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Abstract. This paper concerns compact routing schemes with arbitrary
node names. We present a compact name-independent routing scheme
for unweighted networks with n nodes excluding a fixed minor. For any
fixed minor, the scheme, constructible in polynomial time, has constant
stretch factor and requires routing tables with poly-logarithmic number
of bits at each node.

For shortest-path labeled routing scheme in planar graphs, we prove
an Ω(nε) space lower bound for some constant ε > 0. This lower bound
holds even for bounded degree triangulations, and is optimal for polyno-
mially weighted planar graphs (ε = 1/2).

1 Introduction

Consider a distributed network of nodes connected via a network in which each
node has an arbitrary network identifier. A routing scheme allows any source
node to route messages to any destination node, given the destination’s network
identifier. The fundamental trade-offs in compact routing schemes is between
the space used to store the routing table on each node and the stretch factor
of the routing scheme, the maximum ratio over all pairs between the length of
the route induced by the scheme and the length of a shortest-path between the
same pair.

The trivial solution to routing on shortest paths (stretch factor 1) is for each
node to store a routing table with Ω(n) entries that contains the next hop of an
all pairs shortest-path algorithm. This solution is very expensive as it requires
each node to store Ω(n log n) bits. Thus, network designers are faced with two
conflicting goals: reduce both the stretch factor and the size of the routing tables.
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In this paper we assume a network with arbitrary node names. This model is
called the name-independent model because the designer of the routing scheme
has no control over node names. So node names cannot encode any topological
awareness, like for instance the X, Y -coordinates in a geographic network. This
routing problem may appear daunting: In order to route to a node, we must
first somehow gain knowledge about its location in the network, but, in order
to have some guarantees on the stretch factor, we must do so without exceeding
too much the distance to the target.

A weak variant of this fundamental problem is called labeled routing. In this
version of the problem, the designer of a solution may pick node names that
contain (bounded size) information about their location in the network. This
variant is useful in many aspects of network theory, but less so in practice:
Knowledge of the labels needs to be disseminated to all potential senders, as
these labels are not the addresses by which nodes of an existing network, e.g.,
an IP network, are known. Furthermore, if the network may admit new joining
nodes, all the labels may need to be re-computed and distributed to any potential
sender. Finally, various recent applications pose constraints on nodes addresses
that cannot be satisfied by existing labeled routing schemes. E.g., Distributed
Hash Tables (DHTs) require nodes names in the range [1, n], or ones that form
a binary prefix.

There is a subtle distinction between a designer-port model and a fixed-port
model. In the fixed-port model (also known as the adversarial port model) the
names of outgoing links, or ports, from each node may be arbitrarily chosen by
an adversary from the set {1, . . . , n}. In the designer-port model they may be
determined by the designer of the routing scheme. Our routing scheme applies
to the fixed-port model.

In this paper we are interested in the design of fixed-port name-independent
compact routing schemes with low space and stretch, typically with O(1) stretch
and ˜O(1) memory per node1. Unfortunately, it is known that, even for the la-
beled variant, any routing scheme of stretch O(k) applying on all graphs requires
Ω(n1/k) bit memory in the worst-case [32,36]. Identifying large realistic fami-
lies of networks supporting low stretch and memory name-independent routing
schemes is a wide open question. Here, we restrict our attention to families of
graphs excluding a fixed minor, so including all families closed under taking mi-
nors (by The Minor Theorem of Robertson & Seymour). For instance, it includes
all graphs of bounded treewidth or bounded genus.

A graph H is a minor of G if H is a subgraph of a graph obtained by a series
of edge contractions2 of G. The study of graphs excluding a fixed minor has lead
to fundamental graph theory results. In the context of routing, several natural
classes of networks can be defined by their forbidden minor. Among them are
trees [27] (excluding K3) and series parallel networks [18] (excluding K4) that

1 The notation ˜O(·) indicates complexity similar to O(·) up to poly-logarithmic factors.
2 The contraction of the edge e with endpoints u, v is the replacement of u and v with

a single node whose incident edges are the edges other than e that were incident to
u or v [37].
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capture many network backbone structures, and planar graphs (excluding K5 or
K3,3) that capture the structure of two dimensional maps.

