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Preface

ICALP 2010, the 37th edition of the International Colloquium on Automata,
Languages and Programming was held July 6-10, 2010 in Bordeaux, France.
ICALP is a series of annual conference of the European Association for Theo-
retical Computer Science (EATCS) which first took place in 1972, organized by
Maurice Nivat and his colleagues in Paris. This year, the program consisted of the
established track A, focusing on Algorithms, Complexity and Games, chaired by
Paul G. Spirakis; Track B, focusing on Logic, Semantics, Automata and Theory
of Programming, chaired by Samson Abramsky; Track C focusing this year on
Foundations of Networked Computation: Models, Algorithms and Information
Management, chaired by Friedhelm Meyer auf der Heide.

The three Program Committees received a total of 389 submissions: 222 for
Track A, 114 for Track B and 53 for Track C, written by authors from 45 different
countries. Of these, 60, 30 and 16, respectively, were selected for inclusion in the
scientific program. Each paper got on average 3.5 referee reports.

The Program also included six invited talks by Pierre Fraigniaud (CNRS and
Univ. Paris Diderot), Jean Goubault-Larrecq (ENS Cachan and LSV), Burkhard
Monien (Univ. Paderborn), Joel Ouaknine (Oxford Univ. Computing Lab.),
Roger Wattenhofer (ETH Zurich), and Emo Welzl (ETH Zurich).

These 112 contributed and invited papers are presented in two proceedings
volumes. The first contains the contributed papers of Track A and the invited
talks of Burkhard Monien and Emo Welzl. The second volume contains the
contributed papers of Tracks B and C as well as the invited talks of Pierre
Fraigniaud, Jean Goubault-Larrecq, Joel Ouaknine and Roger Wattenhofer.

The day before the main conference, five satellite workshops were held:

- AlgoGT : Workshop on Algorithmic Game Theory: Dynamics and Convergence
in Distributed Systems

- DYNAS 2010: International Workshop on DYnamic Networks: Algorithms and
Security

- ALGOSENSORS 2010: International Workshop on Algorithmic Aspects of
Wireless Sensor Networks

- SDKB 2010: Semantics in Data and Knowledge Bases

- TERA-NET: Towards Evolutive Routing Algorithms for Scale-Free/Internet-
Like Networks.

We wish to thank all the authors of submitted papers, all the members of
the three Program Committees for their scholarly effort and all 737 referees who
assisted the Program Committees in the evaluation process.

We are very pleased to thank INRIA for organizing the conference, LaBRI for
their collaboration, and the sponsors (Conseil Rgional d’Aquitaine, Communauté
Urbaine de Bordeaux, CEA, CNRS via the GDR IM, Total) for their strong
support. We are also very grateful to Ralf Klasing for chairing the workshop
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organization and to all the members of the Organizing Committee: Laétitia
Grimaldi, Alice Riviere, Nicolas Bonichon, Pierre Casteran, Lionel Eyraud-Dubois
and Frédéric Mazoit.

It is also our great pleasure to acknowledge the use of the EasyChair confer-
ence management system, which was of tremendous help in handling the submis-
sion and refereeing processes as well as in intelligently assisting us in the design
of the final proceedings.

May 2010 Samson Abramsky
Cyril Gavoille

Claude Kirchner

Friedhelm Meyer auf der Heide

Paul G. Spirakis
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Informative Labeling Schemes
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Abstract. Network representations play an important role in many
domains of computer science, ranging from data structures and graph
algorithms, to parallel and distributed computing, and communication
networks. Traditional network representations are usually global in na-
ture. That is, in order to retrieve useful information, one must access a
global data structure representing the entire network, even if the desired
information is solely local, pertaining to only a few nodes. In contrast,
the notion of informative labeling schemes suggests the use of a local
representation of the network. The principle is to associate a label with
each node, selected in a way that enables to infer information about
any two nodes directly from their labels, without using any additional
sources of information. Hence in essence, this method bases the entire
representation on the set of labels alone. Obviously, labels of unrestricted
size can be used to encode any desired information, including in particu-
lar the entire graph structure. The focus is thus on informative labeling
schemes which use labels as short as possible. This talk will introduce the
notion of informative labeling scheme to the audience, and will survey
some of the important results achieved in this context. In particular, we
will focus on the design of compact adjacency-, ancestry-, routing-, and
distance-labeling schemes for trees. These schemes find applications in
various contexts, including the design of small universal graphs, and the
design of small universal posets.
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Noetherian Spaces in Verification
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Abstract. Noetherian spaces are a topological concept that generalizes well
quasi-orderings. We explore applications to infinite-state verification problems,
and show how this stimulated the search for infinite procedures a la Karp-Miller.

1 Introduction

The purpose of this paper is to given a gentle introduction to the theory of Noetherian
spaces, in the context of verification of infinite-state systems.

Now such a statement can be intimidating, all the more so as Noetherian spaces
originate in algebraic geometry [20, chapitre 0]. Their use there lies in the fact that the
Zariski topology of a Noetherian ring is Noetherian.

My purpose is to stress the fact that Noetherian spaces are merely a topological
generalization of the well-known concept of well quasi-orderings, a remark that I made
in [[19] for the first time. Until now, this led me into two avenues of research.

The first avenue consists in adapting, in the most straightforward way, the theory of
well-structured transition systems (WSTS) [144116/21]] to more general spaces. WSTS
include such important examples as Petri nets and extensions, and lossy channel sys-
tems. After some technical preliminaries in Section2] I will describe the basic theory of
Noetherian spaces in Section [3] This leads to a natural generalization of WSTS called
topological WSTS, which I will describe in Section [l

In [[19]], I described a few constructions that preserve Noetherianness. We shall give
a more complete catalog in Section3} N*, X* and in general every well-quasi-ordered
set, but several others as well, including some that do not arise from well-quasi-orders.

We apply this to the verification of two kinds of systems that are not WSTS. We
do not mean these to be any more than toy applications, where decidability occurs as
a natural byproduct of our constructions. I certainly do not mean to prove any new,
sophisticated decidability result for some realistic application in verification, for which
we should probably exert some more effort. I only hope to convince the reader that the
theory of Noetherian spaces shows some potential.

The first application, oblivious stack systems, are k-stack pushdown automata in
which one cannot remember which letter was popped from a stack: see Section [l The
second one, polynomial games, is an extension of Miiller-Olm and Seidl’s static anal-
ysis of so-called polynomial programs [29] to games played between two players that
can compute on real and complex numbers using addition, subtraction, multiplication,
and (dis)equality tests: see Section[6] where we also consider the case of lossy concur-
rent polynomial games, i.e., networks of machines running polynomial programs and
which communicate through lossy signaling channels.

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 2 2010.
(© Springer-Verlag Berlin Heidelberg 2010
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The second avenue of research has led Alain Finkel and myself to make signifi-
cant progress in designing extensions of the Karp-Miller coverability algorithm to other
WSTS than just Petri nets or even counter machines. I will say a bit more in Section[7l
This line of research stemmed from the remarkable relationship between the concepts
of Noetherianness and of sobriety, which I will explain. It is fair to say that the results
obtained with A. Finkel could be proved without any recourse to Noetherian spaces.
But the decisive ideas come from topology, and in particular from the important role
played by irreducible closed sets in Noetherian spaces.

2 Technical Preliminaries

A well quasi-ordering (wgo) is a quasi-ordering (a reflexive and transitive relation) that
is not only well-founded, i.e., has no infinite descending chain, but also has no infinite
antichain (a set of incomparable elements). An alternative definition is: < is a wqo on
X iff every sequence (), in X contains a pair of elements such that z; < z;,
i < j. Yet another equivalent definition is: < is wqo iff every sequence (z,,),, .y has a
non-decreasing subsequence z;, < z;; < ... < x5 < .. .,00<i1 <...<ip <...

WSTS. One use of well quasi-orderings is in verifying well-structured transition sys-
tems, ak.a. WSTS [1l4/16/21]. These are transition systems, usually infinite-state, with
two ingredients. (For simplicity, we shall consider strongly monotonic well-structured
transition systems only.)

First, there is a well quasi-ordering < on the set X of T —<-> o/ @))]
states. Second, the transition relation § commutes with _
<,ie.,if z 6 yand z < 2/, then there is a state 3y’ such VO

thatz' 0 ¢ and y < /'t Yy o<y
Examples include Petri nets [34] and their extensions, reset/transfer Petri nets for exam-
ple, in general all affine counter systems [[15]], the close concept of VASS [23], BVASS
[37U11]], lossy channel systems [3]], datanets [26], certain process algebras [7]; and some
problems, such as those related to timed Petri nets [5] admit elegant solutions by reduc-
tion to an underlying WSTS.

{r1=x4=25=0; zo=23=1; }; // init
start:

if (z3 >1){x2— —; 1+ +; goto start;} //a
| 1£ (x4 >1){x1 — —; 2+ = 2;goto start;} //b
| {x3——; x4+ +; goto start;} /Il c
[

{@s— = @3 ++; @5 + +;goto start;)  //d

Fig. 1. A Petri Net
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We illustrate the concept using Petri nets. I won’t define what Petri nets are exactly.
Look at Figure [Tl left, for an example. This is a net with 5 places x1, ..., x5, each
containing a certain number of tokens (shown as bullets): the initial state is shown,
with one token in places x2 and x3, and none anywhere else. Petri nets run by firing
transitions, shown as black bars |. Doing so means, for each incoming arrow O—|,
remove one token from the source place O, and for each outgoing arrow | —0O, add one
token to the target place. This can only be done provided there are enough tokens in
the source places. E.g., transition a can only fire provided there is at least one token
in x5 and at least one token in z3 (which is the case in the initial state shown in the
figure), will remove one from x5 and one from z3, then put back one into x3 and put
one into x1. The net effect of transition a is therefore to move one token from x5 to
x1, provided there is at least one token in x3. If we agree to use a variable z; to hold
the current number of tokens in place x;, a C-like notation for this is 1 £ (z3 > 1) {
r9 — —; x1 + +; }, as we have shown on the right-hand side of the figure.

In general, Petri nets are just another way of writing counter machines without zero
test, i.e., programs that operate on finitely many variables x1, ..., x; containing natural
numbers; the allowed operations are adding and subtracting constants from them, as
well as testing whether x; > ¢ for some constants c. The general counter machines also
offer the possibility of testing whether x; equals 0. Crucially, Petri nets do not allow for
such zero tests. This makes a difference, as reachability and coverability (see later) is
undecidable for general counter machines [28]], but decidable for Petri nets [34].

Let us check that Petri nets define WSTS. Consider a Petri net with k& places x1,

..., z. The states, also called markings, are tuples n = (ni,...,nx) € N¥, where
n; counts the number of tokens in place x;. The state space is N*. Order this by the
canonical, pointwise ordering: (n1,...,ng) < (n},...,ng) iff ng < nj and... and

ny < nj.. This is wqo by Dickson’s Lemma, whose proof can be safely left to the reader
(reason componentwise, observing that N is itself well-quasi-ordered).

The transitions are each given by a pair of constant vectors a,b € N*: we have
n 0 n' iffa < nandn’ = n—a+b for one of the transitions. For example, transition a
in Figure[Tlcan be specified by takinga = (0,1,1,0,0)and b = (1,0,1,0,0). It is easy
to see that Diagram (I)) holds. Indeed, if some transition is firable from n, then it will
remain firable even if we add some tokens to some places, and triggering it will produce
a new state with more tokens as well.

The standard backward algorithm for WSTS [4/16]]. The coverability problem is: given
two states x, y, can we reach some state z from x such that y < z? This is a form
of reachability, where we require, not to reach x exactly, but some state in the upward
closure Tz of x.

For any subset A of X, let Pre”§(A) be the preimage {z € X | Iy € A-z § y}.
The commutation property (1) of strongly monotonic systems ensures that the preimage
Pre’d (V') of any upward closed subset V' is again upward closed (V' is upward closed
iff whenever z € V and x < 2/, then 2’ € V). One can then compute Pre>*§ (V), the
set of states in X from which we can reach some state in V' in finitely many steps, as-
suming that upward closed subsets are representable and Pre’ (A) is computable from
any upward closed subset A: Compute the set V; of states from which we can reach
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some state in V' in at most ¢ steps, backwards, by Vo =V, V;1 1 = V; U Preaé(V,;): this
stabilizes at some stage 7, where V; = Pre>*§ (V).

To decide coverability, then, compute Pre™* (1 y), and check whether z is in it.

This is a very simple algorithm. The only subtle point has to do with termination.
One notices indeed that V) C V3 C ... C V; C ..., and that if the sequence ever
stabilizes at stage 7, we can detect it by testing whether V;; 1 C V;. Now it must sta-
bilize, because < is wgo. Indeed, in a wqo every upward closed subset U must be the
upward closure 1 F = {z € X | Jy € E -y < z} of some finite set E. (Proof: any
element x € U is above a minimal element in U: start from x and go down until you
cannot go further—which must eventually happen since < is well-founded. The set E
of all minimal elements of U must then be finite since there is no infinite antichain.) In
particular, V,, = [,y Vi can be written [{x1,...,2,}. Each z;, 1 < j < n, must be
in some V;,, so they are all in V;, where i = max(i1, ..., iy): it follows that V, = V;,
and we are done.

Noetherian spaces. The idea of [[19] lies in replacing order theory by topology, noticing
that the role of wqos will be played by Noetherian spaces.

Indeed, topology generalizes order theory. (To do so, we shall require topologi-
cal spaces that are definitely non-Hausdorff, even non-T77, hence very far from metric
spaces or other topological spaces commonly used in mathematics.) Any topological
space X indeed carries a quasi-ordering < called the specialization quasi-ordering of
X: x < yiff every open neighborhood U of z also contains y. It is fruitful, from a com-
puter science perspective, to understand opens U as fests; then x < y iff y simulates x,
i.e., passes all the tests that x passes.

Note that in particular every open U is upward closed in <, and every closed subset F’
is downward closed. Similarly, continuous map f : X — Y are in particular monotonic
(the converse fails).

In the opposite direction, there are several topologies on X with a given specializa-
tion quasi-ordering <. The finest one (with the most opens) is the Alexandroff topology:
its opens are all the upward closed subsets. The coarsest one (with the fewest opens)
is the upper topology: its closed subsets are all unions of subsets of the form | F (the
downward closure of F), E finite. In between, there are other interesting topologies
such as the Scott topology, of great use in domain theory [6].

3 The Basic Theory of Noetherian Spaces

A topological space X is Noetherian iff every open subset of X is compact. (L.e., one
can extract a finite subcover from any open cover.) Equivalently:

Definition 1. X is Noetherian iff there is no infinite ascending chainUy C Uy C ... C
U, C...ofopensin X.

The key fact, showing how Noetherian spaces generalize wqos, is the following [19,
Proposition 3.1]: < is wqo on the set X iff X, equipped with the Alexandroff topology
of <, is Noetherian. This provides plenty of Noetherian spaces.

It turns out that there are also Noetherian spaces that do not arise from wqos, thus
Noetherian spaces provide a strict generalization of wqos. The prime example is P(X),
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the infinite powerset of X, with the lower Vietoris topology, defined as the coarsest that
makes OU = {{A € P(X) resp., € P*(X) | ANU # 0} open for every open subset
U of X. When X is a poset, P(X) is quasi-ordered by the Hoare quasi-ordering <°:
A <P B iff for every a € A, thereis a b € B such that a < b. Assuming X wqo, P(X)
is not wqo in general, however it is Noetherian in the lower Vietoris topology—which
turns out to be the upper topology of <° [19] Corollary 7.4]. A related example, in fact
almost the same one, is the Hoare powerdomain H(X ) of a space X : this is the space of
all non-empty (even infinite) closed subsets F' of X, with the lower Vietoris topology,
namely the upper topology of C. This is one of the powerdomains used in domain
theory, and is a model of the so-called angelic variant of non-deterministic choice [6].
Then H(X) is Noetherian as soon as X is [19, Theorem 7.2].

We don’t have any practical applications of P(X) or H(X) in verification today. We
shall give an application of Noetherian spaces in Section[6] where the underlying space
is Noetherian, but is not the Alexandroff topology of a wqo. A simpler example is given
by X'*, the space of all finite words over a finite alphabet 3, with the upper topology of
the prefix ordering <P, We shall see below why this is Noetherian, and shall use it in
Section[3l Note that <P*f ig certainly not wqo, as soon as X’ contains at least two letters
a and b: b, ab, aab, ..., a"b, ..., is an infinite antichain.

The key insight in the theory of Noetherian spaces is how Noetherianness interacts
with sobriety. A topological space X is sober if and only if every irreducible closed
subset C' is the closure |  of a unique point € X. The closure of a point x is always
the downward closure |  with respect to the specialization quasi-ordering. A closed
subset C' is irreducible iff C # (), and whenever C is included in the union of two
closed subset, then C' must be contained in one of them. For every x € X, it is clear
that | x is irreducible. A sober space has no other irreducible closed subset.

Sober spaces are important in topology and domain theory [6], and are the corner-
stone of Stone duality. We refer the reader to [6, Section 7] or to [[18, Chapter V] for
further information. We shall be content with the following intuitions, which show that
sobriety is a form of completeness. A space is Ty iff its specialization quasi-ordering
< is an ordering, i.e., any two distinct points x, y, can be separated by some open U
(think of it as a test that one point passes but not the other one). So a space is Ty if it
has enough opens to separate points. A sober space is a T space that also has enough
points, in the sense that any closed set C' that looks like the closure of a point (in the
sense that it is irreducible) really is so: C' = | x, where necessarily x = maxC. An-
other indication is that, if X is sober, then X is a dcpo [6, Proposition 7.2.13]: for every
directed family (z;),.;, in particular for every chain, the limit sup,;c; z; exists. So a
sober space is complete also in this sense.

Any topological space X can be completed to obtain a sober space (X ), the so-
brification of X, which has the same lattice of open subsets (up to isomorphism), and
possibly more points. In a sense, we add all missing limits sup;c; z; to X. §(X) is de-
fined as the collection of all irreducible closed subsets C' of X, with the upper topology
of C. X is then embedded in §(X), by equating each point z € X with | z € §(X).

The first key point about the interaction between sobriety and Noetherianness is that
for any space X, X is Noetherian iff §(X) is Noetherian [19, Proposition 6.2]. This
is obvious: X and 8(X) have isomorphic lattices of open sets. Thus, to show that X
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is Noetherian, it is enough to show that §(X) is. The following is the cornerstone of
the whole theory, and allows one to check that a sober space is Noetherian by checking
simple properties of its specialization quasi-ordering [[19, Theorem 6.11]:

Theorem 1 (Fundamental Theorem of Sober Noetherian Spaces). The sober
Noetherian spaces are exactly the spaces whose topology is the upper topology of a
well-founded partial order < that has properties W and T.

We say that X has property W iff, for every x,y € X, there is a finite subset £ of
maximal lower bounds of = and y, such that every lower bound of z and y is less than
or equal to some element of F;i.e., | x N |y = | E. Similarly, it has property T iff the
space X itself is of the form | F, F finite.

This allows us to prove that the product of two Noetherian spaces X, Y is again
Noetherian [19, Theorem 6.13]. The specialization quasi-ordering on §(X x Y) 2
8(X) x 8(Y) is the product ordering, and it is easy to see that the product of two
well-founded orderings is again well-founded, and similarly for properties T and W.

Since every wqo is Noetherian, classical spaces such as N¥, or X* with the (Alexan-
droff topology of the) divisibility ordering (Higman’s Lemma [22]), or the set of all
ground first-order terms T(X) (a.k.a., vertex-labeled, finite rooted trees) with tree em-
bedding (Kruskal’s Theorem [23]]), are Noetherian.

It is natural to ask ourselves whether there are topological version of Higman’s
Lemma and Kruskal’s Theorem. There are indeed, and at least the former case was
alluded to in [13} Theorem 5.3]. Let X be a topological space, X * the space of all finite
words on the alphabet X with the subword topology, defined as the coarsest one such
that X*U; X*U X* ... X*U, X* is open for every sequence of open subsets U1, Us,
..., Uy, of X. The specialization quasi-ordering of X * is the embedding quasi-ordering
<*, where w <* w’ iff one obtains w’ from w by increasing some letters and inserting
some others, and:

Theorem 2 (Topological Higman Lemma). If X is Noetherian, then so is X *.

