
Routing with Improved
Communication-Space Trade-Off

(Extended Abstract�)

Ittai Abraham1, Cyril Gavoille2, and Dahlia Malkhi1

1 School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Jerusalem, Israel

{ittaia,dalia}@cs.huji.ac.il
2 Laboratoire Bordelais de Recherche en Informatique,

University of Bordeaux, Bordeaux, France
gavoille@labri.fr

Abstract. Given a weighted undirected network with arbitrary node
names, we present a family of routing schemes characterized by an in-
tegral parameter κ ≥ 1. The scheme uses Õ(n1/κ log D) space routing
table at each node, and routes along paths of linear stretch O(κ), where
D is the normalized diameter of the network. When D is polynomial in
n, the scheme has asymptotically optimal stretch factor. With the same
memory bound, the best previous results obtained stretch O(κ2).
Of independent interest, we also construct a single-source name-
independent routing scheme for uniform weighted graphs with O(1)

stretch and Õ(1) bits of storage. With the same stretch, the best previous

results obtained memory Õ(n1/9).

1 Introduction

The ability to route messages to specific destinations is one of the basic building
blocks of any networked distributed system. Consider a weighted undirected
network G = (V, E, ω) with n nodes having arbitrary unique network identifiers
in {1, . . . , n}. A name-independent routing scheme is a distributed algorithm
that allows any source node to route messages to any destination node, given
the destination’s network identifier.

Several measures characterize the efficiency and feasibility of a routing
scheme.

Memory: The amount of memory bits stored by each node for purposes of
routing.

Headers: The size of message headers that are written by nodes along the
route.

Stretch: The maximum ratio, over all pairs, of the length of the routing path
produced by the routing scheme by routing from s to t and the shortest path
distance from s to t in G.

� Full version appears as Technical Report #RR-1330-04 of Bordeaux University [1].

R. Guerraoui (Ed.): DISC 2004, LNCS 3274, pp. 305–319, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

306 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi

Our aim is to devise compact routing schemes with poly-logarithmic headers
that have improved tradeoffs between the memory consumption and the stretch
factor.

Our contributions. We first present in Section 3 a family of routing schemes
parameterized by an integer κ > 0, that has the complexity measures below. The
Õ() notation denotes complexity similar to O() up to poly-logarithmic factors.
Concrete constants are provided in the body of the paper.

Each node keeps Õ(n1/κ log D) bits of storage, where D is the normalized
diameter of the graph. Message headers are of size Õ(1), and each route has
stretch O(κ)

When D is polynomial in n, the scheme has asymptotically optimal stretch
factor, as proven by [17]. With the same memory bound, the best previous results
obtained stretch O(κ2) [6,3].

Then, in Section 4, we consider the problem of routing messages from a
distinguished node, the source, to all the other nodes. Single source routing
problem with small local storage can also be seen as a searching problem through
DHT or distributed dictionaries, or as locating keys in peer-to-peer systems.
Efficient solution to these problems is interesting on its own right, and might be
of practical interests. We show prove that uniform weighted graphs have a single-
source name-independent routing scheme with O(1) stretch and Õ(1) bits of
storage, the first constant stretch routing scheme with poly-logarithmic memory.
The best previous bound with similar stretch was Õ(n1/9) bits of storage [14].

Previous results. There is a subtle distinction between a designer port model and
a fixed port model. In the fixed port model (also known as the adversarial port
model) the names of outgoing links, or ports, from each node may be arbitrarily
chosen by an adversary from the set {1, . . . , n}. In the designer port model
they may be determined by the designer of the routing scheme. In particular,
Gavoille and Gengler [12] indicate at least stretch-3 when each node has memory
o(n). For stretch-k routing scheme Peleg and Upfal [17] prove that a total of
Ω(n1+1/(2k+4)) routing information bits is required. Thorup and Zwick refine
this bound and show in [20] that the stretch is at least 2k + 1 when each node
has memory o(n1/k), proved for k = 1, 2, 3, 5 and conjectured for other values
of k. For comprehensive surveys on compact routing and compact network data
structures, see [11,13].

Initial results in [5] provide name-independent routing with Õ(n3/2) total
memory. Awerbuch and Peleg [6] presented a scheme that for any k, requires
Õ(k2n1/k log D) bits per node and routes on paths of stretch O(k2). Arias et
al. [3] present a slight improvement that uses the same memory bounds but
improves the constant in the O(k2) stretch by a factor of 4.

All known name-independent schemes that are “combinatorial” and do not
rely on the normalized diameter, D, in their storage bound have exponential
stretch factor. Awerbuch et al. [4] achieve with Õ(n1/k) memory stretch O(9k),
and [3] improved to stretch O(2k) with the same memory bound. For Õ(

√
n)

Routing with Improved Communication-Space Trade-Off 307

memory Arias et al. provide stretch 5. Recently, Abraham et al. [2], achieve
optimal stretch 3 with Õ(

√
n).

A weaker variant of the routing problem, labeled routing, was initiated in [4].
In this problem model, the algorithm’s designer can choose the network addresses
of nodes (and of course, use node names to store information about their location
in the graph). This paradigm does not provide for a realistic network design,
however, the tools devised for its solution have proven useful as building blocks
of full routing schemes (in fact, we make use here of certain building blocks
devised in the context of labeled routing schemes).