1.1 Related Work

The space-stretch trade-off has been extensively studied under various models
and extensions. We refer the reader to Peleg’s book [30] and to the surveys of
Gavoille and Peleg [20,22] for comprehensive background.

There is a large body of work on special families of graphs. For the labeled
model: graphs with bounded treewidth [31], bounded chordality [14,15,16] (i.e.,
graphs for which every induced cycle is bounded), and more recently, graphs (or
metrics) with bounded doubling dimension [10,24,33,34] (i.e., graphs for which
any radius-2r ball can be covered by a bounded number of radius-r balls). For
the name-independent model: trees [1,27], graphs with bounded growth dimen-
sion [5]. Observe that planar graphs are not captured by any of these families.

No low memory and stretch name-independent routing schemes are known
for planar graphs, however several schemes have been proposed for this family
for the labeled variant.

Surprisingly, for stretch 1, the complexity of the size of the routing tables is
not known. The best scheme up to date has been proposed by Lu [28]: the node
labels range in [1, n], the routing tables are of 7.181n + o(n) bits (per node),
and each routing decision takes O(log2+ε n) bit operations for every fixed ε > 0.
Earlier, it was proved that, actually, genus-g graphs support n log g + O(n) bit
routing tables [21], that provides 8n + o(n) bits in the planar case. They also
showed in [21] that if each node is forced to route along a shortest-path tree fixed
by an adversary, then any routing scheme requires Ω(n) bits in the worst-case
(this actually extends to Ω(n log r) bits for a Kr,n−r, so setting r = 2 for planar).
However, if the designer of the scheme has freedom to optimize the routes among
those of equal costs, then only the Ω(

√
n ) bit lower bound for trees applies [17].

Furthermore, this lower bound concerns only schemes that assign node labels in
[1, n] exactly. Better results exist for some particular subclass of planar graphs.
In [12], it is proved that quadrangulations3 where all inner nodes have degree
at least 4 (these include the subgraphs of a grid bounded by a circuit) have a
labeled routing scheme with O(deg(v) log n) bit memory for each node v. For
other particular plane graphs, namely the non-positively curved plane graphs, a
labeled O(log2 n) bit routing scheme exists [11].

To summarize, if poly-log node labels are allowed, then no trivial lower bound
on the memory is known for the shortest-path labeled routing scheme problem
in general planar graphs, whereas O(n) is the upper bound [21,28].

The situation is however quite different if routing schemes with stretches > 1
are considered. For instance routing in Euclidian plane graphs4 is investigated
in [8,9]. It is shown that plane triangulations having the diamond property (which

3 I.e., plane graphs where all the inner faces are of length 4.
4 I.e., a planar graphs embedded in the plane whose edges are weighted by the Eu-

clidean distance between their endpoints.
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is the case for classical triangulations as the Delaunay, greedy and minimum-
weight triangulations) have a constant stretch labeled routing scheme where node
labels are the coordinates and the memory requirement of each node v consists
only in the coordinates of v and of its neighbors, therefore is O(deg(v) log n)
bits. The same results hold for all plane graphs possessing both the diamond
property and the good convex polygon property. For general planar graphs,
Frederickson and Janardan have presented in [19] two schemes. The first one
achieve O(n4/3 log n) bits in total (the sum of the routing table size over all
the nodes), stretch 3, and uses O(log n) bit node labels. The second one uses
O((1/ε)n1+ε log n) bit in total, for every fixed ε > 0, stretch 7, and O((1/ε) log n)
bit node labels. Recently, Thorup [35] improves the stretch bound thanks to an
extension of his distance oracles for planar graphs. He obtained a labeled routing
scheme with stretch 1 + ε in which for a fixed ε > 0, routing tables and node
labels have O((1/ε) log2 n) bits. For Euclidean metrics, Hassin and Peleg show
in [25] a labeled scheme with O(log n) out going edges per node, O(log n)-hop
routes, and 1 + ε stretch. The out degree is further reduced to a constant by
Abraham and Malkhi [4].

1.2 Our Contributions

Our first contribution is a name-independent routing schemes for unweighted
graphs excluding a fixed minor. We prove the following.

Theorem 1. For every n-node unweighted graph excluding a fixed Kr,r minor,
there is a polynomial time constructible name-independent routing scheme with
constant stretch factor, in which every node v requires routing tables of ˜O(1) bits
and O(log2 n/ log log n)-bit headers.