One also observes that if X is Alexandroff, then so is X *. One therefore obtains Hig-
man’s Lemma, that <* is wqo as soon as < is wqo on X, as a consequence. Thinking
of opens as tests, a word passes the test X *Uy X *Us X* ... X*U, X* iff it has a length
n subword whose letters pass the tests Uy, ..., U,.

As a corollary, the space X ® of all multisets of elements of X, with the sub-multiset
topology, is Noetherian whenever X is. This is the coarsest one that makes open the
subsets X® ©U; ® Uy @ ... ® U, of all multisets containing at least one element from
Ui, one from Us, ..., one from U,,, where U1, Us, ..., U, are open in X. This follows
from TheoremP]because X ® is the image of X * by the Parikh mapping ¥ : X* — X®
that sends each word to its multiset of letters, and because of the easy result that the
continuous image of any Noetherian space is again Noetherian.

The way I initially proved Theorem 2] [13, full version, available on the Web, The-
orem E.20] is interesting. One first characterizes the irreducible closed subsets of X*
as certain regular expressions, the word-products P = ejes . ..e,, where each e; is
an atomic expression, either of the form F'* with F' non-empty and closed in X, or
C" (denoting sequences of at most one letter taken from C), where C' is irreducible
closed in X. Note how close this is from the definition of products and SREs [2]. In
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fact, the latter are the special case one obtains when considering X finite, in which
case irreducible closed sets C' are single letters a, and non-empty closed sets F' are just
non-empty subsets of X.

Properties T and W are easy, and one realizes that there is no infinite descending
chain of word-products Py 2 P; 2 ... 2 P, D ..., as soon as X is Noetherian. This
may seem surprising, however one can characterize inclusion of word-products in an
algorithmic way (see [[13| Definition 5.1]), and from this definition it is clear that if P D
P’, where P = ejes...e, and P’ = €jé), ... el then the multiset {|eq, e, ..., en[}
is strictly larger than {le}, €}, ..., e/ [} in the multiset extension 1" of 7, defined by:
¢’ acriffc DC,FraF*iff " D F, F"" a2 CTiff I’ D C, and C'’ 2 F*.
When X is Noetherian, 2 is well-founded, and we conclude by Theorem[Il (This has
some similarities to Murthy and Russell’s argument [30], by the way.)

Using a similar line of proof, we obtain an analogous result on finite trees. We equate
finite trees on X with ground, unranked first-order terms with function symbols taken
from X, which we simply call ferms on X. Let X be a topological space, T(X) be
the set of all terms on X, defined by the grammar s,¢,... = f(t1,...,t,) (f € X,
n € N). Write ¢ for the sequence t; ...t,. Define the simple tree expressions by the
grammar 7 = QOU(my | ... | mp) (U openin X, n € N), and let U (7 | ... |
m,) denote the collection of all terms that have a subterm f(¢) with ¢ in the word-
product T(X)*m T(X)* ... T(X)* 7, T(X)*. We equip T(X) with the tree topology,
defined as the coarsest one that makes every simple tree expression open in T(X). The
specialization quasi-ordering of T(X) is the usual tree embedding quasi-ordering <<,
defined inductively by s = f(s) =< t = g(t) iff either s << ¢; forsome j,1 < j <n
(wheret = t1t2...1,),0or f < gand s <% t. And:

Theorem 3 (Topological Kruskal Theorem). If X is Noetherian, then so is T(X).

Simple tree expressions are best explained as tests. A simple tree expression 7 ::=
QU(my | ... | mp) is, syntactically, just a finite tree whose root is labeled U and
with subtrees 7y, ..., m,. Then a term ¢ passes the test 7 iff it has an embedded
term of the same shape as m and whose symbol functions f are all in the opens U
labeling the corresponding nodes of 7. E.g., whenever f € U,a € V,b € W,
t = g(h(f(g(a,c,c),b),h(g(c)))) is in SU(OV() | OW()), because it embeds the
term f(a,b),and f €e U,a € V,be W.

We have already dealt with trees, in the special case of ranked terms on a finite space
X in [13} Definition 4.3, Theorem 4.4]. However, these were flawed: the tree-products
defined there are irreducible, but not closed. The characterization of irreducible closed
subsets of T(X) is in fact significantly more complicated than for words, although they
are still a form of regular expression. This will be published elsewhere.

By the way, I am, at the time I write this, discontent with the above proofs of The-
orem 2] and Theorem [3] as they are arguably long and complex. I have found much
simpler proofs, which escape the need for characterizing the irreducible closed subsets,
and are in fact closer to Nash-Williams celebrated minimal bad sequence argument [31]].
This, too, will be published elsewhere.

We have already mentioned that some Noetherian spaces did not arise from wqos.
Theorem[Ilmakes it easy to show that X* with the upper topology of the prefix ordering
(where X is finite, with the discrete topology) is Noetherian. Consider indeed X* U{T },
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where T is a new elements, and posit that w <P T forevery w € X*. Equip X*U{T}
with the upper topology of <P*'. The purpose of adding T is to enforce property T.
Property W is obvious, as well as well-foundedness. So X* U { T } is sober Noetherian.
One now concludes using the easy result that any subspace of a Noetherian space is
Noetherian.

One can generalize this to cases where we replace X' by an arbitrary Noetherian space
X, defining an adequate prefix topology on X *. We omit this here. We write X *P"f the
resulting space. We return to Pl in Section

Let us summarize these results by the grammar of Figure [2} every space D shown
there is Noetherian. We have not yet dealt with the case of polynomials; we shall touch
upon them in Section [6l The constructions marked with a star are those that have no
equivalent in the theory of well-quasi-orderings.

D:=A (finite, Alexandroft topology of some quasi-ordering <)
N (Alexandroff topology of the natural ordering <)
c* (with the Zariski topology, see Section [&) *
Spec(R) (with the Zariski topology, R a Noetherian ring, Section[@)) *

D1 X Dy X ... Xx D, (with the product topology)
D1+ D2 + ...+ D, (disjoint union)

—_— 'H'
2

(with the subword topology, Theorem 2))
D® (with the submultiset topology)
T(D) (with the tree topology, Theorem [3))
D*opref (with the prefix topology) *
H (D) (with the upper topology of C) *
P(D) (with the lower Vietoris topology) *
S8(D) (with the lower Vietoris topology) *

Fig. 2. An algebra of Noetherian datatypes

4 Effective TopWSTS

It is easy to extend the notion of WSTS to the topological case. Say that a fopological
WSTS (topWSTS) is a pair (X, ¢), where X, the state space, is Noetherian, and J, the
transition relation, is lower semi-continuous. The former is the topological analogue of
a wqo, and the latter generalizes strong monotonicity (I). Formally, § is lower semi-
continuous iff Pre?6(V) = {x € X | Jy € V - & § y} is open whenever V is.

Modulo a few assumptions on effectiveness, one can then compute Pre™*§ (V) for
any open V: since X is Noetherian, the sequence of opens Vo = V, V1 = V; U
Pre?§(V;) eventually stabilizes. So we can decide, given V and = € X, whether some
element in V is reachable from the state x: just test whether # € Pre”*§(V'). This is a
general form of the standard backward algorithm for WSTS.

Let us make the effectiveness assumptions explicit. We need codes for opens, and
ways of computing Pre 6. The following definition is inspired from Smyth [35] and
Taylor [36l Definition 1.15], taking into account simplifications due to Noetherianness.
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Definition 2 (Computably Noetherian Basis). Let X be a Noetherian space. A com-
putably Noetherian basis (resp., subbasis) on X is a tuple (N,O0[_] ,0, 1, +, <) (resp.,
(N,0[_],0,1,+, %, <)) where:

— N is a recursively enumerable set of so-called codes,

- O[] : N — O(X) is a surjective map, O[0] = 0, O[1] = X, Ou+v] =
O [u] UO[v] (and O [uxv] = O [u] N O [v] in the case of subbases);

— finally, < is a decidable relation satisfying: if u < v then O [u] C O [v] (sound-
ness), and for any family (v;), ; of codes, there are finitely many elements iy, . . . , iy
€ I such that v; < vi; + ...+ v;, foralli € I (syntactic compactness).

If in addition v < v iff O[u] C O[v] for all codes u,v € N, then we say that
(N,0[_],0,1,+, <) is a strongly computably Noetherian basis.

It is important to notice that such bases describe codes for open subsets, but that we
don’t care to even represent points, i.e., states, themselves.

The condition u < v iff O Ju] C O[v] for all codes u,v € N trivially entails
both soundness and syntactic compactness. The latter follows from the fact that the
open (J;c; O [vi] is compact, since X is Noetherian. It is an easy exercise to show
that all the spaces of Figure 2] have a strongly computably Noetherian basis. E.g., for
N, the codes are n, n € N, plus 0; we take 1 = 0, O[n] = Tn. If (N;,0[_],,
04, 1;, +4,%;, ;) are strongly computably Noetherian bases of X;, 1 < i < n, then
(N, 0"[_],0,1,4',(¥,) <) defines one again for X1 x ... X X,,, where N’ =
Pin (N1 x ... x Nyp) and O [u] = Uy, e O lua] x ..o x O Jun] IF (N, O[]
0,1, 4, *, <) is a strongly computably Noetherian basis for X, where N’ = Pg,(N*)
and for every v’ € N’, O’ [u'] is the union, over each word w = wjus ... u, in v/, of
the basic open set O’ [w] = X*O Jur ] X*O Jua] X* ... X*O [u,] X*.

This also works for infinite constructions such as P(X) or H(X): if (N,O0[_],
0,1, 4+, <) is a strongly computably Noetherian basis for X, then (N’, 0’ [_] ,0', 1/, +,
*', <’} is a strongly computably Noetherian subbasis for P(X ), where N’ = Pg,(N),
and for every u € N, O’ [u] = (,¢, €O [a] (this is X" itself when u = ().

One sometimes also needs a representation of points, which we define as some sub-
set P of some r.e. set, withamap X [_] : P — X, and a decidable relation € on P x N
such that p ¢ w iff X [p] € O [u]. If X is Ty, there is always a surjective, canoni-
cal representation of points derived from a strongly computable Noetherian subbasis
(N,0[_],0,1,+, <): take P to be the subset of all codes v € N such that O [u] is
the complement of some set of the form | z, then let X [u] = x. So we don’t formally
need another structure to represent points: any computably Noetherian basis already
cares for that. But some other representations of points may come in handy in specific
cases.

Definition 3 (Effective TopWSTS). An effective topWSTS is a tuple (X, 6, N, O [_],
0,1, 4, <, Ra), where (X,0) is a topWSTS, (N, 0 [_],0,1, 4, <) is an effective basis
on X, Ry : N — N is computable, and Pre?5(0O [u]) = O [R3(u)] for every u € N.

In other words, one may compute a code of Pre”§(U), given any code u of U, as R3(u).
The following is then clear.
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Proposition 1. Let (X,6,N,0[_],0,1,+, <, R3) be an effective topWSTS. One can
effectively compute a code of Pre’*§ (U) from any given code u of the open subset U.

Assume additionally a representation (P, X [_] , €) of points. Given any code p for a
point x € X, and any code u for an open subset U of X, one can decide whether there
isatracex = x9 6 x1 0 ... 0 x} such that vy, € U.

One can in fact go further and model-check some infinite two-player games. We con-
sider a may player, who will play along lower semi-continuous transition relations, and
a must player, who will play along upper semi-continuous transition relations: d is up-
per semi-continuous iff Pre” § (F) is closed whenever F is.

Formally, one posits a finite set L = Lpnug U Lmay of transition labels, taken as the
(not necessarily disjoint) union of two subsets of must labels and may labels, and calls
a topological Kripke structure any tuple I = (X, (0¢)ycp, (Ua) gcq)» Where X is a
topological space, d; is a binary relation on X, which is lower semi-continuous when
¢ € Lyay and upper semi-continuous when ¢ € L, and U4 is an open of X for every
atomic formula A. An environment p maps variables £ to opens of X, and serves to
interpret formulae in some modal logic. In [19, Section 3], we defined the logic L,, as
follows. The formulae F' are inductively defined as atomic formulae A, variables &, true
T, conjunction F' A F, false L, disjunction F' V F’, must-modal formulae [¢]F', may-
modal formulae (¢) F’, and least fixed points ;£ - F'. The semantics of L, is standard:
the set I [F]; p of states € X such that x satisfies F is in particular defined so
that I [(0)F]s p = Pre?6,(I [Flsp), I[[()F]s5p = Pre”d,(I [Fsp) (where, if F is
the complement of V, Pre” (V') is the complement of Pre”(F)), and I [u& - F];p =

T U;, where Uy = 0 and Uiyy = I [F]; (pl€ := U;]). When X is Noetherian,
the latter will in fact arise as a finite union | J_, U;. We define effective topological
Kripke structures in the obvious way, imitating Definition Bt just require computable
maps R} : N — N representing & for each ¢ € Lay, R} : N — N representing d;
for each £ € L, and codes u 4 of U4 for each atomic formula A. Computing (a code
for) I [F s p by recursion on F' yields the following decision result.

Proposition 2. Given an effective topological Kripke structure, any formula F of L,
and any sequence of codes v¢, one for each variable &, one can effectively compute a
code of I [Fs p, where p is the environment mapping each & to O [vg].

Given any representation of points, and any code for a point x € X, one can decide
whether x satisfies F'.

5 Oblivious Stack Systems

Let X be a finite alphabet. Reachability and coverability in k-stack pushdown automata
are undecidable as soon as k > 2: encode each half of the tape of a Turing machine by
a stack. Here is relaxation of this model that will enjoy a decidable form of coverability.

Define oblivious k-stack systems just as pushdown automata, except they cannot
check what letter is popped from any stack. Formally, they are automata on a finite
set @ of control states, and where transitions are labeled with k-tuples (a1, ..., ax)
of actions. Each action «; is of the form push,, for each a € X' (push a onto stack
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number ) pop (pop the top letter from stack ¢, if any, else block), and skip (leave stack
¢ unchanged), and all actions are performed in parallel.

This defines an effective topWSTS on the state space () x (E**’“’f)k. As we have
seen, the latter is Noetherian, although its specialization ordering is certainly not wqo.
So the theory of WSTS, as is, does not bring much in solving oblivious k-stack systems.
However, Proposition [1] applies: one can decide whether we can reach a given open
set V' from any state. One observes that one can specify an open set by a finite set
{p1,-..,pn} of forbidden patterns. A forbidden pattern p is a tuple (g, w1, ..., wy,)
where ¢ € @, and each w; is either a word in X* or the special symbol T. Such a
pattern is violated in exactly those states (g, w}, ..., w!,) such that for each ¢ such that
w; # T, w, is a prefix of w;. It is satisfied otherwise. Then {p1, ..., p,} denotes the
open subset of all states that satisfy every p;, 1 < i < n. It follows:

Theorem 4. Given an oblivious k-stack system, any initial configuration and any fi-
nite set of forbidden patterns, one can decide whether there is a configuration that is
reachable from the initial configuration and satisfies all forbidden patterns.

In particular, control-state reachability, which asks whether one can reach some state
(q,w1,...,wy), for some fixed ¢, and arbitrary w1, ..., wy,, is decidable for oblivious
k-stack systems: take all forbidden patterns of the form (¢/, T,...,T), ¢ € Q \ {¢}.
This much, however, was decidable by WSTS techniques: as S. Schmitz rightly ob-
served, one can reduce this to Petri net control-state reachability by keeping only the
lengths of stacks. TheoremH]is more general, as it allows one to test the contents of the
stacks, and comes for free from the theory of topWSTS.

The reader may see a similarity between k-stack pushdown automata and the con-
current pushdown systems of Qadeer and Rehof [32]]. However, the latter must push and
pop on one stack at a time only. Pushdown automata may require one to synchronize
push transitions taken on two or more stacks. L.e., if the only transitions available from
control state ¢ are labeled (push,, push,, skip, ..., skip) and (push,, push,, skip,
..., skip), then this forces one to push the same letter, a or b, onto the first two stacks
when exiting gq.

6 Polynomial Games

Let C be the field of complex numbers, and k£ € N. Let R be the ring Q[ X1, ..., X]
of all polynomials on & variables with coefficients in Q. The Zariski topology on CF is
the one whose opens are Oy = {x € C¥ | P(x) # 0 for some P € I}, where I ranges
over the ideals of R. Le., its closed subsets are the algebraic varieties F; = {x € ck |
P(x) = 0forevery P € I}. This is a much coarser topology that the usual metric
topology on C*, and is always Noetherian.

There is an obvious computably Noetherian subbasis (not strongly so) from com-
putable algebraic geometry. The set N of codes is the collection of Grobner bases [9,
Section 11], which are finite sets of polynomials u = { Py, ..., P, } over Q, normalized
with respect to a form of completion procedure due to Buchberger. Given a so-called
admissible ordering of monomials, i.e., a total well-founded ordering > on monomials
such that m; > mq implies that mm; > mmsg for all monomials m, every non-zero
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polynomial P can be written as am + P’, where a € K, m is the largest monomial
of P in >, and P’ only involves smaller monomials. P can then be interpreted as a
rewrite rule m — — ! P’ on polynomials, E.g., if P = X?Y —4X + Y2, with XY
as leading monomial, one can rewrite X%Y?2 (= X2Y.X3Y) to 4X*Y — X3Y3; the
latter (= X?2Y.(4X?) — X3Y?) again rewrites, using P, to —X3Y? +16X3 —4X2Y?2,
thento —4X2Y2+ XY*+16X3—4X2%Y? = 16X% - 8X?Y?2+ XY*, and finally to
16X3 —32XY + XY* 4 8Y3. Notice that, evaluated on any zero of P, all the polyno-
mials in the rewrite sequence have the same value; e.g., 0 when X =Y =0, or 9_%/ 17
when X =1,Y = _1+2‘/17.

A Grobner basis for an ideal 7 is a finite family w of polynomials such that I = (w)
and that is confluent (and necessarily terminating) when interpreted as a rewrite system.
Buchberger’s algorithm converts any finite set v of polynomials to a Grobner basis w
of (v).

Let then O [u] = O,), where (u) = (Py,...,P,) is the ideal of all linear com-
binations of P, ..., P, with coefficients in R. One can always compute a Grobner
base for anideal I = (P,..., P,), given Py, ..., P,, by Buchberger’s algorithm. The
code 0 is then {0}, 1 is defined as {1}, u + v is a Grobner base for u U v. One can
also define u x v to be a code for O [u] N O [v], and compute it in at least two ways
[27, Section 4.3]. The simplest algorithm [8| Proposition 4.3.9] consists in computing a
Grobnerbasisof I = (Y P, Y Po,...,.YP,,(1-Y)Q1,(1-Y)Q2,...,(1=Y)Qn),
where w = {P1, Pa,...,Pptand v = {Q1,Q2,...,Q,} and Y is a fresh variable,
and to define u x v as a Grobner basis for the elimination ideal Y - I, defined as those
polynomials in I where Y does not occur [8, Theorem 4.3.6]. Given any polynomial P
and any Grobner basis u, one can test whether P € (u) by a process akin to rewriting:
each polynomial in u works as a rewrite rule, and P € (u) iff the (unique) normal
form of P with respect to this rewrite system is 0. One can then test whether u < v by
checking whether, for each P € u, P is in (v). It turns out that u < v is not equivalent
to Ou] C O[v]: take u = {X}, v = {X?}, then u & (v), although O [u] = O [v].
But soundness is obvious, and syntactic compactness (Definition 2) follows since R
is a Noetherian ring. We mention in passing that there is also a strongly computably
Noetherian subbasis, where u < v iff (u) is included in the radical of (v), and this can
be decided using the Rabinowitch trick [33].

As a representation of points, we take those  such that (u) is a prime ideal. This is
in fact the canonical representation. It contains at least all rational points (g1, ..., qk) €
QF, represented as the Grébner basis (X1 — ¢1, ..., Xk — gk ), but also many more.