Indeed, optimal compact schemes for labeled routing are known. The first non
trivial stretch-3 scheme was given by Cowen [9] with Õ(n2/3) memory. Later,
Thorup and Zwick [19,20] improved the memory bound to only Õ(

√
n) bits.

They also gave an elegant generalization of their scheme, achieving stretch 4k−5
(and even 2k−1 with handshaking) using only Õ(n1/k) bits. Additionally, there
exist various labeled routing schemes suitable only for certain restricted forms
of graphs. For example, routing in a tree is explored, e.g., in [10,20], achieving
optimal routing. It requires Õ(1) bits for local tables and Õ(1) bits for headers.

Due to space limitation, some proofs have been moved in [1].

2 Preliminaries

We denote an undirected weighted graph by G = (V, E, ω), where V is the set
of nodes, E the set of links, and ω : E → R

+ a link-cost function. For any two
nodes u, v ∈ V let dG(u, v) be the cost of a minimum cost path from u to v,
where a cost of a path is the sum of weights of its edges. Define the normalized
diameter of G, D = maxu,v dG(u,v)

minu�=v dG(u,v) . Let B(v, r) = {u ∈ V | dG(v, u) ≤ r}.
We denote a rooted weighted tree by T = (V, r, E, ω), and define for every

node u ∈ V its parent p(u) and for the root p(r) = r. The children of a node u
are defined as child(u) = {v | p(v) = u}. The weight of a node u denoted w(u)
is the number of nodes in u’s subtree not including u itself. Define the radius of
T as maximum distance from the root, rad(T) = maxu {dT (r, u)}.

Define the maximum edge weight of a weighted tree T = (V, E, ω) as
maxE(T) = maxe∈E {ω(e)}.

For u ∈ V , let N(u) = {v | (u, v) ∈ E} denote u’s neighbors. For every node
u, let port(u, v) for every v ∈ N(u) be a unique port name in {1, . . . , n}. If node
u wants to forward a message to node v ∈ N(u) it does so by sending the message
on port port(u, v). In the fixed port model (also known as the adversarial port
model) the values {port(u, v) | v ∈ N(u)} ⊆ {1, . . . , n} are arbitrarily chosen.

3 Linear Communication-Space Trade-Off

Let G = (V, E, ω) be a graph, where |V | = n. In this section, we provide a family
of name-independent routing schemes for G parameterized by κ, in which each
node keeps Õ(n1/κ log D) storage, where D is the normalized diameter of the

308 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi

graph, and each route has stretch O(κ). When D is polynomial in n, the scheme
has asymptotically optimal stretch factor, as proven by [17].

The construction makes use of two building blocks. The first one is a new
tree cover based on Sparse Partitions, the second is a novel tree-routing scheme
we devise. Below, we first state these building blocks, then make a black-box use
of them for our full solution, and finally go back to provide the details of our
novel tree-routing scheme.

3.1 Tree Cover Based on Sparse Partitions

Lemma 1. [6,7,16] For every weighted graph G = (V, E, ω), |V | = n and inte-
gers κ, ρ ≥ 1, there exists a polynomial algorithm that constructs a collection of
rooted trees TCκ,ρ such that:

1. (Cover) For all v ∈ V , there exists T ∈ TCκ,ρ such that B(v, ρ) ⊆ T .
2. (Sparse) For all v ∈ V , | {T ∈ TCκ,ρ | v ∈ T} | ≤ 2κn1/κ.
3. (Small radius) For all T ∈ TCκ,ρ, rad(T) ≤ (2κ − 1)ρ.
4. (Small edges) For all T ∈ TCκ,ρ, maxE(T) ≤ 2ρ.

Note that property (4) is a novel property that does to appear in the tree
covers of [6,7,16]. However, it is crucial for our construction and its proof is a
simple consequence of the manner in which the cover algorithm works: in each
iteration, any cluster S added to a cover Y has rad(S) ≤ ρ. The end result is
a set of covers R that has properties (1),(2), and (3). For every cover Y ∈ R
define r(Y) as the initial node that started that cover, and G[Y] as the subgraph
containing Y and all the edges connecting nodes in Y whose cost is at most 2ρ.
G[Y] spans Y because Y is formed by a connected union of clusters whose
radius is at most ρ. The set TCκ,ρ is defined by taking every Y ∈ R and setting
TY ∈ TCκ,ρ to be a minimum cost path tree spanning G[Y] whose root is r(Y).

W.l.o.g. assume that the minimum cost edge is 1. We define an index set
I = {1, . . . , �log D�}. For all i ∈ I, we build a tree cover TCκ,2i according to
Lemma 1 above. For all v ∈ V and i ∈ I, let Treev[i] be a tree T ∈ T Cκ,2i such
that B(v, 2i) ⊆ T .

3.2 Bounded Cost Name-Independent Tree-Routing

Having built a hierarchy of tree covers, any source v would like to perform
name-independent routing on Treev[i], for i ∈ I in increasing order, until the
target is found. Our second building block addresses this need using a novel
and efficient construction. This construction provides a name-independent error-
reporting routing scheme in which the cost of routing to a destination in the tree
or learning that the name does not exist is bounded by a function of the tree’s
radius, the maximum edge cost, and a parameter κ.