The general result follows since graphs excluding a Kr,r minor exclude Kr+1

minor and thus exclude any fixed graph H on r + 1 nodes. Note that the result
was not known even for trees, i.e., H = K3. For H = K3,3, it is important
to observe that the ˜O(1) memory 1 + ε stretched labeling routing scheme of
Thorup [35] for planar graphs cannot be extended to name-independent scheme
since in that case a stretch of 3 at least is required if less than Ω(n log n) bits
are used [3].

Our scheme is based on a cover for graphs excluding a Kr,r minor which
is a novel variant of the Klein, Plotkin, and Rao [26] partitioning algorithm.
While the scheme in [26] gives a partition algorithm with weak diameter bounds,
no information is given about the structure of the short paths that bound the
diameter. Our covering algorithm gives an explicit structure to the short paths
formed. This explicitness may be of independent interest and is presented in
Section 3. Moreover, we show how to utilize this structure for an efficient routing
scheme in Section 4.

Our second contribution is a lower bound. As said previously in the introduc-
tion, no (trivial) lower bounds are known for stretch 1 labeled routing schemes
in planar graphs. Based on the distance labeling lower bound of [23], we prove
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in Section 5 an Ω(nε) lower bound on the label length (the length of the local
routing tables plus the node label length). This bound holds even in the quite
simple case: a bounded degree triangulation.

Theorem 2. Every shortest-path labeled routing scheme on polynomially
weighted n-node planar graphs of bounded degree requires a total label length
(the length of all the routing tables and node labels in the graph) of Ω(n1+1/2)
bits. Moreover, the (maximum) label length is Ω(n1/4) for some weighted bounded
degree triangulations. For unweighted planar graphs, the two bounds are respec-
tively Ω(n1+1/3) and Ω(n1/6).

Observe that there is a labeled scheme using only ˜O(
√

n ) bit node labels for
weighted5 graphs of treewidth O(

√
n ) [31] (thus including planar graphs). So,

in a sense Theorem 2 is optimal. However, no shortest-path routing scheme is
known to achieve ˜O(

√
n ) routing tables but with ˜O(1) node labels.

1.3 Outline of Techniques

Awerbuch and Peleg introduced sparse covers [6] in order to build a hierarchal
routing scheme for general graphs [7]. Their scheme is based on tree covers
with geometrically increasing radii. Typically each node of the graph belongs to
O(kn1/k) trees of the cover, where k ≥ 1 is a parameter. For each radius ρ and
source node s, the ball of radius ρ centered at s is contained in some trees of
radius O(kρ). Roughly speaking, the routing task for s consists in seeking the
target t in each tree it belongs to. However, this high level description hides
many difficulties to implement, and tree routing plays an important role [6,7,1].

The situation for graphs excluding a fixed minor is quite different. It is cur-
rently an open question to design a sparse cover for such graphs with trees (or
clusters) of strong radius O(ρ) so that each node belongs to O(1) such clusters.
Klein, Plotkin, Rao [26] achieve sparse covers in which clusters have only weak-
diameter O(ρ), i.e., the shortest paths between any two nodes of a cluster can
go outside the cluster itself. For our application, it means that a node v might
potentially be involved, for the routing between many pairs of nodes, in several
clusters that do not contain v. Therefore the naive approach of using [7] with a
cover based on [26] may require Ω(n) nodes to participate in routing for Ω(n)
clusters and hence require Ω(n2) bits in total.

Instead, we present a novel partitioning algorithm for graphs excluding a
Kr,r minor for constant r. Our cover borrows from [26] but has some subtle
differences. Using a new analysis we prove explicit properties on the structure of
short paths between nodes in the same cluster. Our decomposition creates a set of
clusters and trees, such that each node belongs to a constant number of clusters
and trees. For every u, v of a same cluster, we construct a path connecting them
of length O(ρ) that is “well-structured”. It decomposes in at most r particular
subpaths, called tail-connections : each tail-connection is an upward path towards
a root of one tree and a downward path on another tree (see Section 3).
5 With polynomial edge weights.
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Given this partition, we create an intricate rooted tree for each cluster that
takes advantage of the cover properties. Finally, we present a single-source rout-
ing scheme in the fixed-port model in order to route on these trees. Our scheme
uses the unweighted designer-port construction of [1,2] in a non-trivial man-
ner over several overlapping trees in order to route efficiently both inside and
outside of the cluster, and some recent results from graph minor theory [13]
(see Section 4).

