
DOI: 10.1007/s00224-004-1155-5

Theory Comput. Systems 37, 441–456 (2004) Theory of
Computing

Systems
© 2004 Springer-Verlag

New York, LLC

Nearest Common Ancestors: A Survey and a New Algorithm for a
Distributed Environment

Stephen Alstrup,1 Cyril Gavoille,2 Haim Kaplan,3 and Theis Rauhe1

1Department of Theory, IT University of Copenhagen,
Copenhagen DK-2400, Denmark
{stephen,theis}@it-c.dk

2LaBRI, Université de Bordeaux,
33405 Talence cedex, France
gavoille@labri.fr

3School of Computer Science, Tel Aviv University,
Tel Aviv, Israel
haimk@math.tau.ac.il

Abstract. Several papers describe linear time algorithms to preprocess a tree,
in order to answer subsequent nearest common ancestor queries in constant time.
Here, we survey these algorithms and related results. Whereas previous algorithms
produce a linear space data structure, in this paper we address the problem of dis-
tributing the data structure into short labels associated with the nodes. Localized
data structures received much attention recently as they play an important role for
distributed applications such as routing.

We conclude our survey with a new simple algorithm that labels in O(n) time
all the nodes of an n-node rooted tree such that from the labels of any two nodes
alone one can compute in constant time the label of their nearest common ancestor.
The labels assigned by our algorithm are of size O(log n) bits.

1. Introduction

Let T be a rooted tree. A node x ∈ T is an ancestor of a node y ∈ T if the path from
the root of T to y goes through x . A node v ∈ T is a common ancestor of x and y if it
is an ancestor of both x and y. The nearest common ancestor, NCA, of two nodes x, y
is the common ancestor of x and y whose distance to x (and to y) is smaller than the
distance to x of any other common ancestor of x and y. We denote the NCA of x and y

442 S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe

by nca(x, y). The problem of efficiently computing NCAs has been studied extensively
over the last three decades in an on-line and off-line setting, and in various models of
computation (see, e.g., [48], [2], [3], [39], [61], [19], and [8]).

The NCA problem, also called the Least Common Ancestor or Lowest Common
Ancestor (LCA) problem, has numerous applications. Solutions to this problem are rou-
tines of several optimization algorithms like algorithms for finding a maximum weighted
matching in a graph [34], a minimum spanning tree in a graph [42], [22], and a dominator
tree in a directed flow-graph [2]. It has also proved useful in several string algorithms [37],
[26], for dynamic planarity testing [70], in network routing [66], for solving various geo-
metric problems [15] including range searching [35], for finding evolutionary trees [27],
and in bounded tree-width algorithms [16].

One of the most fundamental results on computing NCAs is that of Harel and Tar-
jan [39], [38]. Harel and Tarjan describe a linear time algorithm to preprocess a tree and
build a data structure that allows subsequent NCA queries to be answered in constant time.
Subsequent to this result of Harel and Tarjan several simpler algorithms with essentially
the same properties but better constant factors have been proposed [54], [9], [35], [61],
[12] (see also Section 2.2). These algorithms, including the one of Harel and Tarjan,
use the observation that it is rather easy to solve the problem when the input tree is a
complete binary tree.

To solve the problem when the input is a complete binary tree one can label the
nodes by their index in an inorder traversal of the tree, starting with index 1. If the
tree has n nodes each such number occupies � = �log n� bits.1 We assume that the least
significant bit is the rightmost and the index of this bit is 1. Let inorder(x) and inorder(y)
be the inorder indices of x and y, respectively. Let i be the maximum among (1) the
index of the leftmost bit in which inorder(x) and inorder(y) differ, (2) the index of the
rightmost 1 in inorder(x), (3) the index of the rightmost 1 in inorder(y). It is easy to
prove by induction that the inorder index of nca(x, y) consists of the leftmost �− i bits
of inorder(x) (or of inorder(y) if the maximum above was the index of the rightmost 1
in inorder(y)) followed to the right by a 1 and i − 1 zeros.

Note that this algorithm for complete binary trees is distributed in the sense that it
constructs the inorder index of nca(x, y) from the inorder indices of x and y alone without
accessing the original tree or any other global data structure. In case the application does
not identify a node by its inorder index then tables converting identifiers to inorder indices
and vice versa have to be constructed. In the common case where a node is identified by
a pointer to a structure representing it, we can simply store the inorder index as an extra
field in that structure. This will make it possible to get the inorder index of a node giving
a pointer to its corresponding structure in constant time. In order to map the inorder
index of the NCA back to a pointer to the corresponding node, a table of O(2�) = O(n)
entries can easily be constructed.

The algorithms in [39], [54], [9], [35], [61], and [12] for general trees all work using
some mapping of the tree to a completely balanced binary tree, thereby exploiting the fact
that for completely balanced binary trees the problem is easier. Algorithms differ in the

1 All the logarithms are in base 2.

Nearest Common Ancestors 443

way they do the mapping. Unfortunately, all algorithms, as a result of doing the mapping,
have to use some precomputed auxiliary data structures in addition to the labels of the
nodes, in order to compute NCAs. Thus, in contrast with the algorithm for completely
balanced binary trees, the algorithms for general trees do not allow one to compute a
unique identifier of nca(x, y) from short labels associated with x and y alone.

In this paper we show how to label the nodes of an arbitrary tree so that from the
labels of x and y alone one can determine the label of nca(x, y). In particular we give
an algorithm that proves the following theorem.

Theorem 1. There is a linear time algorithm that labels the n nodes of a rooted tree T
with distinct labels of length O(log n) bits such that from the labels of nodes x, y ∈ T
alone, one can compute the label of nca(x, y) in constant time.

Our algorithm is as simple as most of the nondistributed algorithms mentioned
above. In a scenario when nodes have to be identified by some fixed and predetermined
identifiers one can use our algorithm together with a table converting labels to those
predetermined identifiers and vice versa. Thus our algorithm provides an alternative
to any of the algorithms mentioned above also in a nondistributed setting. Theorem 1
should be put in contrast with a recent lower bound of Peleg [53]. Peleg shows that one
needs labels of �(log2 n) bits, if the query has to return a predetermined identifier
of �(log n) bits for nca(x, y) from the labels of x and y alone. So to obtain a theorem
like Theorem 1 one has to exploit the freedom to choose the identifiers of the nodes. A
distinguished feature in our algorithm is its use of alphabetic codes [36] to generalize
the inorder approach for complete binary trees.