Theorem 1. For every tree T = (U, E, ω), |U | = m, U ⊂ V , |V | = n, and
integer κ there exists a name-independent routing scheme on T with error-
reporting that routes on paths of length bounded by 4rad(T) + 2κmaxE(T), each

Routing with Improved Communication-Space Trade-Off 309

node requires O(κn1/κ log2 n) memory, and headers are of length O(log2 n).
(And routing for a non-existent name in T also incurs a path of length
4rad(T) + 2κmaxE(T) until a negative result is reported back to the source.)

The proof of Theorem 1 is deferred until Section 3.4.
For a tree T containing a node v, we let φ(T, v) denote the routing information

of node v as required from Theorem 1.

3.3 The Name-Independent Routing Scheme

We now combine Theorem 1 with Lemma 1 in a manner similar to the hierar-
chical routing scheme of Awerbuch and Peleg [7].

Storage. For all v ∈ V , i ∈ I, and T ∈ T Cκ,2i such that v ∈ T node v stores
φ(T, v). According to Lemma 1 and Theorem 1 above, the total storage of each
node is O(κ2n2/κ log D log2 n).

Routing. The sender s looks for destination t in the tree Trees[i] successively for
i = 1, 2, . . . , �log D� using the construction in Theorem 1.

Stretch analysis. From Lemma 1 for T ∈ T Cκ,ρ we have that the cost 4rad(T)+
2κmaxE(T) is bounded by 4(2κ − 1)ρ + 2κ2ρ ≤ 12κρ. Hence, for any source s,
integer i ∈ I, the cost of searching for any target t in Trees[i] is at most 12κ2i.

For the index j ∈ I such that 2j−1 < d(s, t) ≤ 2j we have t ∈ B(v, 2j) ⊆
Treev[j] and therefore t will be found in the jth phase. The total cost will be
∑

1≤i≤j 12κ2i ≤ 12κ2j+1 < 48κd(s, t). Hence, using κ̂ = 2κ instead of κ in the
above construction, we proved the following.

Theorem 2. For every weighted graph G = (V, E, ω) whose normalized
diameter is D and integer κ ≥ 1, there is a polynomial time con-
structible name-independent routing scheme with stretch O(κ) and memory
O(κ2n1/κ log D log2 n).

In the remainder of this section, we provide the construction that proves
Theorem 1 above.

3.4 Bounded-Cost Name-Independent Tree-Routing

Consider a set V of n nodes in which every node u ∈ V has a unique name
n(u) ∈ {1, . . . , n}. (We can remove this assumption using hash functions given
by Lemma 6. Let T = (U, r, E, ω) be a rooted tree with r ∈ U ⊆ V and |U | = m.

Sorting the nodes in U by their unique name n(), we denote U [i] as the
ith largest node in U , U [1] = maxv∈U{n(v)} and for 1 < i ≤ m define U [i] =
maxv∈U{n(v) | n(v) < U [i − 1]}.

In addition to their given name n(v), we give each node v ∈ T three more
names.

First, we give v its name in the labeled tree-routing of Thorup & Zwick [20]
and Fraigniaud & Gavoille [10]:

310 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi

Lemma 2. [10,20] For every weighted tree T with n nodes there exists a labeled
routing scheme that, given any destination label, routes optimally on T from any
source to the destination. The storage per node in T , the label size, and the
header size are O(log2 n/ log log n) bits. Given the information of a node and
the label of the destination, routing decisions take constant time.

For a tree T containing a node v, we let µ(T, v) denote the routing information
of node v and λ(T, v) denote the destination label of v in T as required from
Lemma 2. Thus, the first name we assign with v is �(v) = λ(T, v).

Secondly, d(v) denotes the depth-first-search (DFS) preorder enumeration of
the rooted tree, note that {d(u)|u ∈ U} = {1, . . . , m}. Finally every node has a
name s(v) which will be defined as a function of its own subtree size relative to
its siblings’ subtree sizes. In some sense this reflects its rank among its siblings.
The formal value of s(v) will be defined later.

In our construction a node whose DFS enumeration is i is responsible to the
ith largest node in U . Formally, for any x ∈ T we define its responsibility as
o(x) = U [d(x)]. Given a target u the idea is first to route to the node y such
that o(y) = n(u) and then use labeled tree-routing to reach u.

We begin by presenting a simple name-independent scheme in which the
storage requirements on any node v is Õ(|child(v)| + 1) and the total cost of
routing will be at most 4rad(T).

Storage. Every node x ∈ T stores the following:

1. Let y ∈ T be such that o(x) = n(y). Node x stores the tuple (y, n(y), �(y)).
2. Node x stores A(x) = {o(y) | y ∈ child(x)} together with a map from any

o(y) ∈ A(x) to the corresponding port name port(x, y) to reach the child y.
3. x stores µ(T, x), its tree-routing label as required from Lemma 2.

Routing. Given a target u ∈ U , first route to the root r.

1. On a node x
(a) If o(x) = n(u) then use �(u) to reach u.
(b) If there is no child y ∈ child(x) such that o(y) ≤ n(u) then report back

that u /∈ T .
(c) Route to the child y ∈ child(x) with the maximum o(y) such that o(y) ≤

n(u). Set x := y and goto 1.

This procedure is similar to the interval routing of [18,22]. If the label �(u)
is found, routing proceeds using the labeled tree-routing scheme of Lemma 2. In
the simple scheme presented above, the cost of reaching root is at most rad(T),
cost of reaching the node storing the required label is bounded by rad(T) and
reaching the target (or reporting an error to the source) requires at most another
2rad(T). In the fixed port model the storage per node is Õ(|child(v)|+1) = Õ(n).

