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Preface

ICALP 2010, the 37th edition of the International Colloquium on Automata,
Languages and Programming was held July 6-10, 2010 in Bordeaux, France.
ICALP is a series of annual conference of the European Association for Theo-
retical Computer Science (EATCS) which first took place in 1972, organized by
Maurice Nivat and his colleagues in Paris. This year, the program consisted of the
established track A, focusing on Algorithms, Complexity and Games, chaired by
Paul G. Spirakis; Track B, focusing on Logic, Semantics, Automata and Theory
of Programming, chaired by Samson Abramsky; Track C focusing this year on
Foundations of Networked Computation: Models, Algorithms and Information
Management, chaired by Friedhelm Meyer auf der Heide.

The three Program Committees received a total of 389 submissions: 222 for
Track A, 114 for Track B and 53 for Track C, written by authors from 45 different
countries. Of these, 60, 30 and 16, respectively, were selected for inclusion in the
scientific program. Each paper got on average 3.5 referee reports.

The Program also included six invited talks by Pierre Fraigniaud (CNRS and
Univ. Paris Diderot), Jean Goubault-Larrecq (ENS Cachan and LSV), Burkhard
Monien (Univ. Paderborn), Joel Ouaknine (Oxford Univ. Computing Lab.),
Roger Wattenhofer (ETH Zurich), and Emo Welzl (ETH Zurich).

These 112 contributed and invited papers are presented in two proceedings
volumes. The first contains the contributed papers of Track A and the invited
talks of Burkhard Monien and Emo Welzl. The second volume contains the
contributed papers of Tracks B and C as well as the invited talks of Pierre
Fraigniaud, Jean Goubault-Larrecq, Joel Ouaknine and Roger Wattenhofer.

The day before the main conference, five satellite workshops were held:
- AlgoGT : Workshop on Algorithmic Game Theory: Dynamics and Convergence
in Distributed Systems
- DYNAS 2010: International Workshop on DYnamic Networks: Algorithms and
Security
- ALGOSENSORS 2010: International Workshop on Algorithmic Aspects of
Wireless Sensor Networks
- SDKB 2010: Semantics in Data and Knowledge Bases
- TERA-NET: Towards Evolutive Routing Algorithms for Scale-Free/Internet-
Like Networks.

We wish to thank all the authors of submitted papers, all the members of
the three Program Committees for their scholarly effort and all 737 referees who
assisted the Program Committees in the evaluation process.

We are very pleased to thank INRIA for organizing the conference, LaBRI for
their collaboration, and the sponsors (Conseil Rgional d’Aquitaine, Communauté
Urbaine de Bordeaux, CEA, CNRS via the GDR IM, Total) for their strong
support. We are also very grateful to Ralf Klasing for chairing the workshop
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organization and to all the members of the Organizing Committee: Laëtitia
Grimaldi, Alice Rivière, Nicolas Bonichon, Pierre Casteran, Lionel Eyraud-Dubois
and Frédéric Mazoit.

It is also our great pleasure to acknowledge the use of the EasyChair confer-
ence management system, which was of tremendous help in handling the submis-
sion and refereeing processes as well as in intelligently assisting us in the design
of the final proceedings.

May 2010 Samson Abramsky
Cyril Gavoille

Claude Kirchner
Friedhelm Meyer auf der Heide

Paul G. Spirakis
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Faster Algorithms for Semi-matching Problems (Extended Abstract) . . . 176
Jittat Fakcharoenphol, Bundit Laekhanukit, and Danupon Nanongkai

Clustering with Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Jian Li, Ke Yi, and Qin Zhang

New Data Structures for Subgraph Connectivity . . . . . . . . . . . . . . . . . . . . . 201
Ran Duan

Session 3-Track A2. Sorting & Hashing

Tight Thresholds for Cuckoo Hashing via XORSAT
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher,
Andrea Montanari, Rasmus Pagh, and Michael Rink

Resource Oblivious Sorting on Multicores . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Richard Cole and Vijaya Ramachandran

Interval Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
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Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos

Interval Graphs: Canonical Representation in Logspace . . . . . . . . . . . . . . . 384
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Informative Labeling Schemes

Pierre Fraigniaud
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France
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Abstract. Network representations play an important role in many
domains of computer science, ranging from data structures and graph
algorithms, to parallel and distributed computing, and communication
networks. Traditional network representations are usually global in na-
ture. That is, in order to retrieve useful information, one must access a
global data structure representing the entire network, even if the desired
information is solely local, pertaining to only a few nodes. In contrast,
the notion of informative labeling schemes suggests the use of a local
representation of the network. The principle is to associate a label with
each node, selected in a way that enables to infer information about
any two nodes directly from their labels, without using any additional
sources of information. Hence in essence, this method bases the entire
representation on the set of labels alone. Obviously, labels of unrestricted
size can be used to encode any desired information, including in particu-
lar the entire graph structure. The focus is thus on informative labeling
schemes which use labels as short as possible. This talk will introduce the
notion of informative labeling scheme to the audience, and will survey
some of the important results achieved in this context. In particular, we
will focus on the design of compact adjacency-, ancestry-, routing-, and
distance-labeling schemes for trees. These schemes find applications in
various contexts, including the design of small universal graphs, and the
design of small universal posets.
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Noetherian Spaces in Verification

Jean Goubault-Larrecq

Preuves, Programmes et Systèmes, UMR 7126, CNRS and University Paris Diderot
LSV, ENS Cachan, CNRS, INRIA

Abstract. Noetherian spaces are a topological concept that generalizes well
quasi-orderings. We explore applications to infinite-state verification problems,
and show how this stimulated the search for infinite procedures à la Karp-Miller.

1 Introduction

The purpose of this paper is to given a gentle introduction to the theory of Noetherian
spaces, in the context of verification of infinite-state systems.

Now such a statement can be intimidating, all the more so as Noetherian spaces
originate in algebraic geometry [20, chapitre 0]. Their use there lies in the fact that the
Zariski topology of a Noetherian ring is Noetherian.

My purpose is to stress the fact that Noetherian spaces are merely a topological
generalization of the well-known concept of well quasi-orderings, a remark that I made
in [19] for the first time. Until now, this led me into two avenues of research.

The first avenue consists in adapting, in the most straightforward way, the theory of
well-structured transition systems (WSTS) [1,4,16,21] to more general spaces. WSTS
include such important examples as Petri nets and extensions, and lossy channel sys-
tems. After some technical preliminaries in Section 2, I will describe the basic theory of
Noetherian spaces in Section 3. This leads to a natural generalization of WSTS called
topological WSTS, which I will describe in Section 4.

In [19], I described a few constructions that preserve Noetherianness. We shall give
a more complete catalog in Section 3: Nk, Σ∗ and in general every well-quasi-ordered
set, but several others as well, including some that do not arise from well-quasi-orders.

We apply this to the verification of two kinds of systems that are not WSTS. We
do not mean these to be any more than toy applications, where decidability occurs as
a natural byproduct of our constructions. I certainly do not mean to prove any new,
sophisticated decidability result for some realistic application in verification, for which
we should probably exert some more effort. I only hope to convince the reader that the
theory of Noetherian spaces shows some potential.

The first application, oblivious stack systems, are k-stack pushdown automata in
which one cannot remember which letter was popped from a stack: see Section 5. The
second one, polynomial games, is an extension of Müller-Olm and Seidl’s static anal-
ysis of so-called polynomial programs [29] to games played between two players that
can compute on real and complex numbers using addition, subtraction, multiplication,
and (dis)equality tests: see Section 6, where we also consider the case of lossy concur-
rent polynomial games, i.e., networks of machines running polynomial programs and
which communicate through lossy signaling channels.

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 2–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The second avenue of research has led Alain Finkel and myself to make signifi-
cant progress in designing extensions of the Karp-Miller coverability algorithm to other
WSTS than just Petri nets or even counter machines. I will say a bit more in Section 7.
This line of research stemmed from the remarkable relationship between the concepts
of Noetherianness and of sobriety, which I will explain. It is fair to say that the results
obtained with A. Finkel could be proved without any recourse to Noetherian spaces.
But the decisive ideas come from topology, and in particular from the important role
played by irreducible closed sets in Noetherian spaces.

2 Technical Preliminaries

A well quasi-ordering (wqo) is a quasi-ordering (a reflexive and transitive relation) that
is not only well-founded, i.e., has no infinite descending chain, but also has no infinite
antichain (a set of incomparable elements). An alternative definition is: ≤ is a wqo on
X iff every sequence (xn)n∈N

in X contains a pair of elements such that xi ≤ xj ,
i < j. Yet another equivalent definition is: ≤ is wqo iff every sequence (xn)n∈N

has a
non-decreasing subsequence xi0 ≤ xi1 ≤ . . . ≤ xik

≤ . . ., i0 < i1 < . . . < ik < . . .

WSTS. One use of well quasi-orderings is in verifying well-structured transition sys-
tems, a.k.a. WSTS [1,4,16,21]. These are transition systems, usually infinite-state, with
two ingredients. (For simplicity, we shall consider strongly monotonic well-structured
transition systems only.)

First, there is a well quasi-ordering ≤ on the set X of
states. Second, the transition relation δ commutes with
≤, i.e., if x δ y and x ≤ x′, then there is a state y′ such
that x′ δ y′ and y ≤ y′:

x ≤

δ

x′

δ

y ≤ y′

(1)

Examples include Petri nets [34] and their extensions, reset/transfer Petri nets for exam-
ple, in general all affine counter systems [15], the close concept of VASS [23], BVASS
[37,11], lossy channel systems [3], datanets [26], certain process algebras [7]; and some
problems, such as those related to timed Petri nets [5] admit elegant solutions by reduc-
tion to an underlying WSTS.

x1

•
x2

•
x3 x4 x5

a b

c

d

{ x1 = x4 = x5 = 0; x2 = x3 = 1; }; // init
start:
if (x3 ≥ 1) { x2 −−; x1 + +; goto start; } // a

[] if (x4 ≥ 1) { x1 −−; x2+ = 2; goto start; } // b
[] { x3 −−; x4 + +; goto start; } // c
[] { x4 −−; x3 + +; x5 + +; goto start; } // d

Fig. 1. A Petri Net
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We illustrate the concept using Petri nets. I won’t define what Petri nets are exactly.
Look at Figure 1, left, for an example. This is a net with 5 places x1, . . . , x5, each
containing a certain number of tokens (shown as bullets): the initial state is shown,
with one token in places x2 and x3, and none anywhere else. Petri nets run by firing
transitions, shown as black bars |. Doing so means, for each incoming arrow �→|,
remove one token from the source place �, and for each outgoing arrow |→�, add one
token to the target place. This can only be done provided there are enough tokens in
the source places. E.g., transition a can only fire provided there is at least one token
in x2 and at least one token in x3 (which is the case in the initial state shown in the
figure), will remove one from x2 and one from x3, then put back one into x3 and put
one into x1. The net effect of transition a is therefore to move one token from x2 to
x1, provided there is at least one token in x3. If we agree to use a variable xi to hold
the current number of tokens in place xi, a C-like notation for this is if (x3 ≥ 1) {
x2 −−; x1 + +; }, as we have shown on the right-hand side of the figure.

In general, Petri nets are just another way of writing counter machines without zero
test, i.e., programs that operate on finitely many variables x1, . . . , xk containing natural
numbers; the allowed operations are adding and subtracting constants from them, as
well as testing whether xi ≥ c for some constants c. The general counter machines also
offer the possibility of testing whether xi equals 0. Crucially, Petri nets do not allow for
such zero tests. This makes a difference, as reachability and coverability (see later) is
undecidable for general counter machines [28], but decidable for Petri nets [34].

Let us check that Petri nets define WSTS. Consider a Petri net with k places x1,
. . . , xk . The states, also called markings, are tuples n = (n1, . . . , nk) ∈ Nk, where
ni counts the number of tokens in place xi. The state space is Nk. Order this by the
canonical, pointwise ordering: (n1, . . . , nk) ≤ (n′

1, . . . , nk) iff n1 ≤ n′
1 and . . . and

nk ≤ n′
k. This is wqo by Dickson’s Lemma, whose proof can be safely left to the reader

(reason componentwise, observing that N is itself well-quasi-ordered).
The transitions are each given by a pair of constant vectors a, b ∈ Nk: we have

n δ n′ iff a ≤ n and n′ = n−a+b for one of the transitions. For example, transition a
in Figure 1 can be specified by taking a = (0, 1, 1, 0, 0) and b = (1, 0, 1, 0, 0). It is easy
to see that Diagram (1) holds. Indeed, if some transition is firable from n, then it will
remain firable even if we add some tokens to some places, and triggering it will produce
a new state with more tokens as well.

The standard backward algorithm for WSTS [4,16]. The coverability problem is: given
two states x, y, can we reach some state z from x such that y ≤ z? This is a form
of reachability, where we require, not to reach x exactly, but some state in the upward
closure ↑ x of x.

For any subset A of X , let Pre∃δ(A) be the preimage {x ∈ X | ∃y ∈ A · x δ y}.
The commutation property (1) of strongly monotonic systems ensures that the preimage
Pre∃δ(V ) of any upward closed subset V is again upward closed (V is upward closed
iff whenever x ∈ V and x ≤ x′, then x′ ∈ V ). One can then compute Pre∃∗δ(V ), the
set of states in X from which we can reach some state in V in finitely many steps, as-
suming that upward closed subsets are representable and Pre∃(A) is computable from
any upward closed subset A: Compute the set Vi of states from which we can reach
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some state in V in at most i steps, backwards, by V0 = V , Vi+1 = Vi ∪Pre∃δ(Vi): this
stabilizes at some stage i, where Vi = Pre∃∗δ(V ).

To decide coverability, then, compute Pre∃∗δ(↑ y), and check whether x is in it.
This is a very simple algorithm. The only subtle point has to do with termination.

One notices indeed that V0 ⊆ V1 ⊆ . . . ⊆ Vi ⊆ . . ., and that if the sequence ever
stabilizes at stage i, we can detect it by testing whether Vi+1 ⊆ Vi. Now it must sta-
bilize, because ≤ is wqo. Indeed, in a wqo every upward closed subset U must be the
upward closure ↑E = {x ∈ X | ∃y ∈ E · y ≤ x} of some finite set E. (Proof: any
element x ∈ U is above a minimal element in U : start from x and go down until you
cannot go further—which must eventually happen since ≤ is well-founded. The set E
of all minimal elements of U must then be finite since there is no infinite antichain.) In
particular, Vω =

⋃
i∈N

Vi can be written ↑{x1, . . . , xn}. Each xj , 1 ≤ j ≤ n, must be
in some Vij , so they are all in Vi, where i = max(i1, . . . , in): it follows that Vω = Vi,
and we are done.

Noetherian spaces. The idea of [19] lies in replacing order theory by topology, noticing
that the role of wqos will be played by Noetherian spaces.

Indeed, topology generalizes order theory. (To do so, we shall require topologi-
cal spaces that are definitely non-Hausdorff, even non-T1, hence very far from metric
spaces or other topological spaces commonly used in mathematics.) Any topological
space X indeed carries a quasi-ordering ≤ called the specialization quasi-ordering of
X : x ≤ y iff every open neighborhood U of x also contains y. It is fruitful, from a com-
puter science perspective, to understand opens U as tests; then x ≤ y iff y simulates x,
i.e., passes all the tests that x passes.

Note that in particular every open U is upward closed in ≤, and every closed subset F
is downward closed. Similarly, continuous map f : X → Y are in particular monotonic
(the converse fails).

In the opposite direction, there are several topologies on X with a given specializa-
tion quasi-ordering≤. The finest one (with the most opens) is the Alexandroff topology:
its opens are all the upward closed subsets. The coarsest one (with the fewest opens)
is the upper topology: its closed subsets are all unions of subsets of the form ↓E (the
downward closure of E), E finite. In between, there are other interesting topologies
such as the Scott topology, of great use in domain theory [6].

3 The Basic Theory of Noetherian Spaces

A topological space X is Noetherian iff every open subset of X is compact. (I.e., one
can extract a finite subcover from any open cover.) Equivalently:

Definition 1. X is Noetherian iff there is no infinite ascending chain U0 � U1 � . . . �

Un � . . . of opens in X .

The key fact, showing how Noetherian spaces generalize wqos, is the following [19,
Proposition 3.1]: ≤ is wqo on the set X iff X , equipped with the Alexandroff topology
of ≤, is Noetherian. This provides plenty of Noetherian spaces.

It turns out that there are also Noetherian spaces that do not arise from wqos, thus
Noetherian spaces provide a strict generalization of wqos. The prime example is P(X),
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the infinite powerset of X , with the lower Vietoris topology, defined as the coarsest that
makes �U = {{A ∈ P(X) resp., ∈ P∗(X) | A ∩ U �= ∅} open for every open subset
U of X . When X is a poset, P(X) is quasi-ordered by the Hoare quasi-ordering ≤�:
A ≤� B iff for every a ∈ A, there is a b ∈ B such that a ≤ b. Assuming X wqo, P(X)
is not wqo in general, however it is Noetherian in the lower Vietoris topology—which
turns out to be the upper topology of ≤� [19, Corollary 7.4]. A related example, in fact
almost the same one, is the Hoare powerdomain H(X) of a space X : this is the space of
all non-empty (even infinite) closed subsets F of X , with the lower Vietoris topology,
namely the upper topology of ⊆. This is one of the powerdomains used in domain
theory, and is a model of the so-called angelic variant of non-deterministic choice [6].
Then H(X) is Noetherian as soon as X is [19, Theorem 7.2].

We don’t have any practical applications of P(X) or H(X) in verification today. We
shall give an application of Noetherian spaces in Section 6, where the underlying space
is Noetherian, but is not the Alexandroff topology of a wqo. A simpler example is given
by Σ∗, the space of all finite words over a finite alphabet Σ, with the upper topology of
the prefix ordering ≤pref. We shall see below why this is Noetherian, and shall use it in
Section 5. Note that ≤pref is certainly not wqo, as soon as Σ contains at least two letters
a and b: b, ab, aab, . . . , anb, . . . , is an infinite antichain.

The key insight in the theory of Noetherian spaces is how Noetherianness interacts
with sobriety. A topological space X is sober if and only if every irreducible closed
subset C is the closure ↓x of a unique point x ∈ X . The closure of a point x is always
the downward closure ↓x with respect to the specialization quasi-ordering. A closed
subset C is irreducible iff C �= ∅, and whenever C is included in the union of two
closed subset, then C must be contained in one of them. For every x ∈ X , it is clear
that ↓x is irreducible. A sober space has no other irreducible closed subset.

Sober spaces are important in topology and domain theory [6], and are the corner-
stone of Stone duality. We refer the reader to [6, Section 7] or to [18, Chapter V] for
further information. We shall be content with the following intuitions, which show that
sobriety is a form of completeness. A space is T0 iff its specialization quasi-ordering
≤ is an ordering, i.e., any two distinct points x, y, can be separated by some open U
(think of it as a test that one point passes but not the other one). So a space is T0 if it
has enough opens to separate points. A sober space is a T0 space that also has enough
points, in the sense that any closed set C that looks like the closure of a point (in the
sense that it is irreducible) really is so: C = ↓x, where necessarily x = maxC. An-
other indication is that, if X is sober, then X is a dcpo [6, Proposition 7.2.13]: for every
directed family (xi)i∈I , in particular for every chain, the limit supi∈I xi exists. So a
sober space is complete also in this sense.

Any topological space X can be completed to obtain a sober space S(X), the so-
brification of X , which has the same lattice of open subsets (up to isomorphism), and
possibly more points. In a sense, we add all missing limits supi∈I xi to X . S(X) is de-
fined as the collection of all irreducible closed subsets C of X , with the upper topology
of ⊆. X is then embedded in S(X), by equating each point x ∈ X with ↓x ∈ S(X).

The first key point about the interaction between sobriety and Noetherianness is that
for any space X , X is Noetherian iff S(X) is Noetherian [19, Proposition 6.2]. This
is obvious: X and S(X) have isomorphic lattices of open sets. Thus, to show that X
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is Noetherian, it is enough to show that S(X) is. The following is the cornerstone of
the whole theory, and allows one to check that a sober space is Noetherian by checking
simple properties of its specialization quasi-ordering [19, Theorem 6.11]:

Theorem 1 (Fundamental Theorem of Sober Noetherian Spaces). The sober
Noetherian spaces are exactly the spaces whose topology is the upper topology of a
well-founded partial order ≤ that has properties W and T.

We say that X has property W iff, for every x, y ∈ X , there is a finite subset E of
maximal lower bounds of x and y, such that every lower bound of x and y is less than
or equal to some element of E; i.e., ↓ x ∩ ↓ y = ↓E. Similarly, it has property T iff the
space X itself is of the form ↓E, E finite.

This allows us to prove that the product of two Noetherian spaces X , Y is again
Noetherian [19, Theorem 6.13]. The specialization quasi-ordering on S(X × Y ) ∼=
S(X) × S(Y ) is the product ordering, and it is easy to see that the product of two
well-founded orderings is again well-founded, and similarly for properties T and W.

Since every wqo is Noetherian, classical spaces such as Nk, or Σ∗ with the (Alexan-
droff topology of the) divisibility ordering (Higman’s Lemma [22]), or the set of all
ground first-order terms T(X) (a.k.a., vertex-labeled, finite rooted trees) with tree em-
bedding (Kruskal’s Theorem [25]), are Noetherian.

It is natural to ask ourselves whether there are topological version of Higman’s
Lemma and Kruskal’s Theorem. There are indeed, and at least the former case was
alluded to in [13, Theorem 5.3]. Let X be a topological space, X∗ the space of all finite
words on the alphabet X with the subword topology, defined as the coarsest one such
that X∗U1X

∗U2X
∗ . . .X∗UnX∗ is open for every sequence of open subsets U1, U2,

. . . , Un of X . The specialization quasi-ordering of X∗ is the embedding quasi-ordering
≤∗, where w ≤∗ w′ iff one obtains w′ from w by increasing some letters and inserting
some others, and:

Theorem 2 (Topological Higman Lemma). If X is Noetherian, then so is X∗.

One also observes that if X is Alexandroff, then so is X∗. One therefore obtains Hig-
man’s Lemma, that ≤∗ is wqo as soon as ≤ is wqo on X , as a consequence. Thinking
of opens as tests, a word passes the test X∗U1X

∗U2X
∗ . . . X∗UnX∗ iff it has a length

n subword whose letters pass the tests U1, . . . , Un.
As a corollary, the space X� of all multisets of elements of X , with the sub-multiset

topology, is Noetherian whenever X is. This is the coarsest one that makes open the
subsets X� �U1 �U2 � . . .�Un of all multisets containing at least one element from
U1, one from U2, . . . , one from Un, where U1, U2, . . . , Un are open in X . This follows
from Theorem 2 because X� is the image of X∗ by the Parikh mapping Ψ : X∗ → X�

that sends each word to its multiset of letters, and because of the easy result that the
continuous image of any Noetherian space is again Noetherian.

The way I initially proved Theorem 2 [13, full version, available on the Web, The-
orem E.20] is interesting. One first characterizes the irreducible closed subsets of X∗

as certain regular expressions, the word-products P = e1e2 . . . en, where each ei is
an atomic expression, either of the form F ∗ with F non-empty and closed in X , or
C? (denoting sequences of at most one letter taken from C), where C is irreducible
closed in X . Note how close this is from the definition of products and SREs [2]. In
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fact, the latter are the special case one obtains when considering X finite, in which
case irreducible closed sets C are single letters a, and non-empty closed sets F are just
non-empty subsets of X .

Properties T and W are easy, and one realizes that there is no infinite descending
chain of word-products P0 � P1 � . . . � Pk � . . ., as soon as X is Noetherian. This
may seem surprising, however one can characterize inclusion of word-products in an
algorithmic way (see [13, Definition 5.1]), and from this definition it is clear that if P �

P ′, where P = e1e2 . . . em and P ′ = e′1e
′
2 . . . e′n, then the multiset {|e1, e2, . . . , em|}

is strictly larger than {|e′1, e′2, . . . , e′n|} in the multiset extension �mul of �, defined by:
C′? � C? iff C′ � C; F ′∗ � F ∗ iff F ′ � F ; F ′∗ � C? iff F ′ ⊇ C; and C′? �� F ∗.
When X is Noetherian, � is well-founded, and we conclude by Theorem 1. (This has
some similarities to Murthy and Russell’s argument [30], by the way.)

Using a similar line of proof, we obtain an analogous result on finite trees. We equate
finite trees on X with ground, unranked first-order terms with function symbols taken
from X , which we simply call terms on X . Let X be a topological space, T(X) be
the set of all terms on X , defined by the grammar s, t, . . . ::= f(t1, . . . , tn) (f ∈ X ,
n ∈ N). Write t for the sequence t1 . . . tn. Define the simple tree expressions by the
grammar π ::= �U(π1 | . . . | πn) (U open in X , n ∈ N), and let �U(π1 | . . . |
πn) denote the collection of all terms that have a subterm f(t) with t in the word-
product T(X)∗π1T(X)∗ . . . T(X)∗πnT(X)∗. We equip T(X) with the tree topology,
defined as the coarsest one that makes every simple tree expression open in T(X). The
specialization quasi-ordering of T(X) is the usual tree embedding quasi-ordering �≤,
defined inductively by s = f(s) �≤ t = g(t) iff either s �≤ tj for some j, 1 ≤ j ≤ n
(where t = t1t2 . . . tn), or f ≤ g and s �∗

≤ t. And:

Theorem 3 (Topological Kruskal Theorem). If X is Noetherian, then so is T(X).

Simple tree expressions are best explained as tests. A simple tree expression π ::=�U(π1 | . . . | πn) is, syntactically, just a finite tree whose root is labeled U and
with subtrees π1, . . . , πn. Then a term t passes the test π iff it has an embedded
term of the same shape as π and whose symbol functions f are all in the opens U
labeling the corresponding nodes of π. E.g., whenever f ∈ U , a ∈ V , b ∈ W ,
t = g(h(f(g(a, c, c), b), h(g(c)))) is in �U(�V () | �W ()), because it embeds the
term f(a, b), and f ∈ U , a ∈ V , b ∈ W .

We have already dealt with trees, in the special case of ranked terms on a finite space
X in [13, Definition 4.3, Theorem 4.4]. However, these were flawed: the tree-products
defined there are irreducible, but not closed. The characterization of irreducible closed
subsets of T(X) is in fact significantly more complicated than for words, although they
are still a form of regular expression. This will be published elsewhere.

By the way, I am, at the time I write this, discontent with the above proofs of The-
orem 2 and Theorem 3, as they are arguably long and complex. I have found much
simpler proofs, which escape the need for characterizing the irreducible closed subsets,
and are in fact closer to Nash-Williams celebrated minimal bad sequence argument [31].
This, too, will be published elsewhere.

We have already mentioned that some Noetherian spaces did not arise from wqos.
Theorem 1 makes it easy to show that Σ∗ with the upper topology of the prefix ordering
(where Σ is finite, with the discrete topology) is Noetherian. Consider indeed Σ∗∪{�},
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where � is a new elements, and posit that w ≤pref � for every w ∈ Σ∗. Equip Σ∗∪{�}
with the upper topology of ≤pref. The purpose of adding � is to enforce property T.
Property W is obvious, as well as well-foundedness. So Σ∗ ∪ {�} is sober Noetherian.
One now concludes using the easy result that any subspace of a Noetherian space is
Noetherian.

One can generalize this to cases where we replace Σ by an arbitrary Noetherian space
X , defining an adequate prefix topology on X∗. We omit this here. We write X∗,pref the
resulting space. We return to Σ∗,pref in Section 5.

Let us summarize these results by the grammar of Figure 2: every space D shown
there is Noetherian. We have not yet dealt with the case of polynomials; we shall touch
upon them in Section 6. The constructions marked with a star are those that have no
equivalent in the theory of well-quasi-orderings.

D ::= A (finite, Alexandroff topology of some quasi-ordering ≤)
| N (Alexandroff topology of the natural ordering ≤)
| C

k (with the Zariski topology, see Section 6) ∗
| Spec(R) (with the Zariski topology, R a Noetherian ring, Section 6) ∗
| D1 × D2 × . . . × Dn (with the product topology)
| D1 + D2 + . . . + Dn (disjoint union)
| D∗ (with the subword topology, Theorem 2)
| D� (with the submultiset topology)
| T(D) (with the tree topology, Theorem 3)
| D∗,pref (with the prefix topology) ∗
| H(D) (with the upper topology of ⊆) ∗
| P(D) (with the lower Vietoris topology) ∗
| S(D) (with the lower Vietoris topology) ∗

Fig. 2. An algebra of Noetherian datatypes

4 Effective TopWSTS

It is easy to extend the notion of WSTS to the topological case. Say that a topological
WSTS (topWSTS) is a pair (X, δ), where X , the state space, is Noetherian, and δ, the
transition relation, is lower semi-continuous. The former is the topological analogue of
a wqo, and the latter generalizes strong monotonicity (1). Formally, δ is lower semi-
continuous iff Pre∃δ(V ) = {x ∈ X | ∃y ∈ V · x δ y} is open whenever V is.

Modulo a few assumptions on effectiveness, one can then compute Pre∃∗δ(V ) for
any open V : since X is Noetherian, the sequence of opens V0 = V , Vi+1 = Vi ∪
Pre∃δ(Vi) eventually stabilizes. So we can decide, given V and x ∈ X , whether some
element in V is reachable from the state x: just test whether x ∈ Pre∃∗δ(V ). This is a
general form of the standard backward algorithm for WSTS.

Let us make the effectiveness assumptions explicit. We need codes for opens, and
ways of computing Pre∃δ. The following definition is inspired from Smyth [35] and
Taylor [36, Definition 1.15], taking into account simplifications due to Noetherianness.
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Definition 2 (Computably Noetherian Basis). Let X be a Noetherian space. A com-
putably Noetherian basis (resp., subbasis) on X is a tuple (N, O �_� , 0, 1, +,≺≺) (resp.,
(N, O �_� , 0, 1, +, �,≺≺)) where:

– N is a recursively enumerable set of so-called codes,
– O �_� : N → O(X) is a surjective map, O �0� = ∅, O �1� = X , O �u + v� =

O �u� ∪ O �v� (and O �u � v� = O �u� ∩ O �v� in the case of subbases);
– finally, ≺≺ is a decidable relation satisfying: if u ≺≺ v then O �u� ⊆ O �v� (sound-

ness), and for any family (vi)i∈I of codes, there are finitely many elements i1, . . . , ik
∈ I such that vi ≺≺ vi1 + . . . + vik

for all i ∈ I (syntactic compactness).

If in addition u ≺≺ v iff O �u� ⊆ O �v� for all codes u, v ∈ N , then we say that
(N, O �_� , 0, 1, +,≺≺) is a strongly computably Noetherian basis.

It is important to notice that such bases describe codes for open subsets, but that we
don’t care to even represent points, i.e., states, themselves.

The condition u ≺≺ v iff O �u� ⊆ O �v� for all codes u, v ∈ N trivially entails
both soundness and syntactic compactness. The latter follows from the fact that the
open

⋃
i∈I O �vi� is compact, since X is Noetherian. It is an easy exercise to show

that all the spaces of Figure 2 have a strongly computably Noetherian basis. E.g., for
N, the codes are n, n ∈ N, plus 0; we take 1 = 0, O �n� = ↑n. If (Ni, O �_�i ,
0i, 1i, +i, �i,≺≺i) are strongly computably Noetherian bases of Xi, 1 ≤ i ≤ n, then
(N ′, O′ �_� , 0′, 1′, +′, (�′, ) ≺≺′) defines one again for X1 × . . . × Xn, where N ′ =
Pfin(N1 × . . . × Nn) and O′ �u� =

⋃
(u1,...,un)∈u O �u1� × . . . × O �un�. If (N, O �_� ,

0, 1, +, �,≺≺) is a strongly computably Noetherian basis for X , where N ′ = Pfin(N∗)
and for every u′ ∈ N ′, O′ �u′� is the union, over each word w = u1u2 . . . un in u′, of
the basic open set O′ �w� = X∗O �u1�X∗O �u2� X∗ . . . X∗O �un�X∗.

This also works for infinite constructions such as P(X) or H(X): if (N, O �_� ,
0, 1, +,≺≺) is a strongly computably Noetherian basis for X , then (N ′, O′ �_� , 0′, 1′,+′,
�′,≺≺′) is a strongly computably Noetherian subbasis for P(X), where N ′ = Pfin(N),
and for every u ∈ N ′, O′ �u� =

⋂
a∈u �O �a� (this is X ′ itself when u = ∅).

One sometimes also needs a representation of points, which we define as some sub-
set P of some r.e. set, with a map X �_� : P → X , and a decidable relation ε on P ×N
such that p ε u iff X �p� ∈ O �u�. If X is T0, there is always a surjective, canoni-
cal representation of points derived from a strongly computable Noetherian subbasis
(N, O �_� , 0, 1, +,≺≺): take P to be the subset of all codes u ∈ N such that O �u� is
the complement of some set of the form ↓ x, then let X �u� = x. So we don’t formally
need another structure to represent points: any computably Noetherian basis already
cares for that. But some other representations of points may come in handy in specific
cases.

Definition 3 (Effective TopWSTS). An effective topWSTS is a tuple (X, δ, N, O �_� ,
0, 1, +,≺≺, R∃), where (X, δ) is a topWSTS, (N, O �_� , 0, 1, +,≺≺) is an effective basis
on X , R∃ : N → N is computable, and Pre∃δ(O �u�) = O �R∃(u)� for every u ∈ N .

In other words, one may compute a code of Pre∃δ(U), given any code u of U , as R∃(u).
The following is then clear.
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Proposition 1. Let (X, δ, N, O �_� , 0, 1, +,≺≺, R∃) be an effective topWSTS. One can
effectively compute a code of Pre∃∗δ(U) from any given code u of the open subset U .

Assume additionally a representation (P, X �_� , ε) of points. Given any code p for a
point x ∈ X , and any code u for an open subset U of X , one can decide whether there
is a trace x = x0 δ x1 δ . . . δ xk such that xk ∈ U .

One can in fact go further and model-check some infinite two-player games. We con-
sider a may player, who will play along lower semi-continuous transition relations, and
a must player, who will play along upper semi-continuous transition relations: δ is up-
per semi-continuous iff Pre∀δ(F ) is closed whenever F is.

Formally, one posits a finite set L = Lmust ∪ Lmay of transition labels, taken as the
(not necessarily disjoint) union of two subsets of must labels and may labels, and calls
a topological Kripke structure any tuple I = (X, (δ�)�∈L, (UA)A∈A), where X is a
topological space, δ� is a binary relation on X , which is lower semi-continuous when
� ∈ Lmay and upper semi-continuous when � ∈ Lmust, and UA is an open of X for every
atomic formula A. An environment ρ maps variables ξ to opens of X , and serves to
interpret formulae in some modal logic. In [19, Section 3], we defined the logic Lμ as
follows. The formulae F are inductively defined as atomic formulae A, variables ξ, true
�, conjunction F ∧ F ′, false ⊥, disjunction F ∨ F ′, must-modal formulae [�]F , may-
modal formulae 〈�〉F , and least fixed points μξ · F . The semantics of Lμ is standard:
the set I �F �δ ρ of states x ∈ X such that x satisfies F is in particular defined so
that I �〈�〉F �δ ρ = Pre∃δ�(I �F �δ ρ), I �[�]F �δ ρ = Pre∀δ�(I �F �δ ρ) (where, if F is
the complement of V , Pre∀(V ) is the complement of Pre∃(F )), and I �μξ · F �δ ρ =⋃+∞

i=0 Ui, where U0 = ∅ and Ui+1 = I �F �δ (ρ[ξ := Ui]). When X is Noetherian,
the latter will in fact arise as a finite union

⋃n
i=0 Ui. We define effective topological

Kripke structures in the obvious way, imitating Definition 3: just require computable
maps R∃

� : N → N representing δ� for each � ∈ Lmay, R∀
� : N → N representing δ�

for each � ∈ Lmust, and codes uA of UA for each atomic formula A. Computing (a code
for) I �F �δ ρ by recursion on F yields the following decision result.

Proposition 2. Given an effective topological Kripke structure, any formula F of Lμ,
and any sequence of codes vξ , one for each variable ξ, one can effectively compute a
code of I �F �δ ρ, where ρ is the environment mapping each ξ to O �vξ�.

Given any representation of points, and any code for a point x ∈ X , one can decide
whether x satisfies F .

5 Oblivious Stack Systems

Let Σ be a finite alphabet. Reachability and coverability in k-stack pushdown automata
are undecidable as soon as k ≥ 2: encode each half of the tape of a Turing machine by
a stack. Here is relaxation of this model that will enjoy a decidable form of coverability.

Define oblivious k-stack systems just as pushdown automata, except they cannot
check what letter is popped from any stack. Formally, they are automata on a finite
set Q of control states, and where transitions are labeled with k-tuples (α1, . . . , αk)
of actions. Each action αi is of the form pusha, for each a ∈ Σ (push a onto stack
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number i) pop (pop the top letter from stack i, if any, else block), and skip (leave stack
i unchanged), and all actions are performed in parallel.

This defines an effective topWSTS on the state space Q × (Σ∗,pref)k
. As we have

seen, the latter is Noetherian, although its specialization ordering is certainly not wqo.
So the theory of WSTS, as is, does not bring much in solving oblivious k-stack systems.
However, Proposition 1 applies: one can decide whether we can reach a given open
set V from any state. One observes that one can specify an open set by a finite set
{p1, . . . , pn} of forbidden patterns. A forbidden pattern p is a tuple (q, w1, . . . , wn)
where q ∈ Q, and each wi is either a word in Σ∗ or the special symbol �. Such a
pattern is violated in exactly those states (q, w′

1, . . . , w
′
n) such that for each i such that

wi �= �, w′
i is a prefix of wi. It is satisfied otherwise. Then {p1, . . . , pn} denotes the

open subset of all states that satisfy every pi, 1 ≤ i ≤ n. It follows:

Theorem 4. Given an oblivious k-stack system, any initial configuration and any fi-
nite set of forbidden patterns, one can decide whether there is a configuration that is
reachable from the initial configuration and satisfies all forbidden patterns.

In particular, control-state reachability, which asks whether one can reach some state
(q, w1, . . . , wn), for some fixed q, and arbitrary w1, . . . , wn, is decidable for oblivious
k-stack systems: take all forbidden patterns of the form (q′,�, . . . ,�), q′ ∈ Q \ {q}.
This much, however, was decidable by WSTS techniques: as S. Schmitz rightly ob-
served, one can reduce this to Petri net control-state reachability by keeping only the
lengths of stacks. Theorem 4 is more general, as it allows one to test the contents of the
stacks, and comes for free from the theory of topWSTS.

The reader may see a similarity between k-stack pushdown automata and the con-
current pushdown systems of Qadeer and Rehof [32]. However, the latter must push and
pop on one stack at a time only. Pushdown automata may require one to synchronize
push transitions taken on two or more stacks. I.e., if the only transitions available from
control state q are labeled (pusha, pusha, skip, . . . , skip) and (pushb, pushb, skip,
. . . , skip), then this forces one to push the same letter, a or b, onto the first two stacks
when exiting q.

6 Polynomial Games

Let C be the field of complex numbers, and k ∈ N. Let R be the ring Q[X1, . . . , Xk]
of all polynomials on k variables with coefficients in Q. The Zariski topology on Ck is
the one whose opens are OI = {x ∈ Ck | P (x) �= 0 for some P ∈ I}, where I ranges
over the ideals of R. I.e., its closed subsets are the algebraic varieties FI = {x ∈ C

k |
P (x) = 0 for every P ∈ I}. This is a much coarser topology that the usual metric
topology on Ck, and is always Noetherian.

There is an obvious computably Noetherian subbasis (not strongly so) from com-
putable algebraic geometry. The set N of codes is the collection of Gröbner bases [9,
Section 11], which are finite sets of polynomials u = {P1, . . . , Pn} over Q, normalized
with respect to a form of completion procedure due to Buchberger. Given a so-called
admissible ordering of monomials, i.e., a total well-founded ordering ≥ on monomials
such that m1 ≥ m2 implies that mm1 ≥ mm2 for all monomials m, every non-zero
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polynomial P can be written as am + P ′, where a ∈ K , m is the largest monomial
of P in ≥, and P ′ only involves smaller monomials. P can then be interpreted as a
rewrite rule m → − 1

aP ′ on polynomials, E.g., if P = X2Y − 4X + Y 2, with X2Y
as leading monomial, one can rewrite X5Y 2 (= X2Y.X3Y ) to 4X4Y − X3Y 3; the
latter (= X2Y.(4X2)−X3Y 3) again rewrites, using P , to −X3Y 3 +16X3−4X2Y 2,
then to −4X2Y 2 + XY 4 + 16X3− 4X2Y 2 = 16X3− 8X2Y 2 + XY 4, and finally to
16X3− 32XY + XY 4 + 8Y 3. Notice that, evaluated on any zero of P , all the polyno-
mials in the rewrite sequence have the same value; e.g., 0 when X = Y = 0, or 9−

√
17

2

when X = 1, Y = −1+
√

17
2 .

A Gröbner basis for an ideal I is a finite family w of polynomials such that I = (w)
and that is confluent (and necessarily terminating) when interpreted as a rewrite system.
Buchberger’s algorithm converts any finite set v of polynomials to a Gröbner basis w
of (v).

Let then O �u� = O(u), where (u) = (P1, . . . , Pn) is the ideal of all linear com-
binations of P1, . . . , Pn with coefficients in R. One can always compute a Gröbner
base for an ideal I = (P1, . . . , Pn), given P1, . . . , Pn, by Buchberger’s algorithm. The
code 0 is then {0}, 1 is defined as {1}, u + v is a Gröbner base for u ∪ v. One can
also define u � v to be a code for O �u� ∩ O �v�, and compute it in at least two ways
[27, Section 4.3]. The simplest algorithm [8, Proposition 4.3.9] consists in computing a
Gröbner basis of I = (Y P1, Y P2, . . . , Y Pm, (1−Y )Q1, (1−Y )Q2, . . . , (1−Y )Qn),
where u = {P1, P2, . . . , Pm} and v = {Q1, Q2, . . . , Qn} and Y is a fresh variable,
and to define u � v as a Gröbner basis for the elimination ideal ∃Y · I , defined as those
polynomials in I where Y does not occur [8, Theorem 4.3.6]. Given any polynomial P
and any Gröbner basis u, one can test whether P ∈ (u) by a process akin to rewriting:
each polynomial in u works as a rewrite rule, and P ∈ (u) iff the (unique) normal
form of P with respect to this rewrite system is 0. One can then test whether u ≺≺ v by
checking whether, for each P ∈ u, P is in (v). It turns out that u ≺≺ v is not equivalent
to O �u� ⊆ O �v�: take u = {X}, v = {X2}, then u �∈ (v), although O �u� = O �v�.
But soundness is obvious, and syntactic compactness (Definition 2) follows since R
is a Noetherian ring. We mention in passing that there is also a strongly computably
Noetherian subbasis, where u ≺≺ v iff (u) is included in the radical of (v), and this can
be decided using the Rabinowitch trick [33].

As a representation of points, we take those u such that (u) is a prime ideal. This is
in fact the canonical representation. It contains at least all rational points (q1, . . . , qk) ∈
Qk, represented as the Gröbner basis (X1 − q1, . . . , Xk − qk), but also many more.

One gets natural topWSTS from polynomial programs. These are finite automata,
on some finite set Q of control states, where transitions are labeled with guards and
assignments on k complex-valued variables. The guards g are finite sets {P1, . . . , Pm}
of polynomials in R, interpreted as disjunctions of disequalities P1 �= 0∨ . . .∨Pm �= 0.
If the guard is satisfied, then the transition can be taken, and the action is triggered. The
allowed actions a are parallel assignments x := P1(x), . . . , Pk(x), where x is the
vector of all k variables, and with the obvious semantics. Each Pi is either a polynomial
in R, or the special symbol ?, meaning any element of C.
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This defines a transition relation δ on Q × Ck, which happens to be lower semi-
continuous, and in fact computably so. As set N ′ of codes for opens of the state space
Q × Ck, we use Pfin(Q × N), and define O′ �u′� =

⋃
(q,u)∈N ′{q} × O �u�. Then,

Pre∃δ(O′ �u′�)=
⋃

(q′,u)∈u′

q
g,a−→q′

{q}×O �g � {P [Xi:=Pi]i∈Iact | P ∈ ∀Xi1 , . . . , Xim · u}�,

where a is x := P1(x), . . . , Pk(x), and i1, . . . , im are those indices i where Pi is ?,
and Iact are the others. P [Xi := Pi]i∈Iact is parallel substitution of Pi for Xi in P for
all i ∈ Iact. The ∀ operator is defined, and shown to be computable, in [29, Lemma 4].

The polynomial programs above are exactly those of Müller-Olm and Seidl [29].
Proposition 1 then immediately applies. In particular, one can decide whether one can
reach some configuration (q′, x) such that P1(x) �= 0 or . . . or Pm(x) �= 0 for some
state q′ and polynomials P1, . . . , Pm, from a given configuration, in a given polynomial
program. This is a bit more than the polynomial constants problem of [29]. For example,
we may want to check whether at q′ we always have Y = X2 + 2 and X2 + Y 2 = Z2,
and for this we let P1 = Y − X2 − 2, P2 = Z2 − X2 − Y 2, m = 2. Figure 3 is
a rendition of an example by Müller-Olm and Seidl, in C-like syntax. The conditions
(shown as ‘?’) at lines 1 and 3 are abstracted away: if and while statements are to
be read as non-deterministic choices. One may check that it is always the case that x is
0 at line 4. This is a polynomial program with control states 1 through 4, the variables
are X1 = x, X2 = y, all the guards are trivial (i.e., the empty set of polynomials), and
the actions should be clear; e.g., the only action from state 2 to state 3 is the pair of
polynomials (X1X2 − 6, 0).

1. if (?) { x = 2; y = 3; } else { x = 3; y = 2; }
2. x = x ∗ y− 6; y = 0;
3. while (?) { x = x + 1; y = y− 1; };
3’. x = x^2 + x ∗ y;
4. return;

Fig. 3. Müller-Olm and Seidl’s example

Polynomial Games. We can again go further. Define polynomial games as a topological
Kripke structure where, for each may transition � ∈ Lmay, δ� is specified by guards and
actions as above. For each must transition � ∈ Lmust, we specify δ� by giving ourselves
a finite set A� of triples (q, q′, α) ∈ Q×Q×Q[X1, . . . , Xk, X ′

1, . . . , X
′
k], and defining

(q, x) δ�(q′, x′) iff there is a triple (q, q′, α) ∈ A� such that α(x, x′) = 0. So the must
player can, in particular, compute polynomial expressions of x, test polynomials against
0, and solve polynomial equations. It is easy to see that δ� is then upper semi-continuous,
as Pre∃δ�({q′} × F(u)) =

⋃
(q,q′,α)∈A�

{q} × F∃X′
1·...·∃X′

k
·(α∪{P [Xi:=X′

i]
k
i=1|P∈u}).

By Proposition 2:

Theorem 5. The model-checking problem for Lμ formulas on polynomial games is
decidable.

We do not know whether the added expressive power of polynomial games, compared
to the simpler polynomial programs, will be of any use in verification, however the
theorem stands.
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Lossy Concurrent Polynomial Programs. All the above can be done without any re-
course to topology, and requires one only to work with polynomial ideals. However,
the topological approach is modular. If one should someday need to decide games that
would involve state spaces such as Nm×Ck, or P(Ck), the theory of Noetherian spaces
would apply right out of the box. Here is a trivial case.

Consider a network of polynomial programs communicating through specific FIFO
channels. We shall call such networks concurrent polynomial programs. We shall as-
sume these channels to be lossy, i.e., messages may disappear from the channels, non-
deterministically, at any time. We shall also assume that the messages are taken from
some fixed finite set Σ, i.e., the channels are only used for signaling, not for transmit-
ting any actual value. This imitates the behavior of lossy channel systems [3], which are
a special case (with no variable from C) of our lossy concurrent polynomial programs.
Lossiness is interesting, if only because the non-lossy variants are undecidable [10].

For simplicity, we shall only consider two programs A and B communicating through
one FIFO channel from A to B. Dealing with more programs and more channels presents
no difficulty, other than notational.

The messages sent over the channel are control signals from Σ. So the data type
of the possible contents of the channel is Σ∗, with the subword topology (alterna-
tively, the Alexandroff topology of the usual embedding quasi-ordering ≤∗, where ≤
is equality on Σ). Let QA be the finite set of control states of A, QB that of B. Let
X = X1, . . . , Xm be the vector of the numerical variables of A, Y = Y1, . . . , Yn

those of B. The configurations are tuples (qA, X, qB, Y , w), where (qA, X) is a con-
figuration of the polynomial program A, (qB, Y ) is a configuration of B, and w ∈ Σ∗

is the contents of the channel. Compared to the non-concurrent case, the guards and the
actions of A (resp., B) can only deal with variables from X (resp., Y ), except for two
new families of actions recva (for B) and senda (for A), where a is a constant in Σ.

Formally, given any A-transition from qA to q′A with guard g and action senda,
a ∈ Σ + Ck, we define δ so that (qA, X, qB, Y , w) δ (q′A, X, qB, Y , aw) provided g
is satisfied (add a in front of w), while the semantics of a recva action, a ∈ Σ, from
qB to q′B with guard g, is given by (qA, X, qB, Y , w1aw) δ (qA, X, q′B, Y , w) if g is
satisfied (i.e., drop enough letters from the FIFO channel until we reach an a, and pop
it). It is an easy exercise to show that this is lower semi-continuous, and computably so.
(We could also add transitions that drop letters from the channel, as in lossy channel
systems, but this is not needed for the rest of our treatment.)

The opens are finite unions of sets of the form {(qA, x, qB, x, w) | (x, y) ∈ OI , w ∈
Σ∗a1Σ

∗ . . . Σ∗aqΣ
∗}, where qA, qB are fixed control states, I = (p1, . . . , p�) is a fixed

polynomial ideal over Q[X, Y ], and a1, . . . , aq are fixed letters from Σ. In other words,
such an open subset is specified by a forbidden pattern: a state satisfies the forbidden
pattern iff its A is in control state qA, B is in control state qB , pi(x, y) �= 0 for some i,
1 ≤ i ≤ �, and a1a2 . . . aq is a subword of the contents w of the channel.

Theorem 6. Given a lossy concurrent polynomial program, an initial configuration
where the values of the variables are given as rational numbers, and a finite set of
forbidden patterns, one can decide whether there is a configuration reachable from the
initial configuration and that satisfies all forbidden patterns.
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In particular, control-state reachability (can one reach a configuration where A would
be in state qA and B in state qB?) is decidable.

Algebraic geometry. To end this section, we only mention that Ck is considered as a
special case in algebraic geometry. It turns out that the sobrification S(Ck) coincides
with Spec(Q[X1, X2, . . . , Xk]), the spectrum of the (Noetherian) ring Q[X1, X2, . . . ,
Xk]. The spectrum Spec(R) of a ring R is the set of all prime ideals of R, and comes
with the Zariski topology, whose closed subsets are FI = {p ∈ Spec(R) | I ⊆ p},
where I ranges over the ideals of R. It is well-known that Spec(R) is a Noetherian
space whenever R is a Noetherian ring, see [20, chapitre premier, Section 1.1]. This
provides yet another construction of Noetherian spaces, although we currently have no
application in computer science that would require the added generality.

7 Completions, and Complete WSTS

The algorithm of Proposition 1 works backwards, by computing iterated sets of pre-
decessors. The Karp-Miller algorithm [24] works forwards instead, but only applies to
Petri nets. Forward procedures are useful, e.g., to decide boundedness, see [14].
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(a) Unfolding (beginning) (b) Taking some shortcuts (c) Finishing some branches

Fig. 4. Running the Karp-Miller procedure on Figure 1

Consider for example the Petri net of Figure 1, and consider it as a transition system
over N

5. The initial state is (0, 1, 1, 0, 0), and there are four transitions a, b, c, and
d. One can then unfold all possible runs of the net in a tree (see Figure 4, (a)). Here,
from the initial state, one can trigger transitions a or c, leading to states (1, 0, 1, 0, 0) and
(0, 1, 0, 1, 0) respectively. From the latter we can only trigger d, leading to (0, 1, 1, 0, 1),
and so on. Doing so would yield an infinite tree.

The Karp-Miller construction builds a finite tree by taking some shortcuts, and ab-
stracting away the values of components of the states that may become unbounded.
E.g., in Figure 1, we realize that firing c then d leads to a state (0, 1, 1, 0, 1) where the
first four components are the same as in the initial state (0, 1, 1, 0, 0), but the fifth is
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larger. Iterating this c-d sequence would lead to a state (0, 1, 1, 0, N) with N arbitrary
large, and we abstract this away by replacing the state (0, 1, 1, 0, 1) by (0, 1, 1, 0, ω),
where ω denotes any, arbitrarily large, number. This also happens along the other two
branches shown in Figure 4, (a). The dotted arrows going up in Figure 4, (b), indicate
which state we can go back to in order to perform such iterations.

One can see a tuple in N
5
ω (where Nω = N� {ω}) such as (0, 1, 1, 0, ω) as meaning,

in particular, that there are infinitely many tokens in place x5. While this is not quite
correct, it certainly gives some further intuitions. In particular, one can continue to
simulate the execution of the Petri net from such extended states. The result, apart from
some irrelevant parts, is shown in Figure 4, (c). This is the coverability tree of the Petri
net. (The dotted arrows are not part of this—the coverability graph would include them.
We also glossed over a few details, notably that the Karp-Miller construction does not
proceed to simulate the execution of the Petri net from an extended state that is identical
to a state further up the same branch.)

The reason why the resulting tree is finite is twofold. First, Nk
ω is wqo. This implies

that, along any infinite branch, we must eventually find an extended state that is com-
ponentwise larger than another one higher in the tree, giving us an opportunity to take
a shortcut. We call this a progress property: in any infinite run, we will eventually take
a shortcut, subsuming infinitely many iterations.

Second, taking a shortcut adds an ω component to a tuple, and ω components never
disappear further down the branch: so any branch must in fact be finite. It follows from
König’s Lemma that the tree itself is finite, and is built in finite time.

The Karp-Miller construction gives more information about the Petri net than the
standard backward algorithm. Letting A ⊆ Nk

ω be the set of all extended states labeling
the nodes of the tree, one sees that N

k ∩ ↓A is exactly the cover of the Petri net, i.e.,
the downward closure ↓Post∗δ(x) of the set Post∗δ(x) of states y that are reachable
from the initial state x by the transition relation δ. In particular, one can decide cover-
ability, by checking whether y ∈ ↓Post∗δ(x). One can also decide boundedness, i.e.,
test whether Post∗δ(x)? is finite (check whether any ω component occurs anywhere
in the coverability tree), and place-boundedness, i.e., test whether there is a bound on
the number of tokens that can be in any given place. In the example above, and after
simplification, the cover is N5 ∩ ↓{(ω, ω, 0, 1, ω), (ω, ω, 1, 0, ω)}: the bounded places
are x3 and x4.

The Karp-Miller construction is fine, but only works on Petri nets. There cannot be
any similar, terminating procedure for general WSTS, since this would decide bound-
edness again. But boundedness is already undecidable on lossy channel systems [10]
and on reset Petri nets [12].

Even if we drop the requirement for termination, finding a procedure that would
compute the cover of a general WSTS (when it terminates) remained elusive for some
time. Some important special cases could be handled in the literature, e.g., a large class
of affine counter systems generalizing reset/transfer Petri nets [15], or lossy channel
systems [2], but a general theory of covers, and of forward procedures à la Karp-Miller
for general WSTS was missing. This is what we solved, with A. Finkel, in two recent
papers [13,14].
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This involved two tasks: (i) first, much as we needed extended states in Nk
ω in the

Karp-Miller procedure, we should work in an adequate completion X̂ of the state space
X ; (ii) then, we should understand what a Karp-Miller-like procedure actually com-
putes. We actually cheated here, since we have already given an answer to (ii): the
Karp-Miller procedure computes (among other things) the cover of the Petri net.

Completions. In (i), by adequate we mean that X should embed into X̂ , in such a way
that every closed subset D of X should be representable by a finite subset of X̂ . (In
[13], we required this for every downward closed, not just closed, D. However, if X
has the Alexandroff topology of a wqo, this is the same thing.) Formally, D should be
the set of those points in X that are below finitely many points in X̂: D = X ∩ ↓X̂ E,

E finite. We write ↓X̂ to stress the fact that the downward closure is to be taken in X̂ ,

i.e., E is a subset of X̂ , not X . Typically, if X = Nk, then X̂ should be Nk
ω, and for

example, D = {(m, n, p) ∈ N3 | m + n ≤ 3} is representable as N3 ∩ ↓
N̂3{(0, 3, ω),

(1, 2, ω), (2, 1, ω), (3, 0, ω)}. It turns out that the sobrification S(X) is exactly what we
need here, as advocated in [13, Proposition 4.2]:

Proposition 3. Let X be a Noetherian space. Every closed subset F of X is a finite
union of irreducible closed subsets C1, . . . , Cm.

So let the completion X̂ be S(X). Proposition 3 states that, modulo the canonical iden-
tification of x ∈ X with ↓x ∈ S(X), F is X ∩ ↓X̂{C1, . . . , Cm}. We have stressed the
subcase where X was wqo (and equipped with its Alexandroff topology) in [13], and
this handles 7 of the 13 constructions in Figure 2. We would like to note that Noethe-
rian spaces X allow us to consider more kinds of state spaces, while ensuring that each
closed subset of X is finitely representable, in a canonical way. Moreover, these repre-
sentations are effective, too.

One might wonder whether there would be other adequate completions X̂ . There are,
indeed, however S(X) is canonical in a sense. Adapting Geeraerts et al. slightly [17],
call weak adequate domain of limits, or WADL, over the Noetherian space X any space
X̂ in which X embeds, and such that the closed (downward closed when X is wqo)
subsets of X are exactly the subsets representable as X ∩ ↓X̂ E for some finite subset

E of X̂ . It is an easy consequence of Theorem 1 that S(X) is the smallest WADL,
and H(X) is the largest WADL: up to isomorphism, any WADL X̂ must be such that
S(X) ⊆ X̂ ⊆ H(X).

It is then natural to ask whether X̂ = S(X) is effectively presented, in the sense
that we have codes for all elements of S(X) and that the ordering (i.e., ⊆) on S(X)
is decidable. It turns out that the answer is positive for all the datatypes of Figure 2.
E.g., given codes for elements of X̂1, X̂2, the codes for elements of ̂X1 × X2 are just
pairs of codes (x1, x2) for elements of X̂1, X̂2. Given codes for elements of X̂ , the
codes for elements of X̂∗ are the word-products we mentioned in Section 3. It might
seem surprising that we could do this even for the infinite powerset P(X). Notice that

P̂(X) = H(X), up to isomorphism, and that every element of H(X) can be written as
C1 ∪ . . .∪Cn for finitely many elements C1, . . . , Cn of X̂ by Proposition 3. So take as

codes for elements of P̂(X) the finite sets E of codes of elements C1, . . . , Cn of X̂ .
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Clovers. Point (ii) was clarified, among other things, in [14]: Karp-Miller-like proce-
dures compute the clover of a state x ∈ X in a WSTS X, and this is a finite represen-
tative {C1, . . . , Cm}, as defined above, of the topological closure (in X̂) of the set of
points reachable from x. The clover always exists, by Proposition 3. It may fail to be
computable: if it were, it would allow us to decide boundedness for reset Petri nets or
for lossy channel systems, which are undecidable.

While we investigated this for WSTS, it actually works for any topological WSTS.
We only need to extend the transition relation δ ⊆ X × X to one, Sδ, on X̂ × X̂ . The
canonical candidate is such that C Sδ C′ iff C′ is included in the closure of Postδ(C) =
{y ∈ X | ∃x ∈ C · x δ y}; and this is representable as a finitely branching (because of
Proposition 3 again) relation δ̂. E.g., the minimal such relation is such that C δ̂ C′ iff
C′ is maximal such that C Sδ C′. We then get a completed topWSTS X̂.

To do anything with this, we must assume that δ̂ is effective, and a bit more. We
explored this in [14], in the case where X̂ is wqo, and X̂ is functional (i.e., C δ̂ C′

iff C′ = gi(C) for some i, 1 ≤ i ≤ n, where g1, . . . , gn is a fixed collection of
partial continuous maps from X̂ to X̂) and ∞-effective (see below), and obtained a
simple procedure Clover that computes the clover of any state C ∈ X̂ (in particular,
any x ∈ X) whenever it terminates.

The role of the completion X̂ is again manifest in that Clover needs to lub-accelerate
some infinite sequences of states obtained in a regular fashion as C0 < g(C0) ≤
g2(C0) ≤ . . . ≤ gn(C0) ≤ . . . by applying one functional transition g : X̂ → X̂ ,
replacing the sequence by its least upper bound g∞(C0) (which exists: recall that every
sober space is a dcpo in its specialization quasi-ordering). This is what we called taking
shortcuts until now. If C0 �< g(C0), then define g∞(C0) as just g(C0). X̂ is ∞-effective
iff g∞ is computable.
Here is the procedure. MaxA denotes
the set of all maximal elements of A ∈
Pfin(X̂). The procedure takes an initial
extended state s0 ∈ X̂ , and, if it ter-
minates, returns a finite set MaxA (the
clover of s0) such that ↓X̂ Max A is the
closure of the cover of the WSTS.

Procedure Clover(s0) :
1. A ← {s0};
2. while Post(Sδ)(A) �≤� A do

(a) Choose fairly (g, C)∈{g1, . . . , gn}∗×A
such that C ∈ dom g;

(b) A ← A ∪ {g∞(a)};
3. return MaxA;

The elements g chosen at line (a) are chosen from {g1, . . . , gn}∗, the set of compo-
sitions gi1 ◦ gi2 ◦ . . . ◦ gik

of functions from {g1, . . . , gn}. A typical implementation of
Clover would build a tree, as in the Karp-Miller construction. In fact, a tree is a simple
way to ensure that the choice of (g, C) at line (a) is fair, i.e., no pair is ignored infinitely
long on any infinite branch. Concretely, we would build a tree extending downwards. At
each step, A is given by the set of extended states written at the nodes of the current tree.
One picks (g, C) as in line (a) by picking a transition gi to apply from a yet unexplored
state C′ (at a leaf), and considering all states C higher in the branch (the path from C
to C′ being given by transitions, say, gik

, gik−1 , . . . , gi2 ), letting g = gi ◦ gi2 ◦ . . . ◦ gik
.

The Clover procedure extends straightforwardly to topWSTS, provided they are
functional (here, each gi needs to be continuous). It is however unclear how to dis-
pense with the requirement that it be functional. Moreover, the nice characterization
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that Clover terminates exactly on those systems that are clover-flattable [14, Theo-
rem 3] seems to require the fact that X is ω2-wqo, not even just wqo, for deep reasons.

Conclusion. Noetherian spaces open up some new avenues for verifying infinite-state
systems, whether backward or forward, à la Karp-Miller. Mostly, I hope I have con-
vinced the reader that Noetherian spaces enjoyed a rich mathematical theory, which is
probably still largely unexplored today.
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Abstract. We propose a theory of time-bounded verification for real-
time systems, in which verification queries are phrased over time in-
tervals of fixed, bounded duration. We argue that this theory is both
pertinent , in that it is fully adequate to handle a large proportion of
‘real-world’ real-time systems and specifications; and effective, in that
the restriction to bounded time domains reclaims as decidable several of
the key decision problems of unbounded real-time verification. Finally,
we discuss several directions of ongoing and future work.

1 Introduction

In an influential invited address at the 10th Annual IEEE Symposium on Logic
in Computer Science (LICS 95), Boris Trakhtenbrot urged the research com-
munity to “lift the ‘classical’ Trinity to real-time systems” [51]. Trakhtenbrot’s
‘Trinity’ consisted of Logic, Nets, and Automata, viewed as the pillars of the
‘classical’ theory of verification. The genesis of this theory in fact go back some
five decades to the seminal work of Büchi, Elgot, and Trakhtenbrot himself re-
lating the monadic second-order logic of order (MSO(<)) and automata; see [53]
for a detailed historical perspective on the subject.

Underlying the increasingly successful applications of verification technology
to the design and validation of hardware and software systems has been the
long-running and sustained elaboration of a rich body of theoretical work. One
of the major accomplishments of this theory is the discovery and formulation of
the robust and far-reaching correspondence among the eclectic concepts of au-
tomata, temporal logic, monadic predicate logic, and regular expressions. Each of
these comes in various flavours, yet the adequation is maintained, in particular,
whether the discourse is over the finite or the infinite, or (in the language of
predicate logic) first or second order. A key result in this area is Kamp’s theo-
rem, which asserts the expressive equivalence of the monadic first-order logic of
order (FO(<)) and Linear Temporal Logic (LTL) [29,19]. This influential result
has largely contributed to the emergence of LTL as the canonical linear-time
specification formalism in the classical theory.

On a pragmatic level, the close relationship between automata and logic has
enabled the design of model-checking algorithms for a wide variety of specifica-
tion formalisms rooted in temporal or predicate logic. While initially little more
than pure decidability results, these procedures have over the last few decades
been progressively honed into powerful industrial-strength tools.

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 22–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Real-time verification, by contrast, is a much younger field. Its origins date
back approximately twenty-five years, when various researchers from such di-
verse communities as process algebra, Petri nets, automata theory, and software
engineering began investigating extensions of existing formalisms to adequately
handle timing considerations. By far the most prominent modelling paradigm
to have emerged is Alur and Dill’s notion of timed automaton [2], which at the
time of writing has accrued nearly 4000 citations according to Google Scholar.

One of the central results concerning timed automata is the PSPACE decid-
ability of the language emptiness (or reachability) problem [1]. Unfortunately,
the language inclusion problem—given two timed automata A and B, is every
timed word accepted by A also accepted by B?—is known to be undecidable [2].
A closely related phenomenon is the fact that timed automata are not closed
under complement. For example, the automaton in Fig. 1 accepts every timed
word in which there are two a-events separated by exactly one time unit.

a

reset(x)

a

a

x = 1

a a

Fig. 1. An uncomplementable timed automaton

The complement language consists of all timed words in which no two a-
events are separated by precisely one time unit. Intuitively, this language is
not expressible by a timed automaton, since such an automaton would need an
unbounded number of clocks to keep track of the time delay from each a-event.
(We refer the reader to [25] for a rigorous treatment of these considerations.)

The undecidability of language inclusion severely restricts the algorithmic
analysis of timed automata, both from a practical and theoretical perspective,
as many interesting questions can be phrased in terms of language inclusion.
Over the past two decades, several researchers have therefore attempted to cir-
cumvent this obstacle by investigating language inclusion, or closely related
concepts, under various assumptions and restrictions. Among others, we note
the use of (i) topological restrictions and digitisation techniques: [22, 14,42, 39];
(ii) fuzzy semantics: [20, 23, 41, 8]; (iii) determinisable subclasses of timed au-
tomata: [4,47]; (iv) timed simulation relations and homomorphisms: [50,37, 31];
and (v) restrictions on the number of clocks: [43,18]. See also Henzinger et al.’s
paper on fully decidable formalisms [24].

In a strictly formal sense, the non-closure under complementation is easy to
remedy—one can simply generalise the transition mode to allow both conjunc-
tive and disjunctive transitions, an idea borrowed from the theory of untimed au-
tomata that dates back thirty years [15]. Such untimed alternating automata have
played key roles in algorithms for complementing Büchi automata (see, e.g., [33]),
temporal logic verification [52, 36], and analysis of parity games [17]. In
the timed world, the resulting alternating timed automata [34, 44, 35, 46, 16]
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subsume ordinary timed automata and can be shown to be closed under all
Boolean operations. They have been used, among others, to provide model-
checking algorithms for various fragments of Metric Temporal Logic (MTL); see,
e.g., [44,45,12]. Unfortunately, the price to pay for the increase in expressiveness
is the undecidability of language emptiness!

Turning to temporal logic, one finds a considerable body of work in the lit-
erature concerned with adapting classical linear temporal formalisms to the
real-time setting; see, e.g., [32, 38, 7, 3, 54, 48]. One of the earliest proposals,
Koyman’s Metric Temporal Logic (MTL) [32], extends LTL by constraining
the temporal operators by (bounded or unbounded) intervals of the reals. For
example, the formula �[3,4] ϕ requires ϕ to hold within 3 to 4 time units from
the present time. MTL has since become one of the most successful and popular
specification formalisms for timed systems.

Unfortunately, the satisfiability and model-checking problems for MTL are un-
decidable [21]. This has led researchers to consider various restrictions on MTL to
recover decidability. One of the most important such proposals is Metric Interval
Temporal Logic (MITL), a fragment of MTL in which the temporal operators may
only be constrained by non-singular intervals. Alur et al. showed that the sat-
isfiability and model-checking problems for MITL are EXPSPACE-complete [3].
A significant extension of this result, based on the notion of flatness, was later
obtained in [13]. Another interesting approach is that of Wilke, who considered
MTL over a dense-time semantics with bounded variability, i.e., parameterised by
a fixed bound on the number of events per unit time interval [54]. Wilke showed
that the satisfiability problem is decidable in this semantics and that MTL with
existential quantification over propositions is precisely as expressive as Alur-Dill
timed automata.

Work on real-time extensions of monadic first- and second-order logic of order
has been considerably scarcer. Hirshfeld and Rabinovich examine the monadic
first-order metric logic of order (FO(<, +1)) and show that unfortunately, it
is—in a precise technical sense—strictly more expressive over the reals than
any ‘reasonable’ timed temporal logic, and in particular than MTL [27]; see
also [11]. This sweeping inequivalence seriously dampens the hope of discovering
a ‘canonical’ timed temporal logic over the reals with a natural predicate-logical
counterpart, after the manner of LTL and FO(<) in the classical theory.