A labeling scheme to identify NCAs may be useful in routing messages on tree
networks. When a message has to be sent from a node x to a node y in a tree it has to
go through nca(x, y). Therefore the ability to compute the identifier of nca(x, y) from
the identifiers of x and y may prove useful. Our particular NCA labeling scheme can
also identify the first edge on the shortest path from x to y from the labels of x and y
alone. In that sense it generalizes recent labeling schemes for routing on trees [28], [66]
(see also Section 3). Another possible application of our algorithm arises in XML search
engines. Such search engines typically maintain a reverse index. This index is a hash
table mapping each word or a name of a tag to all XML documents containing it. The
engine can exploit the fact that an XML document is essentially a tree and label each such
tree using our algorithm. Then it can attach to each occurrence of a word in a document
the label of the corresponding node. By doing that the engine can process sophisticated
queries by accessing only the hash table rather than the documents themselves.

Outline of the Paper. In Section 2 we survey previous algorithms for computing NCAs,
including related results and applications. In particular, we give a more direct relation
between NCAs and range searching. Since our new algorithm makes it possible to identify
the NCA from the two input nodes alone, its potential applications may avoid several
lookups to perhaps expensive external memory. Further motivation for our new approach
is given in Section 3. In Section 4 we prove Theorem 1.

444 S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe

2. NCA and Related Results

First we describe the relationship between NCAs and range searching, since most of the
simple NCA algorithms are constructed using this relationship. Next we survey previous
NCA algorithms for the RAM model of computation where the tree is static. Finally,
we list results for finding NCAs in other models of computation and in cases where the
topology of the tree can change. We also discuss a few closely related problems.

2.1. NCA and Discrete Range Searching

Gabow et al. [35] observed that the one-dimensional Discrete Range Searching (DRS)
problem is equivalent to the NCA problem. The DRS problem is defined as follows. Given
a sequence of real numbers x1, . . . , xn , preprocess the sequence so that one can answer
efficiently subsequent queries of the form “given a pair of indices (i, j), what is the
index of a maximum element among xi , . . . , xj ?” We denote such a query by max[i, j].
The DRS problem is a fundamental geometric searching problem and orthogonal range
searching problems in two and higher dimensions are often reduced to DRS [35]. Gabow
et al. (see also [44]) reduce the DRS problem to the NCA problem by constructing a
Cartesian tree for the sequence x1, . . . , xn , as defined by Vuillemin [68]. The Cartesian
tree of the sequence x1, . . . , xn is a binary tree with n nodes, each containing a number xi .
Let xj = max{x1, . . . , xn}. The root of the Cartesian tree for x1, . . . , xn contains xj (and
possibly also the index j). The left subtree of the root is a Cartesian tree for x1, . . . , xj−1,
and the right subtree of the root is a Cartesian tree for xj+1, . . . , xn . Vuillemin shows
how to construct the Cartesian tree of x1, . . . , xn in O(n) time. It is easy to see that the
maximum among xi , . . . , xj corresponds to the NCA of the node containing xi and the
node containing xj .

Gabow et al. also show how to reduce the NCA problem to the DRS problem. Given
a tree we first construct a sequence of its nodes by doing a depth first traversal [63].
Each time we visit a node we add it to the end of the sequence so that each node
appears in the sequence as many times as its degree. Note that this sequence is a prefix
of an Euler tour of the tree. Let depth(x) be the depth of a node x . From the sequence
of nodes we obtain a sequence of integers by replacing each occurrence of a node x
by −depth(x). To compute nca(x, y) we arbitrarily pick two elements xi , xj in the
sequence representing x and y, respectively, and compute the index of the maximum
among xi , . . . , xj . It is easy to see that the node corresponding to this maximum element
is nca(x, y).

Combining the equivalence between the NCA problem and the DRS problem with
Theorem 1 we obtain the following corollary.

Corollary 2. Let x1, . . . , xn be a sequence of real numbers. In linear time, one can
associate a unique label of O(log n) bits to each element, such that the label of a
maximum among xi , . . . , xj can be computed in constant time given the labels of xi and
xj alone.

If the value xi is required rather than its label we need one lookup in a global table
to map a label to a real number. We can implement this mapping either using sufficient

Nearest Common Ancestors 445

space, using linear space and expected linear preprocessing time [32], or using linear
space with O(n log n) deterministic preprocessing time [51].

2.2. Previous Static Algorithms for Computing NCA

As mentioned in Section 1, Harel and Tarjan [39] were the first who described how
to preprocess a tree in linear time such that one can answer NCA queries in constant
time per query. However they already point out in [39] that one could simplify some
parts of their algorithm. Subsequently, Schieber and Vishkin [61] contracted some of
the preprocessing steps of Harel and Tarjan into a single step and obtained a simpler
algorithm which they could also parallelize. Powell [54] describes a simplification of the
algorithm of Schieber and Vishkin.

Berkman and Vishkin [12] describe a simpler algorithm which is based on the
equivalence between the NCA problem and the DRS problem. Let x1, . . . , xn be the input
to the DRS problem. We build a complete binary tree with leaves x1, . . . , xn from left to
right. With each internal node we associate a left value which is the maximum among
the values in its left subtree and a right value which is the maximum among the values
in its right subtree. We also associate with each leaf l two tables, each with log n entries,
denoted by rightl and leftl . For a leaf l the value rightl(i) is the maximum right value of an
ancestor z of l such that l belongs to the left subtree of z, and z is of distance no greater than
i to l. The value of leftl(i) is defined similarly. To answer a query of the form max[i, j]
we find the depth d of nca(xi , xj) using a simple NCA algorithm for complete binary trees.
Then we return the maximum among rightxi

(d − 1) and leftxj (d − 1). The drawback of
this simple algorithm is that it requires O(n log n) preprocessing time and space.