One gets natural topWSTS from polynomial programs. These are finite automata,
on some finite set () of control states, where transitions are labeled with guards and
assignments on k complex-valued variables. The guards g are finite sets { Py, ..., Py}
of polynomials in R, interpreted as disjunctions of disequalities P, # 0V...V P, # 0.
If the guard is satisfied, then the transition can be taken, and the action is triggered. The
allowed actions a are parallel assignments  := P;(x),..., Py(x), where x is the
vector of all k variables, and with the obvious semantics. Each F; is either a polynomial
in R, or the special symbol 7, meaning any element of C.
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This defines a transition relation § on Q x CF, which happens to be lower semi-
continuous, and in fact computably so. As set N’ of codes for opens of the state space
Q x C*, we use Pin(Q x N), and define O’ [u'] = U, ,yen-{a} x O[u]. Then,
Pre 60" [w')=Uy wyew {0} x O [9 x {P[Xi:=Plic1,.. | P €YXi,, ..., X;, -u}],
where a is  := Pi(x),..., Py(x), and i1, ..., i, are those indices ¢ where P; is 7,
and I, are the others. P[X; := P;];cy,., is parallel substitution of P; for X; in P for
all i € I,.;. The V operator is defined, and shown to be computable, in [29, Lemma 4].

The polynomial programs above are exactly those of Miiller-Olm and Seidl [29].
Proposition [I] then immediately applies. In particular, one can decide whether one can
reach some configuration (¢’, ) such that Pi(x) # 0 or ... or Py, (x) # 0 for some
state ¢’ and polynomials P, ..., P,,, from a given configuration, in a given polynomial
program. This is a bit more than the polynomial constants problem of [29]. For example,
we may want to check whether at ¢’ we always have Y = X2 +2and X2 +Y? = 72,
and for thiswelet P, = Y — X2 — 2, P, = 72 — X? — Y2, m = 2. Figure [3is
a rendition of an example by Miiller-Olm and Seidl, in C-like syntax. The conditions
(shown as ‘?’) at lines 1 and 3 are abstracted away: 1f and while statements are to
be read as non-deterministic choices. One may check that it is always the case that x is
0 at line 4. This is a polynomial program with control states 1 through 4, the variables
are X; = x, X =y, all the guards are trivial (i.e., the empty set of polynomials), and
the actions should be clear; e.g., the only action from state 2 to state 3 is the pair of
polynomials (X; X2 — 6,0).

. ifM{x=2y=3;}else{x=3y=2;}
2. x=x*xy—6;y=0;

3. while(M{zx=x+Ly=y—1;};

3. x=x"24xx*y;

4. return;

Fig. 3. Miiller-Olm and Seidl’s example

Polynomial Games. We can again go further. Define polynomial games as a topological
Kripke structure where, for each may transition £ € Ly,y, ¢ is specified by guards and
actions as above. For each must transition ¢ € L, we specify d, by giving ourselves
a finite set Ay of triples (¢,¢', @) € @ X Q@ X Q[ X7, ..., Xk, X1, ..., X}], and defining
(g, ) 6e(q’, ") iff there is a triple (¢, ¢’, o) € Ap such that a(x, x’) = 0. So the must
player can, in particular, compute polynomial expressions of x, test polynomials against
0, and solve polynomial equations. It is easy to see that §; is then upper semi-continuous,
as Pre?0s({¢'} x Fluy)) = Uggg.meadql X Faxio ax]@u{P(Xiex/k |Peu))-
By Proposition 2

Theorem 5. The model-checking problem for L, formulas on polynomial games is
decidable.

We do not know whether the added expressive power of polynomial games, compared
to the simpler polynomial programs, will be of any use in verification, however the
theorem stands.
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Lossy Concurrent Polynomial Programs. All the above can be done without any re-
course to topology, and requires one only to work with polynomial ideals. However,
the topological approach is modular. If one should someday need to decide games that
would involve state spaces such as N™ x C¥, or P(CF), the theory of Noetherian spaces
would apply right out of the box. Here is a trivial case.

Consider a network of polynomial programs communicating through specific FIFO
channels. We shall call such networks concurrent polynomial programs. We shall as-
sume these channels to be lossy, i.e., messages may disappear from the channels, non-
deterministically, at any time. We shall also assume that the messages are taken from
some fixed finite set Y, i.e., the channels are only used for signaling, not for transmit-
ting any actual value. This imitates the behavior of lossy channel systems [3]], which are
a special case (with no variable from C) of our lossy concurrent polynomial programs.
Lossiness is interesting, if only because the non-lossy variants are undecidable [[10]].

For simplicity, we shall only consider two programs A and B communicating through
one FIFO channel from A to B. Dealing with more programs and more channels presents
no difficulty, other than notational.

The messages sent over the channel are control signals from Y. So the data type
of the possible contents of the channel is 2, with the subword topology (alterna-
tively, the Alexandroff topology of the usual embedding quasi-ordering <*, where <
is equality on X). Let Q4 be the finite set of control states of A, Qp that of B. Let
X = Xi,...,X,, be the vector of the numerical variables of A, Y = Yi,...,Y,
those of B. The configurations are tuples (¢4, X, ¢p, Y, w), where (g4, X) is a con-
figuration of the polynomial program A4, (¢p,Y’) is a configuration of B, and w € X*
is the contents of the channel. Compared to the non-concurrent case, the guards and the
actions of A (resp., B) can only deal with variables from X (resp., Y'), except for two
new families of actions recv, (for B) and send, (for A), where a is a constant in X.

Formally, given any A-transition from ¢4 to ¢/, with guard ¢ and action send,,
a € X + CF, we define 6 so that (g4, X, q5,Y,w) § (¢4, X,qB, Y, aw) provided g
is satisfied (add a in front of w), while the semantics of a recv, action, a € X, from
g to ¢)y with guard g, is given by (¢4, X, g5, Y ,wiaw) 6 (qa, X,q, Y, w) if g is
satisfied (i.e., drop enough letters from the FIFO channel until we reach an a, and pop
it). It is an easy exercise to show that this is lower semi-continuous, and computably so.
(We could also add transitions that drop letters from the channel, as in lossy channel
systems, but this is not needed for the rest of our treatment.)

The opens are finite unions of sets of the form {(qa, x, ¢p, z,w) | (x,y) € Oy, w €
Xra X" .. X*aq, X"}, where g4, ¢p are fixed control states, [ = (p1, ..., p¢) is a fixed
polynomial ideal over Q[ X,Y], and a4, ..., aq are fixed letters from Y. In other words,
such an open subset is specified by a forbidden pattern: a state satisfies the forbidden
pattern iff its A is in control state ¢4, B is in control state ¢p, p;(x,y) # 0 for some 4,
1<i< ¢, andajas. .. aq is a subword of the contents w of the channel.

Theorem 6. Given a lossy concurrent polynomial program, an initial configuration
where the values of the variables are given as rational numbers, and a finite set of
forbidden patterns, one can decide whether there is a configuration reachable from the
initial configuration and that satisfies all forbidden patterns.
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In particular, control-state reachability (can one reach a configuration where A would
be in state ¢4 and B in state gz ?) is decidable.

Algebraic geometry. To end this section, we only mention that C* is considered as a
special case in algebraic geometry. It turns out that the sobrification §(C¥) coincides
with Spec(Q[X1, Xo, ..., Xi|), the spectrum of the (Noetherian) ring Q[ X1, Xo, .. .,
Xk]- The spectrum Spec(R) of a ring R is the set of all prime ideals of R, and comes
with the Zariski topology, whose closed subsets are F; = {p € Spec(R) | I C p},
where I ranges over the ideals of R. It is well-known that Spec(R) is a Noetherian
space whenever R is a Noetherian ring, see [20, chapitre premier, Section 1.1]. This
provides yet another construction of Noetherian spaces, although we currently have no
application in computer science that would require the added generality.

7 Completions, and Complete WSTS

The algorithm of Proposition [Tl works backwards, by computing iterated sets of pre-
decessors. The Karp-Miller algorithm [24] works forwards instead, but only applies to
Petri nets. Forward procedures are useful, e.g., to decide boundedness, see [[14].

(0,1,1,0,0) =(0,1,1,0,0) = =(0,1,1,0,0) <.,
(1,0,1,0,0) (0,1,0,1,0) (1,0,1,Q,0) (0,1,0,1,0) ; (1,0,1,Q,0) (0,1,0,1,0)
c d ; c N a - : c d
(1,0,0,1,0) (0,1,1,0,1) (1,0,0,1,0) :(0,1,1,0,w) (1,0,0,1,0) :(0,1,1,0,w)
b ‘ : b EO b
(0,2,0,1,0) (1,0,1,0, 1) (0,2,0,1,0) (1,0, 1,0, w) (0,2,0,§,0) (1,0,1,0,w)
i L ‘ L ) ‘
(0,2,1,0,1) (0,w,1,0,w) (0, w,1,0,w)
a C
(1, w,1,0,w)(0,w, 0,1, w)
% x
(w,w,1,0, wfw,w,0,1,w)
(a) Unfolding (beginning) (b) Taking some shortcuts (c) Finishing some branches

Fig. 4. Running the Karp-Miller procedure on Figure/[]]

Consider for example the Petri net of Figure[Il and consider it as a transition system
over N°. The initial state is (0,1,1,0,0), and there are four transitions a, b, ¢, and
d. One can then unfold all possible runs of the net in a tree (see Figure @ (a)). Here,
from the initial state, one can trigger transitions a or c, leading to states (1,0, 1,0, 0) and
(0,1,0,1,0) respectively. From the latter we can only trigger d, leading to (0,1, 1,0, 1),
and so on. Doing so would yield an infinite tree.

The Karp-Miller construction builds a finite tree by taking some shortcuts, and ab-
stracting away the values of components of the states that may become unbounded.
E.g., in Figure[Il we realize that firing ¢ then d leads to a state (0,1, 1,0, 1) where the
first four components are the same as in the initial state (0,1, 1,0, 0), but the fifth is
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larger. Iterating this c-d sequence would lead to a state (0,1,1,0, N) with N arbitrary
large, and we abstract this away by replacing the state (0,1,1,0,1) by (0,1,1,0,w),
where w denotes any, arbitrarily large, number. This also happens along the other two
branches shown in Figure[ (a). The dotted arrows going up in Figure d (b), indicate
which state we can go back to in order to perform such iterations.

One can see a tuple in N2, (where N, = NW {w}) such as (0, 1, 1, 0,w) as meaning,
in particular, that there are infinitely many tokens in place x5. While this is not quite
correct, it certainly gives some further intuitions. In particular, one can continue to
simulate the execution of the Petri net from such extended states. The result, apart from
some irrelevant parts, is shown in Figured] (c). This is the coverability tree of the Petri
net. (The dotted arrows are not part of this—the coverability graph would include them.
We also glossed over a few details, notably that the Karp-Miller construction does not
proceed to simulate the execution of the Petri net from an extended state that is identical
to a state further up the same branch.)

The reason why the resulting tree is finite is twofold. First, N¥ is wqo. This implies
that, along any infinite branch, we must eventually find an extended state that is com-
ponentwise larger than another one higher in the tree, giving us an opportunity to take
a shortcut. We call this a progress property: in any infinite run, we will eventually take
a shortcut, subsuming infinitely many iterations.

Second, taking a shortcut adds an w component to a tuple, and w components never
disappear further down the branch: so any branch must in fact be finite. It follows from
Ko6nig’s Lemma that the tree itself is finite, and is built in finite time.

The Karp-Miller construction gives more information about the Petri net than the
standard backward algorithm. Letting A C N be the set of all extended states labeling
the nodes of the tree, one sees that N* N | A is exactly the cover of the Petri net, i.e.,
the downward closure | Post*d(x) of the set Post*d(x) of states y that are reachable
from the initial state « by the transition relation §. In particular, one can decide cover-
ability, by checking whether y € | Post™§(x). One can also decide boundedness, i.e.,
test whether Post™§(x)? is finite (check whether any w component occurs anywhere
in the coverability tree), and place-boundedness, i.e., test whether there is a bound on
the number of tokens that can be in any given place. In the example above, and after
simplification, the cover is N° N | {(w,w,0,1,w), (w,w, 1,0,w)}: the bounded places
are x3 and x4.

The Karp-Miller construction is fine, but only works on Petri nets. There cannot be
any similar, terminating procedure for general WSTS, since this would decide bound-
edness again. But boundedness is already undecidable on lossy channel systems [10]]
and on reset Petri nets [[12].

Even if we drop the requirement for termination, finding a procedure that would
compute the cover of a general WSTS (when it terminates) remained elusive for some
time. Some important special cases could be handled in the literature, e.g., a large class
of affine counter systems generalizing reset/transfer Petri nets [15], or lossy channel
systems [2], but a general theory of covers, and of forward procedures a la Karp-Miller
for general WSTS was missing. This is what we solved, with A. Finkel, in two recent
papers [13114].
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This involved two tasks: (i) first, much as we needed extended states in N¥ in the
Karp-Miller procedure, we should work in an adequate completion X of the state space
X; (it) then, we should understand what a Karp-Miller-like procedure actually com-
putes. We actually cheated here, since we have already given an answer to (i%): the
Karp-Miller procedure computes (among other things) the cover of the Petri net.

Completions. In (i), by adequate we mean that X should embed into X, in such a way
that every closed subset D of X should be representable by a finite subset of X. (In
[L3], we required this for every downward closed, not just closed, D. However, if X
has the Alexandroff topology of a wqo, this is the same thing.) Formally, D should be
the set of those points in X that are below finitely many pointsin X: D = X N | 3 E,
FE finite. We write |  to stress the fact that the downward closure is to be taken in X s
i.e., I is a subset of )/(\', not X. Typically, if X = NF, then X should be fo), and for
example, D = {(m,n,p) € N3 | m +n < 3} is representable as N> N l51(0,3,w),
(1,2,w),(2,1,w), (3,0,w)}. It turns out that the sobrification 8§(X) is exactly what we
need here, as advocated in [13, Proposition 4.2]:

Proposition 3. Let X be a Noetherian space. Every closed subset F' of X is a finite
union of irreducible closed subsets C1, . .., Cy,.

So let the completion X be 8(X). Proposition 3 states that, modulo the canonical iden-
tification of # € X with |z € 8(X), Flis X N | ¢{C1,...,Cn}. We have stressed the
subcase where X was wqo (and equipped with its Alexandroff topology) in [[13]], and
this handles 7 of the 13 constructions in Figure[2l We would like to note that Noethe-
rian spaces X allow us to consider more kinds of state spaces, while ensuring that each
closed subset of X is finitely representable, in a canonical way. Moreover, these repre-
sentations are effective, too. R

One might wonder whether there would be other adequate completions X . There are,
indeed, however $(X) is canonical in a sense. Adapting Geeraerts ef al. slightly [17],
call weak adequate domain of limits, or WADL, over the Noetherian space X any space
X in which X embeds, and such that the closed (downward closed when X is wqo)
subsets of X are exactly the subsets representable as X N | ¢ F for some finite subset
E of X.Itis an easy consequence of Theorem [I] that §(X) is the smallest WADL,
and H(X) is the largest WADL: up to isomorphism, any WADL X must be such that
8(X) C X C H(X).

It is then natural to ask whether X = 8(X) is effectively presented, in the sense
that we have codes for all elements of §(X) and that the ordering (i.e., C) on §(X)
is decidable. It turns out that the answer is positive for all the dataty@if Figure

E.g., given codes for elements of X 1 )/(\'thhe Acodes for elements of X x X» are just
pairs of codes (x1,x2) for elements of X7, X5. Given codes for elements of X, the
codes for elements of X * are the word-products we mentioned in Section [3] It might
seem surprising that we could do this even for the infinite powerset P(X). Notice that
I@ = H(X), up to isomorphism, and that every element of {(X) can be written as
C1 U...UC, for finitely many elements C, ..., C), of X by Proposition[3l So take as
codes for elements of IP@ the finite sets E of codes of elements C1, ..., C), of X.
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Clovers. Point (ii) was clarified, among other things, in [14]]: Karp-Miller-like proce-
dures compute the clover of a state x € X in a WSTS X, and this is a ﬁnite represen-
tative {C, ..., Cy, }, as defined above, of the topological closure (in X) of the set of
points reachable from z. The clover always exists, by Proposition 3] It may fail to be
computable: if it were, it would allow us to decide boundedness for reset Petri nets or
for lossy channel systems, which are undecidable.

While we investigated this for WSTS, it actually works for any topological WSTS.
We only need to extend the transition relation § C X X X to one, 86, on X x X. The
canonical candidate is such that C' 86 C” iff C” is included in the closure of Postd(C') =
{y € X | 3z € C - = 0 y}; and this is representable as a finitely branching (because of
Proposition 3 again) relation 5. E. g., the minimal such relation is such that C 5 O iff
C" is maximal such that C' 8§ C’. We then get a completed topWSTS X

To do anything with this, we must assume that s is effective, and a bit more. We
explored this in [[14], in the case where X is wqo, and X is functional (i.e., C 5 C'
iff ' = g;(C) for some 7, 1 < i < n, where g1, ..., g is a fixed collection of
partial continuous maps from XtoX ) and oo-effective (see below), and obtained a
simple procedure Clover that computes the clover of any state C' € X (in particular,
any z € X') whenever it terminates.

The role of the completion X is again manifest in that Clover needs to lub-accelerate
some infinite sequences of states obtained in a regular fashion as Cy < ¢(Cp) <
g%(Cy) < ... < g™"(Cy) < ... by applying one functional transition g : X - X,
replacing the sequence by its least upper bound g>°(Cj) (which exists: recall that every
sober space is a dcpo in its specialization quasi-ordering). This is what we called taking
shortcuts until now. If Cy £ g(Cy), then define g°°(C)) as just g(Cp). X is co-effective
iff g is computable.

Here is the procedure. Max A denotes Procedure Clover(so) :

the set of all maximal elements of A € 1. A« {so};

Psn(X). The procedure takes an initial 2. while Post(S6)(A) £” A do

extended state sy € )/(\', and, if it ter- (a) Choose fairly (g, C)€{g1,...,gn}"xA
minates, returns a finite set Max A (the such that C' € dom g;

clover of so) such that | ; Max Aisthe () A — AU{g>(a)};

closure of the cover of the WSTS. 3. return Max 4;

The elements g chosen at line (a) are chosen from {g1, ..., g, }*, the set of compo-
sitions g;, © g, © ... 0 g;, of functions from {g1, ..., gn}. A typical implementation of
Clover would build a tree, as in the Karp-Miller construction. In fact, a tree is a simple
way to ensure that the choice of (g, C') at line (a) is fair, i.e., no pair is ignored infinitely
long on any infinite branch. Concretely, we would build a tree extending downwards. At
each step, A is given by the set of extended states written at the nodes of the current tree.
One picks (g, C) as in line (a) by picking a transition g; to apply from a yet unexplored
state C” (at a leaf), and considering all states C' higher in the branch (the path from C
to C’ being given by transitions, say, gi,, Gi,_,» - - -» Gir)s letting g = g; 0 gi, 0. .. 0 gs,..

The Clover procedure extends straightforwardly to topWSTS, provided they are
functional (here, each g; needs to be continuous). It is however unclear how to dis-
pense with the requirement that it be functional. Moreover, the nice characterization
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that Clover terminates exactly on those systems that are clover-flattable [14] Theo-
rem 3] seems to require the fact that X is w?-wqo, not even just wqo, for deep reasons.

Conclusion. Noetherian spaces open up some new avenues for verifying infinite-state
systems, whether backward or forward, a la Karp-Miller. Mostly, I hope I have con-
vinced the reader that Noetherian spaces enjoyed a rich mathematical theory, which is
probably still largely unexplored today.
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Abstract. We propose a theory of time-bounded verification for real-
time systems, in which verification queries are phrased over time in-
tervals of fixed, bounded duration. We argue that this theory is both
pertinent, in that it is fully adequate to handle a large proportion of
‘real-world’ real-time systems and specifications; and effective, in that
the restriction to bounded time domains reclaims as decidable several of
the key decision problems of unbounded real-time verification. Finally,
we discuss several directions of ongoing and future work.