There has also been comparatively little research on finding suitable timed
analogues of the notion of regular expression. An interesting proposal is that of
Asarin et al. [9], who define a class of timed regular expressions with expressive
power precisely that of Alur-Dill timed automata, mirroring Kleene’s theorem
in the classical theory. Unfortunately, many natural questions, such as whether
two timed regular expressions are equivalent, remain undecidable.

In our view, the overall emerging picture of the present-day theory of real-
time verification is one of an amalgam of constructs and results—some deep and
striking—yet fundamentally constrained by a phalanx of inescapable undecid-
ability barriers. The elegance, uniformity, and canonicity of the classical theory
are lacking, and Trakhtenbrot’s challenge to a large extent remains unmet.
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In an attempt to address these issues, we would like to propose here a time-
bounded theory of real-time verification . By ‘time-bounded’ we mean to
restrict the modelling and verification efforts to some bounded interval of time,
which itself can be taken as a parameter. A proximate motivation for our pro-
posal is the analogy with bounded model checking, which aims to circumvent an
intractable verification task by performing instead a more restricted—but less
costly—analysis. A related paradigm, originating from economics, is that of dis-
counting the future, whereby the later a potential error may occur, the lesser of
a concern it is.

Note that while bounded model checking restricts the total number of al-
lowable events (or discrete steps), time-bounded verification restricts the total
duration under consideration, but not the number of events, which can still be
unboundedly large owing to the density of time. We argue that this restriction
on total duration is a very natural one as regards real-time systems. For exam-
ple, a run of a communication protocol might normally be expected to have an a
priori time bound, even if the total number of messages exchanged is potentially
unbounded. In fact, many real-time systems, such as the flight control software
on board an aircraft, are normally rebooted and reset at regular intervals (for
example, presumably, on completion of a successful flight). In such cases, a time-
bounded analysis seems entirely pertinent. We note that several researchers have
in fact already considered instances of time-bounded verification in the context
of real-time systems [49,10, 30].

Aside from these practical considerations, we anticipate more favourable
complexity-theoretic properties from a time-bounded theory than from its un-
bounded counterpart. In recent work [40,28], we have already amassed consider-
able evidence to this effect, which we survey below and detail at greater length
in the main body of this paper.

The undecidability of language inclusion for timed automata, first established
in [2], uses in a crucial way the unboundedness of the time domain. Roughly speak-
ing, this allows one to encode arbitrarily long computations of a Turing machine.
In [40], we turned to the time-bounded version of the language inclusion problem:
given two timed automata A and B, together with a time bound N , are all finite
timed words of duration at most N that are accepted by A also accepted by B?
One of our main results is that this problem is decidable and in fact 2EXPSPACE-
complete. It is worth noting that the time-boundedness restriction does not alter
the fact that timed automata are not closed under complement, so that classical
techniques for language inclusion do not trivially apply.

In subsequent work, we examined the substantially more sophisticated prob-
lem of time-bounded emptiness (or equivalently, language inclusion) for alter-
nating timed automata [28]. We also succeeded in establishing decidability, but
in contrast to ordinary timed automata, showed that this problem has non-
elementary complexity.

A third line of investigation concerns the relative expressiveness of temporal
and predicate metric logics over bounded intervals of the reals, in analogy with
the classical equivalence of LTL and FO(<). Somewhat surprisingly, we discovered
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that MTL has precisely the same expressive power as FO(<, +1) over any bounded
time domain [40]. This is in sharp contrast to the situation over unbounded time,
where neither MTL nor any ‘reasonable’ temporal extension of it can match the
full expressiveness of FO(<, +1) [27].

Finally, we devoted a significant fraction of our efforts to time-bounded model-
checking and satisfiability questions for timed automata and metric logics. In ad-
dition to MTL and FO(<, +1), we consider the monadic second-order metric logic
of order, MSO(<, +1). In [40], we showed that the time-bounded model-checking
and satisfiability problems for monadic first- and second-order metric logics
all have non-elementary complexity, whereas these problems are EXPSPACE-
complete in the case of MTL (and this in spite of the expressive equivalence
of MTL and FO(<, +1) over bounded time domains). It is worth recalling, in
contrast, that these problems are all undecidable over unbounded time.

We believe that this small but significant body of results constitutes a clear
indication that the restriction to time-boundedness may lead to a substantially
better-behaved theory of real-time verification, mirroring the classical theory
and enabling one to lift classical results to the timed world.

It is perhaps worth stressing that we do not envisage time-bounded verification
to replace its unbounded counterpart entirely; one can always imagine instances
genuinely requiring unbounded real-time analysis. What we do assert, however, is
that for a large proportion of hard real-time systems, a time-bounded approach
should prove not only algorithmically advantageous, but will also be entirely
adequate theoretically.

The remainder of the paper is organised as follows. We recall standard real-
time definitions and conventions in Sec. 2. Sections 3, 4, and 5 respectively
introduce ordinary timed automata, metric logics, and alternating timed au-
tomata. In Sec. 6, we turn to the relative expressiveness of MTL and FO(<, +1)
over bounded time domains. Section 7 then examines our various time-bounded
decision problems: emptiness, language inclusion, model checking, and satisfia-
bility. Finally, we briefly discuss some of the multiple possible future research
directions in Sec. 8.

Our treatment is fairly spare; in particular, we do not present proofs, but
instead offer pointers to the relevant literature. Our aim is mainly to motivate
and illustrate, and we have occasionally opted to sacrifice precision for insight.

2 Real-Time Preliminaries

We fix some of the real-time notation and modelling conventions that we use
throughout this paper. While there are a wealth of alternatives and variants
that can be considered—many of which appear in some form or other in the
literature—our aim here is not to be encyclopedic, but rather to lay a simple
background in which to phrase some of the key motivating results in the area.

Two of the basic formalisms discussed in this paper are timed automata (both
ordinary and alternating) and metric logics. Timed automata are most commonly
given a semantics in terms of timed words, i.e., sequences of instantaneous, real-
valued timestamped events, whereas metric logics are more naturally predicated
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on piecewise-continuous flows or signals. Accordingly, these are the semantics we
adopt here; this does not prevent us from specifying timed-automaton behaviours
using metric logics, as timed words can naturally be viewed as particular kinds
of flows.

In this paper, we are largely concerned with behaviours over time domains of
the form [0, N), where N ∈ N is some fixed positive integer. Let us therefore in
general write T to denote either [0, N) or R≥0.

Let Σ denote a finite set (or alphabet) or events. Typical elements of Σ are
written a, b, c, a1, etc. A timed word is a pair (σ, τ), where σ = 〈a1a2 . . . an〉 ∈
Σ∗ is a finite word and τ = 〈t1t2 . . . tn〉 ∈ T∗ is a strictly increasing sequence of
real-valued timestamps of the same length.1 Note that while we are restricting
ourselves to finite timed words, there is no a priori bound on the number of
events.

Let MP be a set of monadic predicates, denoted P, Q, R, etc. Monadic pred-
icates will alternately be viewed as second-order variables over T, i.e., ranging
over sets of non-negative real numbers, and as atomic propositions holding at
various points in time. Given P ⊆ MP a finite set of monadic predicates, a flow
(or signal) over P is a function f : T → P(P) that is finitely variable. Finite
variability is the requirement that the restriction of f to any finite subinterval
of T have only finitely many discontinuities.2

A flow f : T → P(P) corresponds to an interpretation of the monadic pred-
icates in P: for any P ∈ P, the interpretation of P as a subset of T is simply
{t ∈ T | P ∈ f(t)}. Conversely, any (finitely-variable) interpretation of all the
predicates in P defines a unique flow f : T → P(P).

Finally, note that a timed word (〈a1 . . . an〉, 〈t1 . . . tn〉) over alphabet Σ can be
viewed as a (particular type of) flow, as follows. Let P = Σ, and set f(ti) = {ai},
for 1 ≤ i ≤ n, and f(t) = ∅ for all other values of t ∈ T.

3 Timed Automata

As discussed in the Introduction, we treat Alur-Dill timed automata, interpreted
over finite timed words, as the central theoretical implementation formalism in
this work.

Let X be a finite set of clocks, denoted x, y, z, etc. We define the set ΦX of
clock constraints over X via the following grammar, where k ∈ N stands for any
non-negative integer, and �� ∈ {=, �=, <, >,≤,≥} is a comparison operator:

φ ::= true | false | x �� k | x − y �� k | φ1 ∧ φ2 | φ1 ∨ φ2 .

1 This gives rise to the so-called strongly monotonic semantics; in contrast, the weakly
monotonic semantics allows multiple events to happen ‘simultaneously’ (or, more
precisely, with null-duration delays between them).

2 It is commonly argued that infinitely-variable flows do not correspond to ‘feasible’
computations, hence the above restriction. It is however important to stress that we
do not place any a priori bound on the variability (unlike, for example, [54]), other
than requiring that it be finite.
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A timed automaton A is a six-tuple (Σ, S, SI , SF , X, δ), where:

– Σ is a finite set of events,
– S is a finite set of states,
– SI ⊆ S is a set of initial states,
– SF ⊆ S is a set of accepting states,
– X is a finite set of clocks, and
– δ : S×Σ×ΦX → P(S×P(X)) is the transition function: if (s′, R) ∈ δ(s, a, φ),

then A allows a jump from state s to state s′, consuming event a in the
process, provided the constraint φ on clocks is met. Afterwards, the clocks
in R are reset to zero, while all other clocks remain unchanged. We require
that δ be finite, in the sense of having only finitely many inputs not mapping
to ∅.

Given a timed automaton A as above, a clock valuation is a function ν : X →
R≥0. If t ∈ R≥0, we let ν+t be the clock valuation such that (ν+t)(x) = ν(x)+t
for all x ∈ X .

A configuration of A is a pair (s, ν), where s ∈ S is a state and ν is a clock
valuation.

An accepting run of A is a finite alternating sequence of configurations and
delayed transitions π = (s0, ν0)

d1,a1−→ (s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn), with each
di ∈ R>0 and ai ∈ Σ, subject to the following conditions:

1. s0 ∈ SI , and for all x ∈ X , ν0(x) = 0,
2. for each 1 ≤ i ≤ n, there are some Ri ⊆ X and φi ∈ ΦX such that: (i) νi−1+di

satisfies φi, (ii) (si, Ri) ∈ δ(si−1, ai, φi), and (iii) νi(x) = νi−1(x) + di for all
x ∈ X \ Ri, and νi(x) = 0 for all x ∈ Ri, and

3. sn ∈ SF .

Each di is interpreted as the (strictly positive) time delay between the firing of
transitions, and each configuration (si, νi), for i ≥ 1, records the data immedi-
ately following the ith transition.

A timed word (〈a1a2 . . . an〉, 〈t1t2 . . . tn〉) is accepted by A if A has some ac-

cepting run of the form π = (s0, ν0)
d1,a1−→ (s1, ν1)

d2,a2−→ . . .
dn,an−→ (sn, νn) where,

for each 1 ≤ i ≤ n, ti = d1 + d2 + . . . + di.
Finally, given time domain T, we write LT(A) to denote the language of A

over T, i.e., the set of timed words accepted by A all of whose timestamps belong
to T.

An example of a timed automaton is provided in Fig. 1, along with a descrip-
tion of its accepted language in the surrounding text.

4 Metric Logics

We introduce metric (or quantitative) logics to reason about and specify real-
time behaviours. We consider both predicate and temporal formalisms, and in-
vestigate their relative expressiveness in Sec. 6.
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Let Var be a set of first-order variables, denoted x, y, z, etc., ranging over T.
Second-order monadic formulas are obtained from the following grammar:

ϕ ::= true | x < y | +1(x, y) | P (x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀xϕ | ∀P ϕ ,

where P ∈ MP is a monadic predicate (viewed here as a second-order variable
over T), and +1 is a binary relation symbol, with the intuitive interpretation
of +1(x, y) as ‘x + 1 = y’.3 We refer to ∀x and ∀P as first-order and second-
order quantifiers respectively. Existential quantifiers ∃x and ∃P are definable
via standard dualities.

The monadic second-order metric logic of order , written MSO(<, +1),
comprises all second-order monadic formulas. Its first-order fragment, the
(monadic) first-order metric logic of order , written FO(<, +1), comprises
all MSO(<, +1) formulas that do not contain any second-order quantifier; note
that these formulas are however allowed free monadic predicates.

We also define two further purely order-theoretic sublogics, which are pe-
ripheral to our main concerns but necessary to express some key related re-
sults. The monadic second-order logic of order, MSO(<), comprises all second-
order monadic formulas that do not make use of the +1 relation. Likewise, the
(monadic) first-order logic of order, FO(<), comprises those MSO(<) formulas
that do not figure second-order quantification.

Metric Temporal Logic, abbreviated MTL, comprises the following tempo-
ral formulas:

θ ::= true | P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | �Iθ | �Iθ | θ1 UI θ2 ,

where P ∈ MP is a monadic predicate (viewed here as an atomic proposition),
and I ⊆ R≥0 is an open, closed, or half-open interval with endpoints in N∪{∞}.
If I = [0,∞), then we omit the annotation I in the corresponding temporal
operator.

Finally, Linear Temporal Logic, written LTL, consists of those MTL formulas
in which every indexing interval I on temporal operators is [0,∞) (and hence
omitted).

Figure 2 pictorially summarises the syntactic inclusions and relative expressive
powers of these various logics.

We now ascribe a semantics to these various logics in terms of flows over T.
Given a formula ϕ of MSO(<, +1) or one of its sublogics, let P and {x1, . . . , xn}
respectively be the sets of free monadic predicates and free first-order variables
appearing in ϕ. For any flow f : T → P(P) and real numbers a1, . . . , an ∈ T, the
satisfaction relation (f, a1, . . . , an) |= ϕ is defined inductively on the structure
of ϕ in the standard way. For example:

3 The usual approach is of course to define +1 as a unary function symbol; this however
necessitates an awkward treatment over bounded domains, as considered in this
paper. We shall nonetheless abuse notation later on and invoke +1 as if it were a
function, in the interest of clarity.



30 J. Ouaknine and J. Worrell

MSO(<, +1)

������
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MSO(<) FO(<,+1) MTL

FO(<)

�������
�������

LTL

Fig. 2. Relative expressiveness among the various logics. Metric logics are enclosed in
boxes. Straight lines denote syntactical inclusion, whereas dotted lines indicate expres-
sive equivalence over bounded time domains (cf. Sec. 6).

– (f, a) |= P (x) iff P ∈ f(a).
– (f, a1, . . . , an) |= ∀P ϕ iff for all flows g : T → P(P ∪ {P}) extending f (i.e.,

such that g�P = f), we have (g, a1, . . . , an) |= ϕ.
(Here P is the set of free monadic predicates appearing in ∀P ϕ, and therefore
does not contain P .)

And so on.
We shall particularly be interested in the special case in which ϕ is a sentence,

i.e., a formula with no free first-order variable. In such instances, we simply write
the satisfaction relation as f |= ϕ.

For θ an MTL or LTL formula, let P be the set of monadic predicates appearing
in θ. Given a flow f : T → P(P) and t ∈ T, the satisfaction relation (f, t) |= θ is
defined inductively on the structure of θ, as follows:

– (f, t) |= true.
– (f, t) |= P iff P ∈ f(t).
– (f, t) |= θ1 ∧ θ2 iff (f, t) |= θ1 and (f, t) |= θ2.
– (f, t) |= θ1 ∨ θ2 iff (f, t) |= θ1 or (f, t) |= θ2.
– (f, t) |= ¬θ iff (f, t) �|= θ.
– (f, t) |= �Iθ iff there exists u ∈ T with u > t, u − t ∈ I, and (f, u) |= θ.
– (f, t) |= �Iθ iff for all u ∈ T with u > t and u − t ∈ I, (f, u) |= θ.
– (f, t) |= θ1 UI θ2 iff there exists u ∈ T with u > t, u− t ∈ I, (f, u) |= θ2, and

for all v ∈ (t, u), (f, v) |= θ1.

Finally, we write f |= θ iff (f, 0) |= θ. This is sometimes referred to as the initial
semantics.

Note that we have adopted a strict semantics, in which the present time t has
no influence on the truth values of future temporal subformulas.

An important point concerning our semantics is that it is continuous, rather
than pointwise: more precisely, the temporal operators quantify over all time
points of the domain, as opposed to merely those time points at which discon-
tinuities occur. Positive decidability results for satisfiability and model checking
of MTL over unbounded time intervals have been obtained in the pointwise se-
mantics [44, 45, 46]; it is worth noting that none of these results hold in the
continuous semantics.
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5 Alternating Timed Automata

We introduce alternating timed automata as a generalisation of ordinary timed
automata in which, in addition to disjunctive (or nondeterministic) transitions,
one also allows conjunctive transitions. Our notation closely follows that of
Sec. 3.

For Prop a set of propositional variables, the collection B+(Prop) of positive
Boolean formulas over Prop is given by the following grammar:

ψ ::= true | false | p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 ,

where p ∈ Prop. A subset M ⊆ Prop satisfies ψ ∈ B+(Prop) if the truth
assignment that ascribes true to elements of M and false to elements of Prop\M
satisfies ψ.

An alternating timed automaton is a six-tuple A = (Σ, S, SI , SF , X, δ),
where

– Σ is a finite set of events,
– S is a finite set of states,
– SI ⊆ S is a set of initial states,
– SF ⊆ S is a set of accepting states,
– X is a finite set of clocks, and
– δ : S ×Σ ×ΦX → B+(S ×P(X)) is the transition function. We require that

δ be finite, in the sense of having only finitely many inputs not mapping to
false.

Intuitively, the transition function of an alternating timed automaton is in-
terpreted as follows: in state (s, ν), if ν satisfies the clock constraint φ and
{(s1, R1), . . . , (sk, Rk)} satisfies δ(s, a, φ), then we think of the automaton as
having a conjunctive transition (s, ν) a−→ {(s1, ν1), . . . , (sk, νk)}, where each
clock valuation νi is the same as ν except for the clocks in Ri which are all reset
to zero.

As an example, let us define an automaton A over alphabet Σ = {a} that
accepts those words such that for every timed event (a, t) with t < 1 there is
an event (a, t + 1) exactly one time unit later. A has a single clock x and set of
locations {s, u}, with s initial and accepting, and u non-accepting. The transition
function is defined by:

δ(s, a, x < 1) = (s, ∅) ∧ (u, {x}) δ(s, a, x ≥ 1) = (s, ∅)
δ(u, a, x �= 1) = (u, ∅) δ(u, a, x = 1) = true

The automaton is illustrated in Fig. 3 in which we represent the conjunctive
transition by connecting two arrows with an arc.

A run of A starts in location s. Every time an a occurs in the first time unit,
the automaton makes a simultaneous transition to both s and u, thus opening
up a new thread of computation equipped with a fresh copy of the clock x. The
automaton must eventually leave location u, which is non-accepting, and it can
only do so exactly one time unit after first entering the location.
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s u true
reset(x)

x ≥ 1

x = 1

x �= 1

x < 1

Fig. 3. Alternating timed automaton A

We now formally define the language accepted by an alternating timed au-
tomaton A = (Σ, S, SI , SF , X, δ). A run of A over a timed word (〈a1a2 . . . an〉,
〈t1t2 . . . tn〉) is a finite dag satisfying the following conditions: (i) each vertex
is a triple (i, s, ν), with 0 ≤ i ≤ n, s ∈ S a location, and ν a clock valuation;
(ii) there is a vertex (0, s0, ν0), where s0 ∈ SI and ν0(x) = 0 for all x ∈ X ;
(iii) each vertex (i, s, ν), i ≤ n − 1, has a (possibly empty) set of children of
the form {(i + 1, s1, ν1), . . . , (i + 1, sk, νk)} where, writing ν′ = ν + ti+1 − ti
(and adopting the convention that t0 = 0), there is a conjunctive transition
(s, ν′) ai−→ {(s1, ν1), . . . , (sk, νk)}.

The run is accepting if for each vertex (n, s, ν), s is an accepting location; in
this case we say that the timed word (〈a1a2 . . . an〉, 〈t1t2 . . . tn〉) is accepted by
A. The language LT(A) of A over T is the set of timed words accepted by A all
of whose timestamps belong to T.

One of the motivations for introducing alternating timed automata is that
they enjoy better closure properties than ordinary timed automata:

Proposition 1. For any time domain T, alternating timed automata are effec-
tively closed under union, intersection, and complement [35,46].

6 Expressiveness

Fix a time domain T, and let L and J be two logics. We say that L is at least
as expressive as J if, for any sentence θ of J , there exists a sentence ϕ of L
such that θ and ϕ are satisfied by precisely the same set of flows over T.

Two logics are then said to be equally expressive if each is at least as
expressive as the other.

The following result can be viewed as an extension of Kamp’s celebrated
theorem, asserting the expressive equivalence of FO(<) and LTL [29,19], to metric
logics over bounded time domains:

Theorem 1. For any fixed bounded time domain of the form [0, N), with N ∈
N, the metric logics FO(<, +1) and MTL are equally expressive. Moreover, this
equivalence is effective [40].

Note that expressiveness here is relative to a single structure T, rather than
to a class of structures. In particular, although FO(<, +1) and MTL are equally
expressive over any bounded time domain of the form [0, N), the correspondence
and witnessing formulas may very well vary according to the time domain.



Towards a Theory of Time-Bounded Verification 33

It is interesting to note that FO(<, +1) is strictly more expressive than MTL
over R≥0 [27, 11]. For example, MTL is incapable of expressing the following
formula (in slightly abusive but readable notation)

∃x∃y ∃z (x < y < z < x + 1 ∧ P (x) ∧ P (y) ∧ P (z))

over the non-negative reals. This formula asserts that, sometime in the future,
P will hold at three distinct time points within a single time unit.

It is also worth noting that MSO(<, +1) is strictly more expressive than
FO(<, +1)—and hence MTL—over any time domain.

7 Decision Problems

We now turn to various decision problems concerning timed automata and metric
logics over bounded time domains. Recall that the latter are real intervals of the
form [0, N), with N ∈ N considered part of the input (written in binary). We
also contrast our results with their known counterparts over the non-negative
reals R≥0.

The most fundamental verification question is undoubtedly the emptiness
(or reachability) problem : does a given timed automaton accept some timed
word? It is well known that the problem is PSPACE-complete over R≥0 [1], and
the proof is easily seen to carry over to bounded time domains:

Theorem 2. The time-bounded emptiness problem for timed automata is
PSPACE-complete (following [1]).

The language-inclusion problem takes as inputs two timed automata, A and
B, sharing a common alphabet, and asks whether every timed word accepted by
A is also accepted by B. Unfortunately, language inclusion is undecidable over
R≥0 [2]. However:

Theorem 3. The time-bounded language-inclusion problem for timed automata
is decidable and 2EXPSPACE-complete [40].

For a fixed metric logic L, the satisfiability problem asks, given a sentence ϕ
of L over a set P of free monadic predicates, whether there exists a flow over
P satisfying ϕ. The model-checking problem for L takes as inputs a timed
automaton A over alphabet Σ, together with a sentence ϕ of L with set of free
monadic predicates P = Σ, and asks whether every timed word (viewed as a
flow) accepted by A satisfies ϕ.

The canonical time domain for interpreting the metric logics MSO(<, +1),
FO(<, +1), and MTL is the non-negative real line R≥0. Unfortunately, none of
these logics are decidable over R≥0 [5, 6,26]. The situation however differs over
bounded time domains, as the following result indicates:

Theorem 4. The time-bounded satisfiability and model-checking problems for
the metric logics MSO(<, +1), FO(<, +1), and MTL are all decidable, with the
following complexities [40]:
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MSO(<, +1) Non-elementary
FO(<, +1) Non-elementary

MTL EXPSPACE-complete

Finally, we turn our attention to alternating timed automata. The emptiness
and language-inclusion problems are of course defined in the same way as for
ordinary timed automata. One may also wish to model check a timed automaton
A (qua implementation) against an alternating timed automaton B (qua specifi-
cation). Note that since alternating timed automata are closed under all Boolean
operations (in linear time), these problems are all polynomial-time equivalent to
the emptiness problem.

Unfortunately, emptiness is undecidable for alternating timed automata over
R≥0, by immediate reduction from the undecidability of language inclusion for
ordinary timed automata. Thankfully, the situation over bounded time domains
is more favourable:

Theorem 5. The time-bounded emptiness and language-inclusion problems for
alternating timed automata are decidable, but with non-elementary complex-
ity [28].

8 Discussion and Future Directions

In this work, we have attempted to promote a theory of time-bounded verifi-
cation to answer, at least in part, Trakhtenbrot’s 15-year-old challenge to ‘lift
the classical theory to the real-time world’. We have argued that this theory
is both pertinent , in that it is fully adequate to handle a large proportion
of ‘real-world’ real-time systems and specifications; and effective, in that the
restriction to bounded time domains reclaims as decidable several of the key
decision problems of real-time verification.

In terms of future work, we list below a sample of possible research avenues,
roughly divided along four main axes:

I. Extensions to further real-time formalisms. In this paper, we have en-
tirely focussed on linear-time semantics. Of course, a great deal of classical and
real-time verification work has been carried out in branching-time settings, and
it would be interesting to investigate whether the time-bounded approach can
be usefully combined with branching-time paradigms. Several researchers have
also considered various extensions of timed automata, such as weighted timed
automata and hybrid automata, and assorted verification problems; again, re-
formulating relevant questions in a time-bounded context may prove fruitful.
Another direction is that of timed games and related topics such as timed con-
troller synthesis.
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II. Algorithmic and complexity issues. The complexity bounds presented in
this paper are fairly coarse-grained. In many instances, a finer ‘parameterised’
analysis (in which one or more of the inputs, such as the time domain, are
considered fixed) would undoubtedly yield valuable additional insight. Another
promising direction is to investigate combining existing algorithmic techniques,
such as those exploiting flatness in MTL formulas [13], with the algorithms spe-
cific to time-bounded verification.

III. Expressiveness. Many important questions regarding expressiveness are
left entirely unanswered. Do metric logics have equivalent alternating timed au-
tomata counterparts, and vice-versa? Can one develop an attractive theory of
timed regular expressions over bounded time domains? Is there a good notion
of robustness for time-bounded languages, in the sense of being impervious to
sufficiently small perturbations in the timestamps?

IV. Implementation and case studies. The history of verification has been
marked by a mutually beneficial interaction of theory and practice. We believe it
would be highly desirable, in conjunction with the study of the theoretical con-
cerns discussed here, to evaluate the practical effectiveness of time-bounded ver-
ification on real-world examples. This will no doubt require the development of
appropriate abstraction schemes, data structures, symbolic techniques, algorith-
mic heuristics, etc. Ultimately, however, a time-bounded theory of verification
can only gain widespread acceptance if its usefulness is adequately demonstrated.
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[50] Taşiran, S., Alur, R., Kurshan, R.P., Brayton, R.K.: Verifying abstractions of
timed systems. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS,
vol. 1119. Springer, Heidelberg (1996)

[51] Trakhtenbrot, B.A.: Origins and metamorphoses of the trinity: Logic, nets, au-
tomata. In:ProceedingsofLICS. IEEEComputerSocietyPress,LosAlamitos (1995)

[52] Vardi, M.Y.: Alternating automata and program verification. In: van Leeuwen, J.
(ed.) Computer Science Today. LNCS, vol. 1000. Springer, Heidelberg (1995)

[53] Vardi,M.Y.:Fromphilosophical to industrial logics. In:Ramanujam,R., Sarukkai,S.
(eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 89–115. Springer, Heidelberg (2009)

[54] Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed
automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994
and ProCoS 1994. LNCS, vol. 863. Springer, Heidelberg (1994)



Physical Algorithms

Roger Wattenhofer

Computer Engineering and Networks Laboratory TIK
ETH Zurich, 8092 Zurich, Switzerland

{wattenhofer}@tik.ee.ethz.ch

Abstract. This is the accompanying paper to an ICALP 2010 invited
talk, intending to encourage research in physical algorithms. The area
of physical algorithms deals with networked systems of active agents.
These agents have access to limited information for varying reasons; ex-
amples are communication constraints, evolving topologies, various types
of faults and dynamics. The networked systems we envision include tra-
ditional computer networks, but also more generally networked systems,
such as social networks, highly dynamic and mobile networks, or even
networks of entities such as cars or ants. In other words, the world is
becoming algorithmic, and we need the means to analyze this world!

1 Introduction

Computer science is about to undergo major changes because of the ongoing
multi-core revolution.1 These changes will happen on several levels, quite ob-
viously with respect to hardware, but probably multi-cores will affect software
and applications as well. We believe that this is a moment of opportunity to do
some soul searching, and to reconsider the foundations of computer science. In
particular, we suggest to widen the base of computer science, towards parallelism
and distributed systems, and as we will explain below, more generally towards
physical sciences.

1.1 Algorithms

Studying and analyzing algorithms has been a research success story. Turing ma-
chines, along with other machines models, gave way to analyze the efficiency of
computing problems, eventually resulting in a beautiful theory with long stand-
ing open problems such as “P vs. NP”.

The key to this success was essentially abstraction. Even though there is no
generally accepted definition of the term “algorithm”, when it comes to the
analysis of algorithms there clearly is a mainstream, namely that an algorithm

1 Looking at microprocessor clock speed charts, one may conclude that traditional
sequential algorithms had an expiration date around 2005. Since 2005 computers are
mostly getting faster because of multiple cores, and hence increased parallelism.

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 38–51, 2010.
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is a recipe that computes an output as a function of an input. Usually, one is
interested in minimizing the number of machine operations.2

Algorithm analysis is somewhere between engineering and mathematics. In-
deed, algorithm analysis seems to have added an extra dimension to mathematics
– efficiency. Until recently, mathematics mostly cared whether or not a problem
had a solution. Now the efficiency dimension adds shades of grey, as one may
wonder how difficult it is to find a solution of a problem.

Computational complexity has been a veritable success story in computer
science, and subsequently in mathematics, too. The practical impact of the the-
oretical results is a dense net of problems whose complexity in terms of the input
size is known, thus permitting to estimate the required amount of resources to
solve a given task. In the end, it allows to decide whether it is economically
feasible (rather than just theoretically possible) to realize a certain solution to a
problem. The success of this approach primarily comes from the simplicity and
generality of the underlying input/output computational model. As such, results
are comparable and robust against model changes.

In summary, computational complexity is a strong tool to analyze input/out-
put algorithms, applied by computer science as well as other science disciplines.
Not only is it a beautiful theory, it also has major practical relevance as com-
puters are by and large equivalent to the theoretical machine models such as
random access or Turing machines. Alas, . . .

1.2 The King Is Dead

. . . as we speak, computers are changing! Physical constraints prevent sequential
systems from getting faster. The speed of light limits processor clock speeds de-
pending on the size of the CPU, while in turn transistors cannot be miniaturized
arbitrarily due to quantum effects. Instead, hardware designers have turned to
multi-core architectures, in which multiple processing cores are included on each
chip. Today, two or four cores are standard, but soon enough the standard will
be eight and more. This switch to multi-core architectures promises increased
parallelism, but not increased single-thread performance. Software developers
are expected to handle this increased parallelism, i.e., they are expected to write
software that exploits the multi-core architecture by consisting of several com-
ponents that can run in parallel without introducing substantial overhead. This
is a notoriously difficult job.

Consequently, it is questionable whether the success story of sequential com-
plexity analysis will continue. Multi-core machines are not the same as random
access machines, with an exponentially growing number of cores less and less
so. More generally, computing systems become more and more distributed in
the sense that information is local. Be it the Internet or a system-on-a-chip, no

2 There are other measures of complexity, e.g. how much space or randomness is used,
however, step complexity is generally considered the most important measure. Also,
typically only asymptotics are considered, i.e., how much longer the computation
takes if the input gets larger.
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single part of the system has access to the global state as a whole, fundamentally
changing what can—or rather cannot—be done.

Essentially, the question we want to raise is whether the beauty of computa-
tional complexity continues to reflect the complexity of our physical world, or
whether it will be diminished to a concept of pure theory and math.

1.3 Long Live the King

We claim that algorithm analysis needs to be adapted, to meet the requirements
of current and future computer systems. Indeed, we believe that the time is
right to ask this question in a more general context. It seems that more and
more other sciences are dealing with systems that are distributed in one way or
another. In this paper, we survey a few examples; in lack of a better name we
call the area physical algorithms. The idea is to take techniques from algorithm
analysis and computation complexity, and transform these into tools applicable
also in settings which do not match the original input/output model.

2 Physical Algorithms

The area of physical algorithms deals with networked systems of active agents.
These agents are limited in various ways; examples are communication con-
straints, computational or memory constraints, evolving topologies, various types
of faults and dynamics. The networked systems we envision include traditional
computer networks such as the Internet or clusters, but also more generally net-
worked systems, such as social networks, or even highly dynamic and mobile
“networks” of entities such as cars or ants. Often, parts of the system can be
designed or influenced, but others cannot.

Our definition of physical algorithms includes, but is not limited to, the area of
distributed algorithms. For instance, we may not be able to specify the protocol
of any of the agents at all, instead examining the effect of changing the amount
or reliability of information available to the agents. We emphasize dynamics,
i.e., algorithms should (if possible) adapt to dynamic changes. In general, we
attempt not to presume a potentially unrealistic amount of control of system
properties.

Moreover, networks that are large (on their respective scale), suffer from the
unreliability of information. Parts of the system may fail, or even behave ma-
liciously in order to corrupt the available data. Information becomes outdated
because of changing topology or inputs, or more subtle variations such as differ-
ing communication delays. Widening the scope, many systems comprise intelli-
gent agents that act on their own behalf, not necessarily seeking to support the
community. Agents may compete for resources selfishly, and cannot be expected
to adhere to a specific protocol unless it maximizes their individual profit.

Physical algorithms cover e.g. distributed algorithmic game theory, networks
and locality, self-organization, dynamic systems, social networks, control theory,
wireless networks, multi-core systems, and – getting more ambitious – the hu-
man brain as a network of neurons [KPSS10], social insects, biological systems
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in general [Cha09], or also financial and political systems [ABBG10]. Figure 1
provides a “map” of what we consider physical algorithms. The general aim is to
find connections between these topics, and to find a general theory that includes
central aspects.

In the following, we first give a refined picture of the two axes of Figure 1.
We also give a few concrete application areas of physical algorithms, to render
the definition more lucid. Some of these areas are well-established already, some
are developing rapidly right now.

2.1 Agents

The agents themselves can be limited in different ways. They may be constrained
in computational power, in the sense that they can only compute restricted
functions, or they may not be able to store (large amounts of) information. Such
limitations may be particularly interesting in areas such as social insects.

Fault Tolerance: Moreover, agents may not be reliable. Agents may crash at any
point in time, because of lacking energy for instance. Likewise, agents may crash
and later regenerate. Also, agents may experience some kind of omission failure,
e.g. failing to receive a message, or transient commission failures, e.g. a local
state corruption.

Sometimes however, agents will misbehave in more awkward ways, for instance
by starting to behave in erratic ways, e.g. by sending random messages. Indeed,
the pioneers in fault-tolerance observed machine behavior that was essentially
inexplicable. They decided that the only reasonable way to model such behavior
was to consider the machines being “malicious”. Following their early papers we
call such behavior Byzantine today [SPL80, LSP82].

When a Byzantine failure has occurred, the system may respond in any un-
predictable way, unless it is designed to have Byzantine fault tolerance. In a
Byzantine fault tolerant algorithm, agents must take counter-measures that deal
with Byzantine behavior. Essentially, in many problems, the fraction of Byzan-
tine agents must be strictly less than a third [LSP82].

More recently, different kinds of agent (mis)behavior are getting into the spot-
light, in particular selfishness.

Game Theory: Algorithmic research has often dealt with models and problems
that do not follow the orthodox input/output format. Indeed, these studies are
probably as old as computer science itself. One of the very fathers of computer
science itself, John von Neumann, is among the pioneers of a conceptually sig-
nificantly different approach.

Before writing one of the earliest articles on computer science [vN93] in 1945,
von Neumann (together with Oscar Morgenstern) published Games and Eco-
nomic Behavior [vNM47]. Today, algorithms and game theory are converging
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Fig. 1. A representation of the playing field of physical algorithms. On the vertical axis,
we see some typical models for the agents that make up networks. In the simplest case,
all agents are benevolent and reliable. In many systems, however, agents will be faulty,
and for instance crash. In other systems, agents will be selfish in a game-theoretic way,
i.e. they will be strategic in order to maximize their benefit. Finally, agents may be
malicious (Byzantine), even to a degree that they want to harm the system. Clearly
there is no total ordering between these agent models, in some systems faulty agents
may be more difficult to deal with than selfish agents. Also, mixed forms of agents
may be considered, i.e. some selfish, others malicious. The horizontal axis represents
the dynamics of the network. Also here the variants are by no means complete, they
should just give some intuition of what is possible. The simplest form of dynamics
are no dynamics at all, i.e. fixed networks. In most systems, networks are not static,
but allow for at least some slow form of dynamics, for instance, if once in a while—
very rarely—a link will fail because of a hardware failure. Further to the right, the
frequency of topology changes increases to a point where the network is continuously
transforming. The level of dynamics depends on this frequency, but also how these
topology changes are restricted. Maybe only local neighborhoods are changing? Maybe
the agents themselves are mobile, forming edges whenever two agents are in vicinity of
each other? Finally, we may consider completely virtual networks just modeling some
physical process, with rather arbitrary forms of dynamics. The figure exemplarily shows
typical application areas of physical algorithms. Depending on the application and the
considered time frame, we allow for many forms of network dynamics.
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again, as researchers are starting to view the Internet and other computer science
phenomena in the light of game theory.3

One of the cornerstones of game theory is the so-called equilibrium,4 which
describes a state of a system where no participant of the system has an incentive
to change its strategy. As a perfect example of mathematicians mostly being
interested in the question whether something can be done or not, pure game
theorists are generally not interested in how such an equilibrium can be reached,
or how long it takes to reach the equilibrium. Computer scientists on the other
hand have been interested early on how to reach such an equilibrium [DGP06].
Clearly, this is an interesting playground for physical algorithms, as the partici-
pants of the systems cannot be modeled well by an input/output algorithm.

Today, game theory is a well-accepted subject in algorithms, probably the only
one that does not follow the input/output paradigm that is well represented at
theoretical computer science conferences.

Recently, research is starting to combine fault-tolerance with game theory
[AAC+05].5 In [MSW06], for instance, it is shown that the presence of Byzantine
players may even contribute to the social welfare of a system.

2.2 Networks
Less known, the very same John von Neumann was also seminal in the develop-
ment of the horizontal axis in our map of physical algorithms. Networks exist in
many variants today, apart from the predominant Internet there are also niche ar-
eas such as sensor or peer-to-peer networks. More generally (and daring), one may
even consider networks beyond computing, e.g. the human society or the brain.
Locality: All networks have in common that they are composed of a multiplicity
of individual entities, so-called nodes ; e.g. human beings in society, hosts in the
Internet, or neurons in the brain. Each individual node can directly communicate
only to a small number of neighboring nodes. On the other hand, in spite of each
node being inherently “near-sighted”, i.e., restricted to local communication, the
entirety of the system is supposed to work towards some kind of global goal,
solution, or equilibrium.

It is at the core of really understanding networks to know the possibilities
and limitations of this local computation, i.e., to what degree local information
is sufficient to solve global tasks [Lin92, Pel00, KMW04, Suo09]. Many tasks are
inherently local, for instance, how many friends of friends one has. Many other
tasks are inherently global, for instance, counting all the nodes of the system, or
3 Algorithmic game theory is a perfect example of the differences between the approach

of computer science and mathematics/physics. In computer science, researchers try
to understand the Internet by modeling the participants of the Internet as active
(selfish) agents. Mathematicians and physicists take a more holistic approach and
try to find random graphs that model all possible layers of the Internet (web pages,
autonomous service providers, routers), or simply postulate that the bandwidth de-
mands in the Internet are self-similar.

4 Several different types of equilibria exist, e.g. Nash equilibria in games, or price
equilibria in markets.

5 One may argue that Byzantine agents are just selfish agents with a different goal.
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figuring out the diameter of the system. To solve such global problems, there is
at least some information that must traverse long distances.

It is natural to ask whether there are tasks that are in the middle of these two
extremes; tasks that areneither completely local nor inherently global. Indeed, this
is the case. Assume for example that the nodes want to organize themselves, some
nodes should be “masters”, the others will be “slaves”. The rules are that no two
masters shall be direct neighbors, but every slave must have at least one master as
directneighbor. In graph theory, this problem is known as themaximal independent
set (MIS) problem. Intuitively, this problem seems local since the rules are com-
pletely local. Consequently it might be expected that every node can communicate
with its neighbors a few times, and together they can decide who will become mas-
ter and who will become slave. However, this intuition is misleading. Even though
the problem seems local, it cannot be solved using local information only! No mat-
ter how the system tackles the problem, no matter what protocol or algorithm the
nodes use, non-local information is vital to solve the task. On the other hand, the
problem is alsonotglobal:Mid-range information is enoughto solve theproblem.As
such theMISproblemestablishes an example that isneither local nor global,but in-
between these extremes. Since at first sight it looks local, let us call it pseudo-local.
Using locality-preserving reductions one can show that there exists a whole class of
pseudo-local problems, similar to the class of NP-complete problems [KMW04].

This class of pseudo-local problems also includes many combinatorial opti-
mization problems, such as minimum vertex cover, minimum dominating set,
or maximum matching. In such problems, each node must base its decision
(for example whether or not to join the dominating set) only on information
about its pseudo-local neighborhood, and yet, the goal is to collectively achieve
a good approximation to the globally optimal solution. Studying such local ap-
proximation algorithms is particularly interesting because it sheds light on the
trade-off between the amount of available local information and the resulting
global optimality. Specifically, it characterizes the amount of information needed
in distributed decision making: what can be done with the information that is
available within some fixed-size neighborhood of a node. Positive and negative
results for local algorithms can thus be interpreted as information-theoretic up-
per and lower bounds; they give insight into the value of information [KMW06].

We believe that studying the fundamental possibilities and limitations of local
computation is of interest to theoreticians in approximation theory, distributed
computing, and graph theory. Furthermore, these results may be of interest for
a wide range of scientific areas, for instance dynamic systems that change over
time. The theory shows that small changes in a dynamic system may cause an
intermediate (or pseudo-local) “butterfly effect,” and it gives non-trivial bounds
for self-healing or self-organizing systems, such as self-assembling robots. It also
establishes bounds for further application areas, initially in engineering and com-
puting, possibly extending to other areas studying large-scale networks, essen-
tially physical algorithms.

Studying locality and networks is at the heart of physical algorithms, as it
is one of the few examples that have established some form of theory that uses
concepts of complexity theory outside the input/output model.
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Self-Organization and Dynamic Systems: Looking at the wider picture, one may
argue that the idea of local algorithms as discussed in the last paragraph goes
back to the early 1970s when Dijkstra introduced the concept of self-stabilization
[Dij73]. A self-stabilizing system must survive arbitrary failures, including for
instance a total wipe out of volatile memory at all nodes. The system must self-
heal and eventually converge to a correct state from any arbitrary starting state,
provided that no further faults occur.

It seems that the world of self-stabilization (which is asynchronous, long-lived,
and full of malicious failures) has nothing in common with the world of local
algorithms (which is synchronous, one-shot, and free of failures). However, as
shown 20 years ago, this perception is incorrect [AS88], and the two areas are
related. Intuitively, this is because (i) asynchronous systems can be made syn-
chronous, (ii) self-stabilization concentrates on the case after the last failure,
when all parts of the system are correct again, and (iii) one-shot algorithms
can just be executed in an infinite loop. Thus, efficient self-stabilization essen-
tially boils down to local algorithms and hence, local algorithms are the key to
understanding fault-tolerance [LSW09].

Likewise, local algorithms help to understand dynamic networks, in which the
topology of the system is constantly changing, either because of churn (nodes
constantly joining or leaving as in peer-to-peer systems), mobility (edge changes
because of mobile nodes in mobile networks), changing environmental conditions
(edge changes in wireless networks), or algorithmic dynamics (edge changes be-
cause of algorithmic decisions in virtual or overlay networks). In dynamic net-
works, no node in the network is capable of keeping up-to-date global information
on the network. Instead, nodes have to perform their intended (global) task based
on local information only. In other words, all computation in these systems is
inherently local! By using local algorithms, it is guaranteed that dynamics only
affect a restricted neighborhood. Indeed, to the best of our knowledge, local algo-
rithms always give the best solutions when it comes to dynamics. Dynamics also
play a natural role in the area of self-assembly (DNA computing, self-assembling
robots, shape-shifting systems, or claytronics), and as such it is not surprising
that local algorithms are being considered a key to understanding self-assembling
systems [Ste09, GCM05].

Social Networks: As already mentioned, there are numerous types of networks,
including for instance the human society or the network of all the web pages
in the world. Indeed, so-called social networks such as Facebook just merge the
two concepts.

A decade ago Jon Kleinberg [Kle00] gave a first algorithmic explanation to a
phenomenon studied almost a century ago. Back in the 1929, Frigyes Karinthy
published a volume of short stories that postulated that the world was “shrinking”
because human beings were connected more and more. Some claim that he was in-
spired by radio network pioneer Guglielmo Marconi’s 1909 Nobel Prize speech, to
make the century complete. Despite physical distance, the growing density of hu-
man “networks” made the actual social distance smaller and smaller. As a result,
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any two individuals could be connected through at most five acquaintances, i.e.
within six hops.

This idea has been followed ardently in the 1960s by several sociologists, first
by Michael Gurevich, later by Stanley Milgram. Milgram wanted to know the
average path length between two “random” humans, by using various experi-
ments, generally using individuals from the US Midwest as starting points and
from Boston as end points. The starting points were asked to send a letter to a
well-described target person in Boston, however not directly, but only through
an intermediate friend, hopefully “closer” to the target person. Shortly after
starting the experiment, letters have been received. Often enough of course let-
ters were lost during the process, but if they arrived, the average path length
was about 5.5.

Statisticians tried to explain Milgram’s experiments, by essentially giving net-
work models that allowed for short diameters, i.e. each node is connected to each
other node by only a few hops. Until today there is a thriving research commu-
nity in statistical physics that tries to understand network properties that allow
for “small world” effects. One of the keywords in this area are power-law graphs,
networks were node degrees are distributed according to a power-law function.

This is interesting, but not enough to really understand what is going on. For
Milgram’s experiments to work, it is not sufficient to connect the nodes in a
certain way. In addition, the nodes themselves need to know how to forward a
message to one of their neighbors, even though they cannot know whether that
neighbor is really closer to the target. In other words, nodes are not just following
physical laws, but they make decisions themselves. In contrast to those math-
ematicians that worked on the problem earlier, Kleinberg [Kle00] understood
that Milgram’s experiment essentially shows that social networks are “naviga-
ble”, and that one can only explain it in terms of a greedy routing.

In particular, Kleinberg set up an artificial network with nodes on a grid
topology, plus one additional random link per node. In a quantitative study he
showed that the random links need a specific distance distribution to allow for
efficient greedy routing. This distribution marks the sweet spot for any navigable
network. As such it is a great example for physical algorithms, because physical
methods alone cannot find such a sweet spot, as statistical physicists hardly
argue about algorithmic properties.

The are many applications for research in social networking, for instance viral
marketing [KOW08], or spreading of biological viruses.

Physical Objects: A science fiction favorite are automatic cars equipped with
distance sensors, following each other at high speed and minimal distance. This is
a typical instance of physical objects organizing themselves. Unlike planets these
cars are not just following the laws of physics, but they will run algorithms that,
depending on the values delivered by the distance sensors or other additional
information (for instance wireless communication between cars), may speed up or
slow down. Having studied control theory (or having been in a read-end collision
accident) one knows that high speed lines of cars are not without problems. No
matter what, the control loop will experience some delay. So if some car will need
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to break slightly, the next car might need to break a bit more already, and a
few cars down the road we might have a terrible crash, because some car cannot
break hard enough anymore.

There are several examples like this, e.g. coordination of helicopters or, more
generally, any kind of swarm trying to maintain a certain formation based only
on local distance information. In all these cases the agents may slowly drift from
their desired (relative) position, because they are not able or willing to control
their speeds perfectly. Furthermore, information on neighbors’ positions could
be outdated and/or inaccurate. Another example is clock synchronization in
computer networks: Each node is equipped with a hardware clock which is not
completely accurate, and nodes communicate local clock values by exchanging
messages of varying delay with their neighbors.

All these examples have in common that they are algorithmic, in the sense
that nodes have countless possibilities how to react to changes in the system.
In a recent article [LLW10], tight bounds for some clock synchronization prob-
lem have been proved. These results are surprising in various ways. Even if all
hardware clocks are accurate up to a few ticks per million ticks, it was shown
that no matter what algorithm one uses, the error will depend on the size of
the network. There is a simple algorithm that matches the lower bound using
local information only, however, unfortunately, this algorithm is not intuitive.
Indeed, it was shown that a number of canonical approaches are exponentially
worse than the lower bound [LW06].

Real-time control of physical objects is of course beyond the input/output
paradigm, still these problems usually have an algorithmic component which is
worth studying. The range is large, from simple questions like how to organize a
group of robot vacuum cleaners in order to clean a floor most efficiently, to the
question of bird flocking [Cha09].

Wireless Communication: Network dynamics go well beyond mobility and fail-
ures. In some networks, communication is not graph- but geometry-based, in
the sense that nodes can communicate with nearby nodes, only if not too many
other nearby nodes transmit at the same time.

In the past, a large fraction of analytic research on wireless networks has
focused on models where the network is represented by a graph. The wireless
devices are nodes, any two nodes within communication (or interference) range
are connected by an (annotated) edge. Such graph-based models are particularly
popular among higher-layer protocol designers, hence they are also known as pro-
tocol models. Unfortunately, protocol models are often too simplistic. Consider
for instance a case of three wireless communication pairs, every two of which
can be transmitting concurrently without a conflict. In a protocol model one
will conclude that all three senders may transmit concurrently. Instead, in re-
ality, wireless signals accumulate, and it may be that any two transmissions
together generate too much interference, hindering the third receiver from cor-
rectly receiving the signal of its sender.

This many-to-many relationship makes understanding wireless transmissions
difficult; a model where interference accumulates seems paramount to fully
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comprehend wireless communication. Similarly, protocol models oversimplify
wireless attenuation. In protocol models the signal is usually binary, as if there
was an invisible wall at which the signal immediately drops. Not surprisingly, in
reality the signal decreases gracefully with distance. Because of these shortcom-
ings, results for protocol models are often not applicable in reality. In contrast
to the algorithmic (“computer science”) community which focuses on protocol
models, researchers in information, communication, or network theory (“electri-
cal engineering”) are working with wireless models that add up interference and
take attenuation into account. A standard model is the physical model.

In the physical model the energy of a signal fades with distance. If the signal
strength received by a device divided by the interfering strength of competitor
transmitters (plus the noise) is above some threshold, the receiver can decode
the message, otherwise it cannot. The physical model is reflecting the physical
reality more precisely, hence its name. Unfortunately, most work in this model
does not focus on algorithms with provable performance guarantees. Instead
heuristics are usually proposed and evaluated by simulation. Analytical work is
done for special cases only, e.g. networks with a grid structure, or random traffic.
However, these special cases do neither give insights into the complexity of the
problem, nor do they give algorithmic results that may ultimately lead to new
distributed protocols. If one is interested in the capacity of an arbitrary wireless
network, and how this capacity can be achieved, the community is not able to
provide an answer.

However, this is about to change. Starting with [MW06], more and more
algorithms work is adopting the physical model, thus combining the best of
both worlds, by giving algorithms and limits for arbitrary wireless networks (not
random node distributions), using the physical model (not the protocol model).
We believe that bridging the gap between protocol designers and communication
theorists is a fundamental challenge of the coming years, a hot topic for the
wireless network community with implications for both theory and practice, and
again a nice example of physical algorithms.

Multi-Core: Let us finish with what we started, multi-core systems. The switch to
multi-core architectures promises increased parallelism, but not increased single-
thread performance. Software developers are expected to handle this increased
parallelism.

Today, the main tool for dealing with parallelism are locks ; locks are software
constructs that allow access to shared memory cells in a mutually exclusive way.
However, there seems to be a general consensus in the computer science research
community that locks are not the optimal programming paradigm to deal with
concurrency and synchronization. Nobody really knows how to build large sys-
tems depending on locks. The currently most promising solution is transactional
memory [HM93]. Similarly to the database world, the programmer should en-
capsulate sequences of instructions within a transaction. Either the whole trans-
action is executed, or nothing at all. Other threads will see a transaction as one
indivisible operation.
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To some degree, the core of a transactional memory system is the contention
manager. In case of a conflict between two transactions (e.g., both trying to
store a value into the same memory cell), the contention manager decides which
transaction must wait, or has to be aborted. The contention management policy
of a transactional memory implementation can have a profound effect on its
performance, and even correctness. Putting it simply, the contention manager
inherits the role of the scheduler in a single core operating system.

In general, we believe that the key to understanding multi-core computing is
through understanding networks. Transactions may for example be modeled as
nodes in a dependency graph with edges between them in case of a conflict. Re-
solving conflicts based on local knowledge in this graph, solutions will scale canon-
ically with multi-core systems growing. Thus, the problem naturally falls in the
field of physical algorithms. A coloring of the graph yields a possible schedule for
the transactions by executing all transactions of the same color in parallel.

An additional issue arises from the concurrent nature of programs in multi-
core architecture. As concurrent processes interact and interfere with each other,
processes also compete for some shared resources. If we keep in mind that in many
cases, programmers who write code for a multi-core system are hardly interested
in the performance of other processes, but merely on their own program’s perfor-
mance, we cannot desist from analyzing multi-core systems under the assumption
that processes compete selfishly for system resources. To link back to our first
example, game theory offers a great set of tools for this setting. We want to
figure out whether existing multi-core systems are cheating-proof, i.e., incentive
compatible in the sense that programmers have no interest to deviate from a
behavior which is best for the overall performance of the system [EW09].

It is necessary to shed more light on the theoretical foundations of multi-core
systems, with a special focus on transactional memory and its contention man-
ager [SW09]. What one needs are refined models of efficiency and new contention
managers that provably optimize the efficiency of transactional memory systems.

Acknowledgements. Thanks to Christoph Lenzen, for discussing the topic, and
for reading the manuscript.
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Abstract. Asynchronous automata are parallel compositions of finite-
state processes synchronizing over shared variables. A deep theorem due
to Zielonka says that every regular trace language can be represented by a
deterministic asynchronous automaton. In this paper we improve the con-
struction, in that the size of the obtained asynchronous automaton is poly-
nomial in the size of a given DFA and simply exponential in the number of
processes. We show that our construction is optimal within the class of au-
tomata produced byZielonka-type constructions. In particular, we provide
the first non trivial lower bound on the size of asynchronous automata.

1 Introduction

Zielonka’s asynchronous automata [15] is probably one of the simplest, and yet
rich, models of distributed computation. This model has a solid theoretical foun-
dation based on the theory of Mazurkiewicz traces [9,4]. The key property of
asynchronous automata, known as Zielonka’s theorem, is that every regular trace
language can be represented by a deterministic asynchronous automaton [15].
This result is one of the central results on distributed systems and has been
applied in many contexts. Its complex proof has been revisited on numerous oc-
casions (see e.g. [2,3,12,13,6] for a selection of such papers). In particular some
significant complexity gains have been achieved since the original construction.
This paper provides yet another such improvement, and moreover it shows that
the presented construction is in some sense optimal.

The asynchronous automata model is basically a parallel composition of finite-
state processes synchronizing over shared (state) variables. Zielonka’s theorem
has many interpretations, here we would like to consider it as a result about dis-
tributed synthesis: it gives a method to construct a deterministic asynchronous
automaton from a given sequential one and a distribution of the actions over
the set of processes. We remark that in this context it is essential that the con-
struction gives a deterministic asynchronous automaton: for a controller it is the
behaviour and not language acceptance that is important. The result has appli-
cations beyond the asynchronous automata model, for example it can be used
to synthesize communicating automata with bounded communication channels
[11,7] or existentially-bounded channels [5]. Despite these achievements, from
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the point of view of applications, the biggest problem of constructions of asyn-
chronous automata is considered to be their high complexity. The best construc-
tions give either automata of size doubly exponential in the number of processes,
or exponential in the size of the sequential automaton.

This paper proposes an improved construction of deterministic asynchronous
automata. It offers the first algorithm that gives an automaton of size polynomial
in the size of the sequential automaton and exponential only in the number of
processes. We show that this is optimal for Zielonka-type constructions, namely
constructions where each component has complete information about its history.
For this we introduce the notion of locally rejecting asynchronous automaton and
remark that all Zielonka-type constructions produce this kind of automata. To
be locally rejecting means that a process should reject as soon as its history
tells him that there is no accepting extension. We believe that a locally reject-
ing behavior is quite desirable for applications, such as monitoring or control.
We show that when transforming a deterministic word automaton to a deter-
ministic locally rejecting automaton, the exponential blow-up in the number of
components is unavoidable. Thus, to improve our construction one would need
to produce automata that are not locally rejecting.

For the upper bound we start from a deterministic (I-diamond) word au-
tomaton. We think that this is the best point of departure for a study of the
complexity of constructing asynchronous automata: considering non determin-
istic automata would introduce costs related to determinization. The size of the
deterministic asynchronous automaton obtained is measured as the sum of the
sizes of the local states sets. It means that we do not take global accepting states
into account. This is reasonable in our opinion, as it is hardly practical to list
these states explicitly. From a deterministic I-diamond automaton A and a dis-
tributed alphabet with process set P , we construct a deterministic asynchronous
automaton of size 4|P|4 · |A||P|2 . We believe that this complexity, although expo-
nential in the number of processes, is interesting in practice: an implementation
of such a device needs only memory of size logarithmic in |A| and polynomial in
|P|. We also show that computing the next state on-the-fly can be done in time
polynomial in both |A| and |P|.
Related work. Besides general constructions of Zielonka type, there are a cou-
ple of different constructions, however they either apply to subclasses of regular
trace languages, or they produce non deterministic automata (or both). The
first category includes [10,3], that provide deterministic asynchronous cellular
automata from a given trace homomorphism in case that the dependence al-
phabet is acyclic and chordal, respectively. These constructions are quite simple
and only polynomial in the size of the monoid (thus still exponential in the size
of a DFA). In the second category we find [16], who gives an inductive con-
struction for non deterministic, deadlock-free asynchronous cellular automata.
(A deadlock-free variant of Zielonka’s construction was proposed in [14]). The
paper [1] proposes a construction of asynchronous automata of size exponential
only in the number of processes (and polynomial in |A|) as our construction, but
it yields non deterministic asynchronous automata (inappropriate for monitoring
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or control). Notice that while asynchronous automata can be determinized, there
are cases where the blow-up is doubly exponential in the number of processes [8].

2 Preliminaries

We fix a finite set P of processes and a finite alphabet Σ. Each letter a ∈ Σ is an
action associated with the set of processes dom(a) ⊆ P involved in its execution.
A pair (Σ, dom) is called distributed alphabet. A deterministic automaton over
the alphabet Σ is a tuple A = 〈Q,Σ,Δ, q0, F 〉 with a finite set of states Q, a
set of final states F , an initial state q0 and a transition function Δ : Q × Σ →
Q. As usual we extend Δ to words in Σ∗. The automaton accepts w ∈ Σ∗ if
Δ(q0, w) ∈ F . We use L(A) to denote the language accepted by A. The size |A|
of A is the number of its states.

Concurrent executions of systems with shared actions given by a distributed
alphabet (Σ, dom), are readily modeled by Mazurkiewicz traces [9]. The idea is
that the distribution of the alphabet defines an independence relation among
actions I ⊆ Σ × Σ, by setting (a, b) ∈ I if and only if dom(a) ∩ dom(b) = ∅.
We call (Σ, I) an independence alphabet. The independence relation induces a
congruence ∼ on Σ∗ by setting u ∼ v if there exist words u1, . . . , un ∈ Σ∗ with
u1 = u, un = v and such that for every i < n we have ui = xaby, ui+1 = xbay
for some x, y ∈ Σ∗ and (a, b) ∈ I. An ∼-equivalence class is simply called
a (Mazurkiewicz) trace. We denote by [u] the trace associated with the word
u ∈ Σ∗ (for simplicity we do not refer to I, neither in ∼ nor in [u], as the
independence alphabet is fixed). Trace prefixes and trace factors are defined as
usual, with [p] a trace prefix (trace factor, resp.) of [u] if p is a word prefix (word
factor, resp.) of some v ∼ u. As usual, we write ≤ for the prefix order. For two
prefixes T1, T2 of T , we let T1 ∪ T2 denote the smallest prefix T ′ of T such that
Ti ≤ T ′ for i = 1, 2.

For several purposes it is convenient to represent traces by (labeled) pomsets.
Formally, a trace T = [a1 · · · an] (ai ∈ Σ for all i) corresponds to a labeled pomset
〈E, λ,≤〉 defined as follows: E = {e1, . . . , en} is a set of events (or nodes), one
for each position in T . Event ei is labeled by λ(ei) = ai, for each i. The relation
≤ is the least partial order on E with ei ≤ ej whenever (ai, aj) /∈ I and i ≤ j. In
Figure 1 we give an example for the pomset of a trace T , depicted by its Hasse
diagram. The labeling of a total order on E that is compatible with ≤ is called
a linearization of T .

An automaton A is called I-diamond if for all (a, b) ∈ I, and s a state of A:
Δ(s, ab) = Δ(s, ba). Note that the I-diamond property implies that the language
of A is I-closed : that is, u ∈ L(A) if and only if v ∈ L(A) for every u ∼ v. This
permits us to write Δ(s, T ) where T is a trace, to denote the state reached by A
from s on some linearization of T . Languages of I-diamond automata are called
regular trace languages.

Definition 1. A deterministic asynchronous automaton over the distributed al-
phabet (Σ, dom) is a tuple B = 〈(Sp)p∈P , (δa)a∈Σ , s0,Acc〉 where:
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Fig. 1. The pomset associated with the trace T = [c b a d c b a d b], with dom(a) = {p, q},
dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}

– Sp is the finite set of local states of a process p ∈ P,
– δa :

∏
p∈dom(a) Sp →

∏
p∈dom(a) Sp is the local transition function associated

with an action a ∈ Σ,
– s0 ∈

∏
p∈P Sp is the global initial state,

– Acc ⊆
∏

p∈P Sp is a set of global accepting states.

We call
∏

p∈P Sp the set of global states (whereas Sp is the set of p-local states).
In this paper the size of an asynchronous automaton B is the total number of
local states

∑
p∈P |Sp|. This definition is very conservative, as one may want to

count also Acc or the transition functions (that can be exponential in |B|). We
will see that our construction allows to compute both Acc and the transition
functions in polynomial time.

With the asynchronous automaton B one can associate a global automaton
AB = 〈Q,Σ,Δ, q0,Acc〉 where:

– The set of states is the set of global states Q =
∏

p∈P Sp of B, the initial
and the accepting states are as in B.

– The transition function Δ : Q×Σ → Q is defined by Δ((sp)p∈P , a) = (s′p)p∈P
with (s′p)p∈dom(a) = δa((sp)p∈dom(a)) and s′p = sp, for every p /∈ dom(a).

Clearly AB is a finite deterministic automaton with the I-diamond property.

Definition 2. The language of an asynchronous automaton B is the language
of the associated global automaton AB.

We conclude this section by introducing some basic notations on traces. For a
trace T , we denote by dom(T ) =

⋃
e∈E dom(λ(e)) the set of processes occurring

in T . For a process p ∈ P , we denote by prefp(T ) the minimal trace prefix of T
containing all events of T on process p. Hence, prefp(T ) has a unique maximal
event that is the last (most recent) event of T on process p. This maximal
event is denoted as lastp(T ). Intuitively, prefp(T ) corresponds to the history of
process p after executing T . We extend this notation to a set of processes P ⊆ P
and denote by prefP (T ) the minimal trace prefix containing all events of T on
processes from P . By last(T ) we denote the set of events {lastp(T ) | p ∈ P}. For
example, in Figure 1 we have prefp(T ) = [cbadcba] and lastp(T ) is the second a
of the pomset. The set last(T ) contains the second a and the third b.
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3 Zielonka-Type Constructions: State of the Art

All general constructions of deterministic asynchronous automata basically fol-
low the main ideas of the original construction of Zielonka [15]. These con-
structions start with a regular, I-closed word language, that is given either by a
homomorphism to a finite monoid, or by an I-diamond automaton. In most appli-
cations we are interested in the second case, where we start with a (possibly non
deterministic) automaton. The general constructions yield either asynchronous
automata as defined in the previous section, or asynchronous cellular automata,
that correspond to a concurrent-read-owner-write model.

Theorem 1. [15] Let A be an I-diamond automaton over the independence
alphabet (Σ, I). A deterministic asynchronous automaton B can be effectively
constructed with L(A) = L(B).

We now review the constructions of [2,12,6] and recall their complexities. It is well
known that determinization of word automata requires an exponential blow-up,
hence the complexity of going from a non deterministic I-diamond automaton
A to a deterministic asynchronous automaton is at least exponential in |A|. In
that case, [6] gives an optimal construction as it is simply exponential in both
parameters |A| and |P|. Since determinization has little to do with concurrency,
we assume from now on that A is a deterministic automaton.

– [2] introduces asynchronous mappings and constructs asynchronous cellular
automata of size |Σ||Σ|2 · |A|2|Σ|

.
– [12] constructs asynchronous automata of size |P||P|2 · |A||A|·2|P|

.
– [6] introduces zone decompositions and constructs asynchronous automata

of size 23|P|3 · |A||A|·|P|2 .

Comparing our present construction with previous ones, we obtain asynchronous
automata of size 4|P|4 · |A||P|2 . In all these constructions, the obtained automata
are such that every process knows the state reached by A on its history. We
abstract this property below, and show in the following section that our con-
struction is optimal in this case.

Definition 3. A deterministic asynchronous automaton B is called locally re-
jecting if for every process p, there is a set of states Rp ⊆ Sp such that for every
trace T :

prefp(T ) /∈ pref(L(B)) iff the p-local state reached by B on T is in Rp.

Notice that Rp is a trap: if B reaches Rp on trace T , then so it does on every
extension T ′ of T . Obviously, no reachable accepting global state of B has a
component in Rp. For these reasons we call states of Rp rejecting.

Our interest in locally rejecting automata is motivated by observing that all
general constructions [15,2,3,13,12,6] of deterministic asynchronous automata
produce such automata. Suppose that A is a (possibly non deterministic) I-
diamond automaton, and B a deterministic asynchronous automaton produced
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by one of the constructions in [15,13,12,6] (a similar statement applies to the
asynchronous cellular automata in [2,3]). Then the local p-state sp reached by
B after processing the trace T determines the set of states reached by A on
prefp(T ), for every process p. Thus, if no state in this set can reach a final state
of A, then we put sp in Rp. This makes B locally rejecting.

4 An Exponential Lower Bound

In this section we present our lower bound result. We show that transforming
an I-diamond deterministic automaton into a locally rejecting asynchronous
automaton may induce an exponential blow-up in the number of processes. For
this we define a family of languages Pathn, such that the minimal sequential
automaton for Pathn has size O(n2) but every locally rejecting asynchronous
automaton recognizing Pathn is of size at least 2n/4.

Let P = {1, . . . , n} be the set of processes. The letters of our alphabet are
pairs of processes, two letters are dependent if they have a process in common.
Formally, the distributed alphabet is Σ =

(P
2

)
with dom({p, q}) = {p, q}.

The language Pathn is the set of traces [x1 · · ·xk] such that every two consecu-
tive letters have a process in common: xi ∩ xi+1 �= ∅ for i = 1, . . . , k− 1. Observe
that a deterministic sequential automaton recognizing this language simply needs
to remember the last letter it has read. So it has less than |P|2 states.

Theorem 2. Every locally rejecting asynchronous automaton recognizing Pathn

is of size at least 2n/4.

Proof. Take a locally rejecting automaton recognizing Pathn. Without loss of
generality we suppose that n = 4k. To get a contradiction we suppose that
process n of this automaton has less than 2k (local) states.

We define for every integer 0 ≤ m < k two traces: am = {4m, 4m+ 1}{4m+
1, 4m+2}{4m+2, 4m+4} and bm = {4m, 4m+1}{4m, 4m+3}{4m+3, 4m+4}.
To get some intuition, the reader may depict traces a0 and b0 and see that both
a0 and b0 form a path from process 0 to process 4, the difference is that trace
a0 goes through process 2 while trace b0 goes through process 3.

Consider the language L defined by the regular expression (a0 + b0)(a1 +
b1) · · · (ak−1 + bk−1). Clearly, language L is included in Pathn and contains 2k =
2n/4 different traces. As we have assumed that process n has less than 2k states,
there are two different traces t1, t2 from L such that process n is in the same
state after t1 and t2. For simplicity of presentation we assume that t1 and t2
differ on the first factor: t1 starts with a0, and t2 with b0.

We can remark that processes 0 and n are in the same state after reading
t1{0, 3} and t2. For process 0 it is clear as in both cases it sees the same trace
{0, 1}{0, 3}. By our hypothesis, process n is in the same local state after traces
t1 and t2, therefore also after traces t1{0, 3} and t2.

Consider now the state sn reached by n after reading t2{0, n}. Since t2{0, n} ∈
Pathn, the state sn is not in Rn. By the above, the same state sn is also reached
after reading t1{0, 3}{0, n}. Trace t1 starts with a0 = {0, 1}{1, 2}{2, 4} and
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continues with processes whose numbers are greater than 4, so {0, 3} commutes
with all letters of t1 except {0, 1}. Hence t1{0, 3} �∈ pref(Pathn). Since trace t1
ends with an action of process n, we have prefn(t1{0, 3}{0, n}) = t1{0, 3}{0, n} /∈
pref(Pathn). Since we have assumed that the automaton is locally rejecting, we
should have sn ∈ Rn. A contradiction. �

5 A Matching Upper Bound

Our goal is to modify the construction from [6] in order to make it polynomial
with respect to the size of the sequential automaton. We give an overview of
the new construction, first describing the objects the asynchronous automaton
manipulates. Some details of the mechanics of the automaton will follow. Overall,
although described in a different way, the present construction follows closely [6].
The main difference is the state information computed on the zone decomposition
of a trace. This state information becomes polynomial (instead of exponential),
but its update is much more involved than in [6].