To overcome this difficulty Berkman and Vishkin observed that the sequence of
depths of nodes on an Euler tour of the tree (obtained by reducing the NCA problem to the
DRS problem) consists of integers such that the absolute difference between consecutive
integers is at most 1. Based on this observation they suggested a three-level algorithm for
the DRS (and the NCA) problem which runs in linear time. In their scheme the sequence is
partitioned into blocks, each of size O(log n), and each block is further partitioned into
microblocks, each of size O(log log n). They use the observation that |xi − xi+1| = 1,
for 1 ≤ i ≤ n − 1, to precompute the answers to all possible queries inside all possible
microblocks in one large table. Then they apply the nonlinear algorithm described above
to each sequence of microblocks in a block, and to the sequence of blocks, representing
each block or microblock by the maximum element in it. Since the number of microblocks
in a block is log n/log log n and the number of blocks is n/log n the resulting structures
are of linear size. We answer a maximum query in constant time using the algorithm above
on the relevant blocks and two lookups in the table of precomputed answers to queries
in microblocks. Bender and Farach-Colton [9] show that in fact one can precompute
in linear time all answers to queries inside blocks if the size of the block is 1

2 log n.
Therefore the microblock level of [12] is not needed and a simpler two-level algorithm
based on the same ideas exists.

The algorithm of Berkman and Vishkin implicitly reduces the NCA problem for
general trees to the NCA problem for completely balanced binary trees. By solving the
NCA problem for completely balanced binary trees they obtain an algorithm for DRS on
inputs where |xi − xi+1| = 1, for 1 ≤ i ≤ n − 1. Then they reduce the general NCA

446 S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe

problem to this special case of DRS. Using the reduction from DRS to NCA described in
Section 1 this also implies a solution to DRS for general sequences.

Last, we observe that in fact one can solve the DRS problem for general sequences
directly, without going through the long reduction sequence to the special case of
DRS just described. The solution to DRS described above exploited the restriction that
|xi − xi+1| = 1 only to solve small subproblems of size 1

2 log n. Alternatively, we can
solve a DRS problem x1, . . . , xm of size m = �log n� as follows. For each xi we compute
g(xi) = max{k | k < i and xk > xi } ∪ {−1}. It is not hard to see that one can compute
g(xi) for every 1 ≤ i ≤ m, in O(m) time, by maintaining the largest elements in all the
suffixes of the prefix of the sequence so far traversed in a stack. Based on the values of
g(xi) we associate a label, l(xi), of m bits with xi , for every 1 ≤ i ≤ m. The j th bit of
l(xi) corresponds to element xj , 1 ≤ j ≤ m, and it is set if and only if j < i , xj > xi ,
and for every xk , j < k < i , xk < xj . We compute these labels recursively as follows.
The label l(x1) is 0. For i > 1, l(xi) is the same as l(xg(xi)) but with bit g(xi) also set.
Now for i < j , we find max[i, j] from l(xj) as follows. We clear all bits with an index
smaller than i in l(xj), getting a word w. Then we return xj if w = 0, and otherwise
we return xlsb(w), where lsb(w) is the index of the least significant bit2 in w. Using this
technique for the blocks we obtain simpler DRS and NCA algorithms.

None of these algorithms however implies Theorem 1 or Corollary 2. If we try to
distribute the data structures of any of the algorithms described so far so that it is possible
to answer queries from the labels of the corresponding nodes alone, then the best labeling
schemes we can get may contain labels of length �(log2 n) bits.

A somewhat different and interesting approach for computing NCAs on trees of depth
O(log n) has been suggested by King [43]. King’s algorithm labels each edge of the tree
by either 0 or 1 randomly by flipping a fair coin. Then we label each node v with the
concatenation of the labels of the edges on the path from the root to v. To find nca(x, y)
we first find the length, d , of the longest common prefix of the label of x and the label
of y. Let ancestor(x, d) be the ancestor of depth d of x . If ancestor(x, d) is also an
ancestor of y, then it is the NCA of x and y. Otherwise for i = 1, 2, . . .we check whether
ancestor(x, d − i) is an ancestor of y until we find such a node which must also be the
NCA of x and y. It is easy to see that we would have to perform k ancestor queries with
probability at most 1/2k . Therefore, on average, we need to perform a constant number
of ancestor queries that involve ancestors of x at a particular level. The drawback of this
scheme is that it requires external data structures to compute the ancestor of a node with
a specified depth and to answer ancestor queries (see, e.g., [56], [21], and [6]).

2.3. Dynamic NCA Problems and Different Models for Computation

All algorithms mentioned above for the online NCA problem use random access to achieve
constant query time. In contrast, on a pointer machine, Harel and Tarjan [39] proved a
lower bound of �(log log n) on the query time. This matches a corresponding upper
bound of van Leeuwen and Tsakalidis [65]. This lower bound stems from the need to
answer a query by giving a pointer to the corresponding node.

2 As previous NCA algorithms (e.g., [39] and [12]) we assume that bit operations, on words of size log n,
can be precomputed in O(n) time if they are not supported to begin with.

Nearest Common Ancestors 447

The NCA problem is of interest also in an off-line setting where the list of, say m,
queries is given in advance as input. Recently Buchsbaum et al. [14] gave an O(m + n)
time algorithm for the off-line NCA problem on a pointer machine, improving the previous
best result by a factor of an inverse Ackermann’s function [2], [64].

Returning to the on-line NCA problem, extensive research has also been done on
how to allow update operations on the tree that are interspersed between NCA queries.
Gabow [34] and Alstrup and Thorup [8] show how to add new leafs to the tree in amortized
constant time while keeping the constant worst-case query time on a RAM, or the
O(log log n) worst-case query time on a pointer machine. Cole and Hariharan [19] gave
an algorithm with worst-case constant update time for a RAM. The problem of computing
NCAs in a forest of n nodes subject to dynamic updates has also been studied. Alstrup
and Thorup [8] considered updates in which a root of one tree is made a child of a root
of another tree. They gave a pointer machine algorithm with amortized constant update
time and O(log log n)worst-case query time. For a RAM, Harel and Tarjan [39] gave an
algorithm which for m operations on a forest of n nodes uses time O(n+mα(m+n, n))
time, where α denotes the inverse Ackermann function. If we allow roots to be linked the
problem is at least as hard as the Union-Find problem [34]. Thus the amortized inverse
Ackermann’s lower bound in [33] is applicable.