1 Introduction

In an influential invited address at the 10*® Annual IEEE Symposium on Logic
in Computer Science (LICS 95), Boris Trakhtenbrot urged the research com-
munity to “lift the ‘classical’ Trinity to real-time systems” [5I]. Trakhtenbrot’s
‘Trinity’ consisted of Logic, Nets, and Automata, viewed as the pillars of the
‘classical’ theory of verification. The genesis of this theory in fact go back some
five decades to the seminal work of Biichi, Elgot, and Trakhtenbrot himself re-
lating the monadic second-order logic of order (MSO(<)) and automata; see [53]
for a detailed historical perspective on the subject.

Underlying the increasingly successful applications of verification technology
to the design and validation of hardware and software systems has been the
long-running and sustained elaboration of a rich body of theoretical work. One
of the major accomplishments of this theory is the discovery and formulation of
the robust and far-reaching correspondence among the eclectic concepts of au-
tomata, temporal logic, monadic predicate logic, and reqular expressions. Each of
these comes in various flavours, yet the adequation is maintained, in particular,
whether the discourse is over the finite or the infinite, or (in the language of
predicate logic) first or second order. A key result in this area is Kamp’s theo-
rem, which asserts the expressive equivalence of the monadic first-order logic of
order (FO(<)) and Linear Temporal Logic (LTL) [29,[19]. This influential result
has largely contributed to the emergence of LTL as the canonical linear-time
specification formalism in the classical theory.

On a pragmatic level, the close relationship between automata and logic has
enabled the design of model-checking algorithms for a wide variety of specifica-
tion formalisms rooted in temporal or predicate logic. While initially little more
than pure decidability results, these procedures have over the last few decades
been progressively honed into powerful industrial-strength tools.

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 22}-37| 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Real-time verification, by contrast, is a much younger field. Its origins date
back approximately twenty-five years, when various researchers from such di-
verse communities as process algebra, Petri nets, automata theory, and software
engineering began investigating extensions of existing formalisms to adequately
handle timing considerations. By far the most prominent modelling paradigm
to have emerged is Alur and Dill’s notion of timed automaton [2], which at the
time of writing has accrued nearly 4000 citations according to Google Scholar.

One of the central results concerning timed automata is the PSPACE decid-
ability of the language emptiness (or reachability) problem [1]. Unfortunately,
the language inclusion problem—given two timed automata A and B, is every
timed word accepted by A also accepted by B?7—is known to be undecidable [2].
A closely related phenomenon is the fact that timed automata are not closed
under complement. For example, the automaton in Fig. [[] accepts every timed
word in which there are two a-events separated by exactly one time unit.

reset(x) z=1
—
a a

Fig. 1. An uncomplementable timed automaton

The complement language consists of all timed words in which no two a-
events are separated by precisely one time unit. Intuitively, this language is
not expressible by a timed automaton, since such an automaton would need an
unbounded number of clocks to keep track of the time delay from each a-event.
(We refer the reader to [25] for a rigorous treatment of these considerations.)

The undecidability of language inclusion severely restricts the algorithmic
analysis of timed automata, both from a practical and theoretical perspective,
as many interesting questions can be phrased in terms of language inclusion.
Over the past two decades, several researchers have therefore attempted to cir-
cumvent this obstacle by investigating language inclusion, or closely related
concepts, under various assumptions and restrictions. Among others, we note
the use of (i) topological restrictions and digitisation techniques: [22][141[42/[39];
(i) fuzzy semantics: [20,23,41,[8]; (iii) determinisable subclasses of timed au-
tomata: [447]); (iv) timed simulation relations and homomorphisms: [50,B87,31];
and (v) restrictions on the number of clocks: [43l[18]. See also Henzinger et al.’s
paper on fully decidable formalisms [24].

In a strictly formal sense, the non-closure under complementation is easy to
remedy—one can simply generalise the transition mode to allow both conjunc-
tive and disjunctive transitions, an idea borrowed from the theory of untimed au-
tomata that dates back thirty years [I5]. Such untimed alternating automata have
played key roles in algorithms for complementing Biichi automata (see, e.g., [33]),
temporal logic verification [52] [36], and analysis of parity games [17]. In
the timed world, the resulting alternating timed automata [34] [44) [35] [46), [16]
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subsume ordinary timed automata and can be shown to be closed under all
Boolean operations. They have been used, among others, to provide model-
checking algorithms for various fragments of Metric Temporal Logic (MTL); see,
e.g., [44[45[T2]. Unfortunately, the price to pay for the increase in expressiveness
is the undecidability of language emptiness!

Turning to temporal logic, one finds a considerable body of work in the lit-
erature concerned with adapting classical linear temporal formalisms to the
real-time setting; see, e.g., [32,88,[7, 3,54, 48]. One of the earliest proposals,
Koyman’s Metric Temporal Logic (MTL) [32], extends LTL by constraining
the temporal operators by (bounded or unbounded) intervals of the reals. For
example, the formula (3 4 ¢ requires ¢ to hold within 3 to 4 time units from
the present time. MTL has since become one of the most successful and popular
specification formalisms for timed systems.

Unfortunately, the satisfiability and model-checking problems for MTL are un-
decidable [2T]. This has led researchers to consider various restrictions on MTL to
recover decidability. One of the most important such proposals is Metric Interval
Temporal Logic (MITL), a fragment of MTL in which the temporal operators may
only be constrained by non-singular intervals. Alur et al. showed that the sat-
isfiability and model-checking problems for MITL are EXPSPACE-complete [3].
A significant extension of this result, based on the notion of flatness, was later
obtained in [I3]. Another interesting approach is that of Wilke, who considered
MTL over a dense-time semantics with bounded variability, i.e., parameterised by
a fixed bound on the number of events per unit time interval [54]. Wilke showed
that the satisfiability problem is decidable in this semantics and that MTL with
existential quantification over propositions is precisely as expressive as Alur-Dill
timed automata.

Work on real-time extensions of monadic first- and second-order logic of order
has been considerably scarcer. Hirshfeld and Rabinovich examine the monadic
first-order metric logic of order (FO(<,4+1)) and show that unfortunately, it
is—in a precise technical sense—strictly more expressive over the reals than
any ‘reasonable’ timed temporal logic, and in particular than MTL [27]; see
also [I1]. This sweeping inequivalence seriously dampens the hope of discovering
a ‘canonical’ timed temporal logic over the reals with a natural predicate-logical
counterpart, after the manner of LTL and FO(<) in the classical theory.

There has also been comparatively little research on finding suitable timed
analogues of the notion of regular expression. An interesting proposal is that of
Asarin et al. [9], who define a class of timed regular expressions with expressive
power precisely that of Alur-Dill timed automata, mirroring Kleene’s theorem
in the classical theory. Unfortunately, many natural questions, such as whether
two timed regular expressions are equivalent, remain undecidable.

In our view, the overall emerging picture of the present-day theory of real-
time verification is one of an amalgam of constructs and results—some deep and
striking—yet fundamentally constrained by a phalanx of inescapable undecid-
ability barriers. The elegance, uniformity, and canonicity of the classical theory
are lacking, and Trakhtenbrot’s challenge to a large extent remains unmet.
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In an attempt to address these issues, we would like to propose here a time-
bounded theory of real-time verification. By ‘time-bounded’ we mean to
restrict the modelling and verification efforts to some bounded interval of time,
which itself can be taken as a parameter. A proximate motivation for our pro-
posal is the analogy with bounded model checking, which aims to circumvent an
intractable verification task by performing instead a more restricted—but less
costly—analysis. A related paradigm, originating from economics, is that of dis-
counting the future, whereby the later a potential error may occur, the lesser of
a concern it is.

Note that while bounded model checking restricts the total number of al-
lowable events (or discrete steps), time-bounded verification restricts the total
duration under consideration, but not the number of events, which can still be
unboundedly large owing to the density of time. We argue that this restriction
on total duration is a very natural one as regards real-time systems. For exam-
ple, a run of a communication protocol might normally be expected to have an a
priori time bound, even if the total number of messages exchanged is potentially
unbounded. In fact, many real-time systems, such as the flight control software
on board an aircraft, are normally rebooted and reset at regular intervals (for
example, presumably, on completion of a successful flight). In such cases, a time-
bounded analysis seems entirely pertinent. We note that several researchers have
in fact already considered instances of time-bounded verification in the context
of real-time systems [49/[T0L[30].

Aside from these practical considerations, we anticipate more favourable
complexity-theoretic properties from a time-bounded theory than from its un-
bounded counterpart. In recent work [40,28], we have already amassed consider-
able evidence to this effect, which we survey below and detail at greater length
in the main body of this paper.

The undecidability of language inclusion for timed automata, first established
in [2], uses in a crucial way the unboundedness of the time domain. Roughly speak-
ing, this allows one to encode arbitrarily long computations of a Turing machine.
In [40], we turned to the time-bounded version of the language inclusion problem:
given two timed automata A and B, together with a time bound N, are all finite
timed words of duration at most IV that are accepted by A also accepted by B7
One of our main results is that this problem is decidable and in fact 2EXPSPACE-
complete. It is worth noting that the time-boundedness restriction does not alter
the fact that timed automata are not closed under complement, so that classical
techniques for language inclusion do not trivially apply.

In subsequent work, we examined the substantially more sophisticated prob-
lem of time-bounded emptiness (or equivalently, language inclusion) for alter-
nating timed automata [28]. We also succeeded in establishing decidability, but
in contrast to ordinary timed automata, showed that this problem has non-
elementary complexity.

A third line of investigation concerns the relative expressiveness of temporal
and predicate metric logics over bounded intervals of the reals, in analogy with
the classical equivalence of LTL and FO(<). Somewhat surprisingly, we discovered
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that MTL has precisely the same expressive power as FO(<, +1) over any bounded
time domain [40]. This is in sharp contrast to the situation over unbounded time,
where neither MTL nor any ‘reasonable’ temporal extension of it can match the
full expressiveness of FO(<, +1) [27].

Finally, we devoted a significant fraction of our efforts to time-bounded model-
checking and satisfiability questions for timed automata and metric logics. In ad-
dition to MTL and FO(<, +1), we consider the monadic second-order metric logic
of order, MSO(<, +1). In [40], we showed that the time-bounded model-checking
and satisfiability problems for monadic first- and second-order metric logics
all have non-elementary complexity, whereas these problems are EXPSPACE-
complete in the case of MTL (and this in spite of the expressive equivalence
of MTL and FO(<,+1) over bounded time domains). It is worth recalling, in
contrast, that these problems are all undecidable over unbounded time.

We believe that this small but significant body of results constitutes a clear
indication that the restriction to time-boundedness may lead to a substantially
better-behaved theory of real-time verification, mirroring the classical theory
and enabling one to lift classical results to the timed world.

It is perhaps worth stressing that we do not envisage time-bounded verification
to replace its unbounded counterpart entirely; one can always imagine instances
genuinely requiring unbounded real-time analysis. What we do assert, however, is
that for a large proportion of hard real-time systems, a time-bounded approach
should prove not only algorithmically advantageous, but will also be entirely
adequate theoretically.

The remainder of the paper is organised as follows. We recall standard real-
time definitions and conventions in Sec. Sections [B) @ and [ respectively
introduce ordinary timed automata, metric logics, and alternating timed au-
tomata. In Sec. B, we turn to the relative expressiveness of MTL and FO(<, +1)
over bounded time domains. Section [7] then examines our various time-bounded
decision problems: emptiness, language inclusion, model checking, and satisfia-
bility. Finally, we briefly discuss some of the multiple possible future research
directions in Sec. 8]

Our treatment is fairly spare; in particular, we do not present proofs, but
instead offer pointers to the relevant literature. Our aim is mainly to motivate
and illustrate, and we have occasionally opted to sacrifice precision for insight.

2 Real-Time Preliminaries

We fix some of the real-time notation and modelling conventions that we use
throughout this paper. While there are a wealth of alternatives and variants
that can be considered—many of which appear in some form or other in the
literature—our aim here is not to be encyclopedic, but rather to lay a simple
background in which to phrase some of the key motivating results in the area.
Two of the basic formalisms discussed in this paper are timed automata (both
ordinary and alternating) and metric logics. Timed automata are most commonly
given a semantics in terms of timed words, i.e., sequences of instantaneous, real-
valued timestamped events, whereas metric logics are more naturally predicated
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on piecewise-continuous flows or signals. Accordingly, these are the semantics we
adopt here; this does not prevent us from specifying timed-automaton behaviours
using metric logics, as timed words can naturally be viewed as particular kinds
of flows.

In this paper, we are largely concerned with behaviours over time domains of
the form [0, N), where N € N is some fixed positive integer. Let us therefore in
general write T to denote either [0, N) or R>o.

Let X' denote a finite set (or alphabet) or events. Typical elements of X are
written a, b, ¢, a1, etc. A timed word is a pair (o,7), where 0 = (a1az...a,) €
X* is a finite word and 7 = (t1t2...t,) € T* is a strictly increasing sequence of
real-valued timestamps of the same length Note that while we are restricting
ourselves to finite timed words, there is no a priori bound on the number of
events.

Let MP be a set of monadic predicates, denoted P, @, R, etc. Monadic pred-
icates will alternately be viewed as second-order variables over T, i.e., ranging
over sets of non-negative real numbers, and as atomic propositions holding at
various points in time. Given P C MP a finite set of monadic predicates, a flow
(or signal) over P is a function f : T — P(P) that is finitely variable. Finite
variability is the requirement that the restriction of f to any finite subinterval
of T have only finitely many discontinuities &

A flow f: T — P(P) corresponds to an interpretation of the monadic pred-
icates in P: for any P € P, the interpretation of P as a subset of T is simply
{t € T| P € f(t)}. Conversely, any (finitely-variable) interpretation of all the
predicates in P defines a unique flow f: T — P(P).

Finally, note that a timed word ({(a; ...ay,), (t1 ...t,)) over alphabet X' can be
viewed as a (particular type of) flow, as follows. Let P = X, and set f(t;) = {a;},
for 1 <i < n, and f(t) =0 for all other values of ¢ € T.

3 Timed Automata

As discussed in the Introduction, we treat Alur-Dill timed automata, interpreted
over finite timed words, as the central theoretical implementation formalism in
this work.

Let X be a finite set of clocks, denoted z,vy, z, etc. We define the set ®x of
clock constraints over X via the following grammar, where k € N stands for any
non-negative integer, and <t € {=, #, <, >, <, >} is a comparison operator:

¢ =true | false | <k | z—y<k | o1 A2 | ¢1V da.

! This gives rise to the so-called strongly monotonic semantics; in contrast, the weakly
monotonic semantics allows multiple events to happen ‘simultaneously’ (or, more
precisely, with null-duration delays between them).

2 It is commonly argued that infinitely-variable flows do not correspond to ‘feasible’
computations, hence the above restriction. It is however important to stress that we
do not place any a priori bound on the variability (unlike, for example, [54]), other
than requiring that it be finite.
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A timed automaton A is a six-tuple (X, 5, S, Sr, X, ), where:

— X is a finite set of events,

— S is a finite set of states,

— S; C S is a set of initial states,

— Sp C S is a set of accepting states,

— X is a finite set of clocks, and

— 0: SxXxPx — P(SxP(X)) is the transition function: if (s’, R) € (s, a, ¢),
then A allows a jump from state s to state s’, consuming event a in the
process, provided the constraint ¢ on clocks is met. Afterwards, the clocks
in R are reset to zero, while all other clocks remain unchanged. We require
that ¢ be finite, in the sense of having only finitely many inputs not mapping
to 0.

Given a timed automaton A as above, a clock valuation is a function v : X —
R>¢. If t € R>q, we let v+t be the clock valuation such that (v+1t)(x) = v(z)+t
forall z € X.

A configuration of A is a pair (s,v), where s € S is a state and v is a clock
valuation.

An accepting run of A is a finite alternating sequence of configurations and

delayed transitions m = (sg, 1) hy (s1,11) g dnan (

d; € Rsg and a; € X, subject to the following conditions:

SnyVn), with each

1. 59 € Sy, and for all z € X, vy(x) =0,

2. foreach 1 < i < n, there aresome R; C X and ¢; € @x such that: (i) v;_1+d;
satisfies ¢;, (ii) (s, Ri) € 6(si—1,a4,¢;), and (iii) v;(z) = v;_1(z) + d; for all
x € X\ R;, and v;(z) =0 for all x € R;, and

3. s, € Sp.

Each d; is interpreted as the (strictly positive) time delay between the firing of
transitions, and each configuration (s;,v;), for i > 1, records the data immedi-
ately following the i*" transition.

A timed word ((aiasz...an), (t1ta...t,)) is accepted by A if A has some ac-

. di,a da,a dp,an,
cepting run of the form 7 = (sg, 1) —— (s1,v1) ——= ... =5 (

foreach1 <i<n,t;=dy+ds+...+d;.

Finally, given time domain T, we write Lt(A) to denote the language of A4
over T, i.e., the set of timed words accepted by A all of whose timestamps belong
to T.

An example of a timed automaton is provided in Fig.[Il along with a descrip-
tion of its accepted language in the surrounding text.

Sn, Vn) where,

4 Metric Logics

We introduce metric (or quantitative) logics to reason about and specify real-
time behaviours. We consider both predicate and temporal formalisms, and in-
vestigate their relative expressiveness in Sec. [6l
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Let Var be a set of first-order variables, denoted x,y, z, etc., ranging over T.
Second-order monadic formulas are obtained from the following grammar:

pu=true | z<y | +1(z,y) | P(x) | pr A2 | o1V | ¢ | Ve | VP,

where P € MP is a monadic predicate (viewed here as a second-order variable
over T), and +1 is a binary relation symbol, with the intuitive interpretation
of +1(z,y) as ‘e + 1 = y’'I4 We refer to Vo and VP as first-order and second-
order quantifiers respectively. Existential quantifiers 3z and 3P are definable
via standard dualities.

The monadic second-order metric logic of order, written MSO(<, +1),
comprises all second-order monadic formulas. Its first-order fragment, the
(monadic) first-order metric logic of order, written FO(<, +1), comprises
all MSO(<, +1) formulas that do not contain any second-order quantifier; note
that these formulas are however allowed free monadic predicates.

We also define two further purely order-theoretic sublogics, which are pe-
ripheral to our main concerns but necessary to express some key related re-
sults. The monadic second-order logic of order, MSO(<), comprises all second-
order monadic formulas that do not make use of the +1 relation. Likewise, the
(monadic) first-order logic of order, FO(<), comprises those MSO(<) formulas
that do not figure second-order quantification.

Metric Temporal Logic, abbreviated MTL, comprises the following tempo-
ral formulas:

0 ::= true | P ‘ 601 N 0y | 01V 0y | -0 ‘ Ol ‘ 06 | 01 U 05,

where P € MP is a monadic predicate (viewed here as an atomic proposition),
and I C R is an open, closed, or half-open interval with endpoints in NU{co}.
If T = [0,00), then we omit the annotation I in the corresponding temporal
operator.

Finally, Linear Temporal Logic, written LTL, consists of those MTL formulas
in which every indexing interval I on temporal operators is [0,00) (and hence
omitted).

FigurePl pictorially summarises the syntactic inclusions and relative expressive
powers of these various logics.

We now ascribe a semantics to these various logics in terms of flows over T.
Given a formula ¢ of MSO(<, +1) or one of its sublogics, let P and {z1,...,2,}
respectively be the sets of free monadic predicates and free first-order variables
appearing in . For any flow f : T — P(P) and real numbers ay, .. .,a, € T, the
satisfaction relation (f,a1,...,a,) E ¢ is defined inductively on the structure
of ¢ in the standard way. For example:

3 The usual approach is of course to define +1 as a unary function symbol; this however
necessitates an awkward treatment over bounded domains, as considered in this
paper. We shall nonetheless abuse notation later on and invoke +1 as if it were a
function, in the interest of clarity.
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MSO(<, +1)
/ \
MSO(<) FO(<,+1) MTL
\ /
FO() rromersserserssmsmsrisssssssssssem oo LTL

Fig. 2. Relative expressiveness among the various logics. Metric logics are enclosed in
boxes. Straight lines denote syntactical inclusion, whereas dotted lines indicate expres-
sive equivalence over bounded time domains (cf. Sec. [6).