Bounding storage. We proceed to show how, at the cost of adding at most κ
length-2 cycles to the routing path, we can reduce the storage of each node
to only Õ(n1/κ) bits even in the fixed port model. The idea is to spread the

Routing with Improved Communication-Space Trade-Off 311

information about v’s children in a directory among v and its children child(v)
in a load balanced manner that will ensure that at most κ probes to directories
are performed in the whole routing path until the target is found.

First, for determining d(v) we use a DFS enumeration that always prefers
heavy children first (when faced with a choice, it explores a child with the max-
imum weight among the unexplored children).

Second, for every node u, we now define its child name s(u). For any node
v, we enumerate its children child(v) in their weighted order from large to small
using words of the alphabet Σ = {0, 1, 2, . . . n1/κ−1}. Specifically, for any node,
given a list of its children sorted by their weight (from large to small), we name
each of the first n1/κ nodes in non-increasing order of their weights by a child
name which consists of one digit in Σ in increasing order (0), (1), . . . , (n1/κ −
1). Then we name each of the next n2/κ nodes in order of their weights by a
child name in Σ2 in increasing lexicographic order, (0, 0), (0, 1), . . . , (0, n1/κ −
1), (1, 0), (1, 1), . . . , (1, n1/κ − 1), . . . , (n1/κ − 1, 0), . . . , (n1/κ − 1, n1/κ − 1). We
continue this naming process until all nodes in child(v) are exhausted, up to at
most a κ-digit child name in Σκ.

The central property of our naming is as follows. Let u be a child of v with
a child name s(u) consisting of j > 1 digits. Then w(u) ≤ w(v)/n(j−1)/κ. The
reason this property holds is that v must have n(j−1)/κ children that are at least
as heavy as u. Since each one weights at least w(u) their total weight would be
larger than w(v), a contradiction.

Storage. For every x ∈ T , we define S(x) as follows:

S(x) =

(0) (1) . . . (n1/κ − 1)
(0, 0) (1, 0) . . . (n1/κ − 1, 0)

...
...

(0, 0, . . . , 0
︸ ︷︷ ︸

κ−1

) (1, 0, . . . , 0
︸ ︷︷ ︸

κ−1

) . . . (n1/κ − 1, 0, . . . , 0
︸ ︷︷ ︸

κ−1

)

For each child y of x such that s(y) ∈ S(x), node x stores o(y) and a map
from o(y) to the corresponding port name port(x, y) to reach child y.

We now define the storage held by x’s children to assist in lookup. Let y be
in child(x) and assume y has a length-j child name, s(y), with with j− i trailing
zeros, s(y) = (a1, . . . , ai, 0, . . . , 0

︸ ︷︷ ︸

j−i

) for some i ≤ j. We define a subset S′(y) of the

enumerated set of v’s children as follows:

S′(y) =

(a1, . . . , ai, 0, . . . , 0
︸ ︷︷ ︸

j−i−1

, 0) . . . (a1, . . . , ai, 0, . . . , 0
︸ ︷︷ ︸

j−i−1

, n1/κ − 1)

(a1, . . . , ai, 0, . . . , 0
︸ ︷︷ ︸

j−i−2

, 0, 0) . . . (a1, . . . , ai, 0, . . . , 0
︸ ︷︷ ︸

j−i−2

, n1/κ − 1, 0)

...
...

(a1, . . . , ai, 0, 0, . . . , 0
︸ ︷︷ ︸

j−i−1

) . . . (a1, . . . , ai, n
1/κ − 1, 0, . . . , 0

︸ ︷︷ ︸

j−i−1

)

312 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi

The child node y of x stores the following information. For each z ∈ child(x)
such that s(z) ∈ S′(y), y stores o(z) and a map from o(z) to the corresponding
port name port(x, z) to reach child z from parent x.

Intuitively, here is how this directory scheme works. Suppose the current
node is x and the target node is u. The child-name enumeration of x’s children
is consistent with their responsibility enumeration order. That is, let v be the
child of x whose sub-tree has responsibility for the value n(u). Denote the child
name of v by s(v) = (a1, . . . , aj). Then because of our DFS ordering, given any
child y ∈ child(x):

– If s(y) has more than j digits then o(v) ≤ n(u) < o(y);
– If s(y) has less than j digits then o(y) < o(v) ≤ n(u);
– If s(y) has j digits, and according to lexicographical order s(y) < s(v), then

o(y) < o(v) ≤ n(u);
– If s(y) has j digits, and according to lexicographical order s(v) < s(y), then

o(v) ≤ n(u) < o(y);

Given a target u, node x would like to find the appropriate child v such that
o(v) is the maximum value out of all {o(y) ≤ n(u) | y ∈ child(x)}. Since x does
not maintain o(y) of all of its children y ∈ child(x), the highest o() value it
maintains that is no greater than the target n(u) belongs to the node y1 with
child name s(y1) = (a1, 0, . . . , 0

︸ ︷︷ ︸

j−1

). Continuing from y1, it too maintains only

partial information about x’s children. Here, the highest o() value it maintains
that is no greater than the target n(u) belongs to the node y2 with child name
s(y2) = (a1, 0, . . . , 0

︸ ︷︷ ︸

i

, ai+2, 0, . . . , 0
︸ ︷︷ ︸

j−i−2

) where i ≥ 0 is the number of consecutive

zeros that s(v) has starting from its second digit a2. And so on. With each such
step, we reach a child of x whose child name matches the target’s child name
s(v) in one more digit at least (and zero’s in v’s child name are matched without
further steps). After at most j such steps, we reach v, and continue to search for
u within the sub-tree it roots.