A more general update operation on a forest would allow one to make any node in
one tree a parent of a root of another tree. In [8] Alstrup and Thorup gave an algorithm for
a pointer machine using O(n+m log log n) time. This algorithm uses, in the worst case,
O(n) time both for queries and updates. For the RAM, an optimal algorithm which uses
O(i) worst-case time for queries and O(a(i, n)) amortized time for updates, where i is
arbitrary and a is the row inverse Ackermann’s function, is given in [34]. This tradeoff
matches the lower bound given in [4]. If we also allow the deletion of edges, a pointer
machine algorithm is given in [62] using O(log n) time per operation, where n is the
size of the tree(s) involved in the operation. Other updates have also received some
attention in connection with NCA, such as splitting an edge by inserting a new node on
the edge [70], [19].

Let level(x, i) return the ancestor to x whose depth is smaller by i than the depth
of x . If we substitute NCA with level for the different dynamic settings the same bounds
mentioned above hold for the RAM [21], [6], [13], [62]. For a pointer machine, however,
we have a trivial lower bound on�(log n) even for the static case, hence, for the pointer
machine, Sleator and Tarjan’s dynamic trees [62] give optimal results.

Research has also been done on parallel and distributed complexities [11], [55], [67],
[46], [47], [60], [57], [58], [45], [18], [59], [69], [61] and on the I/O complexity [17] of
several of the problems mentioned above. Some natural extensions of these problems to
rooted directed trees [50] and Directed Acyclic Graphs [10], [24], [25] have also been
studied.

3. Labeling Schemes for a Distributed Environment

Motivated by applications in the construction of XML search engines and network
routing [1], [41], [52], labeling schemes that allow ancestor queries have recently been
developed. Santoro and Khatib [56] have proposed labeling the leaves of the tree from

448 S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe

left to right by consecutive integers, and then labeling each internal node by the pair
of labels of its leftmost and rightmost leaf descendants. One can then answer ancestor
queries by checking if the corresponding intervals are nested. Clearly, the maximum
length of a label according to this scheme is 2 log n bits. Recently, Alstrup and Rauhe [7]
building upon the work of Abiteboul et al. [1] gave a more complicated recursive labeling
scheme for ancestor queries that generates labels of length at most log n + O(

√
log n)

bits. A lower bound showing that log n + �(log log n) bits are needed is given in [5].
This lower bound also holds for NCA queries which are more general.

Labeling schemes for parent queries and other functions have also been studied [40],
[41], [53]. Unfortunately neither of these labeling schemes can identify the nearest
common ancestor of x and y, when x and y are unrelated. The labeling scheme that we
describe in this paper does allow this extra functionality.

In [66] and [28] it is demonstrated how compact labelings of a tree can improve
routing in trees and graphs. In the routing problem one assigns two labels to every node
of the graph. The first label is the address of the node, whereas the second label is a data
structure called the local routing table. The labels are assigned such that at every source
node x , and for every destination node y, one can find the first edge (or an identifier of that
edge) on a shortest path from x to y from the local routing table of x and the address of y.
So the path from x to y is built in a distributed way by all intermediate nodes encountered
along the way. The goal is to obtain such labeling with labels as small as possible.

In [20] Cowen shows how to construct a labeling for trees that uses 3 log n bits for
the addresses and O(min{d log n,

√
n log n}) bits for the local routing table, where d is

the degree of the node. In [23] Eilam et al. show that any labeling in which the length of
the addresses is at most log n bits will require �(

√
n) bits for the routing table in some

trees. However, Gavoille and Fraigniaud [28], [29] showed that c log n bits, for a small
constant c, are enough to encode both the address and the local routing table of each
node of the tree. Thorup and Zwick [66] even show that both the address and the local
routing table of each node can be encoded together using log n+O(log n/log log n) bits
(so c = 1 + o(1) suffices). Thorup and Zwick also show how to use their tree labeling
to construct labeling for general graphs based on tree covering.

The labeling schemes for routing mentioned above do not support NCAs without
some extensions. The labeling scheme that we suggest in this paper, however, cannot
only identify nca(x, y) from the labels of x and y but also identify the first edge on the
shortest path from x to y. Therefore it is more general than the routing labeling schemes.

A particular routing context where a labeling scheme for NCA may prove useful is the
design of routing labeling schemes for graphs that are close to a tree, say c-decomposable
or graphs with tree-width O(c) [30], [31] for c = O(1). These graphs admit a tree-
decomposition T where each node of T represents a separator of the graph of size at
most c. So, one can use a compact labeling of T in order to determine the nearest separator
S between the source x and the destination y. If x is contained in the component X ∈ T ,
and y is contained in the component Y ∈ T , then S is precisely the nearest common
ancestor of X and Y . Since, any path from x to y has to cross some node of S, computing
nca(X, Y) from the labels of x and y may simplify the local routing tables.

We also observe that a compact labeling scheme for routing queries may serve a
labeling scheme for ancestor queries and vice versa. If the routing query of the first edge
on the shortest path from x towards y, and the routing query of the first edge from y

Nearest Common Ancestors 449

towards x , both answer the edge from the corresponding node to its parent, then one
knows that x and y are not related. Otherwise, either x or y is the ancestor of the other
(and also nca(x, y) ∈ {x, y}). On the other hand, if y is an ancestor of x or x and y are
unrelated we know that the first edge on the shortest path from x to y is the edge from
x to its parent. Otherwise, the first edge on the shortest path from x to y is an edge from
x to one of its children.

4. An NCA Algorithm for a Distributed Environment

4.1. Preliminaries

We denote by 〈y〉k a sequence of objects y1, y2, . . . , yk (such as integers or binary strings).
For binary strings a, b ∈ {0, 1}∗, a <lex b if and only if a precedes b in the lexicographic
order on binary strings. That is, a is prefix of b or the first bit in which a and b differ
is 0 in a and 1 in b. An alphabetic sequence for 〈y〉k is a sequence of binary strings
〈b〉k , bi ∈ {0, 1}∗, where bi <lex bj , for all 1 ≤ i < j ≤ k. Let |s| denote the length
of a binary string s ∈ {0, 1}∗. Observe that given machine words that contain a, b, |a|,
and |b|, respectively, in their least significant bits, it is possible to determine whether
a <lex b in a constant number of operations. For instance, first align a and b by shifting
the smallest string to the left, and then use standard integer comparison operators on
the resulting words. If the two words are then equal, then we break the tie according to
the length of a and b. When the strings 〈b〉k are also prefix-free (no string is a prefix
of another) we call 〈b〉k an alphabetic code. The following lemma due to Gilbert and
Moore [36] states the result which we need for alphabetic codes.