We fix a set of processes P and a distributed alphabet (Σ, dom). Let A =
〈Q,Σ,Δ, q0, F 〉 be a deterministic I-diamond automaton. A candidate for an
equivalent asynchronous automaton B = 〈(Sp)p∈P , (δa)a∈Σ , s0,Acc〉 has a set of
states for each process and a local transition function. The goal is to make B
calculate the state reached by A after reading a linearization of a trace T . Let us
examine how B can accomplish this task. After reading a trace T the local state
of a component p of B depends only on prefp(T ). Hence, B can try to calculate
the state reached by A after reading (some linearization of ) prefp(T ). When a
next action, say a, is executed, processes in dom(a) can see each others’ states
and make the changes accordingly. Intuitively, this means that these processes
can now compose their information in order to calculate the state reached by A
on prefdom(a)(T ) a. To do so they will need some information about the structure
of the trace.

As usual, the tricky part of this process is to reconstruct the common view
of prefdom(a)(T ) from separate views of each process: prefp(T ) for p ∈ dom(a).
For the sake of example suppose that dom(a) = {p, q, r}, and we know the
states sp, sq and sr, reached by A after reading prefp(T ), prefq(T ) and prefr(T ),
resp. We would like to know the state of A after reading pref{p,q,r}(T ). This is
possible if we can compute the contributions of prefq(T )\prefp(T ) and prefr(T )\
pref{p,q}(T ). The automaton B should be able to do this by looking at sp, sq,
and sr, only. This remark points out the challenge of the construction: find the
type information that allows to deduce the behaviour of A, and that at the same
time is updatable by an asynchronous automaton.

5.1 General Structure

Before introducing formal definitions it may be worth to say what is the general
structure of the states of the automaton B. Every local state will be a triple
(ts, ZO,Δ), where
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– ts will be a time stamping information as in all general constructions of
asynchronous automata;

– ZO will be a zone order, a bounded size partial order on a partition of the
trace;

– Δ will be state information, recording the behavior of A on the partition
given by ZO.

Roughly, we will use time stamping to compute zone orders, and zone orders
to compute state information. The latter provides all the necessary information
about the behaviour of A on (a linearization of) the trace.

Time stamping: The goal of the time stamping function [15] is to determine for
a set of processes P and a process q the set last(prefP (T ))∩ last(prefq(T )). This
set uniquely determines the intersection of prefP (T ) and prefq(T ) (for details see
e.g. [13]). Computing such intersections is essential when composing information
about prefp(T ) for every p ∈ dom(a) into information about prefdom(a)(T ). The
main point is that there exists a deterministic asynchronous automaton that can
accomplish this task:

Theorem 3. [13] There exists a deterministic asynchronous automaton ATS =
〈(Sp)p∈P , (Δa)a∈Σ, s0〉 such that for every trace T and state s = Δ(s0, T ) reached
by ATS after reading T :

for every P ⊆ P and q, r, r′ ∈ P, the set of local states {sp | p ∈ P ∪{q}}
allows to determine if lastr(prefP (T )) = lastr′(prefq(T )).

Moreover, such an automaton can be effectively computed and its local states can
be described using O(|P|2 log(|P|)) bits.

For instance, if a new b is executed after T = [cbadcbad] in Figure 2, process r
and processes p, q can determine that the intersection of their last-sets consists of
the second b. Indeed, last(prefp,q(T )) is made of the second a (for lastp = lastq)
and the second b (for lastr). Also, last(prefr(T )) is made of the second d (for
lastr), the second b (for lastq) and the first a (for lastp).

Zone orders: Recall that one of our objectives is to calculate, for every p ∈ P ,
the state reached by A on prefp(T ). As the discussion on page 58 pointed out,
for this we may need to recover the transition function of A associated with
prefq(T ) \ prefP (T ) for a process q and a set of processes P . Hence we need
to store information about the behaviour of A on some relevant factors of T
that are not prefixes. Zones are such relevant factors. They are defined in such a
way that there is a bound on the number of zones in a trace. The other crucial
property of zones is that for every extension T ′ of T and every P ⊆ P , q ∈ P , if
a zone of T intersects prefq(T ′) \ prefP (T ′) then it is entirely in this set. A zone
order is an abstract representation of the decomposition of a trace into zones.

Definition 4. [6] Let T = 〈E,≤, λ〉 be a trace. For an event e ∈ E we define
the set of events L(e) = {f ∈ last(T ) | e ≤ f}. We say that two events e, e′ are
equivalent (denoted as e ≡ e′) if L(e) = L(e′). The equivalence classes of ≡ are
called zones. We denote by dom(Z) the set of processes active in a zone Z.
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Fig. 2. The three zones of prefr(T ) (darker) are marked with solid lines. The two zones
of pref{p,q}(T ) (lighter) are represented by dotted lines.

There is a useful partial order on zones that we define now. Let Z,Z ′ be two
zones of some trace T . We write Z � Z ′ if Z �= Z ′ and e < e′ for some events
e ∈ Z, e′ ∈ Z ′. It is easy to see that Z�Z ′ implies that L(Z ′) � L(Z). Thanks to
this property we can define the order on zones, denoted Z ≤ Z ′, as the smallest
partial order containing the � relation.

Lemma 1. A trace is partitioned in at most |P|2 zones.

The lemma above gives a slightly better bound than [6]. Moreover, it can be
shown that its bound is asymptotically optimal. Figure 2 depicts the trace T =
[cbadcbad]. Recall that last(prefr(T )) consists of the first a, the second b and the
second d. There are three zones in prefr(T ): Z1 contains the first a, b and c, Z2

the first d and the second b, and Z3 the second d. We have Z1 < Z2 < Z3.

Definition 5. A zone order is a labeled partial order ZO = 〈V,≤, ξ : V → 2P〉,
where every element is labeled by a set of processes. We require that every two
elements whose labels have non empty intersection are comparable: ξ(v)∩ξ(v′) �=
∅ ⇒ (v ≤ v′ ∨ v′ ≤ v). We say that such a zone order is the zone order of a
trace T , if there is a bijection μ from V to zones of T preserving the order and
satisfying ξ(v) = dom(μ(v)).

Lemma 2. The zone order of a trace can be stored in |P|2(|P|2 + |P|) space. So
there are at most 2O(|P|4) zone orders.

State information: We describe now the state information for each zone of the
trace. Let ZO = 〈V,≤, ξ : V → 2P〉 be the zone order of some trace T , via a
bijection μ. For an element v ∈ V we denote by Tv the factor of T consisting of
zones up to μ(v): that is, the factor covering μ(v′) for all v′ ≤ v. Observe that
Tv is a prefix of T . For instance, in Figure 2 the zone order of prefr(T ) contains
three vertices v1 < v2 < v3, and Tv2 is the trace [bcadb].

Definition 6. We say that a function Δ : V → Q is state information for the
zone order ZO of a trace T if for every v we have Δ(v) = Δ(q0, Tv), namely the
state of A reached on a linearization of Tv.
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Observe that a zone order for a trace of the form prefp(T ) has one maximal
element vp: it corresponds to the last action of p. If Δ is the state information
for T , then the state reached by A on reading a linearization of prefp(T ) is Δ(vp).

5.2 The Construction of the Asynchronous Automaton

Let us come back to the description of the asynchronous automaton B. For every
p ∈ P , a local state in Sp will have the form (tsp, ZOp, Δp). The automaton will
be defined in such a way that after reading a trace T the state sp reached at the
component p will satisfy:

– tsp is the time stamping information;
– ZOp is the zone order of prefp(T );
– Δp is the state information for ZOp.

By [13] we know that B can update the tsp component. The proposition below
says that B can update the ZOp and Δp components.

Proposition 1. Let T be a trace and a ∈ Σ an action. Suppose that for every
p ∈ dom(a) we have the time stamping information tsp and the zone order with
state information (ZOp, Δp) of prefp(T ). We can then calculate the zone order
and the state information of prefp(Ta), for every p ∈ dom(a).

We also need to define the sets of rejecting states Rp and the global accepting
states Acc of B. Observe that by Proposition 1, from the local state sp we
can calculate Δ(q0, prefp(T )), namely the state of A reached after reading a
linearization of prefp(T ). This state is exactly the state associated to the unique
maximal element of the zone order in sp. Hence, B can be made locally rejecting
by letting sp ∈ Rp if Δ(q0, prefp(T )) is not productive in A, i.e., no final state
can be reached from it.

To define accepting tuples of states of B we use the following proposition:

Proposition 2. Let T be a trace. Given for every p ∈ P the time stamping tsp,
and the zone order ZOp with state information Δp of prefp(T ), we can calculate
Δ(q0, T ), the state reached by A on a linearization of T .

In the light of Proposition 2, a tuple of states of B is accepting if the state
Δ(q0, T ) of A is accepting. The two propositions give us:

Theorem 4. Let A be a deterministic I-diamond automaton over the distributed
alphabet (Σ, dom). We can construct an equivalent deterministic, locally rejecting
asynchronous automaton B with at most 4|P|4 · |A||P|2 states.

We now describe informally the main ingredients of the proof of Proposition 1
(Proposition 2 is proved along similar lines). The zone orderZO of prefP∪{q}(T ) is
built in two steps fromZOP andZOq: first we construct a so-called pre-zone order
ZO′ by adding to ZOP the zones from prefq(T ) \ prefP (T ) [6]. Then we quotient
ZO′ in order to obtain ZO. The quotient operation amounts to merge zones. The
difficulty compared to [6] is posed by the update of the state information. Since
the state information for the pre-zone ZO′ is inconsistent due to the merge, the
crucial step is to compute this information on downward closed sets of zones:
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Lemma 3. Let ZO = 〈V,≤, ξ〉, Δ be the zone order and state information for a
trace T (via the bijection μ). For every downward closedB ⊆ V we can compute the
state reached byA on a linearization of TB =

⋃
{Tv | v ∈ B}, using only ZO andΔ.

The proof of the lemma above is based on a nice observation about I-diamond
automata A, taken from [2]. It says that for every three traces T0, T1, T2 with
dom(T1) ∩ dom(T2) = ∅, the state reached by A on a linearization of T0T1T2

can be computed from dom(T1) and the states reached on (linearizations of) T0,
T0T1, T0T2, respectively.

We now sketch the proof of the lemma. We first choose some linearization
v1, . . . , vn of B. For each i, k with i ≤ k, let Bi,k = {v1, . . . , vi} ∪ {vj | j >
i, vj ≤ vk}. For instance, if there are four zones v1, v2, v3, v4 with v1 < v2 < v4,
v1 < v3 < v4, and ξ(v2) ∩ ξ(v3) = ∅, then B1,2 = {v1, v2}, B1,3 = {v1, v3}, and
B2,3 = {v1, v2, v3}.

We show now how to compute inductively Δ(q0, TBi,k
). Notice that the base

case is trivial, as B0,k = Δ(vk) for all k. Let i ≤ n. Suppose that for all k ≥
i−1, we know Δ(q0, TBi−1,k

). In particular, note that the states qi−1, qi reached
on μ(v1 · · · vi−1) and μ(v1 · · · vi), respectively, are known (cases k = i − 1 and
k = i). We compute now Δ(q0, TBi,k

), for all k > i. Two cases arise. If vi �<
vk then we apply the observation of [2] to qi−1, qi, Δ(q0, TBi−1,k

), ξ(vi), which
yields Δ(q0, TBi,k

). If vi < vk, then Bi−1,k = Bi,k and the state Δ(q0, TBi,k
) is

already known. At the end of this polynomial time procedure, we have computed
Δ(q0, TB) = Δ(q0, TBn,n).

Remark 1. The automaton B of Theorem 4 can be constructed on-the-fly, i.e.,
given the action a ∈ Σ and the local states sp of B, p ∈ dom(a), one can compute
the successor states δa((sp)p∈dom(a)). The question is now how much time we
need for this computation. The update of the time stamping and the update of
zone orders take time polynomial in |P|. The update of state information can be
done in time polynomial in |P| and linear in the number of transitions of |A|.
So overall, we can compute transitions on-the-fly in polynomial time. Similarly,
we can decide whether a global state is accepting in polynomial time.

6 Conclusion

In this paper we have presented an improved construction of asynchronous au-
tomata. Starting from a zone construction of [6], we have shown how to keep
just one state per zone instead of a transition table. This allows to obtain the
first construction that is polynomial in the size of the sequential automaton and
exponential only in the number of processes.

It is tempting to conjecture that our construction is optimal. Unfortunately, it
is very difficult to provide lower bounds on sizes of asynchronous automata. We
have given a matching lower bound for the subclass of locally rejecting automata.
It is worth to recall that all general constructions in the literature produce
automata of this kind. Moreover the concept of locally rejecting automaton is
interesting on its own from the point of view of applications.
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We conjecture that the translation from deterministic word automata to asyn-
chronous automata must be exponential in the number of processes (where the
size means the total number of local states).
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Abstract. The Regular Post Embedding Problem is a variant of Post’s Corre-
spondence Problem where one compares strings with the subword relation and
imposes additional regular constraints on admissible solutions. It is known that
this problem is decidable, albeit with very high complexity.

We consider and solve variant problems where the set of solutions is com-
pared to regular constraint sets and where one counts the number of solutions.
Our positive results rely on two non-trivial pumping lemmas for Post-embedding
languages and their complements.

1 Introduction

Post’s Correspondence Problem, or shortly PCP, is the question whether two mor-
phisms u,v : Σ∗ → Γ∗ agree non-trivially on some input, i.e., whether u(σ) = v(σ) for
some non-empty σ ∈ Σ+. Post’s Embedding Problem, shortly PEP, is a variant of PCP
where one asks whether u(σ) is a (scattered) subword of v(σ) for some σ. The subword

relation, also called embedding, is denoted “!”: x ! y
def⇔ x can be obtained from y by

erasing some letters, possibly all of them, possibly none. The Regular Post Embedding
Problem, or PEPreg, is an extension of PEP where one adds the requirement that only
solutions σ belonging to a given regular language R ⊆Σ∗ are admitted. PEP and PEPreg

were introduced, and shown decidable, in [2,3].

Regular constraints and the set of PEP-solutions. The decidability of PEPreg can be
restated under the following form: it is decidable, given two morphisms u,v : Σ∗ → Γ∗

and a regular language R ⊆ Σ∗, whether the following holds:

∃x ∈ R : u(x) ! v(x). (Existence)

In other words, and letting PE(u,v) def= {x ∈ Σ∗ | u(x) ! v(x)}, one can decide whether
R∩PE(u,v) �= ∅. However, this problem has very high complexity. Here the regular
language R, acting as a constraint on the form of solutions, plays a key role. Indeed,
in the special case where R = Σ+, the problem becomes trivial (if there are solutions,
in particular length-one solutions exist) which probably explains why PEP and PEPreg

had not been investigated earlier.
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In this paper, we prove the decidability of the following questions:

∀x ∈ R : u(x) ! v(x), (Universality)

∃∞x ∈ R : u(x) ! v(x), (Infinity)

¬∃∞x ∈ R : u(x) �! v(x). (Cofiniteness)

“Universality” asks whether all words in R are solutions. “Infinity” asks whether R con-
tains infinitely many solutions x, while dually “Cofiniteness” asks whether all but finitely
many x ∈ R are solutions. Equivalently, these questions ask whether R ⊆ PE(u,v),
whether R∩PE(u,v) =a ∅, and whether R � PE(u,v) =a ∅, writing S =a S′ to denote
the “quasi-equality” of two sets, i.e., equality up to a finite subset. As a consequence of
these decidability results we can compute the number of words in R that are (respec-
tively, that are not) solutions.

These results are obtained with the help of two pumping lemmas, one for sets of
solutions and one for sets of “antisolutions”, i.e., words x such that u(x) �! v(x). These
pumping lemmas are the more technically involved developments of this paper. Prov-
ing them relies on two kinds of techniques: (1) combinatorics of words in presence of
the subword relation and associated operations, and (2) a miniaturisation of Higman’s
Lemma that gives effective bounds on the length of bad sequences.

Related work. The Regular Post Embedding Problem was introduced in [2,3] where its
decidability was proved. These papers also showed that PEPreg is expressive enough
to encode problems on lossy channel systems, or LCS’s. In fact, encoding in both di-
rections exist, hence PEPreg is exactly at level Fωω in the Fast Growing Hierarchy.
Thus, although it is decidable, PEPreg is not primitive-recursive, and not even multiply-
recursive (see [4] and the references therein).

A consequence of the above encodings is that PEPreg is an abstract problem that is
inter-reducible with a growing list of decision problems that have the same Fωω com-
plexity: metric temporal logic [14], products of modal logics [8], leftist grammars [9,6],
data nets [11], alternating one-clock timed automata [1,10], etc.

On complexity. Aiming at simplicity, our main decidability proofs do not come with
explicit statements regarding the computational complexity of the associated problems.
The decidability proofs can be turned into deterministic algorithms with complexity in
Fωω , providing the same upper bound that already applies to PEPreg. Regarding lower
bounds, it is clear that “Infinity” is at least as hard as PEPreg. We do not know if the
same lower bound holds for “Universality” and “Cofiniteness”.

Outline of the paper. Section 2 recalls the necessary definitions and notations. Section 3
deals with combinatorics on words with subwords. Section 4 proves the decidability of
comparisons with regular sets. Then our pumping lemma is stated in Section 5 and used
in Section 6 for deciding finiteness, counting, and quasi-regular questions. Sections 7
and 8 prove the two halves of the pumping lemma. Proofs omitted in the main text can
be found in the full version of this extended abstract.
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2 Notations and Definitions

Words and morphisms. We write x,y,z,t,σ,ρ,α,β, . . . for words, i.e., finite sequences
of letters such as a,b,c, i, j, . . . from alphabets Σ,Γ, . . ., and denote with x.y, or xy, the
concatenation of x and y. We let ε denote the empty word. The length of x is written |x|.
A morphism from Σ∗ to Γ∗ is a map u : Σ∗ →Γ∗ that respects the monoidal structure, i.e.,
with u(ε) = ε and u(x.y) = u(x).u(y). A morphism u is completely defined by its image
u(a), u(b), . . . , on Σ = {a,b, . . .}. We often simply write ua,ub, . . ., and ux, instead of
u(a),u(b), . . ., and u(x). Finally, for a morphism u : Σ∗ → Γ∗, we let Ku = maxa∈Σ |ua|
denote the expansion factor of u, thus called because clearly |ux| ≤ Ku ×|x|.

The mirror image of a word x is denoted x̃, e.g., ãbc = cba. The mirror image of

a language L is L̃
def= {x̃ | x ∈ L}. It is well-known that the mirror image of a regular

language is regular. For a morphism h : Σ∗ → Γ∗, the mirror morphism h̃ is defined by

h̃(x) def= h̃(x̃), ensuring h̃(x̃) = h̃(x).

Syntactic congruence. For a language L, we let ∼L denote the syntactic congruence

induced by L: x ∼L y
def⇔ ∀w,w′(wxw′ ∈ L ⇔ wyw′ ∈ L). The Myhill-Nerode Theorem

states that ∼L has finite index iff L is a regular language. For a regular L, we let nL

denote the number of equivalence classes w.r.t. ∼L.1

Subwords and Higman’s Lemma. Given two words x and y, we write x ! y when x is
a subword of y, i.e., when x can be obtained by erasing some letters (possibly none)
from y. For example, abba ! abracadabra. The subword relation, aka embedding, is a
partial ordering on words. It is compatible with the monoidal structure:

ε ! x, (x ! y ∧ x′ ! y′) ⇒ xx ! yy′.

It is well-known (Higman’s Lemma) that the subword relation is a well-quasi-ordering
when we consider words over a fixed finite alphabet. This means that any set of words
has a finite number of minimal elements (minimal w.r.t. !).

We say that a sequence x1, . . . ,xl , . . . of words in Σ∗ is n-good if there exists indexes
i1 < i2 < .. . < in such that xi1 ! xi2 ! . . . ! xin , i.e., if the sequence contains a subse-
quence of length n that is increasing w.r.t. embedding. It is n-bad otherwise. Higman’s
Lemma states that every infinite sequence is 2-good, and even n-good for any n ∈ N.
Hence n-bad sequences are finite.

Higman’s Lemma is often described as being “non-effective” in that it does not give
any information on the length of bad sequences. Indeed, arbitrarily long bad sequences
exist. However, upper bounds on the length of bad sequences can certainly be given
when one restricts to “simple” sequences. Such finitary versions of well-quasi-ordering
properties are called “miniaturisations” in proof-theoretical circles.

In this paper we consider a very simple miniaturisation that applies to “controlled”
sequences [7]. Formally, and given k ∈ N, we say that a sequence x1, . . . ,xl of words in
Σ∗ is k-controlled if |xi| ≤ i× k for all i = 1, . . . , l. We shall use the following result:2

1 If the minimal complete DFA that accepts L has q states, then nL can be bounded by qq.
2 For a proof, see [7] or the long version of this paper.
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Lemma 2.1. There exists a bounding function H : N3 → N such that, for any n,k ∈ N

and l ≥ H(n,k, |Σ|), any k-controlled sequence of l words in Σ∗ is n-good.

The lemma states that if a k-controlled sequence is long enough, it is n-good. Equiva-
lently, n-bad sequences are shorter that H(n,k, |Σ|) or are not k-controlled.

3 Composing, Decomposing, and Iterating Words and Subwords

This section is devoted to the subword ordering and the way it interacts with concate-
nations and factorizations. It proves a few basic results, e.g., Lemma 3.7, that we have
been unable to find in the technical literature [12,13].

3.1 Available Suffixes

When x ! y, we decompose y as a concatenation y = y1y2 such that y1 is the shortest
prefix of y with x ! y1. We call y1 the “used prefix” and y2 the “available suffix”. We
use y% x to denote the available suffix. For example, abcabc%ba = bc. Note that y% x
is only defined when x ! y.

Lemma 3.1. x ! y and x′ ! (y% x)y′ imply xx′ ! yy′.

Corollary 3.2. x ! y implies x(y% x) ! y.

Lemma 3.3. x ! y and xx′ ! yy′ imply x′ ! (y% x)y′.

3.2 Unmatched Suffixes

When x �! y, we decompose x as a concatenation x = x1x2 such that x1 is the longest
prefix of x with x1 ! y. We call x1 the “matched prefix” and x2 the “unmatched suffix”.
We use x& y to denote the unmatched suffix. For example aabcabc&baca = bcabc.
Note that x& y is only defined when x �! y (hence x& y �= ε).

Lemma 3.4. x �! y and xx′ �! yy′ imply [(x& y)x′]& y′ = xx′ & yy′.

Corollary 3.5. x �! y and xx′ �! yy′ imply (x& y)x′ �! y′.

Lemma 3.6. x �! y and xx′ ! yy′ imply (x& y)x′ ! y′.

3.3 Iterating Factors

Lemma 3.7. xy ! yz if, and only if, xky ! yzk for all k ∈ N.

Proof. We only need to prove the “⇒” direction. This is done by induction on the length
of y. The cases where y = ε or x = ε or k = 0 are obvious, so we assume that |y|, |x| and
k are strictly positive. There are now two cases:

1. If x ! y, we consider a factorization y = y1y2 (e.g., y2 = y% x is convenient) with
x! y1 (hence xk ! yk

1) and y! y2z. Since |y2|< |y| (because x �= ε and hence y1 �= ε),
the induction hypothesis applies and from y1y2 = y! y2z one gets yk

1y2 ! y2zk. Now
xky ! yk

1y = y1yk
1y2 ! y1y2zk = yzk.

2. If x �! y, we write x = x1x2 with x2 = x& y. Thus x1 ! y and x2y ! z. Thus there
exists a factorization z = z1z2 s.t. x2 ! z1 (entailing x ! yz1) and y ! z2. Now xky !
(yz1)kz2 = yz1(yz1)k−1z2 ! yz1(z2z1)k−1z2 = yzk. '(
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Lemma 3.8. Assume x �! y, xz �! yt, and x& y ! xz& yt. Then for all k ∈ N:

xzk �! ytk. (Zk)

Furthermore, if we let rk
def
= xzk & ytk, then for all k ∈ N:

r0 ! rk ! rk+1. (Rk)

Proof. The hypothesis for the Lemma are that (Z0), (Z1) and (R0) hold. We prove, by
induction on k, that (Zk) and (Rk−1) imply (Zk+1) and (Rk).

Proof of (Zk+1): applying Coro. 3.5 on (Z0) and (Z1) yields r0z �! t, hence a fortiori
rkz �! t using (Rk−1). Combining with (Zk) and applying Lemma 3.6 contrapositively
entails xzkz �! ytkt, i.e., (Zk+1).

Proof of (Rk): rk+1 is xzk+1 & ytk+1. By Lemma 3.4, this is [(xzk & ytk)z]& t, i.e.,
rkz& t. From (Rk−1) we get rk−1z& t ! rkz& t. However rk−1z& t = rk (Lemma 3.4).
Finally rk ! rk+1. '(

4 Regular Properties of Sets of PEP Solutions

Given two morphisms u,v : Σ∗ → Γ∗, a word x ∈ Σ∗ is called a “solution” (of Post’s
Embedding Problem) when ux ! vx. Otherwise it is an “antisolution”. We let PE(u,v)
denote the set of solutions (for given u and v). Note that ε is always a solution.

We consider questions where we are given a PEP instance u,v with u,v : Σ∗ → Γ∗

and a regular language R ⊆ Σ∗. The considered problems are
PEP_Inclusion: does PE(u,v) ⊆ R?
PEP_Containment: does PE(u,v) ⊇ R?
PEP_Equality: does PE(u,v) = R?

It is tempting to compare PE(u,v) with another Post-embedding set, however:

Theorem 4.1. The questions “does PE(u,v)∩PE(u′,v′)={ε}?” and “does PE(u,v)⊆
PE(u′,v′)?” are Π0

1-complete.

Proof. Π0
1-hardness can be shown directly by reduction from PCP. For the first ques-

tion, simply let u′ = v and v′ = u. Then a common solution has ux ! vx = u′x ! v′x = ux,
i.e., ux = vx.

For the second question we use a more subtle encoding: assume w.l.o.g. that Γ con-

tains two distinct symbols a,b and that ux �= ε when x �= ε. Let now u′x
def= (ab)|ux| and

v′x
def= (ba)|vx|. Thus u′x ! v′x if, and only if, x = ε or |ux| < |vx|. Finally, PE(u,v) �

PE(u′,v′) contains the non-trivial PCP solutions. '(

Theorem 4.2. PEP_Inclusion, PEP_Containment and PEP_Equality are decidable.

Note that, while comparisons with a regular language are decidable, regularity itself is
undecidable, at least in the more general form stated here:

Proposition 4.3 (Regularity is undecidable [5]). The question “is R∩PE(u,v) a reg-
ular language?” is Σ0

1-complete.
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The remainder of this section proves Theorem 4.2.
We first observe that PEP_Inclusion and PEPreg are inter-reducible since (u,v,R) is

a positive instance for PEP_Inclusion if, and only if, (u,v,Σ∗ �R) is a negative instance
for PEPreg. Hence the decidability of PEP_Inclusion follows from the decidability of
PEPreg, proved in [2,3].

For the decidability of PEP_Containment (and then of PEP_Equality), we fix an
instance (u,v,R).

For a word x ∈ Σ∗, we say that x is good if ux ! vx and then we let wx
def= vx %ux,

otherwise it is bad and then we let rx
def= ux & vx. We say that x is alive if xy ∈ R for some

y, otherwise it is dead. Finally, we write |R| for the number of states of a FSA for R,

and let L
def= Kv ×|R| be a size threshold (more details in the proof of Lemma 4.5).

A word x is a cut-off if, and only if, one of the following conditions holds:

dead cut-off: x is dead;
subsumption cut-off: there exists a strict prefix x′ of x such that x′ ∼R x, and either

1. both x and x′ are good, with wx′ ! wx,
2. or both x and x′ are bad, with rx ! rx′ ;

big cut-off: x is alive, bad and |rx|> L.

Let T ⊆ Σ∗ be the set of all words that do not have a cut-off as a (strict) prefix. T is
prefix-closed and can be seen as a tree.

Lemma 4.4. T is finite.

Proof. We show that T , seen as a tree, has no infinite branch. Hence, and since it is
finitely branching, it is finite (Kőnig’s Lemma).

Assume, by way of contradiction, that T has an infinite branch labeled by some
x0,x1,x2, . . . (and recall that every xi is a prefix of all the xi+k’s). We show that one of
the xi must be a cut-off, which contradicts the assumption.

Since the syntactic congruence ∼R has finite index, there exists an infinite subse-
quence x0,x1,x2, . . . (renumbered for convenience) of ∼R-equivalent xi’s. If infinitely
many of the xi’s are good, one of them must be a subsumption cut-off since, by Hig-
man’s Lemma, the infinite sequence of the wxi ’s (for good xi’s) must have some wx′ !
wx. If only finitely many of the xi’s are good, then infinitely many of them are bad and
either some rxi has size larger than L (hence xi is a big cut-off), or all rxi ’s have size at
most L, hence belong to a finite set Γ≤L, and two of them must be equal (hence there
must be a subsumption cut-off). '(

With the next two lemmas, we show that T contains enough information to decide
whether R ⊆ PE(u,v).

Lemma 4.5. If T contains a big cut-off, then R �⊆ PE(u,v).

Proof. Assume x is a big cut-off (i.e., is alive, bad, and with |rx|> L) in T . It is alive so
xy ∈ R for some y. We pick the smallest such y, ensuring that |y|< |R| (the number of
states of an FSA for R). Since x is bad, we know that ux �! vx. Note that |vy| ≤Kv×|y| ≤
Kv ×|R| ≤ L so that |vy|< |rx| and, consequently, rx �! vy. Thus, and since rx = ux & vx,
applying Lemma 3.6 contrapositively gives ux �! vxvy and, a fortiori, uxy �! vxy. Finally
xy �∈ PE(u,v). Since xy ∈ R, we conclude R �⊆ PE(u,v). '(
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There is a reciprocal.

Lemma 4.6. Assume that T has no big cut-offs and that (R∩T ) ⊆ PE(u,v). Then R ⊆
PE(u,v).

Proof. Consider some x∈ R: we show that ux ! vx by induction on the size of x. If x∈ T
then x ∈ (R∩T ) ⊆ PE(u,v) and we are done. If x �∈ T , then a prefix of x is a cut-off.
This cannot be a big cut-off (we assumed T has none) or a dead cut-off (the prefix is
alive since x ∈ R). Hence this is a subsumption cut-off, caused by one of its prefixes.
Finally, x can be written under the form x = x1x2x3 with x1x2 the subsumption cut-off,
and x1 the prefix justifying the subsumption. We know x2 �= ε (x1 is a strict prefix of
the cut-off) and x1 ∼R x1x2. Hence x1x3 ∈ R (since x1x2x3 ∈ R) and ux1x3 ! vx1x3 by
induction hypothesis.

There are now two cases, depending on what kind of subsumption is at hand.

1. If x1 is good then ux1 ! vx1 . Combining with ux1x3 ! vx1x3 entails ux3 ! wx1vx3

(Lemma 3.3). From wx1 ! wx1x2 (condition for subsumption) we deduce ux3 !
wx1x2vx3 . Combining with ux1x2 ! vx1x2 (x1x2 too is good), Lemma 3.1 yields ux1x2 ux3

! vx1x2 vx3 .
2. If x1 is bad, then ux1x3 ! vx1x3 and ux1 �! vx1 entail rx1 ux3 ! vx3 (Lemma 3.6). From

rx1x2 ! rx1 (condition for subsumption) we deduce rx1x2ux3 ! vx3 . Combined with
ux1x2 �! vx1x2 (x1x2 too is bad), applying Coro. 3.5 contrapositively yields ux1x2 ux3 !
vx1x2 vx3 .

In both cases we proved that x1x2x3 ∈ PE(u,v) as requested. '(
We can now prove the decidability of PEP_Containment: the tree T can be built ef-
fectively starting from the root since it is easy to see whether a word is a cut-off. The
construction terminates thanks to Lemma 4.4. Once T is at hand, Lemmas 4.5 and 4.6
gives an effective criterion for deciding whether R ⊆ PE(u,v): it is enough to check that
T has no big cut-off and that all the words x ∈ T satisfy ux ! vx or do not belong to R.

5 Pumpable Solutions and Antisolutions

Let u,v : Σ∗ → Γ∗ be a given PEP instance.

Definition 5.1. A triple of words (x,y,z) ∈ Σ∗ with y �= ε is a pumpable solution if
xykz ∈ PE(u,v) for all k ∈ N.

It is a pumpable antisolution if xykz �∈ PE(u,v) for all k ∈ N.

In other words, a pumpable solution denotes an infinite subset of PE(u,v) of the form
xy∗z, while a pumpable antisolution denotes an infinite subset of its complement. Our
interest in pumpable solutions and antisolutions is that they provide simple witnesses
proving that PE(u,v) (or its complement) is infinite.

We observe that these witnesses are effective:

Proposition 5.2 (Decidability of pumpability). It is decidable whether (x,y,z) is a
pumpable solution, and also whether it is a pumpable antisolution.

Proof. Checking that (x,y,z) is a pumpable solution reduces to the PEP_Containment
problem, while checking that it is not a pumpable antisolution reduces to the PEPreg

problem (or, equivalently, PEP_Inclusion). '(
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We can now state our main technical result. Here (and below) we speak loosely of “a
pumpable solution”, when we mean “the language denoted by a pumpable solution”.

Lemma 5.3 (Pumping Lemma). Let R ⊆ Σ∗ be a regular language.
1. If R∩PE(u,v) is infinite, it contains a pumpable solution.
2. If R � PE(u,v) is infinite, it contains a pumpable antisolution.

Section 7 is devoted to a proof of the Pumping Lemma for solutions, while Section 8
proves the Pumping Lemma for antisolutions. Without waiting for that, we list the main
consequences on our questions.

6 Quasi-Regular Properties and Counting Properties

For two languages L,L, we say that L is quasi-included in L′, written L ⊆a L′, when
L�L′ is finite, and that they are quasi-equal, written L =a L′, when L ⊆a L′ and L′ ⊆a L.

We consider the following questions, where we are given a PEP instance u,v and a
regular R ⊆ Σ∗:
PEP_Quasi_Inclusion: does PE(u,v) ⊆a R?
PEP_Quasi_Containment: does PE(u,v) ⊇a R?
PEP_Quasi_Equality: does PE(u,v) =a R?

Theorem 6.1. PEP_Quasi_Inclusion, PEP_Quasi_Containment and PEP_Quasi_-
Equality are decidable.

Proof. We start with PEP_Quasi_Inclusion. This problem is co-r.e. since when PE(u,v)
� R is infinite, there is a pumpable solution in Σ∗ � R (Pumping Lemma) that can be
guessed and checked (Prop. 5.2). It is also r.e. since PE(u,v) ⊆a R iff there is a finite
language F ⊆ Σ∗ s.t. PE(u,v)⊆ R∪F , which can be checked (Theo. 4.2) since R∪F is
a regular language. Thus PEP_Quasi_Inclusion, being r.e. and co-r.e., is decidable.

We use the same reasoning to show that PEP_Quasi_Containment is decidable.
Then PEP_Quasi_Equality is obviously decidable as well. '(

We also consider counting questions where the answer is a number in N∪{ω}:
PEP_NbSol: what is the cardinality of R∩PE(u,v)?
PEP_NbAntisol: what is the cardinality R � PE(u,v)?

Theorem 6.2. PEP_NbSol and PEP_NbAntisol are decidable (more precisely, the as-
sociated counting functions are recursive).

Proof. We start with PEP_NbSol. We can first check whether the cardinality of R∩
PE(u,v) is finite by deciding whether PE(u,v) ⊆a (Σ∗ � R) (using the decidability of
PEP_Quasi_Inclusion). If we find that the cardinality is infinite, we are done. Otherwise
we can enumerate all words in R and check whether they are solutions. At any given
stage during this enumeration, we can check whether the current set F of already found
solutions is complete by deciding whether PE(u,v)∩(R�F) = ∅ (using the decidabil-
ity of PEP_Inclusion). We are bound to eventually find a complete set since we only
started enumerating solutions in R knowing there are finitely many of them.
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The same method works for PEP_NbAntisol, this times using the decidability of
PEP_Containment and PEP_Quasi_Containment. '(

7 Pumping in Long Solutions

We start with a sufficient condition for pumpability of solutions.

Definition 7.1. A triple x,y,z ∈ Σ∗ with y �= ε is positive if the following four conditions
are satisfied:

ux ! vx, (C1) uxuy ! vxvy, (C2)
uxuyuz ! vxvyvz, (C3) (vx %ux) ! (vxvy %uxuy). (C4)

Lemma 7.2. If (x,y,z) is positive then (x,y,yz) is a pumpable solution.

Proof. Assume that (x,y,z) is positive, so that (C1–4) hold. Write shortly w for vx %ux

and w′ for vxy %uxy. From (C1) and the definition of w, Coro. 3.2 yields:

uxw ! vx. (C5)

From (C2), it further yields uxuyw′ ! vxvy, from which (C4) entails:

uxuyw ! vxvy. (C6)

Applying Lemma 3.3 on (C1) and (C3) (respectively on (C1) and (C6)) yields:

uyuz ! wvyvz, (C7) uyw ! wvy. (C7′)

Applying Lemma 3.7 on (C7’) gives

uyk w = (uy)kw ! w(vy)k = wvyk for all k ∈ N. (C8)

With (C5) and (C8), Lemma 3.1 entails

uxuyk w ! vxvyk for all k ∈ N. (C9)

With (C7) and (C9), it then entails

uxuyk uyz ! vxvyk vyz for all k ∈ N, (C10)

which just states that (x,y,yz) is a pumpable solution. '(

We now let nR denote the number of equivalence classes induced by ∼R (Section 2).
Finally, we let Hu and Hv denote, respectively, H(nR +1,Ku, |Γ|) and H(nR +1,Kv, |Γ|).
Recall that, by definition of the H function (Lemma 2.1), any Ku-controlled sequence
of at least Hu Γ-words is (nR + 1)-good.

Lemma 7.3. If R contains a solution σ ∈ PE(u,v) of length |σ| ≥ 2Hv then it contains
a pumpable solution.
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(Observe that this will entail, as a corollary, the first half of the Pumping Lemma since,
if R∩PE(u,v) is infinite, it contains solutions σ of arbitrarily large length.)

Proof. Let σ ∈ PE(u,v) be a solution of length L: σ has L+1 prefixes x0,x1, . . . ,xL. We
consider the subsequence xi1 ,xi2 , . . .xil of all prefixes of σ that satisfy uxi j

! vxi j
(called

good prefixes) and split the proof in three main steps.

1. We show, by induction over j, that the sequence
(
vxi j

%uxi j

)
j=1,..,l is Kv-controlled,

i.e., writing wj for vxi j
%uxi j

, that |wj| ≤ j ×Kv for all j = 1, . . . , l. The base case is
obvious since i1 = 0 and w1 = ε. For the inductive case, we consider j > 0 so that
xi j = xi j−1.a for some a ∈ Σ (the i j-th letter in σ). If uxi j−1 ! vxi j−1 (hence i( j−1) =
(i j)− 1) then wj = vxi j

%uxi j
is (vxi j−1 .va)% (uxi j−1 .ua) which cannot be longer than

(vxi j−1 .va)%uxi j−1 , itself not longer than (vxi j−1 %uxi j−1).va. Thus |wj| ≤ |wj−1|+ Kv

and we conclude with the induction hypothesis. If on the other hand uxi j−1 �! vxi j−1 ,

then wj is a suffix of va hence |wj| ≤ Kv.
2a. Assume now that l ≥ Hv. Then, using Lemma 2.1, we conclude that there is a

further subsequence (xi jr
)r=0,...,nR of nR + 1 prefixes of σ such that wj0 ! wj1 ! ·· · !

wjnR
. Since nR is the index of ∼R, we deduce that there exists two such prefixes xi jp

(shortly, x) and xi jp′
(shortly, x′) with x ∼R x′. If we write x′ under the form xy (NB: y �=

ε) and σ under the form xyz, we have found a positive triple (x,y,z). Then Lemma 7.2
applies and shows that xy∗yz is a pumpable solution. Finally, since x ∼R xy, we know
that xy∗yz is a subset of R.

2b. Observe that if a prefix xi of σ = xi.yi is not good, then ỹi is a good prefix of the
solution σ̃ ∈ PE(ũ, ṽ) of the mirror PEP problem. Hence if σ has l < Hv good prefixes,
σ̃ has l′ ≥ 2Hv − l > Hv good ones. Then the mirror problem falls in case 2a above (we
note that ∼R, nR, and Kv do not have to be adjusted when mirroring). We deduce that
there is a pumpable solution in R̃∩PE(ũ, ṽ), whose mirror is a pumpable solution in
R∩PE(u,v). '(

8 Pumping in Long Antisolutions

As with pumpable solutions, there is a sufficient condition for pumpability of antisolu-
tions.

Definition 8.1. A triple x,y,z ∈Σ∗ with y �= ε is negative if the following four conditions
are satisfied:

ux �! vx, (D1) uxuy �! vxvy, (D2)
uxuz �! vxvz (D3) ux & vx ! uxy & vxy (D4)

Lemma 8.2. If (x,y,z) is negative then (x,y,z) is a pumpable antisolution.

Proof. Assume that (x,y,z) is negative, so that (D1–4) hold. Write shortly r for ux & vx

and r′ for uxy & vxy. With (D1), (D2) and (D4), Lemma 3.8 applies and yields

uxyk �! vxyk for all k ∈ N, (D5)
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with furthermore

uxyk & vxyk ! uxyk+1 & vxyk+1 . (D6)

On the other hand, (D1) and (D3) entail ruz �! vz by Coro. 3.5, hence (uxyk & vxyk)uz �! vz

by (D6). We deduce that uxykz �! vxykz. '(

Lemma 8.3. If R contains an antisolution σ �∈ PE(u,v) of length |σ| ≥ 2Hu then it
contains a pumpable antisolution.

(As a corollary, we obtain the second half of the Pumping Lemma.)

Proof (Sketch). We proceed as with Lemma 7.3. Write L for |σ|, and x0,x1, . . . ,xL

for the prefixes of σ. Consider the subsequence xi1 ,xi2 , . . .xil of all bad prefixes of σ,
i.e., such that uxi j

�! vxi j
and define r j = uxi j

& vxi j
. The sequence (r j) j=1,...,l is Ku-

controlled.
If l ≥ Hu, we find two positions 1 ≤ p < p′ ≤ l such that xi jp

∼R xi jp′
and r jp ! r jp′ ,

so that, writing x for xi jp
, x′ for xi jp′

, writing x′ under the form xy, and σ under the

form xyz, we can apply Lemma 8.2 and deduce that (x,y,z) is a pumpable antisolution.
Furthermore xy∗z is a subset of R since xyz = σ ∈ R and xy ∼R x.

Observe that if a prefix xi is not bad, then, writing σ under the form xiyi, ỹi is a bad
prefix of the antisolution σ̃ �∈ PE(ũ, ṽ) of the mirror problem. Thus, if l < Hu, then σ̃
has ≥ Hu bad prefixes in the mirror problem. Hence R̃ � PE(ũ.ṽ) contains a pumpable
antisolution, whose mirror is a pumpable antisolution in R∩PE(u,v). '(

Remark 8.4. Lemmas 7.3 and 8.3 show that one can strengthen the statement of the
Pumping Lemma. Rather than assuming that R∩PE(u,v) (respectively, R � PE(u,v))
is infinite, we only need to assume that they contain a large enough element. '(

9 Concluding Remarks

The decidability of the Regular Post Embedding Problem means that one can find out
whether the inequation u(x) ! v(x) has a solution in a given regular R. In this paper,
we investigated more general questions pertaining to the set of solutions PE(u,v). We
developed new techniques showing how one can decide regular questions (does PE(u,v)
contain, or is it included in, a given R?), finiteness and quasi-regular questions (does
PE(u,v) satisfy a regular constraint except perhaps for finitely many elements?), and
counting questions (how many elements in some R are — or are not — solutions?).

It is not clear how to go beyond these positive results. One avenue we have started to
explore [5] is to consider Post-embedding questions with two variables, e.g.,

∃x ∈ R1 ∀y ∈ R2 : u(xy) ! v(xy).

Another direction is suggested by the pumpings lemmas we developed here. These
lemmas have applications beyond the finiteness problems we considered. For example,
they are useful in the study of the expressive power of PEPreg-languages, i.e., languages
of the form R∩PE(u,v) for some R,u,v. For example, using the pumping lemma we
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can show that L0
def= {anbn | n ∈ N} is not a PEPreg-language. Now, and since L1

def=
{anbn+m | n,m ∈ N} and L2

def= {an+mbn | n,m ∈ N} clearly are PEPreg-languages, we
conclude that PEPreg-languages are not closed under intersection!
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Alternation Removal in Büchi Automata
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Abstract. Alternating automata play a key role in the automata-theoretic ap-
proach to specification, verification, and synthesis of reactive systems. Many
algorithms on alternating automata, and in particular, their nonemptiness test,
involve removal of alternation: a translation of the alternating automaton to an
equivalent nondeterministic one. For alternating Büchi automata, the best known
translation uses the “breakpoint construction” and involves an O(3n) state blow-
up. The translation was described by Miyano and Hayashi in 1984, and is widely
used since, in both theory and practice. Yet, the best known lower bound is
only 2n.

In this paper we develop and present a complete picture of the problem of
alternation removal in alternating Büchi automata. In the lower bound front, we
show that the breakpoint construction captures the accurate essence of alternation
removal, and provide a matching Ω(3n) lower bound. Our lower bound holds
already for universal (rather than alternating) automata with an alphabet of a con-
stant size. In the upper-bound front, we point to a class of alternating Büchi au-
tomata for which the breakpoint construction can be replaced by a simpler n2n

construction. Our class, of ordered alternating Büchi automata, strictly contains
the class of very-weak alternating automata, for which an n2n construction is
known.

1 Introduction

The automata-theoretic approach to formal verification uses automata on infinite words
and trees in order to model systems and their specifications. By translating specifica-
tions to automata, we can reduce problems like satisfiability and model checking to the
nonemptiness and containment problems of automata. The complexity of the automata-
based algorithms is induced by both the blow-up involved in the translation of specifi-
cations to automata, and the complexity of the nonemptiness and containment problems
for them. The automata-theoretic approach has proven to be extremely useful and pop-
ular in practice [1,22].

Early translations of temporal-logic formulas to automata use nondeterministic au-
tomata. The transition function of a nondeterministic word automaton suggests several
successor states to each state and letter, and an input word is accepted by the automa-
ton if some run on it is accepting. The translation of LTL to nondeterministic Büchi
automata (NBW, for short) is exponential [14,23]. Since the nonemptiness problem
for NBWs can be solved in NLOGSPACE, the translation suggested a PSPACE upper
bound for the model-checking and satisfiability problems of LTL [14,23].

In the early 90s, researchers started to base the automata-theoretic approach on al-
ternating automata [19,20]. In an alternating automaton, the transition function maps a
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state and a letter to a formula over the set of states, indicating by which states the suffix
of the word should be accepted. For example, if δ(q0, a) = q1 ∧ (q2 ∨ q3), then when
the automaton is in state q0 and reads the letter a, then the suffix of the word should
be accepted both from the state q1 and from either q2 or q3. Thus, several copies of the
automaton run on the input word. As shown in [4,13], the translation of temporal logic
to alternating automata is simple and involves no blow-up. Accordingly, the complex-
ity is shifted to the nonemptiness problem, which is harder for alternating automata,
and involves removal of alternation; that is, a translation to an equivalent nondetermin-
istic automaton. For alternating Büchi automata (ABWs, for short), such a translation
involves an exponential blow-up [16], leading to a PSPACE nonemptiness algorithm,
which is tight.

It turns out that the use of intermediate alternating automata has many advantages.
In some cases, such as branching-time model checking, one can reason about the al-
ternating automaton without removing alternation [13]. In LTL, the use of intermediate
alternating automata enables further optimizations on the translation of LTL to NBW
[8,9,21], and has led to improved minimization algorithms for NBWs [5,6]. In addi-
tion, postponing the removal of alternation to later stages of the algorithms has led to
simplified decision and synthesis procedures [7,12].

Consider an alternating automaton A with state space Q, transition function δ, and
set α of accepting states. Removal of alternation in A has the flavor of removal of non-
determinism in nondeterministic automata. As there, the constructed automaton follows
the subset construction applied to A. Here, however, when the constructed automaton
is in a state associated with a subset S ⊆ Q, the input word should be accepted from all
the states in S, and there may be several successors to the state associated with S. For
example, if δ(q0, a) = q1∧(q2∨q3), then in an equivalent nondeterministic automaton,
the transition function would map a state associated with the set {q0} and the letter a to
a nondeterministic choice between the two states associated with {q1, q2} or {q1, q3}.
In the case of finite words, it is easy to see that defining the set α′ of accepting states
to be these associated with sets contained in α results in an equivalent nondeterministic
automaton.

The case of infinite words is more difficult. Defining α′ as above does not work, as
it forces the different copies of A to visit α simultaneously. Also, it is not clear whether
a “round-robin” examination of the copies (as done in the case of NBW intersection) is
possible, as the number of copies is not bounded. A procedure for alternation removal
in ABWs was suggested in 1984 by Miyano and Hayashi [16]. The idea behind the
procedure, known as the breakpoint construction, is that the states of the equivalent
NBW maintain, in addition to the set S associated with the subset construction, also a
set O ⊆ S \ α of states along runs that “owe” a visit to the set of accepting states. 1

Thus, starting with an ABW with n states, the breakpoint construction ends up in an
NBW with at most 3n states. While the construction is only exponential (one could
have expected a 2O(n log n) blow-up, as is the case of complementation or determiniza-
tion of NBWs [15]), it is conceptually different from the simple subset construction.
In particular, it is annoying that the construction does not make use of the fact that the

1 The direct translations of LTL to NBW, which do not go via ABWs, implement a similar
breakpoint construction, by means of an “eventuality automaton” [23].
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Büchi condition is memoryless, which suggests that we do not have to run more than
n copies. In addition, from a practical point of view, the need to maintain two sub-
sets makes the state space exponentially bigger and makes the implementation of the
breakpoint construction difficult and complex [2,5,10,17].

These drawbacks of the breakpoint construction, and its performance in practice for
some natural specifications have led Gastin and Oddoux to develop an alternative trans-
lation of LTL to NBW [10]. The new translation is based on the fact that the ABWs that
correspond to LTL formulas are very weak, in the sense that all the cycles in them are of
size one (in other words, the only cycles are self-loops). It is shown in [10] that for very
weak ABWs, one can replace the breakpoint construction by a simpler construction,
with only an n2n blow-up.

In this paper we develop and present a complete picture of the problem of alternation
removal in ABWs. In the lower bound front, we show that the breakpoint construction
of [16] and its Ω(3n) blow-up cannot be avoided. In the upper-bound front, we point to
a class of ABWs that is strictly more expressive than very-weak ABW and for which
the breakpoint construction can be replaced by a simpler n2n construction. Below we
elaborate on the two contributions.

First, we show that the concept of the breakpoint construction captures the accurate
essence of alternation removal in ABWs. Thus, there is a need to associate the states of
the equivalent NBW with two sets, and the Ω(3n) blow-up cannot be avoided. Tech-
nically, we describe a family of languages Ln such that Ln can be recognized by an
alternating (in fact, a universal) Büchi automaton with n states, whereas an equivalent
NBW requires at least 1

6 · 3n states.2 This solves negatively the long-standing open
problem of improving the breakpoint construction to one with an O(2n) blow-up. As in
[24], our lower-bound proof starts with automata with an exponential alphabet, which
we then encode using a fixed-size alphabet. We show that the Ω(3n) lower bound ap-
plies also to the determinization of nondeterministic co-Büchi word automata and for
alternation removal in alternating Büchi tree automata [18].

Second, we introduce ordered automata and show that alternation removal in or-
dered ABWs can avoid the breakpoint construction and involves only an n2n blow-up.
Essentially, an automaton is ordered if the only rejecting cycles induced by its transition
function are self loops. Note that all very weak ABWs are ordered, but not vice versa.
Indeed, in ordered automata we have no restrictions on cycles that contain accepting
states. Ordered automata are strictly more expressive than very weak ABWs. For ex-
ample, the specifications “p holds in all even positions” and “whenever there is request,
then try and ack alternate until grant is valid” can be specified by an ordered ABW but
not by a very weak ABW. As the above specifications demonstrate, ordered ABWs can
handle regular specifications, which are strictly more expressive than LTL and are in-
deed very popular in modern specification formalisms [3]. Thus, our results extend the
fragment of automata for which the breakpoint construction can be avoided. The order
condition enables the equivalent NBW to examine the states of the ABW that are not
in α in a round-robin fashion: whenever the NBW is in a state associated with a set S
of states, it examines a single state p ∈ S \ α and makes sure that no path in the run of

2 The 1
6

constant can be reduced and probably also eliminated by some more technical work,
which we do not find interesting enough.
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the ABW gets trapped in p: as long as p is a successor of itself, it keeps examining p.
Only when a chain of p’s ends, the NBW changes the examined state. The acceptance
condition then makes sure that the NBW does not get trapped in a rejecting state.

We study the expressive power of ordered automata and argue that the order con-
dition defines a fragment of automata for which the breakpoint construction can be
avoided. We also show that the n2n upper bound for the translation of ordered ABWs
to NBWs is tight, thus even for ordered automata one needs to augment the subset con-
struction with additional information. Finally, we show that for ordered universal Büchi
automata, we can replace the examined state by a subset of letters that are examined,
resulting in an alternative construction with blow-up 2n+m, where m is the size of the
alphabet. This is in contrast with many translations in automata-theory (c.f. [24], as well
as our lower bound proof here), where moving to an alphabet of a constant size does
not change the state blow-up.

2 Preliminaries

Given an alphabetΣ, an infinite word over Σ is an infinite sequencew=σ0·σ1 · · ·σ2 · · ·
of letters in Σ. For a word w and two indices t1, t2 ≥ 0, we denote by w[t1, t2] its
subword σt1 · σt1+1 · · ·σt2 . In particular, w[0, t1] is the prefix σ0 · σ1 · · ·σt1 of w, and
w[t2,∞] is its suffix σt2 · σt2+1 · · · .

For a given set X , let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨), where we also allow the
formulas true and false. For Y ⊆ X , we say that Y satisfies a formula θ ∈ B+(X)
iff the truth assignment that assigns true to the members of Y and assigns false to the
members of X \ Y satisfies θ. An alternating Büchi automaton on infinite words is a
tuple A = 〈Σ,Q, qin, δ, α〉, where Σ is the input alphabet, Q is a finite set of states,
qin ∈ Q is an initial state, δ : Q × Σ → B+(Q) is a transition function, and α ⊆ Q
is a set of accepting states. We define runs of A by means of infinite DAGs (directed
acyclic graphs).3 A run of A on a word w = σ0 · σ1 · · · is an infinite DAG G = 〈V,E〉
satisfying the following (note that there may be several runs of A on w).

– V ⊆ Q× IN is as follows. Let Ql ⊆ Q denote all states in level l. Thus, Ql = {q :
〈q, l〉 ∈ V }. Then, Q0 = {qin}, and Ql+1 satisfies

∧
q∈Ql

δ(q, σl).
– E ⊆

⋃
l≥0(Ql × {l}) × (Ql+1 × {l + 1}) is such that E(〈q, l〉, 〈q′, l + 1〉) iff

Ql+1 \ {q′} does not satisfy δ(q, σl).

Thus, the root of the DAG contains the initial state of the automaton, and the states
associated with nodes in level l + 1 satisfy the transitions from states corresponding to
nodes in level l. For a set S ⊆ Q, a node 〈q, i〉 ∈ V is an S-node if q ∈ S. The run
G accepts the word w if all its infinite paths satisfy the acceptance condition α. Thus,
in the case of Büchi automata, all the infinite paths have infinitely many α-nodes. We
sometimes refer also to co-Büchi automata, where a run is accepting iff all its paths
have only finitely many α-nodes. A word w is accepted by A if there a run that accepts
it. The language of A, denoted L(A), is the set of infinite words that A accepts.

3 In general, runs of alternating automata are defined by means of infinite trees. Since we are
going to deal only with acceptance conditions that have memoryless runs, we can work instead
with DAGs [4,11].
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We sometimes refer to automata in which the acceptance condition is defined with
respect to the transitions. Thus, such an automaton is a tuple A = 〈Σ,Q, qin, δ〉, where
the transition function is δ : Q× Σ → B+(Q × {⊥,�}), and a run is accepting if all
its paths contain infinitely many transitions with �.

When the formulas in the transition function of A contain only conjunctions, then
A is universal. When they contain only disjunctions, then A is nondeterministic, and
its runs are DAGs of width 1, where at each level there is a single node. Accordingly,
we sometimes refer to the transition function of a nondeterministic automaton as δ :
Q ×Σ → 2Q, and refer to its runs as sequences r = q0, q1, . . . of states. We extend δ
to sets of states, by letting δ(S, a) =

⋃
q∈S δ(q, a), and recursively to words in Σ∗, by

letting δ(S, ε) = S, and δ(S,w · σ) = δ(δ(S,w), σ), for every w ∈ Σ∗ and σ ∈ Σ. As
with words, we denote the subrun of r between positions t1 and t2 by r[t1, t2]. The set
of states that a run or a subrun r visits is denoted by states(r).

Finally, we denote the different classes of automata by three letter acronyms in
{D,N,U,A} × {B, C} × {W}. The first letter stands for the branching mode of the
automaton (deterministic, nondeterministic, universal or alternating); the second letter
stands for the acceptance-condition type (Büchi or co-Büchi); and the third letter indi-
cates that the automaton runs on words. We add the prefix TR to denote automata with
acceptance on transitions. For example, TR-UBW stands for a universal Büchi word
automaton with acceptance on transitions.

3 The Lower Bound

In this section we show that the breakpoint construction is accurate, in the sense that it
keeps the exact data required for translating an ABW to an NBW. Starting with an ABW
with state space Q and acceptance set α (in fact, we even start with a UBW), the NBW
generated by the breakpoint construction has a state for each pair 〈S,O〉, where S ⊆ Q
and O ⊆ S \ α. We show that the construction is optimal, as an equivalent NBW must,
essentially, have a different state corresponding to each pair 〈S,O〉. Our proof basically
shows that the NBW must have a state corresponding to every two such pairs, while for
simplicity reasons we ignore some cases, getting a constant factor. Formally, we prove
the following.

Theorem 1. There is a family of UBWs U4,U5, . . . over an alphabet of 8 letters, such
that for every n ≥ 4, the UBW Un has n states, and every NBW equivalent to Un has at
least 1

63n states.

In [24], Yan presents the “full automata approach”, suggesting to seek for lower bounds
on automata with unbounded alphabets, allowing every possible transition. Only then,
should one try to implement the required rich transitions via finite words over a fixed
alphabet. We adopt this approach, and further extend it. Not only do we assume an
alphabet letter for every possible transition, but we also choose whether the transition
visits the accepting states. For that reason, we start with TR-UBWs An, having the
acceptance condition on transitions rather than on states. Afterwards, we transform An

to the required UBW Un, which is over a fixed alphabet and has acceptance on states.
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The family of TR-UBWs. For every n≥4, we define the TR-UBW An=〈Γ,Q, δ, qin〉,
where Q={q1, q2, . . . , qn}, qin =q1, and Γ ={reach(S), award(S,O), unify(S) and
connect(S,O,O′):S ⊆ Q and ∅�=O,O′ � S} is an alphabet consisting of four types of
letters. The transition function δ :Q×Γ→2Q×{�,⊥} is defined as follows (see Figure 1):

– reach(S): reaching a subset S ⊆ Q from q1, without a visit in an accepting transi-
tion. Formally,

δ(q, reach(S)) =
{
S × {⊥} if q = q1
∅ otherwise.

– award(S,O): continuing the paths currently in S and awarding those in O with a
visit in an accepting transition. Formally,

δ(q, award(S,O)) =

⎧⎨⎩
〈q,�〉 if q ∈ O
〈q,⊥〉 if q ∈ S \O
∅ otherwise.

We also refer to award(S, ∅), defined in the same way.
– unify(S): connecting, without a visit in an accepting transition, all states in S to

all states in S. Formally,

δ(q, unify(S)) =
{
S × {⊥} if q ∈ S
∅ otherwise.

– connect(S,O,O′): connecting, without a visit in an accepting transition, all states
in O to all states in O′ and all states in S \O to all states in S. Formally,

δ(q, connect(S,O,O′)) =

⎧⎨⎩
O′ × {⊥} if q ∈ O
S × {⊥} if q ∈ S \O
∅ otherwise.

Consider an NBW Bn with state space U and acceptance set β equivalent to An. For
showing the correspondence between the states of Bn and all possible pairs 〈S,O〉, we
present a set of words in L(An) that will be shown to fully utilize the required state
space of Bn.

The words. For every n ≥ 4, consider the TR-UBW An defined above. We say that a
a triple 〈S,O,O′〉 ∈ 2Q×2Q×2Q is relevant if ∅ �= O,O′ � S. For every relevant triple
〈S,O,O′〉, we define the infinite word wS,O,O′ = reach(S)·reward(S,O,O′)ω, where
reward(S,O,O′) = unify(S) · award(S, S \O) · connect(S,O,O′) · award(S,O′).

Lemma 1. For all relevant triples 〈S,O,O′〉, the word wS,O,O′ is in L(An).

Since the words are in L(An), each has an accepting run rS,O,O′ of the equivalent NBW
Bn on it. We first show that these runs are distinct for different Ss.

Lemma 2. Let r1 and r2 be accepting runs of Bn on w1 = wS1,O1,O′
1

and w2 =
wS2,O2,O′

2
, respectively. If S1 �= S2, then states(r1[1,∞]) ∩ states(r2[1,∞]) = ∅.

Replacing a letter connect(S,O,O′) in the word wS,O,O′ with a letter
connect(S, P, P ′) (of another tuple) may result in a word out of L(An). We say
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award(S, {q2, q4, q5})reach(S)

unify(S) connect(S, {q3, q5}, {q3, q4})

q2q1 q4q3 q5

q2q1 q4q3 q5 q2q1 q4q3 q5

q2q1 q4q3 q5

Fig. 1. An illustration of the required actions, for S = {q2, q3, q4, q5}. The doubled transitions
are accepting.

that a tuple 〈S, P, P ′〉 is humbler than a tuple 〈S,O,O′〉 if the run of An on
award(S, S \O) ·connect(S, P, P ′) ·award(S,O′) visits an accepting transition along
every path that starts in a state in S.

Lemma 3. If 〈S, P, P ′〉 is humbler than 〈S,O,O′〉 then O ⊆ P and P ′ ⊆ O′.

Let r be a specific accepting run rS,O,O′ of Bn on wS,O,O′ . Since r goes infinitely often
along the subword reward(S,O,O′), there is some state q visited infinitely often at the
starting positions of the subword reward(S,O,O′). Since r is accepting, there are cases
in which r visits β between two such visits of q. That is, there are positions t1 and t2
such that r(t1) = r(t2) = q and states(r[t1, t2]) ∩ β �= ∅. We shall refer to the subrun
of r between positions t1 and t2 as the loop lS,O,O′ . Such a loop contains at least one
transition corresponding to connect(S,O,O′), going from some state u to some state
v. We refer to u and v as a bridge for 〈S,O,O′〉.
Assigning designated bridges to relevant triples. A bridge assignment is a function
f : 2Q×2Q×2Q → U×U . We say that a bridge assignmentf is good if for every relevant
triple 〈S,O,O′〉, the bridge 〈u, v〉 = f(〈S,O,O′〉) satisfies one of the following.

1. There is a transition from u to v on connect(S,O,O′) along lS,O,O′ , and for all
relevant triples 〈S, P, P ′〉, if there is a transition from u to v on connect(S, P, P ′),
then 〈S, P, P ′〉 is humbler than 〈S,O,O′〉, or

2. (Intuitively, we cannot choose u and v that satisfy the condition above, in which
case we choose a transition that visits an accepting state). For all pairs 〈u′, v′〉 ∈
U × U , if there is a transition from u′ to v′ on connect(S,O,O′) along lS,O,O′ ,
then there is a tuple 〈S, P, P ′〉 such that there is a transition from u′ to v′ on
connect(S, P, P ′) and 〈S, P, P ′〉 is not humbler than 〈S,O,O′〉, in which case
there is a transition from u to v on connect(S,O,O′) along lS,O,O′ that visits β. 4

4 Thus, u ∈ β or v ∈ β; we still describe the condition in terms of the transition as it makes the
transformation to an automaton with a fixed alphabet clearer.
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Consider a relevant tuple 〈S,O,O′〉. If we cannot assign to 〈S,O,O′〉 a pair 〈u, v〉
that satisfies Condition (1) above, then all transitions from u to v on connect(S,O,O′)
along lS,O,O′ are also transitions along loops that are not accepting. Since the loop
lS,O,O′ does visit β, one of these transitions should visit β, and f can assign it. Hence
we have the following.

Lemma 4. There is a good bridge assignment.

Next, we show that every pair of states can serve as the assigned bridge of at most two
relevant triples. Intuitively, since there are “many” relevant triples, this would imply
that “many bridges are needed”. Intuitively, it follows from the fact that, by Lemma 3,
if 〈S, P, P ′〉 is humbler than 〈S,O,O′〉 and 〈S,O,O′〉 is humbler than 〈S, P, P ′〉, then
O = P and O′ = P ′.

Lemma 5. For every good bridge assignment f and pair 〈u, v〉 ∈ U × U , we have
|f−1({〈u, v〉})| ≤ 2.

Fixed alphabet. The size of the alphabet Γ of An is exponential in n. From now on,
let us refer to the alphabet of An as Γn. The UBWs Un we are after have an alphabet
Σ of 8 letters, and a single additional accepting state. Using the 8 letters it is possible
to simulate each of the letters γ ∈ Γn by a finite sequence of letters (whose length
depends on γ) in Σ. In particular, the set of states visited when γ is simulated includes
an accepting state iff the transition taken when γ is read is accepting.

Lemma 6. There is a set Σ of size 8 such that for every n ≥ 4, there are functions
τ : Γn → Σ∗ and ρ : (Q ∪ {qacc}) × Σ → 2Q∪{qacc} such that for all q ∈ Q and
γ ∈ Γn, if δ(q, γ) = {〈q1, b1〉, . . . , 〈qm, bm〉}, then the following hold.

– ρ(q, τ(γ)) = {q1, . . . , qm}, and
– Let τ(γ) = σ1, . . . , σl. For all 1 ≤ i ≤ m, and sequences r0, . . . , rl such that

r0 = q, rj+1 ∈ ρ(rj , σj+1) for all 1 ≤ j < l, and rl = si, there is 0 ≤ j ≤ l such
that ri = qacc iff bi = �.

We can now complete the proof of Theorem 1. For every n ≥ 4, let Bn be an NBW over
the alphabet Σ equivalent to An. We can partition an input word that simulate the words
wS,O,O′ to blocks, where each block corresponds to a letter in Γn. We refer to a state
of Bn that appears after reading a block as a “big-state”. For every n ≥ 4, consider the
UBW Un with state space Q′ = {q1, q2, . . . , qn, qacc} that simulates An as described in
Lemma 6, and an equivalent NBW Bn. For every subset S ⊆ Q′ \{qacc} and nonempty
subsets O,O′ � S there is the loop lS,O,O′ of big-states in Bn. By Lemma 2, the loops
are distinct among the different S’s with respect to their big-states. Let XS be the set of
big-states in all the loops corresponding to a specific S. We know that Bn has at least
ΣS⊆Q′\{qacc}|XS | states.

Let f be a good bridge assignment. By Lemma 4, such an assignment f exists.
Consider a specific subset S ⊆ Q′ \ {qacc}. By Lemma 5, every pair of states in XS

can be the assigned bridge of at most two relevant triples in {S}× (2S \{S, ∅})× (2S \
{S, ∅}). There are (2|S|−2)2 such relevant triples. Thus, there are at least (2|S|−2)2/2
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pairs of states in XS . Therefore, there are at least 2|S|−2√
2

≥ 2|S|
2 states in XS . 5 Hence,

there are at least ΣS⊆Q′\{qacc}|XS | = ΣS⊆Q′\{qacc}
2|S|
2 = 1

23n states in Bn. Starting
with a UBW with n + 1 states, we get a state blow-up of 1

23n−1 = 1
63n.

Combined with the breakpoint construction, we have a tight bound for the transla-
tion of an ABW to an equivalent NBW. Applying the construction in [16] to UBW,
one ends up with a DBW. Since we described the lower bound using UBWs, we also
get a tight bound for alternation removal of UBW, and, dually, to determinization of
nondeterministic co-Büchi automata. Formally, we have the following.

Theorem 2. The tight bound for translating ABWs or UBWs to NBWs and for deter-
minization of NCWs is Θ(3n).

4 Ordered Automata

In Section 3 we showed that, in general, a blow-up of Ω(3n) cannot be avoided when
translating an ABW to an NBW. In this section we introduce and explore a subclass of
ABWs that can be translated to an equivalent NBW with a blow-up of only n2n.

Definition 1. An automaton A= 〈Σ,Q, δ, qin, α〉 is ordered if there exists a partial
order≤A on Q\α, such that for every q, q′∈Q\α andσ∈Σ, if q′∈δ(q, σ), then q′≤Aq.

Note that, equivalently, A is ordered if the only cycles consisting solely of states not in
α are self loops.

The order property is less restrictive than the very-weak condition of [10]. To demon-
strate this extra strength, we describe below the ordered ABW for the property “when-
ever there is request, then try and ack alternate until grant is valid” over the alphabet
Σ = 2AP , where AP = {try, ack, req, grant}. Since the ABW has a single rejecting
state, it is obviously ordered. Note that this property cannot be specified in LTL or in a
very weak ABW. Note also how the ordered ABW uses universal branches in order to
allow the try-ack cycle to be accepting. Indeed, fulfilling the eventuality is taken care
by a different copy of the ABW.

req
try ∧ ¬grant

¬req grant

grant

¬grantack

true

Fig. 2. An ordered ABW specifying “whenever there is request, then try and ack alternate un-
til grant is valid”. For a propositional assertion θ over AP , a transition labeled θ stands for a
transition with all the letters σ ∈ 2AP that satisfy θ.