More precisely, the routing algorithm is as follows.

Routing algorithm. Given a target u ∈ U , first route to the root r. Then, on any
node x there are three cases:

1. if o(x) = n(u) then use �(u) to reach u.
2. if x is a leaf or if n(u) < o(y) for all y such that s(y) ∈ S(x), then report

back that u /∈ T .
3. Otherwise, we would like to route to the child y ∈ child(x) with the maximum

o(y) value out of all y such that o(y) ≤ n(u). Since x does not store o(y) for
all y ∈ child(x) performing this case is done using the following directory
algorithm.

Directory algorithm.

1. Route to the child y with maximum o(y) value out of all y such that o(y) ≤
n(u) and s(y) ∈ S(x).

Routing with Improved Communication-Space Trade-Off 313

2. On node y,
(a) If n(u) < o(z) for all z such that s(z) ∈ S′(y) then the directory al-

gorithm has reached the required child and the routing algorithm can
proceed from node y.

(b) Otherwise, route to the sibling z such that o(z) has maximum value out
of all z such that o(z) ≤ n(u) and s(z) ∈ S′(y).
Set y := z and goto 2.

3.5 Analysis

Lemma 3. Given a parameter κ, the name-independent error-reporting tree-
routing scheme requires O(κn1/κ log2 n) bits of storage per node in the tree.

Lemma 4. Given a parameter κ, the name-independent error-reporting tree-
routing scheme routs on paths whose cost is at most 4rad(T)+2κmaxE(T) until
either the destination is reached or the source receives notification that the des-
tination does not exists in the tree

Proof. We now bound the total cost of searching for a target u on a tree T .
Reaching the root takes at most rad(T), reaching the node v such that o(v) =
n(u) (or getting a negative result) takes rad(T) + 2jmaxE(T) where j is the
number of times the directory service had to probe other children along the
path to node u. Once node u is reached, routing to t or reporting a negative
result back to the source takes at most 2rad(T).

Therefore, we are left to show that j ≤ κ. The directory structure above
guarantees that if appropriate next hop child has a length-i child name then it
will reached in at most i− 1 intermediate queries. Specifically, let s(y) denote a
length-i child name of x’s child, whose sub-tree stores information on a target
n(u). Given a target name n(u), node v finds o(u1), the maximum name stored
by v that is at most n(u). Then v routes to u1, a child with length-i child-name
whose first digit is the same as the child covering n(u). Node u1 is either the
actual child y, or it finds o(u2), the maximum name stored in u1 that is at most
n(u). Then u1 routes up to v and down to u2, which has a length-i child name
that matches s(y) in at least the first two digits. This process continues until
the correct child y is reached after at most i − 1 intermediate steps from v to a
child and back.

A crucial property maintained by the storage hierarchy is that if v has weight
w(v), then a child with a length-i child name with i > 1 has weight at most
w(v)/n(i−1)/κ. This is due to the weighted sorting: Otherwise the n(i−1)/κ chil-
dren with length i − 1 child names would each have at least w(v)/n(i−1)/κ chil-
dren, and their total weight would be larger than w(v) which is a contradiction.

Following a path from the root r to the node containing the label takes at
most distance rad(T). Along the path, every node with child name of length
i > 1 may cost additional i− 1 double-steps from its parent to a child and back
to the parent. Since every node with a length-i id reduces the weight of the tree
by a factor of at least n(i−1)/κ, there are at most j ≤ κ such extra double-steps

314 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi

along the whole path. Each double-step costs at most 2maxE(T). Therefore, the
total distance of the path is bounded by 4rad(T) + 2κmaxE(T).
�

4 Single-Source Name-Independent Routing Scheme

In this part we consider the problem of routing messages from a distinguished
node, the source, to all the other nodes, while keeping the name-independent
constraint. The Single-source routing problem with small local storage can also
be seen as a searching problem through a distributed information system, e.g., a
distributed dictionary or a hash table. Efficient solutions to these problems are
interesting in their own right.

We restrict our attention to single-source routing schemes in trees rooted at
the source, i.e., the single-source shortest path tree rooted at the source in the
graph. We assume that node names of the tree are taken from some universe U

with |U| ≥ n, the number of nodes of the tree. The names and the port numbers
are assumed to be fixed by an adversary (fixed port model) after the given tree
and before the design of the routing scheme.

A single-source routing scheme on a tree T with source s is L-reporting if,
for every v ∈ U, the routing from s to v reports to s a failure mark in the header
if v /∈ T after a loop of cost at most L. And, if v ∈ T , then the route from s to v
has cost at most L+dT (s, v). Note that the stretch constraint of an L-reporting
routing scheme concerns restriction on route length to destinations v ∈ T only. In
the following d(T) denotes the depth of the tree T , i.e., d(T) = maxv∈T dT (s, v).

Theorem 3. Every unweighted rooted tree T with n nodes taken from U has
a single-source name-independent routing scheme of stretch 17 that is 12d(T)-
reporting, and using O(log5 n/(log log n)2+log |U| log3 n/ log log n) bits per node,
that is o(log5 n) if |U| ≤ no(log n log log n).