Due to space constrains some proofs of this extended abstract have been
moved in the full version.

2 Preliminaries

Consider an unweighted connected graph G = (V, E) with n nodes. Each node
has an arbitrary unique network identifier consisting of polylog(n) bits. Using
standard hashing techniques it is possible to generalize the model and assume
nodes have arbitrarily long unique labels.

For a set of nodes U ⊆ V , let G[U ] be the subgraph induced by U . Given a
subgraph H ⊂ G, let dH(u, v) denote the length of a shortest path in H from
u to v. Given v ∈ V , let dH(v, U) = minu∈U dH(u, v), and let BH(v, ρ) =
{u ∈ H | dH(u, v) ≤ ρ}. We denote by diam(H) = maxu,v∈H dH(u, v) the
(strong) diameter of H , and degH(v) the degree of v in H .

For an index j ≥ 0 and a rooted tree T with root τ ∈ T let C(T, j) =
{v ∈ T | jρ ≤ dT (v, τ) < (j + 1)ρ}, specifically in our construction we will use
j’s such that either j ∈ N or j + 1/2 ∈ N.

Let T be a tree with root τ , a node v ∈ T , and a number k. The tail of v
of length k on T , denoted by tail(T, v, k), is the path of length min {k, dT (v, τ)}
from v towards τ on T .

For a node τ ∈ G, let BFS(G, τ) be a breadth-first search tree of G rooted
at τ . Let r ∈ (N) be a parameter, and let R = {1, 2, . . . , r}.

Definition 1. (Tail-connected) Given a parameter ρ ∈ N, cluster H ⊆ G, and
a collection of rooted trees T , two nodes u, v ∈ H are tail-connected if there are
trees T1, T2 ∈ T such that tail(T1, u, (r + 2)ρ + 1) and tail(T2, v, (r + 2)ρ + 1)
intersect.

Definition 2. (r-Tail-Connected) Nodes u, v ∈ H are r-tail-connected if there
exists 2r−2 nodes u = x1, x2, . . . , x2r−1, x2r−2 = v ∈ H (not necessarily distinct)
such that for any even i, dH(xi, xi+1) ≤ 1, and for any odd i, xi, xi+1 are tail-
connected.

3 The Weak Diameter Cover

Theorem 3. For every graph G = (V, E) excluding a Kr,r minor, and param-
eter ρ > 0, there exists a polynomial algorithm that constructs a collection of
connected components Hρ and a collection of trees Tρ such that:
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1. (Cover) For every v ∈ V , there exists H ∈ Hρ such that BG(v, ρ/4) ⊆ H.
2. (Sparse clusters) For every v ∈ V , | {H ∈ Hρ | v ∈ H} | ≤ 2r.
3. (Sparse trees) For every v ∈ V , | {T ∈ Tρ | v ∈ T} | ≤ 2O(r log r).
4. (Weak diameter) For every H ∈ Hρ, and every u, v ∈ H, the nodes u, v are

r-tail-connected with trees in Tρ.

The rest of the section is devoted to the proof of Theorem 3. We first describe
a partitioning algorithm of a graph G that depends on a parameter ρ > 0. It
returns a cluster H and implicitly graphs Gi, Hi and trees Ti, for i ∈ R.

Actually, in order to create a partition of the graph into clusters, we apply
this algorithm for all possible choices of indices ji ≥ 0 (see also the proof of
Theorem 3).

Partitioning algorithm: Initially H1 = G1 = G. Given Gi and Hi set a root
τi ∈ Hi and choose an index ji. Let Ti = BFS(Gi, τi). Let Hi+1 be a connected
component of the subgraph graph induced by the nodes

Hi ∩ C(Ti, ji)

Let Gi+1 be the connected component of

Gi ∩
⋃

�∈{ji−i,...,ji,...,ji+i}
C(Ti, �)

that contains Hi+1. If i = r then return H = Hi+1 and stop. Otherwise repeat.
For the analysis it will be convenient to use the following notation: for all

u ∈ Gi and i ∈ R, let taili(u) = tail(Ti, u, (i + 1)ρ + 1).

