for a suitale constant c. Hence αk ≤ (1 +
O(1/ log n))k ≤ 2 for every k ≥ 1. Because, ` ∼ n/2, it
follows that

M ≥
�

`

4
log(`/4)

�1/k

− 2 ≥ 1

9
(n log n)1/k

for n large enough, that completes the proof of Theorem 1.

6. AVERAGE-STRETCH FACTOR
The goal of this section is to prove the following:

Theorem 2. For each integer k ≥ 1 there is a weighted
n-node star for which every name-independent routing
scheme with less than (n/(9k))1/k bits of memory require-
ments has average-stretch at least k/4 + 7/8.

For that we simply extended the previous lower bound.
The main change is that the weight k in the star network is
replaced by a larger weight K, say K = n2/2 (the value can
be optimized). The proof is in two parts: first we show that
any single-source routing scheme R on the star (with source

r) with memory M = O(n1/k) has an average-stretch Ω(k).
Then, we extended the result to any routing scheme on the
star where the stretch is now averaging on the n(n−1) pairs.

For a routing scheme R, let ρ(x, y, R) denote the length
of the route induced by R between x and y.

Let us consider any single-source routing scheme R on the
star, with source r, and with memory requirements M =
M(n, k) = Ω(log n).

Lemma 7. If M < ck ·n1/k, then
P`

y=1 ρ(r, y, R) > 2k`,

where ck = 1
2
(8k + 4)−1/k.

Proof. To prove Lemma 7 we reuse the proof of Theo-
rem 1, in particular Ineq. (19), that is: for M = Ω(log n)
with n large enough, α > 1, and ε > 0,

∀i ≥ 0, |Wi| < αi+2 · (M + 2)i+1

where α = 1+ε+1/(M +2). Choosing ε = c/ log n for some
suitable constant c, αj ≤ 2 for every j ≥ 1. Thus,

∀i ≥ 0, |Wi| < 2 · (M + 2)i+1 . (22)

This later equation holds under the condition that P ∗
2i+1 ⊆

L∗. Unfortunately, the first part of Lemma 5 does not hold,
and so Ineq. (22) is wrong in general. However we have:

Claim 6. If
P`

y=1 ρ(r, y, R) ≤ n2, then P ∗
2i+1 ⊆ L∗.

Proof. Similarly to Lemma 5, assume that there is some
p ∈ P ∗

2i+1 such that p /∈ L∗. Then, the port p leads to a
node w /∈ {1, . . . , `}. Since P2i+1 concerns routing from r
the nodes in {1, . . . , `}, it follows that there is a walk from
r to a node y0 ∈ {1, . . . , `} going through w /∈ {1, . . . , `}.
Since the cost of the edge (r, w) is K, ρ(r, y0, R) ≥ 2K.

Thus
P`

y=1 ρ(r, y, R) > 2K = n2: a contradiction.

213

If
P`

y=1 ρ(r, y, R) > n2, then Lemma 7 is true, since

2k` < n2 for large n. And, if
P`

y=1 ρ(r, y, R) < n2, then

by Claim 6, P ∗
2i+1 ⊆ L∗. Therefore we can assume that

Ineq. (22) holds.
Recall that Wi ⊆ {1, . . . , `} is the subset of destinations

reached by R from r after a walk of length at most 2i + 1.
Since for every y ∈ {1, . . . , `} \ Wi, ρ(r, y, R) ≥ 2i + 3 and
d(r, y) = 1, we obtain:

X̀
y=1

ρ(r, y, R) >
X

y∈{1,...,`}\Wi

ρ(r, y, R) ≥ (`−|Wi|)·(2i+3)

If M < ck · n1/k, then, as ` = b(n− 1)/2c, 2(M + 2)k <
`/(2k + 1) for n large enough. By Ineq (22), |Wi| < 2(M +
2)i+1 < `/(2k + 1). For i = k − 1, we obtain:

X̀
y=1

ρ(r, y, R) > (2k + 1) · (`− `/(2k + 1)) = 2k` .

completing the proof of Lemma 7.

We now consider any routing scheme R∗ for the star. The
average-stretch of R∗ is:

s̄(R∗) =
1

n(n− 1)

X
x6=y

ρ(x, y, R)

d(x, y)
=

1

n

X
x

s̄(R∗, x)

where s̄(R∗, x) = 1
n−1

P
y 6=x ρ(x, y, R)/d(x, y).