Lemma 3 [36]. A sequence 〈y〉k of positive integers with n =∑k
i=1 yi has an alpha-

betic code 〈b〉k where |bi | ≤ log n − log yi + O(1) for all i .

For our purposes it would suffice that 〈b〉k is alphabetic (strings can be prefixes of
one another). We can construct in O(k) time an alphabetic sequence satisfying the length
bounds in Lemma 3 for a sequence 〈y〉k of non-null integers as follows. Let si =

∑i
j=1 yj ,

i = 1, . . . , k − 1, and let s0 = 0. Also let Ii = [si−1, si−1 + yi) and fi = �log yi� for
i = 1, . . . , k. In the interval Ii of length yi ≥ 2 fi there must be an integer zi such
that zi mod 2 fi = 0, i.e., the fi rightmost bits in its binary representation are 0. If
si−1 mod 2 fi = 0, then zi = si−1, otherwise zi = si−1 − (si−1 mod 2 fi) + 2 fi . Hence,
zi can be represented in a word with w = �log n� bits, having the fi less significant bits
set to 0. Then we can let bi be the bit string consisting of the w− fi most significant bit
from zi . Thus we get a sequence 〈b〉k where |bi | ≤ �log n� − �log yi�.

For instance, for a sequence 〈y〉5 = 3, 5, 3, 4, 1 for which n = 16, we obtain 〈 f 〉5 =
1, 2, 1, 2, 0, 〈z〉5 = 0, 4, 8, 12, 15, and so its code is 〈b〉5 = 000, 01, 100, 11, 1111. To
assure that the sequence is alphabetic, one can interpret each string of 〈b〉k as the decimal
part of a real number in [0, 1) and observe that the numbers are in increasing order. In
this example, these numbers are 0, 0.01, 0.1, 0.11, and 0.1111.

The algorithm runs in O(k) time if machine operations to compute shifting, logical
masks, and a discrete logarithm on O(log n) bit words are supported. In a machine that

450 S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe

does not support such operations we can construct a table representing these functions
using O(n) preprocessing time and space. This will only increase the preprocessing time
of our labeling algorithm which is described in Section 4.2 by a constant factor. Note
that Mehlhorn [49] gives a somewhat more complicated algorithm which produces an
alphabetic code, 〈b〉k , for an arbitrary sequence 〈y〉k of positive real numbers with the
same bound on the lengths, i.e., |bi | ≤ log n − log yi + 2. Mehlhorn’s algorithm can be
implemented to run in O(k) time.

4.2. Labeling for NCA Queries

As in [39] we divide the tree into disjoint paths. For a tree T , let |T | denote the number
of nodes of T . Let Tv be the subtree rooted by v, and let size(v) = |Tv|. Let parent(v)
be the parent of v and let children(v) be the set of children of v. We classify each node
of T as either heavy or light as follows. The root is light. For each internal node v, we
pick a child w of v, where size(w) = max{size(z) | z ∈ children(v)} and classify w as
heavy. We classify each of the remaining children of v as light. We call an edge to a
light child a light edge, and an edge to a heavy child a heavy edge. For a node v with
a heavy child w, let lsize(v) = size(v) − size(w). We define lsize(v) = 1 for when
v is a leaf. The nearest ancestor of v which is light (possibly v itself if v is light) is
denoted by apex(v). By removing the light edges, T is partitioned into paths, which
we call heavy paths. A node w belongs to the same heavy path as the nodes of the set
HP(w) = {v | v ∈ T, apex(v) = apex(w)}. See Figure 1 for an example.

First we compute size(v), lsize(v), apex(v), and the partition of T into heavy paths.
It is easy to see that one can compute this information in linear time. Next we assign a
heavy label, hlabel(v), to each node v ∈ T , and a light label llabel(v) to each light node
v. These labels are defined as follows.

For the root r , llabel(r) is the empty string. Then, for each light node w �= r ,
llabel(w) is a binary string such that

• Light label:
llabel(w) �∈ {llabel(z) | z �= w, z ∈ children(parent(w))} .

Let w be any node. Then hlabel(w) is a binary string such that

• Heavy label:
hlabel(w) <lex minlex{hlabel(z) | z �= w, z ∈ Tw ∩ HP(w)}, where lex is the lex-
icographic order of two strings.

r

Tw

HP(w)

w
v

apex(w)

Fig. 1. Heavy nodes are black and light nodes are white. Heavy edges are solid and light edges are dashed.
Heavy paths are subtrees composed of heavy edges only. In this example, apex(v) = v.

Nearest Common Ancestors 451

2

2

1

100

000

1001

5
01

x

1000

1010

10110

r13
00

0111

3

3

3

1

z
1
0

1
1

r

101

2yx10
0

2
1

z

2
0

w

u

(a) (b)

Fig. 2. Heavy (a) and light (b) label construction of some nodes.

In other words, the light children of a node must have distinct light labels, whereas the
nodes of a same heavy path must have heavy labels lexicographically ordered according
to their depth in T . We assign heavy and light labels using the algorithm described in
Section 4.1, constructing alphabetic strings from an integer sequence (a concrete example
is presented below).

More precisely, we associate heavy labels with the nodes on each heavy path sep-
arately. We associate the weight lsize(v) with each node v on a heavy path and we
construct alphabetic strings for this sequence of weights. Each string is then associated
with the corresponding node. Similarly, light labels are assigned to the light children of
each node u separately. To do that we associate the weight size(v) with each light child
of u, and construct alphabetic strings for this sequence of weights. Each string is then
associated with the corresponding node. We remark that light labels have no alphabetic
restriction imposed on them so in fact one can obtain even shorter light labels using a
simpler algorithm.