Lemma 1. Let H be the graph returned after the partitioning algorithm and
assume that ji > r + 1 for each i ∈ R. Let X ⊆ H be any r nodes of H. If for
each x �= x′ ∈ X and i, i′ ∈ R the tails taili(x) and taili′(x′) are pairwise disjoint
then G contains a Kr,r minor.

Proof. In order to show that G contains a Kr,r minor we construct two sets,
each one containing, r connected subgraphs, each subgraph called hereafter left
or right super node. The super nodes are chosen to be pairwise disjoint and
such that each left-right pair of super nodes are connected by an edge with one
endpoint in each super node. Then, by contracting all the edges of all the super
nodes, and then keeping theses nodes and the left-right edges, it will prove that
G has a Kr,r minor.

For x ∈ X , let Lx =
⋃

i∈R taili(x). The left super nodes of the Kr,r will be the
sets {Lx | x ∈ X}. Observe that each left super node indeed induces a connected
subgraph and that theses super nodes are pairwise disjoint by the assumption.

For the right super nodes, for all i ∈ R let Ui denote the subtree of Ti formed
by the paths from each x ∈ X to τi the root of Ti. The right super nodes will be
the Vi for i ∈ R, where Vi = Ui \

⋃

x∈X taili(x). Observe that each Vi induces a
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Fig. 1. A schematic drawing of one stage in the algorithm. Note that the paths of Ti

from τi to nodes in Hi+1 may use some nodes in Gi outside Hi.

connected subtree of G. Since ji > r + 1 for all i ∈ R and X ⊆ Hi+1 ⊆ C(Ti, ji)
then |taili(x)| = (i + 1)ρ + 1 hence dGi(X, Vi) > iρ for all i ∈ R.

The super edges will be the edges in Ti connecting each Vi with each taili(x) ∈
Lx for each i ∈ R, x ∈ X . Since all tails, for distinct x ∈ X , are disjoint, we are
left only with showing that all Vi’s are pairwise disjoint and disjoint from all the
tails.

To do so, we prove that for every x ∈ X and i ∈ R, the path on Ti from
x to τi is disjoint from Vj and {tailj(y) | y ∈ X \ {x}} for all i < j. Seeking a
contradiction, assume that for some x ∈ X and i ∈ R the path on Ti from x
to τi intersects some node v ∈ Gj which is part of another super node (either
v ∈ Vj ⊆ Gj or v ∈ tailj(y) ⊆ Gj for y �= x) for some i < j.

Recall that dGj (x, Vj) > jρ. To arrive to a contradiction we will show that:
(1) v ∈ Vj , (2) the path P on Ti from x to v has length ≤ (i + 1)ρ, (3) by
induction, that for i ≤ � ≤ j we have P ⊆ G�. For � = j this is a contradiction
since i < j and it implies that dGj (x, v) ≤ jρ.

Observe that v ∈ Gj ⊆
⋃

�∈{ji−i,...,ji,...,ji+i} C(Ti, �). Since Ti is a BFS
tree then the path from x to the root τi on Ti can intersect v only if v ∈
⋃

�∈{ji−i,...,ji} C(Ti, �) hence dTi(x, v) ≤ (i + 1)ρ. This completes the first induc-
tion base for � = i of (3). This also implies that the path P must be a sub-path
of taili(x) and that length of P is at most (i + 1)ρ, proving (2). Since the tails
are disjoint by assumption, it must be that v ∈ Vj , proving (1).
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For the second base � = i + 1 observe that v ∈ Gi+1 and Ti is a BFS tree so
the path P on Ti from x to v is contained inside Gi+1.

Assume P ⊆ G� for i < � < j we prove P ⊆ G�+1. Since x ∈ H�+1 ⊆ C(T�, j�)
and G�+1 is the connected component that contains x inside the subgraph in-
duced by the nodes G�∩

⋃

m∈{j�−�,...,j�,...,j�+�} C(T�, m) then dG�
(x, G�\G�+1) >

�ρ ≥ (i+1)ρ. Hence a path in G� from x to v of length ≤ (i+1)ρ does not leave
G�+1. This completes the inductive step.

Hence for � = j we have P ⊆ Gj and |P | ≤ (i + 1)ρ this is a contradiction to
dGj (x, Vj) > jρ since i < j. 	