Given a node x, we simulate as follows a single-source
routing scheme, named R̃x, with source r and based on R∗.
For every node y 6= x, R̃y works exactly as R∗

y. And, R̃r

is composed of R∗
r , of R∗

x, and of the port number leading
from r to x. Sending a message by R̃ from r to y is done
as follows: if y = x, then the message is sent directly to
the edge (r, x). If y 6= x, then function R∗

x is applied first
(generating eventually suitable headers but without sending
any message), and then R∗

r is applied and the message is
then forwarded.

For each node x, the resulting routing scheme R̃x is a
single-source routing scheme with source r on the star, and
has memory requirements at most 2M∗ + O(log n), where
M∗ denotes the memory requirements of R∗.

By the simulation ρ(x, y, R∗) = d(x, r)+ρ(r, y, R̃x). Thus
one can estimate the stretch factor of R∗ by:

∀x ∈ {1, . . . , `} ,

s̄(R∗, x) · (n− 1) =
X
y 6=x

ρ(x, y, R∗)

d(x, y)

=
X
y 6=x

ρ(r, y, R̃x) + d(x, r)

d(x, y)

=
X̀
y=1

ρ(r, y, R̃x)

2
+

`

2
+

n−1X
y=`+1

ρ(x, y, R∗)

d(x, y)

≥ 1

2

X̀
y=1

ρ(r, y, R̃x) +
`

2
+ (n− 1− `)

Assume now that M∗ < (n/(9k))1/k. It follows that

2M∗ + O(log n) < ck · n1/k, and Lemma 7 can be applied:

P`
y=1 ρ(r, y, R̃x) > 2k`. Therefore, for every x:

s̄(R∗, x) · (n− 1) > k`− `/2 + n− 1

= n− 1 + `(k − 1/2)

⇒ s̄(R∗, x) > k/2 + 3/4

⇒ s̄(R∗) =
1

n

X
x

s̄(R∗, x)

=
1

n

 X̀
x=1

s̄(R∗, x) +

n−1X
x=`+1

s̄(R∗, x)

!

>
1

n
(`(k/2 + 3/4) + (n− 1− `))

= k/4 + 7/8

completing the proof of Theorem 2.

7. PROOF OF LEMMA 3
Proof. We lower and upper bound the Kolmogorov

Complexity of L∗ expressed as a function of |A| and of |B|,
and thus derive an upper bound on |A| and |B|.

Let ` = bn/2c. The number of sequences composed of `
distinct integers taken from {1, . . . , n} is `!

�
n
`

�
. Because all

the elements of such sequences are distinct, there are exactly
`! sequences L having a common given set L∗. Therefore,
there is such a sequence L with C(L | n) ≥ log

�
`!
�

n
`

��
and

C(L∗ | n) ≥ log
�

n
`

�
. Note that |L| = |L∗| = `. Let us prove

the first claim of Lemma 3. Consider any subset A ⊆ L∗.
We can code L∗, and so upper bound C(L∗ | n), by merging
the sets A and L∗ \A. In other words,

C(L∗ | n) ≤ C(A) + C(L∗ \A | A) + log n + O(1)

where the term “log n” stands for the coding of the delimiter
between the code for A and for L∗ \ A. More precisely,
the coding of L∗ (given n) is composed of the binary string
S = S1S2S3 where:

1. S3 is a coding of A, so of length C(A);
2. S2 is a coding of L∗ \A given A; and
3. S1 is the binary representation of |S2| = C(L∗ \ A |

A) on dlog 2ne bits exactly. Clearly, the number of
possible subsets L∗ \A is at most 2n, thus |S2| ≤ n +
O(1) ≤ 2n for n large enough.

So given n, one can extract from S the dlog(2n)e first bits
to get S1, and then extract S2 and S3. Let a = |A|. The set
L∗\A is composed of `−a integers taken from {1, . . . , n}\A.
So, once A has been constructed, it remains at most

�
n−a
`−a

�
possible candidates for L∗ \ A. In other words, C(L∗ \ A |
A) ≤ log

�
n−a
`−a

�
+O(1). Therefore, we have the upper bound

for the Kolmogorov Complexity of L∗ that is:

C(L∗ | n) ≤ C(A) + log

n− a

`− a

!
+ log n + O(1) .

And, by the previous lower bound, it yields:

log

n

`

!
≤ log

n− a

`− a

!
+ C(A) + log n + O(1)

Set m = C(A) + log n + O(1) so that Ineq. (23) rewrites:
n

`

!
≤

n− a

`− a

!
· 2m ⇔ n!