The automata used in the lower-bound proof have the property that every two states
not in α are reachable from each other without an intermediate visit to α. In a sense,
this property is an antipode of the order property presented in Definition 1. We argue

5 This ≥ is not correct for a very small subset S, but since we accumulate over all the subsets,
the total sum does satisfy it.
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that violating the order property is what forces an equivalent NBW to associate its states
with two subsets of states of the ABW. Indeed, as we show below, an ABW that has
the order property can be translated to an equivalent NBW with an n2n blow-up. Still,
even for ordered automata, the NBW needs to maintain information beyond the subset
construction, thus the n2n translation is tight.

Theorem 3. The tight bound for translating an ordered ABW to an NBW is Θ(n2n).

Proof. We start with the upper bound. Let A = 〈Σ,Q, δ, qin, α〉 be an ordered ABW,
and let ≤A be an extension of the partial order on Q \ α to a total order on Q. Let
|Q| = n. The order ≤A allows us to identify Q with {1, 2, . . . , n} while preserving the
natural order. We define the equivalent NBW A′ = 〈Σ,Q′, δ′, q′in, α

′〉 as follows.

– Q′ ⊆ 2Q × (Q \α∪{0}) is such that 〈S, p〉 ∈ Q′ iff p ∈ (S \α)∪ {0}. Intuitively,
the set S follows the subset construction applied to A: when A is in a state in S ×
{0, . . . , n}, the word in the input should be accepted from all the states in S. Note
that since A is alternating, there may be several sets S′ that are possible successors
of a set S. Since the input word should be accepted from all the states in S, all the
paths that start in states in S should not get trapped in a state not in α. To ensure this,
A′ examines the states not inα in a round-robin fashion: at each moment it examines
a single state p ∈ S \ α and makes sure that no path in the run of A gets trapped in
p: as long as p is a successor of itself, it keeps examining p. Only when a chain of
p’s ends (either because p is not in S′ or because p is in S′ but is not a successor of
itself), A′ changes the examined state, to the maximal state in S′ that is smaller than
p. If no such state exists, A′ sets p to 0. As would be made clear below, this earns A′

a visit in the set of accepting states, and causes it to start a new round of checks.
– q′in = 〈{qin}, 0〉.
– In order to define the transition function, we first define a function next : 2Q ×

2Q × {0, . . . , n} × Σ → {0, . . . , n}, which returns the next state that should be
examined by A′. Formally, next(S, S′, p, σ) is (we fix max(∅) = 0):⎡⎣p if p �= 0 and S′ \ {p} �|= δ(p, σ)

max({q | q ∈ S′ \ (α ∪ {p}) ∧ q ≤ p}) if p �= 0 and S′ \ {p} |= δ(p, σ)
max(S′ \ α) if p = 0

Now, δ′(〈S, p〉, σ) = {〈S′, next(S, S′, p, σ)〉 | S′ |= δ(S, σ)}.
Thus, each transition guesses the next set S′ and updates the examined new state
accordingly.

– α′ = 2Q × {0}.

We now turn to the lower bound. The lower bound of Theorem 1 does not hold for
ordered UBWs as the UBWs Un used there are, obviously, not ordered. In order to
prove an Ω(n2n) lower bound, we argue that the actions reach() and award() can be
simulated by an ordered UBW over an alphabet whose size is linear in n, and that using
them we can point to words that force the NBW to have at least Ω(n2n) states.

For every n ≥ 4, consider the TR-UBW An defined in Section 3. Using the actions
reach() and award(), one can define for every set S ⊆ Q \ {qacc} the word ws =
reach(S)·reward(S)ω, where reward(S) = •q∈S award(S, {q}). These words belong
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to L(An), entailing for every S a distinct loop of states in an equivalent NBW. We
show that the restriction of An, having only the reach() and award() actions, can be
simulated by an ordered UBW On over an alphabet whose size is linear in n, and
that each such loop of big states in an NBW equivalent to On has at least |S| states,
providing the required lower bound of ΣS⊆Q|S| = Ω(n2n).

4.1 Fixed Alphabet

Usually, the alphabet size does not influence the state blow-up involved in automata
translation. This is also the case with the translation of ABWs to NBWs, as shown
in Section 3. Yet, ordered UBWs provide an interesting example of a case in which
the alphabet size does matter. While Theorem 3 provides an Ω(n2n) lower bound for
the translation of an ordered UBW to an equivalent NBW, we show below that the
translation can be done with only O(2n) state blow-up over a fixed alphabet.

Theorem 4. An ordered UBW with n states over an alphabet with m letters has an
equivalent DBW with 2m+n states.

Proof. Let A = 〈Σ,Q, δ, qin, α〉. We define A′ = 〈Σ,Q′, δ′, q′in, α
′〉, where

– Q′ = 2Q × 2Σ . Intuitively, the 2Q component is a simple subset construction. The
2Σ component has the task of maintaining a set of letters recently read from the
input word, with the property that all suffixes consisting entirely of letters from this
set are rejected by A.

– For a state 〈S, P 〉, we say that P detains S if there is a state q ∈ S \ α such that
for every letter σ ∈ P , we have q ∈ δ(q, σ). Now, for all states 〈S, P 〉 ∈ Q′ and
σ ∈ Σ, we define

δ′(〈S, P 〉, σ) =
[
〈δ(S, σ), P ∪ {σ}〉 if P ∪ {σ} detains S.
〈δ(S, σ), ∅〉 otherwise.

That is, the 2Q component follows the subset construction, while the current letter
is added to the 2Σ component as long as the required property (which is equivalent
to P ∪ {σ} detaining S) is retained. So a path in a run of A gets trapped in some
state q iff the 2Σ component manages to avoid the empty set thanks to q.

– q′in = 〈{qin}, ∅〉.
– α′ = 2Q × {∅}.

Remark 1. It is shown in [18] that the breakpoint construction is valid when applied
to alternating Büchi tree automata. Our lower bound proof clearly holds also for alter-
nation removal in tree automata. As for the upper bound, it is not hard to see that the
definition of ordered automata can be extended to the setting of tree automata, and that
both translations in Theorems 3 and 4 stay valid in this setting.
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simulation equivalences. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556,
pp. 157–169. Springer, Heidelberg (2002)
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Abstract. We investigate the linear orders belonging to the pushdown
hierarchy. Our results are based on the characterization of the pushdown
hierarchy by graph transformations due to Caucal and do not make any
use of higher-order pushdown automata machinery.

Our main results show that ordinals belonging to the n-th level are
exactly those strictly smaller than the tower of ω of height n + 1. More
generally the Hausdorff rank of scattered linear orders on the n-th level
is strictly smaller than the tower of ω of height n. As a corollary the
Cantor-Bendixson rank of the tree solutions of safe recursion schemes of
order n is smaller than the tower of ω of height n.

As a spin-off result, we show that the ω-words belonging to the second
level of the pushdown hierarchy are exactly the morphic words.

1 Introduction

The pushdown hierarchy (also known as the Caucal hierarchy) is a hierarchy of
families of infinite graphs having decidable monadic second-order (MSO) the-
ory. This hierarchy has several equivalent definitions and has received a lot of
attention in the last ten years (see [Tho03, Ong07] for surveys).

At the first level of this hierarchy are the transition graphs of the pushdown
automata which coincide with the prefix-recognizable graphs [Cau96]. Every level
can in a similar fashion be characterized as the transitions graphs of an extension
of pushdown automata called an higher-order pushdown automata [Mas76]. The
rewriting approach of [Cau96] was also extended to all levels in [Car05]. The
deterministic trees at level n correspond to the (trees solutions of) safe recursion
schemes of order (n− 1) [Cau02, KNU02].

An alternative characterization due to Caucal [Cau02, CW03] consists in con-
structing these graphs by applying MSO-interpretations and graph unfoldings
starting from finite trees. The level of a graph in this approach is given by the
number of times the unfolding operation has been applied.

Despite these various characterizations, one of the main question concerning
this hierarchy is to characterize the graphs inhabiting each level and in particular
to provide tools for showing that a structure does not belong to a certain level.
For instance, to the authors knowledge, the only proof of the strictness of the
pushdown hierarchy relies on the strictness of the hierarchy of languages accepted
by higher-order pushdown automata obtained in [Eng91]. A partial answer is
given in [Blu08] which provides a pumping lemma for these automata. However
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the bounds provided in the latter article are not tight and hence do not allow to
derive the strictness level by level.

This article subscribes to this line of research and characterizes linear orders
in the pushdown hierarchy.

Linear orders in this hierarchy have first been studied via recursion schemes. A
natural way to define a linear order starting from an ordered tree is to consider
its frontier i.e. its set of leaves ordered lexicographically. This approach was
initiated by Courcelle in [Cou78]. Two families of linear orders are of particular
interest : the well-orders (or ordinals) and the scattered orders.

At the first level of the hierarchy, the scattered frontiers of the regular de-
terministic tree (order-0 schemes) have an Hausdorff rank strictly less than ω
[Hei80] and the ordinals are known to be those strictly smaller than ωω.

At the second level, the frontiers of order-1 recursion schemes are also called
algebraic linear orders. Is was shown in [BÉ07, BÉ10] that algebraic ordinals are
precisely the ordinals strictly smaller than ωωω

. In [BÉ09], it is shown that any
scattered algebraic linear order has a Hausdorff rank strictly smaller than ωω.
They conjecture that similar bounds can be obtained for recursion schemes of
arbitrary orders. The results presented in this article prove this conjecture in
the case of safe recursion schemes. Our main tool is the characterization of the
pushdown hierarchy in terms of graph transformations.

In Section 3, we show that any linear order at level n is isomorphic to the
frontier of some order-(n− 1) safe recursion scheme. We use this result to show
that the ω-words on the second level are exactly the morphic words. In Section 4,
we show that ordinals at level n are exactly the ordinals below ω ↑↑ (n+1) (which
stands for the tower of ω of height n+ 1). The fact that all these ordinals are in
at level n was shown in [Bra09]. This result provides a self-contained proof of the
strictness of the pushdown hierarchy level by level. In Section 5, we show that
the Hausdorff rank of scattered orders on level n is strictly smaller than ω ↑↑ n.
As a corollary we obtain that the Cantor-Bendixson rank of the tree solutions
of safe recursion schemes of order n is smaller than ω ↑↑ n.

2 Preliminaries

2.1 Linear Orders and Trees

A linear order L = (D,<) is given by a set D together with a total order <
on D. We write L∗ for the linear order (D,<∗) where x <∗ y iff y < x. For
a detailed presentation of linear orderings, we refer to [Ros82]. L1 = (D1, <1)
is a subordering of L2 = (D2, <2), written L1 � L2, if D1 ⊆ D2 and <1 is
equal to <2 restricted to D1. The order type of L is the class of all linear orders
isomorphic to L. We denote by 0,1, ω and ζ the order type of the order with 0
and 1 element, (N, <) and (Z, <) respectively.

A colored linear order is a mapping from a linear order to a finite set of
symbols called colors.

A well-order is a linear order for which every non-empty subordering has a
smallest element. The order type of a well-order is called an ordinal. We note
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ε0 the smallest ordinal such that ε0 = ωε0 . For all n ≥ 0, we define ω ↑↑ n
by taking ω ↑↑ 0 = 1 and ω ↑↑ (n + 1) = ω(ω↑↑n) for n ≥ 0. In particular
ε0 = sup {ω ↑↑ n | n ≥ 0}. An ω-word is a colored linear order of order type ω.

Let (Σ,<) be a finite ordered alphabet. We write Σ∗ the set of words over
Σ. We write u ! v if u is a prefix of v and u⊥v if u �! v and v �! u. We denote
by u ∧ v the greatest common prefix of u and v. The lexicographic order on Σ∗

is defined by: u <lex v iff u ! v or u = waw′ and v = wbw′′ with a < b ∈ Σ.

A deterministic tree t over an ordered alphabet Σ is a prefix-closed subset
of Σ∗. If u ! v, we say that u is an ancestor of v or equivalently that v is
a descendant of u. Elements of t are called nodes and nodes without proper
descendant are called leaves. A colored deterministic tree t is a mapping from a
deterministic tree t to a finite set of symbols called colors.

A deterministic tree is pruned if it is binary (i.e. Σ = {0, 1} with the usual
order), full (i.e. every node is either a leaf or has two sons) and below every node
there is at least one leaf.

The frontier of a deterministic tree t, denoted Fr(t), is the linear order ob-
tained by considering the leaves of t with the lexicographic order. The colored
frontier of a deterministic tree t colored by Γ is the mapping from Fr(t) to Γ
associating to each leaf of t its color in t. In the following, whenever we talk
about a deterministic tree we always assume that the alphabet is ordered.

2.2 Graphs and Monadic Second-Order Logic

Let Σ and Γ be two finite sets of arc and vertex labels respectively. Vertex labels
are also called colors. A (labeled) graph G is a subset of V × Σ × V ∪ Γ × V
where V is a finite or countable arbitrary set. An element (s, a, t) of V ×Σ×V is
an arc of source s, target t and label a, and is written s

a−→ t if G is understood.
An element (c, s) ∈ Γ × V intuitively means that s is colored by c.

The set of all vertices appearing in G is its support VG. A sequence of arcs
s1

a1−→ t1, . . . , sk
ak−→ tk with ∀i ∈ [2, k], si = ti−1 is a path starting from s1. We

write s1
u−→ tk where u = a1 . . . ak.

A graph is deterministic if there are no arcs with the same label that share
the same source but not the same target (i.e., for all a ∈ Σ, if s a−→

G
t and s

a−→
G

t′

then t = t′). A graph G is a tree if there exists a vertex r called the root such
that for any vertex in the graph there exists a unique path from the root r to
this vertex.

Linear orders and deterministic trees and their respective colored versions can
be represented by graphs in a natural way. A linear order (L,<) is represented
by the graph {(u,<, v) | u, v ∈ L and u < v}. A deterministic tree t over Σ is
represented by the graph {(u, a, ua) | u, ua ∈ t and a ∈ Σ}. In the following, we
will not distinguish between these objects and their graph representations.

We consider monadic second-order (MSO) logic over graphs with the stan-
dard syntax and semantics (see e.g. [EF95] for a detailed presentation). We
write ϕ(X1, . . . , Xn, y1, . . . , ym) to denote that the free variables of the formula
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ϕ are among X1, . . . , Xn (monadic second-order) and y1, . . . , ym (first-order). A
formula without free variables is called a sentence.

For a graph G and a sentence ϕ, we write G |= ϕ if G satisfies the formula
ϕ. The MSO-theory of G is the set of sentences satisfied by G. For all for-
mula ϕ(X1, . . . , Xn, y1, . . . , ym), all sets U1, . . . , Un of nodes of G and all nodes
v1, . . . , vm of G, we write G |= ϕ[U1, . . . , Un, v1, . . . , vm] to express that ϕ holds
in G when Xi is interpreted as Ui for all i ∈ [1, n] and yj is interpreted as vj for
all j ∈ [1,m].

2.3 Graph Transformations

The unfolding Unf(G, r) of a graph G from a vertex r ∈ VG is the tree T s.t. for
all a ∈ Σ, π a−→ π′ ∈ T if and only if π and π′ are two paths in G starting from
r and π′ = π · (s a−→ t). Moreover for any color c ∈ Γ , (c, π) ∈ T if and only if π
is a path in G starting with r and ending in t with (c, t) ∈ G.

An MSO-interpretation is given by a family I = (ϕa(x, y))a∈Σ ∪(ϕc(x))c∈Γ of
MSO-formulas. Applying such an MSO-interpretation to a graph G we obtain the
graph I(G) labeled by Σ and colored by Γ and s.t. for all a ∈ Σ, (u, a, v) ∈ I(G)
iff G |= ϕa(u, v) and for all c ∈ Γ , (c, u) ∈ I(G) iff G |= ϕc(u).

An MSO-coloring is a particular MSO-interpretation that only affects colors
and leaves the arcs unchanged (i.e., for all a ∈ Σ, ϕa(x, y) = x

a−→ y).
Interpretations cannot increase the size of a structure. To overcome this weak-

ness the notion of a transduction was introduced [Cou94]. Let K = {k1, . . . , km}
be a finite set disjoint from Σ. A K-copying operation applied to G adds, to
every vertex of G, m out-going arcs labeled resp. by k1, . . . , kn all going to
fresh vertices. An MSO-transduction T is a K-copying operation followed by an
MSO-interpretation I.

2.4 MSO on Deterministic Trees

A non-deterministic tree-walking automaton (TWA) working on deterministic
trees over Σ colored by Γ is a tuple W = (Q, q0, F,Δ) where Q is the finite
set of states, q0 ∈ Q is the initial state, F is the set of final states and Δ is
the set of transitions. A transition is a tuple (p, c, q, a) with p ∈ Q and c ∈ Γ
– corresponding respectively to the current state and the color of the current
node – q ∈ Q and a ∈ ({↑, ε} ∪ Σ) – q being the new state and a the action
to perform. Intuitively ε corresponds to “stay in the current node”, ↑ to “go to
the parent node” and d ∈ Σ corresponds to “go to the d-son”. We say that W
accepts a pair of nodes (u, v) if it can reach v in a final state starting from u in
the initial state.

Proposition 1 ([Car06, Prop. 3.2.1]). For any deterministic tree t and any
MSO-formula ϕ(x, y), there exists an MSO-coloring M and a TWA A such that
t |= ϕ[u, v] iff A accepts (u, v) on M(t).
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2.5 The Pushdown Hierarchy

Following [Cau02], we define the pushdown hierarchy by iterating MSO-inter-
pretations and unfoldings starting from finite graphs.

Tree0 = the class of finite trees
Graphn = the class of graphs MSO-interpretable in a tree of Treen

Treen+1 = the class of the unfoldings of graphs in Graphn.

All the graphs in Graphn have a decidable MSO-theory. Furthermore the hi-
erarchy is unchanged if we require that any graph in Graphn is MSO-interpreted
in a deterministic tree in Treen [CW03]. We only recall the two properties that
will be used in this article. For a more detailed presentation, we refer the reader
to [Tho03].

Proposition 2 ([CW03]). For all n, the deterministic trees of Treen are closed
under MSO-coloring and Graphn is closed under MSO-transduction.

Proposition 3 ([Fra05, Car06]). Take t a deterministic tree in Treen, ϕ(X)
a MSO-formula and $ a fresh color symbol. If t |= ∃Xϕ(X) then there exists
U ⊆ t s.t. t |= ϕ[U ] and t ∪ {($, u) | u ∈ U} also belongs to Treen.

3 Frontiers of Trees in the Pushdown Hierarchy

In this section, we show that every (colored) linear order in Graphn is the (col-
ored) frontier of a pruned tree in Treen. Remark that as the lexicographic order
on a deterministic tree is definable in MSO logic, the frontiers of the determin-
istic trees in Treen belongs to Graphn. The following theorem establishes the
converse inclusion.

Theorem 1. Each colored linear order in Graphn is the frontier of a colored
pruned tree in Treen.

Proof (Sketch). To simplify the presentation, we focus on the uncolored case.
Let L = (D,<L) be a linear order in Graphn for some n ≥ 0.

Using the definition of Graphn and Prop. 1 and 2, we have that there exists a
colored deterministic tree t ∈ Treen and a TWA A such that D is a set of nodes
of t and for all u, v ∈ D, u <L v iff A accepts (u, v). We can w.l.o.g. assume that
D is the set of leaves of t. For instance, it is enough to add a new leaf below
every node of D and to modify A accordingly.

The following construction rearranges the leaves of t into a new deterministic
tree s(t) ∈ Treen so that lexicographic order on the leaves of s(t) matches <L

on the leaves of t. It is easy to adapt the definition of s(t) to obtain a pruned
tree (while remaining in Treen).

For all leaf u ∈ D and for all v � u ∈ D, we define s(u, v) as the maximal
length of a decreasing sequence u0 >L u1 >L . . . >L uk of leaves starting with
u0 = u and such that for i ∈ [0, k−1], ui∧ui+1 = v. Using a pumping argument
on A, we can show that there exists n0 ≥ 1 such that for every leaf u ∈ D and
all nodes v � u, s(u, v) ≤ n0.
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To every leaf u = u1 · · ·un, we associate the finite sequence s(u) in [1, n0]n

defined by s(u) = (s(u, ε), s(u, u1), . . . , s(u, u1 · · ·un−1)). The key property of this
sequence is that comparing two leaves u and v with <L is equivalent to comparing
s(u) and s(v) using the lexicographic order, i.e. u <L v iff s(u) <lex s(v).

Consider the tree s(t) over the finite alphabet [1, n0] obtained by taking the
prefix-closure of {s(u) | u leaf of t)}. The frontier of s(t) is isomorphic to (D,<L).
These definitions are illustrated on the finite example below; t is on the left and
s(t) is on the right; for each leaf x, we give its order for <L and the sequence s(x).

0
(1,1)

4
(3,2)

3
(2,3,2)

1
(2,1,1)

2
(2,2)

0

1

1

1
2

3

2

1 2 3

4

2

1
2

3

The last step of the proof is to show that s(t) also belongs to Treen. '(

We know from [Cau02] that the infinite terms in Treen are the terms solutions
of safe recursive schemes of order (n− 1) (we refer the reader to [KNU02] for a
formal definition of safe recursion schemes). Hence the previous theorem can be
restated as follows.

Corollary 1. A linear order colored by Γ is in Graphn if and only if it is the
colored frontier of some tree solution of a safe recursion scheme of order (n− 1)
with one terminal f of arity 2 and terminal of arity 0 for each c ∈ Γ .

As a first application of this result, we show that ω-words in Graph2 are precisely
the morphic words. A morphic word over a finite alphabet Γ is given by a letter
Δ ∈ Γ and two morphisms τ and σ : Γ )→ Γ ∗ such that τ(Δ) = Δ.u with
u ∈ Γ ∗. The associated ω-word is σ(τω(Δ)). For instance, the morphic word
abaab . . . a2i

b . . . is given by the morphisms τ and σ defined by: τ(Δ) = Δbaa,
τ(a) = aa, τ(b) = b and σ(Δ) = a, σ(a) = a, σ(b) = b.

A direct consequence of [Cau02, Prop. 3.2] is that the morphic words belong
to Graph2. For the other direction, by Corollary 1 we only need to consider
the frontier of trees solutions of order-1 schemes. As their frontier are of order
type ω, these trees have at most one infinite branch which is also their right-most
branch. This constraint leads to a strong normal form for the associated schemes
which easily allows to show that their colored frontiers are morphic words.

Theorem 2. The ω-words of Graph2 are the morphic words.

4 Ordinals

In this section, we characterize the ordinals in the pushdown hierarchy. In [Bra09],
ordinals below ω ↑↑ (n + 1) are shown to be in Graphn. We show that they are
the only ordinals in Graphn.
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By Theorem 1, we only need to consider frontiers of pruned trees. Pruned
trees with a well-ordered frontier are easily characterized.

Definition 1. A pruned tree is well-ordered if it does not have any infinite
branch containing infinitely many 0’s.

The frontier of a pruned tree t is an ordinal if and only if t is a well-ordered tree.

Theorem 3. For all n ≥ 0 and ordinal α, α ∈ Graphn if and only if α < ω ↑↑
(n + 1).

Proof (Sketch). As previously mentioned, we only need to show that for all n ≥ 0,
for any well-ordered tree t ∈ Treen, Fr(t) < ω ↑↑ (n + 1).

We proceed by induction on the level n. The case n = 0 is obvious. Let t be
a well-ordered tree in Treen+1. By definition of Treen+1, there exists a graph
G ∈ Graphn and a vertex r ∈ VG such that t = Unf(G, r). Furthermore, we can
assume w.l.o.g. that every vertex of G is reachable from r.

We are going to consider a particular spanning tree T of G rooted at r such
that T is MSO-interpretable in G.

For every node s ∈ VG, let �(s) be the minimal w ∈ {0, 1}∗ (for the lexico-
graphic order) such that r w−→

G
s. The existence of �(s) is ensured by the fact that

G unfolds from r into a well-ordered tree. The spanning tree T is defined as the
set of arcs {s a−→ t | �(t) = �(s) · a}.

For technical reasons, we consider the pruned tree T obtained by adding
dummy leaves below some nodes of T in such a way that their out-degree in T
is equal to their out-degree in G. As any infinite branch of T is also an infinite
branch of t, T is a well-ordered.

As T can be MSO-transducted in G, it belongs to Graphn together with its
frontier. Hence by induction hypothesis, Fr(T ) < ω ↑↑ (n + 1).

The key property that allows us to conclude is that Fr(t) ≤ ωFr(T ). To
establish this inequality, recall that ωFr(T ) is isomorphic to the set of (non-
strictly) decreasing sequences of ordinals below Fr(T ) with the lexicographic
order. Hence it is enough to show that there exists an injective mapping Φ from
the leaves of t to the finite decreasing sequences of leaves of T s.t. Φ preserves
the lexicographic order. Recall that a leaf u of t corresponds to a path πu in G
starting from r. Intuitively Φ associates to a leaf u of t the sequence of leaves of
T corresponding to the sequence of arcs in G \ T along the path πu.

r

2 3 4

5

1

0
...

...
...

......
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The above example shows from left to right G where dark arcs belong to T ,
then T and finally Unf(G, r). Here, Fr(Unf(G, r)) = ω2 + ω. '(

This result gives an alternative proof of the strictness of the pushdown hierarchy
and shows that ε0 does not belong to this hierarchy.

5 Scattered Linear Orders

In this section, we consider the scattered linear orders in the pushdown hierarchy.
A linear order is scattered if it does not contain any dense subordering. Ordinals
are a particular case of scattered linear orders. However, scattered orders are
not necessarily well-orderings; consider for instance ζ or ω + ω∗. For a detailed
presentation, we refer the reader to [Ros82].

For countable scattered orders, a more constructive characterization is pro-
vided by Hausdorff Theorem which also gives a measure of the complexity of
such orders. From now on, we only consider countable scattered orders.

Theorem 4 (Hausdorff [Hau08]). A countable linear order is scattered iff it
belongs to S=

⋃
α Vα where V0 = {0,1} and Vβ =

{∑
i∈ζ Li | ∀i, Li ∈

⋃
α<β Vα

}
.

The Hausdorff rank1 of a scattered order L, written rH(L), is the smallest α
such that L can be expressed as a finite sum of elements of Vα. For instance, we
have rH(ζ) = rH(ω) = rH(ω + ω∗) = 1.

The Hausdorff rank of the ordinal ωα is equal to α. In particular if α is written∑k
i=1 ω

αi with α1 ≥ . . . ≥ αk in Cantor’s normal form then rH(α) = α1.

5.1 Trees with Scattered Frontiers

An alternative characterization of countable scattered orders can be obtained by
considering trees having these orders as frontier. The countable scattered orders
are those which are frontiers of trees with only countably many infinite branches
also called tame trees. The following proposition is part of the folklore.

Proposition 4. Let t be a pruned tree, the following propositions are equivalent:

1. Fr(t) is a scattered linear order,
2. t has countably many infinite branches,
3. t does not contain any branching subset (i.e. a non-empty subset U ⊆ t such

that for all u ∈ U , u0{0, 1}∗ ∩ U �= ∅ and u1{0, 1}∗ ∩ U �= ∅).

The Cantor-Bendixson rank of a tree is an ordinal assessing the branching com-
plexity of a tree. We used a definition taken from [KRS05] which is an adaptation
of the standard notion [Kec94, Exercise 6.17]2.

1 The standard definition consider the smallest α such that L belongs to Vα. It is easy
to see that this two ranks can only differ by at most one.

2 See [KRS05, Rem. 7.2] for a comparison of the two notions.
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For X ⊆ t, we write d(X) for the set of nodes x ∈ X with at least two infinite
branches going through x in X . It is easy to see that if X is prefix closed then
so is d(X). Hence the operation can be iterated as follows:

d0(X) = X, dα+1(X) = d(dα(X)), dλ(X) =
⋂

α<λ

dα(X) for limit λ.

The Cantor-Bendixson rank (CB-rank) of t, noted rCB(t), is the least ordinal α
such that dα(t) = dα+1(t). The tree t is tame if and only if there exists α s.t.
dα = ∅. For tame trees t, we adopt a slightly modified version of the CB-rank,
denoted r̃CB(t), which is the smallest ordinal α such that dα(t) is finite. We have
r̃CB(t) ≤ rCB(t) ≤ r̃CB(t) + 1. For pruned tame trees, the CB-rank of the tree
and the Hausdorff rank of their frontier are tightly linked.

Proposition 5. For every pruned tame tree t,{
r̃CB(t) = rH(Fr(t)) if r̃CB(t) < ω,
r̃CB(t) = rH(Fr(t)) + 1 otherwise.

As the definition of the CB-rank does not use the relative order between the sons
of a node, the CB-rank only depends on the underlying unordered tree. Given
two deterministic trees t and t′, we denote by t ≡ t′ the fact that t and t′ are
isomorphic when viewed as unordered trees. Formally, t ≡ t′ if there exists a
bijection from t to t′ preserving the ancestor relation (i.e. for all u, v ∈ t, u ! v
iff h(u) ! h(v)).

Proposition 6. For any two pruned tame trees t and t′, if t ≡ t′ then r̃CB(t) =
r̃CB(t′) and rH(Fr(t)) = rH(Fr(t′)).

5.2 Hausdorff Rank of Scattered Orders in Graphn

From Thm. 3, we know that the pushdown hierarchy is inhabited by scattered
orders with a Hausdorff rank α for every α < ε0. This result can be strengthened,
by considering the successive powers of Z defined as follows:

Z0 = 1 Zβ+1 = Zβ · ω∗ + Zβ + Zβ · ω

Z
λ =

(∑
α<λ

Z
α.ω

)∗

+ 1 +
∑
α<λ

Z
α.ω for λ limit.

From [Ros82, Thm. 5.37], the Hausdorff-rank of Zα is α. Furthermore, Zα is
complete among the scattered orders of Hausdorff-rank α in the following sense: a
scattered order L has Hausdorff-rank less than α if and only if it is a subordering
of Z

α.

Proposition 7. For all n > 0 and any ordinal α < ω ↑↑ n, Zα is in Graphn.

For instance, the following deterministic graph is in Graph1. Its unfolding by
the leftmost vertex is in Tree2 and its frontier is Zω. Dashed arcs stand for arcs
labeled by 0, plain arcs stand for for arcs labeled by 1.
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. . .

Z2.ω∗

Z2.ω

Z2Z

1

As hinted by the previous proposition, we can show that the Hausdorff rank
of any scattered order in Graphn is strictly less than ω ↑↑ n. This bound is
obtained by reduction to the ordinal case using the following key proposition.

Proposition 8. For any pruned tame tree t, there exists a well-ordered tree t′ such
that t ≡ t′. Furthermore, if t belongs to Treen then t′ can also be chosen in Treen.

Proof (Sketch). Consider the following game played by two players Cantor and
Hausdorff by moving a token on t. The two players play in turn starting with
Cantor. Cantor moves the token to a node anywhere below the current position.
Hausdorff can only move the token to a son of the current position. Cantor loses
the game if the token reaches a leaf.

It is clear that Cantor wins the game if and only if t contains a branching
subset. As t is tame (and hence does not contain any branching subset), Cantor
loses the game.

From the point of view of Hausdorff this game is a reachability game. Hence
Hausdorff has a positional winning strategy: there exists a mapping ϕ : t )→
{0, 1} such that in any play where Hausdorff chooses his moves according to ϕ
(i.e. at node u, Hausdorff picks the ϕ(u)-son) is won by him.

Consider the tree tϕ obtained from t by swapping the two sons of any node u
such that ϕ(u) = 1. It can be shown that tϕ is a well-ordered tree : otherwise,
from an infinite branch in tϕ containing infinitely many 0’s, we could construct
an infinite play in t (i.e. won by Cantor) following ϕ.

It remains to prove that tϕ can be chosen in Treen if t is in Treen. A positional
winning strategy ϕ can be coded by two sets of vertices U0, U1 respectively
corresponding to set of nodes u s.t. ϕ(u) = 0 and ϕ(u) = 1. Consider an MSO-
formula ψ(X0, X1) such that t |= ψ[U0, U1] if and only if U0 and U1 encode a
positional winning strategy for Hausdorff . Let c0 and c1 be two color symbols
that do not appear in t. By Prop. 3, there exist V0 and V1 such that t |= ψ[V0, V1]
and such that t = t ∪ {(c0, v) | v ∈ V0} ∪ {(c1, v) | v ∈ V1} belongs to Treen.

The well-ordered tree tϕ0 corresponding to the strategy ϕ0 encoded by V0

and V1 belongs to Treen. As t belongs to Treen, there exists a graph G in
Graphn−1 and a vertex r of G such that t is isomorphic to Unf(G, r). Consider
the MSO-interpretation I which exchanges the out-going arcs of any vertex col-
ored by c1 and erases the colors c0 and c1. It is easy to check that Unf(I(G), r) is
isomorphic to tϕ0 . '(
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Theorem 5. For all n ≥ 0, every scattered linear order in Graphn has a Haus-
dorff rank strictly less than ω ↑↑ n.

Proof (Sketch). Let L be a scattered linear order in Graphn. By Thm. 1 and
Prop. 4, there exists a pruned tree t ∈ Treen such that L ≡ Fr(t). By Prop. 8
there exists a well-ordered tree t′ ∈ Treen such that t ≡ t′.

By Prop. 6, we have that rH(Fr(t)) = rH(Fr(t′)). As t′ is a well-ordered tree in
Treen, its frontier is an ordinal in Graphn. Hence by Thm. 3, Fr(t′) < ω ↑↑ n+1
and hence rH(Fr(t′)) < ω ↑↑ n. '(

Remark 1. Obviously the converse to this theorem is not true; there are uncount-
ably many scattered orders of Hausdorff rank less than ω ↑↑ n but there are only
countably many linear orderings in Graphn. Consider for instance a non-recursive
sequence (ai)i∈N in {1, 2}ω. The scattered order a0 + ζ + a1 + ζ + a2 + . . . has
Hausdorff rank 2. But as it has an undecidable MSO-theory, it does not belong
to the pushdown hierarchy.

5.3 Cantor-Bendixson Rank of Deterministic Trees

By Prop. 5, Thm. 5 can by directly translated on the CB-rank of pruned tame
trees in Treen. This leads to the following upper bound for all deterministic trees
in Treen.

Theorem 6. For every deterministic tree t ∈ Treen, rCB(t) ≤ ω ↑↑ n.

Proof (Sketch). For every deterministic tree t ∈ Treen, there exists a pruned
tree t′ ∈ Treen with the same CB-rank. The CB-rank of t′ is bounded by the
supremum of the CB-ranks of the tame subtrees of t′. As every subtree of t′ also
belongs to Treen, rCB(t) = rCB(t′) ≤ ω ↑↑ n. '(
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Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 113–124.
Springer, Heidelberg (2003)



The Serializability of Network Codes

Anna Blasiak� and Robert Kleinberg��

Department of Computer Science, Cornell University, Ithaca NY 14853
ablasiak@cs.cornell.edu

rdk@cs.cornell.edu

Abstract. Network coding theory is the most general study of transmis-
sion of information in networks whose vertices may perform nontrivial
encoding and decoding operations on data as it passes through the net-
work. A solution to a network coding problem is a specification of a coding
function on each edge of the network. This specification is subject to con-
straints that ensure the existence of a protocol by which the messages on
each vertex’s outgoing edges can be computed from the data it received on
its incoming edges. In directed acyclic graphs it is clear how to verify these
causality constraints, but in graphs with cycles this becomes more subtle
because of the possibility of cyclic dependencies among the coding func-
tions. Sometimes the system of coding functions is serializable — meaning
that the cyclic dependencies (if any) can be “unraveled” by a protocol in
which a vertex sends a few bits of its outgoing messages, waits to receive
more information, then send a few more bits, and so on — but in other
cases, there is no way to eliminate a cyclic dependency by an appropriate
sequencing of partial messages. How can we decide whether a given system
of coding functions is serializable? When it is not serializable, how much
extra information must be transmitted in order to permit a serialization?
Our work addresses both of these questions. We show that the first one is
decidable in polynomial time, whereas the second one is NP-hard, and in
fact it is logarithmically inapproximable.

1 Introduction

Network coding theory is the most general study of transmission of information
in networks whose vertices may perform nontrivial encoding and decoding op-
erations on data as it passes through the network. More specifically, a network
code consists of a network with specified sender and receiver edges and coding
functions on each edge. The classic definition of a network code requires that
each vertex can compute the message on every outgoing edge from the messages
received on its incoming edges, and that each receiver is sent the message it
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requires. In directed acyclic graphs, a network code that satisfies these require-
ments specifies a valid communication protocol. However, in graphs with cycles
this need not be the case; the definition does not preclude the possibility of cyclic
dependencies among coding functions. Therefore, in graphs with cycles we also
require that a network code is serializable, meaning it correctly summarizes a
communication protocol in which symbols are transmitted on edges over time,
and each symbol transmitted by a vertex is computed without knowledge of in-
formation it will receive in the future. The present paper is devoted to the study
of characterizing the constraint of serializability.

Motivation. The central question in the area of network coding is to determine
the amount by which coding can increase the rate of information flow as com-
pared to transmitting information without coding. One of the most important
open problems in network coding, the undirected k-pairs conjecture, states that
in undirected graphs with k sender-receiver pairs, coding cannot increase the
maximum rate of information flow; that is, the network coding rate is the same
as the multicommodity flow rate. Apart from its intrinsic interest, the conjec-
ture also has important complexity-theoretic implications: for example, if true,
it implies an affirmative answer to a 20-year-old conjecture regarding the I/O
complexity of matrix transposition [1]. In order to answer this question in the
affirmative we need to find upper bounds on the network coding rate. On graphs
with cycles, we must understand how the condition of serializability restricts the
set of feasible codes in order to find tight upper bounds.

Almost all efforts to produce upper bounds on the network coding rate have
focused on the following construction. We regard each edge of the network as
defining a random variable on a probability space and then associate each set
of edges with the Shannon entropy of the joint distribution of their random
variables. This gives us a vector of non-negative numbers, one for each edge set,
called the entropic vector of the network code. The closure of the set of entropic
vectors of network codes forms a convex set, and network coding problems can
be expressed as optimization problems over this set [10]. In much previous work,
tight upper bounds have been constructed by combining the constraints that
define this convex set. Thus, one might hope that the serializability of a network
code is equivalent to a set of constraints on its entropic vector. In this paper we
show that this is not the case, and we explore alternative characterizations of
serializability and their implications.

Our contributions. Our work is the first systematic study of criteria for serial-
izability of network codes. We find that serializability cannot be detected solely
from the entropic vector of the network code; a counter-example is given in Sec-
tion 3. Nevertheless, in Section 4 we give a polynomial-time algorithm to decide
the serializability of a network code. Associated to this decision problem is a nat-
ural optimization problem: given a set of coding functions, what is the minimum
number of extra bits of information that must be sent in order to make the given
coding functions serializable? We call this parameter the serializability deficit, and
in Section 5 we prove that computing it is NP-hard, and moreover, that the se-
rializability deficit is logarithmically inapproximable. We also prove a surprising
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subadditivity phenomenon involving the serializability deficit: the serializability
deficit for p parallel executions of a network code may be much less than p times as
great as the serializability deficit of the original code. In fact, for any δ > 0 there
exists a network code whose p-fold parallel repetition has a serializability deficit
less than δp times the serializability deficit of the original code.

Beyond providing an algorithm for deciding if a network code is serializable,
our work provides important insights into the property of serializability. In Sec-
tion 4 we define a certificate that we call a non-trivial information vortex whose
existence is a necessary and sufficient condition for non-serializability. For linear
network codes, an information vortex consists of linear subspaces of the dual of
the message space. For general network codes, it consists of Boolean subalgebras
of the power set of the message set. We prove a number of theorems about in-
formation vortices that suggest their role in the theory of network coding may
be similar to the role of fractional cuts in network flow theory. In particular,
we prove a type of min-max relation between serializable codes and information
vortices: under a suitable definition of serializable restriction it holds that every
network code has a unique maximal serializable restriction, a unique minimal in-
formation vortex, and these two objects coincide. Information vortices also play
a key role in our theorems about serializability deficits. For example, in Section 5
we show that information vortices allow us to prove limits on the severity of the
subadditivity phenomenon noted above: for every non-serializable linear code Φ,
the serializability deficit of p parallel executions of Φ grows as Ω(p), where the
constant inside the Ω(·) depends on Φ.

As mentioned earlier, one of the motivations for our work is the objective
of characterizing the information inequalities (i.e., constraints on the entropic
vector) implied by serializability. While our algorithm for deciding serializabil-
ity does not lead directly to such a characterization, we are able to provide
one for the special case in which the underlying network is a 2-cycle. In Sec-
tion 6, we present four inequalities and show that any entropic vector satisfying
those inequalities as well as Shannon’s inequalities can be realized by a serial-
izable network code. (Though structurally simple, the 2-cycle graph has been
an important source of inspiration for information inequalities in prior work,
including the crypto inequality [6], the informational dominance bound [4], and
the Chicken and Egg inequality [5].) Extending this characterization beyond the
2-cycle to general graphs is the most important open question left by our work.

Related work. For a general introduction to network coding we refer the reader
to [9,11]. Definitions of network coding in graphs with cycles were considered
in [1,3,4,5,7,9]. To make our exposition self-contained, we present an equivalent
definition in Section 2. In its essence it is the same as the “graph over time”
definition given in [9] but requires less cumbersome notation.

Although our work is the first to give precise necessary and sufficient con-
ditions for serializability, several prior papers gave necessary conditions based
on information inequalities. Large classes of such inequalities in graphs with
cycles were discovered independently by Jain et al. [6], Kramer and Savari [8],
and Harvey et al. [4]. These go by the names crypto inequality, PdE bound, and
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informational dominance bound, respectively. In various forms, all of them de-
scribe a situation in which the information on one set of edges completely de-
termines the information on another set of edges. A more general necessary
condition for serializability was presented in a recent paper by Harvey et al. [5];
we will henceforth refer to this information inequality as the Chicken and Egg
inequality; see Theorem 6. As far as we are aware, our work is the first to con-
sider the question of whether this set of inequalities (or any set of information
inequalities) provides a complete characterization of serializability.

2 Definitions

We define a network code to operate on a directed multigraph we call a sourced
graph, denoted G = (V,E, S).1 S is a set of special edges, called sources or
source edges, that have a head but no tail. We denote a source with head s by
an ordered pair (•, s). Elements of E ∪ S are called edges and elements of E are
called ordinary edges. For a vertex v, we let In(v) = {(u, v) ∈ E} be the set of
edges whose head is v. For an edge e = (u, v) ∈ E, we also use In(e) = In(u) to
denote the set of incoming edges to e.

A network code in a sourced graph specifies a protocol for communicating
symbols on error-free channels corresponding to the graph’s ordinary edges, given
the tuple of messages that originate at the source edges.

Definition 1. A network code is specified by a 4-tuple Φ = (G,M, {Σe}e∈E∪S ,
{fe}e∈E∪S) where G = (V,E, S) is a sourced graph, M is a set whose elements
are called message-tuples, and for all edges e ∈ E ∪ S, Σe is a set called the
alphabet of e and fe : M → Σe is a function called the coding function of e. If
e is an edge and e1, . . . , ek are the elements of In(e) then the value of the coding
function fe must be completely determined by the values of fe1 , . . . , fek

. In other
words, there must exist a function ge :

∏k
i=1 Σei → Σe such that for all m ∈ M,

fe(m) = ge(fe1(m), . . . , fek
(m)).

In graphs with cycles a code can have cyclic dependencies so Definition 1 does
not suffice to characterize the notion of a valid network code. We must impose a
further constraint that we call serializability, which requires that the network code
summarizes a complete execution of a communication protocol in which every bit
transmitted by a vertex depends only on bits that it has already received.

Below we define serializability formally using a definition implicit in [5].

Definition 2. A network code Φ is serializable if for all e ∈ E there exists a set
of alphabets Σ

(1...k)
e =

{
Σ

(1)
e , Σ

(2)
e , . . . , Σ

(k)
e

}
and a set of functions f

(1...k)
e ={

f
(1)
e , f

(2)
e , . . . , f

(k)
e

}
such that

1 In prior work it is customary for the underlying network to also have a special set of
receiving edges. Specifying a special set of receivers is irrelevant in our work, so we
omit them for convenience, but everything we do can be easily extended to include
receivers.
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1. f
(i)
e : M → Σ

(i)
e ,

2. ∀ m1,m2 ∈ M, if fe(m1) = fe(m2), then ∀i, f (i)
e (m1) = f

(i)
e (m2),

3. ∀ m1,m2 ∈ M, if fe(m1) �= fe(m2), then ∃i, f (i)
e (m1) �= f

(i)
e (m2), and

4. ∀ m ∈ M, e ∈ E, j ∈ {1 . . . k} there exists h
(j)
e such that f

(j)
e (m) =

h
(j)
e

(∏
ê∈In(e) f

(1..j−1)
ê

)
.2

We call such a Σ
(1...k)
e , f

(1...k)
e a serialization of Φ.

The function f
(i)
e describes the information sent on edge e at time step i. Item

2 requires that together the functions f
(1..k)
e send no more information than fe

and Item 3 requires that f
(1..k)
e sends at least as much information as fe. Item

4 requires that we can compute f
(j)
e given the information sent on all of e’s

incoming edges at previous time steps.
In working with network codes, we will occasionally want to compare two net-

work codes Φ, Φ′ such that Φ′ “transmits all the information that is transmitted
by Φ.” In this case, we say that Φ′ is an extension of Φ, and Φ is a restriction of Φ′.

Definition 3. Suppose that Φ=(G,M, {Σe}, {fe}) and Φ′ = (G,M, {Σ′
e}, {f ′

e})
are two network codes with the same sourced graph G and the same message set
M. We say that Φ is a restriction of Φ′, and Φ′ is an extension of Φ, if it is the
case that for every m ∈ M and e ∈ E, the value of f ′

e(m) completely determines
the value of fe(m); in other words, fe = ge ◦ f ′

e for some function ge : Σ′
e → Σe.

The entropic vector of a network code gives a non-negative value for each subset
of a network code. The value of an edge set F is the Shannon entropy of the
joint distribution of the random variables associated with each element of F , as
is formalized in the following definition.

Definition 4. Given a network code Φ = (G,M, {Σe}, {fe}), G = (V,E, S),
the entropic vector of Φ has coordinates H(F ) defined for each edge set F =
{e1, . . . , ej} ⊆ E ∪ S by:

H(F )=H(e1e2 . . . ej)=
∑

x1∈Σe1 ,x2∈Σe2 ,...,xj∈Σej

−p(x1, x2, . . . , xj) log(p(x1, x2, . . . , xj)),

where the probabilities are computed assuming a uniform distribution over M.

3 Serializability and Entropy Inequalities

Constraints imposed on the entropic vector alone suffice to characterize seri-
alizability for DAGs, but, the addition of one cycle causes the entopic vector
to be an insufficient characterization. We show that the entropic vector is not
enough to determine serializability even on the 2-cycle by giving a serializable
and non-serializable code with the same entropic vector.
2 Throughout this paper, when the operator

∏
is applied to functions rather then sets

we mean it to denote the operation of forming an ordered tuple from an indexed list
of elements.
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(X,Y)
(X,Z) (Y,Z)

(X,Y)

u v

(a) Serializable

(X+Y,Z)
(X,Z) (Y,Z)

(X+Y,Z)

u v

(b) Not Serializable

Fig. 1. Two network codes with the same entropy function

The two codes illustrated in Figure 1 apply to the message tuple (X,Y, Z),
where X,Y, Z are uniformly distributed random variable over F2. It is easy to
check that the entropy of every subset of corresponding source and edge functions
is the same, and thus the codes have the same entropic vector. The code in Figure
1(a) is clearly serializable: at time step one we send X on (u, v) and Y on (v, u);
then Y on (u, v) and X on (v, u). On the other hand, the code in Figure 1(b)
is not serializable because, informally, to send X + Y on the top edge requires
that we already sent X + Y on the bottom edge, and vice versa. A formal proof
that the code in Figure 2(b) is not serializable can be obtained by applying the
characterization of serializability in Theorem 3.

4 A Characterization of Serializability

4.1 Linear Codes

A characterization of serializability for linear network codes is simpler than the
general case because it relies on more standard algebraic tools. Accordingly, we
treat this case first before moving on to the general case. Throughout this section
we use M∗ to denote the dual of the message space over a field F. Additionally,
we use Te ⊆ M∗ to denote the row space of the matrix representing the linear
transformation fe. (It makes sense to talk about such a matrix because we can
pick a basis for M and each Σe.)

Though it is impossible to characterize the serializability of a network code in
terms of its entropic vector, computationally there is a straightforward solution.
In polynomial time we can either determine a serialization for a code or show
that no serialization exists using the obvious algorithm: try to serialize the code
by “sending new information when possible.” When we can no longer send any
new information along any edge we terminate. If we have sent all the information
required along each edge, then the greedy algorithm finds a serialization; other-
wise, we show that no serialization exists by presenting a succinct certificate of
non-serializability. Though our algorithm is straightforward, we believe that the
change in mindset from characterizing codes in terms of the entropic vector is an
important one, and that our certificate of non-serializability (see Definition 5)
furnishes an effective tool for addressing other questions about serializability, as
we shall see in later sections.
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Before giving a more formal description of the algorithm, we would like to
remark on one potential source of confusion due to the manner in which we
write examples in this paper. In the examples, the coding function on an edge
is not written as an abtract function fe, but rather, we take an fe, pick a basis,
and multiply the matrix representing fe by the message vector and write the
resulting code. Given the simple greedy algorithm stated above, and such a
picture representation, it is easy to think that the algorithm translates to “in
each step check to see if one of the symbols written on an edge can be sent.”
However, this is not what we want to do. Our choice of the matrix used to
represent fe was arbitrary, so if X,Y is written on an edge, it is equally valid to
write X,X + Y or Y,X + Y , and we need the greedy algorithm to reflect that.
Thus, our greedy algorithm needs to look at linear subspaces to determine if it
is possible to send new information along any edge.

Given a network code Φ = (G,M, {Σe}, {fe}), with coding functions over the
field F, our greedy algorithm (denoted henceforth by LinSerialize) constructs
a set of edge functions f

(1..k)
e and alphabets Σ

(1..k)
e for each edge. These objects

are constructed iteratively, defining the edge alphabets Σ(i)
e and coding functions

f
(i)
e in the ith iteration. Throughout this process, we maintain a pair of linear

subspaces Ae, Be ⊆ M∗ for each edge e = (u, v) of G. Ae is the linear span3

of all the messages transmitted on e so far, and Be is intersection of Te with
the linear span of all the messages transmitted to u so far. (In other words, Be

spans all the messages that could currently be sent on e without receiving any
additional messages at u.) In the ith iteration, if there exists an edge e′ such
that Be′ contains a dual vector xe′ that does not belong to Ae′ , then we create
coding function f

(i)
e for all e. The coding function of f (i)

e′ is set to be xe′ and its
alphabet is set to be F. For all other edges we set f

(i)
e = 0, and update the Ae’s

accordingly. This process continues until Be = Ae for every e. At that point, we
report that the code is serializable if and only if Ae = Te for all e. At the end, the
algorithm returns the functions f

(1..k)
e and the alphabets Σ

(1..k)
e , where k is the

number of iterations of the algorithm, as well as the subspaces {Ae}. If the code
was not serializable, then {Ae} is interpreted as a certificate of non-serializability
(a “non-trivial information vortex”) as explained below.

LinSerialize(Φ) runs in time polynomial in the size of the coding functions of
Φ. In every iteration we increase the dimension of some Ae by one. Ae is initial-
ized with dimension zero and can have dimension at most dim(Te). Therefore,
the algorithm goes through at most

∑
e∈E dim(Te) iterations of the while loop.

Additionally, each iteration of the while loop, aside from constant time assign-
ments, computes only intersections and spans of vector spaces, all of which can
be done in polynomial time.

To prove the algorithm’s correctness, we define the following certificate of
non-serializability.

3 If {Vi : i ∈ I} is a collection of linear subspaces of a vector space V , their linear span
is the minimal linear subspace containing the union

⋃
i∈I Vi. We denote the linear

span by +i∈IVi.
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Definition 5. An information vortex (IV) of a network code consists of a linear
subspace We ⊆ M∗ for each edge e, such that:

1. For a source edge s, Ws = Ts.
2. For every other edge e, We = Te ∩

(
+e′∈In(e)We′

)
.

An information vortex is nontrivial if We �= Te for some edge e.

We think of We as the information that we can send over e given that its incoming
edges, e′ ∈ In(e), can send We′ . In our analysis of the greedy algorithm, we
show that the messages the greedy algorithm succeeds in sending (i.e., the linear
subspaces {Ae}) form an IV and it is non-trivial if and only if the code isn’t
serializable.

In Section 5 we will see that information vortices provide a concise way for
proving the non-serializability of a network code.

The following theorem shows the relationship between IVs, serialization, and
the greedy algorithm.

Theorem 1. For a network code Φ = (G,M, {Σe}, {fe}), the following are
equivalent:

1. Φ is not serializable
2. LinSerialize(Φ) returns {Ae} s.t. ∃ e,Ae �= Te

3. Φ has a non-trivial information vortex

Proof. ¬2 ⇒ ¬1 If LinSerialize(Φ) returns {Ae} s.t. ∀e, Ae = Te then Φ is
serializable:
We show that the f

(1..k)
e , Σ

(1..k)
e created by LinSerialize(Φ) satisfy the condi-

tions in Definition 2:

1. f
(i)
e : M → Σ

(i)
e by construction.

2. The non-zero functions f
(i)
e form a basis for Te. Because linear maps are

indifferent to the choice of basis, if fe(m1) = fe(m2) then in any basis, each
coordinate of fe(m1) equals the corresponding coordinate of fe(m2), and
thus f

(i)
e (m1) = f

(i)
e (m2) for all i.

3. If fe(m1) �= fe(m2) then for any basis we choose to represent fe, the values
fe(m1), fe(m2) will differ in at least one coordinate, and thus ∃i, f (i)

e (m2) �=
f

(i)
e (m2).

4. When we assign a function f
(i)
e = xe we have that xe is in Be which guar-

antees it is computable from information already sent to the tail of e.

2 ⇒ 3 If LinSerialize(Φ) returns {Ae} s.t. ∃ eAe�=Te then Φ has a non-trivial IV.
We claim the the vector spaces {Ae} returned by LinSerialize(Φ) form a non-

trivial IV. {Ae} is non-trivial by hypothesis, so it remains to show it is an IV .
{Ae} satisfies property (1): For each S ∈ S, AS = TS by construction
{Ae} satisfies property (2): By induction on our algorithm, Be is exactly Te ∩(
+e′∈In(e)Ae′

)
. At termination, Be = Ae for all e ∈ E. So, we have that Ae =

Te ∩
(
+e′∈In(e)Ae′

)
.
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3 ⇒ 1 If Φ has a non-trivial IV then it isn’t serializable.
Suppose for contradiction that Φ = (G,M, {Σe}, {fe}), G = (V,E, S) is seri-

alizable. Let f (1..k)
e and Σ

(1..k)
e satisfy the conditions of definition 2. Let {We} be a

non-trivial IV for Φ.
We say that a function f

(j)
e has property P if there ∃ m1,m2 ∈ M such that

f
(j)
e (m1) �= f

(j)
e (m2) and m1,m2 ∈ W⊥

e . There must be such a function since our
IV is non-trivial and Σ

(1..k)
e , f

(1..k)
e is a serialization of Φ. Let i∗ be the smallest

i such that any function satisfies property P and suppose f
(i∗)
e∗ satisfies P with

messages m∗
1,m

∗
2.

By definition, We∗ = Te∗ ∩
(
+e′∈In(e∗)We′

)
, so m∗

1,m
∗
2 ∈ W⊥

e∗ implies that for
all e′ ∈ In(e∗), m∗

1,m
∗
2 ∈ W⊥

e′ . But, f (i∗)
e∗ can distinguish between m∗

1,m
∗
2 so at

least one of e′ ∈ In(e∗) must also be able to distinguish between m∗
1,m

∗
2 at a

time before i∗. Therefore, there exists some f
(i′)
e′ , i′ < i∗ that satisfies property

P , a contradiction to the fact that i∗ was the smallest such i.

4.2 General Codes

Our characterization theorem extends to the case of general network codes, pro-
vided that we generalize the greedy algorithm and the definition of information
vortex appropriately. The message space M is no longer a vector space, so in-
stead of defining information vortices using the vector space M∗ of all linear
functions on M, we use the Boolean algebra 2M of all binary-valued functions
on M. We begin by recalling some notions from the theory of Boolean algebras.

Definition 6. Let S be a set. The Boolean algebra 2S is the algebra consisting
of all {0, 1}-valued functions on S, under and (∧), or (∨), and not (¬). If
f : S → T is a function, then the Boolean algebra generated by f , denoted by
〈f〉, is the subalgebra of 2S consisting of all functions b ◦ f , where b is a {0, 1}-
valued function on T . If A1, A2 are subalgebras of a Boolean algebra A, their
intersection A1 ∩A2 is a subalgebra as well. Their union is not, but it generates
a subalgebra that we will denote by A1 + A2.

If S is a finite set and A ⊆ 2S is a Boolean subalgebra, then there is an equiva-
lence relation on S defined by setting x ∼ y if and only if b(x) = b(y) for all b ∈ A.
The equivalence classes of this relation are called the atoms of A, and we denote
the set of atoms by At(A). There is a canonical function fA : S → At(A) that
maps each element to its equivalence class. Note that A = 〈fA〉.
The relevance of Boolean subalgebras to network coding is as follows. A sub-
algebra A ⊆ 2M is a set of binary-valued functions, and can be interpreted as
describing the complete state of knowledge of a party that knows the value of
each of these functions but no others. In particular, if a sender knows the value
of f(m) for some function f : M → T , then the binary-valued messages this
sender can transmit given its current state of knowledge correspond precisely
to the elements of 〈f〉. This observation supplies the raw materials for our def-
inition of the greedy algorithm for general network codes, which we denote by
GenSerialize(Φ).
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As before, the edge alphabets and coding functions are constructed iteratively,
with Σ

(i)
e and f

(i)
e defined in the ith iteration of the main loop. Throughout

this process, we maintain a pair of Boolean subalgebras Ae, Be ⊆ 2M for each
edge e = (u, v) of G. Ae is generated by all the messages transmitted on e so
far, and Be is intersection of 〈fe〉 with the subalgebra generated by all messages
transmitted to u so far. (In other words, Be spans all the binary-valued messages
that could currently be sent on e without receiving any additional messages at
u.) In the ith iteration, if there exists an edge e′ such that Be′ contains a binary
function xe′ �∈ Ae′ , then we create a binary-valued coding function f

(i)
e for all

e, which is set to be xe′ if e = e′ and the constant function 0 if e �= e′. This
process continues until Be = Ae for every e. At that point, we report that the
code is serializable if and only if Ae = 〈fe〉 for all e. At the end, the algorithm
returns the functions f

(1..k)
e and the alphabets Σ(1..k)

e , where k is the number of
iterations of the algorithm, as well as the subspaces {Ae}. The pseudocode for
this algorithm GenSerialize(Φ) is presented in the full version of this paper [2].

If Φ has finite alphabets, then GenSerialize(Φ) must terminate because the
total number of atoms in all the Boolean algebras Ae (e ∈ E) is strictly in-
creasing in each iteration of the main loop, so

∑
e∈E |Σe| is an upper bound on

the total number of loop iterations. In implementing the algorithm, each of the
Boolean algebras can be represented as a partition of M into atoms, and all of
the operations the algorithm performs on Boolean algebras can be implemented
in polynomial time in this representation. Thus, the running time of GenSe-
rialize(Φ) is polynomial in

∑
e∈E |Σe|. In light of the algorithm’s termination

condition, the following definition is natural.

Definition 7. If G = (V,E, S) is a sourced graph, a generalized information
vortex (GIV) in a network code Φ = (G,M, {Σe}, {fe}) is an assignment of
Boolean subalgebras Ae ⊆ 2M to every e ∈ E ∪ S, satisfying:

1. As = 〈fs〉 for all s ∈ S;
2. Ae =

(
+ê∈In(u)Aê

)
∩ 〈fe〉 for all e = (u, v) ∈ E.

A GIV is nontrivial if Ae �= 〈fe〉 for some e ∈ E. A tuple of Boolean subalgebras
Γ = (Ae)e∈E∪S is a semi-vortex if it satisfies (1) but only satisfies one-sided
containment in (2), i.e.,

3. Ae ⊆
(
+ê∈In(u)Aê

)
∩ 〈fe〉 for all e = (u, v) ∈ E.

If Γ = (Ae) and Υ = (A′
e) are semi-vortices, we say that Γ is contained in Υ if

Ae ⊆ A′
e for all e.

In full version of this paper [2] we prove a series of statements showing that:

– Semi-vortices are in one-to-one correspondence with restrictions of Φ. The
correspondence maps a semi-vortex (Ae)e∈E∪S to the network code with
edge alphabets At(Ae) and coding functions given by the canonical maps
M → At(Ae) defined in Definition 6.

– There is a set of semi-vortices corresponding to serializable restrictions of Φ
under this correspondence. They can be thought of as representing partial
serializations of Φ.
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– There is a set of semi-vortices corresponding to GIV’s of Φ. These can be
thought of as certificates of infeasibility for serializing Φ.

– GenSerialize(Φ) computes a semi-vortex Γ which is both a GIV and a
partial serialization.

The statements combine to yield a “min-max theorem” showing that the every
network code has a maximal serializable restriction that coincides with its min-
imal GIV, as well as an analogue of Theorem 1; proofs of both theorems are in
full version of this paper [2].

Theorem 2. In the ordering of semi-vortices by containment, the ones corre-
sponding to partial serializations have a maximal element and the GIV’s have a
minimal element. These maximal and minimal elements coincide, and they are
both equal to the semi-vortex Γ = (Ae)e∈E∪S computed by GenSerialize(Φ).

Theorem 3. For a network code Φ with finite alphabets, the following are equiv-
alent:

1. Φ is serializable.
2. GenSerialize(Φ) outputs {Ae}e∈E s.t. ∀ e,Ae = 〈fe〉.
3. Φ has no nontrivial GIV.

5 The Serializability Deficit of Linear Network Codes

The min-max relationship between serializable restrictions and information vor-
tices (Theorem 2) is reminiscent of classical results like the max-flow min-cut
theorem. However, there is an important difference: one can use the minimum
cut in a network to detect how far a network flow problem is from feasibility,
i.e. the minimum amount by which edge capacities would need to increase in
order to make the problem feasible. In this section, we will see that determining
how far a network code is from serializability is more subtle: two network codes
can be quite similar-looking, with similar-looking minimal information vortices,
yet one of them can be serialized by sending only one extra bit while the other
requires many more bits to be sent.

We begin with an example to illustrate this point. The codes in Figure 2 ap-
ply to the message tuple (X1, . . . , Xn, Y1, . . . , Yn) where Xi, Yi are independent,
uniformly distributed random variables over F2. The codes in Figures 2(a) and
2(b) are almost identical; the only difference is that the code in Figure 2(a) has
one extra bit along the top edge. The code in Figure 2(a) is serializable: transmit
X1 along (u, v), then X1 +Y1 on edge (v, u), then X2 +Y1 on (u, v), ... ,Xn +Yn

on (v, u), and finally X1 + Yn on (u, v). On the other hand, the code in Figure
2(b) is not serializable, which can be seen by applying our greedy algorithm.

Thus, the code in Figure 2(b) is very close to serializable because we can
consider an extension of the code in which we add one bit4 to the edge (u, v) to
obtain the code in Figure 2(a) that is serializable. On the other hand, there are
4 In this section, for simplicity, we refer to one scalar-valued linear function on an

F-vector space as a “bit” even if |F| > 2.
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u v

(X1,X2,...,Xn) (Y1,Y2,...,Yn)

(X1,X2+Y1,X3+Y2,...,X1+Yn)

(X1+Y1,X2+Y2,...,Xn+Yn)

(a) Serializable

u v

(X1,X2,...,Xn) (Y1,Y2,...,Yn)

(X2+Y1,X3+Y2,...,X1+Yn)

(X1+Y1,X2+Y2,...,Xn+Yn)

(b) Not Serializable

Fig. 2. Two almost identical network codes

similar codes that are very far from being serializable. If we consider the code
with the same sources and f(u,v) = f(v,u) =

∏n
i=1 Xi+Yi, its edge alphabets have

the same size and its minimal information vortex is identical, yet any serializable
extension requires adding n bits. To completely characterize serializability we
would like to be able to separate codes that are close to serializable from those
that are far. This motivates the following definition.

Definition 8. For a network code Φ = (G,M, {Σe}, {fe}) and an extension
Φ′ = (G

′
,M, {Σ′

e}, {f
′
e}), the gap of Φ′, defined by γ(Φ′) =

∑
e∈E log2 |Σ′

e| −
log2 |Σe|, represents the combined number of extra bits transmitted on all edges
in Φ′ as compared to Φ. The serializability deficit of Φ, denoted by SD(Φ), is
defined to be the minimum of γ(Φ′) over all serializable extensions Φ′ of Φ. The
linear serializability deficit of a linear code Φ, denoted LSD(Φ), is the minimum
of γ(Φ′) over all linear serializable extensions Φ′.

Unfortunately, determining the serialization deficit is much more difficult than
simply determining serializability.

Theorem 4. Given a linear network code Φ, it is NP-hard to approximate the
size of the minimal linear serializable extension of Φ. Moreover, there is a lin-
ear network code Φ and a positive integer n such that LSD(Φn)/(nLSD(Φ)) <
O( 1

log2(n) ).

Both statements in the theorem follow directly from the following lemma, whose
proof appears in the full version of this paper [2].

Lemma 1. Given a hitting set instance (N,S) with universe N , |N | = n, sub-
sets S ⊆ 2N , an optimal integral solution k, and an optimal fractional solution
z1
q , z2

q , .., zn

q , with
∑n

i=1
zi

q = p
q , in polynomial time we can construct a linear

network code such that LSD(Φ) = k, but LSD(Φq) ≤ p.

The preceding results showed both that there are non-serializable codes with
large edge alphabets that become serializable by adding only one bit (example
in Figure 2) and that the serialization deficit can behave sub-additively when
we take the n-fold cartesian product of Φ (Theorem 4). This prompts the in-
vestigation of whether there exists a code that isn’t serializable, but the n-fold
parallel repetition of the code can be serialized by extending it by only a constant
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number of bits, and thus it is essentially indistinguishable from serializable. We
formalize this idea with the following definition.

Definition 9. A network code Φ is asymptotically serializable if limn→∞
1
nLSD(Φn)/LSD(Φ) = 0 where Φn is n-fold cartesian product of Φ with carte-
sian product define in the obvious way.

If one is using a network code to transmit infinite streams of data by chopping
each stream up into a sequence of finite blocks and applying the specified cod-
ing functions to each block, then an asymptotically serializable network code is
almost as good as a serializable one, since it can be serialized by adding a side
channel of arbitrarily small bit-rate to each edge of the network.

We show that any non-serializable linear code is not asymptotically serializ-
able via the following theorem.

Theorem 5. For a linear network code Φ = (G,M, {Σe}, {fe}) over a field F,
then LSD(Φn) ≥ cn where c is a constant dependent on Φ.

The proof of the theorem considers the alphabets of the n-fold product of Φ as ele-
ments of a tensor product space. Using this machinery, we show that information
vortices in the graph are preserved if we don’t increase the amount of information
we send down some edge by order n bits. More specifically, if {We} is a non-trivial
information vortex in Φ, and e is an edge such that dim(We) < dim(Te) = m,
then if we add some edge function f to every edge in the graph, the informa-
tion vortex remains non-trivial as long as the dimension of f is less than mn. A
complete proof is provided in full version of this paper [2].

6 A Characterization Theorem for the 2-Cycle

In order to use entropy inequalities to give tight upper bounds on network coding
rates, we need an enumeration of the complete set of entropy inequalities implied
by serializability, i.e. a list of necessary and sufficient conditions for a vector V
to be the entropic vector of a serializable code. (Note that it need not be the
case that every code whose entropic vector is V must be serializable.) For the
2-cycle we can enumerate the complete set of inequalities. In particular, we give
four inequalities that must hold for any serializable code on the 2-cycle: two are
a result of downstreamness which is a condition that must hold for all graphs
(it says that the entropy of the incoming edges of a vertex must be at least as
much as the entropy of the incoming and outgoing edges together), the third is
the Chicken and Egg inequality due to [5], and the fourth is a new inequality
that we call the greedy inequality. It is equivalent to being able to complete
the first iteration of our greedy algorithm in Section 4. We show that these
four inequalities together with Shannon’s inequalities are the only inequalities
implied by serializability, in the following sense:
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Theorem 6. Given a rational-valued entropic vector, V , of a 2-cycle on nodes
u, v, with source x into node u, source y into node v, and edges a = (u, v) and
b = (v, u), there exists a serializable code that realizes cV , for some constant
c, if and only if V satisfies Shannon’s inequalities, downstreamness (H(abx) =
H(bx), H(aby) = H(ay)), the Chicken and Egg inequality (H(ab) ≥ H(abx) −
H(x) + H(aby) − H(y)), and the greedy inequality (H(a) + H(b) > H(ax) −
H(x) + H(by) −H(y) when H(a) + H(b) �= 0).

Multiplication of the vector by a constant c is a natural relaxation because the
theorem becomes oblivious to the base of the logarithm we use to compute the
Shannon entropy.