The best previous scheme, due to [14] and for |U| = n, was using Õ(n1/k)
bits for a stretch factor of 2k − 1, i.e., Õ(n1/9) bits for stretch 17. However our
scheme works only for uniform weights.

The next lemma reduces the problem to one of designing efficient L-reporting
schemes on trees without any specification of the stretch. Observe that there
is no straightforward relationship between the L-reporting property and the
stretch factor property of a routing scheme. This reduction can be seen as the
specialization of the Awerbuch-Peleg’s sparse cover for trees [6,16].

Lemma 5. Assume that there exists α ≥ 1 such that every unweighted rooted
tree T with at most n nodes has (in the fixed port model) a single-source name-
independent routing scheme that is αd(T)-reporting and that uses at most M
bits per node. Then, every rooted tree T with n nodes has a single-source name-
independent routing scheme (also in the fixed port model) of stretch 4α + 1 that
is 3αd(T)-reporting, and using at most M(�log d(T)� + 1) bits per node.

According Lemma 5, to prove Theorem 3 it suffices to prove that we can set
α = 4 with a suitable memory bound M . More precisely:

Routing with Improved Communication-Space Trade-Off 315

Theorem 4. Every unweighted rooted tree with n nodes taken from U has a
single-source name-independent routing scheme (in the fixed port model) that is
4d(T)-reporting, and using O(log4 n/(log log n)2 + log |U| log2 n/ log log n) bits
per node. Moreover, the first header construction takes O(log n) time at the
source, and all the other routing decisions O(log log n) time.

Before proving Theorem 4 we need some basic results about hash functions
(see [8,15]). W.l.o.g. we assume that U = {0, . . . , |U| − 1}.

Lemma 6. [8] Let P = {0, . . . , p − 1} for some prime number p = Θ(n). There
exists a family of hash functions H = {h : U → P} such that for every set V ⊆ U

with |V | = n, there exists a function h ∈ H such that:

1. h is a degree-O(log n) polynomial of the field Zp;
2. | {v ∈ V | h(v) = k} | = O(log n) for every k ∈ P;

The first point of Lemma 6 implies that each function h can be stored with
O(log2 n) bits and have time complexity O(log n), whereas the second point
states that there are at most O(log n) collisions for each v ∈ V .

The proof of Theorem 4. From now, we consider a tree T with source s. The
node set of T is denoted by V , n = |V |, and p is a prime number such that
n ≤ p < 2n. Let P = {0, . . . , p − 1}. Each value k ∈ P is called hereafter a key.
We consider the hash function h ∈ H for V as given by Lemma 6.

For every v ∈ V , we denote by �T (v) the tree-routing label of v in T , which
is used for the routing in T from source s to destination v. The length of each
of these labels is O(log2 n/ log log n) bits [20,10].

Overview of the scheme. The basic idea of the scheme is to use indirection: the
keys of P are mapped to the nodes of T in a balanced way, typically with no
more than Õ(1) keys per node. Then the node on which the key k is mapped is
in charge of the tree-routing label of all names u ∈ U such that h(u) = k. First
we route from s to the node in charge of k, and then to the destination.

More precisely, consider the routing from the source s to an arbitrary name
v ∈ U. First s hashes v into the key k = h(v) ∈ P. Then we use a label-based
routing scheme (i.e., a name-dependant routing scheme) to find a route in T from
s to the node labeled k in this routing scheme, say node w. Roughly speaking,
this labeled scheme is similar to Interval Routing Scheme [18,22] which is based
on a DFS numbering of the nodes. Locally w is aware of the tree-routing labels
�T (s), �T (w), and �T (u) for all u ∈ V such that h(u) = k. Node w also stores
the corresponding list of names, i.e., the u’s of V with h(u) = k. Our scheme
ensures that each possible key of P is mapped to exactly one node of T . So that
once node w is attained, we only need to check whether v belongs or not to the
list of names stored by w. If it does not belong to, then we can conclude that
v /∈ V , and then w reports to s a failure mark thanks to the tree-routing labels
�T (s) and �T (w). If v is found in the w’s name list, then w directly routes to v
thanks to �T (v) and �T (w). Such a scheme is therefore 2d(T)-reporting.

316 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi

However, in the scheme sketched above, the routing from s to k cannot be
done via a standard implementation of Interval Routing Scheme for several rea-
sons: 1) the set of keys, P, is in general larger than V ; 2) the memory requirements
of node w for interval routing is O(deg(w) log n) bits whereas we expect Õ(1)
bits of storage for every node.

The remainder of the proof consists in constructing the mapping from P to
V , and the compact encoding of routing information.

The header of the message at any step of the routing from s to v is composed
at most of the following fields: a type of message on a constant number of bits,
a key of P, a name of U, and possibly a tree-routing label. The second and
the third fields never change and are initialized to h(v) and v respectively. The
length of the header is no more than O(log n + log |U|) bits.

Simulating designer port model via double-step routing. An important hypothesis
to apply Lemma 5 is that the ports of each node x of the tree are arbitrarily
permuted (the fixed port model). However, according to the next remark we will
assume that the routing from s to the key k is done in the designer port model
(i.e., the ports of each node have been permuted with a desirable permutation).
Nevertheless it should be clear that once k is attained, then the routing to v (if
v ∈ V) or to s (if v /∈ V) is done thanks to the label �T (v) or �T (s) that have
been computed in the fixed port model.