To illustrate the construction of heavy and light labels we refer to Figure 2. The
heavy labels of the nodes in HP(x) (see Figure 2(a)) are based on the light sizes of
these nodes which are, starting from x and going down, 2, 5, 2, 1. The corresponding
alphabetic strings are 000, 01, 100, 1001, so for instance hlabel(x) = 000. The sequence
of light sizes of the nodes of HP(r) is 13, 3, 3, 3, 1. That gives the alphabetic strings
00, 0111, 1000, 1010, 10110, so hlabel(r) = 00. The sequence of light sizes of HP(z) is
1, 1 which gives 0, 1 for the heavy labels. The light labels of the children x, y of r (see
Figure 2(b)) are based on their respective sizes, which are 10, 2. The alphabetic strings
then imply that llabel(x) = 0 and llabel(y) = 101.

Next we assign a label l(v) to each node v ∈ T top-down as follows. We define
l(parent(r)) to be the empty string. Then for every node v (we use the · operator for
concatenation of strings),

l(v) = l(parent(apex(v))) · llabel(apex(v)) · hlabel(v).

See Figure 3 for an illustration. It follows from our definition that l(r) = hlabel(r)
and that a label l(v) consists of the concatenation of alternating light and heavy labels.
Thus l(v) = h0 ·l1 ·h1 · · · lt ·ht , the first light label l0 removed as being llabel(apex(r)),
the empty string. We observe that l(v) �= l(w) for all distinct v,w ∈ T .

452 S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe

li+1

vi

hi apex(vi+1)

apex(vi)
li

vi+1

hi+1

l(parent(apex(vi)))

hi = hlabel(vi)
li = llabel(apex(vi))

Fig. 3. The construction of l(v). Here l(vi) = l(parent(apex(vi)))·li ·hi .

For example, from Figure 2, we obtain l(r) = 00, l(x) = l(r)·llabel(x)·hlabel(x) =
00·0·000, l(w) = l(r)·llabel(x)·hlabel(w) = 00·0·01, l(z) = l(w)·llabel(z)·hlabel(z) =
00·0·01·0·0, and l(u) = l(r)·llabel(x)·hlabel(u) = 00·0·1001.

In addition to l(v) we need a label k(v) of the same length, where the i th bit of k(v)
is set if and only if the i th bit of l(v) is the beginning of either a light or heavy label. The
label k(v) is well defined because |llabel(v)|, |hlabel(v)| ≥ 1. The final label assigned
to v, label(v), consists of the concatenation of l(v) and k(v). Once heavy and light labels
of all the nodes have been computed, one can perform a depth first traversal [63] of the
tree and compute l(v) and k(v) in linear time.

Before showing how to compute the NCA given two labels we bound the length of
the labels. Using the alphabetic strings of Lemma 3, we have

• |llabel(w)| ≤ log lsize(parent(w))− log size(w)+ O(1), and
• |hlabel(w)| ≤ log

∑
v∈HP(w) lsize(v)− log lsize(w)+ O(1).

Lemma 4. For any node v ∈ T , |label(v)| = O(log n).

Proof. First, note that |label(w)| = |l(w)|+|k(w)| = 2|l(w)|. The number of heavy and
light labels in l(w) is at most log n, since there is at most log n light edges on a path from a
leaf to the root. Hence, the additive O(1) terms in the light and heavy labels of l(w) sum to
O(log n). So, in the remaining analysis we disregard the additive constant term. We prove
by induction on the depth of w that |l(w)| ≤ log n − log lsize(w). For a node w, where
apex(w) = r , in a tree with root r , |l(w)| = |hlabel(w)| ≤ log n − log lsize(w) so the
statement holds. For another node w, where apex(w) �= r , l(w) = l(parent(apex(w)))·
llabel(apex(w)) · hlabel(w). Now, by induction, |l(parent(apex(w)))| ≤ log n −
log lsize(parent(apex(w))), and also by the definitions of the heavy labels and the light
labels we have |llabel(apex(w))| ≤ log lsize(parent(apex(w)))− log size(apex(w)), and
|hlabel(w)| ≤ log

∑
v∈HP(w) lsize(v)−log lsize(w). By summing up the last three bounds

and using the fact that
∑

v∈HP(w) lsize(v) ≤ size(apex(w)) we complete the proof.

The next lemma indicates how to answer NCA queries.

Nearest Common Ancestors 453

Lemma 5. Let x and y be two nodes of T :

1. If l(x) = h0·l1·h1 · · · hi−1·li·u and l(y) = h0·l1·h1 · · · hi−1·l ′i·u′ with u, u′ ∈ {0, 1}∗,
where li �= l ′i or li·u is empty or l ′i·u′ is empty, then l(nca(x, y)) = h0·l1·h1 · · · li−1·
hi−1.

2. If l(x) = h0 ·l1 ·h1 · · · li ·hi · · · and l(y) = h0 ·l1 ·h1 · · · li ·h′i · · ·, where hi �= h′i ,
then l(nca(x, y)) = h0 ·l1 ·h1 · · · li ·minlex

{
hi , h′i

}
.

Proof. Let z = nca(x, y). By definition l(parent(apex(z))) is a prefix of both l(x) and
l(y). Let w be the heavy child of z. If x ∈ Ta , y ∈ Tb, a, b ∈ children(z)\{w} , or x is
an ancestor of y or y is an ancestor of x , then case 1 occurs; otherwise case 2 occurs.

For instance, in the example of Figure 2, we have seen that l(u) = 00 ·0 ·1001,
l(w) = 00·0·01, and l(z) = 00·0·01·0·0. Case 1 of Lemma 5 applies while computing
nca(w, z). We obtain l(nca(w, z)) = 00·0·01 which is the label of w. Case 2 occurs for
nca(u, z), and we obtain l(nca(u, z)) = 00·0·01 which is the label of w.

To implement the calculation of nca(x, y) described in Lemma 5 we need to be
able to identify the maximum i such that both l(x) and l(y) have h0 ·l1 ·h1 · · · li ·hi as a
prefix. To that end we calculate the length j1 of the maximum common prefix of l(x) and
l(y), and the length j2 of the maximum common prefix of k(x) and k(y). Then we take
j = min{ j1, j2} and calculate whether this bit (j th from the left) is part of a light label
or a heavy label. To determine easily whether bit j occurs within a light label or a heavy
label we can for example add to the label of v a mask containing a 1 in every bit that
belongs to a light label or alternatively use a table that counts the parity of the number of
bits set to 1 in a word. Once we identify whether j occurs within a light or heavy label
we can extract the label of nca(x, y) using straightforward bit manipulations.