The proof of Theorem 6 involves considering four cases corresponding to the
relationship between H(a) and H(ax), H(ay), H(x), H(y) and between H(b) and
H(bx), H(by)H(x), H(y). Each case requires a distinctly different coding func-
tion to realize the entropic vector. All the coding functions are relatively simple,
involving only sending uncoded bits, and the XOR of two bits. Most of the work
is limiting the values of coordinates of the entropic vector based on the inequali-
ties that the entropic vector satisfies. The proof of Theorem 6 is provided in full
version of this paper [2].

The big open question left from this work is whether we can find a complete
set of constraints on the entropic vector implied by the serializability of codes
on arbitrary graphs. We currently do not know of any procedure for producing
such a list of inequalities. Even if we had a conjecture for such a list, showing
that it is complete is likely to be quite hard. If we have more than three sources,
just determining the possible dependencies between sources is difficult because
they are subject to non-Shannon information inequalities.
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Abstract. Gossip, also known as epidemic dissemination, is becoming an in-
creasingly popular technique in distributed systems. Yet, it has remained a par-
tially open question: how robust are such protocols? We consider a natural
extension of the random phone-call model (introduced by Karp et al. [1]), and
we analyze two different notions of robustness: the ability to tolerate adaptive
failures, and the ability to tolerate oblivious failures.

For adaptive failures, we present a new gossip protocol, TrickleGossip, which
achieves near-optimal O(n log3 n) message complexity. To the best of our
knowledge, this is the first epidemic-style protocol that can tolerate adaptive fail-
ures. We also show a direct relation between resilience and message complexity,
demonstrating that gossip protocols which tolerate a large number of adaptive
failures need to use a super-linear number of messages with high probability.

For oblivious failures, we present a new gossip protocol, CoordinatedGossip,
that achieves optimal O(n) message complexity. This protocol makes novel use
of the universe reduction technique to limit the message complexity.

1 Introduction

Consider a distributed system consisting of n processes {p1, . . . , pn}, each connected
by a pairwise communication channel to every other process. Processes have unique
identifiers, but a process does not know the identifiers of the other processes until it has
exchanged information with them.

The problem of disseminating information efficiently and robustly can, roughly, be
described as follows. Each process pi begins with a rumor ri; eventually, each pro-
cess should learn as many rumors as possible. Moreover, this exchange of information
should be fault-tolerant: it should succeed even if some of the processes fail (i.e., crash),
and any non-failed process should succeed in disseminating its rumor to every other
non-failed process. This problem is a basic building block in many distributed settings,
such as distributed databases [2], group multicast [3,4], group membership [5], resource
location [6], and, recently, update dissemination for mobile nodes [7].

In this paper, we investigate the relationship between fault tolerance and efficiency.
We consider a natural extension of the random phone-call model, introduced by Karp
et al. [1], and develop protocols for both adaptive and oblivious failures:

1. Adaptive failures. Our first main result is a gossip protocol, TrickleGossip, that
achieves O(n log3 n) message complexity, with high probability, when failures are

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 115–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



116 D. Alistarh et al.

adaptive, i.e., when failures may depend on the history of the ongoing execution. The
protocol tolerates t < n/3 failures, and terminates in O(log2 n) rounds. The time com-
plexity is near-optimal–a simple modification of the result in [8] yields a lower bound
of Ω(logn/ log logn) rounds for the problem.

The challenge, when failures are adaptive, is that the “adversary,” which is dictat-
ing the failures, may select which processes to crash, and therefore can target specific
rumors and prevent them from being disseminated. For example, the adversary may
decide to “single out” a process pi, failing every process that pi sends a message to.
Unless process pi sends a large number of messages, the adversary can always pre-
vent pi’s rumor from reaching any other process. Our algorithm introduces a scheme
for processes to monitor the spread of their rumors, allowing isolated processes to send
more and more messages, while preventing too many processes from sending too many
messages. Thus the protocol alternates spreading rounds that attempt to disseminate ru-
mors, collection rounds that attempt to discover new rumors, and sampling rounds that
attempt to gauge how far rumors have spread.

We also show a trade-off between robustness and message complexity in the presence
of adaptive faults. More precisely, any protocol that tolerates n(1− ε) process crashes,
where 1 ≥ ε > 0 is a function of n, has message complexity Ω(n log (1/ε)), with high
probability. Of note, for small ε, e.g. ε < 1/ log logn, this results in a super-linear lower
bound on message complexity, the first such bound for gossip protocols in the presence
of adaptive faults.

2. Oblivious failures. Our second main result is a gossip protocol, CoordinatedGossip,
that achieves optimal O(n) message complexity, with high probability, when failures
are oblivious, i.e., independent of the actual execution (and hence independent of ran-
dom choices made by the processes). This implies that, asymptotically, we can achieve
the same level of efficiency in a crash-prone network as in a fault-free network.

The key idea underlying this algorithm is universe reduction: we randomly select a
small set of coordinators and use them to collect and then disseminate the rumors. The
main challenge here is the need for coordinators to work efficiently together; specifi-
cally, they must avoid duplicating work (i.e., messages). However, the coordinators do
not initially know the identities of the other coordinators, nor how to reach them. The
protocol builds simple, yet robust, overlay structures that allow coordinators to commu-
nicate amongst themselves, and allow processes to communicate with coordinators.

This result is perhaps surprising due to the Ω(n log logn) lower bound in [1] on
the message complexity of single-source gossip, in which a single process attempts
to distribute its message to all others. In [1], they consider a model in which, in each
round, each process can: (i) contact a random process and (ii) either push information
to the random process or pull information from it. By contrast, in this paper, we allow a
process to send more than one message per round, and to reply to processes that com-
municate with it at later rounds. The capacity to maintain a connection over multiple
rounds allows us to circumvent the lower bound and obtain significant improvements.

Discussion. While we assume, for simplicity, that processes have unique identifiers,
this assumption is not needed for any of the results in this paper. A process may simply
choose an identifier at random from a suitably large namespace (e.g., {1, . . . , Θ(n2)}),
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such that, with high probability, every process selects a unique identifier. All the results
in this paper continue to hold.

As a result, a process may not, a priori, know the identity of other processes in the
system. In such a model, any deterministic protocol requires Ω(n2) messages; the lack
of knowledge about the world precludes protocols based on specially crafted overlays,
such as expander graphs, as used previously in, e.g., [9]. Thus there is a significant dif-
ference in the efficiency of deterministic and randomized protocols when the adversary
is adaptive.

Another interesting aspect is the gap between the TrickleGossip protocol, which re-
quiresn−t ≥ 2n/3 correct processes, and the lower bound, which requiresn−t = o(n)
to yield a super-linear bound on message complexity. We conjecture that this gap can be
closed by making TrickleGossip more robust, i.e. requiring only o(n) correct processes,
while maintaining sub-quadratic message complexity.

Finally, the analysis in this paper focuses on the message complexity, while ignoring
the size of messages. The protocols have very low communication overhead, as mes-
sages contain only a small number of “control bits.” Thus, it seems likely that in the
context of using gossip to aggregate data (e.g., calculate the maximum initial rumor), it
would be possible, in addition, to achieve small message size.

2 Distributed System Model

We consider a synchronous distributed system consisting of n processes {p1, . . . , pn}.
An execution proceeds in synchronous rounds in which each process sends a set of
messages, receives a set of messages, and updates its state. Every pair of processes is
connected by a pairwise communication channel.

Faults. Up to t < n/3 processes may fail by crashing. When a process pi crashes in
some round r, any arbitrary subset of its round r messages may be delivered; process
pi then takes no further steps in any round > r. A process that does not fail is correct.
We think of the failures as dictated by an adversary.

Communication. Each process has a unique identifier. When the execution begins, a
process does not know the identity of any other process in the system1. The first time
that a process pi receives a message from another process pj , it learns the identity of pj ,
and hence it learns on which channel it can send messages to pj . Formally, each process
pi has access to an unordered set of n channels Si (including a channel connecting pi

to itself). In each round, each process can send a message on any subset of the available
channels, and, in addition, it can reply to any message received in a previous round
(using the channel on which that message was delivered).

Oblivious and Adaptive Failures. We distinguish two types of failures. When failures
are independent of the actual execution (and hence independent of the random choices

1 Often distributed algorithms assume that processes know the identity of their neighbors, since
learning this information requires only a single exchange of messages on each channel. How-
ever, this neighbor-discovery process requires Θ(n2) messages, and so we do not assume that
a process knows the identities of any other process a priori.
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made by the processes), we say that they are oblivious (i.e., the adversary is oblivious).
By contrast, when failures may depend on the ongoing execution, we say that they are
adaptive (i.e., the adversary is adaptive). Formally, when failures are oblivious, we
assume that the adversary fixes, prior to the execution, a failure pattern that specifies in
which round each faulty process fails, and which of its messages are delivered in that
round. When failures are adaptive, we assume that failures in round r are determined
by a failure function which takes as input the entire history of rounds 1, . . . , r − 1,
including the results of the random coin flips.

When we say that a protocol has message complexity M with probability p, this
means that for every failure pattern/function, the probability that more thanM messages
are sent in an execution is no greater than p. The term with high probability (w.h.p.)
means with probability at least 1 −O(n−γ), for any constant γ > 0.

3 Related Work

The idea of randomized rumor distribution dates back to Frieze and Grimmett [10], and
later, Pittel [11] and Feige [12], who showed that one can distribute a single rumor in a
complete graph with n vertices in time logn + lnn + o(1), as well as in other types of
random graphs. Demers et al. [2] showed that rumor spreading can be used for efficient
distributed database maintenance.

In a landmark paper, Karp, Schindelhauer, Shenker and Vöcking [1] considered the
problem in the random phone-call model. They show how to distribute a rumor (in the
presence of an oblivious adversary) using O(log n) rounds and O(n log logn) mes-
sages, which is optimal in the absence of addresses. Moreover, they show that, even
using addresses, no algorithm is simultaneously time and message optimal.

The results of [1] inspired a significant amount of research. Elsässer et al. [13, 14,
15, 16] study extensions of the random phone-call model for various types of random
graphs. In [17, 18], Doerr et al. consider quasirandom rumor spreading, in which each
process has a list of its neighbors through which it is allowed to cycle when sending the
rumor. Surprisingly, the time bounds of [10] and [12] are still optimal in this augmented
model. In [19], the robustness of the quasirandom model is analyzed when there are
probabilistic transmission failures. All these papers consider an oblivious adversary.

The model in this paper can be seen as an enrichment of the random phone-call
model of Karp et al. [1]. Of note, this allows us to achieve O(n) message complexity
for oblivious failures, and it allows us to develop protocols for a stronger, adaptive
adversary. Compared to the original model of [1], and the later variations in [13,15,17],
our model is stronger in that it allows processes to send an arbitrary number of messages
per round, and it allows processes to reply in later rounds to messages received in earlier
rounds. Note that we consider gossip (i.e., n rumors to be spread), rather than broadcast.

There has also been much work on gossip when addresses are available, i.e., when
processes know in advance the identities of all the other processes in the system. Kowal-
ski et al. (e.g. [8, 9]) present deterministic algorithms (based on expander-graph con-
structions) that ensure the dissemination of rumors within time O(polylog n) using
O(n polylog n) total messages. These algorithms cannot be used when a process does
not know the addresses of the other processes, or more generally, when the names
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are not derived from a fixed namespace. Earlier research [20] determined time and
cost trade-offs for gossip, when only one neighbor is contacted per round. Georgiou
et al. [21] provided upper and lower bounds for the complexity of gossip in an asyn-
chronous environment. A survey of prior work on gossip can be found in [22].

A key aspect of the CoordinatedGossip algorithm, presented in Section 6, is the tech-
nique of universe reduction, which has been an important tool in developing distributed
algorithms. Of particular note are recent algorithms by Ben-Or et al. [23], Kapron et
al. [24], King et al. [25, 26] that use universe reduction to solve Byzantine agreement.

In a recent paper [27], Gilbert and Kowalski use the universe reduction technique to
develop a crash-tolerant consensus protocol that has optimal communication complex-
ity: it uses only O(n) bits of communication. In the same paper, they discuss how these
techniques can be used to solve gossip using O(n) messages. The model in that paper,
however, assumes that processes know the identities of their neighbors; as discussed in
Section 2, this assumption adds a hidden implicit Ω(n2) message cost which we avoid
in this paper. Thus, we cannot take advantage of the work sharing techniques discussed
in [27]; instead a more careful scheme is needed to avoid sending too many messages.

4 Gossip against an Adaptive Adversary

In this section, we present a gossip algorithm, TrickleGossip, that tolerates adaptive fail-
ures. The algorithm ensures, with high probability, that each correct process receives the
rumors of other correct processes. It uses O(n log3 n) messages, with high probability,
and terminates in O(log2 n) communication rounds. Previous work [8] implies that the
round complexity is optimal, up to logarithmic factors.

4.1 Algorithm Description

The execution of the algorithm is divided into two epochs: the dissemination epoch and
the confirmation epoch. We proceed to describe the structure of each epoch. Let β be a
large integer constant, and let α = 7/12.

The Dissemination Epoch. The dissemination epoch consists of log n phases, where
each phase is 3 logn+1 rounds, yielding a round complexity for the epoch ofO(log2 n).

In the first round of each phase, each process sends its own rumor to other processes.
Each process is initially unmarked. In the first round of phase i, each unmarked process
sends its rumor to a set of 2i logn randomly chosen processes. (If 2i logn ≥ n, then all
n processes are chosen). Each process then gathers all the distinct rumors it has received
thus far into a packet. In each of the following logn rounds of phase i, each process,
whether marked or unmarked, sends its packet to logn randomly chosen neighbors.

Finally, during the remaining 2 logn rounds of phase i, unmarked processes perform
a testing process. In each odd testing round, each unmarked process sends a query
to a random set of 2iβ logn processes (or all n processes, if 2iβ logn ≥ n). In the
even testing rounds, each process that received a query sends a reply with the list of
rumors it has received. An unmarked process changes its state to marked if at least
min(α2iβ logn, n− t) of the processes that were contacted during the previous (even)
round had received its rumor. Once a process is marked, it stops sending queries, but
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continues replying to queries from other processes. (However, it continues to send a
packet during rounds 2, . . . , logn + 1 in the first part of each phase.) Once a process is
marked, it remains marked for the rest of the dissemination epoch.

The algorithm guarantees that, during the dissemination epoch, the number of un-
marked processes is roughly halved in every phase–we say that information “trickles”
down to the last uninformed processes.

The Confirmation Epoch. This epoch also consists of logn phases, each of which
consists of 2 logn rounds. At the beginning of the epoch, all processes are again desig-
nated unmarked. In each odd round of phase i, each unmarked process sends a query to
a random set of 2iβ logn processes (or all n processes, if 2iβ logn ≥ n). In even
rounds, each process that received a query sends a reply with the list of rumors it
has received. An unmarked process changes its state to marked if it receives at least
min(α2iβ logn, n− t) responses. At the end of the epoch, each process delivers all the
rumors it has received at any point.

4.2 Analysis

We first show that every process delivers every rumor belonging to a correct process,
w.h.p. Second, we show that the algorithm sends O(n log3 n) messages, w.h.p. The
bound on round complexity follows trivially from the structure of the algorithm. Due to
space restrictions, we defer the complete proofs to the the full version of the paper [28].

To simplify the analysis, we will consider executions of the algorithm where t <
n/κ, where κ is a (large) constant. We can “boost” the resiliency from t < n/κ failures
to t < n/3 failures, without affecting its asymptotic complexity, by re-running the
protocol κ times; during at least one of these κ executions, by the pigeonhole principle,
there are no more than n/κ new failures. (Failures during a previous execution of the
protocol have no affect on a later execution.)

We first show that by the end of the first epoch, every rumor belonging to a non-
crashed process is spread to > n/2 processes w.h.p. This follows since a process pj

is marked only when a large fraction of the randomly sampled query respond that they
have already received pj’s rumor; this implies that at least a majority of all processes
have received pj’s rumor, w.h.p. Finally, every process is eventually marked, since in
the last phase an unmarked process sends its rumor directly to all n other processes.

Lemma 1 (Spreading). For every correct process, there is a majority of correct pro-
cesses that have received its rumor during the dissemination epoch, w.h.p.

During the second epoch, w.h.p., every rumor belonging to a correct process is delivered
to every other correct process by the majority that holds it at the end of the first epoch.

Lemma 2 (Delivery). By the end of the confirmation epoch, every correct process has
received every rumor initiated by a correct processes, with high probability.

We now examine the message complexity of TrickleGossip, showing that the algorithm
sends O(n log3 n) messages, w.h.p. The argument is based on the observation that, in
every phase of an epoch, the number of processes that remain unmarked is roughly
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halved. This implies that the number of messages sent in a phase is always bounded by
O(n log2 n), w.h.p. Finally, since there are O(log n) phases in an execution, we obtain
that the total number of messages sent is O(n log3 n), w.h.p.

In the following analysis, we consider, without loss of generality, that the adversary
makes its choices of which process to fail at each round r precisely at the beginning
of round r by inspecting the local state and the randomly chosen destinations for each
process that has not yet been crashed (by the beginning of the previous round r − 1).
This simplifies the exposition, without decreasing the power of the adversary.

The first lemma shows that during the dissemination epoch, the number of unmarked
processes is halved in each phase, w.h.p. This lemma is the main technical contribution
in this section. We refer the interested reader to the full version of the paper [28] for a
complete proof.

Lemma 3 (Dissemination Epoch). At the beginning of phase number i of the first
epoch, the number of unmarked processes is at most n/2i−1, w.h.p.

Proof. (Sketch) We proceed by induction on the phase number i. The case i = 1 is
trivial. For the induction step, we assume that, at the beginning of phase number i, there
are at most n/2i−1 unmarked processes.

Let Ui be the set of processes that are unmarked at the beginning of phase i. We
analyze the spread of rumors in Ui during the phase. Recall that, in the first round of the
phase, each unmarked process sends its rumor to 2i logn randomly chosen processes.
We say that a rumor from a process in Ui is fast in round r1 if it is held by at least
2i−3 logn processes that have not crashed before the beginning of the second round
of the phase. We first observe that, by failing f1 processes during the first round of
the phase, the adversary may prevent at most Θ(f1/2i) processes from being fast. We
denote the set of fast rumors for round r1 by Mi.

Fix some sufficiently small δ < 1 and ε < 1. In the second step of the analysis,
we argue that in the subsequent rounds 2, . . . , logn + 1, if the adversary fails f2 pro-
cesses, then it can stop at most Θ(f2) packets from each spreading to at least n(α+ 2ε)
processes, w.h.p. We say that a packet is fast in round r of this part, if it is sent by at
least min[(δ logn)r, n(α + 2ε)] processes that do not crash before round r + 1. By a
counting argument, we see that by crashing fr processes in a round r, the adversary
may stop at most Θ(fr) rumors from being fast in round r. Therefore, for each rumor
that is fast throughout this part of the phase, we are analyzing an epidemic process with
a growth rate of Θ(log n). Thus, by round logn+1, each fast rumor has reached at least
(α + 2ε)n processes. On the other hand, the adversary may stop the growth for indi-
vidual rumors, by failing processes at every round. A careful analysis of this procedure
shows that, by failing f2 processes during rounds 2, . . . , logn + 1, the adversary can
stop at most a total of Θ(f) packets from being spread to at least n(α + ε) processes.

We now combine the previous two steps: since each rumor in Mi is distributed into
at least 2i−3 logn packets at the end of the first round in this phase, the adversary has to
stop all packets containing the rumor from being fast in order to prevent the rumor from
being spread to a large fraction of processes. On the other hand, since the destinations
in the first round of the phase are chosen at random, a packet contains at most Θ(log n)
rumors from Mi, w.h.p. (by a Chernoff bound). Therefore, by failing f processes, and
hence delaying O(f) rumors in round 1 and O(f) packets in rounds 2, . . . , logn+1, the
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adversary can prevent at most Θ(f log n/(2i−3 logn)) ≤ Θ(f/2i) rumors from being
spread to at least n(α+ ε) processes each, w.h.p. Finally, we conclude that, there are at
most n/2i+1 rumors started by processes in Ui that are not spread to at least n(α + ε)
processes. So at least |Ui| − n/2i+1 rumors are spread to at least n(α + ε) processes.

The third and final step shows that there are at most n/2i+1 processes associated to
these |Ui| − n/2i+1 rumors that are not marked during the testing part of the phase,
with high probability. This concludes the proof of the induction step, and of the lemma.

The final lemma in the proof of the message complexity upper bound proves that the
number of non-marked processes is halved in each phase of the confirmation epoch as
well. The proof is similar to that of Lemma 3.

Lemma 4 (Confirmation Epoch). At the beginning of phase i of the second epoch, the
number of unmarked processes is not more than n/2i−1, with high probability.

5 Relating Fault-Tolerance to Message Complexity

In this section, we prove a lower bound on the message complexity of any gossip algo-
rithm that tolerates t < n(1 − ε) process crashes. We assume that ε is a function of n,
with 1 > ε(n) ≥ 0. For the rest of this section, we omit the argument of the ε(n) func-
tion, and simply write ε. Theorem 1 focuses on the problem of gossip; the argument can
be adapted to yield a similar result in the case of reliable broadcast in which a rumor
delivered by a correct process has to be delivered to every correct process.

Theorem 1 (Message Complexity Lower Bound). Any algorithm that tolerates t <
n(1 − ε) process crashes, and guarantees gossip with constant positive probability,
needs to send Ω(n log(1/ε)) messages, w.h.p.

Proof. (Sketch) We consider an algorithm A that solves gossip with constant positive
probability, tolerating n(1−ε) failures, and show that there exists an adversarial strategy
which forces the algorithm to generate Ω(n log(1/ε)) messages w.h.p. The adversary
constructs an execution as follows: it crashes any process that receives a new rumor,
and it crashes every process immediately after it generates n/4 messages. We split the
execution into phases, with the property that, in each phase, the adversary crashes ex-
actly half of the processes that were not crashed at the end of the previous phase. Our
main claim is that, w.h.p., the algorithm sends Θ(n) messages in each phase. The main
difficulty in proving the claim is that the random variables corresponding to messages
sent are not independent; however, we are able to show that they are negatively associ-
ated, in the sense of [29], which allows the use of tail bounds. Finally, we show that,
in order to achieve gossip with constant probability, the algorithm needs to make the
system progress for Ω(log(1/ε)) phases, w.h.p.

6 Gossip and Oblivious Failures

In this section, we present the CoordinatedGossip protocol which sends onlyO(n) mes-
sages, w.h.p. The key underlying idea is to elect a small set of Θ(log n) coordinators,
who then collect and disseminate the rumors. There are two main challenges:
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1. Intra-coordinator communication: Since the coordinators are selected independently,
they do not initially know how to contact the other coordinators. Therefore the coordi-
nators select a set of O(

√
n log2 n) intermediaries that form an overlay connecting all

the coordinators.
2. Coordinator discovery: In order to collect and disseminate the rumors, the coordina-
tors need to efficiently contact all the processes in the system. Each coordinator sending
a message to each process would be too expensive, requiring Θ(n logn) messages. In-
stead, each coordinator selects Θ(n/ logn) relays, leading to Θ(n) relays in total. To
collect the rumors, each process forwards its rumor to a relay, which can then forward
it to a coordinator. To disseminate rumors, the process is reversed.

We first present the protocol in Section 6.1. We then analyze the message complexity
in Section 6.2. All omitted proofs can be found in the full version of this paper.

6.1 CoordinatedGossip

We split the presentation of the CoordinatedGossip protocol in three parts. First, we
describe a set of initial steps in which we select three special sets of processes: coordi-
nators, intermediaries, and relays. We then describe how the rumors are collected, and
finally how rumors are disseminated.

Selecting processes. In the first round, each process decides whether to be a coordina-
tor, an intermediary, a relay, or none of the above. (Note that a process can play more
than one role.) A. Coordinators: Each process decides to be a coordinator with proba-
bility Θ(log n/n). B. Intermediaries: Each coordinator chooses Θ(

√
n logn) processes

at random, and sends each an intermediary-election message; each process that receives
such a message decides to be an intermediary. We say that a process is a correct inter-
mediary if it receives an intermediary-election message and does not fail. For a given
intermediary, we define the intermediary’s neighbors to be the set of processes from
which it received intermediary-election messages. C. Relays: Each coordinator partic-
ipates in c relay elections, for some constant c. That is, for every � ∈ {1, . . . , c}, each
coordinator chooses Θ(n/ logn) processes at random,and sends each a relay-election-
� message. If, for any � ∈ {1, . . . , c}, a process receives exactly one relay-election-�
message, then it decides to be an �-relay. We define the �-parent of a relay to be the
coordinator that sent it a unique relay-election-� message. We say that a process is a
good relay for � if: (i) it receives exactly one relay-election-�message, for some �; (ii) it
is correct; and (iii) its �-parent is correct.

We will argue that there are Θ(log n) correct coordinators, that every pair of coordi-
nators shares a correct intermediary, and that there are Θ(n) good relays.

Collecting rumors. After choosing coordinators, intermediaries, and relays, there is an
collection phase. The goal of the collection phase is to ensure that every rumor from a
correct process is known to every correct coordinator. Each process attempts to send its
rumor to a relay; the relay forwards it to its parent, a coordinator; the coordinators then
exchange rumors via the intermediaries. We proceed to describe this process in more
detail. Specifically, the collection phase consists of Θ(log n) iterations of the following
seven rounds:



124 D. Alistarh et al.

a. Each process that has not succeeded in a previous iteration sends its rumor to one
randomly selected process.

b. Each relay sends any messages received in round (a) to its parents, for each � ∈
{1, . . . , c}.

c. Each coordinator forwards all the rumors it has received to the set of intermediaries
to which it previously sent intermediary-election messages.

d. Each intermediary forwards every rumor received to its neighbors.
e. Each coordinator sends a response to every relay from which it received a message

in round (b).
f. Each relay that received a response in Round (e) sends a response to every process

from which it receives a message in step (a).
g. Each process that receives a response in Round (f) has succeeded and remains silent

thereafter.

We will argue that the collection phase uses O(n) messages, with high probability, and
that, by the end, every rumor from a non-failed process has been received by every
non-failed coordinator, with high probability.

Disseminating rumors. After the collection phase, there is a dissemination phase. In
the first round of the dissemination phase, each coordinator sends all the rumors it
has learned to the set of relays that it previously sent relay-election messages to. The
remainder of the dissemination phase proceeds much like the collection phase, except
in reverse. As before, the dissemination phase consists of Θ(log n) iterations of the
following rounds:

a. Each process that has not succeeded in a prior iteration sends its message to a
random process.

b. Each relay sends a response to every message received in round (a); the response
includes all the rumors previously received from the coordinators.

c. Each process that receives a response in round (b) has succeeded and remains silent
thereafter.

We will argue that the dissemination phase uses O(n) messages, with high probability,
and that every non-failed process learns every rumor that was previously collected by
the coordinators.

6.2 Analysis

We begin by bounding the number of coordinators, which follows immediately from
the fact that each process elects itself coordinator with probability Θ(log n/n):

Lemma 5 (Coordinator-Set Size). There are Θ(log n) coordinators, w.h.p.

Next, we argue that for every pair of coordinators, there is some correct intermediary
that has both coordinators as neighbors. This follows from a “birthday-paradox” style
argument that randomly chosen sets of size

√
n intersect with constant probability:

Lemma 6 (Good Intermediaries). For every pair of non-failed coordinators pi, pj ,
there exists some intermediary pk such that both pi and pj are neighbors of pk, w.h.p.
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Next, we argue that a constant fraction of the processes are good relays. This is perhaps
the key fact that leads to good performance: the coordinators can efficiently contact
a constant fraction of the world (i.e., the relays); and there are enough relays that the
processes can easily find a relay, and hence a path to a coordinator. The lemma follows
from a balls-and-bins style analysis.

Lemma 7 (Good Relays). There exists some � ∈ {1, . . . , c} such that at least n/18
processes are good relays for �, w.h.p.

Next, we argue that every process succeeds during the collection and dissemination
phases, resulting in every correct process learning the entire set of rumors that were
initiated at correct processes. This follows from showing that during one of the Θ(log n)
iterations of collection/dissemination, each process finds a good relay.

Lemma 8 (Gossip Success). W.h.p.: (a) By the end of the collection phase, every pro-
cess has succeeded. (b) By the end of the dissemination phase, every process has suc-
ceeded. (c) When the protocol terminates, every rumor from a correct process has been
received by every correct process.

Finally, we analyze the message complexity of the collection and dissemination phases.
The key part of this analysis is showing that finding relays is efficient. This fact follows
from the following analogy: the attempts by processes to find relays is equivalent to
flipping a coin until we get n heads; this requires only O(n) flips, w.h.p.

Lemma 9 (Message Complexity). The collection and dissemination phases have mes-
sage complexity O(n), w.h.p.

We conclude with the main theorem:

Theorem 2. The CoordinatedGossip protocol is correct, runs in O(log n) rounds, and
has message complexity O(n), w.h.p.

Proof. By Lemma 8, we see that every rumor is disseminated w.h.p., and by observa-
tion, it runs for O(log n) rounds. In terms of message complexity, when Lemma 5 holds,
i.e., w.h.p.: the selection of coordinators requires at most O(

√
n log2 n) messages; the

selection of relays requires at most O(n) messages. Lemma 9 states that collection
and dissemination have message complexity O(n), w.h.p. Thus, overall, the message
complexity is O(n), w.h.p.
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13. Elsässer, R.: On the communication complexity of randomized broadcasting in random-like
graphs. In: SPAA (2006)

14. Berenbrink, P., Elsaesser, R., Friedetzky, T.: Efficient randomised broadcasting in random
regular networks with applications in peer-to-peer systems. In: PODC (2008)
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Abstract. We consider the gossiping problem in the classical random
phone-call model introduced by Demers et. al. ([6]). We are given a com-
plete graph, in which every node has an initial message to be dissemi-
nated to all other nodes. In each step every node is allowed to establish
a communication channel with a randomly chosen neighbour. Karp et
al. [15] proved that it is possible to design a randomized procedure per-
forming O(n log log n) transmissions that accomplishes broadcasting in
time O(log n), with probability 1 − n−1.

In this paper we provide a lower bound argument that proves Ω(n log n)
message complexity for any O(log n)-time randomized gossiping
algorithm, with probability 1−o(1). This should be seen as a separation re-
sult between broadcasting and gossiping in the random phone-call model.

We study gossiping at the two opposite points of the time and message
complexity trade-off. We show that one can perform gossiping based on
exchange of O(n · log n/ log log n) messages in time O(log2 n/log log n),
and based on exchange of O(n log log n) messages with the time com-
plexity O(

√
n). Both results hold wit probability 1 − n−1.

Finally, we consider a model in which each node is allowed to store
a small set of neighbours participating in its earlier transmissions. We
show that in this model randomized gossiping based on exchange of
O(n log log n) messages can be obtained in time O(log n), with proba-
bility 1 − n−1.

1 Introduction

The two most fundamental problems in information dissemination are broadcast-
ing also known as one-to-all communication and gossiping very often referred to
as total information exchange. In broadcasting, the goal is to distribute a portion
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of information – the broadcast message – from a distinguished source node to all
other nodes in the network. The gossiping task, however, is more complex. Each
node is expected to send its message to every other node in the network. Effi-
cient gossiping methods are applied in routing, spreading updates in networked
databases and multicasting, see, e.g., [13,14]. Moreover, communication meth-
ods developed for gossiping provide valid solutions to other central problems in
distributed computing including leader election and consensus.

In this paper we consider gossiping in the random phone-call model for com-
plete graphs. Our goal is to develop time efficient algorithms characterized by
small communication complexity. We assume that the messages received by a
node (and its initial message) can be combined together and subsequently trans-
mitted as a single message. This assumption is one of the two fundamental
standards adopted in numerous gossiping algorithms designed for specific net-
works when the main emphasis was on the time complexity of the solution, see,
e.g., [14] (the other standard assumes counting the number of initial, atomic
messages transmitted). Once this cumulative message is transmitted through an
edge, it is only counted once. Then, the number of message transmissions in one
step is usually bounded by the number of used channels, and thus, we also have
to reduce the number of these channels to save on communication.

The random phone-call model was introduced in the seminal paper [6] and later
popularised in [15]. The network nodes work in synchronized steps, and during
each step, every node v can establish a communication channel between itself
and a randomly chosen neighbour w. This channel can be used for bi-directional
communication, meaning that v can send a message to w and vice versa. In the
case of push transmissions [6] the nodes establishing communication channels
upload their messages to their respective neighbours. In the case of pull trans-
missions, nodes establishing communication channels download messages from
their neighbours. The nodes are allowed to transmit over several incoming chan-
nels simultaneously. The major obstacle in the random phone-call model is that
nodes do not remember with which other nodes they established communication
channels in the past.

1.1 Previous Work

Broadcast versus gossiping in the deterministic phone-call model. In
[5] Czumaj et al. study trade-offs between the time of gossiping and the num-
ber of transmissions in the telephone model. They also analyze dependence of
the gossiping time on the total number of communication channels used by the
algorithm. In particular they point out the difference between broadcasting and
gossiping in the considered model. Note that Grigni and Peleg showed in [12]
that if n is a power of 2 the optimal logn−time broadcasting forces use of at
least Ω(n log n) communication channels. In contrast, if logn + 1 rounds are
available there exists an efficient solution based on the use of O(n) communica-
tion channels. In case of gossiping, however, Czumaj et al. [5] proved that, for
arbitrary constant c, any gossiping procedure with the time complexity logn+ c
must open a super-linear number of communication channels.
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Broadcast in the random phone-call model. The phone-call model was
introduced in [6]. The authors present a push algorithm that uses Θ(log n) time
and Θ(n log n) message transmissions. For complete graphs of size n, Frieze and
Grimmett [11] presented an algorithm that broadcasts in time log2(n) + ln(n)+
o(logn) with a probability of 1 − o(1). Later, Pittel [16] showed that (with
probability 1 − o(1)) it is possible to broadcast a message in time log2(n) +
ln(n) + f(n) [16], where f(n) can be any slow growing function. In [10], Feige et
al. determine asymptotically optimal upper bounds for the running time of the
push algorithm in G(n, p) graphs (the traditional Erdös-Rényi random graphs,
bounded degree graphs, and Hypercubes.

Karp et al. [15] present a push and pull algorithm which reduces the total
number of transmissions to O(n log logn), with probability 1 − n−1, and show
that this result is asymptotically optimal. For sparser graphs it is not possible to
stay within O(n log logn) message transmissions together with a broadcast time
of O(log n) in this phone-call model, not even for random graphs [9]. However,
if each node is allowed to remember a small number of neighbors to which it has
communicated in some previous steps, then the number of message transmissions
can be reduced to O(n log logn), with probability 1 − n−1 [2,8].

Gossiping in the random phone-call model. In [3] Chen and Pandurangan
consider gossip-based algorithms to aggregate information. For their lower bound
in the random phone-call model, they assume a scenario which is more restricted
than ours, i.e., all nodes have to follow exactly the same rules in each step. The
decision if a node sends a message to its communication partner does not depend
on the partner’s address nor on the knowledge acquired in the previous rounds.
Consequently, the distribution of messages in the network is random in each step
in the sense that the probability of having one of k copies of a message is the
same for all nodes, and the distribution of different messages is uncorrelated. For
this model, the authors of [3] show a lower bound of Ω(n logn) on the message
complexity of any gossiping algorithm, and this bound holds regardless of the
running time of the algorithm. Note that in our model there is an easy O(n)
time gossiping algorithm that produces O(n log logn) message transmissions.

Another recent study of randomized gossiping can be found in the context of
resilient information exchange in [1]. They propose an algorithm with the optimal
O(n) message complexity that tolerates oblivious faults. In the case of adaptive
failures they present another gossiping procedure with the message complexity
O(n log3 n). Note, however, that the model of communication adopted in [1]
assumes that every process involved in exchanging information is allowed to
contact multiple processes at any round as well as to maintain open connections
over multiple rounds.

1.2 The Model

In this paper we use a complete graph with n nodes as underlying communication
model (cf. [15]). We adopt the random phone-call model from [15] to our scenario
in which we assume that every node has an estimation of n which is accurate to
within a constant factor. We also assume that all nodes have access to a global



130 P. Berenbrink et al.

clock, and that they work synchronously. In every step each node is allowed to
open a channel to a randomly chosen neighbour. If node v opened a channel to
node w both nodes can use the channel for a transmission. The channel is called
incoming channel for w and outgoing channel for v. In the last part of the paper,
in order to obtain more efficient gossiping we equip nodes with extra constant
size mmemory to allow them to reuse the channels opened in previous steps. We
assume that the node has to close a channel from a previous round if it decides to
open a new channel. Hence, every node has at most one channel opened by itself
at a time. If v sends a message to w the transmission is called push transmission,
otherwise, when w sends a message to v, it is called pull transmission.

We assume that in the beginning node v stores message mv(0). These messages
are called original messages. A node that received some messages in step t − 1
combines these messages and calculates mv(t) =

⋃t−1
i=0 mv(i), representing the

knowledge of node v at time t. To make it clear, by mv(t) we mean the message
that consists of mv(0) and all messages that were received by node v during the
first t − 1 steps. Unless stated otherwise, this is the message the node will use
for any transmission in step t. If it is clear from the context we will omit the
time step parameter and use mv to denote the message of v. In the following
we say that the size of mv(t) is the number of nodes whose initial messages are
included in mv(t).

Due to lack of spacemost of the proofs are not present in this version of the paper.

2 Broadcasting versus Gossiping (Separation Result)

We show our lower bound in a less restricted version of the phone-call model. We
assume the algorithm that has global knowledge about the message distribution
in the network, i.e. it knows exactly what is the message content of all nodes
at each time step. The algorithm is allowed to choose the nodes which open
communication channels by using this global information. However, the choice
of the nodes to which channels are opened cannot be influenced by the algorithm,
i.e., every node is only allowed to choose a neighbour uniformly at random, as
required by the random phone-call model. We assume that, whenever a channel
is opened between two nodes vi and vj , each of these nodes sends all its gossiping
messages it knows over the link. For our lower bound we assume that vi and vj

contain different messages. First we make the following observation.

Theorem 1. On a complete graph of size n, any gossiping algorithm with run-
ning time O(log n) in the phone-call model requires at least Ω(n logn) message
transmissions, with probability 1 − o(1).

Proof. (sketch) We assume that there exists a gossiping algorithm with a running
time c′ logn, where c′ is a constant, and that this algorithm produces at most
n logn/f(n) message transmissions, where f(n) is a slow growing function with
limn→∞ f(n) = ∞. In a first step we conclude that this his algorithm can be
transformed into another gossiping algorithm with a running time c logn, where
c > c′ is a constant, which produces excatly n/f(n) message transmissions in
each step.
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Let t ≤ c logn be an arbitrary time step. We define �v(t) = |mv(t)| as the
load of node v in step t. We order our nodes decreasingly using their load at
the end of the step i.e. �v1(t) ≤ �v2(t) ≤ �vn(t). B[i,j](t) is defined as the set
{vi, vi+1, · · · vj}. We assume that, whenever a channel is opened between two
nodes vi and vj in step t, vi adds �j(t) to �i(t) and vice-versa. Hence, we assume
that both nodes store different messages. The sum �(t) =

∑n
i=1 �i(t) is called

the total load of the graph at time t. At the end of gossiping the total load has
to be n2.

To analyze the transformed algorithm we show the following two invariants
by induction. With a probability of 1−O(log−2 n) we have for all 1 ≤ t ≤ c logn

1. �(t + 1) ≤ (1 + ε + o(1)) · �(t).
2.
∑

vi∈B[1,n/(2φf(n)]
�i(t + 1) ≤ (1+δ

2 )φ · ε · �(t + 1) for any integer φ with 0 ≤
φ ≤ log(n/f(n)) and δ < ε2.

This holds regardless of which nodes open these n/f(n) channels. Here, ε is a
small constant such that (1 + ε + o(1))c log n ≤ 8

√
n. The proof of the invariants

is deferred to the full version of this paper.

3 Memoryless Gossiping

We present two efficient gossiping algorithms with either (close to) optimal
time complexity O(log n) or algorithms whose communication complexity is
O(n log logn).

3.1 Fast Gossiping

The first algorithm consists of four phases where each phase is split into several
rounds. The algorithm uses the following operations: open activates a channel
to a randomly chosen neighbour; push (M) sends M over the open outgoing
channel; pull (M) sends message M over all incoming channels; and close
closes all open channels. We assume that all channels are closed at the end of
every round. In the first part of Phase 2 of the algorithm below, a node v stores
all incoming messages in a queue qv. It merges incoming messages and computes
mv as described above. For push transmissions v uses the first message from qv

and deletes it from the queue. To shorten the description of the algorithm we
assume that push (mv) opens a channel to a randomly chosen neighbour and
uses this channel for a push transmission with mv. When we say that a node
opens a new channel we implicitly assume that the node closes the channel that
(possibly) remains open from a former step.

Algorithm I

Phase 1
1: for round t = 1 to 5 log log n do
2: open
3: Every node v performs the push (mv(t)) operation
4: close
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Phase 2
1: for round r = 1 to log n/ log log n do
2: Every node v flips a coin. With a probability of 	/ log n, where 	 is a large

constant, v starts a random walk by performing an open and then a push (mv(t))
and finally a close operation.

3: for round r = 1 to 6	 log n do
4: At every node v, for each incoming message m′, if the message made less than

log n random walk steps it calculates m′
v = m′ ∪mv and stores m′

v at the end
of qv.

5: Every node v calculates its current mv as usual, incorporating all incoming
messages.

6: Every node v with a non-empty qv takes the first message m′
v of qv and

performs an open, then a push (m′
v) and finally close operation.

7: Every node v that contains the end of a random walk becomes active for c steps.
All other nodes are inactive.

8: for round r = 1 to 	 log log n do
9: Every active node v performs an open and then a push (mv(t)) and close

operation.
10: Every node that received a message during the last c steps sets its status to

active. Otherwise its status is set to inactive.

Phase 3
1: Every node starts a Broadcast using the algorithm from [15] with 10 log log n push

steps and 5 log log n pull steps .

One can show, see Lemma 1, that after the first phase every message mv(0) is
stored in at least (logn)4 nodes. The second phase alternates between a random
walk part (steps 3-7) and a distribution part (steps 8-10). In the random walk
part approximately �n/ logn random walks of length logn are initiated. The
purpose of these random walks is to collect as many original messages as possible.
The random walks end in approximately �n/ logn different nodes, and these
nodes know a factor of logn messages more then they did at the beginning of
the random walk. Then the distribution part of the phase is used to disseminate
these "large" messages so that a constant fraction of the nodes contain one of
these messages, see Lemma 3. In Phase 3 we send these messages to all nodes
using the broadcast algorithm from [15]. This algorithm can be generalized to
an algorithm with the running time O(log n · T/ logT ) and message complexity
O(n log n/ logT ), where T < logn.

Analysis of the algorithm. In the following we say that a node stores a copy
of message mv(0) at time t if this node received the message from v in an earlier
round. A node that initiates a random walk is called active. A message that is
stored by an active node in step t is called active in step t. In the first step of
Phase 2 a subset of nodes start random walks by sending their currently held
messages to randomly chosen neighbours. In fact random walks can be uniquely
identified by those messages. Over the time each random walk will collect and
combine more and more messages mv(0) that are stored in the nodes it passes
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through. In further stages random walks are identified by combined messages.
The proof of the following lemma is deferred to the full version of the paper.

Lemma 1. At the end of the Phase 1 every original message mv(0) is available
in at least (log n)4 copies with a probability of 1 − n−k/3, where k ≥ 3 is a
constant << l.

Phase 2 consists of a for loop iterated c logn/ log logn times. In the following
we will call a single iteration of the loop a round. The goal is to have n/ logn
copies of each original message at the end of Phase 2. The next lemma shows
that with high probability every random walk performs at least logn steps in
lines 3 to 5 of Phase 2. Lemma 3 shows that the number of nodes having a copy
of a message increases by a factor of logn in every round.

Lemma 2. Assume � >> k for some constant k. Then, with a probability of
1 − n−k+1 all random walks initiated in line 2 of Phase 2 perform logn steps.

Proof. To show the result we fix a round r (1 ≤ r ≤ c logn/ log logn) and an
arbitrary set P of logn nodes of G, and calculate the number of random walks
that will traverse through any node of P .

First we upper bound the number of random walks that are initialized in line
2 of round r. Let Yi = 1 (1 ≤ i ≤ n) if the i-th node starts a random walk
and Yi = 0 otherwise. Then Y + Y1 + Y2 + · · · + Yn is the expected number
of random walks started in round r and E [Y ] = � · n/ logn. Using standard
Chernoff bounds (see [4]) we get

Pr [Y ≥ 1.5 · � · n/ logn ] ≤ e−0.25/3·(�n)/ log n ≤ 3n−k+1

2
.

To upper bound the number of random walks passing through P we assign a
number to the nodes in P . We define random variables Xt

i,j with 1 ≤ i ≤
1.5 · � · n/ logn, 1 ≤ j ≤ logn and 1 ≤ t ≤ logn. Xt

i,j = 1 if the t-th step of the
i-th random walk is at the j-th node of P and Xt

i,j = 0 otherwise. We define

X =
1.5·�·n/ log n∑

i=1

log n∑
j=1

log n∑
t=1

Xt
i,j

which is the number of random walk steps passing through nodes in P . Then,
Pr
[
Xt

i,j = 1
]

= 1/n and

E [X ] =
1.5� · n
logn

· logn · logn · 1
n

= 1.5� · logn.

The random variables Xt
i,j and Xt

i′j′ (with j �= j′) are not independent from each
other since only one of them can be equal to one. However, they are negatively
associated, see [7], and we can still apply Chernoff bounds ([4]). This gives us
for � ≥ (k + 2)/3

Pr [X ≥ 5� logn ] ≤
(e

4

)5� log n

≤
(

1
2

)3� log n

≤ n−(k+2).
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Now we assume that P is the set of nodes that a random walk visits. Since every
random walk meets over his whole lifespan with probability 1 − n−k−2 at most
5� logn− 1 messages, each walk will be able to perform logn random walk steps
in 6� logn many time steps with a probability of 1 − n−(k+2). Since we have at
most n random walks, this will hold with a probability of 1 − n−(k+1) for all
random walks initiated in round r.

Lemma 3. Assume � >> k ≥ 8 for some constant k. At the end of round
r (1 ≤ r ≤ logn/ log logn) of Phase 2 every message is contained in at least
min{(logn)4+r, n/ log3 n} many nodes with a probability of 1 − n−k/3.

Proof. (sketch) We prove this result by induction. Fix a message mv(0). Assume
that for r ≥ 1 every message is available in at least (logn)(r−1)+4 copies at the
beginning of round r. (For r = 1 this follows directly from Lemma 1). In the
following we count how many random walks performed in round r will collect a
copy of mv(0).

We say random walk W contains mv(0) in step t if mv(0) is contained in the
message represented by W . Similar to the proof of Lemma 2 we can show that
we have at least (�n)/(2 logn) random walks in that round. Every random walk
performs at least logn steps with a probability of n−(k+1) (see Lemma 2). This
gives at least �n/2 random walk steps.

Then, we can show by induction that at the end of line 6 of round r every
original message is contained in at least (log n)(r−1)+4 many nodes which are the
endpoints of a random walk. Let s be the number of random walks initialized
in round r. Let us call these messages w1, w2, . . . ws. In the following we show
that every message wi containing mv(0) is copied at least logn times with a
probability of n−k+1. Thus we have logn · (logn)(r−1)+4 = (logn)r+4 copies of
mv(0) at the end of round r.

To show that every message wi (1 ≤ i ≤ s) is copied at least logn times
we use that the node vi containing wi can be regarded as the root of the tree
Tvi with the degree c and the depth log logn. Consider the sequence of trees
Tv1 , Tv2 , ...Tvs . For Tvi , we scan the tree in breadth first search order and count
all nodes that did not appear in Tv1 , . . . Tvi−1 or earlier in Tvi . Then, we can
show that, with a probability of n−k+2, we have at least log n such nodes in
every tree. Using the union bound we can show that all original messages will
get a factor of logn additional messages with a probability of 1 − n−(k+1).

Combining all arguments, all random walks in round r perform logn steps
with a probability of 1 − nk+1. With the same probability we can assume that
we initiate at least �n/(2 logn) random walks. With probability 1− n−(k+1) the
random walk part together with the distribution part result in an additional fac-
tor of log n extra messages. Hence, the probability that round r works correctly
is 1 − 4n−(k+1), and the lemma follows.

Lemma 4. At the end of Phase 3 of Algorithm I all nodes store a copy of
every message with a probability of 1 − n−2.
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Proof. Using Lemma 1 and Lemma 3 we can argue that with a probability
of 1 − 2n−k/3 at the beginning of Phase 3 there are n/ log3 n copies of every
message. From [15] it follows that after 10 log logn push steps every message
is contained in n/2 nodes, and it takes 5 log logn pull steps after which every
message is contained in each node, with probability 1 − n−2.

Theorem 2. For � large enough, Algorithm I performs gossiping in time
O(log2 n/log logn) with a probability of 1 − n−1. Moreover, the algorithm sends
O(n log n/ log logn) messages.

Proof. The correctness follows directly from Lemma 4. Phase 1 and Phase 2
both have a running time of O(log logn). Phase 2 consists of O(log n/ log logn)
rounds and each round has the running time O(log n). Phase 1 uses O(n log logn)
message transmissions. Phase 2 uses O(n) message transmissions per round and
produces in total O(n log n/(log logn)2) message transmissions. Phase 3 uses
O(n · log logn) message transmissions.

3.2 Gossiping with Bounded Communication

In this section we note that a modification of Algorithm I allows to perform
gossiping on the basis of exchange of O(n log logn) messages. Unfortunately the
time complexity of the algorithm is much higher.

Algorithm II

Phase 1
1: for round t = 1 to 5 log log n do
2: open
3: Every node v performs the push (mv(t)) operation
4: close

Phase 2
1: Every node v flips a coin. With a probability of 1/

√
n it starts a random walk by

performing an open, then a push (mv(t)) and close operation.
2: for round s = 1 to 2

√
n do

3: Every node v does the following for each incoming message m′. If the message
made less than

√
n random walk steps, it calculates m′

v = m′ ∪ mv(t − 1) and
stores m′

v at the end of qv.
4: Every node V calculates its actual mv as usual, incorporating all incoming mes-

sages
5: Every node v with a non-empty qv takes the first message m′

v out of qv and
performs an open, then a push (m′

v), and close operation.

Phase 3
1: Every node that receives a message in the last step of Phase 2 becomes active.
2: for round t = 1 to log(

√
n) do

3: Every active node v performs an open, then a push (mv(t)), and close operation.
4: Every node that receives a message becomes active.
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Phase 4
1: We perform a leader election. The leader starts a random walk and performs an

open and then a push (mv(t)) and close operation.
2: for round s = 1 to

√
n do

3: The node v that received a message during the last round performs an open and
then a push (mv(t)) and close operation.

Phase 5
1: The node that corresponds to the end of the random walk starts the broadcast

process from [15] (with log n + 10 log log n push steps and 5 log log n pull steps).

Theorem 3. Algorithm II performs gossiping in time O(
√
n) with a probability

of 1 − n−2. Moreover, the algorithm sends O(n · log logn) messages.

Proof. (sketch) The proof of this theorem is deferred to the full version of the
paper. At the end of Phase 1 every message is contained in Θ(log4 n) nodes and
the message size is Θ(log4 n). At the end of Phase 2 every message is collected
by at least (log n)4 random walks. Phase 3 creates at least

√
n logn copies of

each message mv(0). Phase 4 initiates one long random walk, which collects a
copy of each mv(0), and broadcasts them in Phase 5 to all nodes of the network.

4 Gossiping with Extra Storage

Here we present an algorithm in the generalized model with extra memory. The
algorithm first selects a leader. We assume that leader election can be done with
probability 1 − n−2 in O(log n) time using O(n log logn) message transmissions
(the corresponding algorithm is deferred to the full version of the paper). Then,
the algorithm constructs a communication tree, rooted in the leader, that con-
tains all nodes. Each node passes its initial message to its parent in the tree and
the leader collects all incoming messages. The leader then bundles the received
messages and broadcasts them to all nodes of the tree. For simplicity we assume
in the following that this algorithm is started at time 0.

The idea of the algorithm below is as follows. In Phase 1, steps 2-7, a node
which receives mv(0) transmits mv(0) to 3 randomly chosen nodes. The algo-
rithm calculates a communication tree. The leader v is the root of the tree. The
nodes u1, u2 and u3 that got the messages in rounds 0-2 are the nodes on Level
1 of the tree. The nodes which got the message from u1, u2, and u3 are on Level
2 of the tree, and so on. At the end of the sub-phase the communication tree
has depth logn + 2 log logn. Note that nodes can appear only on one level of
the tree since they only become active if they got the message for the first time.
The tree nodes store all edges to their children in the tree.

In Phase 1, steps 8-11, the nodes which are not in the tree try to connect
themselves to tree nodes. They will open channels to randomly chosen neighbours
and all nodes knowing mv(0) answer all incoming pull requests. Each node
which gets the message for the first time will store the corresponding neighbour
in the list �pl. The edge leading to this neighbour is now regarded as part of
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the communication tree and the neighbour is regarded as its predecessor in the
tree. In Phase 2 of the algorithm the communication tree is used to forward all
original messages to the root.

Algorithm III

Phase 1
1: Perform Leader Election
2: for round t = 0 to 2 do
3: The leader performs an open and then a push (mv(0)) and close operation.
4: for round t = 3 to 3(log n + 2 log log n) do
5: Every node v that received mv(0) in round i for the first time (with i = 3j + k

and k ∈ {0, 1, 2}) becomes active in round 3(j +1), 3(j +1)+1 and 3(j +1)+2.
6: Every active node v performs an open, then a push (mv(0)), and close operation.
7: Every active node v stores the time steps 3(j + 1), 3(j + 1) + 1 and 3(j + 1) + 2

together with the neighbours it used for the push operations in the list 	ph.
8: for round t = 3(log n + 2 log log n) + 1 to 3 log n + (6 + 	) log log n do
9: Every node v that knows mv(0) performs pull (mv(0)) and close operation.

10: Every node v that does not know mv(0) performs an open, receives eventually
(mv(0)), and then performs a close operation.

11: Every node v that receives mv(0) for the first time in round t remembers the
chosen neighbour together with t in the list 	pl.

Phase 2
1: t′ = 3 log n + (6 + 	) log log n
2: for round t = 1 to 	 log log n do
3: Every node v which received the message in step t′−t+1 (for the first time) opens

a channel to the corresponding neighbour in 	pl and performs a push operation
with all original messages it has.

4: t′ = 3 log n + (6 + 	) log log n
5: for round t = 1 to 3 log n + 6 log log n do
6: Every node v which stores a neighbour with time step t′−t+1 in its list 	ph opens

a channel to that neighbour in 	ph and receives the message from that neighbour.
The node at the other side performs a pull operation with all original messages
it has.

Phase 3
1: The leader broadcasts all original messages using the algorithm of [15].

Theorem 4. Algorithm III performs gossiping with the running time O(log n)
and produces O(n · log logn) message transmissions, with probability 1 − n−2.

5 Conclusion and Open Problems

In this paper we considered the gossiping problem in the random phone-call
model. First, we provided a lower bound argument that admits Ω(n logn) mes-
sage complexity for any O(log n)-time gossiping algorithm. Further, we stud-
ied gossiping at the two points of the time and message complexity trade-off.
Finally, we considered a model in which each node is allowed to store a small
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sequence of its earlier transmissions, and showed that in this model randomized
gossiping based on exchange of O(n log logn) messages can be obtained in the
optimal time O(log n). These results should be viewed as an important step in
better understanding of gossiping in the random phone-call model. The problem,
however, remains unexplored in more complex topologies.
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Abstract. We study the problem of online packet routing in dynamic store-and-
forward directed line networks. We present a centralized randomized online algo-
rithm that achieves a throughput that is O(log n)-competitive, where n denotes
the number of nodes. Our algorithm is applicable to all values of buffer sizes and
communication link capacities. In particular, it holds also for unit buffers.

This algorithm improves the best previous O(log2 n)-competitive ratio of [6]
and considers links with unit capacities.

1 Introduction

Large scale communication networks partition the messages into packets so that high
bandwidth links can support multiple sessions simultaneously. Packet routing is used by
the Internet as well as telephony networks and cellular networks. Thus, the development
of algorithms that can route packets between different pairs of nodes is a fundamental
problem in networks. In a typical setting, requests for routing packets arrive over time,
thus calling for the development of online packet routing algorithms. The holy grail of
packet routing is to develop online distributed algorithms whose performance is com-
petitive with respect to multiple criteria, such as: throughput (i.e., deliver as many pack-
ets as possible), delay (i.e., guarantee arrival of packets on time), stability (e.g., constant
rate, avoid buffer overflow) , fairness (i.e., fair sharing of resources among users), etc.
From a theoretical point of view, there is still a huge gap between known lower bounds
and upper bounds for packet routing even over very simple graphs (e.g, directed paths)
with respect to centralized algorithms.

We follow the Competitive Network Throughput Model introduced by [2] for dy-
namic store-and-forward packet networks. Nodes in packet networks are switches with
local memories, called buffers. An incoming packet is either forwarded to a neighbor
switch or stored in the buffer. The resources of a packet network are specified by two
parameters: the capacity of links and the size of buffers. The capacity of a link is an up-
per bound on the number of packets that can be transmitted in a time step along the link.
The buffer size is the maximum number of packets that the switch can store between
time steps.

Previous Work. Algorithms for packet routing in dynamic store-and-forward networks
have been studied extensively both in theory and in practice. Our work is based on a
line of research initiated by [2]. In [2], a lower bound of Ω(

√
n) was proved for the

greedy algorithm on directed lines if the buffer size B is at least two. For the case

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 139–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



140 G. Even and M. Medina

B = 1 (in a slightly different model), an Ω(n) lower bound for any deterministic
algorithm was proved by [6,3]. Both [6] and [3] developed, among other things, online
randomized centralized algorithms for directed paths with B > 1. In [3] an O(log3 n)-
competitive algorithm was presented if the buffer size B is at least 2. For the case
B = 1, they presented a randomized Õ(

√
n)-competitive distributed algorithm. In [6],

an O(log2 n)-competitive algorithm was presented for the case B ≥ 2. This algorithm
may work also with a FIFO policy for managing the buffers.

Our result. In this paper we present a centralized online randomized packet routing
algorithm for maximizing throughput in directed paths (or lines). Our algorithm is non-
preemptive; rejection is determined upon arrival of a packet. We consider two parame-
ters: B - the buffer size, and c - the capacity of the links between nodes. Our algorithm is
centralized and randomized and achieves an O(log n)-competitive ratio. This algorithm
improves over previous algorithms in three ways: (I) The competitive ratio is O(log n)
compared to the best previous competitive ratio of O(log2 n). (II) Our algorithm works
also for buffers of size B = 1. (III) We consider also the parameter c of the capacity of
the links ([6,3] considered only the case c = 1). Due to space limitations all proofs are
omitted and can be found in the full version.

Techniques. Following [5,1,6,11], we apply a space-time transformation to reduce the
problem of packet routing to path packing problem. Unlike [6], we do not consider
fractional online multi-commodity flows. Instead, we apply the primal-dual framework
of [8] to obtain an integral packing of paths. This allows us to avoid the issue of round-
ing a fractional packing as done in [6].

A second technique we use is an infinite tiling of the plane. This tiling serves multiple
purposes. We employ tiling to define a simple classification of packet requests based on
locality. Namely, packets that can be routed within a tile and packets that cannot. Since
the tiles are disjoint and small, routing packets within tiles is straightforward with a
O(log n)-competitive ratio. Packet requests across tiles are handled differently. Tiling
induces a sketch graph over the tiles and one can limit routing to linear paths in the
sketch graph.

A third technique is the online translation of paths in the sketch graph to paths in
the space-time graph. Tiles are defined so that edges in the sketch graph have Ω(log n)
capacity. The online translation of sketch paths to network paths works as long as the
sketch edges are lightly loaded (i.e., the load is a constant fraction of the capacity).
Loads of sketch graph edges are made light, w.h.p., by tossing a biased coin.

2 Problem Definition

2.1 Store-and-Forward Packet Networks

We consider a synchronous store-and-forward packet network [2,3,6]. The network is
a directed graph G = (V,E). Each edge has a capacity c(e) that specifies the number
of packets that can be transmitted along the edge in one time step. Each node has a
local buffer of size B that can store at most B packets. Each node has a local input
through which multiple packets may be input in each time step. In the general setting,
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no assumptions are made on the relation between B, c(e), and the number of packets
input locally to a node. The network operates in a synchronous fashion with a delay of
one time step for communication. This means that a packet sent in time step t arrives to
its destination in time step t + 1.

Each packet is specified by a triple ri = (ai, bi, ti), where ai ∈ V is the source node
of the packet, bi ∈ V is the destination node, and ti ∈ N is the time step in which
the packet is input to ai. Since we consider an online setting, no information is known
about a packet ri before time ti. We consider packet routing without deadlines, namely,
the algorithm is credited each time a packet arrives to its destination, regardless of the
time it took it to travel.

In each time step, a node v considers the packets arriving via the local input, the
packets arriving from incoming edges, and the packets stored in the buffer. Packets
destined to node v are removed from the network (this is considered a success and no
further routing of the packet is required). As for the other packets, the node determines
which packets are sent along outgoing edges (i.e., forwarded), which packets are stored
in the buffer, and which packets are dropped/rejected.

We use the following terminology. A packet is injected if it is locally input to a node
and the nodes decides to store it or to forward it. A packet is rejected if it is locally input
to a node and the node decides not to inject it. A packet is dropped if it was injected
and a node decides not to store it or to forward it.

The task of admission control is to determine which packets are injected and which
are rejected. An algorithm that drops packets is a preemptive algorithm; if an algorithm
does not drop packets, then it is a non-preemptive algorithm.

2.2 Line Networks

A line network with n nodes is a directed path G = (V,E). The vertices are denoted by
V = {v0, v1, . . . , vn−1}. The edges are denoted by E = {(vi, vi+1) : 0 ≤ i ≤ n− 2}.
In a line network, the source ai and the destination bi of each packet satisfy ai < bi.

We assume that (i) all edges have identical capacities, denoted by c, and (ii) all nodes
have the same buffer size, denoted by B.

2.3 Online Maximum Throughput in Line Networks

The throughput of a routing algorithm is the number of packets that are delivered to
their destination. We consider the problem of maximizing the throughput of an online
centralized randomized packet-routing algorithm.

Let Alg be a randomized online algorithm. Algorithm Alg is ρ-competitive with re-
spect to an oblivious adversary if for every input sequence σ, E(Alg) ≥ ρ · OPT (σ),
where the expected value is over the random choices made by Alg [7].

3 Preliminaries

3.1 Space-Time Transformation

A space-time transformation is a method to map traffic in a directed graph over time
into a directed acyclic graph. Consider a directed G = (V,E) with edge capacities c(e)
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and buffer size B. The space-time transformation of G is the acyclic directed graph
Gst = (V st, Est) with edge capacities cst(e), where: (i) V st � V × N. (ii) Est �
E0 ∪E1 where E0 � {(u, t) → (v, t + 1) : (u, v) ∈ E , t ∈ N} and E1 � {(u, t) →
(u, t + 1) : u ∈ V, t ∈ N}. (iii) If (u, v) ∈ E then cst((u, t) → (v, t + 1)) � c(u, v).
All edges in E1 have capacity B.

For example, a packet that is stored in node i’s buffer at time slot j for � time slots is
translated to a horizontal path that starts in the jth column, has length � and is in the ith
row of Gst. A packet that is delivered from node i to node i + 1 at time j is translated
to the diagonal edge (i, j) → (i + 1, j + 1) in Gst.

Space-time graphs have been used previously to model packet routing [5,1,6,11].
The idea is to map a route to a path in Gst. The space-time graph Gst of a line network
G = (V,E) is depicted in Fig. 1a. The rows correspond to vertices in V , and the
columns correspond to time steps. Note that Gst has n rows and an infinite number of
columns. The additional nodes per row are called sink-nodes, and are described below.

Adding sink nodes. Since we consider requests without deadlines, a request ri =
(ai, bi, ti) is routed along a path in Gst from (ai, ti) to a node in row bi. Azar and
Zachut [6] model the delivery of ri to its destination by adding sink nodes as follows.
For each node v ∈ V , add a sink node v̂. Connect each vertex (v, t) ∈ V st to v̂ by an
edge of unbounded capacity. Thus, the path for ri must end in b̂i.

3.2 Tiling

The term tiling refers to a partitioning of the nodes V st of the space-time graph Gst

into finite sets. The tilings we consider are obtained by an infinite packing of integral
grid points by parallelograms (see Fig. 1b). Each parallelogram has horizontal length x
and height y, and is referred to as a tile. We consider only nodes in Gst, namely points
in the positive stripe defined by {(j, i) : 0 ≤ j ≤ n − 1, i ≥ 0}. In the vicinity of the
boundaries of the stripe, the parallelograms are clipped. The tiling is specified by two
additional parameters φx ∈ [0..(x − 1)] and φy ∈ [0..(y − 1)], called the phase shifts.
The phase shifts determine the position of the “first” parallelogram; namely, the node
(φy , φx) is the top left corner of the first parallelogram.

The clipped tiles are removed according to the following rule. Consider the top left
quadrant (NW-quadrant, for north-west) of a tile. If the NW-quadrant does not intersect
the positive stripe, then the tile is removed. Otherwise, it is clipped, as depicted in Fig. 1b.

3.3 The Sketch Graph

Consider a tiling T with a set T of tiles. A tiling defines a mapping τ : V st → T
where τ(v) is the tile in T that contains the point v. The sketch graph is the graph
S = (T,ES) induced by Gst and τ as follows (see Fig. 1c). A pair of tiles (û, v̂) is an
edge in ES if τ−1(û)× τ−1(v̂) contains an edge in Est. The capacity ĉ(û, v̂) is defined
by
∑

{c(e) : e ∈ Est ∩ (τ−1(û) × τ−1(v̂))}, except for the horizontal edges in the
bottom row that are assigned a capacity of By/2.

Proposition 1. The capacities of the sketch edges satisfy the following property: (i) the
capacity of each horizontal edge is in the range (yB/2, yB], and (ii) the capacity of
each diagonal edge is in the range (xc/2, xc].
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Fig. 1. (a) The space-time graph Gst. The x-axis is the (infinite) time axis and the y-axis is the
(finite) node axis. Note the sink-nodes on the right, each of which is connected to every node in
its row. (b) Tiling of the plane by parallelograms. Only the shaded tiles are nodes of the sketch
graph. The parallelograms along the borders of the positive stripe are either removed or clipped.
(c) The sketch graph over the tiles. (d) Partitioning of a tile into quadrants. (e) Allowed routes in
parallelogram quadrants. Paths may not cross the thick lines.

3.4 Online Integral Packing of Paths

We consider the problem of integrally packing paths by a centralized online algorithm.
The setting is taken from [8,9] who described a version of the setting in [4] in which
demands are at most a logarithmic fraction of the edge capacities. Consider a graph
G = (V,E) with edge capacities c(e). The adversary introduces a sequence of connec-
tion requests {ri}i, where each request is a source-destination pair (ai, bi). The online
packing algorithm must either return a path pi from ai to bi or reject the request. Since
we are interested in maximizing throughput, the goal is to route as many requests as
possible while respecting capacity constraints.

Consider a sequence R = {ri}i∈I of requests. A sequence P = {pi}i∈J is a (partial)
routing with respect to R if J ⊆ I and each path pi (for i ∈ J) connects the source-
destination pair ri. The load of an edge e induced by a routing P is the ratio |{pj : j ∈
J, e ∈ pj}|/c(e). A routing P with respect to R is called a packing if the load of each
edge is at most 1. The throughput of a packing P = {pi}i∈J is simply |J |.

A packing algorithm is said to be (α, β)-competitive if it computes a routing P with
respect to the set of requests that satisfies: (i) the throughput of P is at least α times the
maximum throughput over all packings, and (ii) the load of each edge is at most β.

A fractional packing is a multi-commodity flow. Namely, a request is a demand
of a unit flow from the source to the destination. Each demand can be served by a
combination of fractions of flows along paths. An optimal offline fractional packing
can be computed by solving a linear program. Obviously, the throughput of an optimal
fractional packing is an upper bound on the throughput of an optimal integral packing.

A reduction of (fractional) packet routing to (fractional) packing of paths was pre-
sented in [6]. In this reduction, a packet request ri=(ai, bi, ti) is reduced to a connection
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request rst
i � ((ai, ti), b̂i) in the space-time graph Gst. This reduction preserves the

(fractional) throughput.
It is important to observe that if multiple requests arrive simultaneously to the same

node, then the optimal routing could inject at most c+B packets among these packets.
Since this limitation is imposed on the optimal solution, the path packing algorithm can
abide this limitation as well without decreasing its competitiveness, i.e., by choosing
the closest c+B packets to the source node, as formalized in the following proposition.

Proposition 2. W.l.o.g. each node accepts at most the closest c + B requests at each
time step.

The proof of the following theorem is based on techniques from [4,8]. We refer to the
online algorithm for online integral path packing by IPP.

Let cmax � maxe:c(e)<∞ c(e) and let cmin � mine:c(e)>0 c(e).

Theorem 1. Consider an infinite graph with edge capacities such that cmax
cmin

≤ 4. Con-
sider an online path packing problem in which path lengths are bounded by pmax. As-
sume that there is an oracle, that given edge weights and a connection request, finds a
lightest path from the source to the destination among the paths of length at most pmax.
Then, there exists an (O(1), O(log pmax))-competitive online integral path packing al-
gorithm. Moreover, the throughput is at least a constant fraction of the the maximum
throughput over all fractional packings.

Notation. Given a set R of packet requests, let OPT(R) denote the maximum (offline)
throughput. Let OPTf (R) denote the maximum fractional throughput.

4 Algorithm: Preprocessing

Tiling parameters. The parameters of the line network are: n nodes, buffer size B in
each node, and link capacity c. We assume that B, c ∈ [1, logn]. The parameters x, y
of the tiling are defined as follows.