~ (f,a) = P(x) iff P € f(a)

— (fya1,...,an) E VP iff for all flows g : T — P(P U{P}) extending f (i.e.,
such that g[p = f), we have (g,a1,...,a,) E ¢.
(Here P is the set of free monadic predicates appearing in VP ¢, and therefore
does not contain P.)

And so on.

We shall particularly be interested in the special case in which ¢ is a sentence,
i.e., a formula with no free first-order variable. In such instances, we simply write
the satisfaction relation as f = ¢.

For 6 an MTL or LTL formula, let P be the set of monadic predicates appearing
in 0. Given a flow f : T — P(P) and t € T, the satisfaction relation (f,t) = 6 is
defined inductively on the structure of 6, as follows:

) | true.

)= Piff P e f(1)

)':91 A O iff (f, )':91 and (f,t) ':92

)':91 V 05 lff(f, )':91 or (f,t) ':92

) | 6 i (£,1) } 0.

) = <10 iff there exists w € T with u > ¢, u —t € I, and (f,u) = 6.
YO iff forallu e T withu >tandu—t eI, (f,u) = 0.

,t) =01 Uy 05 iff there exists u € T with u > t, u—t € I, (f,u) E 02, and
for all v € (t,u), (f,v) | 60;.

Finally, we write f |= 0 iff (f,0) = 6. This is sometimes referred to as the initial
semantics.

Note that we have adopted a strict semantics, in which the present time t has
no influence on the truth values of future temporal subformulas.

An important point concerning our semantics is that it is continuous, rather
than pointwise: more precisely, the temporal operators quantify over all time
points of the domain, as opposed to merely those time points at which discon-
tinuities occur. Positive decidability results for satisfiability and model checking
of MTL over unbounded time intervals have been obtained in the pointwise se-
mantics [44,[45][46]; it is worth noting that none of these results hold in the
continuous semantics.
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5 Alternating Timed Automata

We introduce alternating timed automata as a generalisation of ordinary timed
automata in which, in addition to disjunctive (or nondeterministic) transitions,
one also allows conjunctive transitions. Our notation closely follows that of
Sec. Bl

For Prop a set of propositional variables, the collection B (Prop) of positive
Boolean formulas over Prop is given by the following grammar:

Y =true | false | p | ¥1 Vo | 1 Atba,

where p € Prop. A subset M C Prop satisfies ¥ € By (Prop) if the truth
assignment that ascribes true to elements of M and false to elements of Prop\ M
satisfies 1.

An alternating timed automaton is a six-tuple A = (X, S, 57, Sr, X, 0),
where

— X is a finite set of events,

— S is a finite set of states,

— S; C S is a set of initial states,

— Sp C S is a set of accepting states,

— X is a finite set of clocks, and

—0:SX X xPx — B (S x P(X)) is the transition function. We require that
6 be finite, in the sense of having only finitely many inputs not mapping to
false.

Intuitively, the transition function of an alternating timed automaton is in-
terpreted as follows: in state (s,v), if v satisfies the clock constraint ¢ and
{(s1,R1),...,(sk, R)} satisfies §(s,a, ), then we think of the automaton as
having a conjunctive transition (s,v) —— {(s1,11),...,(sk, &)}, where each
clock valuation v; is the same as v except for the clocks in R; which are all reset
to zero.

As an example, let us define an automaton A over alphabet ¥ = {a} that
accepts those words such that for every timed event (a,t) with ¢t < 1 there is
an event (a,t+ 1) exactly one time unit later. A has a single clock x and set of
locations {s, u}, with s initial and accepting, and u non-accepting. The transition
function is defined by:

d(s,a,x < 1) =(s,0) A (u,{z}) 5(s,a,x>1) = (s,0)
0(u,a,x #1) = (u,0) d(u,a,z = 1) = true

The automaton is illustrated in Fig. Bl in which we represent the conjunctive
transition by connecting two arrows with an arc.

A run of A starts in location s. Every time an a occurs in the first time unit,
the automaton makes a simultaneous transition to both s and u, thus opening
up a new thread of computation equipped with a fresh copy of the clock x. The
automaton must eventually leave location u, which is non-accepting, and it can
only do so exactly one time unit after first entering the location.
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Fig. 3. Alternating timed automaton A

We now formally define the language accepted by an alternating timed au-
tomaton A = (X, S, S, Sr, X,d). A run of A over a timed word ({(a1az...an),
(tita...t,)) is a finite dag satisfying the following conditions: (i) each vertex
is a triple (4,s,v), with 0 < i < n, s € S a location, and v a clock valuation;
(ii) there is a vertex (0, sg, ), where so € Sy and vo(z) = 0 for all x € X;
(iii) each vertex (i,s,v), ¢ < n — 1, has a (possibly empty) set of children of
the form {(¢ + 1,s1,v1),...,(i + 1,8k, vk)} where, writing v/ = v + t;11 — t;
(and adopting the convention that ¢ty = 0), there is a conjunctive transition
(5,0) 25 {(s1,21), - - -, (s, vk) }-

The run is accepting if for each vertex (n, s,v), s is an accepting location; in
this case we say that the timed word ({(a1az...an), (tit2...t,)) is accepted by
A. The language Ly(A) of A over T is the set of timed words accepted by A all
of whose timestamps belong to T.

One of the motivations for introducing alternating timed automata is that
they enjoy better closure properties than ordinary timed automata:

Proposition 1. For any time domain T, alternating timed automata are effec-
tively closed under union, intersection, and complement [35,[76].

6 Expressiveness

Fix a time domain T, and let £ and J be two logics. We say that L is at least
as expressive as J if, for any sentence 6 of 7, there exists a sentence ¢ of £
such that 6 and ¢ are satisfied by precisely the same set of flows over T.

Two logics are then said to be equally expressive if each is at least as
expressive as the other.

The following result can be viewed as an extension of Kamp’s celebrated
theorem, asserting the expressive equivalence of FO(<) and LTL [29]19], to metric
logics over bounded time domains:

Theorem 1. For any fized bounded time domain of the form [0, N), with N €
N, the metric logics FO(<,+1) and MTL are equally expressive. Moreover, this
equivalence is effective [£0].

Note that expressiveness here is relative to a single structure T, rather than
to a class of structures. In particular, although FO(<,+1) and MTL are equally
expressive over any bounded time domain of the form [0, N), the correspondence
and witnessing formulas may very well vary according to the time domain.
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Tt is interesting to note that FO(<, +1) is strictly more expressive than MTL
over R>¢ [27,[I1]. For example, MTL is incapable of expressing the following
formula (in slightly abusive but readable notation)

JrIyIz(x<y<z<ax+1AP(x)APy)AP(z))

over the non-negative reals. This formula asserts that, sometime in the future,
P will hold at three distinct time points within a single time unit.

It is also worth noting that MSO(<,+1) is strictly more expressive than
FO(<,+1)—and hence MTL—over any time domain.

7 Decision Problems

We now turn to various decision problems concerning timed automata and metric
logics over bounded time domains. Recall that the latter are real intervals of the
form [0, N), with N € N considered part of the input (written in binary). We
also contrast our results with their known counterparts over the non-negative
reals Rx>g.

The most fundamental verification question is undoubtedly the emptiness
(or reachability) problem: does a given timed automaton accept some timed
word? It is well known that the problem is PSPACE-complete over R>¢ [1], and
the proof is easily seen to carry over to bounded time domains:

Theorem 2. The time-bounded emptiness problem for timed automata is
PSPACE-complete (following [1]).

The language-inclusion problem takes as inputs two timed automata, A and
B, sharing a common alphabet, and asks whether every timed word accepted by
A is also accepted by B. Unfortunately, language inclusion is undecidable over
R>¢ [2]. However:

Theorem 3. The time-bounded language-inclusion problem for timed automata
is decidable and 2EXPSPACE-complete [{0].

For a fixed metric logic £, the satisfiability problem asks, given a sentence ¢
of £ over a set P of free monadic predicates, whether there exists a flow over
P satisfying ¢. The model-checking problem for L takes as inputs a timed
automaton A over alphabet X, together with a sentence ¢ of £ with set of free
monadic predicates P = ¥, and asks whether every timed word (viewed as a
flow) accepted by A satisfies .

The canonical time domain for interpreting the metric logics MSO(<, +1),
FO(<,+1), and MTL is the non-negative real line R>¢. Unfortunately, none of
these logics are decidable over R [5L6L26]. The situation however differs over
bounded time domains, as the following result indicates:

Theorem 4. The time-bounded satisfiability and model-checking problems for
the metric logics MSO(<,+1), FO(<,+1), and MTL are all decidable, with the
following complezities [10]:
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MSO(<, +1) Non-elementary
FO(<,+1) Non-elementary
MTL EXPSPACE-complete

Finally, we turn our attention to alternating timed automata. The emptiness
and language-inclusion problems are of course defined in the same way as for
ordinary timed automata. One may also wish to model check a timed automaton
A (qua implementation) against an alternating timed automaton B (qua specifi-
cation). Note that since alternating timed automata are closed under all Boolean
operations (in linear time), these problems are all polynomial-time equivalent to
the emptiness problem.

Unfortunately, emptiness is undecidable for alternating timed automata over
R>p, by immediate reduction from the undecidability of language inclusion for
ordinary timed automata. Thankfully, the situation over bounded time domains
is more favourable:

Theorem 5. The time-bounded emptiness and language-inclusion problems for
alternating timed automata are decidable, but with non-elementary complex-
ity [28)].

8 Discussion and Future Directions

In this work, we have attempted to promote a theory of time-bounded verifi-
cation to answer, at least in part, Trakhtenbrot’s 15-year-old challenge to ‘lift
the classical theory to the real-time world’. We have argued that this theory
is both pertinent, in that it is fully adequate to handle a large proportion
of ‘real-world’ real-time systems and specifications; and effective, in that the
restriction to bounded time domains reclaims as decidable several of the key
decision problems of real-time verification.

In terms of future work, we list below a sample of possible research avenues,
roughly divided along four main axes:

I. Extensions to further real-time formalisms. In this paper, we have en-
tirely focussed on linear-time semantics. Of course, a great deal of classical and
real-time verification work has been carried out in branching-time settings, and
it would be interesting to investigate whether the time-bounded approach can
be usefully combined with branching-time paradigms. Several researchers have
also considered various extensions of timed automata, such as weighted timed
automata and hybrid automata, and assorted verification problems; again, re-
formulating relevant questions in a time-bounded context may prove fruitful.
Another direction is that of timed games and related topics such as timed con-
troller synthesis.
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II. Algorithmic and complexity issues. The complexity bounds presented in
this paper are fairly coarse-grained. In many instances, a finer ‘parameterised’
analysis (in which one or more of the inputs, such as the time domain, are
considered fixed) would undoubtedly yield valuable additional insight. Another
promising direction is to investigate combining existing algorithmic techniques,
such as those exploiting flatness in MTL formulas [13], with the algorithms spe-
cific to time-bounded verification.

ITI. Expressiveness. Many important questions regarding expressiveness are
left entirely unanswered. Do metric logics have equivalent alternating timed au-
tomata counterparts, and vice-versa? Can one develop an attractive theory of
timed regular expressions over bounded time domains? Is there a good notion
of robustness for time-bounded languages, in the sense of being impervious to
sufficiently small perturbations in the timestamps?

IV. Implementation and case studies. The history of verification has been
marked by a mutually beneficial interaction of theory and practice. We believe it
would be highly desirable, in conjunction with the study of the theoretical con-
cerns discussed here, to evaluate the practical effectiveness of time-bounded ver-
ification on real-world examples. This will no doubt require the development of
appropriate abstraction schemes, data structures, symbolic techniques, algorith-
mic heuristics, etc. Ultimately, however, a time-bounded theory of verification
can only gain widespread acceptance if its usefulness is adequately demonstrated.
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Abstract. This is the accompanying paper to an ICALP 2010 invited
talk, intending to encourage research in physical algorithms. The area
of physical algorithms deals with networked systems of active agents.
These agents have access to limited information for varying reasons; ex-
amples are communication constraints, evolving topologies, various types
of faults and dynamics. The networked systems we envision include tra-
ditional computer networks, but also more generally networked systems,
such as social networks, highly dynamic and mobile networks, or even
networks of entities such as cars or ants. In other words, the world is
becoming algorithmic, and we need the means to analyze this world!

1 Introduction

Computer science is about to undergo major changes because of the ongoing
multi-core revolution[] These changes will happen on several levels, quite ob-
viously with respect to hardware, but probably multi-cores will affect software
and applications as well. We believe that this is a moment of opportunity to do
some soul searching, and to reconsider the foundations of computer science. In
particular, we suggest to widen the base of computer science, towards parallelism
and distributed systems, and as we will explain below, more generally towards
physical sciences.

1.1 Algorithms

Studying and analyzing algorithms has been a research success story. Turing ma-
chines, along with other machines models, gave way to analyze the efficiency of
computing problems, eventually resulting in a beautiful theory with long stand-
ing open problems such as “P vs. NP”.

The key to this success was essentially abstraction. Even though there is no
generally accepted definition of the term “algorithm”, when it comes to the
analysis of algorithms there clearly is a mainstream, namely that an algorithm

! Looking at microprocessor clock speed charts, one may conclude that traditional
sequential algorithms had an expiration date around 2005. Since 2005 computers are
mostly getting faster because of multiple cores, and hence increased parallelism.
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is a recipe that computes an output as a function of an input. Usually, one is
interested in minimizing the number of machine operationsﬁ

Algorithm analysis is somewhere between engineering and mathematics. In-
deed, algorithm analysis seems to have added an extra dimension to mathematics
— efficiency. Until recently, mathematics mostly cared whether or not a problem
had a solution. Now the efficiency dimension adds shades of grey, as one may
wonder how difficult it is to find a solution of a problem.

Computational complexity has been a veritable success story in computer
science, and subsequently in mathematics, too. The practical impact of the the-
oretical results is a dense net of problems whose complexity in terms of the input
size is known, thus permitting to estimate the required amount of resources to
solve a given task. In the end, it allows to decide whether it is economically
feasible (rather than just theoretically possible) to realize a certain solution to a
problem. The success of this approach primarily comes from the simplicity and
generality of the underlying input/output computational model. As such, results
are comparable and robust against model changes.

In summary, computational complexity is a strong tool to analyze input/out-
put algorithms, applied by computer science as well as other science disciplines.
Not only is it a beautiful theory, it also has major practical relevance as com-
puters are by and large equivalent to the theoretical machine models such as
random access or Turing machines. Alas, ...

1.2 The King Is Dead

...as we speak, computers are changing! Physical constraints prevent sequential
systems from getting faster. The speed of light limits processor clock speeds de-
pending on the size of the CPU, while in turn transistors cannot be miniaturized
arbitrarily due to quantum effects. Instead, hardware designers have turned to
multi-core architectures, in which multiple processing cores are included on each
chip. Today, two or four cores are standard, but soon enough the standard will
be eight and more. This switch to multi-core architectures promises increased
parallelism, but not increased single-thread performance. Software developers
are expected to handle this increased parallelism, i.e., they are expected to write
software that exploits the multi-core architecture by consisting of several com-
ponents that can run in parallel without introducing substantial overhead. This
is a notoriously difficult job.

Consequently, it is questionable whether the success story of sequential com-
plexity analysis will continue. Multi-core machines are not the same as random
access machines, with an exponentially growing number of cores less and less
so. More generally, computing systems become more and more distributed in
the sense that information is local. Be it the Internet or a system-on-a-chip, no

2 There are other measures of complexity, e.g. how much space or randomness is used,
however, step complexity is generally considered the most important measure. Also,
typically only asymptotics are considered, i.e., how much longer the computation
takes if the input gets larger.
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single part of the system has access to the global state as a whole, fundamentally
changing what can—or rather cannot—be done.

Essentially, the question we want to raise is whether the beauty of computa-
tional complexity continues to reflect the complexity of our physical world, or
whether it will be diminished to a concept of pure theory and math.

1.3 Long Live the King

We claim that algorithm analysis needs to be adapted, to meet the requirements
of current and future computer systems. Indeed, we believe that the time is
right to ask this question in a more general context. It seems that more and
more other sciences are dealing with systems that are distributed in one way or
another. In this paper, we survey a few examples; in lack of a better name we
call the area physical algorithms. The idea is to take techniques from algorithm
analysis and computation complexity, and transform these into tools applicable
also in settings which do not match the original input/output model.

2 Physical Algorithms

The area of physical algorithms deals with networked systems of active agents.
These agents are limited in various ways; examples are communication con-
straints, computational or memory constraints, evolving topologies, various types
of faults and dynamics. The networked systems we envision include traditional
computer networks such as the Internet or clusters, but also more generally net-
worked systems, such as social networks, or even highly dynamic and mobile
“networks” of entities such as cars or ants. Often, parts of the system can be
designed or influenced, but others cannot.

Our definition of physical algorithms includes, but is not limited to, the area of
distributed algorithms. For instance, we may not be able to specify the protocol
of any of the agents at all, instead examining the effect of changing the amount
or reliability of information available to the agents. We emphasize dynamics,
i.e., algorithms should (if possible) adapt to dynamic changes. In general, we
attempt not to presume a potentially unrealistic amount of control of system
properties.

Moreover, networks that are large (on their respective scale), suffer from the
unreliability of information. Parts of the system may fail, or even behave ma-
liciously in order to corrupt the available data. Information becomes outdated
because of changing topology or inputs, or more subtle variations such as differ-
ing communication delays. Widening the scope, many systems comprise intelli-
gent agents that act on their own behalf, not necessarily seeking to support the
community. Agents may compete for resources selfishly, and cannot be expected
to adhere to a specific protocol unless it maximizes their individual profit.

Physical algorithms cover e.g. distributed algorithmic game theory, networks
and locality, self-organization, dynamic systems, social networks, control theory,
wireless networks, multi-core systems, and — getting more ambitious — the hu-
man brain as a network of neurons [KPSST0], social insects, biological systems
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in general [Cha09], or also financial and political systems [ABBGI0]. Figure [Tl
provides a “map” of what we consider physical algorithms. The general aim is to
find connections between these topics, and to find a general theory that includes
central aspects.

In the following, we first give a refined picture of the two axes of Figure [
We also give a few concrete application areas of physical algorithms, to render
the definition more lucid. Some of these areas are well-established already, some
are developing rapidly right now.

2.1 Agents

The agents themselves can be limited in different ways. They may be constrained
in computational power, in the sense that they can only compute restricted
functions, or they may not be able to store (large amounts of) information. Such
limitations may be particularly interesting in areas such as social insects.

Fault Tolerance: Moreover, agents may not be reliable. Agents may crash at any
point in time, because of lacking energy for instance. Likewise, agents may crash
and later regenerate. Also, agents may experience some kind of omission failure,
e.g. failing to receive a message, or transient commission failures, e.g. a local
state corruption.

Sometimes however, agents will misbehave in more awkward ways, for instance
by starting to behave in erratic ways, e.g. by sending random messages. Indeed,
the pioneers in fault-tolerance observed machine behavior that was essentially
inexplicable. They decided that the only reasonable way to model such behavior
was to consider the machines being “malicious”. Following their early papers we
call such behavior Byzantine today [SPL80, [LSP82].

When a Byzantine failure has occurred, the system may respond in any un-
predictable way, unless it is designed to have Byzantine fault tolerance. In a
Byzantine fault tolerant algorithm, agents must take counter-measures that deal
with Byzantine behavior. Essentially, in many problems, the fraction of Byzan-
tine agents must be strictly less than a third [LSP82].

More recently, different kinds of agent (mis)behavior are getting into the spot-
light, in particular selfishness.

Game Theory: Algorithmic research has often dealt with models and problems
that do not follow the orthodox input/output format. Indeed, these studies are
probably as old as computer science itself. One of the very fathers of computer
science itself, John von Neumann, is among the pioneers of a conceptually sig-
nificantly different approach.