`!
≤ (n− a)!

(`− a)!
· 2m (23)

214

Using the Stirling approximation u! ∼
�

u
e

�u √
2πu, we have

for all u and v large enough:

uu

vv
· ev−u ≤ u!

v!
≤ uu

vv
· ev−u

√
2πu

Plugging in Ineq. (23) the later lower and upper bound, we
obtain that:

nn

``
≤ (n− a)n−a

(`− a)`−a
· 2m

p
2π(n− a) (24)

Let us show that:

Claim 7. For all integers a, `, n such that 0 ≤ a ≤ ` and
0 < ` ≤ n,

(n− a)n−a

(`− a)`−a
≤ nn−a

``−a
.

Proof. This inequality is equivalent to�n− a

n

�n−a

≤
�

`− a

`

�`−a

⇔
�
1− a

n

�n

≤
�
1− a

`

�`

⇔ f(n) ≤ f(`)

where f(x) = (1− a/x)x with x ≥ a and x 6= 0. It remains
to show that f is decreasing for every x ≥ a. We compute:

f ′(x) =
�
1− a

x

�x−1 �a

x
+
�
1− a

x

�
ln
�
1− a

x

��
which has the same sign as y+(1−y) ln(1−y) where y = a/x.
The later term is negative as y → 0, so f ′(x) ≤ 0 for every
x ≥ a, and so f decreases as claimed.

Assume now that 2m
√

2πn < na/`a. By Claim 7, we have
therefore that:

2m
√

2πn · (n− a)n−a

(`− a)`−a
<

na

`a
· nn−a

``−a
=

nn

``

which is a contradiction with Ineq. (24). Therefore, we have
2m
√

2πn ≥ (n/`)a, that is

a ≤ 1

log(n/`)

�
m + log

√
2πn

�
⇔

|A| ≤ 1

log(n/`)

�
C(A) + log n + O(1) + log

√
2πn

�
For ` = bn/2c, we have log(n/`) ≥ 1, and for n large enough,
we have log n + O(1) + log

√
2πn ≤ 2 log n, and therefore:

|A| ≤ C(A) + 2 log n

completing the proof of the first claim.
We now prove the second claim of Lemma 3. Consider

any sub-sequence B of L, and let b = |B|. Our objective
here is to upper bound b. We can code L, and so upper
bound C(L | n, `), by:

1. the sub-sequence B;
2. the sub-sequence L \B; and
3. an `-bit long binary string with b ones.

To reconstruct L we read each bit of the binary string and
output either an element of B or of L \ B depending of
whether the bit is set of not. So we have the following upper
bound:

C(L | n) ≤ C(B) + C(L \B | B) + log

`

b

!
+ log(n log n) + O(1) .

More precisely, the coding of L (given n) is composed of the
binary string S = S1S2S3S4 where:

1. S2 is a coding for B on C(B) bits.
2. S1 the binary representation of |S2| = C(B) on ex-

actly dlog(n log n)e bits. Clearly, there are at most
n` sub-sequences B, thus |S2| ≤ ` log n + O(1). And,
so |S2| can be represented with exactly dlog(n log n)e
bits exactly for n large enough. So reading the first
dlog(n log n)e bits of S, one can then extract S2.

3. S3 is a coding of the `-bit binary string on dlog
�

`
b

�
e

bits exactly. Once B is constructed, b = |B| is known,
so S3 can be extracted from S after S1 and S2 are.

4. S4 is a coding for L \B (given B).

The sub-sequence L\B is of length `−b, and is composed
of distinct integers taken from {1, . . . , n}\B. So, once B has
been constructed, it remains at most (` − b)!

�
n−b
`−b

�
possible

sub-sequences for L \ B. In other words, C(L \ B | B) ≤
log ((`− b)!

�
n−b
`−b

�
) + O(1). Therefore, we have the upper

bound for the Kolmogorov Complexity of L:

C(L | n) ≤ C(B) + log

(`− b)!

n− b

`− b

!!
+ log

`

b

!
+ log(n log n) + O(1) .

Using the previous lower bound on C(L | n), it follows:

log

`!

n

`

!!
≤ log

(`− b)!

n− b

`− b

!
`

b

!!
(25)

+ C(B) + log(n log n) + O(1) . (26)

Setting t = C(B) + log(n log n) + O(1), and using the fact
that (`− b)!