Lemma 2. If G has no Kr,r minor and ji > r + 1 for all i ∈ R then every two
nodes of H are r-tail-connected.

Proof. Fix u, v ∈ H . If dH(u, v) ≤ r then u, v are r-tail-connected since every
node is trivially tail-connected to itself. Let u = x1, x2, . . . , xt−1, xt = v be a
shortest path from u to v on H for some t > r.

We recursively define a set of nodes y1, . . . , yr as follows. Let y1 = u. Given
y1, . . . , yi let yi+1 be the node x� with highest index � such that yi and x�−1

are tail-connected. Hence for any index � ≤ m ≤ t node yi and xm are not
tail connected. Observe that this process can create at most r nodes y1, . . . , yr

until v is reached. Suppose v is not reached at stage r − 1 and consider the set
y1, . . . , yr−1, v then from Lemma 1 there are two nodes that are tail-connected
in this set. But by the construction of the sequence only yr−1 and v can be
tail-connected. 	


Proof (of Theorem 3). Creating the cover is done by running the partition algo-
rithm in the following manner. Note that the output of the partition algorithm
(a cluster H and implicitly for each i ∈ R graphs Gi,Hi, trees Ti) depends only
on the choice of the roots τ1, . . . , τt of the trees, the indices j1, . . . , jt, and the
choice of connected components H1, . . . , Ht. We fix a consistent choice of roots.
Each time a root τi is to be chosen from subgraph Hi, we choose it as the node
with minimal lexicographic order among the nodes in Hi.

The sets Hρ and Tρ consist of all the clusters H and trees Ti for all possible
choices of connected components and all possible choices of indices j1, . . . , jr

such that for each i ∈ R either ji ∈ N or ji + 1/2 ∈ N.
Property 1. (Cover). It follows from the simple observation that for any v ∈ G

and tree BFS tree T spanning G with root τ there must exist some integer j ∈ N

such that either BG(v, ρ/4) ⊂ C(T, j) or BG(v, ρ/4) ⊂ C(T, j + 1/2). Then,
given any v, we construct by induction a sequence of indices j1, . . . , ji such that
BG(v, ρ/4) ⊆ Hi+1, and thus, for i = t, returning a cluster H ∈ Hρ containing
BG(v, ρ/4).

Property 2. (Sparse clusters). Due to the fact that for every i ∈ R, ji ∈ N or
ji + 1/2 ∈ N, then a node belongs of at most 2i−1 graphs Hi. This is true since
for each graph Hi that v belongs to, it belongs to at most two graphs of type
Hi+1. Hence the number of clusters a node belongs to is at most 2r.

Property 3. (Sparse trees). For each graph Gi that v belongs to, it belongs to
at most 2i+1 graphs Gi+1 due to the use of 2i+1 stripes in the definition of Gi+1.
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Hence for each i ∈ R, by simple induction, a node belongs to
∏

1≤j≤i 2j + 1 ≤
(2i + 1)!! graphs Gi. Therefore a node belongs to at most

∑

i∈R(2i + 1)!! =
2O(r log r) trees by summing over all Gi+1 for all i ∈ R.

Property 4. (Weak diameter). When ji > r + 1 for each i ∈ R this follows
directly from Lemma 2. If there is some i ∈ R for which ji ≤ r + 1 then any two
nodes in H are tail-connected via tree Ti. 	


4 Name-Independent Routing Scheme for Weak
Diameter Cover

Theorem 1. For every n-node unweighted graph excluding a fixed Kr,r minor,
there is a polynomial time constructible name-independent routing scheme with
constant stretch factor, in which every node v requires routing tables of ˜O(1) bits
and O(log2 n/ log log n)-bit headers.

The key ingredient of our routing scheme is the following lemma:

Lemma 3. Let H, T be the set of clusters and trees obtained from the cover
algorithm with parameter ρ on a graph excluding a fixed Kr,r minor. There exists
an error-reporting name-independent routing scheme such that

1. Each node v stores ˜O(1) bits per tree of T it belongs to.
2. Each node v stores ˜O(1) bits per cluster of H it belongs to.
3. For any H ∈ H and s, t ∈ H, searching for t from s in H will find t at cost

O(ρ).
4. For any H ∈ H and s ∈ H, t �∈ H, searching for t from s in H will cost O(ρ)

until an error report is sent back to s.