Before writing one of the earliest articles on computer science [vN93] in 1945,
von Neumann (together with Oscar Morgenstern) published Games and Eco-
nomic Behavior [vVNM47T]. Today, algorithms and game theory are converging
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Fig. 1. A representation of the playing field of physical algorithms. On the vertical axis,
we see some typical models for the agents that make up networks. In the simplest case,
all agents are benevolent and reliable. In many systems, however, agents will be faulty,
and for instance crash. In other systems, agents will be selfish in a game-theoretic way,
i.e. they will be strategic in order to maximize their benefit. Finally, agents may be
malicious (Byzantine), even to a degree that they want to harm the system. Clearly
there is no total ordering between these agent models, in some systems faulty agents
may be more difficult to deal with than selfish agents. Also, mixed forms of agents
may be considered, i.e. some selfish, others malicious. The horizontal axis represents
the dynamics of the network. Also here the variants are by no means complete, they
should just give some intuition of what is possible. The simplest form of dynamics
are no dynamics at all, i.e. fixed networks. In most systems, networks are not static,
but allow for at least some slow form of dynamics, for instance, if once in a while—
very rarely—a link will fail because of a hardware failure. Further to the right, the
frequency of topology changes increases to a point where the network is continuously
transforming. The level of dynamics depends on this frequency, but also how these
topology changes are restricted. Maybe only local neighborhoods are changing? Maybe
the agents themselves are mobile, forming edges whenever two agents are in vicinity of
each other? Finally, we may consider completely virtual networks just modeling some
physical process, with rather arbitrary forms of dynamics. The figure exemplarily shows
typical application areas of physical algorithms. Depending on the application and the
considered time frame, we allow for many forms of network dynamics.
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again, as researchers are starting to view the Internet and other computer science
phenomena in the light of game theoryE

One of the cornerstones of game theory is the so-called equilibriumE which
describes a state of a system where no participant of the system has an incentive
to change its strategy. As a perfect example of mathematicians mostly being
interested in the question whether something can be done or not, pure game
theorists are generally not interested in how such an equilibrium can be reached,
or how long it takes to reach the equilibrium. Computer scientists on the other
hand have been interested early on how to reach such an equilibrium [DGP06].
Clearly, this is an interesting playground for physical algorithms, as the partici-
pants of the systems cannot be modeled well by an input/output algorithm.

Today, game theory is a well-accepted subject in algorithms, probably the only
one that does not follow the input/output paradigm that is well represented at
theoretical computer science conferences.

Recently, research is starting to combine fault-tolerance with game theory
[AACT05] 9 In [MSWQG], for instance, it is shown that the presence of Byzantine
players may even contribute to the social welfare of a system.

2.2 Networks

Less known, the very same John von Neumann was also seminal in the develop-
ment of the horizontal axis in our map of physical algorithms. Networks exist in
many variants today, apart from the predominant Internet there are also niche ar-
eas such as sensor or peer-to-peer networks. More generally (and daring), one may
even consider networks beyond computing, e.g. the human society or the brain.

Locality: All networks have in common that they are composed of a multiplicity
of individual entities, so-called nodes; e.g. human beings in society, hosts in the
Internet, or neurons in the brain. Each individual node can directly communicate
only to a small number of neighboring nodes. On the other hand, in spite of each
node being inherently “near-sighted”, i.e., restricted to local communication, the
entirety of the system is supposed to work towards some kind of global goal,
solution, or equilibrium.

It is at the core of really understanding networks to know the possibilities
and limitations of this local computation, i.e., to what degree local information
is sufficient to solve global tasks [Lin92] [Pel00, KMW04, [Suo09]. Many tasks are
inherently local, for instance, how many friends of friends one has. Many other
tasks are inherently global, for instance, counting all the nodes of the system, or

3 Algorithmic game theory is a perfect example of the differences between the approach
of computer science and mathematics/physics. In computer science, researchers try
to understand the Internet by modeling the participants of the Internet as active
(selfish) agents. Mathematicians and physicists take a more holistic approach and
try to find random graphs that model all possible layers of the Internet (web pages,
autonomous service providers, routers), or simply postulate that the bandwidth de-
mands in the Internet are self-similar.

4 Several different types of equilibria exist, e.g. Nash equilibria in games, or price
equilibria in markets.

® One may argue that Byzantine agents are just selfish agents with a different goal.
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figuring out the diameter of the system. To solve such global problems, there is
at least some information that must traverse long distances.

It is natural to ask whether there are tasks that are in the middle of these two
extremes; tasks that are neither completely local nor inherently global. Indeed, this
is the case. Assume for example that the nodes want to organize themselves, some
nodes should be “masters”, the others will be “slaves”. The rules are that no two
masters shall be direct neighbors, but every slave must have at least one master as
direct neighbor. In graph theory, this problem is known as the maximal independent
set (MIS) problem. Intuitively, this problem seems local since the rules are com-
pletely local. Consequently it might be expected that every node can communicate
with its neighbors a few times, and together they can decide who will become mas-
ter and who will become slave. However, this intuition is misleading. Even though
the problem seems local, it cannot be solved using local information only! No mat-
ter how the system tackles the problem, no matter what protocol or algorithm the
nodes use, non-local information is vital to solve the task. On the other hand, the
problem is also not global: Mid-range information is enough to solve the problem. As
such the MIS problem establishes an example that is neither local nor global, but in-
between these extremes. Since at first sight it looks local, let us call it pseudo-local.
Using locality-preserving reductions one can show that there exists a whole class of
pseudo-local problems, similar to the class of NP-complete problems [KMW04].

This class of pseudo-local problems also includes many combinatorial opti-
mization problems, such as minimum vertex cover, minimum dominating set,
or maximum matching. In such problems, each node must base its decision
(for example whether or not to join the dominating set) only on information
about its pseudo-local neighborhood, and yet, the goal is to collectively achieve
a good approximation to the globally optimal solution. Studying such local ap-
proximation algorithms is particularly interesting because it sheds light on the
trade-off between the amount of available local information and the resulting
global optimality. Specifically, it characterizes the amount of information needed
in distributed decision making: what can be done with the information that is
available within some fixed-size neighborhood of a node. Positive and negative
results for local algorithms can thus be interpreted as information-theoretic up-
per and lower bounds; they give insight into the value of information [KMW06].

We believe that studying the fundamental possibilities and limitations of local
computation is of interest to theoreticians in approximation theory, distributed
computing, and graph theory. Furthermore, these results may be of interest for
a wide range of scientific areas, for instance dynamic systems that change over
time. The theory shows that small changes in a dynamic system may cause an
intermediate (or pseudo-local) “butterfly effect,” and it gives non-trivial bounds
for self-healing or self-organizing systems, such as self-assembling robots. It also
establishes bounds for further application areas, initially in engineering and com-
puting, possibly extending to other areas studying large-scale networks, essen-
tially physical algorithms.

Studying locality and networks is at the heart of physical algorithms, as it
is one of the few examples that have established some form of theory that uses
concepts of complexity theory outside the input/output model.
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Self-Organization and Dynamic Systems: Looking at the wider picture, one may
argue that the idea of local algorithms as discussed in the last paragraph goes
back to the early 1970s when Dijkstra introduced the concept of self-stabilization
[Dij73]. A self-stabilizing system must survive arbitrary failures, including for
instance a total wipe out of volatile memory at all nodes. The system must self-
heal and eventually converge to a correct state from any arbitrary starting state,
provided that no further faults occur.

Tt seems that the world of self-stabilization (which is asynchronous, long-lived,
and full of malicious failures) has nothing in common with the world of local
algorithms (which is synchronous, one-shot, and free of failures). However, as
shown 20 years ago, this perception is incorrect [AS88], and the two areas are
related. Intuitively, this is because (i) asynchronous systems can be made syn-
chronous, (ii) self-stabilization concentrates on the case after the last failure,
when all parts of the system are correct again, and (iii) one-shot algorithms
can just be executed in an infinite loop. Thus, efficient self-stabilization essen-
tially boils down to local algorithms and hence, local algorithms are the key to
understanding fault-tolerance [LSW09].

Likewise, local algorithms help to understand dynamic networks, in which the
topology of the system is constantly changing, either because of churn (nodes
constantly joining or leaving as in peer-to-peer systems), mobility (edge changes
because of mobile nodes in mobile networks), changing environmental conditions
(edge changes in wireless networks), or algorithmic dynamics (edge changes be-
cause of algorithmic decisions in virtual or overlay networks). In dynamic net-
works, no node in the network is capable of keeping up-to-date global information
on the network. Instead, nodes have to perform their intended (global) task based
on local information only. In other words, all computation in these systems is
inherently local! By using local algorithms, it is guaranteed that dynamics only
affect a restricted neighborhood. Indeed, to the best of our knowledge, local algo-
rithms always give the best solutions when it comes to dynamics. Dynamics also
play a natural role in the area of self-assembly (DNA computing, self-assembling
robots, shape-shifting systems, or claytronics), and as such it is not surprising
that local algorithms are being considered a key to understanding self-assembling
systems [Ste09) [GCMO05].

Social Networks: As already mentioned, there are numerous types of networks,
including for instance the human society or the network of all the web pages
in the world. Indeed, so-called social networks such as Facebook just merge the
two concepts.

A decade ago Jon Kleinberg [KIe00] gave a first algorithmic explanation to a
phenomenon studied almost a century ago. Back in the 1929, Frigyes Karinthy
published a volume of short stories that postulated that the world was “shrinking”
because human beings were connected more and more. Some claim that he was in-
spired by radio network pioneer Guglielmo Marconi’s 1909 Nobel Prize speech, to
make the century complete. Despite physical distance, the growing density of hu-
man “networks” made the actual social distance smaller and smaller. As a result,



46 R. Wattenhofer

any two individuals could be connected through at most five acquaintances, i.e.
within six hops.

This idea has been followed ardently in the 1960s by several sociologists, first
by Michael Gurevich, later by Stanley Milgram. Milgram wanted to know the
average path length between two “random” humans, by using various experi-
ments, generally using individuals from the US Midwest as starting points and
from Boston as end points. The starting points were asked to send a letter to a
well-described target person in Boston, however not directly, but only through
an intermediate friend, hopefully “closer” to the target person. Shortly after
starting the experiment, letters have been received. Often enough of course let-
ters were lost during the process, but if they arrived, the average path length
was about 5.5.

Statisticians tried to explain Milgram’s experiments, by essentially giving net-
work models that allowed for short diameters, i.e. each node is connected to each
other node by only a few hops. Until today there is a thriving research commu-
nity in statistical physics that tries to understand network properties that allow
for “small world” effects. One of the keywords in this area are power-law graphs,
networks were node degrees are distributed according to a power-law function.

This is interesting, but not enough to really understand what is going on. For
Milgram’s experiments to work, it is not sufficient to connect the nodes in a
certain way. In addition, the nodes themselves need to know how to forward a
message to one of their neighbors, even though they cannot know whether that
neighbor is really closer to the target. In other words, nodes are not just following
physical laws, but they make decisions themselves. In contrast to those math-
ematicians that worked on the problem earlier, Kleinberg [Kle00] understood
that Milgram’s experiment essentially shows that social networks are “naviga-
ble”, and that one can only explain it in terms of a greedy routing.

In particular, Kleinberg set up an artificial network with nodes on a grid
topology, plus one additional random link per node. In a quantitative study he
showed that the random links need a specific distance distribution to allow for
efficient greedy routing. This distribution marks the sweet spot for any navigable
network. As such it is a great example for physical algorithms, because physical
methods alone cannot find such a sweet spot, as statistical physicists hardly
argue about algorithmic properties.

The are many applications for research in social networking, for instance viral
marketing [KOWOS], or spreading of biological viruses.

Physical Objects: A science fiction favorite are automatic cars equipped with
distance sensors, following each other at high speed and minimal distance. This is
a typical instance of physical objects organizing themselves. Unlike planets these
cars are not just following the laws of physics, but they will run algorithms that,
depending on the values delivered by the distance sensors or other additional
information (for instance wireless communication between cars), may speed up or
slow down. Having studied control theory (or having been in a read-end collision
accident) one knows that high speed lines of cars are not without problems. No
matter what, the control loop will experience some delay. So if some car will need
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to break slightly, the next car might need to break a bit more already, and a
few cars down the road we might have a terrible crash, because some car cannot
break hard enough anymore.

There are several examples like this, e.g. coordination of helicopters or, more
generally, any kind of swarm trying to maintain a certain formation based only
on local distance information. In all these cases the agents may slowly drift from
their desired (relative) position, because they are not able or willing to control
their speeds perfectly. Furthermore, information on neighbors’ positions could
be outdated and/or inaccurate. Another example is clock synchronization in
computer networks: Each node is equipped with a hardware clock which is not
completely accurate, and nodes communicate local clock values by exchanging
messages of varying delay with their neighbors.

All these examples have in common that they are algorithmic, in the sense
that nodes have countless possibilities how to react to changes in the system.
In a recent article [LLW10], tight bounds for some clock synchronization prob-
lem have been proved. These results are surprising in various ways. Even if all
hardware clocks are accurate up to a few ticks per million ticks, it was shown
that no matter what algorithm one uses, the error will depend on the size of
the network. There is a simple algorithm that matches the lower bound using
local information only, however, unfortunately, this algorithm is not intuitive.
Indeed, it was shown that a number of canonical approaches are exponentially
worse than the lower bound [LW0G].

Real-time control of physical objects is of course beyond the input/output
paradigm, still these problems usually have an algorithmic component which is
worth studying. The range is large, from simple questions like how to organize a
group of robot vacuum cleaners in order to clean a floor most efficiently, to the
question of bird flocking [Cha09].

Wireless Communication: Network dynamics go well beyond mobility and fail-
ures. In some networks, communication is not graph- but geometry-based, in
the sense that nodes can communicate with nearby nodes, only if not too many
other nearby nodes transmit at the same time.

In the past, a large fraction of analytic research on wireless networks has
focused on models where the network is represented by a graph. The wireless
devices are nodes, any two nodes within communication (or interference) range
are connected by an (annotated) edge. Such graph-based models are particularly
popular among higher-layer protocol designers, hence they are also known as pro-
tocol models. Unfortunately, protocol models are often too simplistic. Consider
for instance a case of three wireless communication pairs, every two of which
can be transmitting concurrently without a conflict. In a protocol model one
will conclude that all three senders may transmit concurrently. Instead, in re-
ality, wireless signals accumulate, and it may be that any two transmissions
together generate too much interference, hindering the third receiver from cor-
rectly receiving the signal of its sender.

This many-to-many relationship makes understanding wireless transmissions
difficult; a model where interference accumulates seems paramount to fully
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comprehend wireless communication. Similarly, protocol models oversimplify
wireless attenuation. In protocol models the signal is usually binary, as if there
was an invisible wall at which the signal immediately drops. Not surprisingly, in
reality the signal decreases gracefully with distance. Because of these shortcom-
ings, results for protocol models are often not applicable in reality. In contrast
to the algorithmic (“computer science”) community which focuses on protocol
models, researchers in information, communication, or network theory (“electri-
cal engineering”) are working with wireless models that add up interference and
take attenuation into account. A standard model is the physical model.

In the physical model the energy of a signal fades with distance. If the signal
strength received by a device divided by the interfering strength of competitor
transmitters (plus the noise) is above some threshold, the receiver can decode
the message, otherwise it cannot. The physical model is reflecting the physical
reality more precisely, hence its name. Unfortunately, most work in this model
does not focus on algorithms with provable performance guarantees. Instead
heuristics are usually proposed and evaluated by simulation. Analytical work is
done for special cases only, e.g. networks with a grid structure, or random traffic.
However, these special cases do neither give insights into the complexity of the
problem, nor do they give algorithmic results that may ultimately lead to new
distributed protocols. If one is interested in the capacity of an arbitrary wireless
network, and how this capacity can be achieved, the community is not able to
provide an answer.

However, this is about to change. Starting with [MWO06], more and more
algorithms work is adopting the physical model, thus combining the best of
both worlds, by giving algorithms and limits for arbitrary wireless networks (not
random node distributions), using the physical model (not the protocol model).
We believe that bridging the gap between protocol designers and communication
theorists is a fundamental challenge of the coming years, a hot topic for the
wireless network community with implications for both theory and practice, and
again a nice example of physical algorithms.

Multi-Core: Let us finish with what we started, multi-core systems. The switch to
multi-core architectures promises increased parallelism, but not increased single-
thread performance. Software developers are expected to handle this increased
parallelism.

Today, the main tool for dealing with parallelism are locks; locks are software
constructs that allow access to shared memory cells in a mutually exclusive way.
However, there seems to be a general consensus in the computer science research
community that locks are not the optimal programming paradigm to deal with
concurrency and synchronization. Nobody really knows how to build large sys-
tems depending on locks. The currently most promising solution is transactional
memory [HM93]. Similarly to the database world, the programmer should en-
capsulate sequences of instructions within a transaction. Either the whole trans-
action is executed, or nothing at all. Other threads will see a transaction as one
indivisible operation.
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To some degree, the core of a transactional memory system is the contention
manager. In case of a conflict between two transactions (e.g., both trying to
store a value into the same memory cell), the contention manager decides which
transaction must wait, or has to be aborted. The contention management policy
of a transactional memory implementation can have a profound effect on its
performance, and even correctness. Putting it simply, the contention manager
inherits the role of the scheduler in a single core operating system.

In general, we believe that the key to understanding multi-core computing is
through understanding networks. Transactions may for example be modeled as
nodes in a dependency graph with edges between them in case of a conflict. Re-
solving conflicts based on local knowledge in this graph, solutions will scale canon-
ically with multi-core systems growing. Thus, the problem naturally falls in the
field of physical algorithms. A coloring of the graph yields a possible schedule for
the transactions by executing all transactions of the same color in parallel.

An additional issue arises from the concurrent nature of programs in multi-
core architecture. As concurrent processes interact and interfere with each other,
processes also compete for some shared resources. If we keep in mind that in many
cases, programmers who write code for a multi-core system are hardly interested
in the performance of other processes, but merely on their own program’s perfor-
mance, we cannot desist from analyzing multi-core systems under the assumption
that processes compete selfishly for system resources. To link back to our first
example, game theory offers a great set of tools for this setting. We want to
figure out whether existing multi-core systems are cheating-proof, i.e., incentive
compatible in the sense that programmers have no interest to deviate from a
behavior which is best for the overall performance of the system [EW09].

It is necessary to shed more light on the theoretical foundations of multi-core
systems, with a special focus on transactional memory and its contention man-
ager [SW09]. What one needs are refined models of efficiency and new contention
managers that provably optimize the efficiency of transactional memory systems.

Acknowledgements. Thanks to Christoph Lenzen, for discussing the topic, and
for reading the manuscript.
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Abstract. Asynchronous automata are parallel compositions of finite-
state processes synchronizing over shared variables. A deep theorem due
to Zielonka says that every regular trace language can be represented by a
deterministic asynchronous automaton. In this paper we improve the con-
struction, in that the size of the obtained asynchronous automaton is poly-
nomial in the size of a given DFA and simply exponential in the number of
processes. We show that our construction is optimal within the class of au-
tomata produced by Zielonka-type constructions. In particular, we provide
the first non trivial lower bound on the size of asynchronous automata.

1 Introduction

Zielonka’s asynchronous automata [I5] is probably one of the simplest, and yet
rich, models of distributed computation. This model has a solid theoretical foun-
dation based on the theory of Mazurkiewicz traces [94]. The key property of
asynchronous automata, known as Zielonka’s theorem, is that every regular trace
language can be represented by a deterministic asynchronous automaton [I5].
This result is one of the central results on distributed systems and has been
applied in many contexts. Its complex proof has been revisited on numerous oc-
casions (see e.g. [2IBIT2T36] for a selection of such papers). In particular some
significant complexity gains have been achieved since the original construction.
This paper provides yet another such improvement, and moreover it shows that
the presented construction is in some sense optimal.