Definition 1. (i) If B · c < logn, then x = 2+(logn)/c, and y = 2 · +(log n)/B,.
(ii) If B · c ≥ logn, then x = 2B and y = 2c.

Proposition 3. The choice of the tiling parameters implies the following:

1. x + y = O(log n).
2. The capacity of each sketch edge is at least logn.
3. Sketch edges whose capacity is bounded have capacities in the interval

(min{xc/2, yB/2},max{xc, yB}). Thus the ratio between the maximum and the
minimum capacity is bounded by 4.

To simplify the presentation, we assume that xc = yB and that the capacity of all
sketch edges of bounded capacity equals xc (this is true up to a constant factor, as
stated in Proposition 3).

Classification of requests. We partition each parallelogram into four “quadrants” as
depicted Fig. 1d.
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Note that side lengths x and y are even, so the North-West quadrant (NW-quadrant)
of a tile is well defined.

The tiling defines the following classification of the requests. Let Qx,y,φx,φy �
{(ai, ti) ∈ N2 : (ai, ti) is in the NW-quadrant of the tile τ(ai, ti)}.

Definition 2. Let R+ ⊆ R denote subset of requests such that R+ � {ri ∈ R :
(ai, ti) ∈ Qx,y,φx,φy}.

The subset R+ is further partitioned into two subsets Far and Near, defined by: Near �
{ri ∈ R+ : τ(ai, ti) = τ(bi, ti)} and Far � R+ \ Near.

A request ri ∈ Far must be routed along a path that crosses tiles. On the other hand,
a request ri ∈ Near may be routed within a tile, although an optimal routing might
route ri along a path that crosses tiles.

Proposition 4. If the phase shifts φx and φy are chosen independently and uniformly at
random, then E(OPT(R+)) ≥ 1

4 · OPT(R). By a reverse Markov inequality,
Pr
[

OPT(R+) ≥ 1
8 · OPT(R)

]
≥ 1

7 .

5 Algorithm for Requests in Far

In this section we present an online algorithm for the requests in the subset Far.

5.1 Description of the Far-Algorithm

Let S denote the sketch graph induced by Gst and the tiling. Define pmax(IPP) as
follows:

pmax(IPP) �
{

7n if B · c > logn,

2 · (n− 1) · (1 + B/c) otherwise.

The input to the algorithm is a sequence of requests in Far. For simplicity we assume
that at most one request arrives simultaneously at every node. The case of multiple
simultaneous requests from the same node is discussed later.

Upon arrival of a request ri = (ai, bi, ti), the algorithm proceeds as follows:

1. Call the online integral path packing algorithm IPP with the request rS
i �

(τ(ai, ti), b̂i) over the sketch graph S with path lengths at most pmax(IPP). If rS
i is

rejected, then reject ri. Otherwise, let p̂i denote the the path computed by IPP.
2. Toss a biased 0-1 coin Xi such that Pr(Xi = 1) = p. If Xi = 0, then reject ri.
3. If the addition of p̂i causes the load of any sketch edge to be at least 1/4, then

reject ri.
4. Apply I-routing for ri. If I-routing fails, then reject ri. Otherwise, inject ri with

the sketch path p̂i.
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We now elaborate on the steps of the algorithm. (1) The IPP algorithm computes an inte-
gral packing of paths under the constraint that the length of a path is at most pmax(IPP).
In Proposition 1, we show that this constraint reduces the optimal fractional through-
put by a factor of at most two. Algorithm IPP remembers all accepted requests, even
those that are rejected in subsequent steps. By Theorem 1, the computed paths consti-
tute an (O(1), k)-competitive packing, for k = O(log n). The path oracle for the IPP

algorithm finds a lightest path among the paths that contain at most pmax(IPP) edges.
(2) The probability p is set to 1

Θ(k) . (3) We maintain the invariant that after line 3, the
load of every sketch edge is at most 1/4. (4) I-routing deals with routing the request
out of the initial NW-quadrant and is described in Sect. 5.2. We point out that the path
pi in Gst for the injected packet ri can be computed before injection. To simplify the
presentation, only its prefix is computed by I-routing. The rest of the path is computed
based on the sketch path p̂i. This computation is performed locally on-the-fly by M -
and X-routing (described in Sect. 5.2).

The Case of Multiple Simultaneous Requests From the Same Node. Upon arrival of
requests {ri}i = {(a, bi, ti)}i to node a ∈ Est, the algorithm first chooses the closest
c+B requests, rejects the rest, and then calls the online integral packing algorithm IPP

on each of these chosen requests. Proposition 2 implies that limitation does not decrease
the competitiveness of IPP.

Notation. We define a chain subsets of requests Rinj+ ⊆ Rinj ⊆ RIPP+ ⊆ RIPP , as
follows. RIPP is the subset of requests accepted by the IPP algorithm in line 1. RIPP+ ⊆
RIPP is the subset of requests for which Xi = 1. Rinj ⊆ RIPP+ is the subset of requests
whose addition did not cause a sketch edge to be at least 1/4 loaded. Rinj+ ⊆ Rinj is the
subset of requests that were successfully routed by I-routing.

5.2 Detailed Routing

The IPP Algorithm computes a sketch path p̂i. If we wish to route the packet, we need
to compute a path p in Gst. We refer to this path as the detailed path. Let pi denote
the detailed path of a request ri ∈ Rinj+ . The packing {pj}{j:rj∈Rinj+} satisfies the
following invariants (see Fig. 1e).

1. The source of pj is in the NW-quadrant of a parallelogram.
2. The prefix of pj till it exits the NW-quadrant of its first tile is without bends.
3. For every tile, pj enters the tile only through the right half of the north side of the

tile or the bottom half of the west side.
4. For every tile, pj exits the tile only through the right half of the south side of the

tile or the bottom half of the east side.
5. The load of every edge in Gst is at most one.

We decompose each tile into four quadrants and apply one of three detailed algorithms
(I,M or X) to each quadrant as depicted in Fig. 1e.

I-Routing. I-routing deals with routing paths that start in the NW-quadrant of a tile.
The goal is simply to exit the NW-quadrant either from its east side or its south side.
I-routing considers only straight paths without bends.
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By Proposition 2, at most B + c requests are accepted at each node of Gst by Al-
gorithm IPP. The set of simultaneous requests that arrive to the same node is ordered
arbitrarily.

We consider each NW-quadrant as a three dimensional cube of dimensions y
2 × x

2 ×
(B + c). The ith request that arrives to node (v, t) is represented by node (v, t, i) in the
cube. We refer to each copy of the quadrant in the cube as a plane. The ith plane is the
set of nodes (v, t, i) in the cube. I-routing deals with each y

2 × x
2 plane separately,

Let r denote the ith request to node (v, t). I-routing routes r either horizontally or
diagonally according to the following cases:

1. If 1 ≤ i ≤ B, then I-routing checks whether the horizontal path to the east side
of the NW-quadrant is free in the ith plane. If it is free, then I-routing routes r and
marks this horizontal path as occupied. If it is not free, then r is rejected.

2. If B < i ≤ B + c, then I-routing checks whether the diagonal straight path to the
south side of the NW-quadrant is free in the ith plane. If it is free, then I-routing
routes r and marks this diagonal path as occupied. If it is not free, then r is rejected.

Finally, we need to limit the number of paths that emanate from each side of the NW-
quadrant by cS/4, where cS denotes the capacity of the sketch edges to the neighboring
parallelograms (i.e., not sink-nodes). Thus after cS/4 requests have been successfully
I-routed out of the NW-quadrant, all subsequent requests from this NW-quadrants fail.

Note that I-routing is computed before the packet is injected and does not preempt
packets since precedence is given to existing paths.

M -routing. M -routing deals with routing paths that enter through two adjacent sides of a
tile quadrant and exit through a third side. We show that M -routing is always successful.

Suppose that paths enter through the north and west sides of the quadrant, and should
be routed to the south side of the quadrant. The detailed paths of north-to-south paths are
simply diagonal without bends. The detailed paths of west-to-south paths are obtained
by traveling eastward until a bend can be made, namely, the diagonal path to the south
side is not saturated. Since both path types contain at most cS/4 paths, and since cS/2
paths can cross the south side of the quadrant, M -routing never fails.

X-routing. X-routing deals with routing paths that enter through two adjacent sides
of a tile quadrant and exit through a the opposite sides. X-routing is implemented by
super-positioning two instances of M -routing.

In X-routing, paths enter through the north and west sides, and should be routed
either to the east or south sides. We apply M -routing for east-bound paths and M -
routing for south-bound paths. Obviously, north-south paths and west-east paths are
successful. On the other hand, if a north-east path intersects a west-south path, then
they both “bend” and gain precedence over their route. Since there are at most cS/4
east-bound paths, each north-east path is successfully routed. The same holds for west-
south paths. Thus, X-routing is always successful.

Routing in The Bottom Row. First, note that no requests in Far start in the bottom row.
Second, since the destination row in Gst is included in the last row of tiles, there are
no east-west routes. Therefore, in the bottom row we only have incoming paths from
the north side whose destination is within the tile. Thus, incoming paths from the north
simply continue diagonally until they reach their destination.
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5.3 Analysis

Consider a sequence R of requests for delivering packets in the line network G. We
regard this sequence also as a sequence of requests for paths in the space-time graph
Gst. The maximum throughput for the delivery of packets is upper bounded by the
throughput of an optimal fractional path packing with respect to R. We now prove that
the throughput of an optimal fractional path packing does not decrease by much if path
lengths are bounded.

Formally, let OPTf (R|pmax) denote the throughput of an optimal fractional path
packing with respect to R under the constraint that path lengths are at most pmax. The
following lemma shows that bounding path lengths to be at most O(nB) decreases the
fractional throughput by a factor of at most 2. The lemma extends the lemma from [6]
to the case c > 1.

Lemma 1 ([6, Claim 4.5]). Let pmax � 2 · (n−1) · (1+B/c). Then, OPTf (R|pmax) ≥
1
2 · OPTf (R).

The following proposition justifies the limitof7non path lengths when the Far-Algorithm
invokes IPP.

Proposition 5. If the tile width x is not less than B, then every path p in Gst of length
at most 2 · (n−1) · (1+B/c) is mapped by τ to a path p̂ in the sketch graph S of length
at most 7n.

The following proposition shows that, in expectation over the biased coin tosses in
Line 2, not too many additional paths are rejected due to line 3 in the Far-Algorithm.

Lemma 2. E(|RIPP+ \Rinj|) ≤ 1
4 · |RIPP+ |.

The following lemma states that, in expectation, a constant fraction of the requests
succeed in the I-routing and are injected.

Theorem 2. E(|Rinj+ |) ≥ p
4 · |RIPP |.

Let Algfar denote the set of packet requests routed by the Far-Algorithm with respect to
the requests in Far.

Theorem 3. E(|Algfar|) ≥ Ω( 1
log n ) · OPT(Far).

6 Algorithm for Requests in Near

In this section we present an online algorithm for the requests in the subset Near. The
algorithm is a straightforward greedy one-bend routing algorithm. Given a request ri ∈
Near, the algorithm searches for a path in Gst starting from (ai, ti) and ending in a
node (bi, t) such that (bi, t) is in the same tile as (ai, ti). Thus, the goal is to reach any
node in row bi within the tile.

Upon arrival of a request ri ∈ Near, the computation of the path for ri proceeds as
follows:
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1. Let t = ti.
2. While the diagonal path from (ai, t) to (bi, t) is saturated:

(a) If the horizontal edge is not saturated move to the right (i.e, t ← t + 1).
(b) Else, if the horizontal edge saturated then reject.
(c) If (ai, t) is outside the tile, then reject ri.

3. If a nonsaturated diagonal path is found, then the path consists of the concatenation
of the horizontal path from (ai, ti) to (ai, t) and the diagonal path from (ai, t) to
(bi, t).

We emphasize that an optimal routing is not restricted to routing a request ri ∈ Near
within the tile. Let Algnear denote the set of requests successfully routed by the Near-
Algorithm with respect to the requests in Near. Let Algnear(s) denote the set of requests
routed by the Near-Algorithm within the tile s. Let Nears denote the set of requests in
Near whose starting node is in the tile s.

Theorem 4. For every tile s, |Algnear(s)| ≥ Ω( 1
log n ) · OPT(Nears).

Corollary 1. |Algnear| ≥ Ω( 1
log n ) · OPT(Near).

7 Putting Things Together

The online randomized algorithm Alg for packet routing on a directed line proceeds as
follows.

1. Choose the tiling parameters x, y according to Sect. 4.
2. Choose the phase shifts φx ∈ [0..x−1], φy ∈ [0..y−1] of tiling independently and

uniformly at random.
3. Flip a random fair coin Z ∈ {0, 1}.
4. If Z = 1, then consider only requests in Far, and apply the Far-algorithm to these

requests.
5. If Z = 0, then consider only requests in Near, and apply the Near-algorithm to

these requests.

Theorem 5. If B, c ∈ [1, logn], then the competitive ratio of Alg is O(log n).

8 Other Cases

The following cases are dealt with by simplifying the algorithm. The required modifi-
cations are mentioned in the full version.

Theorem 6. If B > log and c ∈ N, then the competitive ratio of the modified algorithm
is O(log n).

Theorem 7. If B ∈ [logn, nO(1)) and c ∈ [log n,∞), then the competitive ratio of the
modified deterministic algorithm is O(log n).

Theorem 8. If B ∈ [1, logn] and c ∈ [logn,∞), then the competitive ratio of the
modified algorithm is O(log n).
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Abstract. We propose a new approach to the notion of recognition,
which departs from the classical definitions by three specific features.
First, it does not rely on automata. Secondly, it applies to any Boolean
algebra (BA) of subsets rather than to individual subsets. Thirdly, topol-
ogy is the key ingredient. We prove the existence of a minimum recognizer
in a very general setting which applies in particular to any BA of subsets
of a discrete space. Our main results show that this minimum recognizer
is a uniform space whose completion is the dual of the original BA in
Stone-Priestley duality; in the case of a BA of languages closed under
quotients, this completion, called the syntactic space of the BA, is a com-
pact monoid if and only if all the languages of the BA are regular. For
regular languages, one recovers the notions of a syntactic monoid and
of a free profinite monoid. For nonregular languages, the syntactic space
is no longer a monoid but is still a compact space. Further, we give an
equational characterization of BA of languages closed under quotients,
which extends the known results on regular languages to nonregular lan-
guages. Finally, we generalize all these results from BAs to lattices, in
which case the appropriate structures are partially ordered.

Recognizability is one of the most fruitful concepts in computer science [16,3].
Originally introduced for finite words, it has been successfully extended to infi-
nite words, general algebras, finite and infinite trees and to many other struc-
tures. Roughly speaking, a set is recognizable if it is saturated by a congruence of
finite index. A desirable property for any notion of recognition is the existence of
a minimum recognizer. Here, the word “minimum” does not refer to algorithmic
properties, like the minimal number of states of an automaton, but rather to a
final object in a suitable category. For instance, there is a well defined notion
of morphism of deterministic automata. Final objects exist in this category and
are just the usual minimal automata. But no such notion is known for automata
on infinite words, even for ω-regular languages. This problem has been overcome
by using another type of recognizer. For languages of finite words, automata can
be replaced by monoids, for which there is a minimal recognizer, the syntactic
monoid. For ω-regular languages, ω-semigroups are a category in which minimal
recognizers do exist again [9,17].
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The aim of this paper is to propose a general definition of recognition for which
each object has a unique minimum recognizer. Our approach departs from the
classical definitions of recognition by three specific features:

(1) it does not rely at all on automata;
(2) it applies to Boolean algebras or more generally to lattices of subsets rather

than to individual subsets;
(3) topology, and in particular Stone-Priestley duality, is the key ingredient.

Our most general definition is given in the category of uniform spaces, an abstrac-
tion of the notion of metric spaces well-known to topologists. We predominantly
consider discrete spaces where the topology itself carries no valuable information.
However, an appropriate uniformity gives rise by completion to a compact space,
a common practice in mathematics, where it is often said that “compactness is
the next best thing to finiteness”.

We develop a notion of recognition in this general setting and prove that any
Boolean algebra of subsets of a uniform space admits a minimum recognizer,
which is again a uniform space, whose completion is the dual space of the original
Boolean algebra in the sense of Stone-Priestley duality.

When the uniform space carries an algebraic structure for which the opera-
tions are at least separately uniformly continuous, it is natural to require that the
recognizing maps be morphisms for the algebraic structure as well. In the case
of a monoid, this amounts to working in the category of semiuniform monoids
and imposes closure under quotients of the Boolean algebra. The minimum rec-
ognizer is then a semiuniform monoid whose completion is called the syntactic
space of the Boolean algebra with quotients. We prove that this syntactic space
is a compact monoid if and only if all the subsets of the Boolean algebra are rec-
ognizable. For a regular language, one recovers the classical notion of a syntactic
monoid. For a variety of regular languages, one obtains the free profinite monoid
of the corresponding variety of monoids. For nonregular languages, the syntactic
space is no longer a monoid but is still a compact space. We also prove that any
Boolean algebra of languages closed under quotient has an equational descrip-
tion. Finally, we generalize all these results from Boolean algebras to lattices
and recover in this way the notion of a syntactic ordered monoid.

1 The Topological Setting

In this section, we recall the notions of topology needed to read this paper. We
invite the reader to look at Wikipedia for an introduction and suitable references
(notably the entries uniform spaces and Stone-Čech compactification).

Let X be a set. We denote by Lc the complement of a subset L of X . The
subsets of X × X can be viewed as relations on X . Given a relation U , the
transposed relation of U is the relation tU =

{
(x, y) ∈ X ×X | (y, x) ∈ U

}
. We

denote by UV the composition of two relations U and V on X . Thus

UV =
{
(x, y) ∈ X ×X | there exists z ∈ X, (x, z) ∈ U and (z, y) ∈ V

}
.

Finally, if x ∈ X and U ⊆ X×X , we write U(x) for the set {y ∈ X | (x, y) ∈ U}.
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1.1 Uniform Spaces

Uniform spaces generalize metric spaces and enable the formalization of the
notion of relative closeness. See [4] for a thorough discussion of these notions
and [12] for a connection with Eilenberg’s variety theory.

A uniformity on a set X is a nonempty set U of subsets of X ×X satisfying
the following properties:

(1) if a subset U of X ×X contains an element of U , then U ∈ U ,
(2) the intersection of any two elements of U is an element of U ,
(3) each element of U contains the diagonal of X ×X ,
(4) for each U ∈ U , there exists V ∈ U such that V V ⊆ U .
(5) for each U ∈ U , tU ∈ U .

The elements of a uniformity are called entourages. The pair (X,U) (or the set
X if U is understood) is called a uniform space. The discrete uniformity on X
is the unique uniformity which contains the diagonal of X ×X .

A basis of a uniformity U is a subset B of U such that each element of U
contains an element of B. In particular, U consists of all the relations on X
containing an element of B. We say that U is generated by B.

A subbasis of a uniformity U is a subset B of U such that the finite intersections
of members of B form a basis of U .

If X and Y are uniform spaces, a function ϕ : X → Y is said to be uniformly
continuous if, for each entourage V of Y , (ϕ × ϕ)−1(V ) is an entourage of X ,
or, equivalently, if for each entourage V of Y , there exists an entourage U of X
such that (ϕ× ϕ)(U) ⊆ V .

1.2 Pervin Uniformities

Pervin uniformities were first introduced in [10]. They play a key role in our
definition of recognition given in Section 2.

For each subset L of a set X , consider the equivalence relation UL on X :

UL = (L× L) ∪ (Lc × Lc) = {(x, y) ∈ X ×X | x ∈ L ⇐⇒ y ∈ L}

Let S be a collection of subsets of X . The sets of the form UL, for L ∈ S, form
the subbasis of a uniformity of X , called the Pervin uniformity defined by S and
denoted by US . The space (X,US) is called a Pervin space.

1.3 Induced Topology

Let U be a uniformity on X . For each x ∈ X , let U(x) = {U(x) | U ∈ U }. There
exists a unique topology on X , called the topology induced by U , for which U(x)
is the set of neighborhoods of x for each x ∈ X .

If U is a uniformity on X , the intersection of all its entourages is an equivalence
relation ∼ on X , which is equal to the diagonal if and only if the topology induced
by U is Hausdorff. Further, if π : X → X/∼ denotes the quotient map, then the
sets of the form (π × π)(U), where U is an entourage of X , form a subbasis
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of a uniformity on X/∼. This map is uniformly continuous and the Hausdorff
uniform space X/∼ is called the Hausdorff quotient of X .

Let L be a Boolean algebra of subsets of X . In the topology induced by the
Pervin uniformity UL, the neighborhoods of x are the supersets of the sets of L
containing x.

1.4 Filters, Ultrafilters and Stone Duality

Let L be a Boolean algebra of subsets of X . A filter of L is a nonempty subset
F of L such that:

(1) the empty set does not belong to F ,
(2) if K ∈ F and K ⊆ L, then L ∈ F (closure under extension),
(3) if K,L ∈ F , then K ∩ L ∈ F (closure under intersection).

An ultrafilter is a filter which is maximal for the inclusion. Recall that a filter is
an ultrafilter if and only if, for every L ∈ L, either L ∈ F or Lc ∈ F . Let S(L)
be the set of ultrafilters of L. For each L ∈ L, let ωL be the set of ultrafilters
containing L. The set Ω = {ωL | L ∈ L} is a Boolean algebra of subsets of S(L),
which defines a Pervin uniformity UΩ. The uniform space (S(L),UΩ) is called
the Stone dual space of L and S(L) with the induced topology is the Stone dual
space of L in the topological sense. Note that Ω is a basis of clopen sets for the
topology of S(L) (recall that a set is clopen if it is both open and closed).

If X is a space, a filter of P(X) is simply called a filter on X . A filter F
converges to a point x of X if, for each neighborhood U of x, there is a set B of
F such that B ⊆ U . In this case, x is called a limit of F .

1.5 Blocks

A subset L of a uniform space X is a block if UL is an entourage. Intuitively,
blocks are to uniformities what clopen sets are to topologies. Recall that the
characteristic function of a subset L of X is the function χL from X to {0, 1}
defined by χL(x) = 1 if x ∈ L and χL(x) = 0 if x ∈ Lc.

Proposition 1.1. Let X be a topological [uniform ] space. A subset of X is
clopen [a block ] if and only if its characteristic function is a [uniformly ] contin-
uous function from X to the discrete [uniform ] space {0, 1}.
In the same way, Pervin uniformities are the uniform analogs of zero-dimensional
topologies: a topology is zero-dimensional [a uniformity is Pervin] if and only if
it has a basis of clopen sets [blocks].

Proposition 1.2. The blocks of a uniform space form a Boolean subalgebra of
the Boolean algebra formed by the clopen sets. These two Boolean algebras coin-
cide if the space is compact.

The next result gives a simple description of the blocks of a Pervin uniformity.

Proposition 1.3. Let S be a collection of subsets of X. The blocks of the Pervin
uniformity defined by S form a Boolean algebra, equal to the Boolean algebra L
generated by S. Further, S and L define the same Pervin uniformity.
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1.6 Hausdorff Completion of a Uniform Space

Let X be a uniform space. A filter F on X is a Cauchy filter if, for every
entourage U , there exists B ∈ F with B × B ⊆ U . In Pervin spaces, Cauchy
filters have a simple description.

Proposition 1.4. Let L be a Boolean algebra of subsets of X. A filter F is
Cauchy for the Pervin uniformity defined by L if and only if, for every L ∈ L,
either L ∈ F or Lc ∈ F .

A uniform space X is complete if every Cauchy filter converges. Every uniform
space admits a unique Hausdorff completion [4]. More precisely, let X be a
uniform space. Then there exist a complete Hausdorff uniform space X̂ and a
uniformly continuous mapping ı : X → X̂ such that ı(X) is dense in X̂ and
the following universal property holds: for each uniformly continuous mapping
ϕ from X into a complete Hausdorff uniform space Y , there exists a unique
uniformly continuous mapping ϕ̂ : X̂ → Y such that ϕ̂ ◦ ı = ϕ. The image of X
under ı is the Hausdorff quotient of X and ı is thus injective if and only if X is
Hausdorff.

A uniform space is said to be totally bounded if, for each entourage U , there
exists a finite cover (Bi)i∈F of X such that, for all i ∈ F , Bi × Bi is a subset
of U . The interest of totally bounded uniformities lies in the following result
[4, TG.II.29, Thm. 3]: a uniform space is totally bounded if and only if its
completion is compact. This result applies in particular to Pervin spaces. Indeed,
the subbasic entourages of the form UL contain the sets L× L and Lc ×Lc and
{L,Lc} is a finite cover of X . Thus we obtain

Proposition 1.5. Any Pervin space is totally bounded.

1.7 Pervin Completions

We now show that complete Pervin spaces are the uniform analogs of topological
Stone spaces. Let L be a Boolean algebra of subsets of X and let UL be the
Pervin uniformity defined by L. By Proposition 1.5, the completion X̂ of X
for this uniformity is compact. It consists of all Cauchy filters on X that are
minimal for the inclusion order on filters. For each x ∈ X , ı(x) is the filter of
neighborhoods of x in X and X̂ is equipped with the Pervin uniformity defined
by the sets {F ∈ X̂ | L ∈ F}, for each L ∈ L. For this reason, we call X̂ the
Pervin completion of X with respect to L.

We now give an alternative description of X̂ . If G is a filter on the Boolean
algebra L, we denote by ↑G the filter on X generated by G.

Theorem 1.6. The space X̂ is the dual space of L as defined in Section 1.4.
Further, the maps F )→ F ∩ L and G )→ ↑G define mutually inverse uniformly
continuous bijections between the set of minimal Cauchy filters on X and the set
of ultrafilters of L.
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The next series of results gives another natural correspondence between the
blocks of X and the clopen sets of X̂. We shall use freely the following notation.
Let χL be the characteristic function of some block L. By Proposition 1.1, χL

is uniformly continuous. The universal property of the completion ensures that
there is a unique uniformly continuous map χ̂L : X̂ → {0, 1} such that χ̂L ◦ ı =
χL. If L is a subset of X , we set L̃ = ı−1(ı(L)).

Theorem 1.7. One has L̃ ∈ L if and only if ı(L) is clopen and ı(L) ∩ ı(X) =
ı(L). If these conditions are satisfied, then ı(L) = χ̂−1

L̃
(1).

If the space (X,UL) is Hausdorff, then ı is the identity map and Theorem 1.7
can be simplified as follows:

Corollary 1.8. Suppose that (X,UL) is Hausdorff. Then L ∈ L if and only if
L is clopen and L ∩X = L. If these conditions are satisfied, then L = χ̂−1

L (1).

Let us denote by Clopen(X̂) the Boolean algebra of all clopen sets of X̂.

Theorem 1.9. The maps L )→ ı(L) and K )→ ı−1(K ∩ ı(X)) define mutually
inverse isomorphisms between the Boolean algebras L and Clopen(X̂). In par-
ticular, the following formulas hold, for all L,L1, L2 ∈ L:

(1) ı(Lc) = ı(L)
c
,

(2) ı(L1 ∪ L2) = ı(L1) ∪ ı(L2),
(3) ı(L1 ∩ L2) = ı(L1) ∩ ı(L2),

2 Recognition in a Uniform Space

In this section, we define a notion of recognition for Boolean algebras of blocks of
a uniform space. In spite of the analogy between clopen sets and blocks illustrated
by Proposition 1.1, our definition can only be reformulated in terms of clopen
sets and continuous maps if one moves to the Hausdorff completions. Indeed,
there are nontrivial Pervin uniformities inducing the discrete topology.

2.1 Recognition of a Boolean Algebra

Let (X,U) be a uniform space and let L be a Boolean algebra of blocks of X .

Definition 1. A [surjective] uniformly continuous map ϕ from X into a uni-
form space Y [ fully ] recognizes L if, for each L ∈ L, ϕ(L) is a block of Y and
ϕ−1(ϕ(L)) = L.

Let us state two important consequences of this definition. The first one shows
that recognition preserves the Boolean structure and the second one is a transi-
tivity property.

Proposition 2.1. If ϕ recognizes L, then ϕ induces an isomorphism of Boolean
algebras between L and ϕ(L).

Proposition 2.2. Let X, Y and Z be three uniform spaces and let L be a
Boolean algebra of blocks of X. If L is [ fully ] recognized by ϕ : X → Y and
ϕ(L) is [ fully ] recognized by γ : Y → Z, then L is [ fully ] recognized by γ ◦ ϕ.
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2.2 Minimum Recognizer of a Boolean Algebra

If L is a Boolean algebra of blocks of X , the Pervin uniformity UL is contained
in U and therefore, the identity on X is a uniformly continuous map from (X,U)
onto (X,UL). The canonical map from (X,UL) onto its Hausdorff quotient XL is
surjective and uniformly continuous. The composition of these two maps yields
a surjective and uniformly continuous ηL from X onto XL, called the minimum
recognizing map of L. The space XL is called the minimum recognizer of L. This
terminology is justified by the following universal property:

Proposition 2.3. The map ηL : X → XL fully recognizes L. Further, if ϕ :
X → Y fully recognizes L, there exists a unique surjective uniformly continuous
map π : Y → XL fully recognizing the Boolean algebra ϕ(L) and such that
π ◦ ϕ = ηL. Further, η(L) is the set of blocks of XL.

If X is a discrete space, then every subset is a block. It means that every Boolean
algebra L of subsets of X admits a minimum recognizer. In this case, the space
XL is simply the quotient of X under the equivalence relation ∼L defined by
u ∼L v if and only if, for each L ∈ L, the conditions u ∈ L and v ∈ L are
equivalent. But of course, the interesting part is the uniform structure of XL,
inherited from the Pervin uniformity UL on X , which is in general nontrivial.

2.3 Recognition with Additional Algebraic Structure

The notion of recognition originates in the setting of monoids and automata.
Recall that a subset of a monoid is recognizable if its syntactic monoid is finite.
Equivalently, a subset is recognizable if and only if it has only finitely many
distinct quotients. We now consider additional algebraic structure on uniform
spaces. For this purpose, we require the operations to be separately uniformly
continuous for each variable and the recognizing maps be morphisms for the
algebraic structure. Theorem 2.4 below shows that this condition forces some
structural conditions upon the Boolean algebra being recognized. Due to the
lack of space, we only treat the case of monoids, which is sufficient to illustrate
our ideas.

Let us define a semiuniform monoid as a monoid M equipped with a uniform
structure for which the translations x )→ xs and x )→ sx are uniformly continuous
for each s ∈ M . If the multiplication is jointly uniformly continuous, that is, if
the map (x, y) )→ xy is uniformly continuous, M is a uniform monoid.

Let L be a subset of M and let s and t be elements of M . The quotient s−1Lt−1

of L by s and t is defined by the formula s−1Lt−1 = {x ∈ M | sxt ∈ L}. We can
now state:

Theorem 2.4. Let L be a Boolean algebra of blocks of M . Then L is closed un-
der quotients if and only if (M,UL) is a semiuniform monoid. If these conditions
are satisfied, then the relation ∼L is a congruence of monoids.

Under the conditions of Theorem 2.4, the minimum recognizer ML of L is a
semiuniform monoid. This allows us to link our definition with the standard
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definition of a syntactic monoid. Suppose that M is a discrete monoid and let
L be a subset of M . Consider the smallest Boolean algebra L containing L and
closed under quotients. Since quotients commute with Boolean operations, this
is also the Boolean algebra generated by the quotients of L. Now, the equivalence
∼L defined at the end of Section 2.2 is the syntactic congruence of L, defined
by u ∼L v if and only if, for all x, y ∈ M , the conditions xuy ∈ L and xvy ∈ L
are equivalent. In summary, we obtain:

Proposition 2.5. The minimum recognizer of the Boolean algebra generated by
a set L and its quotients is the usual syntactic monoid of L enriched with a
uniform structure which makes the translations uniformly continuous.

3 Syntactic Monoid and Syntactic Space

We are now ready to introduce our second main definition.

Definition 2. Let L be a Boolean algebra of blocks of X . The completion
of its minimum recognizer is called the minimum space of L. If L is closed
under quotients the minimum recognizer will be called the syntactic monoid,
the minimum space the syntactic space, and the minimal recognizing map the
syntatic morphism.

Since XL is Hausdorff, it can be identified with a subset of X̂L. The minimum
space has a universal property similar to that of the minimum recognizer. Let
us say that a map ϕ : X → Y is dense if ϕ(X) is dense in Y . A map densely
recognizes L if it recognizes L and is dense. Then ηL : X → X̂L is minimum
among Hausdorff complete recognizers, in the following sense:

(1) ηL : X → X̂L densely recognizes L;
(2) if Y is an Hausdorff complete space and if ϕ : X → Y densely recognizes

L, there is a unique surjective uniformly continuous map π : Y → X̂L such
that π ◦ ϕ = ηL.

The results of Section 1.7 show that the syntactic space is precisely the dual
space of L. Although the minimum recognizer ML is a monoid, the product on
ML is not in general uniformly continuous and the completion of ML is not
in general a monoid. More precisely, the closure of the product is in general a
ternary relation, as shown in Example 3.2.

Let us give a few examples of syntactic spaces.

Example 3.1. Let P(M) be the Boolean algebra of all subsets of a monoid M .
Its minimum recognizer is M and its syntactic space is the Stone-Čech com-
pactification of M , traditionally denoted by βM , and studied in detail in [7].
As foretold by Theorem 4.1 below, the closure in βM of the product on M is
not a binary operation any longer. As a function from βM ×βM into P(βM) it
maps a pair of ultrafilters (p, q) to the family of ultrafilters extending the filter
of supersets of {XY | X ∈ p, Y ∈ q}.
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Example 3.2. The minimal recognizer of the language {u ∈ {a, b}∗ | |u|a = |u|b}
is (Z,+). Its syntactic image is {0} and its quotients are the sets {n}, where
n ∈ Z. The Boolean algebra generated by these quotients is the set of finite
or cofinite subsets of Z. The associated Pervin completion of Z is Z ∪ {∞}: Z

corresponds to the principal ultrafilters on L and ∞ is the ultrafilter of cofinite
subsets of Z.

The minimal recognizer of the language Majority = {u ∈ {a, b}∗ | |u|a �
|u|b} is also (Z,+) and its syntactic image is [0,+∞[. Its quotients are [n,+∞[,
with n ∈ Z, and they generate the Boolean algebra of all subsets of Z having a fi-
nite symmetric difference with one of the sets ∅, Z,−N or N. The associated Pervin
completion of Z is Z ∪ {−∞,+∞}: again Z corresponds to the principal ultrafil-
ters, and +∞ [−∞] is the ultrafilter containing the cofinite subsets of N [−N].

Let us denote by Ẑ the completion of Z. Thus Ẑ = Z ∪ {∞} in the first
case, and Ẑ = Z∪ {−∞,+∞} in the second case. The tables below describe the
closure +̂ of the addition on Z for these two completions. These are not binary
operations any longer. We give them as functions from Ẑ × Ẑ into P(Ẑ).

+̂ i ∞
j {i + j} {∞}
∞ {∞} Ẑ

+̂ i −∞ +∞
j {i + j} {−∞} {+∞}

−∞ {−∞} {−∞} Ẑ

+∞ {+∞} Ẑ {+∞}

4 Recognizable Boolean Algebras

When L is a Boolean algebra of regular languages of A∗ its syntactic space is the
profinite monoid attached to L, in the sense of [1,6]. In particular, this syntactic
space is a compact monoid, that is, a compact space equipped with a monoid
operation which is jointly continuous. This is in fact characteristic, as we show
in the following theorem. Let us say that a Boolean algebra of blocks of M is
recognizable if all its members are recognizable.

Theorem 4.1. Let L be a Boolean algebra of blocks of M closed under quotients.
The following conditions are equivalent:

(1) the syntactic monoid of L is a uniform monoid,
(2) the syntactic space of L is a compact monoid,
(3) the closure of the operation on the syntactic monoid of L is functional,
(4) all the languages of L are recognizable.

Example 4.1. In this example, we consider three Boolean algebras on Z.
Let Rec(Z) be the Boolean algebra of all recognizable subsets of Z, that is,

the family of finite unions of congruence classes {a + nZ | n � 1, 0 � a < n}.
Its minimal recognizer is Z and its syntactic space Ẑ is the free profinite group
on one generator. Note that in this case, the closure of the addition is the usual
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addition on Ẑ. In the sequel, we denote by i )→ i the natural embedding from Z

into Ẑ and by + the addition on Ẑ.
Consider now the Boolean algebra L generated by Rec(Z) and by the finite

subsets of Z. Its minimal recognizer is Z and its syntactic space is the disjoint
union Z ∪ Ẑ: Z consists of the principal ultrafilters of L and the profinite group
Ẑ corresponds to the nonprincipal ones. The closure +̂ of the addition on Z is
commutative but nonfunctional. It extends + on Z and is such that, for i ∈ Z

and u, v ∈ Ẑ, i +̂ u = i + u and u +̂ v is {k, k} if u + v = k for some k ∈ Z and
is {u + v} otherwise.

Finally, let Rat(Z) be the Boolean algebra of rational subsets of Z. Its minimal
recognizer is again Z and its syntactic space is the disjoint union (Ẑ×{−})∪Z∪
(Ẑ × {+}) : as before Z stands for the principal ultrafilters and, for ε ∈ {+,−},
Ẑ × {ε} consists of the nonprincipal ones which contain εN. The closure +̂ of the
addition on Z is commutative but nonfunctional. It extends the addition on Z and
on each copy of Ẑ. Further, for i ∈ Z and u, v ∈ Ẑ, one has i+̂(u, ε)=(i+u, ε) and

(u,+) +̂ (v,−) =

{
{(k,−), k, (k,+)} if u + v = k for some k ∈ Z

{(u + v,−), (u + v,+)} otherwise

5 Equational Theory

Let A∗ be a free monoid. We consider A∗ as a uniform space, endowed with the
Pervin uniformity defined by P(A∗). As we have seen, its completion is βA∗, the
Stone-Čech compactification of A∗. Let L be a Boolean algebra of languages of
A∗ closed under quotients and let η : A∗ → ML be its syntactic morphism. Then
η extends uniquely to a uniformly continuous map η̂ : βA∗ → M̂L. We denote
by L the closure in βA∗ of a language L of A∗.

Formally, an equation is a pair (u, v) of elements of βA∗. We say that L satisfies
the equation u = v if, for all L ∈ L, and for all x, y ∈ A∗, the conditions xuy ∈ L
and xvy ∈ L are equivalent. This is equivalent to stating that η̂(u) = η̂(v). Given
a set E of equations, the set of languages defined by E is the set of all languages
of A∗ satisfying all the equations of E. We are now ready to state our equational
characterization of Boolean algebras closed under quotients, which extends the
results of [6] to nonregular languages.

Theorem 5.1. A set of languages of A∗ is a Boolean algebra of languages closed
under quotients if and only if it can be defined by a set of equations of the form
u = v, where u, v ∈ βA∗.

6 Lattices and Ordered Structures

Let us briefly indicate how to generalize these definitions and results to lattices.
It consists mainly in extending the ideas developed in [11,12]. We treat directly
the case of a monoid M .
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Let L be a lattice of subsets of M . Define the specialization preorder on M
given by L as the relation � defined by x � y if and only if for all L ∈ L,

y ∈ L =⇒ x ∈ L

We define the preordered Pervin uniformity given by L to be (M,�,UL). The
minimum recognizer of L is the Hausdorff quotient (ML,�) with � = � /∼,
where ∼ is the Hausdorff equivalence defined in Section 1.3 and the minimum
space of L is the ordered completion (M̂L,�) of (ML,�). The latter is the
uniform space version of the Priestley space of L [13]. If the syntactic space is a
monoid, we obtain an ordered monoid. For instance, if L is a regular language,
one gets the syntactic ordered monoid of L as defined in [11]. The order of the
syntactic monoid of the language Majority considered in Example 3.2 is the
usual order on Z.

7 Conclusion and Perspectives

We have developed a topological approach to the notion of recognition which
seems general enough to be applied not only to monoids but to more general
algebras, notably those having finitely determined syntactic congruences in the
sense of [5], including vector spaces, Boolean algebras, groups and rings.

Let us come back to finite words. The notion of a syntactic monoid has been
extremely successful for regular languages and has developed into a rich theory.
However, besides the noticeable exception of the theory of context-free groups
[8], this notion is not doing so well beyond regular languages. The reason is that
the syntactic monoid does not capture enough information. To work around this
difficulty, Sakarovitch [14] proposed to use pointed monoids, a category which
also admits minimal recognizers. The pointed syntactic monoid of a language is
the pair formed by its syntactic monoid and by the image of the language in
its syntactic monoid. Our new definition is an extension of this idea. However,
instead of adding a ”point” to the syntactic monoid, we attach to it a uniform
structure (which also depends on the original language) and we consider its
completion as a uniform space.

The power of topological methods opens new perspectives for the solution of
problems beyond regular languages. Let us give a concrete example. Let AC0 be
the class of languages accepted by unbounded fan-in, polynomial size, constant-
depth Boolean circuits. A famous result [2] states that a regular language belongs
to AC0 if and only if its syntactic monoid is quasi-aperiodic. It would be nice to
prove this result (and the more general conjectures of this nature proposed by
Straubing in his book [15]) by finding some suitable property of the syntactic
space of AC0.
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Abstract. Usually, a parser for an LR(k)-grammar G is a deterministic
pushdown transducer which produces backwards the unique rightmost
derivation for a given input string x ∈ L(G). The best known upper
bound for the size of such a parser is O(2|G||Σ|k+1

) where |G| and |Σ| are
the sizes of the grammar G and the terminal alphabet Σ, respectively.
If we add to a parser the possibility to manipulate a directed graph
of size O(|G|n) where n is the length of the input then we obtain an
extended parser. The graph is used for an efficient parallel simulation of
all potential leftmost derivations of the current right sentential form such
that the unique rightmost derivation of the input can be computed. Given
an arbitrary LR(k)-grammar G, we show how to construct an extended
parser of O(|G| + #LA|N |2kk log k) size where |N | is the number of
nonterminal symbols and #LA is the number of possible lookaheads
with respect to the grammar G. As the usual parser, this extended parser
uses only tables as data structure. Using some ingenious data structures
and increasing the parsing time by a small constant factor, the size of the
extended parser can be reduced to O(|G|+#LA|N |k2). The parsing time
is O(ld(input) + k|G|n) where ld(input) is the length of the derivation
of the input. Moreover, we have constructed a one pass parser.

1 Introduction

Efficient implementations of parsers for context-free grammars play an important
role with respect to the construction of compilers. Since practical algorithms for
general context-free analysis need cubic time, during the sixties subclasses of
the context-free grammars having linear time parsers were defined. The most
important such subclasses are the LR(k)- and the LL(k)-grammars. But the
size of linear LR(k)- and LL(k)-parsers might be exponential in the size of the
underlying grammar. Indeed, Ukkonen [12] has constructed families of LR(k)-
and LL(k)-grammars having only parsers of exponential size. The reason is that
parsers read the input from left to right in one pass without backtrack and
treat always the only possible derivation which can depend on the prefix of the
input derived so far. Hence, the state of the parser has to include all necessary
information about the prefix of the input read so far. Instead of the treatment of
the only possible derivation one can consider a set of potential derivations which
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always contains the correct derivation in parallel. Hence, the following question
arises: Is it possible to simulate an accurate set of derivations in parallel such
that the correct derivation will be computed, the needed time remains linear and
the modified parser uses on the input one pass without backtrack and has only
polynomial size?

In [3] for LL(k)-grammars a positive answer to this question is given. In the
case of LR(k)-grammers the situation is a little bit more complicated. The parser
has to take into account all possible derivations of the current right sentential
form. Hence, the state of the parser has to include all necessary information
with respect to all possible derivations of the current rightmost sentential form
from the start symbol. Instead of storing the whole needed information into the
state the parser can treat simultaneously all potential leftmost derivations and
also backwards the rightmost derivation which has to be computed. We will
consider arbitrary LR(k)-grammars. The usual parser for an LR(k)-grammar
G = (V,Σ, P, S) is the so-called canonical LR(k)-parser . The best known up-
per bound for its size is O(2|G||Σ|k+1

) [10]. Hence, DeRemer [6] has defined
two subclasses of the class of LR(k)-grammars, the SLR(k)-grammars and the
LALR(k)-grammars. Both classes allow smaller canonical LR-parsers. But the
size of these parsers can still be O(2|G|) [10]. Hence, the question posed above
remains interesting for SLR(k)- and LALR(k)-grammers, too. We will give a
positive answer to this question for arbitrary LR(k)-grammars. We assume that
the reader is familiar with the elementary theory of LR(k)-parsing as written
in standard text books (see e.g. [1,2,5,8,9,13]). The notations used in the subse-
quence are the same as in [1] and are reviewed in the full paper [4] . In Sections
2 and 3, the necessary background is given. Section 2 describes the canoni-
cal LR(k)-parser. Section 3 describes an efficient simulation of the pushdown
automaton MG designed for an arbitrary context-free grammar G. Section 4
combines the canonical LR(k)-parser and the efficient simulation of MG for an
arbitrary LR(k)-grammar G obtaining the extended LR(k)-parser for G.

2 The Canonical LR(k)-Parser

For a context-free grammar G = (V,Σ, P, S), an integer k, and α ∈ V ∗ the set
FIRSTk(α) contains all terminal strings of length ≤ k and all prefixes of length
k of terminal strings which can be derived from α in G. A context-free grammar
G is reduced if P = ∅ or, for each A ∈ V , S ∗⇒ αAβ

∗⇒ w for some α, β ∈ V ∗,
w ∈ Σ∗. Let G = (V,Σ, P, S) be a reduced, context-free grammar and k ≥ 0 be
an integer. We say that G is LR(k) if

1. S ∗⇒ αAw ⇒ αβw,
2. S ∗⇒ γBx ⇒ αβy, and
3. FIRSTk(w) = FIRSTk(y)

imply α = γ, A = B, and x = y.
For the construction of a parser for an LR(k)-grammar G the following no-

tations are useful: Let S
∗⇒ αAw ⇒ αβw be a rightmost derivation in G. A
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prefix γ of αβ is called viable prefix of G. A production in P with a dot on its
right side is an item. More exactly, let p = X → X1X2 . . .Xnp ∈ P . Then [p, i],
0 ≤ i ≤ np is an item which is represented by [X → X1X2 . . . Xi ·Xi+1 . . . Xnp ]. If
p = X → ε then we simpy write [X → ·]. If we add to an item a terminal string of
length ≤ k then we obtain an LR(k)-item. More formally, [A → β1 ·β2, u] where
A → β1β2 ∈ P and u ∈ Σ≤k is an LR(k)-item. An LR(k)-item [A → β1 · β2, u]
is valid for αβ1 ∈ V ∗ if there is a derivation S

∗⇒ αAw ⇒ αβ1β2w with
u ∈ FIRSTk(β2w). Note that by definition, an LR(k)-item can only be valid for
a viable prefix of G.

The canonical LR-parser is a shift-reduce parser . A shift-reduce parser is a
pushdown automaton which constructs a rightmost derivation backwards. We
will give an informal description of such a pushdown automaton. Let S ⇒ α0 ⇒
α1 ⇒ . . . ⇒ αm−1 ⇒ αm = x be a rightmost derivation of x from S. The
shift-reduce parser starts with the right sentential form αm := x as input and
constructs successively the right sentential forms αm−1, αm−2, . . . , α1, α0, S. The
current right sentential form will always be the concatenation of the content of
the pushdown store from the bottom to the top and the unread suffix of the
input. At the beginning, the pushdown store is empty. Let y be the unexpended
input and αi = γy be the current right sentential form. Then γ is the current
content of the pushdown store where the last symbol of γ is the uppermost
symbol of the pushdown store. Our goal is to construct the right sentential form
αi−1 from αi.

If αi = γ1γ2y and αi−1 = γ1Ay then the alternative γ2 of the variable A
expanded in the current step is on the top of the stack. If αi = γ1γ2y1y2 and
αi−1 = γ1Ay2 then a portion of the alternative of A is prefix of the unexpended
input y. The goal of the shift-reduce parser is to take care that the alternative of
the variable A expanded in αi−1 is on the top of the stack. If the alternative of
A is on the top of the stack then the shift-reduce parser replaces this alternative
by A. For doing this, the shift-reduce parser uses the following operations:

1. The next input symbol is read and shifted on the top of the pushdown store.
2. The shift-reduce parser identifies that the alternative of A is on the top of the

stack and replaces this alternative by A. Therefore, a reduction is performed.

In each step, the shift-reduce parser can perform any of the two operations. In
general, the shift-reduce parser is nondeterministic. LR(k)-grammars allow to
make the shift-reduce parser deterministically. Moreover, the set of the LR(k)-
items valid for the current content of the stack contains always the information
which is sufficient to decide uniquely the next step of the shift-reduce parser.

Let γy be the current right sentential form; i.e., γ is the current content of
the stack and y is the unread suffix of the input. Let u := FIRSTk(y) be the
current lookahead . Let [A → β1 · β2, v] be an LR(k)-item which is valid for
γ. Then β1 is a suffix of γ. If β2 = ε then we have v = u and the LR(k)-
item [A → β1·, u] corresponds to a reduction which can be performed by the
shift-reduce parser. If β2 ∈ ΣV ∗ and u ∈ FIRSTk(β2v) then the LR(k)-item
[A → β1 · β2, v] corresponds to a reading which can be performed by the shift-
reduce parser. The following theorem tells us that the set of all LR(k)-items
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valid for γ corresponds to at most one step which can be performed by the
shift-reduce parser.

Theorem 1. Let k ≥ 0 be an integer and G = (V,Σ, P, S) be a context-free
grammar. G is LR(k) if and only if for all u ∈ Σ≤k and all αβ ∈ V ∗ the
following property is fulfilled: If an LR(k)-item [A → β·, u] is valid for αβ then
there exists no other LR(k)-item [C → β1 ·β2, v] valid for αβ with β2 ∈ ΣV ∗∪{ε}
and u ∈ FIRSTk(β2v).

The proof can be found in the full paper [4]. With respect to the shift-reduce
parser, the theorem has the following implication: If during the construction
of the rightmost derivation an LR(k)-item [A → β·, u] is valid for the current
content γ of the stack and u is the current lookahead then β is on the top of the
pushdown store and the reduction corresponding to the production A → β is the
only applicable step of the shift-reduce parser. If an LR(k)-item [C → β1 · β2, v]
with β2 ∈ ΣV ∗ is valid for the current content of the stack and the current
lookahead u is in FIRSTk(β2v) then the reading which corresponds to the first
symbol of u is the only applicable step of the shift-reduce parser.

3 The Pushdown Automaton MG

For the parallel simulation of all potential leftmost derivations we need the fol-
lowing pushdown automaton: Given any context-free grammar G = (V,Σ, P, S),
we will construct a pushdown automaton MG with L(MG) = L(G) which pro-
duces a leftmost derivation. For a production p ∈ P , np denotes the length of
the right side of p. Let HG = {[p, i] | p ∈ P, 0 ≤ i ≤ np} be the set of all items
of G. Then MG = (Q,Σ, Γ, δ, q0, Z0, F ) is defined by

Q = HG ∪ {[S′ → ·S], [S′ → S·]},
q0 = [S′ → ·S], F = {[S′ → S·]},
Γ = Q ∪ {⊥}, Z0 =⊥, and
δ : Q× (Σ ∪ {ε}) × Γ )→ 2Q×Γ∗

.

δ will be defined such that MG simulates a leftmost derivation. With respect to
δ, we distinguish three types of steps.

(E) expansion
δ([X → β · Aγ], ε, Z) = {([A → ·α], [X → β ·Aγ]Z) | A → α ∈ P}.
The leftmost variable in the left sentential form is replaced by one of its
alternatives. The pushdown store is expanded.

(C) reading
δ([X → ϕ · aψ], a, Z) = {([X → ϕa · ψ], Z)}.
The next input symbol is read.

(R) reduction
δ([X → α·], ε, [W → μ ·Xν]) = {([W → μX · ν], ε)}.
The whole alternative α is derived from X . Hence, the dot can be moved
beyond X and the corresponding item can be removed from the pushdown
store getting the new state. Therefore, the pushdown store is reduced.
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The basis for the construction of a polynomial size extended LR(k)-parser is an
efficient deterministic simulation of MG.

Let G = (V,Σ, P, S) be a reduced context-free grammar. N := V \ Σ is the
set of nonterminal symbols. Our goal is to develop a deterministic simulation of
the pushdown automaton MG. The algorithm which we will develop looks much
like Earley’s algorithm [7]. But in contrast to Earley’s algorithm, the algorithm
maintains the structure of the computation of the underlying pushdown automa-
ton MG. For the construction of the extended LR(k)-parser, this structure of the
computation of MG is needed. Tomita [11] has develloped a similiar approach
the “graph-structured stack” which is restricted to non-cyclic grammars such
that the graphs remain acyclic. Next we will describe the simulation of MG.

If we write the current state of MG always on the top of the stack then we have
only to solve the problem of the deterministic simulation of the stack. The idea
is to simulate all possible contents of the stack in parallel. Since an exponential
number of different stacks are possible at the same time, the direct simulation of all
stacks in parallel cannot be efficient. Observe that the grammar G and therefore
the pushdown automaton MG have a fixed size. Hence, at any time, at most a
constant number of distinct items can be on the top of all stacks. Hence, there
are only a constant number of possibilities to modify eventually an exponential
number of different stacks. This observation suggests the following method:

We realize all stacks simultaneously by a directed graph G = (V , E). Each
node of the graph is marked by an item. We identify each node with its item.
The graph contains exactly one node with indegree zero. This node is marked by
the item [S′ → ·S]. We call this node the start node and nodes with outdegree
zero end nodes . Everytime, we have a bijection of the paths from the start node
to an end node and the possible contents of the stack. The algorithm separates
into phases . During each phase, we treat all end nodes simultaneously. For doing
this, we have the difficulty that with respect to different end nodes the kind of
steps which have to be performed might be different; i.e., some end nodes have
to be expanded, other end nodes have to be reduced, and some end nodes need
a reading. Hence, it can be the case that with respect to different end nodes
the unexpended input might be different. For the solution of this difficulty, we
synchronize the computation using the following rules:

1. As long as there is an end node of the form [A → α1 ·Bα2], B ∈ N perform
an expansion with respect to this end node.

2. If all end nodes are of the form [A → α1 ·α2], α2 ∈ ΣV ∗ ∪ {ε} then perform
a reduction with respect to all end nodes with α2 = ε.

3. If all end nodes are of the form [A → α1 ·aα2], a ∈ Σ then perform a reading
with respect to all end nodes.

At the end of each phase exactly one input symbol has been read. Hence, we have
n phases where n is the length of the input. We number these phases from 1 to n.
Each phase separates into two subphases. During the first subphase, we perform
all possible expansions and reductions. An end node of the form [A → α1 · α2]
with α2 ∈ NV ∗ is called expansible, with α2 ∈ ΣV ∗ is called readable, and with
α2 = ε is called reducible.
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The first subphase is separated into rounds. In the first round, we perform as
long as possible expansions. We call such a round expansion step. The same node
is inserted only once. Instead of inserting the same node again, an edge pointing
to the node inserted before is created. Since the alternative of an expanded
nonterminal can be in NV ∗, possibly we have to expand the new node again.
Maybe, some cycles are constructed; e.g., the following chain of expansions would
produce a cycle:

[A → α1 · Bα2], [B → ·Cβ1], [C → ·Bβ2], [B → ·Cβ1].

In the second round, we perform all possible reductions. Such a round is called
reduction step. According to the reductions, maybe some further expansions
are possible. These are performed during a third round. If the alternative of
the expanded variable is ε then this new end node is reducible and causes a
reduction. All these reductions are performed in the next round a.s.o. New nodes
are indexed by the number of the current phase. A reduction step is performed
as follows: We remove all reducible nodes from the graph. Two cases with respect
to a direct predecessor u of a removed node can arise:

1. All its successors are reducible and will be removed. Then u is of Type 1.
2. u has successors which will be not removed. Then u is of Type 2.

If u is of Type 1 then the dot of the item u will be moved by one position to
the right. The index of u is changed to the number of the current phase. If u is
of Type 2 then we copy the node u and all ingoing edges of u and move the dot
of the copy u′ of u by one position to the right. We index u′ by the number of
the current phase. Possibly, after moving the dot in u or in u′, the node u or u′

becomes reducible, expansible, or readable.
After the first subphase, all end nodes have a terminal symbol behind its

dot. During the second subphase, we perform the reading step. Assume that the
(i + 1)th input symbol ai+1 is the first unread input symbol. End nodes where
the terminal symbol behind the dot is unequal ai+1 cannot lead to an accepting
computation of the pushdown automaton MG. Hence, they can be removed from
the graph. Nodes where all successors are removed can also be deleted. In end
nodes with the first symbol behind the dot is ai+1, we move the dot one position
to the right and change the index of the current item to i + 1.

Note that the graph G = (V , E) can contain some cycles. The index of an item
is equal to the length of the already read input. This index will be helpful for
understanding the simulation algorithm and can be omited in any implemen-
tation of the algorithm. The correctness of the algorithm follows from the fact
that after each performance of a phase there is a bijection between the paths
from the start node to the end nodes and the possible contents of the stack.
This can easily be proved by induction. It is also easy to prove that the algo-
rithm uses O(n3) time and O(n2) space where n is the length of the input. If
the context-free grammar G is unambiguous, the needed time reduces to O(n2).
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4 The Construction of the Extended LR(k)-Parser

Let k ≥ 0 be an integer and let G = (V,Σ, P, S) be an arbitrary LR(k)-grammar.
The idea is to combine the concept of the shift-reduce parser and the deter-
ministic simulation of the pushdown automaton MG. This means that for the
construction of the extended parser PG we use MG under regard of properties
of LR(k)-grammars. Just as for the construction of the canonical LR(k)-parser,
Theorem 1 is the key for the construction of the extended LR(k)-parser. Note
that Theorem 1 is a statement about valid LR(k)-items for a viable prefix of G.
Hence, we are interested in all maximal viable prefixes represented by the cur-
rent graph G = (V , E) of the simulation algorithm of MG. In the subsequence,
we omit the indices of the items if they are not needed. Let [A → α1 · α2] be
an item. Then we call the portion α1 left from the dot the left side of the item
[A → α1 ·α2]. Let P be any path from the start node to an end node in G. Then
the concatenation of the left sides of the items from the start node to the end
node of P results in the maximal viable prefix pref(P ) with respect to P ; i.e., if

P = [S′ → ·S], [S → α1 · A2β1], [A2 → α2 ·A3β2], . . . , [At → αt · βt]

then
pref(P ) = α1α2 . . . αt.

Next we will characterize valid LR(k)-items with respect to such a path P where
the end node of P is reducible or readable; i.e., βt = ε or βt = aβ′

t where a ∈ Σ
and β′

t ∈ V ∗. Let [B → α · Cβ], C ∈ N , β ∈ V ∗ be an item. Then we call β
the right side of the item [B → α · Cβ]. The right side of an item [B → α · aβ],
a ∈ Σ, β ∈ V ∗ is aβ. We obtain the relevant suffix suf(P ) with respect to P by
concatenating the right sides from the end node to the start node of P ; i.e.,

suf(P ) =
{
βt−1βt−2 . . . β1 if βt = ε
aβ′

tβt−1βt−2 . . . β1 if βt = aβ′
t.

Let u be the current lookahead. The LR(k)-item [At → αt ·βt, u] is valid for the
path P iff u ∈ FIRSTk(suf(P )).

For an application of Theorem 1 to MG it would be useful if all maximal
viable prefixes of a path corresponding to any current stack would be the same.
This shows the following Lemma:

Lemma 1. Let G = (V,Σ, P, S) be an LR(k)-grammar and let G = (V , E) be
the graph constructed by the deterministic simulation of LR(k)-MG. Then at
any time for any two paths P and Q from the start node [S′ → ·S] to any end
node it holds pref(P ) = pref(Q).

The proof can be found in the full paper [4]. According to Lemma 1, we can
incorporate Theorem 1 into the pushdown automaton MG. We call the resulting
pushdown automaton LR(k)-MG. During the deterministic simulation of LR(k)-
MG the following invariant will be fulfilled:
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1. Immediately before an expansion step, all end nodes of the graph G are of
the form [A → α · Bβ] or [A → α · aβ] where α, β ∈ V ∗, B ∈ N and a ∈ Σ
is the next unread symbol of the input.

2. Immediately before a reduction/reading step, all end nodes of G are of the
form [A → ·] or [A → α · aβ] where α, β ∈ V ∗ and a ∈ Σ is the next unread
symbol of the input.

If the grammar G has no ε-production then every reduction/reading step starts
with a reading. But after reading the next input symbol, some reductions are
possible.

Before the first expansion step, the only node of G is the start node [S′ → ·S].
Hence, the invariant is fulfilled before the first expansion step. Assume that
the invariant is fulfilled before the current expansion step. Let a be the next
unread symbol of the input. Since an alternative α ∈ (Σ \ {a})V ∗ cannot lead
to an accepting computation, all possible expansions are performed under the
restriction that only alternatives in NV ∗ ∪ {a}V ∗ ∪ {ε} are used. If a variable
C of an end node [B → α · Cβ] has only alternatives in (Σ \ {a})V ∗ then this
end node cannot lead to an accepting computation. Hence, such an end node is
deleted. Then, a graph adjustment is performed; i.e., as long as there is a node
where all its successors are removed from the graph G this node is deleted, too.
Obviously, the invariant is fulfilled after the expansion step and hence, before
the next reduction/reading step.

Assume that the invariant is fulfilled before the current reduction/reading
step. Let u be the current lookahead. Three cases can arise:

Case 1: There is a path P from the start node to an end node [A → ·] such that
the LR(k)-item [A → ·, u] is valid for P .

Then according to Theorem 1, the corresponding reduction is the unique step
performed by the parser. Hence, all other end nodes of the graph G are deleted.
Then, a graph adjustment and the reduction with respect to the end node [A → ·]
are performed. For each direct predecessor v of the node [A → ·] which has Type
1, we move the dot of the item v one position to the right. If v is of Type 2 then
we copy v and all ingoing edges and move the dot of the copy v′ one position
to the right. The resulting items are the new end nodes of the graph and are of
the form [B → αA · β] where β ∈ V ∗. If β ∈ NV ∗ then the item [B → αA · β]
is expansible. If β = ε then the resulting item [B → αA·] is reducible. If the
LR(k)-item [B → αA·, u] is valid then the reduction with respect to the end
node [B → αA·] is performed. Since after the expansion of any expansible end
node each constructed reducible end node would be of the form [C → ·], by
Theorem 1, all constructed end nodes cannot lead to a valid LR(k)-item. Hence,
we need not perform the expansion of any expansible end node if the reduc-
tion of the end node [B → αA·] is performed such that all other end nodes are
deleted from the graph. If the LR(k)-item [B → αA·, u] is not valid then the end
node [B → αA·] is deleted. If β ∈ (Σ \ {a})V ∗ then this end node cannot lead
to an accepting computation and can be deleted from the graph. Then, a graph
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adjustment is performed. Hence, after the reduction step, all end nodes are of
the form [B → αA·β] with β ∈ NV ∗∪{a}V ∗. Therefore, the invariant is fulfilled
before the next step.

Case 2: There is no such a path P but there is at least one end node with the
terminal symbol a behind the dot.

Then, the corresponding reading step is the only possible step performed by
the parser. All end nodes which do not correspond to this reading step are
removed from the graph followed by a graph adjustment. Then we perform the
reading step with respect to all remaining end nodes. This means that the next
input symbol a is read and the dot is moved one position to the right with
respect to all end nodes. The resulting items are of the form [B → αa · β]
where β ∈ V ∗. Let a′ be the next unread input symbol and u′ be the current
lookahead. The same discussion as above shows that after the termination of the
current reduction/reading step all end nodes are of the form [B → αa · β] with
β ∈ NV ∗ ∪ {a′}V ∗. Hence, the invariant is fulfilled before the next step.

Case 3: None of the two cases described above is fulfilled.

Then, the LR(k)-grammar G does not generate the input.

5 The Implementation of the Simulation of LR(k)-MG

How to realize the implementation of the simulation of LR(k)-MG described
above? Mainly, the following questions arise:

1. How to perform the expansions efficiently?
2. How to perform a reduction/reading step efficiently?

Let i be the index of the current phase and a be the next unread input symbol.
Assume that γ1, γ2, . . . , γq are those alternatives of the variable A which are in
NV ∗ ∪ {a}V ∗ ∪ {ε}. The expansion of an end node [C → α ·Aβ]i of the current
graph G is performed in the following way:

(1) If the variable A is expanded during the current phase for the first time then
add the nodes [A → γj ]i, 1 ≤ j ≤ q to the current graph G.

(2) Add the edges ([C → α ·Aβ]i, [A → ·γj ]i), 1 ≤ j ≤ q to the current graph G.

If the variable A is expanded for the first time then q nodes and q edges are
added to the graph. If after this expansion another end node [C′ → α′ ·Aβ′]i has
to be expanded we would add the q edges ([C′ → α′ · Aβ′]i, [A → ·γj ]i) to the
graph. Therefore, the number of nodes of the graph G is bounded by O(|G|n) but
the number of edges can increase to O(|G|2n). Hence, our goal is to reduce the
number of edges in G. The idea is to create an additional node A and the edges
(A, [A → ·γj ]i), 1 ≤ j ≤ q. Then, the expansion of an end node [C → α ·Aβ]i of
the current graph G can be performed in the following way:
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(1) If the variable A is expanded during the current phase for the first time then
add the nodes A and [A → γj]i, 1 ≤ j ≤ q and the edges (A, [A → ·γj ]i),
1 ≤ j ≤ q to the current graph G.

(2) Add the edge ([C → α ·Aβ]i, A) to the current graph G.

Then q + 1 edges are inserted for the first expansion of the variable A. For each
further expansion of A during the current phase only one edge is inserted. This
will lead to an O(|G|n) upper bound for the number of edges in G. The expansion
step transforms the graph G to a graph G′.

After the expansion step, a reduction/reading step has to be performed. Let
u be the current lookahead. First, we check if there is a path P from the start
node to an end node [A → ·] or [A → α ·aβ] such that the LR(k)-item [A → ·, u]
and [A → α · aβ, u], respectively is valid for P . We call such a path P suitable
for the end node [A → ·] and [A → α · aβ], respectively. For doing this, we need
an answer to the following question:

– Given such an end node [A → ·] or [A → α ·aβ] and a path P from the start
node to this end node, how to decide efficiently if u ∈ FIRSTk(suf(P ))?

The complexity of the reduction/reading step mainly depends on the length k
of the lookahead u. Here, we only sketch the solution of the most simple case
k = 1. This solution is extended to larger k in the full paper [4]. We distinguish
two cases:
Case 1: There is an end node of the form [A → α · aβ] where α, β ∈ V ∗ and
a ∈ Σ.

According to the invariant which is fulfilled during the simulation of LR(k)-
MG, the terminal symbol a is the next unread symbol of the input. Obviously,
a ∈ FIRST1(suf(P )) for all paths P from the start node to the end node [A →
α ·aβ]. Hence, the LR(k)-item [A → α ·aβ, a] is valid for all such paths. Theorem
1 implies that no LR(k)-item which does not correspond to reading the next input
symbol can be valid for a path from the start node to an end node.
Case 2: All end nodes of G′ are of the form [A → ·].

Let P be a path from the start node to the end node [A → ·] and let suf(P ) =
A1A2 . . . Ar. Then Ai ∈ V , 1 ≤ i ≤ r. The LR(k)-item [A → ·, a] is valid for
P iff a ∈ FIRST1(A1A2 . . . Ar). Note that a ∈ FIRST1(A1A2 . . . Ar) iff a ∈
FIRST1(A1) or ε ∈ FIRST1(A1) and a ∈ FIRST1(A2A3 . . . Ar). Hence, a ∈
FIRST1(suf(P )) iff there is 1 ≤ i ≤ r such that ε ∈ FIRST1(A1A2 . . . Ai−1)
and a ∈ FIRST1(Ai). For the decision if a ∈ FIRST1(suf(P )), we consider
A1A2 . . . Ar from left to right. Assume that Aj is the current considered symbol.
If a ∈ FIRST1(Aj) then a ∈ FIRST1(suf(P )). Otherwise, if ε �∈ FIRST1(Aj)
or j = r then a �∈ FIRST1(suf(P )). If ε ∈ FIRST1(Aj) and j < r then the
next symbol Aj+1 of suf(P ) is considered.

Now we know how to decide if the current lookahead a is contained in
FIRST1(suf(P )) for a given path P from the start node to a readable or re-
ducible end node. But we have to solve the following more general problem:
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– Given an end node [A → α · aβ] or [A → ·], how to decide if there is a path
P from the start node to this end node with a ∈ FIRST1(suf(P ))?

The first case is trivial since for all paths P from the start node to the end node
[A → α·aβ] there holds a ∈ FIRST1(suf(P )). In the second case, there can be a
large number of paths from the start node to the end node [A → ·] such that we
cannot answer this question by checking each such a path separately. Hence, we
check all such paths simultaneously. The idea is to apply an appropriate graph
search method to G′.

A topological search on a directed graph is a search which visits only nodes
with the property that all its predecessors are already visited. A reversed search
on a directed graph is a search on the graph where the edges are traversed against
their direction. A reversed topolgical search on a directed graph is a reversed
search which visits only nodes where all its successors are already visited. Note
that topological search and reversed topological search can only be applied to
acyclic graphs.

It is useful to analyze the structure of the graph G(A) which is constructed
according the expansion of the variable A. The graph G(A) depends only on the
grammar and not on the current input of the parser. Note that G(A) has the
unique start node A. The nodes without successors are the end nodes of G(A).
An expansion step only inserts nodes where the left side of the corresponding
item is ε. A successor [C → ·Aβ] of the start node A in G(A) is called final node
of G(A). Observe that ([C → ·Aβ], A) is an edge which closes a cycle in G(A).
We call such an edge closing edge. Such cycles formed by closing edges are the
only cycles in G′.