Lemma 3 is proven by constructing for every H ∈ H a rooted tree TH .
Consider first the case that H has a strong diameter of O(ρ). Hence TH can
simply be a spanning BFS tree of H . In this case we can use the following result
for single-source tree routing on unweighted trees on graphs excluding a fixed
minor.

Lemma 4. Let F be a forest (i.e., a set of disjoint trees) of an n-node graph G
excluding a fixed minor. Then there exists polynomial time constructible scheme
with ˜O(1) bit routing tables for each v ∈ G such that for each tree T ∈ F there
is a name-independent single-source error-reporting routing scheme on T (in the
fixed port model) with cost O(diam(T )).

The construction and proof of Lemma 4 is an extension of the scheme in
[1,2] with results from graph minor theory [13] that imply that graphs excluding
a fixed minor have constant arboricity. The arboricity [29] of a graph G is the
minimum number of forests into which the edges of G can be partitioned. In the
full version we show in the proof of Lemma 4 how to utilize this fact, for routing
on any tree T ∈ F which is a subgraph of G, in order to bound the routing table
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size when converting from the designer ports used in [1] to the standard fixed
port model.

However, H may not have a small strong diameter so routing outside the
cluster must occur. At a high level, the idea of the construction is as follows.
According to the partition algorithm, the route between every pair of nodes x,
y in H is a route containing at most r pairs of intersecting tails, with at most a
single edge from one pair to the next.

In the following we sketch the main ideas for the case of r = 3. The high
level idea is to build a tree TH that will span H but will also go outside H . The
root of Th is an arbitrary node r1 ∈ H . The diameter of TH will be O(ρ). Each
branch may leave H once or twice along tail-connected paths (for the case of
r = 3).

More specifically, when stepping outside H , we only do it along tail-connected
paths, which are composed of two parts: Going upward in some tree Tk, and then
downward on some tree T�. Consider in TH the case where we have a branch
containing u � w � v, such that u and v belong to H , the left � stands for
a path on tree Tk and the right � stands for a path on T�, and w is a node in
the intersection between the two tail paths, w ∈ Tk ∩ T�. We collapse the each
of the paths � into a single edge, entering and leaving a virtual node which we
denote by 〈u, k, �, z〉 where z = dTk

(u, w).
We build a rooted tree TH , a set of clusters M = {M(x) | x ∈ H}, and a

data structure {S(x) | x ∈ H} with the following properties:

1. TH spans H , i.e., H ⊆ TH

2. The nodes of TH \H are virtual nodes. A real node x may have children that
are virtual nodes of the form 〈x, k, �, z〉 where x ∈ H, k, � ∈ R, z ∈ O(ρ).

3. A virtual node in T has only real children.
4. Each three node path in T , x → v → u, where v is a virtual node 〈x, k, �, z〉,

corresponds to a tail-connection between x and u formed by trees x ∈ Tk, u ∈
T� and the intersection node w ∈ Tk ∩ T� such that dTk

(x, w) = z.
5. By expanding each three node path in T , x → v → u, where v is a virtual

node, to its corresponding path in G, the diameter of the this graph is O(ρ).
6. For each node x with virtual children there exists a set of nodes M(x) ⊂ H

such that: (1) |M(x)| ≤ ρ. (2) G[M(x)] is connected. (3) For every x, y ∈ H ,
M(x) ∩ M(y) = ∅.

7. For each node x with virtual children, the data structure S(x) of o(log2 n)
bits contains routing information that allows reaching any node of M(x) at
cost O(ρ).

Now suppose we have built the tree. There remains the problem of building a
name-independent scheme for it. A useful result here would be the single-source
name-independent scheme we have presented in [1] (Lemma 4). This would give
us stretch O(1) with ˜O(1) memory per node. However, it cannot be employed
easily, since some nodes in TH are outside the cluster H , and may not maintain
specific information about TH (or else, they might need to maintain information
about too many trees). Additionally, nodes in TH may have neighbors outside
TH , which prevents us from using the result in [1] directly.



Compact Routing for Graphs Excluding a Fixed Minor 453

The solution we develop emulates the virtual tree of TH . We need to address
three issues.