The asynchronous automata model is basically a parallel composition of finite-
state processes synchronizing over shared (state) variables. Zielonka’s theorem
has many interpretations, here we would like to consider it as a result about dis-
tributed synthesis: it gives a method to construct a deterministic asynchronous
automaton from a given sequential one and a distribution of the actions over
the set of processes. We remark that in this context it is essential that the con-
struction gives a deterministic asynchronous automaton: for a controller it is the
behaviour and not language acceptance that is important. The result has appli-
cations beyond the asynchronous automata model, for example it can be used
to synthesize communicating automata with bounded communication channels
[I1U7] or existentially-bounded channels [5]. Despite these achievements, from
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the point of view of applications, the biggest problem of constructions of asyn-
chronous automata is considered to be their high complexity. The best construc-
tions give either automata of size doubly exponential in the number of processes,
or exponential in the size of the sequential automaton.

This paper proposes an improved construction of deterministic asynchronous
automata. It offers the first algorithm that gives an automaton of size polynomial
in the size of the sequential automaton and exponential only in the number of
processes. We show that this is optimal for Zielonka-type constructions, namely
constructions where each component has complete information about its history.
For this we introduce the notion of locally rejecting asynchronous automaton and
remark that all Zielonka-type constructions produce this kind of automata. To
be locally rejecting means that a process should reject as soon as its history
tells him that there is no accepting extension. We believe that a locally reject-
ing behavior is quite desirable for applications, such as monitoring or control.
We show that when transforming a deterministic word automaton to a deter-
ministic locally rejecting automaton, the exponential blow-up in the number of
components is unavoidable. Thus, to improve our construction one would need
to produce automata that are not locally rejecting.

For the upper bound we start from a deterministic (I-diamond) word au-
tomaton. We think that this is the best point of departure for a study of the
complexity of constructing asynchronous automata: considering non determin-
istic automata would introduce costs related to determinization. The size of the
deterministic asynchronous automaton obtained is measured as the sum of the
sizes of the local states sets. It means that we do not take global accepting states
into account. This is reasonable in our opinion, as it is hardly practical to list
these states explicitly. From a deterministic /-diamond automaton A and a dis-
tributed alphabet with process set P, we construct a deterministic asynchronous
automaton of size 47! . | Al IPI” We believe that this complexity, although expo-
nential in the number of processes, is interesting in practice: an implementation
of such a device needs only memory of size logarithmic in |.A| and polynomial in
|P|. We also show that computing the next state on-the-fly can be done in time
polynomial in both |A] and |P].

Related work. Besides general constructions of Zielonka type, there are a cou-
ple of different constructions, however they either apply to subclasses of regular
trace languages, or they produce non deterministic automata (or both). The
first category includes [T0J3], that provide deterministic asynchronous cellular
automata from a given trace homomorphism in case that the dependence al-
phabet is acyclic and chordal, respectively. These constructions are quite simple
and only polynomial in the size of the monoid (thus still exponential in the size
of a DFA). In the second category we find [I6], who gives an inductive con-
struction for non deterministic, deadlock-free asynchronous cellular automata.
(A deadlock-free variant of Zielonka’s construction was proposed in [14]). The
paper [1] proposes a construction of asynchronous automata of size exponential
only in the number of processes (and polynomial in |.4]) as our construction, but
it yields non deterministic asynchronous automata (inappropriate for monitoring
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or control). Notice that while asynchronous automata can be determinized, there
are cases where the blow-up is doubly exponential in the number of processes [§].

2 Preliminaries

We fix a finite set P of processes and a finite alphabet Y. Each letter a € X is an
action associated with the set of processes dom(a) C P involved in its execution.
A pair (¥, dom) is called distributed alphabet. A deterministic automaton over
the alphabet ¥ is a tuple A = (Q, ¥, A, ¢, F) with a finite set of states Q, a
set of final states F, an initial state ¢° and a transition function A : Q x ¥ —
Q. As usual we extend A to words in X*. The automaton accepts w € X* if
A(q°, w) € F. We use L(A) to denote the language accepted by A. The size |A|
of A is the number of its states.

Concurrent executions of systems with shared actions given by a distributed
alphabet (X, dom), are readily modeled by Mazurkiewicz traces [9]. The idea is
that the distribution of the alphabet defines an independence relation among
actions I C X' x X, by setting (a,b) € I if and only if dom(a) N dom(d) = 0.
We call (X, I) an independence alphabet. The independence relation induces a
congruence ~ on X* by setting u ~ v if there exist words uy,...,u, € X* with
u1 = u, U, = v and such that for every i < n we have u; = zaby, u;41 = xbay
for some z,y € X* and (a,b) € I. An ~-equivalence class is simply called
a (Mazurkiewicz) trace. We denote by [u] the trace associated with the word
u € X* (for simplicity we do not refer to I, neither in ~ nor in [u], as the
independence alphabet is fixed). Trace prefixes and trace factors are defined as
usual, with [p] a trace prefix (trace factor, resp.) of [u] if p is a word prefix (word
factor, resp.) of some v ~ u. As usual, we write < for the prefix order. For two
prefixes 11,15 of T, we let T} U T denote the smallest prefix 7" of T such that
T, <T' fori=1,2.

For several purposes it is convenient to represent traces by (labeled) pomsets.
Formally, atrace T = [a1 - - - ay] (a; € X for all i) corresponds to a labeled pomset
(E, X\, <) defined as follows: E = {e1,...,e,} is a set of events (or nodes), one
for each position in T'. Event ¢; is labeled by A(e;) = a;, for each 4. The relation
< is the least partial order on E with e; < e; whenever (a;,a;) ¢ I and i <j. In
Figure [l we give an example for the pomset of a trace T, depicted by its Hasse
diagram. The labeling of a total order on E that is compatible with < is called
a linearization of T.

An automaton A is called I-diamond if for all (a,b) € I, and s a state of A:
A(s,ab) = A(s, ba). Note that the I-diamond property implies that the language
of A is I-closed: that is, u € L(A) if and only if v € L(A) for every u ~ v. This
permits us to write A(s,T') where T is a trace, to denote the state reached by A
from s on some linearization of T'. Languages of I-diamond automata are called
reqular trace languages.

Definition 1. A deterministic asynchronous automaton over the distributed al-
phabet (X, dom) is a tuple B = ((Sp)pep, (6a)acs, s°, Acc) where:
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Fig. 1. The pomset associated with the trace T' = [cba d cba db], with dom(a) = {p, ¢},
dom(b) = {g, 7}, dom(c) = {p}, dom(d) = {r}

Sp s the finite set of local states of a process p € P,

= a : [Tpedom(a) Sp = Ilpcdom(a) Sp is the local transition function associated
with an action a € X,

- s%€e]] cp Sp is the global initial state,

— Acc C pep Op is a set of global accepting states.

We call [],cp Sp the set of global states (whereas S, is the set of p-local states).
In this paper the size of an asynchronous automaton B is the total number of
local states ZPEP |Sp|- This definition is very conservative, as one may want to
count also Acc or the transition functions (that can be exponential in |B|). We
will see that our construction allows to compute both Acc and the transition
functions in polynomial time.

With the asynchronous automaton B one can associate a global automaton
A = (Q, X, A, ¢°, Acc) where:

— The set of states is the set of global states Q = HpeP Sp of B, the initial
and the accepting states are as in B.

— The transition function A : Qx X — Q is defined by A((sp)per,a) = (s))pep
with (s},)pedom(a) = 9a((Sp)pedom(a)) and sj, = s, for every p ¢ dom(a).

Clearly Ag is a finite deterministic automaton with the I-diamond property.

Definition 2. The language of an asynchronous automaton B is the language
of the associated global automaton Ag.

We conclude this section by introducing some basic notations on traces. For a
trace T', we denote by dom(T") = | J,. dom(A(e)) the set of processes occurring
in 7. For a process p € P, we denote by pref,(7') the minimal trace prefix of T
containing all events of 7" on process p. Hence, pref,(T) has a unique maximal
event that is the last (most recent) event of T' on process p. This maximal
event is denoted as last,(7'). Intuitively, pref (T') corresponds to the history of
process p after executing T'. We extend this notation to a set of processes P C P
and denote by prefp(T) the minimal trace prefix containing all events of T' on
processes from P. By last(T") we denote the set of events {last,(T) | p € P}. For
example, in Figure [l we have pref,(T") = [cbadcba] and last,(T') is the second a
of the pomset. The set last(T") contains the second a and the third b.
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3 Zielonka-Type Constructions: State of the Art

All general constructions of deterministic asynchronous automata basically fol-
low the main ideas of the original construction of Zielonka [I5]. These con-
structions start with a regular, I-closed word language, that is given either by a
homomorphism to a finite monoid, or by an /-diamond automaton. In most appli-
cations we are interested in the second case, where we start with a (possibly non
deterministic) automaton. The general constructions yield either asynchronous
automata as defined in the previous section, or asynchronous cellular automata,
that correspond to a concurrent-read-owner-write model.

Theorem 1. [15] Let A be an I-diamond automaton over the independence

alphabet (X,I). A deterministic asynchronous automaton B can be effectively
constructed with L(A) = L(B).

We now review the constructions of [2[T2J6] and recall their complexities. It is well
known that determinization of word automata requires an exponential blow-up,
hence the complexity of going from a non deterministic /-diamond automaton
A to a deterministic asynchronous automaton is at least exponential in |A]. In
that case, [6] gives an optimal construction as it is simply exponential in both
parameters |A| and |P|. Since determinization has little to do with concurrency,
we assume from now on that A is a deterministic automaton.

— [2] introduces asynchronous mappings and constructs asynchronous cellular
automata of size |X|I=I . \A|2|2‘.

— [12] constructs asynchronous automata of size |P|/PI" - \A|‘A|'2m.

— [6] introduces zone decompositions and constructs asynchronous automata
of size 231P1” . \A|‘A|'|P|2.

Comparing our present construction with previous ones, we obtain asynchronous

automata of size 4/PI" . |A\|P|2. In all these constructions, the obtained automata

are such that every process knows the state reached by A on its history. We

abstract this property below, and show in the following section that our con-

struction is optimal in this case.

Definition 3. A deterministic asynchronous automaton B is called locally re-
jecting if for every process p, there is a set of states R, C S, such that for every
trace T':

pref,(T') & pref(L(B)) iff the p-local state reached by B on T is in R,,.

Notice that R, is a trap: if B reaches R, on trace T, then so it does on every
extension 7" of T. Obviously, no reachable accepting global state of B has a
component in R,,. For these reasons we call states of R, rejecting.

Our interest in locally rejecting automata is motivated by observing that all
general constructions [IH2BIT3IT2/6] of deterministic asynchronous automata
produce such automata. Suppose that A is a (possibly non deterministic) I-
diamond automaton, and B a deterministic asynchronous automaton produced
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by one of the constructions in [IST3IT2I6] (a similar statement applies to the
asynchronous cellular automata in [2J3]). Then the local p-state s, reached by
B after processing the trace T' determines the set of states reached by A on
pref (T'), for every process p. Thus, if no state in this set can reach a final state
of A, then we put s, in R,. This makes B locally rejecting.

4 An Exponential Lower Bound

In this section we present our lower bound result. We show that transforming
an [-diamond deterministic automaton into a locally rejecting asynchronous
automaton may induce an exponential blow-up in the number of processes. For
this we define a family of languages Path,,, such that the minimal sequential
automaton for Path,, has size O(n?) but every locally rejecting asynchronous
automaton recognizing Path,, is of size at least 2™/4.

Let P = {1,...,n} be the set of processes. The letters of our alphabet are
pairs of processes, two letters are dependent if they have a process in common.
Formally, the distributed alphabet is X' = (72)) with dom({p, q}) = {p, ¢}

The language Path,, is the set of traces [z - - - 2] such that every two consecu-
tive letters have a process in common: x; Na;y1 # @ fori=1,...,k— 1. Observe
that a deterministic sequential automaton recognizing this language simply needs
to remember the last letter it has read. So it has less than |P|? states.

Theorem 2. Fvery locally rejecting asynchronous automaton recognizing Path,,
is of size at least 2"/*.

Proof. Take a locally rejecting automaton recognizing Path,,. Without loss of
generality we suppose that n = 4k. To get a contradiction we suppose that
process n of this automaton has less than 2* (local) states.

We define for every integer 0 < m < k two traces: an, = {4m,4dm + 1}{4m +
1,4m+2}{4m+2,4m~+4} and b, = {4m, 4m+1}{4m, 4m+3}{4m+3,4m+4}.
To get some intuition, the reader may depict traces ag and by and see that both
agp and by form a path from process 0 to process 4, the difference is that trace
ao goes through process 2 while trace by goes through process 3.

Consider the language L defined by the regular expression (ag + bo)(a1 +
bi)---(ag_1+br_1). Clearly, language L is included in Path,, and contains 2% =
2n/4 different traces. As we have assumed that process n has less than 2% states,
there are two different traces t1,t5 from L such that process n is in the same
state after ¢; and t,. For simplicity of presentation we assume that ¢; and ¢,
differ on the first factor: ¢; starts with ag, and #o with bg.

We can remark that processes 0 and n are in the same state after reading
t1{0,3} and to. For process 0 it is clear as in both cases it sees the same trace
{0,1}{0, 3}. By our hypothesis, process n is in the same local state after traces
t; and to, therefore also after traces t1{0,3} and ts.

Consider now the state s, reached by n after reading t2{0, n}. Since t2{0,n} €
Path,,, the state s,, is not in R,. By the above, the same state s,, is also reached
after reading ¢;{0,3}{0,n}. Trace t; starts with ap = {0,1}{1,2}{2,4} and
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continues with processes whose numbers are greater than 4, so {0,3} commutes
with all letters of ¢; except {0,1}. Hence ¢1{0,3} ¢ pref(Path,,). Since trace #;
ends with an action of process n, we have pref, (t1{0,3}{0,n}) = t1{0,3}{0,n} ¢
pref(Path,,). Since we have assumed that the automaton is locally rejecting, we
should have s, € R,,. A contradiction. O

5 A Matching Upper Bound

Our goal is to modify the construction from [6] in order to make it polynomial
with respect to the size of the sequential automaton. We give an overview of
the new construction, first describing the objects the asynchronous automaton
manipulates. Some details of the mechanics of the automaton will follow. Overall,
although described in a different way, the present construction follows closely [6].
The main difference is the state information computed on the zone decomposition
of a trace. This state information becomes polynomial (instead of exponential),
but its update is much more involved than in [6].

We fix a set of processes P and a distributed alphabet (X, dom). Let A =
(Q,X,A,¢°, F) be a deterministic I-diamond automaton. A candidate for an
equivalent asynchronous automaton B = ((Sp)pep, (0a)ac s, s°, Acc) has a set of
states for each process and a local transition function. The goal is to make B
calculate the state reached by A after reading a linearization of a trace T'. Let us
examine how B can accomplish this task. After reading a trace T" the local state
of a component p of B depends only on pref,(T"). Hence, B can try to calculate
the state reached by A after reading (some linearization of ) pref,(7"). When a
next action, say a, is executed, processes in dom(a) can see each others’ states
and make the changes accordingly. Intuitively, this means that these processes
can now compose their information in order to calculate the state reached by A
on prefyo, o) (1) a. To do so they will need some information about the structure
of the trace.

As usual, the tricky part of this process is to reconstruct the common view
of prefyom(q) (1) from separate views of each process: pref, (T') for p € dom(a).
For the sake of example suppose that dom(a) = {p,q,r}, and we know the
states s;, s, and s, reached by A after reading pref,(7T'), pref, (T') and pref, (T'),
resp. We would like to know the state of A after reading prefy,, , .4 (7'). This is
possible if we can compute the contributions of pref, (T') \ pref,(T') and pref, (T')\
pref{pyq}(T). The automaton B should be able to do this by looking at sp, sq,
and s, only. This remark points out the challenge of the construction: find the
type information that allows to deduce the behaviour of A, and that at the same
time is updatable by an asynchronous automaton.

5.1 General Structure

Before introducing formal definitions it may be worth to say what is the general
structure of the states of the automaton B. Every local state will be a triple
(ts, ZO, A), where
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— ts will be a time stamping information as in all general constructions of
asynchronous automata;

— ZO will be a zone order, a bounded size partial order on a partition of the
trace;

— A will be state information, recording the behavior of A on the partition
given by ZO.

Roughly, we will use time stamping to compute zone orders, and zone orders
to compute state information. The latter provides all the necessary information
about the behaviour of A on (a linearization of) the trace.

Time stamping: The goal of the time stamping function [15] is to determine for
a set of processes P and a process g the set last(prefp (7)) Nlast(pref, (7). This
set uniquely determines the intersection of prefp(7") and pref, (T') (for details see
e.g. [13]). Computing such intersections is essential when composing information
about pref, (1) for every p € dom(a) into information about pref,,,(,) (7). The
main point is that there exists a deterministic asynchronous automaton that can
accomplish this task:

Theorem 3. [13] There exists a deterministic asynchronous automaton Arg =
((Sp)pep, (Ad)aes, s°) such that for every trace T and state s = A(s°, T') reached
by Arg after reading T':

for every P C P and q,r,r' € P, the set of local states {s, | p € PU{q}}
allows to determine if last,(prefp(T)) = last, (pref, (T')).

Moreover, such an automaton can be effectively computed and its local states can
be described using O(|P|? log(|P])) bits.

For instance, if a new b is executed after T = [cbadcbad] in Figure 2 process r
and processes p, ¢ can determine that the intersection of their last-sets consists of
the second b. Indeed, last(pref, (7)) is made of the second a (for last, = last,)
and the second b (for last,). Also, last(pref, (7)) is made of the second d (for
last, ), the second b (for last,) and the first a (for last,).

Zone orders: Recall that one of our objectives is to calculate, for every p € P,
the state reached by A on pref,(T'). As the discussion on page [58 pointed out,
for this we may need to recover the transition function of A associated with
pref, (T') \ prefp(T) for a process ¢ and a set of processes P. Hence we need
to store information about the behaviour of 4 on some relevant factors of T
that are not prefixes. Zones are such relevant factors. They are defined in such a
way that there is a bound on the number of zones in a trace. The other crucial
property of zones is that for every extension 7" of T and every P C P,q € P, if
a zone of T' intersects pref, (T”) \ prefp(7”) then it is entirely in this set. A zone
order is an abstract representation of the decomposition of a trace into zones.

Definition 4. [6] Let T = (E,<,\) be a trace. For an event e € E we define
the set of events L(e) = {f € last(T) | e < f}. We say that two events e, e’ are
equivalent (denoted as e = €') if L(e) = L(e'). The equivalence classes of = are
called zones. We denote by dom(Z) the set of processes active in a zone Z.
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Fig. 2. The three zones of pref, (1) (darker) are marked with solid lines. The two zones
of prefy, .+ (T) (lighter) are represented by dotted lines.

There is a useful partial order on zones that we define now. Let Z, Z’ be two
zones of some trace T. We write Z < Z' if Z # Z' and e < €’ for some events
e€ Z, e € Z' Tt is easy to see that Z < Z' implies that L(Z’) C L(Z). Thanks to
this property we can define the order on zones, denoted Z < 7', as the smallest
partial order containing the < relation.

Lemma 1. A trace is partitioned in at most |P|? zones.

The lemma above gives a slightly better bound than [6]. Moreover, it can be
shown that its bound is asymptotically optimal. Figure 2l depicts the trace T =
[cbadcbad]. Recall that last(pref, (T')) consists of the first a, the second b and the
second d. There are three zones in pref,(T"): Z; contains the first a,b and ¢, Z,
the first d and the second b, and Z3 the second d. We have Z; < Zy < Z3.

Definition 5. A zone order is a labeled partial order ZO = (V,<,£: V — 2F),
where every element is labeled by a set of processes. We require that every two
elements whose labels have non empty intersection are comparable: £(v)NE(V') #
0 = (v<v Vv <w). We say that such a zone order is the zone order of a
trace T, if there is a bijection p from V to zones of T preserving the order and

satisfying &(v) = dom(u(v)).

Lemma 2. The zone order of a trace can be stored in |P|?(|P|>+|P|) space. So

there are at most 2°UP1) zone orders.