Indeed, during the routing from s to the key of v, one can apply the follow-
ing routing simulation: Let portd(x, y) (resp. portf (x, y)) be the port number
between x and y in the designer port model (resp. in the fixed port model). For
the simulation, every node y with parent x stores the numbers p1 = portd(y, x),
p2 = portf (y, x), and p3 = portf (x, z) where z is the child of x such that
portd(x, z) = portf (x, y). In y, if the routing scheme outputs p1, then the an-
swer is converted to port p2. If in x, the answer p of the routing scheme is
different from port number of its parent (x knows it), x sends the message on
port number p with a mark m1 attached to the header. If y receives a message
with mark m1, it forwards to its parent, on port p2, the message with mark
m2 and the value p3 attached to its header. Finally, in x, if the routing scheme
receives a header with a m2 mark, then it extracts from the header the value
p, and forward the message on port number p. To summarize the routing from
y toward its parent is done as previously, whereas the routing from x toward
its child z is done by a route of length 3. So if v /∈ V , the routing will report
to s a fail mark after a route of length 3d(T) + d(T) = 4d(T) instead of 2d(T).
And if v ∈ V , the route length is at most 3d(T) + dT (k, v) ≤ 4d(T) + dT (s, v).
This leads to a 4d(T)-reporting scheme with an O(log n) additive factor on the
memory requirements and on the header size. So, simulating and superposing
the O(log d(T)) = O(log n) designer port schemes raise the overall memory re-
quirement of a node to an O(log2 n) additive factor, for headers the overhead is
only O(log log n) bits.

Routing in the designer port model. So we restrict our attention to the routing
from s to the key of v in the designer port model. From now we assume that the

Routing with Improved Communication-Space Trade-Off 317

children xi’s of every node x are ordered according to their increasing number
of descendants and that portd(x, xi) = i. (We fix portd(xi, x) = 0.) Let w(x) be
the weight of x defined by the number of descendents of x in T (x included).

The scheme is parametrized by t = �log n�. We partition the nodes of T in
heavy and light. The t heaviest children of x are heavy and the others (if any) are
light. The root is heavy. Clearly, if the child xi of x is light, then w(xi) < w(x)/t,
so that the number of light ancestors of xi is at most O(logt n).

The routing scheme is based on two numbers, c(x) and q(x), we assign to
each node x. The first, called the charge of x, represents the total number of
keys that must be mapped on the nodes of Tx, the subtree of root x. (So for the
root, c(s) = p). The second one denotes the number of keys assigned to x. These
two numbers must satisfy that, for every x,

c(x) =
∑

y∈Tx

q(y) . (1)

The heart of our scheme is the way we compute and encode c(x) while bal-
ancing the charge of x over its descendants, i.e., guaranteeing q(y) = Õ(1) for
every y. Given the numbers c(x) and q(x) one can then route through a mod-
ified DFS number f(x) associated with each x and defined by: f(s) := 0, and
f(xi) := f(x) + q(x) +

∑

j<i c(xj), where xi is the ith child of x. (This matches
to the standard definition if q(x) = 1 for every x.)

Now the routing is done similarly to Interval Routing Scheme. Let w be the
node in charge of h(v), the key of v. Assume that w is a descendant of some
node x, initially x = s. It is easy to see that:

1. either h(v) ∈ [f(x), f(x)+ q(x)), and w = x, i.e., the key of v is stored by x;
2. or w is a descendant of xi where h(v) ∈ [f(xi), f(xi+1)), and thus the routing

in x must answer port i.

So the routing from x to h(v) is well defined if x is aware of f(x), q(x), and of the
vector c→(x) = (c(x1), c(x2), . . .) of charges of x’s children. Indeed the numbers
f(xi) and f(xi+1) can be computed from f(x), q(x), and from c

→(x). We are now
left with the description of c(x), q(x), and the compact encoding of c→(x).

For that, let W be the function W (k, q, m) = 2k · (1+1/q)m, where k, m ≥ 0
and q ≥ 1 are all integers. Function W satisfies the following properties:

1. q ·W (k, q, m + 1) = (q + 1)·W (k, q, m).
2. W (k, q, m) < W (k, q, m + 1), since 1 + 1/q > 1.
3. W (k, q, q) ≥ W (k + 1, q, 0), because (1 + 1/q)q ≥ 2 for q ≥ 1.

Computing c(x) and q(x). The numbers c(x) and q(x) are computed through
a DFS with priority to lightest children. We start from the source by setting:
c(s) := p and q(s) := �p/n� ≤ 2. Then, for the ith child of x such that c(x) > 0:

1. Let q = q(x) and k = �log w(xi).
2. If xi is heavy, then c(xi) := q ·w(xi) and q(xi) := q.

318 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi

3. If xi is light, then c(xi) := �(q + 1)·W (k, q, m)� and q(xi) := q + 1 where m
is such that w(xi) ∈ [W (k, q, m), W (k, q, m + 1)).

4. If
∑

j≤i c(xj) > c(x)−q(x) then set c(xi) := max{c(x)−q(x)−
∑

j<i c(xj), 0}.
5. If q(xi) > c(xi), then correct q(xi) := c(xi).

By induction on the depth of x, q(x) = O(logt n) = O(log n/ log log n).
In order to validate our routing algorithm, based on f(x), q(x) and c

→(x), we
need to show that c(x) and q(x) numbers satisfy Eq. (1), i.e.,

Lemma 7. For every x, c(x) =
∑

y∈Tx
q(y).