1. Each (regular) node v must distinguish its neighbors in TH from any other
neighbors it may have in G. The solution is based on having bounded arboric-
ity. We use a partition of the edges into a constant number of forests. This
allows nodes to store only ˜O(1) bits of information about all their children
in the tree.

2. Each node u must recognize its virtual children, and be able to route to them.
To solve this, first note that for any u, there are O(ρ) possible combinations of
trees Tk, T� and nodes w along upward tails within distance O(ρ). Therefore,
u utilizes O(ρ) virtual children. We allocate for u a set of ρ nodes, denoted
M(u), each of which emulates one virtual child. So whenever an algorithm
on TH calls to use a path from u to w, we first search a node within M(x)
that emulates w. Then obtain the necessary information from it and route
back to u. This side-track information lookup incurs a cost of O(ρ) hops.
Then we use this information to simply route on Tk toward w.

3. The emulation of a virtual node w must be able to reach any child v of w
in TH . The route is along the tree T�. Our solution is to define for TH a
subtree of T� that contains H , as well as all nodes in T� within distance O(ρ)
from H . To be more precise, we define a forest F (�, j) which is the subgraph
of T� that spans a constant O(r) number of consecutive levels C(T�, ·). Let
j = j� be the index that generated H�. The diameter each tree in F (�, j) is
O(ρ) hence we can route on the tree T in F (�, j) that contains both w and
v. Using the single-source name-independent scheme of [1] on T ∈ F (�, j),
node w can route to v via the root of the tree T ∈ F (�, j) at a cost of O(ρ).

We now go back to describe the construction of the tree TH . We start by
choosing a root r1 arbitrarily. The first component of the tree TH is simply a
BFS tree of a set C1 containing all nodes reachable within H via length 8ρ paths
from r1.

In the next step, we bring in nodes r2, r3, ... that have distance greater than
8ρ from TH , and are tail-connected with r1. We do not include in the tree all the
nodes along the tails from r1 to ri. Rather, we define a virtual node 〈r1, k, �, z〉,
that records the name Tk of the tree of the upward tail, the name T� of the tree
of the downward tail, and the distance z upward on Tk of the intersection with
T�. The virtual node is added to the tree, as well as the edges (ri, 〈r1, k, �, z〉),
(〈r1, k, �, z〉 , ri). We also add all nodes with paths of length 4ρ in H from ri. We
then set TH =

⋃

i Ci. In order to store node r1’s virtual children information,
we designate as M(r1) the ρ closest nodes to r2.

In the next step, we bring in one at a time nodes ri that are at distance at
least 8ρ from TH , and that are tail connected to some node x in TH . For each
such node x, we repeat the process for r1 above. Finally, we insert into TH all
remaining nodes, which must be at distance at most O(ρ) within H .

Due to space constrains the construction for general r and the proof of
Lemma 4, Lemma 3 and Theorem 1 will appear in the full version.
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5 Lower Bounds

Theorem 2. Every shortest-path labeled routing scheme on polynomially
weighted n-node planar graphs of bounded degree requires a total label length
(the length of all the routing tables and node labels in the graph) of Ω(n1+1/2)
bits. Moreover, the (maximum) label length is Ω(n1/4) for some weighted bounded
degree triangulations. For unweighted planar graphs, the two bounds are respec-
tively Ω(n1+1/3) and Ω(n1/6).

Let us consider the problem of labeled routing in planar graphs along
shortest-path. To strengthen our lower bound we assume that the routing table
and the node label of any target t are merged into a single routing label, denoted
by L(G, t) for a graph G. So in this model, the routing decision in the source s
is taken with full knowledge of L(G, s) and L(G, t). Observe that in this model,
we make no assumptions on headers (rewritable and of arbitrary length). We
also assume the designer-port model, i.e., the designer can permute the port
numbers in order to optimize the maximum label length, however the ports of v
must range in {1, . . . , deg(v)}.

Our proof is based on the planar graph construction of [23]. This graph,
denoted Gk for some parameter k, was used to prove lower bounds for distance
labeling schemes in planar graphs. For this labeling problem each node of a graph
receives a label such that distances between any two nodes can be computed from
their labels only. There is no general relation between both labeling problems,
routing and distance, and thus a lower bound on distance labeling cannot be
applied to labeled routing as a black box. Nethertheless, in the full version we
show how to adapt the Gk construction to force a costly routing decision.
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