State information: We describe now the state information for each zone of the
trace. Let ZO = (V,<,£ : V — 2P) be the zone order of some trace T, via a
bijection p. For an element v € V' we denote by T, the factor of T' consisting of
zones up to p(v): that is, the factor covering p(v’) for all v’ < v. Observe that
T, is a prefix of T. For instance, in Figure 2 the zone order of pref,.(T") contains
three vertices v < vy < vz, and T, is the trace [bcadb].

Definition 6. We say that a function A :V — @ is state information for the
zone order ZO of a trace T if for every v we have A(v) = A(q°, T,), namely the
state of A reached on a linearization of T,,.
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Observe that a zone order for a trace of the form pref, (7') has one maximal

element v, it corresponds to the last action of p. If A is the state information
for T', then the state reached by A on reading a linearization of pref, (1') is A(vy).

5.2 The Construction of the Asynchronous Automaton

Let us come back to the description of the asynchronous automaton B. For every
p € P, alocal state in S, will have the form (¢s,, ZO,, A,). The automaton will
be defined in such a way that after reading a trace 7" the state s, reached at the
component p will satisfy:

— ts;, is the time stamping information;
— ZOy, is the zone order of pref,(T);
— A, is the state information for ZO,.

By [13] we know that B can update the ts, component. The proposition below
says that B can update the ZO, and A, components.

Proposition 1. Let T be a trace and a € X an action. Suppose that for every
p € dom(a) we have the time stamping information ts, and the zone order with
state information (ZOy, Ap) of pref,(T). We can then calculate the zone order
and the state information of pref,(Ta), for every p € dom(a).

We also need to define the sets of rejecting states R, and the global accepting
states Acc of B. Observe that by Proposition [Il from the local state s, we
can calculate A(qo,prefp(T)), namely the state of A reached after reading a
linearization of pref,(7'). This state is exactly the state associated to the unique
maximal element of the zone order in s,. Hence, B can be made locally rejecting
by letting s, € R, if A(qo,prefp(T)) is not productive in A, i.e., no final state
can be reached from it.
To define accepting tuples of states of B we use the following proposition:

Proposition 2. Let T be a trace. Given for every p € P the time stamping ts,,
and the zone order ZO, with state information A, of pref,(T), we can calculate
A(q°,T), the state reached by A on a linearization of T.

In the light of Proposition Bl a tuple of states of B is accepting if the state
A(q°, T) of A is accepting. The two propositions give us:

Theorem 4. Let A be a deterministic I-diamond automaton over the distributed
alphabet (X, dom). We can construct an equivalent deterministic, locally rejecting

asynchronous automaton B with at most 4lPI* . |.A\|7j|2 states.

We now describe informally the main ingredients of the proof of Proposition [II
(Propositionis proved along similar lines). The zone order ZO of prefp 4y (T') is
built in two steps from ZOp and ZO,: first we construct a so-called pre-zone order
Z0O' by adding to ZOp the zones from pref, (T') \ prefp(T') [6]. Then we quotient
Z 0O’ in order to obtain ZO. The quotient operation amounts to merge zones. The
difficulty compared to [6] is posed by the update of the state information. Since
the state information for the pre-zone ZO'’ is inconsistent due to the merge, the
crucial step is to compute this information on downward closed sets of zones:



62 B. Genest et al.

Lemma 3. Let ZO = (V,<,£), A be the zone order and state information for a
trace T (via the bijection p). For every downward closed B C V we can compute the
state reached by A on a linearization of Tg =\J{T, | v € B}, using only ZO and A.

The proof of the lemma above is based on a nice observation about I/-diamond
automata A, taken from [2]. It says that for every three traces Ty, Th,T> with
dom(7T7) N dom(T%) = (), the state reached by A on a linearization of ToT T
can be computed from dom(77) and the states reached on (linearizations of) Ty,
ToTy, ToTs, respectively.

We now sketch the proof of the lemma. We first choose some linearization
v1,...,0, of B. For each i,k with i < k, let B, = {v1,...,v;} U{v; | j >
i,v; < v }. For instance, if there are four zones vy, va, v3,vs with vy < v2 < v4,
v1 < vz < vg, and £(v2) NE&(vg) = 0, then By o = {v1,v2}, B1,s = {v1,v3}, and
By 3 = {v1,v2,v3}.

We show now how to compute inductively A(q, T, ). Notice that the base
case is trivial, as Bgy = A(vg) for all k. Let ¢ < n. Suppose that for all k& >
i—1, we know A(q°, TB,_,,)- In particular, note that the states ¢!, ¢* reached
on p(vy---v;—1) and p(vy - --v;), respectively, are known (cases k = i — 1 and
k = i). We compute now A(qO,TBM), for all k > i. Two cases arise. If v; £
vy then we apply the observation of [2] to ¢'~*,¢", A(¢°, T, , ,),&(vi), which
yields A(qO,TBi‘k). If v; < vg, then B; 1 = B; ) and the state A(¢°, T, ) is
already known. At the end of this polynomial time procedure, we have computed
A(qO’ TB) = A(qO’ TBn,n)~

Remark 1. The automaton B of Theorem @ can be constructed on-the-fly, i.e.,
given the action a € X and the local states s, of B, p € dom(a), one can compute
the successor states d,((Sp)pedom(a))- The question is now how much time we
need for this computation. The update of the time stamping and the update of
zone orders take time polynomial in |P|. The update of state information can be
done in time polynomial in |P| and linear in the number of transitions of |A|.
So overall, we can compute transitions on-the-fly in polynomial time. Similarly,
we can decide whether a global state is accepting in polynomial time.

6 Conclusion

In this paper we have presented an improved construction of asynchronous au-
tomata. Starting from a zone construction of [6], we have shown how to keep
just one state per zone instead of a transition table. This allows to obtain the
first construction that is polynomial in the size of the sequential automaton and
exponential only in the number of processes.

It is tempting to conjecture that our construction is optimal. Unfortunately, it
is very difficult to provide lower bounds on sizes of asynchronous automata. We
have given a matching lower bound for the subclass of locally rejecting automata.
It is worth to recall that all general constructions in the literature produce
automata of this kind. Moreover the concept of locally rejecting automaton is
interesting on its own from the point of view of applications.
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We conjecture that the translation from deterministic word automata to asyn-

chronous automata must be exponential in the number of processes (where the
size means the total number of local states).
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Abstract. The Regular Post Embedding Problem is a variant of Post’s Corre-
spondence Problem where one compares strings with the subword relation and
imposes additional regular constraints on admissible solutions. It is known that
this problem is decidable, albeit with very high complexity.

We consider and solve variant problems where the set of solutions is com-
pared to regular constraint sets and where one counts the number of solutions.
Our positive results rely on two non-trivial pumping lemmas for Post-embedding
languages and their complements.

1 Introduction

Post’s Correspondence Problem, or shortly PCP, is the question whether two mor-
phisms u,v : £* — T'* agree non-trivially on some input, i.e., whether u(c) = v(c) for
some non-empty 6 € £*. Post’s Embedding Problem, shortly PEP, is a variant of PCP
where one asks whether u(0) is a (scattered) subword of v(c) for some 6. The subword

relation, also called embedding, is denoted “C”: x C y ilg x can be obtained from y by
erasing some letters, possibly all of them, possibly none. The Regular Post Embedding
Problem, or PEP™, is an extension of PEP where one adds the requirement that only
solutions ¢ belonging to a given regular language R C X* are admitted. PEP and PEP™#
were introduced, and shown decidable, in [2//3].

Regular constraints and the set of PEP-solutions. The decidability of PEP™® can be
restated under the following form: it is decidable, given two morphisms u,v : ¥* — T™*
and a regular language R C X*, whether the following holds:

Ix € R:u(x) Cv(x). (Existence)

In other words, and letting PE(u,v) &f {x € Z* | u(x) C v(x)}, one can decide whether
RN PE(u,v) # @. However, this problem has very high complexity. Here the regular
language R, acting as a constraint on the form of solutions, plays a key role. Indeed,
in the special case where R = T, the problem becomes trivial (if there are solutions,
in particular length-one solutions exist) which probably explains why PEP and PEP™#
had not been investigated earlier.

* Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 642010.
(© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we prove the decidability of the following questions:

Vx € R:u(x) Cv(x), (Universality)
I"x € R:u(x) Cv(x), (Infinity)
-3°x € R:u(x) Z v(x). (Cofiniteness)

“Universality” asks whether all words in R are solutions. “Infinity” asks whether R con-
tains infinitely many solutions x, while dually “Cofiniteness” asks whether all but finitely
many x € R are solutions. Equivalently, these questions ask whether R C PE(u,v),
whether RN PE(u,v) =, &, and whether R\ PE(u,v) =, @, writing § =, ' to denote
the “quasi-equality” of two sets, i.e., equality up to a finite subset. As a consequence of
these decidability results we can compute the number of words in R that are (respec-
tively, that are not) solutions.

These results are obtained with the help of two pumping lemmas, one for sets of
solutions and one for sets of “antisolutions”, i.e., words x such that u(x) IZ v(x). These
pumping lemmas are the more technically involved developments of this paper. Prov-
ing them relies on two kinds of techniques: (1) combinatorics of words in presence of
the subword relation and associated operations, and (2) a miniaturisation of Higman’s
Lemma that gives effective bounds on the length of bad sequences.

Related work. The Regular Post Embedding Problem was introduced in [2/3] where its
decidability was proved. These papers also showed that PEP™# is expressive enough
to encode problems on lossy channel systems, or LCS’s. In fact, encoding in both di-
rections exist, hence PEP™® is exactly at level Fyo in the Fast Growing Hierarchy.
Thus, although it is decidable, PEP™# is not primitive-recursive, and not even multiply-
recursive (see [4]] and the references therein).

A consequence of the above encodings is that PEP™® is an abstract problem that is
inter-reducible with a growing list of decision problems that have the same Fuo com-
plexity: metric temporal logic [[14], products of modal logics [8]], leftist grammars [[916],
data nets [[11], alternating one-clock timed automata [1/10], etc.

On complexity. Aiming at simplicity, our main decidability proofs do not come with
explicit statements regarding the computational complexity of the associated problems.
The decidability proofs can be turned into deterministic algorithms with complexity in
Feo, providing the same upper bound that already applies to PEP™2. Regarding lower
bounds, it is clear that “Infinity” is at least as hard as PEP™2. We do not know if the
same lower bound holds for “Universality” and “Cofiniteness”.

Outline of the paper. SectionPlrecalls the necessary definitions and notations. Section[3]
deals with combinatorics on words with subwords. Section @] proves the decidability of
comparisons with regular sets. Then our pumping lemma is stated in Section[Sland used
in Section [ for deciding finiteness, counting, and quasi-regular questions. Sections [7]
and [§] prove the two halves of the pumping lemma. Proofs omitted in the main text can
be found in the full version of this extended abstract.
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2 Notations and Definitions

Words and morphisms. We write x,y,z,t,6,p,0,B, ... for words, i.e., finite sequences
of letters such as a,b,c,i, j,... from alphabets X, T, ..., and denote with x.y, or xy, the
concatenation of x and y. We let € denote the empty word. The length of x is written |x|.
A morphism from X* to I'* is amap u : ¥* — I'* that respects the monoidal structure, i.e.,
with u(e) = € and u(x.y) = u(x).u(y). A morphism u is completely defined by its image
u(a), u(b), ..., on T =1{a,b,...}. We often simply write uy,up, ..., and uy, instead of
u(a),u(b),..., and u(x). Finally, for a morphism u : &* — I'*, we let K, = maxgex |uq|
denote the expansion factor of u, thus called because clearly |u,| < K, X |x|.

The mirror image of a word x is denoted X, e.g., abc = cba. The mirror image of

a language L is L &f {X'| x € L}. It is well-known that the mirror image of a regular
language is regular. For a morphism /4 : £* — I'™, the mirror morphism # is defined by

h(x) &ef f:(\fc/), ensuring (%) = h(x).

Syntactic congruence. For a language L, we let ~ denote the syntactic congruence

induced by L: x ~7 y & Vi, w' (wxw’ € L < wyw' € L). The Myhill-Nerode Theorem
states that ~ has finite index iff L is a regular language. For a regular L, we let np
denote the number of equivalence classes w.r.t. ~

Subwords and Higman’s Lemma. Given two words x and y, we write x C y when x is
a subword of y, i.e., when x can be obtained by erasing some letters (possibly none)
from y. For example, abba C abracadabra. The subword relation, aka embedding, is a
partial ordering on words. It is compatible with the monoidal structure:

eCx, xEyAXCy)=xxCyy.

It is well-known (Higman’s Lemma) that the subword relation is a well-quasi-ordering
when we consider words over a fixed finite alphabet. This means that any set of words
has a finite number of minimal elements (minimal w.r.t. ).

We say that a sequence xi,...,x;,... of words in £* is n-good if there exists indexes
i1 <ip <...<iysuchthatx; Cx;, C... Ex,, ie., if the sequence contains a subse-
quence of length n that is increasing w.r.t. embedding. It is n-bad otherwise. Higman’s
Lemma states that every infinite sequence is 2-good, and even n-good for any n € N.
Hence n-bad sequences are finite.

Higman’s Lemma is often described as being “non-effective” in that it does not give
any information on the length of bad sequences. Indeed, arbitrarily long bad sequences
exist. However, upper bounds on the length of bad sequences can certainly be given
when one restricts to “simple” sequences. Such finitary versions of well-quasi-ordering
properties are called “miniaturisations” in proof-theoretical circles.

In this paper we consider a very simple miniaturisation that applies to “controlled”
sequences [7]]. Formally, and given k € N, we say that a sequence x1,...,x; of words in
>* is k-controlled if |x;| <ixkforalli=1,...,I. We shall use the following resultf]

1 If the minimal complete DFA that accepts L has g states, then nz, can be bounded by ¢7.
2 For a proof, see [[7] or the long version of this paper.
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Lemma 2.1. There exists a bounding function H : N> — N such that, for any n,k € N
and 1l > H(n,k,|Z|), any k-controlled sequence of | words in X* is n-good.

The lemma states that if a k-controlled sequence is long enough, it is n-good. Equiva-
lently, n-bad sequences are shorter that H (n, k,|X|) or are not k-controlled.

3 Composing, Decomposing, and Iterating Words and Subwords

This section is devoted to the subword ordering and the way it interacts with concate-
nations and factorizations. It proves a few basic results, e.g., Lemma[3.7] that we have
been unable to find in the technical literature [12/13]].

3.1 Available Suffixes

When x C y, we decompose y as a concatenation y = y;y, such that y; is the shortest
prefix of y with x C y;. We call y; the “used prefix” and y, the “available suffix”. We
use y @ x to denote the available suffix. For example, abcabc @ ba = bc. Note that y © x
is only defined when x C y.

Lemma 3.1. xCyandx' C (yox)y imply xx' C yy'.
Corollary 3.2. x C y implies x(y 0 x) C y.
Lemma 3.3. x Ty and xx' Cyy imply X' C (yox)y'.

3.2 Unmatched Suffixes

When x [Z y, we decompose x as a concatenation x = xjx, such that x; is the longest
prefix of x with x; C y. We call x| the “matched prefix” and x, the “unmatched suffix”.
We use xSy to denote the unmatched suffix. For example aabcabc © baca = bcabc.
Note that x ©y is only defined when x IZ y (hence x &y # ¢€).

Lemma 3.4. x [Zy and xx' (L yy imply [(x©y)X]oy =xx' ©yy.
Corollary 3.5. x [Z y and xx' [Z yy' imply (x&y)x' Z Y.
Lemma 3.6. x Z y and xx' C yy' imply (xS y)x' Cy'.

3.3 Iterating Factors
Lemma 3.7. xy C yz if, and only if, x*y C yZ* for all k € N.

Proof. We only need to prove the “=>" direction. This is done by induction on the length
of y. The cases where y = € or x = € or k = 0 are obvious, so we assume that |y|, |x| and
k are strictly positive. There are now two cases:

1. If x C y, we consider a factorization y = y;y, (e.g., y» = y @ x is convenient) with
x Cy1 (hence x* C yk) andy C yoz. Since [y2| < |y| (because x # € and hence y; # €),
the induction hypothesis applies and from y;y» =y C y2z one gets y’l‘yg C y,z5. Now
Xy C oy = yivfy2 Cyiyedt =yt

2. If x L y, we write x = x1xp with x; = x©y. Thus x; C y and xpy C z. Thus there
exists a factorization z = z1z; s.t. xp C z; (entailing x C yzy) and y C z5. Now xky C
(vz1)fz2 = yz1 (v21)* 122 Cyzi (2 ) 'z = 2 O



68 P. Chambart and P. Schnoebelen

Lemma 3.8. Assume x Ly, xz L yt, and x©y C xzO yt. Then for all k € N:
xZ Z yik. (Zx)

. def
Furthermore, if we let ry, éfxzk o yt*, then for all k € N:
ro & i & regr- (Re)

Proof. The hypothesis for the Lemma are that (Z), (Z;) and (Rg) hold. We prove, by
induction on k, that (Z) and (Ry—1) imply (Z;) and (Ry).

Proof of (Zy1): applying Coro. on (Zp) and (Z,) yields roz [Z t, hence a fortiori
rez Z t using (R¢_1). Combining with (Z;) and applying Lemma [3.6] contrapositively
entails xz*z IZ yt*t, i.e., (Zyy1).

Proof of (Ry): rpy1 is x5t ©yrkt1. By Lemma B4 this is [(xZ* © yt¥)z] o1, ie.,
rzot. From (Ry_1) we get re_1261t C rz©Ot. However r_1z6t = ry (Lemma [3.4).
Finally r; C rgyq. O

4 Regular Properties of Sets of PEP Solutions

Given two morphisms u,v : £* — IT'*, a word x € X* is called a “solution” (of Post’s
Embedding Problem) when u, C v,. Otherwise it is an “antisolution”. We let PE(u,v)
denote the set of solutions (for given u and v). Note that € is always a solution.

We consider questions where we are given a PEP instance u,v with u,v : Z* — T
and a regular language R C X*. The considered problems are
PEP_Inclusion: does PE(u,v) C R?
PEP_Containment: does PE(u,v) D R?
PEP_Equality: does PE(u,v) = R?

It is tempting to compare PE(u,v) with another Post-embedding set, however:

Theorem 4.1. The questions “does PE(u,v)NPE(u',v')={€}?” and “does PE(u,v) C
PE(' V')?” are TIV-complete.

Proof. H?-hardness can be shown directly by reduction from PCP. For the first ques-
tion, simply let #’ = v and v/ = u. Then a common solution has u, C vy = ), C V), = u,,
1.€., Uy = Vy.

For the second question we use a more subtle encoding: assume w.l.o.g. that I" con-

. - t
tains two distinct symbols a,b and that u, # € when x # €. Let now i/, & (ab)‘“"‘ and

y & (ba)M!. Thus «’. TV, if, and only if, x = € or |u,| < |v,|. Finally, PE(u,v) ~

X
PE(u',V') contains the non-trivial PCP solutions. O

Theorem 4.2. PEP_Inclusion, PEP_Containment and PEP_Equality are decidable.

Note that, while comparisons with a regular language are decidable, regularity itself is
undecidable, at least in the more general form stated here:

Proposition 4.3 (Regularity is undecidable [5]). The question “is RNPE(u,v) a reg-
ular language?” is Z(l)-complete.
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The remainder of this section proves Theorem [4.2]

We first observe that PEP_Inclusion and PEP™® are inter-reducible since (u,v,R) is
a positive instance for PEP_Inclusion if, and only if, («,v,X* \\ R) is a negative instance
for PEP™2. Hence the decidability of PEP_Inclusion follows from the decidability of
PEP™2, proved in [2/3]].

For the decidability of PEP_Containment (and then of PEP_Equality), we fix an
instance (u,v,R).

For a word x € £*, we say that x is good if u, C v, and then we let w, def Ve @ Uy,

otherwise it is bad and then we let ry def uy © vy. We say that x is alive if xy € R for some
v, otherwise it is dead. Finally, we write |R| for the number of states of a FSA for R,

and let L% K, X |R| be a size threshold (more details in the proof of Lemma[.3).
A word x is a cut-off if, and only if, one of the following conditions holds:

dead cut-off: x is dead;

subsumption cut-off: there exists a strict prefix x’ of x such that x' ~ x, and 