5. Concluding Remarks

(1) In case we want to solve the unrestricted DRS problem using a Cartesian tree, we
can let all the light labels be an empty string, since a Cartesian tree is binary. This will
improve the constant factor for the length of the labels.

(2) If we use an alphabetic code for the heavy labels (no heavy label on a path is a
prefix of another) and any prefix code for the light labels, then l(v) uniquely identifies
v, and there is no need to look at k(v) in order to ascertain the maximum i such that
h0 ·l1 ·h1 · · · li ·hi is a prefix of both l(x) and l(y).

(3) Optimizing the label length is an interesting problem. We wonder whether NCA

labels of length at most c log n bits, with some constant c < 2, is possible or not. The
current lower bound is only log n + �(log log n) using a reduction from labeling for
ancestor queries in trees [5].

References

[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor queries. In Proceedings
of the 12th Annual ACM Symposium on Discrete Algorithms (SODA), pages 547–556, 2001.

454 S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest common ancestor in trees. SIAM Journal
on Computing, 5(1):115–132, 1976. See also Proc. STOC 1973.

[3] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from lowest common ances-
tors with an application to the optimization of relational expressions. SIAM Journal on Computing,
10(3):405–421, 1981.

[4] S. Alstrup, A. Ben-Amram, and T. Rauhe. Worst-case and amortised optimality in union-find. In
Proceedings of the 31st Annual ACM Symposium on Theory Computing (STOC), pages 499–506, 1999.

[5] S. Alstrup, P. Bille, and T. Rauhe. Labeling schemes for small distances in trees. In Proceedings of the
15th Symposium on Discrete Algorithms (SODA), pages 689–698, January 2003.

[6] S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in dynamic trees. In Proceedings
of the 27th International Colloquium on Automata, Languages and Programming (ICALP), volume 1853
of LNCS, pages 73–84. Springer-Verlag, Berlin, 2000.

[7] S. Alstrup and T. Rauhe. Improved labeling scheme for ancestor queries. In Proceedings of the 13th

Annual ACM Symposium on Discrete Algorithms (SODA), pages 947–953, 2002.
[8] S. Alstrup and M. Thorup. Optimal pointer algorithms for finding nearest common ancestors in dynamic

trees. Journal of Algorithms, 35(2):169–188, 2000.
[9] M. A. Bender and M. Farach-Colton. The LCA problem revisted. In Proc. 4th LATIN, pages 88–94,

2000.
[10] M. A. Bender, G. Pemmasani, P. Sumazin, and S. Skiena. Least common ancestors in directed acyclic

graphs. In Proceedings of the 12th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA),
pages 845–854, 2001.

[11] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly parallelizable problems. In
Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 309–319,
1989.

[12] O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM Journal on Computing,
22(2):221–242, 1993.

[13] O. Berkman and U. Vishkin. Finding level-ancestors in trees. Journal of Computer and System Sciences,
48(2):214–230, 1994.

[14] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Linear-time pointer-machine algorithms
for LCA’s, MST verification, and dominators. In Proceedings of the 30th Annual ACM Symposium on
Theory of Computing (STOC), pages 279–288, 1998.

[15] S. Carlsson and B. J. Nilsson. Computing vision points in polygons. Algorithmica, 24(1):50–75, 1999.
[16] S. Chaudhuri and C. D. Zaroliagis. Shortest paths in digraphs of small treewidth. Part II: Optimal

parallel algorithms. Theoretical Computer Science, 203(2):205–223, August 1998.
[17] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter. External-

memory graph algorithms (extended abstract). In Proceedings of the 6th Annual ACM Symposium on
Discrete Algorithms (SODA), pages 139–149, January 1995.

[18] C. Chien and I. D. Scherson. Self-routing least common ancestor networks. In Proceedings of Frontiers
’92: 4th Symposium on Massively Parallel Computation, pages 513–514. IEEE, New York, 1992.

[19] R. Cole and R. Hariharan. Dynamic LCA queries on trees. In Proceedings of the 10th Annual ACM
Symposium on Discrete Algorithms (SODA), pages 235–244, 1999.

[20] L. J. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38:170–183, 2001.
[21] P. F. Dietz. Finding level-ancestors in dynamic trees. In Proceedings of the 2nd Workshop on Algorithms

and Data Structures, volume 1097 of LNCS, pages 32–40. Springer-Verlag, Berlin, 1991.
[22] B. Dixon, M. Rauch, and R. E. Tarjan. Verification and sensitivity analysis of minimum spanning trees

in linear time. SIAM Journal on Computing, 21(6):1184–1192, 1992.
[23] T. Eilam, C. Gavoille, and D. Peleg. Compact routing schemes with low stretch factor. In Proceedings

of the 17th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 11–20,
August 1998.

[24] D. Eppstein. Finding common ancestors and disjoint paths in DAGs. Technical Report ICS-TR-95-52,
Department of Information and Computer Science, University of California, Irvine, 1995.

[25] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–673, 1998. Includ-
ing [24].

[26] M. Farach-Colton. Optimal suffix tree construction with large alphabets. In Proceedings of the 38th

Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 137–143, 1997.

Nearest Common Ancestors 455

[27] M. Farach-Colton, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees.
Algorithmica, 13(1/2):155–179, 1995.

[28] P. Fraigniaud and C. Gavoille. Routing in trees. In Proceedings of the 28th International Colloquium on
Automata, Languages and Programming (ICALP), volume 2076 of LNCS, pages 757–772. Springer-
Verlag, Berlin, 2001.

[29] P. Fraigniaud and C. Gavoille. A space lower bound for routing in trees. In Proceedings of the 19th

Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 2285 of LNCS, pages
65–75. Springer-Verlag, Berlin March 2002.

[30] G. N. Frederickson and R. Janardan. Separator-based strategies for efficient message routing. In
Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
428–437, October 1986.