A range query on a sequence of integers (c1, . . . , cr) consists in finding, for
every input z, the index i such that z ∈ [

∑

j≤i cj ,
∑

j≤i+1 cj). Clearly, the routing
algorithm as described above reduces to the range query z = h(v)−f(x)−q(x) on
the sequence c

→(x). Remark: range queries can be solved in O(log log n) time with
the O(r) space van Emde Boas’s data structure [21]. We show here that one can
obtain the same time complexity while working on a very compact representation
of the sequence. Compact representation of c→(x) is possible because of the special
choice of c(xi) values.

Lemma 8. For every x, c
→(x) can be coded with a data structure of O(log3 n/

log log n) bits supporting range queries in O(log log n) worst-case time.

The time complexity of the routing in x �= s is bounded by a range query
in c→(x), since the other tasks consist in search in tables of size O(log n) (so in
O(log log n) time using binary search), or consist in routing with tree-routing
label that takes constant time. The source however spends O(log n) time to
initialize the header with h(v). To complete the proof of Theorem 4, we show:

Lemma 9. The memory requirement for x is O(log4 n/(log log n)2 + log |U|
log2 n/ log log n) bits.

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments.

References

1. I. Abraham, C. Gavoille, and D. Malkhi, Routing with improved communica-
tion-space trade-off, Tech. Report RR-1330-04, LaBRI, University of Bordeaux 1,
351, cours de la Libération, 33405 Talence Cedex, France, July 2004.

2. I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup, Compact
name-independent routing with minimum stretch, in 16th Annual ACM Symposium
on Parallel Algorithms and Architecture (SPAA), ACM Press, 2004, pp. 20–24.

3. M. Arias, L. Cowen, K. Laing, R. Rajaraman, and O. Taka, Compact routing
with name independence, in 15th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA), ACM Press, June 2003, pp. 184–192.

Routing with Improved Communication-Space Trade-Off 319

4. B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, Compact distributed
data structures for adaptive routing, in 21st Annual ACM Symposium on Theory
of Computing (STOC), ACM Press, May 1989, pp. 479–489.

5. B. Awerbuch, A. B. Noy, N. Linial, and D. Peleg, Improved routing strategies
with succinct tables, Journal of Algorithms, 11 (1990), pp. 307–341.

6. B. Awerbuch and D. Peleg, Sparse partitions, in 31th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), Oct. 1990, pp. 503–513.

7. B. Awerbuch and D. Peleg, Routing with polynomial communication-space
trade-off, SIAM J. Discret. Math., 5 (1992), pp. 151–162.

8. J. L. Carter and M. N. Wegman, Universal hash functions, Journal of Com-
puter and System Sciences, 18 (1979), pp. 143–154.

9. L. J. Cowen, Compact routing with minimum stretch, Journal of Algorithms, 38
(2001), pp. 170–183.

10. P. Fraigniaud and C. Gavoille, Routing in trees, in 28th International Collo-
quium on Automata, Languages and Programming (ICALP), vol. 2076 of Lecture
Notes in Computer Science, Springer, July 2001, pp. 757–772.

11. C. Gavoille, Routing in distributed networks: Overview and open problems, ACM
SIGACT News - Distributed Computing Column, 32 (2001), pp. 36–52.

12. C. Gavoille and M. Gengler, Space-efficiency of routing schemes of stretch
factor three, J. of Parallel and Distributed Computing, 61 (2001), pp. 679–687.

13. C. Gavoille and D. Peleg, Compact and localized distributed data structures, J.
of Distributed Computing, 16 (2003), pp. 111–120. PODC 20-Year Special Issue.

14. K. Laing, Name-independent compact routing in trees, Tech. Report 2003-02, Tufts
Univ. Dep. of Comp. Science, Nov. 2003. Also in PODC ’04 as brief announcements.

15. R. Motwani and P. Raghavan, Randomized Algorithms, Camb Univ Press, 1995.
16. D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM Mono-

graphs on Discrete Mathematics and Applications, 2000.
17. D. Peleg and E. Upfal, A trade-off between space and efficiency for routing

tables, Journal of the ACM, 36 (1989), pp. 510–530.
18. N. Santoro and R. Khatib, Labelling and implicit routing in networks, The

Computer Journal, 28 (1985), pp. 5–8.
19. M. Thorup and U. Zwick, Approximate distance oracles, in 33rd Annual ACM

Symposium on Theory of Computing (STOC), July 2001, pp. 183–192.
20. , Compact routing schemes, in 13th Annual ACM Symposium on Parallel

Algorithms and Architectures (SPAA), ACM Press, July 2001, pp. 1–10.
21. P. van Emde Boas, Preserving order in a forest in less than logarithmic time and

linear space, Information Processing Letters, 6 (1977), pp. 80–82.
22. J. van Leeuwen and R. B. Tan, Computer networks with compact routing tables,

in The Book of L, Springer-Verlag, 1986, pp. 259–273.

	1 Introduction
	2 Preliminaries
	3 Linear Communication-Space Trade-Off
	3.1 Tree Cover Based on Sparse Partitions
	3.2 Bounded Cost Name-Independent Tree-Routing
	3.3 The Name-Independent Routing Scheme
	3.4 Bounded-Cost Name-Independent Tree-Routing
	3.5 Analysis

	4 Single-Source Name-Independent Routing Scheme
	References