�
`
b

�
= `!/b!, Ineq. (25) rewrites in

b!

n

`

!
≤ 2t ·

n− b

`− b

!
.

We have seen in the first claim that, by Ineq. (23),
n

`

!
≤

n− a

`− a

!
· 2m ⇒ a ≤ m + log

√
2πn

Therefore, plugging a = b and m = t−log(b!), and remarking
that b! ≥ (b/e)b, we obtain, for n large enough

b + log(b!) ≤ t + log
√

2πn

⇒ b(1 + log(b/e)) ≤ t + log
√

2πn

⇒ b log(2b/e) ≤ C(B) + 2 log n

Let C = C(B)+2 log n. Observe that x/ log x ≤ y/ log y for
all 2 ≤ x ≤ y. So

b log(2b/e)

log(b log(2b/e))
≤ C

log C
. (27)

Note that log x ≤ 4x/e for every x ≥ 1. So b log(2b/e) ≤
b · 4b/e2 = (2b/e)2. Hence, Ineq. (27) implies that

b

2
=

b log(2b/e)

log((2b/e)2)
≤ b log(2b/e)

log(b log(2b/e))
≤ C

log C

⇒ b ≤ 2C

log C
.

proving the second claim, and completing the proof of
Lemma 3.

215

8. REFERENCES
[1] Ittai Abraham, Yair Bartal, and Ofer Neiman.

Advances in metric embedding theory. In 38th Annual
ACM Symposium on Theory of Computing (STOC),
pages 271–286. ACM Press, May 2006.

[2] Noga Alon, Shlomo Hoory, and Nathan Linial. The
Moore bound for irregular graphs. Graph and
Combinatorics, 18(1):53–57, 2002.

[3] Harry Buhrman, Jaap-Henk Hoepman, and Paul
Vitányi. Space-efficient routing tables for almost all
networks and the incompressibility method. SIAM
Journal on Computing, 28(4):1414–1432, 1999.

[4] Paul Erdös. Extremal problems in graph theory. In
Publ. House Cszechoslovak Acad. Sci., Prague, pages
29–36, 1964.

[5] Pierre Fraigniaud and Cyril Gavoille. Routing in trees.
In 28th International Colloquium on Automata,
Languages and Programming (ICALP), volume 2076
of Lecture Notes in Computer Science, pages 757–772.
Springer, July 2001.

[6] Pierre Fraigniaud and Cyril Gavoille. A space lower
bound for routing in trees. In 19th Annual Symposium
on Theoretical Aspects of Computer Science (STACS),
volume 2285 of Lecture Notes in Computer Science,
pages 65–75. Springer, March 2002.

[7] Cyril Gavoille and Stéphane Pérennès. Memory
requirement for routing in distributed networks. In
15th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 125–133. ACM
Press, May 1996.

[8] Evangelos Kranakis and Danny Krizanc. Lower
bounds for compact routing. In 13th Annual
Symposium on Theoretical Aspects of Computer
Science (STACS), volume 1046 of Lecture Notes in
Computer Science, pages 529–540. Springer-Verlag,
February 1996.

[9] Kofi Ambrose Laing. Brief announcement:
name-independent compact routing in trees. In 23rd

Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 382–382. ACM Press, July
2004.

[10] Kofi Ambrose Laing and Rajmohan Rajaraman. Brief
announcement: A space lower bound for
name-independent compact routing in trees. In 17th

Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), page 216. ACM Press, July
2005.

[11] Felix Lazebnik, Vasiliy A. Ustimenko, and Andrew J.
Woldar. A new series of dense graphs of high girth.
Bulletin of the American Mathematical Society (New
Series), 32(1):73–79, January 1995.

[12] Ming Li and Paul M. B. Vitányi. An Introduction to
Kolmogorov Complexity and its Applications (second
edition). Springer-Verlag, 1997.

[13] David Peleg and Eli Upfal. A trade-off between space
and efficiency for routing tables. Journal of the ACM,
36(3):510–530, July 1989.

[14] Mikkel Thorup and Uri Zwick. Compact routing
schemes. In 13th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 1–10.
ACM Press, July 2001.

216

	Introduction
	Our contributions
	Related work
	Techniques

	Routing scheme model and memory requirements
	Kolmogorov Complexity background
	The star network
	The proof
	Average-stretch factor
	Proof of Lemma 3
	REFERENCES -9pt