The idea is to perform a reversed topological search on G′ although G′ is not
acyclic. The following questions have to be answered:

1. What is the information which has to be transported through the graph
during the search?

2. How to treat the cycles in G′ during the reversed topological search?

The unambiguity of LR(k)-grammars is the key for the treatment of the cycles
in G′. An elaborated description of the reversed topological search is given in the
full paper [4]. The parser only uses a table of size O(|N ||Σ|). This approach can
be extended to larger k using a table of size O(#LA|N |2kk log k) where #LA
denotes the number of possible lookaheads of length k. Obviously, #LA ≤ |Σ|k.

If the size k of the lookahead is large then the size #LA|N |2kk log k of the
table can be too large. Hence in [4], an implementation of LR(k)-MG without the
precomputation of these tables is described. We use tries instead of these tables.
For an implementation of these tries, we need O(min{#LA|N |k2, |Σ|k|N |k})
space. Altogether, we have proved the following theorem:

Theorem 2. Let G = (V,Σ, P, S) be an LR(k)-grammar. Let #LA denote the
number of possible lookaheads of length k with respect to G and let ld(input)
denote the length of the derivation of the input. Then there is an extended LR(k)-
parser PG for G which has the following properties:
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i) The size of the parser is O(|G| + #LA|N |2kk log k) using only tables and
O(|G| + min{#LA|N |k2, |Σ|k|N |k) if we use tries.

ii) PG needs only the additional space for the manipulation of a directed graph
of size O(|G|n) where n is the length of the input.

iii) The parsing time ist bounded by O(ld(input) + k|G|n).

Since the unique derivation of the input is the output of the parser, the length
of the derivation is a lower bound for the parsing time. In [1] it is shown that
the length of the derivation is O(n) where the constant depends on the size of
the grammar. Hence, if the size of the grammar is considered as being constant
then the parsing time is linear in the length of the input.

Altogether, we have constructed for LR(k)-grammars extended LR(k)-parsers
of polynomial size. Hence, for small sizes of the lookahead (e.g. k < 10), LR(k)-
grammars can be used instead of LALR(1)-grammars which are mostly used in
practice. Moreover, if the number of lookaheads is not too large,LR(k)-grammars
can also be used for large sizes of the lookahead. These possibilities open some
new research directions.

Acknowledgements. The author thanks the referee of Review 1 for its exhaus-
tive review which was helpful to improve the presentation.
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Abstract. Three open questions in the theory of regulated rewriting
are addressed. The first is whether every permitting random context
grammar has a non-erasing equivalent. The second asks whether the same
is true for matrix grammars without appearance checking. The third
concerns whether permitting random context grammars have the same
generative capacity as matrix grammars without appearance checking.

The main result is a positive answer to the first question. For the
other two, conjectures are presented. It is then deduced from the main
result that at least one of the two holds.

1 Introduction

Random context grammars (RCGs) were introduced by van der Walt in [8].
They extend context-free grammars by allowing every production to specify two
sets of nonterminals, the permitting and the forbidding context. A production
can then only be applied at a position if the rest of the sentential form contains
none of the symbols in the forbidding context and contains every symbol from
the permitting context. Such a grammar is called permitting random context
grammar (PRCG) if every forbidding context is empty. Matrix grammars1 ex-
tend context-free grammars by incorporating a finite set of finite sequences of
context-free productions. Then, a word is part of the generated language if and
only if it can be derived by a concatenation of some of these sequences.

For many grammar models, it is an important question whether erasing pro-
ductions are necessary to generate all languages. This is due to the fact that non-
erasing grammars can often easily be shown to generate only context-sensitive
languages and thus have a linear bound on the space complexity of the member-
ship problem.

The main result of this paper is that for every PRCG, there is an equivalent
one that does not utilize erasing productions (aside from one that generates
the empty word). Whether this is true was an open question until now (see
Open Problems 1.3.1 in [3]). The result has a few interesting consequences.
First, it follows that all properties of the languages of non-erasing PRCGs are
shared by all languages generated by PRCGs. For example, it follows that the
1 By matrix grammars, we always mean those without appearance checking.
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class of languages generated by arbitrary PRCGs is strictly contained in the
class generated by non-erasing RCGs. Moreover, the pumping lemma from [5] is
implied for arbitrary PRCGs. Second, all closure properties of the PRCGs can be
carried over to the non-erasing PRCGs. Third, other grammar models can now
be shown to be equivalent (for example, certain kinds of cooperating distributed
grammar systems [1]). Fourth, we gain new insight into two other problems,
which are still open. On the one hand, it is unknown whether non-erasing PRCGs
have equal generative capacity as non-erasing matrix grammars. On the other
hand, it is not known whether erasing productions can be eliminated in matrix
grammars2. In section 4, we present two conjectures concerning these problems
such that the main result of this paper implies that at least one of the two
conjectures holds.

2 Random Context Grammars

In this section, we present some notation and the definition of RCGs.
A monoid is a set M together with an associative operation � : M ×M → M

and a neutral element e ∈ M . For a monoid M with the operation � and
m,m′ ∈ M , we write m ! m′ iff there is an m′′ ∈ M such that m′ = m �m′′.
In this case, m is called a prefix of m′.

For a set Σ, we will write Σ∗ for the set of words over Σ. The empty word is
denoted by λ ∈ Σ∗. In particular, ∅∗ = {λ}. Together with the concatenation as
its operation, Σ∗ is a monoid. We will regard every x ∈ Σ as an element of Σ∗,
namely the word consisting only of one occurence of x. For a symbol x ∈ Σ and
a word w ∈ Σ∗, let |w|x be the number of occurrences of x in w. For a subset
Γ ⊆ Σ, let |w|Γ :=

∑
x∈Γ |w|x. By |w|, we will refer to the length of w.

Furthermore, we write Σ⊕ for the set of multisets over the set Σ, that is,
Σ⊕ is the set of mappings α : Σ → N. The operation + on Σ⊕ is defined by
(α + β)(x) := α(x) + β(x) for all x ∈ Σ. Together with the neutral element 0,
defined by 0(x) := 0 for every x ∈ Σ, Σ⊕ is a (commutative) monoid. As in the
case of words, we will regard Σ as a subset of Σ⊕ by identifying each x ∈ Σ
with μx ∈ Σ⊕, which is defined by μx(x) = 1 and μx(y) = 0 for y ∈ Σ, y �= x.
For a multiset μ ∈ Σ⊕, let |μ| :=

∑
x∈Σ μ(x). Here, |μ| is called the size of μ.

For α ! β, let (β − α)(x) := β(x) − α(x). The Parikh mapping is the mapping
Ψ : Σ∗ → Σ⊕ defined by Ψ(w)(x) := |w|x for all w ∈ Σ∗ and x ∈ Σ. For a set
A, let P(A) denote the power set of A.

A random context grammar (RCG) is a tuple G = (N,T, P, S), where N is an
alphabet called the set of nonterminals (or variables), T is an alphabet called
the set of terminals, P is a finite subset of N × (T ∪N)∗ × P(N) × P(N), and
S ∈ N is the start symbol. The elements of P are its productions. An element
(A,w,U,W ) ∈ P is also written as (A → w;U ;W ). In the case W = ∅, we also
write (A → w;U). Furthermore, for U = {A1, . . . , An}, (A → w;A1, . . . , An)
2 In [4], p. 106, Theorem 2.1, it is claimed that erasing productions cannot be avoided.

However, none of the given references contains a proof for this claim and in [2], the
problem is again denoted as open.



On Erasing Productions in Random Context Grammars 177

will be used synonymously to (A → w;U ; ∅). A is called the left side, w the right
side, U the permitting context, and W the forbidding context of the production
(A → w;U ;W ). Such a production is called erasing if w is the empty word. It
is called permitting if W = ∅.

An RCG is a permitting random context grammar (PRCG) if it has only
permitting rules. Furthermore, an RCG G is said to be non-erasing if it has no
erasing rules or if (S → λ; ∅; ∅) is its only erasing rule and S does not appear on
any right side.

The derivation relation ⇒G for G is defined as follows. For words u, v ∈
(T ∪ N)∗, it is u ⇒G v iff there is a production (A,w,U,W ) ∈ P and words
r, s ∈ (T ∪ N)∗ such that u = rAs, v = rws, all the symbols from U occur in
rs and no symbol from W occurs in rs. Then, the language generated by G is
defined as

L(G) = {w ∈ T ∗ | S ⇒∗
G w},

where ⇒∗
G denotes the reflexive transitive closure of ⇒G. The class of languages

generated by RCGs, PRCGs, non-erasing RCGs, and non-erasing PRCGs is
denoted by RCλ, pRCλ, RC, pRC, respectively.

A derivation for a grammar G = (N,T, P, S) is a sequence w1, . . . , wn of
words in (T ∪ N)∗ such that wi ⇒G wi+1 for each i, 1 ≤ i ≤ n − 1. For
such a derivation, the derivation forest is defined inductively, together with a
correspondence between the the positions in wn and the non-λ-labeled leaves. For
n = 1, it consists of |w1| nodes, one for each position in w1 and each labeled by
the corresponding symbol in w1. For n > 1, the derivation forest for w1, . . . , wn

is extended in the following way. Let (A → v;U), v = v1 · · · vm, v1, . . . , vm ∈
T ∪N , be the production used in wn ⇒G wn+1 and let wn = rAs, wn+1 = rvs.
Futhermore, let x be the node corresponding to the position in wn that was
replaced to produce wn+1. If |v| ≥ 1, add a vi-labeled node for each 1 ≤ i ≤ m
and make these nodes children of x. Moreover, let the positions of the subword
v of wn+1 correspond to these new nodes. If v = λ, then add one λ-labeled node
and make it a child of x. Finally, let the positions in the subwords r, s in wn+1

correspond to the same nodes as the positions in the subwords r, s of wn.
In the case |w1| = 1, the derivation forest is a tree and thus called derivation

tree. In every derivation tree T , we have a partial order ≤T on the nodes of T ,
where n1 ≤T n2 for nodes n1, n2 iff n1 lies on the (unique) path from the root
of the tree to n2. In a set M of nodes of T , we call an element maximal if it is
maximal among the elements of M with respect to ≤T .

Let D : w1 ⇒G · · · ⇒G wn be a derivation and F its derivation forest. Then
the N -labeled nodes of F are also ordered by ≺D, which is defined as follows.
For each N -labeled node x, let s(x) be the index i, 1 ≤ i < n, such that the
position replaced in wi ⇒G wi+1 corresponds to x. Then, for nodes x1, x2, it is
x1 ≺D x2 iff s(x1) < s(x2). As usual, let x1 �D x2 iff x1 = x2 or x1 ≺D x2.
Clearly, on the N -labeled nodes, �D is a linear extension of ≤F . Note that a
derivation tree F together with the order ≺D on its N -nodes contains enough
information to reconstruct the derivation.
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3 Erasing Productions

It is a well-known fact (see, for example, [7]) that in context-free grammars,
erasing productions can be eliminated in the following way. Instead of producing
symbols that will later be deleted, one avoids their production in the first place.
This technique does not suffice for PRCGs, since here, in contrast to context-
free grammars, the symbols that are not yet deleted may impact the rest of the
derivation.

On the one hand, letting a symbol disappear too early can render the rest
of the derivation impossible, in case its productions require this symbol to be
present. On the other hand, a non-generated symbol could enable otherwise
invalid derivations. This is the case when, in the original grammar, the symbol
is only deletable when certain other symbols are present. (The presence of this
symbol would thus demand that the other symbols have to appear once in order
to obtain a terminal word).

Therefore, in order to preserve the generated language when avoiding the
production of later-deleted symbols, we will need some mechanism to retain
the influence of the these symbols on the derivation. This will be achieved by
endowing the grammar with capabilities to avoid the generation of later-deleted
symbols to a certain extent. The remaining occurrences of such symbols are then
shown to be so rare that their influence can be accounted for by a mechanism
that does not ultilize erasing.

In the construction for context-free grammars, one uses the set Λ of nonter-
minals that can be rewritten to the empty word. One then proceeds to allow
the grammar to nondeterministically choose occurrences of such symbols and
prevent them from being produced. Here, the role of Λ will be played by a set
enjoying a similar property, which leads us to the first definition.

Definition 1. A PRCG G = (N,T, P, S) is in erasing normal form if there is
a subset Λ ⊆ N such that for every production (A → w;U), it is A ∈ Λ if and
only if w ∈ Λ∗. For a PRCG G in erasing normal form with subset Λ ⊆ N , we
also write G = (N,Λ, T, P, S).

In a grammar that exhibits this form, the symbols in Λ can only be directly
rewritten to words in Λ∗. Thus, the only terminal word derivable from a word
in Λ∗ is the empty word. The symbols in N \Λ on the other hand are rewritten
to a word containing at least one symbol outside of Λ. Therefore, every terminal
word derivable from symbols in N \ Λ is non-empty.

The set Λ consists of all symbols that can only be rewritten to the empty
word. In addition, we require that all symbols outside of Λ cannot be rewritten
to λ. This means that, as opposed to the construction in the context-free case,
the nondeterministic choice about which occurrence will indeed be rewritten to
λ has already been made in a grammar in erasing normal form. That is, a symbol
will be rewritten to the empty word if and only if it is in Λ. Furthermore, observe
that a grammar that is in erasing normal form with Λ = ∅ is already non-erasing,
since ∅∗ = {λ}.
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Lemma 1. For every PRCG G with λ /∈ L(G), there is an equivalent PRCG G′

in erasing normal form.

Proof. Let G′ = (N ′, T, P ′, S), Λ := {Ā | A ∈ N}, and N ′ = N ∪Λ, where Ā is a
new symbol for each A ∈ N . We will need the mapping ϕ : (T ∪N ′) → (T ∪N),
which is defined by ϕ(Ā) = A, ϕ(A) = A, ϕ(a) = a for A ∈ N and a ∈ T . We
will also need ψ : N → N ′, where ψ(A) = Ā, ψ(a) = a for each A ∈ N . The set
of productions is P ′ = P ′

1 ∪ P ′
2, where

P ′
1 = {(A → w;U) | A ∈ N, w ∈ (N ′ ∪ T )∗ \ Λ∗, U ⊆ N ′,

(A → ϕ(w);ϕ(U)) ∈ P},

P ′
2 = {(ψ(A) → ψ(w);U) | A ∈ N, w ∈ N∗, U ⊆ N ′,

(A → w;ϕ(U)) ∈ P}.
Clearly, with this set of productions, the grammar is in erasing normal form. In
P ′

1, the left side is always in N ′ \Λ and the right side is in (N ′ ∪T )∗ \Λ∗. In P ′
2,

the left side is always in Λ and the right side is in Λ∗.
It remains to be shown that L(G′) = L(G). Let w1 ⇒G w2 ⇒G · · · ⇒G wn,

w1, . . . , wn−1 ∈ (T ∪N)∗, wn ∈ T ∗, be a derivation in G. We claim that there is
a derivation w′

1 ⇒G′ w′
2 ⇒G′ · · · ⇒G′ w′

n, w
′
1, . . . , w

′
n−1 ∈ (N ′ ∪ T )∗, wn ∈ T ∗,

such that ϕ(w′
i) = wi for i = 1, . . . , n.

For n = 1, this is trivial. For n > 1 assume that w′
2 ⇒G′ · · · ⇒G′ w′

n is such
that ϕ(w′

i) = wi, i = 2, . . . , n. Now, w′
1 is obtained from w1 in two steps. First,

for every A ∈ N , replace every occurrence of A by Ā that is not rewritten in
the derivation step w1 ⇒G w2 and that occurs as Ā in w′

2. Second, if the word
in w′

2 corresponding to the right side of the applied production in w1 ⇒G w2 is
contained in Λ∗, replace the left side A of this production in w1 by Ā. Then we
have w′

1 ⇒G′ w′
2 and the claim holds.

It follows that L(G) ⊆ L(G′). Indeed, let w ∈ L(G) with S = w1 ⇒G · · · ⇒G

wn = w. Then, the derivation w′
1 ⇒G′ · · · ⇒G′ w′

n obtained by our claim satisfies
ϕ(w′

n) = w and thus w′
n = w, since w ∈ T ∗. It is also ϕ(w′

1) = S, hence w′
1 = S̄

or w′
1 = S. Since from sentential forms in Λ∗, the only derivable word in T ∗ is

the empty word, w′
1 = S̄ would imply w = λ, a contradiction. Therefore, w′

1 = S
and w ∈ L(G′).

Let w ∈ L(G′) with S = w1 ⇒G′ · · · ⇒G′ wn = w. For every production
(A → w;U) ∈ P ′, one clearly has (ϕ(A) → ϕ(w);ϕ(U)) ∈ P and thus wi ⇒G′

wi+1 implies ϕ(wi) ⇒G ϕ(wi+1). Hence, S = ϕ(w1) ⇒G · · · ⇒G ϕ(wn) = w,
meaning w ∈ L(G). '(

As explained above, we cannot introduce productions that allow for the arbi-
trary prevention of the production of Λ-symbols without altering the generated
language. Thus, in order to obtain an analogon for the productions that prevent
Λ-symbols, we will have to use a somewhat restricted means. Therefore, we in-
troduce the notion of a pruning grammar. In such a grammar, we are able to
prevent an occurence of a Λ-symbol from being generated, and thus prune the
derivation tree, provided that this symbol already appears in the sentential form
at another position.
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Definition 2. A PRCG G = (N,Λ, T, P, S) in erasing normal form is pruning
if for every (A → w;U) ∈ P and every decomposition w = rBs, r, s ∈ (T ∪N)∗,
B ∈ Λ, it is either

1. |rs|B ≥ 1 and (A → rs;U) ∈ P or
2. |rs|B = 0 and (A → rs;U ∪ {B}) ∈ P .

It is easy to see that for every PRCG G = (N,Λ, T, P, S) in erasing normal form,
there is a smallest set P̄ of productions such that P ⊆ P̄ and Ḡ := (N,Λ, T, P̄ , S)
is pruning. With this, Ḡ is called the closure of G. For a production (A →
rBs;U), if the productions (A → rs;U) and (A → rs;U ∪ {B}) exist, they are
also called variants of (A → rBs;U).

Lemma 2. For every PRCG G in erasing normal form, L(Ḡ) = L(G).

Proof. It is clear that L(G) ⊆ L(Ḡ). In order to prove the opposite inclusion,
we use the augmented grammar Ĝ. For a PRCG G = (N,Λ, T, P, S), Ĝ :=
(N,Λ, T, P̂ , S) is obtained from G by adding the production (A → λ;A) for each
A ∈ Λ. That is, if a symbol A ∈ Λ appears at least twice in a given sentential
form, one of the occurrences can be deleted in Ĝ.

Every production added to G to make Ḡ can be simulated by a production
from G and a sequence of productions of the form (A → λ;A), A ∈ Λ. Thus,
L(Ḡ) ⊆ L(Ĝ). Therefore, proving L(Ĝ) ⊆ L(G) will be sufficient, since then
L(G) ⊆ L(Ḡ) ⊆ L(Ĝ) ⊆ L(G) and the lemma follows.

Let w1 ⇒Ĝ · · · ⇒Ĝ wn be a derivation in Ĝ such that wn ∈ T ∗. We will show
by induction on n that w1 ⇒∗

G wn, meaning L(Ĝ) ⊆ L(G).
In the case n = 1, there is nothing to do, so assume that n > 1 and that

the rule applied in w1 ⇒Ĝ w2 is (A → λ;A) for some A ∈ Λ. (This does not
mean a restriction, since for rules not of this type, the induction step is trivial.)
Let F be the derivation forest corresponding to the derivation D : w2 ⇒∗

G wn,
which exists by induction. Without loss of generality, we can write w1 = rAsAt
and w2 = rsAt, r, s, t ∈ (T ∪ N)∗. The derivation w1 ⇒∗

G wn is obtained as
follows. Let T be the tree in F whose root is the occurrence of A at position
|rs| + 1 in w2 (that is, the second occurrence of A that allowed us to apply the
rule (A → λ;A)). The new forest F ′ for the derivation w1 ⇒∗

G wn is obtained
by inserting a copy of T into F at the position of the A deleted in w1 ⇒Ĝ w2.

On the one hand, F ′ can be realized by using the derivation D, and, every
time a production p is applied in D to a node in T , by applying p again directly
afterwards to its corresponding node in the copy of T . This leads to a valid
derivation, because the context condition of p can be satisfied out of occurrences
that were already present in D, which means that they can be used by p again
when applied to a node in the copy of T .

On the other hand, the word derived by F ′ is obtained by inserting in wn the
word derived by T . However, T derives the empty word, since its root is A ∈ Λ.
Therefore, F ′ derives wn and we have w1 ⇒∗

G wn. '(
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Lemma 2 provides a grammar in which we can prevent the introduction of such
symbols under certain circumstances. However, we might still need some of those
symbols to fulfill context conditions. Thus, we will study means to rearrange
derivations such that it becomes possible to prevent some Λ-symbols from being
produced while still having enough to satisfy all context conditions. The notion of
a context sufficient set of nodes will be used to fulfill the latter requirement. That
is, a set of Λ-labeled nodes in a derivation tree is context sufficient if every context
condition concerning Λ-symbols can be satisfied out of M .

Definition 3. Let S = w1 ⇒G · · · ⇒ wn be a derivation in a PRCG G =
(N,Λ, T, P, S) in erasing normal form. A set M of Λ-labeled nodes in the deriva-
tion tree is called context sufficient if for every production (A → w;U) applied in
the derivation to a sentential form wi, every symbol in U ∩Λ has an occurrence
in wi that corresponds to a node in M .

Lemma 3. Let G = (N,Λ, T, P, S) be a pruning PRCG. For every w ∈ L(G),
there is a derivation with a context sufficient set M such that the maximal nodes
of M have distinct labels.

Proof. Let w ∈ L(G) and S = w1 ⇒G · · · ⇒G wn = w be a derivation with
derivation tree D0. We construct a context sufficient set M0 as follows. For each
production (A → v;U) applied in wi, 1 ≤ i ≤ n, and each B ∈ U ∩Λ, choose an
occurrence of B in wi and include its node in M0. The set M0 is clearly context
sufficient. We will construct a descending sequence M0 ⊇ M1 ⊇ · · · of sets and a
sequence of derivations D0, D1, . . . such that each Mi is a context-sufficient set
of nodes of Di.

If the maximal nodes in Mi already have distinct labels, let Mi+1 = Mi and
Di+1 = Di. Otherwise, the set Mi+1 is obtained from Mi as follows. First,
include all non-maximal elements of Mi in Mi+1. Choose a B ∈ Λ such that
|Mi,B| ≥ 2, where for each A ∈ Λ, Mi,A is the set of maximal elements of Mi

that are labeled with A. Now let mi,B be the �Di -minimal element of Mi,B and
include it in Mi+1. Thus, Mi+1 = (Mi \Mi,B) ∪ {mi,B}.

Di+1 is obtained from Di as follows. Let F be the derivation tree correspond-
ing to Di and let m̃i,B be the �Di -maximal element of Mi,B. Moreover, let T
be the subtree under mi,B and let T̃ be the subtree under m̃i,B. A new tree F ′

is constructed by replacing T with a copy T̃ ′ of T̃ . That is, T̃ ′ is isomorphic to
T̃ but has a new set of nodes such that the root of T̃ ′ is identified with mi,B .
We will design Di+1 so as to make F ′ its derivation tree. In order to describe
Di+1, we shall present a word over the N -labeled nodes in F ′ and thus define
a linear order on these nodes, which in turn defines Di+1. Let X be the set of
nodes of F such that the word d ∈ X∗ corresponds to the derivation Di. Fur-
thermore, let Y, Ỹ , Ỹ ′ ⊆ X , be the set of N -nodes in T , T̃ , T̃ ′, respectively. The
isomorphism between T̃ and T̃ ′ induces a bijection α : Ỹ → Ỹ ′. The homomor-
phism h : X∗ → (Ỹ ′ ∪X \ Y )∗ is defined by h(x) = λ for x ∈ Y , h(x) = xα(x)
for x ∈ Ỹ , and h(x) = x otherwise. Then the word that defines the derivation
Di+1 is h(d). Thus in short, the occurrences corresponding to nodes in T̃ ′ are
rewritten directly after their counterparts in T̃ .
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It remains to be shown that Mi+1 is context sufficient. First, observe that Mi

is still context sufficient in Di+1. This is due to the fact that all the productions
outside of T̃ ′ can use the contexts they used in Di. Furthermore, the productions
in T̃ did not need to use nodes in T as contexts, since mi,B was not present in
Di during the generation of T̃ . Therefore, these contexts can be reused by the
productions in T̃ ′ when applied directly after their counterparts in T̃ . Thus, Mi

is context sufficient in Di+1. In Di+1, whenever there is a node from Mi,B in
a sentential form, the node mi,B is also present. This is due to the fact that
mi,B is removed after the �Di-maximal node of Mi,B. Therefore, in Di+1, even
Mi+1 = (Mi \Mi,B) ∪ {mi,B} is context sufficient.

Since M0 ⊇ M1 ⊇ · · · is a descending sequence of finite sets, there is an index
k such that Mk = Mk+1. In particular, all maximal nodes in Mk have distinct
labels. Thus, D := Dk and M := Mk can serve as the claimed derivation and
set of nodes. '(

We are now able to construct derivations in which the number of Λ-symbols in
the sentential forms is bounded by a constant that only depends on the grammar.
This means in particular that a finite amount of space is sufficient to account
for all the Λ-symbols.

Lemma 4. Let G = (N,Λ, T, P, S) be a pruning PRCG. Then there is a con-
stant k ∈ N with the following property. Every w ∈ L(G) has a derivation
S = w1 ⇒ · · · ⇒ wn = w such that |wi|Λ ≤ k, i = 1, . . . , n.

Proof. Let w ∈ L(G). Lemma 3 provides a derivation D and a context sufficient
set M of nodes such that the maximal nodes have distinct labels.

We construct a new derivation from D as follows. Since M is context sufficient,
in order to fulfill all context conditions, we do not need subtrees in the derivation
tree that contain no element of M . Let x be a Λ-labeled node in the derivation
tree and v be the first sentential form that contains an occurrence corresponding
to x. Then, we call x prunable if v contains more than one occurrence of the
label of x and the subtree of x does not contain an M -node. If x is a prunable
node produced by the production p, we say that we prune x if we replace p by
a variant that does not create x (and thus remove x and its subtree from the
derivation tree). That is, pruning is an operation that creates a new derivation.
By definition, pruning a prunable node yields a valid derivation. Note that, since
x is Λ-labeled, pruning does not change the derived word. The new derivation
D′ is obtained from D by pruning prunable nodes until there is no prunable
node left.

Let S = w1 ⇒G · · · ⇒G wn = w be the derivation D′. Furthermore, let
Ji ⊆ {1, . . . , |wi|} be the set of positions in wi that contain Λ-symbols. Each
element of Ji corresponds to a Λ-labeled node in the derivation forest of D′.
Let Ki ⊆ Ji be the subset of elements that correspond to nodes whose subtree
contains M -nodes. For each j ∈ Ki, let η(j) ⊆ Λ be the set of labels of maximal
M -nodes in the subtree of the node correspondig to j. Note that by the choice of
Ki, the set η(j) is non-empty for each j ∈ Ki. Since the maximal M -nodes have
distinct labels, it is η(j1) ∩ η(j2) = ∅ for every j1, j2 ∈ Ki and thus |Ki| ≤ |Λ|.
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Each j ∈ Ji\Ki is the only occurrence in Ji\Ki of its symbol, since otherwise,
one of these occurrences would have been prunable. Hence, |Ji \ Ki| ≤ |Λ|.
Therefore,

|wi|Λ = |Ji| = |Ji \Ki| + |Ki| ≤ 2|Λ|

and setting k := 2|Λ| meets our requirements. '(

Now, the main result of this paper can be proven. For every PRCG G, we will
construct a non-erasing PRCG that simulates G in the following way. We assume
G to be pruning. The constructed grammar will avoid the generation of symbols
in Λ and instead store them in multisets ‘attached’ to the nonterminal symbols.
Here, attached means that the new set of nonterminal symbols consists of pairs
(A, μ), where A is a nonterminal symbol in G and μ is a multiset.

Theorem 1. pRC = pRCλ.

Proof. In order to show pRCλ ⊆ pRC, we can restrict ourselves to PRCGs G
with λ /∈ L(G). Indeed, if λ ∈ L(G), we can find a non-erasing grammar for
L(G) ∩ T+ and then modify it so as to add the empty word to the generated
language.

Thus, without loss of generality, let G = (N,Λ, T, P, S) be a pruning PRCG
and let k be the constant provided by Lemma 4. The homomorphisms δ : (T ∪
N)∗ → (T ∪ N \ Λ)∗, ρ : (T ∪ N)∗ → Λ∗ are those satisfying δ(x) = λ and
ρ(x) = x for x ∈ Λ and δ(y) = y and ρ(y) = λ for y ∈ T ∪N \ Λ. Let

N ′ := {(A, μ) | A ∈ T ∪N \ Λ, μ ∈ Λ⊕, |μ| ≤ k},

where (A, μ) is a new symbol for each A and μ. In order to describe how the
simulation works, we need the homomorphisms α and β:

(T ∪N)∗ α (T ∪N \ Λ)∗ × Λ⊕ (T ∪N ′)∗.
β

Here, (T∪N\Λ)∗×Λ⊕ is regarded as a monoid with the operation (x1, y1)(x2, y2)=
(x1x2, y1+y2) for x1, x2 ∈ (T ∪N \Λ)∗ and y1, y2 ∈ Λ⊕. The homomorphisms are
defined by α(v) = (δ(v), Ψ(ρ(v))) for v ∈ (T ∪N)∗ and β(a) = (a,0), β((A, μ)) =
(A, μ) for a ∈ T and (A, μ) ∈ N ′. We say that u ∈ (T ∪ N ′)∗ represents v ∈
(T ∪N)∗ if α(v) = β(u).

A symbol (A, μ) in the constructed grammar represents a word with one
occurrence of A and μ(B) occurrences of B for every B ∈ Λ. Therefore, we say
that A and the symbols B ∈ Λ with μ(B) ≥ 1 occur in (A, μ). For a subset
W ⊆ N ′, let γ(W ) ⊆ N be the set of symbols occurring in some element of W .
Note that, in a word v ∈ (T ∪ N)∗, the permitting context U ⊆ N is present
if and only if, in a word u ∈ (T ∪ N ′)∗ representing v, a permitting context
W ⊆ N ′ with U ⊆ γ(W ) can be found.

We will now describe the new set P ′ of productions. The homomorphism
ι : (T ∪ N)∗ → (T ∪ N ′)∗ is defined by ι(y) = (y,0) for y ∈ T ∪ N . For a
production (A → w;U) ∈ P , we distinguish two cases.
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– Suppose A ∈ N \ Λ. Then, δ(w) �= λ. Hence, write δ(w) = w1w
′, where

w1 ∈ T ∪N \ Λ and w′ ∈ (T ∪N \ Λ)∗. For the production (A → w;U), we
include the production

((A, μ) → (w1, μ + Ψ(ρ(w)))ι(w′);W ) (1)

for every μ ∈ Λ⊕ such that |μ+ Ψ(ρ(w))| ≤ k, and every W ⊆ N ′ such that
U ⊆ γ(W ).

– In the case A ∈ Λ, we have δ(w) = λ and the production

((B,μ) → (B,μ−A + Ψ(w));W ) (2)

is introduced for each B ∈ T ∪ N \ Λ, each μ ∈ Λ⊕ such that μ(A) ≥ 1
and |μ − A + Ψ(w)| ≤ k and each W ⊆ N ′ such that U ⊆ γ(W ). These
productions achieve the replacement of an occurrence of A that is attached
to another symbol.

Finally, we add productions ((a,0) → a; ∅) for each a ∈ T in order to allow
the grammar to produce terminal symbols. The new grammar is then G′ =
(N ′, T, P ′, S′), where S′ = (S,0).

Suppose u1 ∈ (T ∪N ′)∗ represents v1 ∈ (T ∪N)∗ and u1 ⇒G′ u2 by applying
a rule of the form (1) or (2). Observe that there is a v2 ∈ (T ∪ N)∗ such that
v1 ⇒G v2 and u2 represents v2. For every w ∈ L(G′), there is a derivation
(S,0) = u1 ⇒G′ · · · ⇒G′ un such that un = ι(w) and all the applied rules are
of the form (1) or (2). By the aforementioned observation, there is a derivation
S = v1 ⇒G · · · ⇒G vn such that ui represents vi for each i = 1, . . . , n. In
particular, w = vn ∈ L(G). This shows L(G′) ⊆ L(G).

Let v1 ⇒G v2 using the rule (A → w;U), where v1, v2 ∈ (T ∪ N)∗ and
|v1|Λ, |v2|Λ ≤ k. Furthermore, assume that u1 ∈ (T ∪N ′)∗ represents v1. Using
the fact that |v2|Λ ≤ k and depending on whether A ∈ N \ Λ or A ∈ Λ, one can
find a rule of form (1) or (2) that can be applied to u1 to obtain a u2 ∈ (T ∪N ′)
such that u2 represents v2. Assume w ∈ L(G) and use Lemma 4 to find a
derivation S = v1 ⇒G · · · ⇒G vn = w with |vi|Λ ≤ k for i = 1, . . . , n. Then,
we have a derivation (S,0) = u1 ⇒G′ · · · ⇒G′ un such that ui represents vi for
i = 1, . . . , n. In particular, un = ι(w) and thus the rules ((a,0) → a; ∅) can be
used to derive un ⇒∗

G′ w. Therefore, w ∈ L(G′). This proves L(G′) = L(G). '(

4 Consequences

Obviously, every closure property of pRCλ also holds for pRC. A language
class is a semi-AFL if it is closed under non-erasing homomorphisms, inverse
homomorphisms, intersection with regular sets and union. A semi-AFL is said
to be full if it is also closed under arbitrary homomorphisms. Since pRC is a
semi-AFL (see Theorem 1.3.1 in [3]) and Theorem 1 implies its closure under
arbitrary homomorphisms, we have the following result.

Corollary 1. The semi-AFL pRC is full.
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RCλ

RC MATλ

MAT

pRC = pRCλ

Fig. 1. Relations among lan-
guage classes

In the following, the class of languages gener-
ated by (non-erasing) matrix grammars without
appearance checking will be denoted by MATλ

(MAT). For a detailed definition of matrix gram-
mars 3, we refer the reader to [9]. Our next corol-
lary to Theorem 1 is not a new result.

Corollary 2. pRC �= RC.

On the one hand, this can easily be deduced from
the results in [6]. Since it is clear that pRC ⊆
MAT and it is shown in [6] that all one-letter
languages in MAT are regular, this also holds for pRC. Furthermore, one can
construct a non-erasing RCG generating a non-regular one-letter language (see
Example 1.1.7 in [3]). Thus, the two classes differ. On the other hand, Ewert
and van der Walt use their pumping lemma [5] to prove this inequality.

In the current paper, Corollary 2 can be obtained from Theorem 1 by ob-
serving that pRC is closed under erasing homomorphisms, while RC is not.
The latter follows from the fact that RC only contains context-sensitive lan-
guages and RCλ is the whole class of recursively enumerable languages (see, for
example, Theorem 1.2.5 in [3]). Thus, the classes pRC and RC are not equal.

Corollary 3. pRCλ is contained in RC.

Theorem 1 can also be used to generalize the pumping lemma by Ewert and
van der Walt [5] for non-erasing PRCGs. Since every PRCG has an equivalent
non-erasing PRCG, we have the following corollary.

Corollary 4. The pumping lemma from [5] holds for all languages generated by
PRCGs.

We will now present two conjectures regarding open problems in regulated rewrit-
ing. The first problem concerns the strictness of the inclusion pRC ⊆ MAT (see
Open Problems 1.2.2 in [3]). The language L1 = {w ∈ {a, b, c}∗ | |w|a = |w|b =
|w|c} is contained in MAT (see Example 1.1.7 in [3] and use the fact that MAT
is closed under permutation). However, L1 does not seem to be contained in
pRC. This leads to the following conjecture.

Conjecture 1. pRC �= MAT.

The second problem is whether there is a non-erasing matrix grammar for every
language generated by a matrix grammar (see Open Problems 1.2.2 in [3]). The
question is, in other words: is the inclusion MAT ⊆ MATλ in fact an identity?

Conjecture 2. MAT = MATλ.

For more information on this problem, see [9].

Theorem 2. Of the conjectures 1 and 2, at least one holds.

3 It should be noted here that in [9], non-erasing matrix grammars are allowed to
generate the empty word. This difference aside, the definition in [3] is the same.
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Proof. If pRC = MAT, then MAT is closed under arbitrary homomorphisms
and thus equals MATλ. '(

A summary of the relations among the language classes is given in Figure 1. The
lines (arrows) denote (proper) inclusions of the lower language classes into the
upper language classes. Those that are not directly connected are not necessarily
incomparable.
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and Patrick Totzke for discussions and helpful comments.

References

1. Bordihn, H., Holzer, M.: Random context in regulated rewriting versus cooperating
distributed grammar systems. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.) LATA
2008. LNCS, vol. 5196, pp. 125–136. Springer, Heidelberg (2008)

2. Dassow, J.: Grammars with regulated rewriting. In: Mart́ın-Vide, C., Mitrana, V.,
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Abstract. A game semantic approach to interpreting call-by-value poly-
morphism is described, based on extending Hyland-Ong games (which
have already proved a rich source of models for higher-order program-
ming languages with computational effects) with explicit “copycat links”.
This captures universal quantification in a simple and concrete way; it
is effectively presentable, and opens the possibility of extending exist-
ing model checking techniques to polymorphic types. In particular, we
present a fully abstract semantics for a call-by-value language with gen-
eral references and full higher-rank polymorphism, within which poly-
morphic objects, for example, may be represented. We prove full ab-
straction by showing that every universally quantified type is a definable
retract of its instantiation with the type of natural numbers.

1 Introduction

This paper describes a denotational (games) semantics of higher-rank paramet-
ric polymorphism. Although semantic studies have successfully captured several
aspects of this important paradigm, they have typically focused on a purely func-
tional, call-by-name setting (in particular, the pure calculus System F [5,17]).
However, polymorphism is also a key feature of languages with computational
effects such as local state which are more naturally expressed in a call-by-value
setting in which polymorphism is rather different to the phenomenon captured
by System F. The aim of this paper is to explore a fully abstract model of a
call-by-value polymorphic programming language with local state (general ref-
erences) constructed using game semantics (itself a flexible way of describing
many computational effects and features). The model is also quite concrete,
notwithstanding the impredicative nature of second-order quantification.

Specifically, we shall study polymorphism in the context of a second-order
extension of the language L introduced in [2]. This combines general references
with a call-by-value functional language, and may be considered a core of ML.
Although ML does not itself have full higher-rank polymorphism, such extension
is possible [4] (the main issues, concerning type inference, are rather orthogonal
to the semantic focus here). L was also proposed in [2] as a basis for describing
objects with local state, making the extension with polymorphism a natural step
towards describing object and subtype polymorphism. The same basic model
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has also been used to interpret aspect-oriented programs [18], with an associated
(fully abstract) translation into L.

Our model is (essentially1) a conservative extension of the semantics of L
in [2], in which general references are interpreted by lifting the conditions of
innocence and visibility applied in the original model of PCF [8]. The extension
to polymorphic types is based on the observation, evident in earlier games models
of e.g. propositional variables in proofs [3], that polymorphic proofs or programs
correspond to copycat strategies : since such programs must behave uniformly
over all instantiating types, all they can do is copy information between positive
and negative occurrences. In our model, these “copycat links” are represented
explicitly as pointers on sequences of moves, rather than by directly specifying
behaviour at every possible type instantiation. Thus, determining equivalence
of finitary program denotations is straightforward, and raises the possibility of
using the semantics as the basis for more systematic model checking.

Related Work. Games models of (System F) polymorphism have been de-
scribed by Hughes [7] and Abramsky and Jagadeesan [1]. The former captures
full completeness for System F using a notion of hypergame allowing partici-
pants to import arenas instantiating variables. This closely reflects the syntax of
System F; our semantics is more concrete and programming language oriented.
The focus of the model in [1] is on genericity in the sense described in [13] —
specifically it contains a rich collection of generic types (i.e. types such that in-
stantiation into universally quantified types reflects denotational equivalence).
The model described here also contains generic types: indeed every universal
type is a retract of its instantiation with the type nat, a fact used to establish
definability and full abstraction. A more direct comparison may be made with
recent work by the author describing a fully abstract programming language
based on extending System F with general references [10]— i.e. a call-by-name
version of L2, although the more accurate distinction is between polymorphism
of value types and computation types in the sense of [11]. A significant differ-
ence between the the two models is that copycat behaviour in the call-by-name
case can be inferred from question/answer labelling via an extended bracketing
condition, and so explicit pointers are not required. The work described here is
also closely related to labelled transition systems for concurrent and sequential
polymorphic languages, such as [12].

2 L2 — A Polymorphic Language with General
References

We study polymorphism in the setting of L2, the second-order extension of the
functional language with general references L, modelled in [2]. Its types are given
by the grammar:
1 Its presentation is closer to Honda and Yoshida’s model of the call-by-value λ-

calculus [6], and also requires a further decomposition of moves as tuples of atomic
moves, which are connected by copycat links.
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Table 1. Evaluation Rules for L2

V,E⇓V,E
M,E⇓λx.M ′,E ′ N,E ′⇓V,E ′′ M ′[V/x],E ′′⇓U,E ′′′

M N,E⇓U,E ′′′

newT ,E⇓a,(loc∪{a}),S a �∈ loc
M,E⇓Λ(X).M ′,E ′ M ′[T/X ],E ′⇓V,E ′′

M{T },E⇓M ′[T/X ],E ′′

M,E⇓a,E ′ N,E ′⇓V,(loc,S)
M :=N,E⇓(),(loc,S[a )→V ])

M,E⇓a,(loc,S)
!M,E⇓V,(loc,S) S(a) = V

X | unit | nat | bool | S × T | S → T | ∀X.T

where X ranges over a set of type variables. The set of well-formed types over a
given context of free type variables may be defined formally as for System F [5].

For any type T , we write var[T ] for the type (unit → T ) × (T → unit) —
the type of references to values of type T , corresponding to the product of the
types of the two “methods” (read and write) for a reference object.

Terms are formed according to the rules of System F [5] (with products),
extended with a collection of constants, including data values (numerals, truth
values and a single value () : unit), arithmetic operations including equality
testing on nat — eq : nat×nat → bool — a conditional If : bool → (T ×T ) →
T — and constants newT : var[T ] for declaring fresh references of of type T .
Given M : var[T ], we write !M for fst(M), and M := N for snd(M)N . We
omit typing annotations on variables and constants where they are arbitrary or
may be inferred. Following [2], explicit recursion is omitted, since fixed points
may be defined using self-referencing variables. The sublanguage L consists of
all types constructed without using variables or quantification, and all terms in
which each subterm is of such a type.

In [2], it was proposed that objects with local state could be represented
as L-terms: “The general scheme is that an object is represented by a term
of the form new l1 := v1 . . . lk := vk in 〈m1, . . . ,mp〉 where l1, . . . , lk are the
local variables of the object, and m1, . . . ,mn are functions representing its
methods.” The example given in [2] is of a stack object, which has local vari-
ables representing a stack pointer and array storing the values on the stack,
and functions push and pop representing its methods. This naturally extends
to polymorphism — a polymorphic object may be represented as the value
Λ(X).new l1 := v1 . . . lk := vk in 〈m1, . . . ,mp〉 — instantiating with a type cre-
ates a new object at that type — in the case of the stack example, this is the
archetypal instance of a polymorphic object.

Operational Semantics. A program is a closed term of closed type of L2

extended with a set of location names (constants of closed type). Values are
programs given by the grammar:

U, V ::= c | λx.M | Λx.M | (U, V )
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where c is any constant except new. An environment is a pair E = (loc,S) where
loc is a set of location names and S is a partial function from loc to values. Key
“big step” evaluation rules for evaluating a program and an environment to a
value are given in Table 1. We write M ⇓ if M, (∅,∅) ⇓ V, E for some V, E (this is
conservative over the operational semantics of L) and adopt standard definitions
of contextual approximation and equivalence: given terms M,N : T , M � N if
for all closing contexts C[ ], C[M ] ⇓ implies C[N ] ⇓. M ≈ N if M � N and
N � M . (This is also conservative over contextual equivalence for L, which will
be evident from the denotational semantics.)

3 Game Semantics of L
We first recast the game semantics of L from [2] in a somewhat different pre-
sentation, required to enable the extension with polymorphism. As in [2], it
is based on the dialogue games of Hyland and Ong [8]. However, we interpret
the call-by-value λ-calculus in a closed Freyd category [16] using essentially the
constructions of Honda and Yoshida [6] rather than the approach of [2] based
on coproduct completion of a Cartesian closed category. The principal novelty
here is a decomposition of the moves of call-by-value arenas as tuples of “atomic
moves”. Plays of the game will consist of sequences of these tuples or “compound
moves”, joined by justification pointers, with the “copycat links” introduced to
interpret polymorphism connecting the atomic moves inside them.

Fix a “universal set of atomic moves U — this may be any set which contains a
distinguished “context move” •, a unit ∗, and the natural numbers, and such that
U ⊕ U ⊆ U . A decomposed arena A over U is a tuple (AtA,MA, λA,AtIA,1A),
where (AtA, λA,AtIA,1A) is a labelled, bipartite, directed acyclic graph2 pre-
sented as a set of nodes or atomic moves AtA ⊆ U , a question/answer labelling
on AtA (λA : MA → {Q,A}), an explicit set of root nodes (initial moves),
and an edge-relation (“enabling”) 1A, such that no two adjacent nodes are la-
belled as answers. Finally, MA ⊆

⋃
{AtnA | n ∈ ω} is a set of tuples of atomic

moves (or “compound moves”), containing each atomic move at most once —
i.e. πi(m) = πj(n) implies i = j and m = n, and such that any two atoms in
the same compound move have the same labelling and polarity, and either both
or neither are initial, so we may extend the question/answer, initial/non-initial
and Player/Opponent designations to compound moves. We extend the enabling
relation to MA by stipulating that 〈a1, . . . , am〉 1A 〈b1, . . . , bn〉 if there exists ai

such that ai 1 bj for j ≤ n. An A-rooted arena is one which every initial move
is labelled as an answer, a Q-rooted arena is one in which every initial move is
a question.

A justified sequence over a given set of (compound) moves is a sequence of
such moves, together with at most one “justification pointer” from each move
to a previously occurring move. A legal sequence over a Q-rooted arena A is a
justified sequence over MA such that each non-initial move has a pointer to an
2 In which any two points with edges into a common node have edges coming from a

common node.
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occurrence of an enabling move, and which is alternating — Opponent moves
are followed by Player moves and vice-versa —well-opened — there is at most
one initial move — and well-bracketed — each answer move is justified by the
most recent unanswered question.

Given decomposed A-rooted arenas A1, A2, we define a Q-rooted arena A1 →
A2 in which initial moves are the initial moves from A1 relabelled as questions
(to which the initial moves from A2 are the answers).

– AtA1→A2 = AtA1 + AtA2

– MA1→A2 = {ini(a) | a ∈ MAi ∧ i ∈ {1, 2}}
– λA1→A2(a) = Q, if a ∈ AtIA1

, λA1→A2(ini(a)) = λAi(a), otherwise,
– AtIA1→A2

= {in1(a) | a ∈ AtIA1
},

– 1A1→A2= {〈ini(a), ini(b)〉 | i ∈ {1, 2} ∧ a 1Ai b} ∪ {〈in1(a), in2(b)〉 | 〈a, b〉 ∈
AtIA1

× AtIA2
}.

Thus we may define a category G (relative to U) in which objects are decomposed
arenas over U and morphisms from A to B are (deterministic) strategies on
A → B — non-empty, even-prefix-closed, even-branching sets of even-length
legal sequences of A → B. Strategies are composed as in [8,6]: given σ : A → B,
and τ : B → C, let σ|τ be the set of justified sequences s over MA + MB + MC

such that s�A,B ∈ σ and s�B,C ∈ τ , then σ; τ : A → C = {s ∈ LA→C | ∃t ∈
σ|τ.s = t�A,C}. We may define premonoidal structure on G, as in [6]:

– AtA1�A2 = AtA1 + AtA2

– MA1�A2 = {〈in1(a), in2(b)〉 | (a, b) ∈ M I
A1

×M I
A2

}∪{ini(a) | a ∈ MAi\M I
Ai
}

– λA1�A2 = [λA1 , λA2 ]
– AtIA1�A2

= {〈in1(a), in2(b)〉 | a ∈ MA1 ∧ b ∈ MA2}
– 1A1�A2= {〈ini(a), ini(b)〉 | a 1Ai b}

The arena I, with a single (atomic and compound) move is the unit for �. For
each arena A, an endofunctor A� : G → G may be defined, along with symmetry
and unit isomorphisms making (G, I,�) a symmetric premonoidal category (for
further details see [6]).

We define a subcategory in which � is a cartesian product by combining the
notion of totality [6], with a form of thread-independence [2]: σ : A → B is total
if τ ;σ = ⊥ implies τ = ⊥ (where ⊥ is the empty strategy) (i.e. σ responds to
any initial question in A with an answer in B. A sequence in which this occurs
is said to be total).

Given a total sequence qas ∈ LA→B, let ∼ be the reflexive, symmetric, tran-
sitive closure of the justification relation on s (not including qa). The thread of
such a sequence is defined as follows:

thread(t) = t for t ! qa
thread(qasb) = thread(qas)b if b is a Player move.
thread(qasbtc) = thread(qasb)c if c is an Opponent move and b is the most recent
move in qasbt such that b ∼ c.
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A total strategy is thread-independent if for every sequence s ∈ σ, thread(s) is a
legal sequence, and if t ∈ σ, with thread(tab) = thread(s), then tab ∈ σ.

The composition of thread-independent total strategies is total and thread-
independent (see [2]). So let Gt be the lluf subcategory of G consisting of such
strategies. The premonoid � restricts to Gt, where it is a Cartesian product.
Thus we have a Freyd category [16]; a Cartesian category Gt with an identity-
on-objects strict symmetric premonoidal functor J (in this case, inclusion) into
a symmetric premonoidal category G. Moreover, it is a closed Freyd category:
for each A-rooted arena A, the functor J( ) � A : Gt :→ G has a right adjoint
A ⇀ : G → Gt. (Define A ⇀ B =↑(A → B), where ↑ adds a single initial
answer move, enabling all of the initial moves of A → B. Then there is an evident
bijection from legal sequences on A�B → C to threads of total legal sequences
on A → (B ⇀ C) (sending 〈a, b〉s to a〈∗〉bs) yielding the required adjunction.)

This yields a semantics of the call-by-value λ-calculus with products [15].
Concretely, this is equivalent to the semantics given in [2], based on a lifting
monad T on a category of indexed families of Q-rooted arenas (equivalent to
the action of 1 ⇀ on Gt). Constant types are interpreted as coproducts of
the terminal object — e.g. [[nat]] =

∐
i∈nat 1. To complete the semantics of L,

the interpretation of the new declaration is given as the family of strategies
cellA : I → (A ⇀ I) × (I ⇀ A) defined in [2].

4 Polymorphic Arenas

We now describe the main contribution of this paper: further structure on decom-
posed arenas allowing the interpretation of type polymorphism, and in particular,
the extension of the semantics of L to L2. We capture the fact that any strategy
representing a generic program over a variable type can only play copycat between
positive and negative occurrences of instantiating games in a uniform way by in-
troducing a new kind of pointer, between atomic moves: a copycat link. A copycat
enabling structure for the arena A is given by the following:

– A set of contingent atomic moves CtA ⊆ AtA which can only be played with
a copycat link to a previous move.

– A copycat enabling relation � ⊆ MA × AtA × CtA, such that if (l,m) � n,
then λOP (l) = λ(m) = λ(n), l 1∗ m and l 1∗ n. (As well as the possible
source (m) and target (n) of copycat links, this ternary relation also specified
a “scoping move” (l).

A legal sequence on such an arena is a legal sequence on A together with a
copycat link from each contingent atomic move c to a preceding atomic move b
such that there exists a move a hereditarily justifying b and c with (a, b) � c.

Context Arenas. Types with free variables will be interpreted as context-
arenas. These are, in essence, arenas with sets of explicit “holes”, into which any
other game can be plugged (similar to the polymorphic arenas of [7]).
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A notion of context address is a set of injections from U to U , closed under
composition with left and right tagging, and containing the identity. We assume
such a notion (e.g. the set of finite sequences of right and left taggings).

Definition 1. A n-context arena is given by an arena with copycat enabling
(AtA,MA, λA,AtIA,1A,CtA,�A), and disjoint sets CA(1), . . . , CA(n) of addresses
satisfying (for all φ, ψ ∈

⋃
i≤n CA(i)):

– AtA ∩ φ(U) ⊆ {φ(•)}
– If φ �= ψ then φ(U) ∩ ψ(U) = ∅.
– φ(•) �∈ CtA and (a, φ(•), b), (a, b, φ(•)) �∈ �A for all a, b ∈ AtA.

We write HA(i) for the set of atoms {φ(•) | φ ∈ CA(i)}, which are called holes:
HA(i) is partitioned according to Player/Opponent labelling of A into sets H−

A (i)
and H+

A (i) of Player and Opponent holes respectively.
The basic example of n-context arena is the arena Xi for i ≤ n, containing

a single atom, •, a single (initial) compound move, 〈•〉, with CXi (i) = {id} and
CXi(j) = ∅ for i �= j. The constructions →, � and ⇀ extend straightforwardly to
n-context arenas by composing the address functions with left and right tagging:
e.g. CA�B(i) = CA→B(i) = {φi; in1 | φ ∈ CA(i)} ∪ {φ; in2 | φ ∈ CB(i)}.

Given a Q-rooted n-context arena (A,C1, . . . , Cn), (with n > 0) we define the
universal quantification ∀nA to be the n− 1-context arena obtained by adding
the Player holes H−

A (n) as contingent moves with copycat enablings from the
Opponent holes H+

A (n), with the scoping moves being any enabling initial moves:

– At∀nA = AtA, M∀nA = MA, AtI∀nA = AtIA, 1∀nA=1A,
– Ct∀nA = CtA ∪H−

A (n)
– �∀nA = �A ∪ (AtIA ×H+

A (n) ×H−
A (n)).

– C∀nA(i) = CA(i) for i < n.

We shall write ∀A for the arena ∀1 . . .∀nA. For each k, we define a category G(k)
in which objects are k-context arenas and morphisms from B to C are strategies
on ∀(A → B). To extend the definition of composition to these morphisms,
we stipulate that the restriction operation operates on sequences with copycat
links by replacing the copycat link relation with its transitive closure over erased
moves. Composition of σ : A → B and τ : B → C is then just the same as for the
underlying strategies. The identity idA : A → A is given by the set of copycat
sequences on ∀(A → A) such that Player hole moves of A → A point to the
corresponding preceding move. Similarly, the premonoidal structure on G may
be extended to G(k), establishing:

Proposition 1. For each k ∈ N, (G(k),Gt(k), I,�) is a closed Freyd category.

For example, Figure 1 shows the sequences distinguishing the generic projection
morphisms from X1×X1 to X1 — in which only the copycat links differ. Figure
2 shows a typical sequence of a generic cell strategy cellX1 . There are evident
“identity on morphisms” functors:



194 J. Laird

∀1 X1 × X1 → X1

〈 • , • 〉OQ
〈•〉PA

��

��
�

	

∀1 X1 × X1 → X1

〈 • , • 〉OQ
〈•〉PA

��

����

�

Fig. 1. Alternative Plays on X × X → X with copycat links

∀1(I → (X1 ⇀ I) × (I ⇀ X1))
〈∗〉OQ

〈∗, ∗〉PA〈•〉PQ
〈∗〉PA 〈∗〉OQ

〈•〉PA

��

�����������
�

�

Fig. 2. Play of cellX

– Contraction: δn : G(n + 1) → G(n) (sends (A,CA(1), . . . , CA(n + 1)) to
(A,CA(1), . . . , CA(n) ∪ CA(n + 1))).

– Permutation: θi
n : G(n) → G(n) (sends (A,CA(1), . . . , CA(i), . . . , CA(n)) to

(A,CA(1), . . . , CA(n), . . . , CA(i))).
– Weakening: Kn : G(n) → G(n + 1) (which sends (A,CA(1), . . . , CA(n)) to

(A,CA(1), . . . , CA(n),∅)).

The left adjoint to Kn (precomposed with the inclusion of G(k)t into G(k)) will
be used to interpret type-variable abstraction.

Proposition 2. The functor Kn · J : Gt(n) → G(n + 1) has a right adjoint Πn.

Proof. For any n + 1-context arena B, let ΠnB =↑ ∀n+1(I → B). For any
n-context arena A, there is a (natural) correspondence between total, thread-
independent strategies on ∀(A → ΠnB), and strategies on ∀(Kn(A) → B).

4.1 Composing Context Arenas

Instantiation of type variables with types is interpreted by replacing hole-moves
with the corresponding context-arenas. Given an n+ 1-context arena A, and an
m-context arena B, we define instantiation of B into the n + 1th hole of A —
the n + m-context arena A[B] — by replacing the atomic move φ(•) with the
atomic moves φ(AtB) for each n + 1 hole address φ.

First, given a move a ∈ MA, we define the set of moves a[B] to be the set of
tuples obtained by replacing occurrences of φ(•) in a such that φ ∈ CA(n + 1)
with φ(b) for some b ∈ M I

B. Then:

– AtA[B] = (AtA −HA(n + 1)) ∪
⋃

φ∈CA(n+1) φ(AtB).
– MA[B] =

⋃
{m[B] | m ∈ MA} ∪ {φ(b) |b ∈ MB −M I

B ∧ φ ∈ CA(n + 1)}
– λA[B](a) = λA(a) if a ∈ AtA −HA(n + 1),

λA[B](φ(b)) = λA(φ(b)), if b ∈ AtB − AtIB
λA[B](φ(b)) = λB(φ(•)), if b ∈ AtIB
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– 1A[B]=1A�(MA −HA(n + 1))∪
⋃

φ∈CA(n+1)({(a, φ(b) | a 1A φ(•) ∧ b ∈ AtIB}
∪ {(φ(b), a | φ(•) 1A a ∧ b ∈ AtIB} ∪ {(φ(b), φ(b′)) | b 1B b′}.

– CtA[B] = CtA ∪
⋃

φ∈CA(n+1) φ(CtB)
– �A[B] = �A ∪

⋃
φ∈Cn

{(φ(b), φ(b′), φ(b′′)) | (b, b′) �B b′′}.
– CA[B](i) = CA(i) for i ≤ n and CA[B](n+j) = {ψ·φ | (φ, ψ) ∈ CA(n)×CB(j)}

We may observe that instantiation is associative — i.e. A[B[C]] = (A[B])[C].
The corresponding instantiation of types for type variables in terms is in-

terpreted by extending strategies to the expanded arenas by playing copycat
between the copy of B substituted for a contingent Player hole move, and the
copy of B substituted for the hole move to which it points. We define (by induc-
tion on sequence length) for each sequence s ∈ L∀(A[B]→B[D]), a set of justified
sequences ŝ on L∀(A→D) such that s′ ∈ ŝ if it can be obtained from s by:

– Erasing non-initial B-moves in s.
– For each move m ∈ MA→D, replacing any move a ∈ m[B] with m.
– Adding copycat links between hole moves φ(•) ∈ H+

A→B(n + 1) and ψ(•) ∈
H−

A→B(n + 1), if φ(•) replaces φ(b) and ψ(•) replaces ψ(b), where for all
even prefixes t !E s containing φ(b), ψ(b), the subsequences of t consisting
of compound moves of the form φ(b′) hereditarily justified by φ(b) and of
moves of the form ψ(b′) hereditarily justified by ψ(b) are equal (up to the
action of φ, ψ).

Given a strategy σ : A → D in G(n + 1) we define σ[B] : A[B] → D[B] in
G(n+m) to be the set of sequences s on ∀(A[B] → D[B]) such that there exists
s′ ∈ ŝ with s′ ∈ σ. We verify that this yields a deterministic strategy, and the
action of instantiation into strategies is compositional.

Proposition 3. For any m-context arena B, there is a functor (of closed Freyd
categories) from G(n + 1) to G(n + m) sending A to A[B] and σ : A → D to
σ[B] : A[B] → D[B].

Using the permutation functor, we may define instantiation into any hole — i.e.
A[B]i = θi

n(θi
n+1(A)[B]) — and thus multiple instantiations: given a n-context

arena A, and m-context arenas B1, . . . , Bn, we write A[B1, . . . , Bn] for the m-
context arena obtained by instantiation of Bi into hole i for each i, followed by
contraction of each set of holes {i + j.m | j ≤ m} for each i.

5 Semantics of L2

We now have the constructions in place to define a hyperdoctrine model of L2, in
the style of the Seely-Pitts formulation of 2λ× hyperdoctrine model for System F
[19,14]. We define an indexing category B in which objects are natural numbers
and morphisms from m to n are n-tuples of m-context arenas. Composition
of 〈A1, . . . , Am〉 : l → m with 〈B1, . . . , Bn〉 : m → n is by instantiation to
〈B1[A1, . . . Am], . . . , Bn[A1, . . . Am]〉 (associativity follows from the unary case,
with naturality of the functors for contraction and permutation). The identity
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on n is the tuple 〈X1, . . . , Xn〉. B has finite products, given by arithmetic sums,
and is finitely generated from the object 1 by this product.

Let cFcat be the category of closed Freyd categories and structure-preserving
functors (i.e. pairs of premonoidal structure preserving functors agreeing on
objects and commuting with the specified identity-on-objects functor). We de-
fine a functor ∗ from BOP into cFcat, sending n to G(n), and the tuple of
context-arenas 〈A1, . . . , An〉 to the functor [A1, . . . , An]. The adjunctions be-
tween Πn : G(n + 1) → Gt(n) and the reindexing Kn · J : G(n + 1) → G defined
in Proposition 2 for each n form a fibred adjunction: i.e. for each reindexing
α : m → n, Πn; Jn;α∗ = (α × id1)∗;Πm; Jm (the Beck-Chevalley condition).
Concretely, this is the requirement that I ⇀ ∀m+1A[B1, . . . , Bn, Xm+1] = (I ⇀
∀n+1A)[B1, . . . , Bn].

Thus we have an interpretation of term formation for L2, with terms over the
free variables X1, . . . , Xn interpreted in the fibre G(n). Constants of L are inter-
preted as in [2]. In particular, newT is interpreted as the strategy cell[[S]] obtained
by instantiating [[S]] into the generic strategy cellX1 (Fig. 2). For constant S, this
is the strategy defined in [2] and thus satisfies the key equational rules estab-
lished there defining its behaviour under assignment and dereferencing. These
are used, with the soundness of the hyperdoctrine semantics, to prove soundness
of the model with respect to the operational semantics. Computational Adequacy
is proved for an approximating semantics in which each cell can be dereferenced
a bounded number of times (see [9]) using a reducibility predicate argument,
which extends to the unbounded system by continuity.

Proposition 4. M ⇓ if and only if [[M ]] �= ⊥.

6 Full Abstraction

We prove that our semantics of L2 has the “finite definability property” — i.e.
every finite strategy on a closed type is the denotation of a term (a. k. a. “inten-
sional full abstraction”) — by reduction to definability in L, which was proved
in [2]. The reduction to L is based on a strong form of the genericity property,
described in [13] for models of System F: a type T is generic if instantiation of all
universal types with T preserves denotational inequivalence. All types contain-
ing more than one distinguishable value, such as bool, are generic with respect
to our model of L2, although the unit type, for example, is not (instantiating
∀X.X × X → X with unit equates left and right projection). Moreover, the
type nat has a stronger “internal genericity” property — for any type T (X), the
instantiation λx∀X.T .λyunit.x{nat} : ∀X.T → (unit → T [nat]) denotes a mor-
phism with a definable retraction — i.e. a left-inverse which is the denotation of
a term inst−1

T : (unit → T [nat]) → ∀X.T .
Informally, inst−1

T denotes a strategy which plays copycat between [[∀X.T [X ]]]
and [[1 ⇀ T [nat]]], except that each Opponent hole move a in [[T [X ]]] is replaced
with an atomic move representing a fresh natural number in [[unit → T [nat]]].
If Opponent subsequently plays a copy of this move in [[unit → T [nat]]], then
inst−1

T plays a move with a copycat link to a. To define inst−1
T , a counter is set
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up to supply fresh values of type nat, and an array for storing values of type
X (a reference of type nat → X) is declared. Whenever a value of type X is
encountered in T [X ], it is stored in the array at an index freshly generated by
the counter, which is returned at the corresponding point in T [nat]. Whenever
a value of type nat is encountered in in T [nat], the value of type X stored at
the corresponding index is returned.

Proposition 5. For any type T , the morphism denoted by instnat : ∀X.T →
1 → T [nat] has a definable retraction.

Proof. Given f : var[nat → T ], and V : T , define f [n → V ] : unit =df

f := λy.Ify = n then V else (!f y). Given c : var[nat], define get(c) = (a :=
succ !a); !a.

We define terms f : var[nat → X ], c : var[nat] 1 inT : T [X ] → A[nat] and
f : var[nat → X ], c : var[nat] 1 outA : A[nat] → T [X ] by induction on T :

– inX = λxnat.(!f) x, outX = λxX .let ynat = get(c) in f [y )→ x]; y
– If T = Y (Y �= X) or T ∈ {nat, bool, unit}, then inT = outT = λxT .x.
– inS×T = λx.〈inS (fstx), inT (sndx)〉, outS×T = λx.〈outS (fstx), outT (sndx)〉
– inS→T = λg.λx.inT (g(outS x)), outS→T = λg.λx.outT (g(inS x)).

We may now define inst−1
T = λzunit→T [nat].Λ(X).newnat→X f.newnat c := 0.inT (z ()).

Since the relation � is a precongruence on L2 types, every type of L2 is a
definable retract of a type of L obtained by instantiating all universal types to
nat. In combination with finite definability for L [2], this yields:

Theorem 1. For any L2-type S, every finite strategy σ on I → [[S]] is the
denotation of a term Mσ : S

This implies full abstraction for the collapse of the model under its intrinsic
preorder. As in [2], it is straightforward to characterise the intrinsic preorder
directly, by restricting strategies to their sets of complete sequences — i.e. those
which contain equal numbers of questions and answers. Let comp(σ) be the set
of complete sequences of the strategy σ. Then the following result is a corollary
of finite definability (or equivalently, reduction to L via definable retraction).

Theorem 2. For any terms M,N , M � N ⇐⇒ comp([[M ]]) ⊆ comp([[N ]]).

7 Conclusions and Further Directions

In recent work [10], we have shown how call-by-name polymorphism can be inter-
preted in a similar setting, but without explicit copycat links, using instead ques-
tions/answer labelling and the bracketing condition to infer them. This raises
the problem of finding a semantics for a polymorphic version of a general typing
system such as call-by-push-value [11]. Explicit copycat links do appear to make
it simpler to describe strategies which are definable without general references
— i.e. in polymorphic versions of call-by-value PCF or reduced ML, but this has
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yet to be worked out in detail. We have shown that the problem of determining
observational equivalence in L2 is reducible to the same problem in L (which
is, itself, a very expressive language). This leaves open the problem of finding
fragments of L2 in which this problem is decidable. Finally, a more distant goal
is an illuminating game semantics of subtype polymorphism.
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Abstract. Given an ML function f : (int->int)->int how can we rig-
orously specify that f is pure, i.e., produces no side-effects other than those aris-
ing from calling its functional argument? We show that existing methods based
on preservation of invariants and relational parametricity are insufficient for this
purpose and thus define a new notion that captures purity in the sense that for
any functional F that is pure in this sense there exists a corresponding question-
answer strategy. This research is motivated by an attempt to prove algorithms
correct that take such supposedly pure functionals as input and apply them to
stateful arguments in order to inspect intensional aspects of their behaviour.

1 Introduction

Suppose we are given an unknown SML-function f : (int->int)->int as input.
How can we rigorously specify that f does not cause side-effects other than those that
might arise by applying f to a side-effecting argument? Our motivation for studying
this question stems from an attempt to rigorously verify fixpoint solvers that take such a
supposedly pure functional as input. Let us explain this application in some more detail.

Generic fixpoint solvers have successfully been used as the core algorithmic en-
gine for program analyser frameworks both for logic programming languages [5,7] and
C [16], see also [11]. Such solvers take as input an arbitrary equation system over a set
Var of variables and some complete lattice Dom. Each such system is specified as a
function from the set Var of unknowns to their respective right-hand sides where each
right-hand side is considered as a function of type (Var → Dom) → Dom which typi-
cally is implemented in some specification language. The generic local solver then starts
from a set of interesting variables and explores the variable space Var only in so far as
their values contribute to the values of the interesting variables. In order to evaluate
as few right-hand sides as possible, any efficient fixpoint algorithm takes dependencies
among variables into account. If right-hand sides, however, are just semantically given
as functions, no static preprocessing is possible to identify (a superset of) such depen-
dencies. Therefore, generic solvers such as [3, 9, 6] rely on self-observation to identify
the variable dependencies when they are encountered during fixpoint iteration. Due to
this reflective behaviour, these algorithms are quite involved and thus difficult to be
proven correct. While they are formulated as being applicable to systems of equations
using arbitrary functions as right-hand sides, they clearly can only work properly for
right-hand sides which are sufficiently well-behaved.

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 199–210, 2010.
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Other situations where supposedly pure functionals arise as input include Simpson’s
algorithm for exact integration [17] and the program transformations described in [10].
More distantly, we hope that our results might also contribute to the issue of purity in
object-oriented specification [15] and be of interest to the Haskell community.

In this paper, we give an extensional semantic criterion for purity and show that it
entails the existence of a strategy tree for the given functional. Thus, when trying to
verify one of the aforementioned algorithms one can assume without loss of generality
that the functional input is presented in the form of such a strategy tree which allows
for a convenient proof by induction. Alternatively, one can use our extensional criterion
directly for the verification and indeed we do so when verifying a recursive program
that extracts a strategy tree from a given semantically pure functional.