[31] G. N. Frederickson and R. Janardan. Space-efficient message routing in c-decomposable networks.
SIAM Journal on Computing, 19(1):164–181, February 1990.

[32] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time.
Journal of the ACM, 31(3):538–544, July 1984.

[33] M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic data structures. In Proceedings
of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 345–354, 1989.

[34] H. N. Gabow. Data structure for weighted matching and nearest common ancestors with linking.
In Proceedings of the 1st Annual ACM Symposium on Discrete Algorithms (SODA), pages 434–443,
1990.

[35] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry problems.
In Proceedings of the 16th Annual ACM Symposium on Theory of Computing (STOC), pages 135–143,
1984.

[36] E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell System Technical Journal,
38:933–967, 1959.

[37] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge,
1997.

[38] D. Harel. A linear time algorithm for the lowest common ancestors problem (extended abstract). In
Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science(FOCS), pages
308–319, 1980.

[39] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal
Computing, 13(2):338–355, 1984.

[40] S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. SIAM Journal on Discrete
Mathematic, 5(4):596–603, 1992. Preliminary version appeared in Proc. STOC 1988.

[41] H. Kaplan and T. Milo. Short and simple labels for small distances and other functions. In Proceedings
of the 7th International Workshop on Algorithms and Data Structures (WADS), volume 2125 of LNCS,
pages 32–40. Springer-Verlag, Berlin, August 2001.

[42] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum
spanning trees. Journal of the ACM, 42(2):321–328, 1995.

[43] V. King. Private communication, July 1999.
[44] J. Komlos. Linear verification for spanning trees. Combinatorica, pages 57–65, 1985.
[45] R. Lin. Fast algorithms for lowest common ancestors on a processor array with reconfigurable buses.

Information Processing Letters, 40(4):223–230, 1991.
[46] R. Lin and S. Olariu. A simple optimal parallel algorithm to solve the lowest common ancestor problem.

In ICCI: Advances in Computing and Information–ICCI: International Conference on Computing and
Information, volume 497 of LNCS. Springer-Verlag, Berlin, 1991.

[47] P. Looges. Optimal solution to the least common ancestor problem on the linear array with reconfigurable
global buses. Technical Report TR-92-32, Old Dominion University, 1992.

[48] D. Maier. A space efficient method for the lowest common ancestor problem and an application
to finding negative cycles. In Proceedings of the 18th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 132–141, 1977.

[49] K. Mehlhorn. A best possible bound for the weighted path length of binary search trees. SIAM Journal
on Computing, 6(2):235–239, June 1977.

[50] M. Nykänen and E. Ukkonen. Finding lowest common ancestors in arbitrarily directed trees. Information
Processing Letters, 50(6):307–310, 1994.

456 S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe

[51] R. Pagh. Faster deterministic dictionaries. In Proceedings of the 11th Annual ACM Symposium on
Discrete Algorithms (SODA), pages 487–493, 2000.

[52] D. Peleg. Proximity-preserving labeling schemes and their applications. In Proceedings of the 25th

International Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 1665 of
LNCS, pages 30–41. Springer-Verlag, Berlin, 1999.

[53] D. Peleg. Informative labeling schemes for graphs. In Proceedings of the 25th International Symposium
on Mathematical Foundations of Computer Science (MFCS), volume 1893 of LNCS, pages 579–588.
Springer-Verlag, Berlin, August 2000.

[54] P. Powell. A further improved LCA algorithm. Technical Report TR90-01, University of Minneapolis,
1990.

[55] P. Radge. The parallel simplicity of compaction and chaining. In Proceedings of the 17th International
Colloquium on Automata, Languages and Programming (ICALP), volume 443 of LNCS. Springer-
Verlag, Berlin, 1990.

[56] N. Santoro and R. Khatib. Labeling and implicit routing in networks. The Computer Journal, 28:5–8,
1985.

[57] E. Schenk. Parallel dynamic lowest common ancestors. Nordic Journal of Computing, 1(4):402–432,
Winter 1994. Selected papers of the 4th Scandinavian Workshop on Algorithm Theory (SWAT ’94)
(Århus, 1994).

[58] I. D. Scherson and C.-K. Chien. Least common ancestor networks. In V. K. Prasanna, editor, Proceedings
of the 7th International Parallel Processing Symposium (IPPS), pages 507–513, Newport Beach, CA.
IEEE Computer Society Press, Piscataway, NJ, April 1993.

[59] I. D. Scherson and P. Y. Wang. On the parallel processing capabilities of LCA networks. In Proceedings
of Frontiers ’92: 4th Symposium on Massively Parallel Computation, pages 571–572, 1992.

[60] B. Schieber. Parallel lowest common ancestor computation. In J. H. Reif, editor, Synthesis of Parallel
Algorithms, pages 259–273. Morgan Kaufmann, San Mateo, CA, 1993.

[61] B. Schieber and U. Vishkin. On finding lowest common ancestors: simplification and parallelization.
SIAM Journal of Computing, 17:1253–1262, 1988.

[62] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer and System
Sciences, 26(3):362–391, 1983. See also Proc STOC 1981.

[63] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160,
June 1972.

[64] R. E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM, 26(4):690–715,
1979.

[65] A. K. Tsakalides and J. van Leeuwen. An optimal pointer machine algorithm for finding nearest common
ansectors. Technical Report RUU-CS-88-17, Department of Computer Science, University of Utrecht,
1988.

[66] M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the 13th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pages 1–10, 2001.

[67] Y. H. Tsin. Finding lowest common ancestors in parallel. IEEE Transactions on Computers, 35(8):
764–769, 1986.

[68] J. Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–239, 1980.
[69] Z. Wen. New algorithms for the LCA problem and the binary tree reconstruction problem. Information

Processing Letters, 51(1):11–16, July 1994.
[70] J. Westbrook. Fast incremental planarity testing. In W. Kuich, editor, Proceedings of the 19th Interna-

tional Colloquium on Automata, Languages and Programming (ICALP), volume 623 of LNCS, pages
342–353. Springer-Verlag, Berlin, 1992.

Received November 4, 2002, and in revised form November 15, 2003, and in final form November 18, 2003.
Online publication March 19, 2004.