Section 3 and 4 review classical parametricity and explain its weakness in the given
context. Section 5 defines a new, stronger, notion of parametricity which by way of uni-
versal quantification yields our concept of semantic purity. Section 6 applies our notion
to identify snapback (memorising and restoring the initial state) as impure, something
that was hitherto impossible in a setting of total functions. Section 7 defines an inductive
set of strategy trees which are shown in Sections 8 and 9 to represent pure functionals.
Section 10 explains relations to Algol theory and game semantics.

The proofs except the one of Theorem 6 have been formalised in Coq. Moreover,
one of us has just completed the formal verification (also in Coq) of a generic fixpoint
algorithm using the results reported here. This will be published in a companion paper.

2 Preliminaries

For sets X and Y we denote by X × Y the Cartesian product and by X → Y the
function space. We denote pairs by (x, y) and projections by fst(x) and snd(x). We
use λ and juxtaposition for function abstraction and applications. We use the notations
f : X → Y and f ∈ X → Y interchangeably. If (Xi)i∈I is a family of sets then we
denote

∏
i∈I Xi or simply

∏
i Xi its Cartesian product. If f ∈

∏
i Xi then fi ∈ Xi. We

write B for the set {tt,ff} of truth values. We use ⇒ for logical implication; it binds
weaker than the other logical connectives like ∧,∨. For sets X and S we define the
state monad by

TS(X) := S → S ×X .

We have the associated operations valS : X → TS(X) and bindS : TS(X) × (X →
TS(Y )) → TS(Y ) given by valS(x)(s) = (s, x) and bindS(f, g)(s) = g(x)(s1) where
f(s) = (s1, x). We tend to omit the index S whenever sensible.

If S is some set modelling global states, e.g.,S = Z×Z in the case of two global vari-
ables of integer type, then an element f of TS(X) may be viewed as a state-dependent
and state-modifying expression of type X .

We let Var and Dom be two fixed sets, for example, Var = Dom = Z. We fix
elements x0 ∈ Var, d0 ∈ Dom. We define

Func = ΠS .(Var → TS(Dom)) → TS(Dom)
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where the product ΠS ranges over a suitably large universe of sets. We do not intend to
have the domain of the product to include Func itself so that we do not need to delve
into the somewhat delicate issue of modelling impredicative polymorphism.

We view an element f of the function space Var → TS(Dom) as a stateful function
from Var to Dom: given x ∈ Var and a state s ∈ S then f(x)(s) yields a pair (s1, d)
thought of as final state (s1) and result (d). The bind-construct models the application
of such a function to a stateful expression of type Var, i.e., an element of TS(Var).

3 Purity at First Order

A stateful function f : Var → TS(Dom) may be considered “pure” (side-effect-free) if
there exists a function g : Var → Dom such that f(x)(s) = (s, g(x)), i.e., f may be
factored through valS : Dom → TS(Dom). This intensional viewpoint can in this case
be underpinned by a more extensional yet equivalent definition as follows:

Theorem 1. Let f : Var → TS(Dom) be given. The following are equivalent:

1. f factors through valS : Dom → TS(Dom).
2. For all relations R ⊆ S × S and x ∈ Var and sRs′ one has v = v′ and s1Rs1

where (s1, v) = f(x)(s) and (s′1, v
′) = f(x)(s′).

Proof. The direction 1⇒ 2 is obvious. For the converse, pick s0 ∈ S (the boundary
case S = ∅ is obvious) and define g : Var → Dom by g(x) = snd(f(x)(s0)). We
claim that f = val ◦ g. To see this, fix x ∈ Var and s ∈ S and define R = {(s0, s)}.
If (s1, v) = f(x)(s0) and (s′1, v

′) = f(x)(s) then, since s0Rs we get v = v′ and
s′1 = s. '(

A functional F : (Var → TS(Dom)) → TS(Dom) can be applied to stateful functions.
Intuitively, it should be called pure if when applied to a stateful function f then the only
side-effects that F (f) ∈ TS(Dom) will have are those caused by calls to f within F .
In particular, if f is pure as described above, then F (f) should be pure, too, i.e., of the
form valS(d) for some d ∈ Dom.

It is tempting to conjecture that such “pure” F would stem from a functional G :
(Var → Dom) → Dom. However, there is no way of applying such a G to a stateful
f : Var → TS(Dom) and, indeed, such a G does not contain enough information to tell
how to transport the state changes and dependencies caused by calls to the argument f .

4 Relational Parametricity

Let us therefore try to make progress with the relational approach. The following result
may be encouraging.

Theorem 2. Suppose that F : ({�} → TS({�})) → TS({�}) is such that for all
relations R ⊆ S × S the following is true: For all k, k′ : {�} → TS({�}) such that
for all s, s′ ∈ S sRs′ implies fst(k(�)(s))R fst(k′(�)(s′)), one has that sRs′ implies
fst(F (k)(s))R fst(F (k′)(s′)), for every s, s′ ∈ S.

Then there exists a natural number n such that F = itn where it0(k)(s) = (s, �) and
itn+1(k)(s) = k(�)(fst(itn(k)(s))).
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Proof. We only show the case where S = N, the general case is similar. We define
k0(�)(s) = (s + 1, �) and n0 = fst(F (k0)(0)). Intuitively, we assume that the state
contains an integer variable which is incremented upon each call to k0.

Now pick any k and s0 and define R = {(n, fst(itn(k)(s0))) | n ∈ N}. We have
(0, s0) and whenever sRs′ then fst(k0(�)(s))R fst(k(�)(s′)). Therefore, by assumption
n0 = fst(F (k0))R fst(F (k)). The claim follows from the definition of R. '(

We remark that this result can also be obtained as a consequence of a Theorem in [18].
It is therefore tempting to generalise this approach to the type of our functionals (and

sneaking in polymorphic quantification over state types) as follows:

Definition 1. A functional F :
∏

S(Var → TS(Dom)) → TS(Dom) is relationally
parametric if the following is true for all S, S′ and relations R ⊆ S × S′.

For all k : Var → TS(Dom) and k′ : Var → TS′(Dom) such that for all s, s′

sRs′ ⇒ fst(k(x)(s))R fst(k′(x)(s′)) ∧ snd(k(x)(s)) = snd(k′(x)(s′))

holds, one has that the following holds for all s, s′:

sRs′ ⇒ fst(FS(k)(s))R fst(FS′(k′)(s′)) ∧ snd(FS(k)(s)) = snd(FS′(k′)(s′)) .

Definition 2 (Snapback). Define Fsnap :
∏

S(Var → TS(Dom)) → TS(Dom) by
(Fsnap)S(k)(s) = (s, d) where (s1, d) = k(x0)(s). Thus, Fsnap invokes k but discards
the resulting state and only keeps the resulting value in d. Instead, the initial state is
restored.

The following is direct.

Proposition 1. Fsnap is relationally parametric. '(

Therefore, relational parametricity is not strong enough to ensure purity in the intu-
itive sense because snapback cannot be considered pure. Let us introduce the following
abbreviations:

Definition 3. – If X,X ′ are sets then Rel(X,X ′) denotes the set of binary relations
between X and X ′, i.e., P(X ×X ′);

– if X is a set then ΔX ∈ Rel(X,X) is the equality on set X;
– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R→S ∈ Rel(X→Y,X ′→Y ′) is given

by f R→S f ′ ⇐⇒ ∀x x′. xRx′ ⇒ f(x)Sf ′(x′);
– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R×S ∈ Rel(X×Y,X ′×Y ′) is given

by f R×S f ′ ⇐⇒ fst(f)R fst(f ′) ∧ snd(f)S snd(f ′);
– if R ∈ Rel(S, S′) and Q ∈ Rel(X,X ′) then Tparam

R (Q) ∈ Rel(TS(X),TS′(X ′)) is
given by Tparam

R (Q) := R→R×Q.

Now, F ∈ Func is relationally parametric if for all S, S′ and R ∈ Rel(S, S′) one has

(FS , FS′) ∈ (ΔVar → Tparam
R (ΔDom)) → Tparam

R (ΔDom) .
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5 A New Notion of Parametricity

We view the problem with snapback as a deficiency of the definition Tparam
R (Q). A

stronger way of lifting a relation Q ∈ Rel(X,X ′) to Rel(TS(X),TS′(X ′)) is needed.
Rather than tinkering with specific formats (of which we see examples later on), we
jump to the most permissive notion of relation on sets of the form TS(X).

Definition 4. Fix sets S, S′. For each X,X ′ and Q ∈ Rel(X,X ′) fix a relation Trel(Q)
∈ Rel(TS(X),TS′(X ′)). The family (X,X ′, Q) )→ Trel(Q) is an acceptable monadic
relation if

– for all X,X ′, Q ∈ Rel(X,X ′), x ∈ X,x′ ∈ X ′:

xQx′ ⇒ valS(x)Trel(Q) valS′(x′) ;

– for all X,X ′, Q ∈ Rel(X,X ′), Y, Y ′, P ∈ Rel(Y, Y ′), x ∈ TS(X), x′ ∈ TS′(X ′),
f : X → TS(Y ), f ′ : X ′ → TS′(Y ′):

xTrel(Q)x′ ∧ f(Q→Trel(P ))f ′ ⇒ bindS(x, f) Trel(P ) bindS′(x′, f ′) .

The lifting of state relations known from relational parametricity forms an example
of an acceptable monadic relation as stated in the next proposition. We will later see
examples of acceptable monadic relations that are not of this form.

Proposition 2. If R ∈ Rel(S, S′) then Q )→ Tparam
R (Q) is an acceptable monadic

relation. '(
It is now possible to state and prove a parametricity theorem to the effect that all func-
tions definable from lambda calculus, bind, and val respect any acceptable monadic
relation. The precise formulation and proof sketch is elided here for lack of space and
may be found in the full paper.

Let us return to the specific example set Func. We can use the new parametricity
notion to single out the pure elements of Func as follows.

Definition 5. A functional F ∈ Func is pure if

(FS , FS′) ∈ (ΔVar → Trel(ΔDom)) → Trel(ΔDom)

holds for all S, S′ and for all acceptable monadic relations Trel for S, S′.

Notice that functionals arising as denotations of lambda terms involving “parametric”
constants (i.e., those for which the parametricity theorem holds) are pure in this sense.

6 Ruling Out Snapback

Our aim in this section is to prove that the snapback functional from Def. 2 cannot be
pure in the following positive sense:

Theorem 3. Let F ∈ Func be pure. Put Test :=B and define ktest : Var → TTest(Dom)
by ktest(x)(s) = (tt, d0). If FTest(ktest)(ff) = (ff, d) then FS(k)(s) = (s, d), for all S,
s ∈ S and k : Var → TS(Dom).
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We apply F to a stateful argument ktest which — when called — sets a global boolean
variable. If this variable remains unset after the evaluation of FTest(ktest) then F did not
call its argument and must therefore be constant.

In order to prove the theorem we construct a specific monadic relation.

Definition 6. Let S be a set and Test = B. For each X,X ′ and Q ∈ Rel(X,X ′) define
Trel

1 (Q) ∈ Rel(TTest(X),TS(X ′)) by

Trel
1 (Q) = {(f, f ′) | ∀s s′ s1 s′1 x x′.f(s) = (s1, x) ∧ f ′(s′) = (s′1, x

′) ⇒
(∃x′

0. xQx′
0) ∧ (∃x0. x0Qx′) ∧ (s1 = ff ⇒ xQx′ ∧ s′ = s′1 ∧ s = ff) .

Note that the relations Trel
1 (Q) are not of the usual form “related pre-states yield related

post-states and related results”. Rather, relatedness of results (x and x′) is conditional
on the final state having a specific property (here “being equal to ff”).

Lemma 1. The relations Trel
1 (Q) form an acceptable monadic relation.

Proof (Sketch). Let us abbreviate

Z(Q, s, s1, s
′, s′1, x, x

′) ≡
(∃x′

0. xQx′
0) ∧ (∃x0. x0Qx′) ∧ (s1 = ff ⇒ xQx′ ∧ s′ = s′1 ∧ s = ff) .

In the val-case we have s = s1 and s′ = s′1 and xQx′ by assumption. The claim
Z(Q, s, s1, s

′, s′1, x, x
′) is then trivial.

For the bind-case assume Z(Q̌, s, š, s′, š′, x̌, x̌′) and g (Q̌ → Trel
1 (Q)) g′. We put

(s1, x) = g(x̌)(š) and (s′1, x
′) = g′(x̌′)(š′). We should prove Z(Q, s, s1, s

′, s′1, x, x
′).

Choose x̌′
0 such that x̌Q̌x′

0. The assumption on g yields Z(Q, š, s1, š
′, ?, x, ?) thus in

particular the existence of x′
0 such that xQx′

0. Similarly, we show ∃x0. x0Qx′.
Now assume s1 = ff. Applying g (Q̌ → Trel

1 (Q)) g′ to x̌Q̌x′
0 yields š = ff (this step

is the reason why we carry these ∃-clauses around). From Z(Q̌, s, š, s′, š′, x̌, x̌′) and
š = ff we then conclude x̌Q̌x̌′ and also s = ff. Using the assumption on g, g′ again we
then obtain the remaining bit x1Qx′

1. '(

Lemma 2. Let S be a set and k : Var → TS(Dom). We have (ktest, k) ∈ ΔVar →
Trel

1 (ΔDom).

Proof. Suppose that (s1, d) = ktest(x)(s) and (s′1, d
′) = k(x)(s′). Since s1 = tt all we

have to prove is ∃x′
0. d = x′

0 and ∃x0. x0 = d′ which is obvious. '(

Note that the only relation R such that ktest (ΔVar → R→R×ΔDom) k holds for all k is
the empty relation but that is useless since it does not relate initial states to each other.

Proof (of Theorem 3). We prove FTest(ktest)Trel
1 (ΔDom)FS(k) using purity of F to-

gether with Lemmas 1 and 2. This directly gives the desired result. '(

7 Strategy Trees

In this section we show that pure elements of Func are in fact first-order objects, i.e.,
define a question-answer dialogue. We first define those dialogues that can be seen as
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strategies in a game leading to the computation of F (k) for any given k. We associate
with each such strategy t a pure functional tree2fun(t) in the obvious way. We then
define a functional program fun2tree (see Appendix for ML code) that can extract a
strategy from any functional whether pure or not.

However, the program might in general fail to terminate and produce “strategies”
whose continuation functions do not terminate. We will first prove that if the program
returns a proper strategy and the input functional is pure then the computed strategy
corresponds to the input functional. To do this, we axiomatise the graph Fun2tree of the
functional program restricted to proper strategies as a well-founded relation. Later in
Section 9 we show that for pure input functional the program does indeed return a proper
strategy, i.e., the well-founded relation defines a total function on pure functionals.

We focus on the set Func here since it comes from the intended applications to fix-
point solvers.

Definition 7 (Strategies). The set Tree is inductively defined by the following clauses.

– If d ∈ Dom then answ(d) ∈ Tree.
– If x ∈ Var and f : Dom → Tree then que(x, f) ∈ Tree.

The function tree2fun : Tree → Func is (well-founded) recursively defined by:

– tree2fun(answ(d))(k)(s) = (s, d);
– tree2fun(que(x, f))(k)(s) = tree2fun(f(d))(k)(š) where (š, d) = k(x)(s).

In order to extract an element of Tree from a given functional we define the state set

Test = Dom∗ × Var∗ × Var × B .

As usual, (−)∗ is Kleene star. We refer to the components of s = (&d, &x, x, b) by &d =
s.ans, &x = s.qns, x = s.arg, b = s.cal.

We write s[qns := &x′] for (&d, &x′, a, b) and use similar notation for the other compo-
nents. For &d ∈ Dom∗ the initial state r�d is given by (&d, ε, x0,ff) (recall that x0 and d0

are the default elements of Var,Dom).

Definition 8. The function ktest : Var → TTest(Dom) is given by:

– ktest(x)(s) = (s, d0), if s.cal = tt;
– ktest(x)(s) = (s[arg:=x, cal:=tt], d0), if s.cal = ff and s.ans = ε;
– ktest(x)(s) = (s[ans:=&d, qns:=&xx], d), if s.cal = ff, s.ans = d&d and s.qns = &x;

where d0 ∈ Dom is the default element.

Intuitively, so long as cal is not set, ktest reproduces the prerecorded answers from ans
and stores the questions asked in qns. Once ans is empty the next question is stored in
arg and cal is set preventing any further state modifications.

Definition 9. The relation

Fun2treeAux ⊆ ((Var→TTest(Dom))→TTest(Dom)) × Dom∗ × Tree

is inductively defined by the following clauses.
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– If F (ktest)(r�d) = (r1, d) and r1.cal = ff then Fun2treeAux(F, &d, answ(d)).
– If F (ktest)(r�d) = (r1, d) and r1.cal = tt and r1.arg = x and f : Dom → Tree

is such that Fun2treeAux(F, &db, f(b)), b ∈ Dom, holds then Fun2treeAux(F, &d,
que(x, f)).

We also define
Fun2tree(F, t) ⇐⇒ Fun2treeAux(F, ε, t) .

8 Strategy Trees for Pure Functionals

We will argue later in section 9 that for any pure F there always exists t such that
Fun2tree(F, t). Here, we merely show that if Fun2tree(F, t) then F = tree2fun(t),
thus F is induced by a strategy tree.

Theorem 4. Suppose that F ∈ Func is pure and that Fun2tree(FTest, t) holds. Then
F = tree2fun(t).

We prove a more general statement involving the auxiliary relation Fun2treeAux. For
that, we relate sequences of questions to sequences of answers w.r.t. a given k : Var →
TS(Dom).

Definition 10. Suppose S is a set and k : Var → TS(Dom). We define MatS(k) ⊆
Var∗ × Dom∗ × S × S inductively by:

– MatS(k)(ε, ε, s, s) for all s ∈ S.
– If MatS(k)(&x, &d, s, š) and (s1, d) = k(x)(š) then MatS(k)(&x x, &d d, s, s1).

Basically, MatS(k)(&x, &d, s, s1) asserts that if we apply k successively to the arguments
in &x beginning in state s then (threading intermediate states through) we end up in state
s1 and the results we obtain along the way are recorded in &d.

Theorem 4 is a direct consequence of the following characterisation of Fun2treeAux.

Theorem 5. Suppose that F ∈ Func is pure and that Fun2treeAux(FTest, &d, t) holds.
Suppose furthermore that FTest(ktest)(r�d) = (r, ) and MatS(k)(r.qns, &d, s, š) holds. If
FS(k)(s) = (s1, d1) and tree2fun(t, k, š) = (s2, d2) then s1 = s2 and d1 = d2.

The proof of Theorem 4 is by induction on Fun2treeAux and breaks down into the
following two lemmas covering base case and inductive case.

Lemma 3 (Base case). Let F be a pure functional. If FTest(ktest)(r�d) = (r, v) and

MatS(k)(r.qns, &d, s, s1) and r.cal = ff then FS(k)(s) = (s1, v).

This lemma is similar to Theorem 3 but is complicated by the fact that ktest only sets
cal to tt after having worked off the pre-recorded answers &d. Accordingly, the Lemma
requires that k match these prerecorded answers w.r.t. the questions asked on the way
(r.qns). The proof uses an acceptable monadic relation in the following general format.



What Is a Pure Functional? 207

Definition 11. Let S, S′ be sets. Let Tr ∈ Rel(S, S) and Re,Gu ∈ Rel(S × S′, S ×
S′) and Q ∈ Rel(X,X ′). The relation Trel

Tr ,Re,Gu(Q) ∈ Rel(TS(X),TS′(X ′)) is
defined by

f Trel
Tr,Re,Gu(Q) f ′ ⇐⇒ ∀s s′ s1 s′1 x x′.
f(s) = (s1, x) ∧ f ′(s′) = (s′1, x′) ⇒ (∃x′

0. xQx′
0) ∧ (∃x0. x0Qx′)∧

Tr(s, s1) ∧ (Re((s, s′), (s1, s
′
1)) ⇒ xQx′ ∧ Gu((s, s′), (s1, s

′
1)) .

Lemma 4. If Tr,Gu are reflexive and transitive and furthermore

Re((s, s′), (s1, s
′
1)) ∧ Tr(s, š) ∧ Tr(š, s1) ⇒

Re((s, s′), (š, š′)) ∧ (Gu((s, s′), (š, š′)) ⇒ Re((š, š′), (s1, s
′
1)))

holds then Q )→ Trel
Tr,Re,Gu(Q) is an acceptable monadic relation. '(

We could have a more general format that also maintains a transition relation corre-
sponding to Tr on the S′-component, but this is not needed for our present purpose.

Proof (of Lemma 3, Sketch). We instantiate Lemma 4 w.r.t. the state sets Test and S:

Tr(r, r1) ≡ ∃&x &d. TrP(r, r1, &x, &d) ,
Re((r, s), (r1, s1)) ≡ r1.cal = ff ∧ ∀&x &d. TrP(r, r1, &x, &d) ⇒ ∃š.MatS(k)(&x, &d, s, š) ,
Gu((r, s), (r1, s1)) ≡ ∃&x &d. TrP(r, r1, &x, &d) ∧ MatS(k)(&x, &d, s, s1) ,
TrP(r, r1, &x, &d) ≡ r1.cal = ff ⇒ r.cal = ff ∧ r1.arg = r.arg ∧ |&x| = |&d|∧

r1.qns = r.qns &x ∧ r.ans = &d r1.ans .

One must now show that these definitions meet the conditions of Lemma 4 and that the
resulting monadic relation relates ktest(x) to k(x) for all x. Note that via MatS(k) the
definition of the monadic relation is dependent on the k in question. This was not the
case in the proof of Theorem 3. The result then follows. '(

Lemma 5 (Inductive Case). Let F be a pure functional. If FTest(ktest)(r�d) = (r, v)
and FTest(ktest)(r�d d) = (t′, v′) and r.cal = tt then r′.qns = r.qns r.arg.

Notice that the inductive case no longer involves the state set S and k but operates
entirely on the specific state set Test.

We use an acceptable monadic relation obeying the following generic format that
does not seem to be an instance of the previous one used for the base case.

Definition 12. Let S, S′ be sets. Let Tr ∈ Rel(S, S), Tr′ ∈ Rel(S′, S′) and St1, St2 ∈
Rel(S, S′). The relation Trel

Tr ,Tr′,St1 ,St2 (Q) ∈ Rel(TS(X),TS′(X ′)) is defined by

f Trel
Tr,Tr ′,St1 ,St2 (Q) f ′ ⇐⇒ ∀s s′ s1 s′1 x x′.

f(s) = (s1, x) ∧ f ′(s′) = (s′1, x
′) ⇒ (∃x′

0. xQx′
0) ∧ (∃x0. x0Qx′)∧

Tr(s, s1) ∧ Tr′(s′, s′1) ∧ (St1(s, s′) ⇒ St1(s1, s
′
1) ∧ xQx′ ∨ St2(s1, s

′
1)) .

Lemma 6. If Tr, Tr′ are reflexive and transitive and furthermore

St2(s, s′) ∧ Tr(s, s1) ∧ Tr′(s′, s′1) ⇒ St2(s1, s
′
1)

then Q )→ Trel
Tr ,Tr′,St1 ,St2 (Q) is an acceptable monadic relation. '(
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Proof (of Lemma 5 (Sketch)). We instantiate the framework with state sets S := Test
and S′ := Test and

Tr(r, r1) ≡ Tr′(r, r1) ≡
(r1.cal = ff ⇒ r.cal = ff) ∧ (r.cal = tt ⇒ r = r1)∧
(r.ans = ε ⇒ r = r1 ∨ r1.ans = ε ∧ r1.cal = tt ∧ r1.qns = r.qns) ,

St1(t, t′) ≡ r.cal = ff ∧ r′.cal = ff ∧ r′.ans = r.ans d ∧ r′.qns = r.qns ,
St2(r, r′) ≡ r.cal = tt ∧ r.ans = ε ∧ r′.ans = ε ∧ r′.qns = r.qns r.arg .

The main result is then a fairly direct consequence. '(

Theorem 4 is proved by induction on Fun2treeAux employing Lemmas 3 and 5. '(

9 Existence of Strategy Trees

We will now show that for any pure functional one can indeed find a corresponding
strategy tree in the sense of Fun2tree. By the results of the previous section this then
implies that any pure functional can be represented by or seen as a strategy tree.

Admittedly, this result came as a certain surprise to us: we believed for a long time
that existence of strategy trees could only be guaranteed under some additional conti-
nuity assumptions. For example, the minimum functional Min : (N → N) → N given
by Min(f) = min{f(n) | n} is not continuous and cannot be represented by a strategy
tree. However, there is no pure functional (with Var = Dom = N) because it would
have to make infinitely many calls to its argument which could be tracked by a suitable
set S: consider, for instance, the application of such putative pure functional F to a
k : N → TN(N) that increments a global variable upon each call.

Theorem 6. Let F ∈ Func be pure. There exists t such that Fun2tree(FTest, t).

Proof (Sketch). Assume for a contradiction that no such t exists. By studying an unsuc-
cessful attempt at constructing such a t (formally this involves the use of the axiom of
choice) we can construct an infinite sequence d1, d2, d3, . . . of elements of Dom such
that (fst(FTest(ktest)(s�dn

)).cal = tt for all n where &dn = d1d2d3 . . . dn−1.
Now let Test∞ be defined like Test except that the ans-component may contain finite

as well as infinite lists over Dom. Let k∞test be the extension of ktest to Test∞. By a simu-
lation argument using Proposition 2 one finds FTest∞(k∞test)(s) = FTest(ktest) whenever
s ∈ Test ⊆ Test∞. The following facts are proved using a mild generalisation of the
acceptable monadic relation used in the proof of Lemma 3:

– FTest∞(ktest)(r�d) = (r1, d) ∧ r1.cal = tt ⇒ r1.ans = ε;

– FTest∞(ktest)(r�d) = (r1, d) ⇒ ∃ans ∈ Dom∗.&d = ans r1.ans;
– FTest∞(ktest)(r�d) = (r1, d) ∧ r1.cal = ff ⇒ (FTest∞(ktest)(r�d�)).cal = ff where

&d � comprises the first |r1.qns| elements of &d.

Let &d be the infinite list of the di and write (r1, d) = FTest∞(ktest)(r�d). By the first and
second fact we must have r1.cal = ff. Thus, by the third fact, there exists n (namely
|r1.qns|) with (fst(FTest(ktest)(s�dn

)).cal = tt, a contradiction. '(
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10 Related Work

Relational parametricity has been introduced by Reynolds [13, 14] as a means for re-
stricting the range of polymorphic type quantification. Wadler then popularised Rey-
nolds’ results in his famous [18].

Relational parametricity has also been used in order to justify program equivalences
in Idealized Algol a higher-order call-by-name language with local variables and stateful
integer expressions. The equivalences of interest rely on the fact that a procedure cannot
modify or read a local variable declared in a disjoint scope. In this context, an alterna-
tive extension of relational parametricity has been developed which can also rule out
snapback functionals: strict logical relations [12]. It works in the setting of monotone
continuous functions on Scott domains and relies crucially on the following “built-in”
parametricity property of such functions: if F (λx.⊥) = x �= ⊥ then F (k) = x for all
k. Loc. cit. also relates certain functionals to strategy trees (there called resumptions).

The differences to our work are twofold: (1) we address all types of computational
lambda calculus in particular allow to return functions as results; (2) we work in a total,
set-theoretic framework whereas strict logical relations can only operate in the presence
of ⊥ and monotonicity.

The strategy trees are reminiscent of game semantics [1,2,8] and can be traced back
even further to Berry-Curiens sequential algorithms [4] and even to Kleene’s. The new
aspect here is the construction of a strategy tree for any set-theoretic functional that is
pure in an extensional sense defined by preservation of structure rather than by exis-
tence of intensional representations. It would be very interesting to investigate to what
extent our notion of purity which makes sense at all types of the computational lambda
calculus entails existence of strategies in the sense of game semantics or sequential
algorithms also at those higher types.
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Abstract. In static analysis, approximation is typically encoded by abstract do-
mains, providing systematic guidelines for specifying approximate semantic
functions and precision assessments. However, it may well happen that an ab-
stract domain contains redundant information for the specific purpose of ap-
proximating a given semantic function modeling some behavior of a system.
This paper introduces Example-Guided Abstraction Simplification (EGAS), a
methodology for simplifying abstract domains, i.e. removing abstract values from
them, in a maximal way while retaining exactly the same approximate behav-
ior of the system under analysis. We show that, in abstract model checking and
predicate abstraction, EGAS provides a simplification paradigm of the abstract
state space that is guided by examples, meaning that it preserves spuriousness
of examples (i.e., abstract paths). In particular, we show how EGAS can be inte-
grated with the well-known CEGAR (CounterExample-Guided Abstraction Re-
finement) methodology.

1 Introduction

In static analysis and verification, model-driven abstraction refinement has emerged
in the last decade as a fundamental method for improving abstractions towards more
precise yet efficient analyses. The basic idea is simple: given an abstraction modeling
some observational behavior of the system to analyze, refine the abstraction in order
to remove the artificial computations that may appear in the approximate analysis by
considering how the concrete system behaves when false alarms or spurious traces are
encountered. The general concept of using spurious counterexamples for refining an ab-
straction stems from CounterExample-Guided Abstraction Refinement (CEGAR) [4,5].
The model here drives the automatic identification of prefixes of the counterexample
path that do not correspond to an actual trace in the concrete model, by isolating ab-
stract (failure) states that need to be refined in order to eliminate that spurious coun-
terexample. Model-driven refinements, such as CEGAR, provide algorithmic methods
for achieving abstractions that are complete (i.e., precise [17,14]) with respect to some
given property of the concrete model.

We investigate here the dual problem of abstraction simplification. Instead of refining
abstractions in order to eliminate spurious traces, our goal is to simplify an abstractionA
towards a simpler (ideally, the simplest) model As that maintains the same approximate
behavior as A does. In abstract model checking, this abstraction simplification has to
keep the same examples of the concrete system in the following sense. Recall that an
abstract path π in an abstract transition system is spurious when no real concrete path is

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 211–222, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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abstracted to π. Assume that a given abstract state space A of a system A gets simplified
to As and thus gives rise to a more abstract system As. Then, we say that As keeps the
same examples of A when the following condition is satisfied: if πAs is a spurious path
in the simplified abstract system As then there exists a spurious path πA in the original
system A that is abstracted to πAs . Such a methodology is called EGAS, Example-
Guided Abstraction Simplification, since this abstraction simplification does not add
spurious paths, namely, does keep examples, since each spurious path in As comes as
an abstraction of a spurious path in A. Let us illustrate how EGAS works through a
simple example.

1

2

3

4

5

6

7

8

9
⇒

A

1

2

3

4

5

6

7

8

9
⇒

A′

1

2

3

4

5

6

7

8

9

A′′

Let us consider the above abstract transition system A, where concrete states are
numbers which are abstracted by blocks of a state partition. The abstract state space
of A is simplified by merging the abstract states [3] and [4, 5]: EGAS ensures that this
can be safely done because pre�([3]) = pre�([4, 5]) and post�([3]) = post�([4, 5]),
where pre� and post� denote, resp., the abstract predecessor and successor functions.
This abstraction simplification leads to the above abstract system A′. Let us observe
that the abstract path 〈[1, 2], [3, 4, 5], [7], [8, 9]〉 in A′ is spurious and it is the abstrac-
tion of the spurious path 〈[1, 2], [4, 5], [7], [8, 9]〉 in A. On the other hand, consider the
path π′ = 〈[1, 2], [3, 4, 5], [6], [8, 9]〉 in A′ and observe that all the paths in A that are
abstracted to π′, i.e. 〈[1, 2], [3], [6], [8, 9]〉 and 〈[1, 2], [4, 5], [6], [8, 9]〉, are not spurious.
This is consistent with the fact that π′ actually is not spurious. Likewise, A′ can be
further simplified to the abstract system A′′ where [6] and [7] are merged into a new ab-
stract state [6, 7] and this transformation also keeps examples because now there is no
spurious path in A′′. Let us also notice that if A would get simplified to A′′′ by merging
[1, 2] and [3] into a new abstract state [1, 2, 3] then this transform would not keep ex-
amples because we would obtain the spurious loop path 〈[1, 2, 3], [1, 2, 3], [1, 2, 3], ...〉
in A′′′ while no corresponding spurious abstract path would exist in A.

EGAS is formalized within the standard abstract interpretation framework [8,9]. This
ensures that EGAS can be applied both in abstract model checking and in abstract in-
terpretation. Consider for instance the abstract domains A1 � {Z,Z≤0,Z≥0, 0} and
A2 � {Z,Z≥0} for sign analysis of an integer variable. Recall that in abstract interpre-
tation the best correct approximation of a semantic function f on an abstract domain A
that is specified through abstraction/concretization maps α/γ is given by fA � α◦f ◦γ.
Consider a simple operation of increment x++ on an integer variable x. In this case, the
best correct approximations on A1 and A2 are as follows:

++A1 = {0 )→ Z≥0, Z≤0 )→ Z, Z≥0 )→ Z≥0, Z )→ Z},
++A2 = {Z≥0 )→ Z≥0, Z )→ Z}.

We observe that the best correct approximations of ++ in A1 and A2 encode the same
function, meaning that the approximations of ++ in A1 and A2 are equivalent, the latter
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being clearly simpler. In other terms, the abstract domain A1 contains some “irrelevant”
elements for approximating the increment operation, that is, 0 and Z≤0. We formalize
this simplification of an abstract domain relatively to a semantic function in the most
general abstract interpretation setting. This allows us to provide, for generic continu-
ous semantic functions, a systematic and constructive method, that we call correctness
kernel, for simplifying a given abstraction A relatively to a given semantic function f
towards the unique minimal abstract domain that induces an equivalent approximate be-
havior of f as in A. EGAS is then designed by iteratively applying the correctness kernel
to abstractions. We show how EGAS can be embedded within the CEGAR methodol-
ogy by providing a novel refinement heuristics in a CEGAR iteration step which turns
out to be more accurate than the basic refinement heuristics [5]. We also describe how
EGAS may be applied in predicate abstraction-based model checking [11,18] for re-
ducing the search space without applying Ball et al.’s [2] Cartesian abstractions, which
typically yield additional loss of precision.

2 Correctness Kernels

As usual in standard abstract interpretation [8,9], abstract domains (or abstractions) are
specified by Galois connections/insertions (GCs/GIs for short). A GC/GI of the ab-
stract domain A into the concrete domain C through abstraction and concretization
maps α : C → A and γ : A → C is denoted by (α,C,A, γ). It is known that
μA � γ ◦ α : C → C is an upper closure operator (uco) on C and that abstract do-
mains can be equivalently defined as uco’s. GIs of a common concrete domain C are
preordered w.r.t. precision as usual: G1 = (α1, C,A1, γ1) ! G2 = (α2, C,A2, γ2) —
i.e. A1/A2 is a refinement/simplification of A2/A1 — iff γ1◦α1 ! γ2◦α2. Moreover, G1

and G2 are equivalent when G1 ! G2 and G2 ! G1. We denote by Abs(C) the family of
abstract domains of C up to the above equivalence. It is well known that 〈Abs(C),!〉 is
a complete lattice, so that one can consider the most concrete simplification (i.e., lub ()
and the most abstract refinement (i.e., glb ') of any family of abstract domains. Let us
also recall that the lattice of abstract domains 〈Abs(C),!〉 is isomorphic to the lattice
of uco’s on C 〈uco(C),!〉.

Let A ∈ Abs(C), f : C → C be some concrete semantic function — for simplicity,
we consider 1-ary functions — and f � : A → A be a corresponding abstract function.
〈A, f �〉 is a sound abstract interpretation when α ◦ f ! f � ◦ α. The abstract function
fA � α ◦ f ◦ γ : A → A is called the best correct approximation (b.c.a.) of f on A
because 〈A, f �〉 is sound iff fA ! f �.

2.1 The Problem

Given a semantic function f : C → C and an abstract domain A ∈ Abs(C), does there
exist the most abstract domain that induces the same best correct approximation of f
as A does?

Let us formalize the above question. Consider two abstractions A,B ∈ Abs(C). We
say that A and B induce the same best correct approximation of f when fA and fB are
the same function up to isomorphic representations of abstract values, i.e., if μA and



214 R. Giacobazzi and F. Ranzato

μB are the corresponding uco’s then μA ◦ f ◦ μA = μB ◦ f ◦ μB . In order to keep
the notation easy, this is denoted simply by fA = fB . Also, if F ⊆ C−→C is a set of
concrete functions then FA = FB means that for any f ∈ F , fA = fB. Hence, given
A ∈ Abs(C) and by defining

As � ({B ∈ Abs(C) | FB = FA}

the question is whether FAs = FA holds or not.
It is worth remarking that the dual question on the existence of the most concrete

domain that induces the same best correct approximation of f as A has a negative
answer, as shown by the following simple example.

Example 2.1. Consider the lattice C depicted on the right,
the monotonic function f : C → C defined as f � {1 )→
1, 2 )→ 1, 3 )→ 5, 4 )→ 5, 5 )→ 5} and the domain μ ∈
uco(C) defined as μ � {1, 5}. We have that μ ◦ f ◦ μ =
{1 )→ 1, 2 )→ 5, 3 )→ 5, 4 )→ 5, 5 )→ 5}. Consider the
domains ρ1 � {1, 3, 5} and ρ2 � {1, 4, 5} and observe
that ρi ◦ f ◦ ρi = μ ◦ f ◦ μ. However, ρ1 ' ρ2 = λx.x, so
that (ρ1 ' ρ2) ◦ f ◦ (ρ1 ' ρ2) = f �= μ ◦ f ◦ μ. Thus, we

1

2

3 4

5

have that the most concrete domain that induces the same best correct approximation of
f as μ does not exist. '(

2.2 The Solution

Our key technical result is the following constructive characterization of the property of
“having the same b.c.a.” for two comparable abstract domains. In the following, given
a poset A and S ⊆ A, max(S) � {x ∈ S | ∀y ∈ S. x ≤A y ⇒ x = y} denotes the set
of maximal elements of S in A.

Lemma 2.2. Let f : C → C, A,B ∈ Abs(C) such that B ⊆ A and f ◦ μA is
continuous (i.e., preserves lub’s of chains). Then,

fB = fA ⇔ img(fA) ∪
⋃

y∈A max({x ∈ A | fA(x) ≤A y}) ⊆ B.

It is important to remark that the proof of the above result basically consists in reducing
the equality fA = fB between b.c.a.’s to a standard property of completeness of the
abstract domains A and B for the function f and then in exploiting the constructive
characterization of completeness of abstract domains by Giacobazzi et al. [17, Sec-
tion 4]. In this sense, the proof itself is particularly interesting because it provides an
unexpected reduction of best correct approximations as a completeness problem.

Definition 2.3. Given F ⊆ C−→C define: KF : Abs(C) → Abs(C) as

KF (A) � ({B ∈ Abs(C) | FB = FA}.

If FKF (A) = FA then KF (A) is called the correctness kernel of A for F . '(
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As a consequence of Lemma 2.2 we obtain the following constructive result of existence
for correctness kernels. If X ⊆ A then Cl∧(X) � {∧S ∈ A | S ⊆ X} denotes the
glb-closure of X in A (note that ∧∅ = �A ∈ Cl∧(X)), while Cl∨(X) denotes the dual
lub-closure.

Theorem 2.4. Let A ∈ Abs(C) and F ⊆ C → C such that, for any f ∈ F , f ◦ μA is
continuous. Then, the correctness kernel of A for F exists and it is

KF (A) = Cl∧
( ⋃

f∈F

img(fA) ∪
⋃

y∈img(fA) max({x ∈ A | fA(x) = y})
)
.

Example 2.5. Consider sets of integers ℘(Z)⊆ as concrete
domain and the square operation sq : ℘(Z) → ℘(Z) as
concrete function, i.e., sq(X) � {x2 | x ∈ X}, which is
obviously additive and therefore continuous. Consider the
abstract domain Sign ∈ Abs(℘(Z)⊆), depicted in the fig-
ure, that represents the sign of an integer variable. Sign in-
duces the following best correct approximation of sq : ∅

Z<0 0 Z>0

Z≤0 Z �=0 Z≥0

Z Sign

sqSign = {∅ )→ ∅,Z<0 )→ Z>0, 0 )→ 0,Z>0 )→ Z>0,Z≤0 )→ Z≥0,

Z�=0 )→ Z>0,Z≥0 )→ Z≥0,Z )→ Z≥0}.

Let us characterize the correctness kernel Ksq(Sign) by Theorem 2.4. We have that
img(sqSign) = {∅,Z>0, 0,Z≥0}. Moreover,

max({x ∈ Sign | sqSign(x) = ∅}) = {∅}
max({x ∈ Sign | sqSign(x) = Z>0}) = {Z�=0}

max({x ∈ Sign | sqSign(x) = 0}) = {0}
max({x ∈ Sign | sqSign(x) = Z≥0}) = {Z}

Hence, ∪y∈img(sqSign) max({x ∈ Sign | sqSign(x) = y}) = {∅,Z�=0, 0,Z} so that, by
Theorem 2.4:

Ksq (Sign) = Cl∩({∅,Z>0, 0,Z≥0,Z�=0,Z}) = Sign �{Z<0,Z≤0}.

Thus, it turns out that we can safely remove the abstract values Z<0 and Z≤0 from
Sign and still preserve the same b.c.a. as Sign does. Besides, we cannot remove further
abstract elements otherwise we do not retain the same b.c.a. as Sign. For example, this
means that Sign-based analyses of programs like

x := k; while condition do x := x ∗ x;

can be carried out by using the simpler domain Sign�{Z<0,Z≤0}, providing the same
input/output abstract behavior. '(

It is also worth remarking that in Theorem 2.4 the hypothesis of continuity is crucial
for the existence of correctness kernels as shown by the following example.
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Example 2.6. Let us consider as concrete domain C the ω + 2 ordinal, i.e., C � {x ∈
Ord | x < ω}∪{ω, ω + 1}, and let f : C−→C be defined as follows: for any x < ω,
f(x) � ω, and f(ω) = f(ω + 1) � ω + 1. Let μ ∈ uco(C) be the identity λx.x, so
that μ ◦ f ◦ μ = f . For any k ≥ 0, consider ρk ∈ uco(C) defined as ρk � C � [0, k[
and observe that for any k, we have that ρk ◦ f ◦ ρk = f = μ ◦ f ◦ μ. However, it turns
out that (k≥0ρk = {ω, ω + 1} and ((k≥0ρk) ◦ f ◦ ((k≥0ρk) = λx.ω + 1 �= μ ◦ f ◦ μ.
Hence, the correctness kernel of μ for f does not exist. Observe that μ ◦ f = f is not
continuous and therefore this example is consistent with Theorem 2.4. '(

3 Correctness Kernels in Abstract Model Checking

Following [19], partitions can be viewed as particular abstract domains of the con-
crete domain ℘(Σ). Let Part(Σ) denote the set of partitions of Σ. A partition P ∈
Part(Σ) can be considered an abstract domain by means of the following Galois in-
sertion (αP , ℘(Σ)⊆, ℘(P )⊆, γP ): αP (S) � {B ∈ P | B ∩ S �= ∅} and γP (B) �
∪B∈BB. Hence, αP (S) encodes the minimal over-approximation of a set S of states
through blocks of P .

Consider a Kripke structure K = 〈Σ,�, �〉 and a corresponding abstract Kripke
structure A = 〈P,��, ��〉 defined over a state partition P ∈ Part(Σ).1 Fixpoint-based
verification of a temporal specification on the abstract model A involves the computa-
tion of least/greatest fixpoints of operators defined using Boolean connectives (union,
intersection, complementation) on abstract states and abstract successor/predecessor
functions post�/pre� on the abstract transition system 〈P,��〉. The key point here is
that sucessor/predecessor functions are defined as best correct approximations on the
abstract domain P of the corresponding concrete successor/predecessor functions. In
standard abstract model checking [1,6,7], the abstract transition relation is defined as
the existential/existential relation �∃∃ between blocks of P :

B �∃∃ C iff ∃x ∈ B.∃y ∈ C. x � y

post∃∃(B) � {C ∈ P | B �∃∃ C}; pre∃∃(C) � {B ∈ P | B �∃∃ C}.

It turns out [19] that pre∃∃ and post∃∃ are the best correct approximations of, resp., pre
and post on the abstract domain (αP , ℘(Σ)⊆, ℘(P )⊆, γP ). In fact, for a block C ∈ P ,

αP (pre(γP (C))) = {B ∈ P | B ∩ pre(C) �= ∅} = pre∃∃(C)

and an analogous equation holds for post. We thus have that pre∃∃ = αP ◦ pre ◦γP

and post∃∃ = αP ◦ post ◦γP .
This abstract interpretation-based framework allows us to apply correctness kernels

in the context of abstract model checking. The abstract transition system A = 〈P,�∃∃〉
is viewed as the abstract interpretation defined by the abstract domain (αP , ℘(Σ)⊆,
℘(P )⊆, γP ) and the corresponding abstract functions pre∃∃ = αP ◦ pre ◦γP and
post∃∃ = αP ◦ post ◦γP . Then, the correctness kernel of ℘(P ) for the concrete pre-
decessor/successor {pre, post}, that we denote simply by K

�
(P ) (this clearly exists

1 Equivalently, the abstract Kripke structure A can be defined over an abstract state space A
determined by a surjective abstraction function h : Σ−→A.
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by Theorem 2.4 since pre and post are additive), provides a simplification of the ab-
stract domain ℘(P ) that preserves the best correct approximations of predecessor and
successor. This simplification of the abstract state space works as follows:

Corollary 3.1. K
�

(P ) merges two blocks B1, B2 ∈ P if and only if for any A ∈ P ,
A �∃∃ B1 ⇔ A �∃∃ B2 and B1 �∃∃ A ⇔ B2 �∃∃ A.

4 EGAS and CEGAR

Let us discuss how correctness kernels give rise to an Example-Guided Abstraction
Simplification (EGAS) paradigm in abstract transition systems.

Let us first recall some basic notions of CEGAR [4,5]. Consider an abstract transition
system A = 〈P,�∃∃〉 defined over a state partition P ∈ Part(Σ) and a finite abstract
path π = 〈B1, ..., Bn〉 in A. Typically, this is a path counterexample to the validity of
a temporal formula that has been given as output by a model checker (for simplicity
we do not consider here loop path counterexamples). The set of concrete paths that are
abstracted to π are defined as follows: paths(π) � {〈s1, ..., sn〉 ∈ Σn | ∀i ∈ [1, n].si ∈
Bi & ∀i ∈ [1, n).si � si+1}. The abstract path π is spurious when paths(π) = ∅.
The sequence of sets of states sp(π) = 〈S1, ..., Sn〉 is inductively defined as follows:
S1 � B1; Si+1 � post(Si) ∩ Bi+1. As shown in [5], it turns out that π is spurious iff
there exists a least k ∈ [1, n− 1] such that Sk+1 = ∅. In such a case, the partition P is
refined by splitting the block Bk. The three following sets partition the block Bk:

dead-end states: Bdead
k � Sk �= ∅

bad states: Bbad
k � Bk ∩ pre(Bk+1) �= ∅

irrelevant states: Birr
k � Bk � (Bdead

k ∪Bbad
k )

The split of the block Bk must separate dead-end states from bad states, while irrelevant
states may be joined indifferently with dead-end or bad states. However, the problem
of finding the coarsest refinement of P that separates dead-end and bad states is NP-
hard [5] and thus some refinement heuristics are used. According to the basic heuristics
in [5, Section 4], Bk is simply split into Bdead

k and Bbad
k ∪ Birr

k . Let us see a simple
example.
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Consider the abstract path π = 〈[1], [345], [6]〉 in A. This is a spurious path and the
block [345] is therefore partitioned as follows: [5] dead-end states, [3] bad states and
[4] irrelevant states. The refinement heuristics of CEGAR tells us that irrelevant states
are joined with bad states so that A is refined to A′. In turn, consider the spurious path
π′ = 〈[2], [34], [6]〉 in A′, so that CEGAR refines A′ to A′′′ by splitting the block [34].
In the first abstraction refinement, let us observe that if irrelevant states would have been
joined together with dead-end states rather than with bad states we would have obtained
the abstract system A′′, and A′′ does not contain spurious paths so that it surely does
not need to be further refined.

EGAS can be integrated within the CEGAR loop thanks to the following remark.
If π1 and π2 are paths, resp., in 〈P1,�

∃∃〉 and 〈P2,�
∃∃〉, where P1, P2 ∈ Part(Σ)

and P1 � P2, then π1 is abstracted to π2, denoted by π1 ! π2, when length(π1) =
length(π2) and for any j ∈ [1, length(π1)], π1(j) ⊆ π2(j).

Corollary 4.1. Consider an abstract transition system A = 〈P,�∃∃〉 over a partition
P ∈ Part(Σ) and its simplification As = 〈K

�
(P ),�∃∃〉 induced by the correctness

kernel K
�

(P ). If π is an abstract path in As such that paths(π) = ∅ then there exists
an abstract path π′ in A such that π′ ! π and paths(π′) = ∅.

Thus, the abstraction simplification induced by the correctness kernel does not add spu-
rious paths.

The above observations suggest us a new refinement strategy within the CEGAR
loop. Let π = 〈B1, ..., Bn〉 be a spurious path in A and sp(π) = 〈S1, ..., Sn〉 such
that Sk+1 = ∅ for some minimum k ∈ [1, n − 1], so that the block Bk needs to be
split. The set of irrelevant states Birr

k is partitioned as follows. We first define the subset
of bad-irrelevant states Bbad-irr

k . Let pre∃∃(Bbad
k ) = {A1, ..., Aj} and post∃∃(Bbad

k ) =
{C1, ..., Cl}. Then,

Bbad-irr
k �

(
post(A1 ∪ ... ∪Aj) ∩ pre(C1 ∪ ... ∪ Cl)

)
∩Birr

k .

The underlying idea is simple: Bbad-irr
k contains the irrelevant states that: (1) can be

reached from a block that reaches some bad state and (2) reach a block that is also
reached by some bad state. By Corollary 4.1, it is therefore clear that by merging
Bbad-irr

k and Bbad
k no spurious path is added w.r.t. the abstract system where they are

kept separate. The subset of dead-irrelevant states Bdead-irr
k is analogosly defined: If

pre∃∃(Bdead
k ) = {A1, ..., Aj} and post∃∃(Bdead

k ) = {C1, ..., Cl} then

Bdead-irr
k �

(
post(A1 ∪ ... ∪Aj) ∩ pre(C1 ∪ ... ∪Cl)

)
∩Birr

k .

It may happen that: (A) an irrelevant state is both bad- and dead-irrelevant; (B) an
irrelevant state is neither bad- nor dead-irrelevant. From the viewpoint of EGAS, the
states of case (A) can be equivalently merged with bad or dead states since in both
cases no spurious path is added. On the other hand, the states of case (B) are called
fully-irrelevant because EGAS does not provide a merging strategy with bad or dead
states. For these states, one could use, for example, the basic refinement heuristics of
CEGAR that merge them with bad states.

In the above example, for the spurious path 〈[1], [345], [6]〉 in A, the block B = [345]
needs to be refined: Bbad = [3], Bdead = [5] and Birr = [4]. Here, 4 is a dead-irrelevant
state and so it is merged in A′′ with the dead-end state 5.
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5 Correctness Kernels in Predicate Abstraction

Let us show how correctness kernels can be also used in the context of predicate
abstraction-based model checking [11,18]. Following Ball et al. [2], predicate abstrac-
tion can be formalized by abstract interpretation as follows. Let us consider a pro-
gram P with k integer variables x1,...,xk. The concrete domain of computation of P
is 〈℘(States),⊆〉 where States � {x1, ..., xk} → Z. Values in States are denoted by
tuples 〈z1, ..., zk〉 ∈ Zk. The program P generates a transition system 〈States,�〉 so
that the concrete semantics of P is defined by the corresponding successor function
post : ℘(States) → ℘(States).

A finite set P = {p1, ..., pn} of state predicates is considered, where each predi-
cate pi denotes the subset of states that satisfy pi, i.e. {s ∈ States | s |= pi}. These
predicates give rise to the so-called Boolean abstraction B � 〈℘({0, 1}n),⊆〉 which
is related to ℘(States) through the following abstraction/concretization maps (here,
s |= pi is understood in {0, 1}) that give rise to a disjunctive (i.e., γ preserves lub’s)
Galois connection:

αB(S) � {〈s |= p1, ..., s |= pn〉 ∈ {0, 1}n | s ∈ S},
γB(V ) � {s ∈ States | 〈s |= p1, ..., s |= pn〉 ∈ V }.

Verification of reachability properties based on predicate abstraction consists in com-
puting the least fixpoint of the best correct approximation of post on the Boolean ab-
straction B, namely, postB � αB ◦post ◦γB . As argued in [2], the Boolean abstraction
B may be too costly for the purpose of reachability verification, so that one usually ab-
stracts B through the so-called Cartesian abstraction. This latter abstraction formalizes
precisely the abstract post operator computed by the verification algorithm of the c2bp
tool in SLAM [3]. However, the Cartesian abstraction of B may cause a loss of preci-
sion, so that this abstraction is successively refined by reduced disjunctive completion
and the so-called focus operation, and this formalizes the bebop tool in SLAM [2].

Let us consider the example program in Figure 1, taken from [2], where the goal
is that of verifying that the assert at line (∗) is never reached, regardless of the con-
text in which foo() is called. Ball et al. [2] consider the following set of predicates

int x, y, z, w;

void foo() {
do {

z := 0; x := y;
if (w) { x++; z := 1; }

} while (!(x = y))
if (z)

assert(0); // (∗)
}

Fig. 1. An example program



220 R. Giacobazzi and F. Ranzato

P � {p1 ≡ (z = 0), p2 ≡ (x = y)} so that the Boolean abstraction is B =
℘({〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉})⊆. Clearly, the analysis based on B allows to conclude
that line (∗) is not reachable. This comes as a consequence of the fact that the least fix-
point of the best correct approximation postB for the do-while-loop provides as result
{〈0, 0〉, 〈1, 1〉} ∈ B because:

∅
z:=0; x:=y−−−−−−−→ {〈1, 1〉} if(w){x++; z:=1;}−−−−−−−−−−−→ {〈1, 1〉, 〈0, 0〉}

so that at the exit of the do-while-loop one can conclude that

{〈1, 1〉, 〈0, 0〉} ∩ p2 = {〈1, 1〉, 〈0, 0〉} ∩ {〈0, 1〉, 〈1, 1〉} = {〈1, 1〉}

holds, hence p1 is satisfied, so that z = 0 and therefore line (∗) cannot be reached.
Let us characterize the correctness kernel of the Boolean abstraction B. Let S1 �

z := 0; x := y and S2 � x++; z := 1. The best correct approximations of postS1
and

postS2
on the abstract domain B turn out to be as follows:

αB ◦ postS1
◦γB =

{
〈0, 0〉 )→ {〈1, 1〉}, 〈0, 1〉 )→ {〈1, 1〉}, 〈1, 0〉 )→ {〈1, 1〉},
〈1, 1〉 )→ {〈1, 1〉}

}
αB ◦ postS2

◦γB =
{
〈0, 0〉 )→ {〈0, 0〉, 〈0, 1〉}, 〈0, 1〉 )→ {〈0, 0〉},
〈1, 0〉 )→ {〈0, 0〉, 〈0, 1〉}, 〈1, 1〉 )→ {〈0, 0〉}

}
Thus, we have that img(αB ◦ postS1

◦γB) = {{〈1, 1〉}} and img(αB ◦postS2
◦γB) =

{{〈0, 0〉, 〈0, 1〉}, {〈0, 0〉}} so that

max
({V ∈ B | αB(postS1

(γB(V ))) = {〈1, 1〉}}) = {{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}}
max

({V ∈ B | αB(postS2
(γB(V ))) = {〈0, 0〉, 〈0, 1〉}}) = {{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}}

max
({V ∈ B | αB(postS2

(γB(V ))) = {〈0, 0〉}}) = {{〈0, 1〉, 〈1, 1〉}}

Hence, by Theorem 2.4, the kernel KF (B) of B for F � {postS1
, postS2

} is:

Cl∩
(

Cl∪
(
{{〈0, 0〉}, {〈1, 1〉}, {〈0, 0〉, 〈0, 1〉}, {〈0, 1〉, 〈1, 1〉},
{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}}

))
= Cl∪

({
{〈0, 0〉}, {〈0, 1〉}, {〈1, 1〉}

})
This means that KF (B) can be represented as

〈℘({〈0, 0〉, 〈0, 1〉, 〈1, 1〉})∪ {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉},⊆〉

and therefore KF (B) is a proper abstraction of B that, for example, is not able to
express the property p1 ∧ ¬p2 ≡ (z = 0) ∧ (x �= y).

It is interesting to compare this correctness kernel KF (B) with Ball et al.’s [2]
Cartesian abstraction of B. The Cartesian abstraction is defined as C � 〈{0, 1, ∗}n ∪
{⊥C},≤〉, where ≤ is pointwise ordering between tuples of values in {0, 1, ∗} ordered
by 0 < ∗ and 1 < ∗ (⊥ is the bottom element that represents the empty set of states).
The concretization function γC : C → ℘(States) is as follows:
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γC(〈v1, ..., vn〉) � {s ∈ States | 〈s |= p1, ..., s |= pn〉 ≤ 〈v1, ..., vn〉}.

These two abstractions are not comparable: for instance, 〈1, 0〉 ∈ C represents p1∧¬p2

which is instead not represented by KF (B), while {〈0, 0〉, 〈1, 1〉} ∈ KF (B) represents
(¬p1 ∧¬p2)∨ (p1 ∧ p2) which is not represented in C. However, while the correctness
kernel guarantees no loss of information in analyzing the program P , the analysis of P
with the Cartesian abstraction C is inconclusive because:

⊥C
z:=0; x:=y−−−−−−−→ 〈1, 1〉 if(w){x++; z:=1;}−−−−−−−−−−−→ 〈0, 0〉 ∨C 〈1, 1〉 = 〈∗, ∗〉

where γC(〈∗, ∗〉) = States, so that at the exit of the do-while-loop one cannot infer
that line (∗) cannot be reached.

6 Related and Future Work

Few examples of abstraction simplifications are known. A general notion of domain
simplification and compression in abstract interpretation has been introduced in [12,15]
as a dual of abstraction refinement. This duality has been further exploited in [13] to
include semantics transformations in a general theory for transforming abstractions and
semantics based on abstract interpretation. Our domain transformation does not fit di-
rectly in this framework. Following [15], given a property P of abstract domains, the
core of an abstract domain A, when it exists, provides the most concrete simplification
of A that satisfies the property P, while the compressor of A, when it exists, provides
the most abstract simplification of A that induces the same refined abstraction in P as
A does. Examples of compressors include the least disjuctive basis [16], where P is
the abstract domain property of being disjunctive, and examples of cores include the
completeness core [17], where P is the domain property of being complete for some
semantic function. The correctness kernel defined in this paper is neither an instance
of a domain core nor an instance of domain compression. The first because, given an
abstraction A, the correctness kernel of A characterizes the most abstract domain that
induces the same best correct approximation of a function f on A, whilst the notion
of domain core for the domain property PA of inducing the same b.c.a. as A would
not be meaningful, as this would trivially yield A itself. The second because there is
no (unique) maximal domain refinement of an abstract domain which induces the same
property PA.

The EGAS methodology opens some stimulating directions for future work, such as
(1) the formalization of a precise relationship between EGAS and CEGAR and (2) an
experimental evaluation of the integration in the CEGAR loop of the EGAS-based re-
finement strategy of Section 4. It is here useful to recall that some work formalizing
CEGAR in abstract interpretation has already been done [10,14]. On the one hand, [14]
shows that CEGAR corresponds to iteratively compute a so-called complete shell [17]
of the underlying abstract model A with respect to the concrete successor transformer,
while [10] formally compares CEGAR with an abstraction refinement strategy based on
the computations of abstract fixpoints in an abstract domain. These works can therefore
provide a starting point for studying the relationship between EGAS and CEGAR in a
common abstract interpretation setting.
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Abstract. We give a quantitative sequential model for noninterference
security with probability (but not demonic choice), and a novel refinement
order that we prove to be the greatest compositional relation consistent
with an “elementary” order based on Bayes Risk. This compositional clo-
sure complements our earlier work defining refinement similarly for qual-
itative noninterference with demonic choice (but not probability).

The Three-Judges Protocol illustrates our model’s utility: with com-
positionality, the embedded sub-protocols can be treated in isolation.

1 Introduction

Noninterference analysis splits a state space into high- and low-security por-
tions and determines whether high-security values can be inferred from observa-
tion of low-security values and behaviours [5]. If probability is present, however,
the question becomes “how much” rather than “whether” — and thus in that
case we address the likelihood with which high-security values can be inferred
from low-security observations. Here, we compare programs for that likelihood.

For programs S, I we say that S�I if S and I are functionally equivalent and
the Bayes Risk (defined below) associated with implementation I is no worse
than the Risk associated with specification S. If for all S�I and context C we
had C(S)�C(I), then we would say that (�) is compositional.

Our technical contribution is that we (i) give a sequential semantics for
probabilistic noninterference, (ii) define the above “less likely to leak” order (�)
based on Bayes Risk, (iii) show it is not compositional, (iv) identify a compo-
sitional subset of it, a refinement order (!) such that S!I implies C(S)�C(I)
for all contexts C and (v) show that (!) is in fact the compositional closure of
(�), so that we have S �!I only when C(S)��C(I) for some C.

Our general contribution is to further the goal of structuring secure proto-
cols hierarchically and then designing/verifying them in separate pieces.
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2 A Probabilistic, Noninterference Sequential Semantics

We distinguish visible variables (low-security), typically v in some finite type V ,
and hidden variables (high-security), typically h in finite H. Variables are in sans
serif to avoid confusion with (decorated) values v:V , h:H they might contain.

For example, let h: {0, 1, 2} represent one of three boxes: Box 0 has no white
balls and two black; Box 1 has one of each; and Box 2 has two white. Let
v: {w, b,⊥} represent a ball colour: white, black, unknown. Program S, infor-
mally written h:= 0⊕1⊕2; v:∈{{w@ h

2 , b@1− h
2 }}; v:=⊥ chooses box h uniformly,

then draws a ball v from that box: it has probability h/2 of being white, and
1−h/2 of being black. Finally it replaces the ball. A typical security concern is
then “How much information about h was revealed by the assignments to v?”

Below we give syntax and semantics to make the above program precise,
providing the framework for asking –and answering– such security questions.

First however we introduce distribution notation, generalising set notations.

2.1 Distributions: Explicit, Implicit and Expected Values over
Them

We write function application as f.x, with “.” associating to the left. Operators
without their operands are written between parentheses, as (�) for example.

By DX we mean the set of discrete sub-distributions on set X that sum to
no more than one, and by DX we mean the full distributions that sum to one
exactly. The support +δ, of (sub-)distribution δ: DX is those elements x in X
with δ.x�=0. Distributions can be scaled and summed according to the usual
pointwise extension of multiplication and addition to real-valued functions.

Here are our notations for explicit distributions (cf. set enumerations):

multiple. We write {{x@p, y@q, · · · , z@r}} for the distribution assigning proba-
bilities p, q, · · · , r to elements x, y, · · · , z respectively, with p+q+ · · ·+r ≤ 1.

uniform. When explicit probabilities are omitted they are uniform: thus {{x}}
is the point distribution {{x@1}}, and {{x, y, z}} is {{x@ 1

3 , y@ 1
3 , z@ 1

3 }}.

We write (� d: δ ·E) for the expected value
∑

d: �δ�(δ.d∗E) of expression E inter-
preted as a random variable in d over distribution δ.1 If however E is Boolean,
then it is taken to be 1 if E holds and 0 otherwise, so that the expected value is
then just the combined probability in δ of all elements d satisfying E.

We write implicit distributions (cf. set comprehensions) as {{d: δ | R · E}}, for
distribution δ, real expression R and expression E, meaning

(� d: δ ·R ∗ {{E}}) / (� d: δ ·R) (1)

where, first, an expected value is formed in the numerator by scaling and adding
point-distribution {{E}} as a real-valued function: this gives another distribution.

1 It is a dot-product between the distribution and the random variable as vectors.
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The scalar denominator then normalises to give a distribution yet again. A miss-
ing E is implicitly d itself; and missing R is implicitly 1, effectively removing the
denominator if δ is full (i.e. sums to one).

For example {{d: δ · E}} maps expression E in d over distribution δ to make a
new distribution on E’s type. And a Boolean R is converted to 0,1; in that case
{{d: δ | R }} is δ’s conditioning over formula R as predicate on d, if δ is full.

Finally, for Bayesian belief revision let δ be an a-priori distribution over some
D and let expression R for each d in D be the probability of a certain subsequent
result if that d is chosen. Then {{d: δ | R}} is the a-posteriori distribution over D
when that result actually occurs. Thus in the three-box program S let the value
first assigned to v be v̂. The a-priori distribution δ over h is uniform, and the
probability of v̂=w is therefore 1/3∗(0/2+1/2+2/2) = 1/2. But the a-posteriori
distribution of h given that v̂=w is {{h: δ | h/2}}, which from (1) we calculate

= (� h: {{0, 1, 2}} · h2 ∗ {{h}}) / (� h: {{0, 1, 2}} · h2 ) = {{1@ 1
6 , 2@ 1

3 }} /
1
2 ,

that is {{1@ 1
3 , 2@ 2

3 }}. Thus if a white ball is drawn (v̂=w) then the chance it came
from Box 2 is 2/3, the probability of h=2 in the a-posteriori distribution.

2.2 Program Denotations over a Visible/Hidden “Split”
State-Space

With visible and hidden partitioning of the finite state space V×H, probabilistic
states in our new model are split-states of type V×DH, whose typical element
(v, δ) indicates that we know v=v exactly, but all we know about h –which is
not directly observable– is that it takes value h with probability δ.h.

Programs are functions (V×DH) → D(V×DH) from split-states to distribu-
tions over them, called hyper-distributions since they are distributions with other
distributions inside them: the outer distribution is directly visible but the inner
distribution(s) over H are not. Thus for a program P , the application [[P ]].(v, δ)
is the distribution of final split-states produced from initial (v, δ). Each (v′, δ′)
in that outcome, with probability p say in the outer- (left-hand) D in D(V×DH),
means that with probability p an attacker will observe that v is v′ and simulta-
neously be able to deduce that h has distribution δ′.

2.3 Program Syntax and Semantics

The programming language syntax and semantics is given in Fig. 1. Assignments
to v or h can use an expression E.v.h or a distribution D.v.h; and assignments
to v might reveal information about h. For example, we have that

(i) A direct assignment of h to v reveals everything about h:
[[v:= h]].(v, δ) = {{h: δ · (h, {{h}})}}

(ii) Choosing v from a distribution independent of h reveals nothing about h:
[[v:= 0 1/3⊕ 1]].(v, δ) = {{(0, δ)@ 1

3 , (1, δ)@
2
3 }}

(iii) Partially h-dependent assignments to v might reveal something about h:
[[v:= h mod 2]].(v, {{0, 1, 2}}) = {{(0, {{0, 2}})@ 2

3 , (1, {{1}})@ 1
3 }}
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Program type Program text P Semantics [[P ]].(v, δ)

Identity skip {{ (v, δ) }}
Assign to visible v:=E.v.h {{ h: δ · (E.v.h, {{h′: δ | E.v.h′=E.v.h}}) }}
Assign to hidden h:=E.v.h {{ (v, {{h: δ · E.v.h}}) }}
Choose prob. visible v:∈D.v.h {{ v′: (h: δ ·D.v.h) · (v′, {{h′: δ | D.v.h′.v′}})}}
Choose prob. hidden h:∈D.v.h {{ (v, (h: δ ·D.v.h)) }}
Composition P1; P2 ( (v′, δ′): [[P1]].(v, δ) · [[P2]].(v′, δ′))
Probabilistic choice P1 p⊕ P2 p ∗ [[P1]].(v, δ) + (1−p) ∗ [[P2]].(v, δ) p is constant

Conditional choice if G.v.h then Pt p ∗ [[Pt]].(v, {{h: δ | G.v.h}})
p is (� h: δ·G.v.h) else Pf fi + (1−p) ∗ [[Pf ]].(v, {{h: δ | ¬G.v.h}})
For simplicity let V and H have the same type X . Expression E.v.h is then of type X ,
distribution D.v.h is of type DX and expression G.v.h is Boolean. Also we assume here
that the p in p⊕ is constant — but it can in general depend on v and h.

For distributions in program texts we allow the more familiar infix notation p⊕, so that
we can write h:= 0 1

3
⊕1 for h:∈{{0@ 1

3 , 1@ 2
3 }} and h:= 0⊕1 for the uniform h:∈{{0, 1}}.

The degenerate cases h:= 0 and h:∈{{0}} are then equivalent, as they should be.

Fig. 1. Split-state semantics of commands

On the other hand, assignments to h affect δ directly. Thus choosing h might

(i) increase our uncertainty of h: [[h:= 0⊕1⊕2]].(v, {{0, 1}}) = {{(v, {{0, 1, 2}})}}
(ii) or reduce it: [[h:= 0⊕1]].(v, {{0, 1, 2}}) = {{(v, {{0, 1}})}}
(iii) or leave it unchanged: [[h:= 2−h]].(v, {{0, 1, 2}}) = {{(v, {{2, 1, 0}})}}

Assignment statements are “atomic” — an attacker may not directly witness the
evaluation of the right-hand side. For instance, the atomic probabilistic choice
v:= h⊕¬h does not reveal which of the equally likely operands of (⊕) was used.
We show elsewhere [11] how atomicity can be controlled more generally.

2.4 A Strong Attacker: Perfect Recall, and Implicit Flow

Our definition [[P1;P2]] of sequential composition2 gives an attacker perfect re-
call after P2 of the visible variable v as it was after P1. Compare Program S
(above) with Program I1 defined h:= 0⊕1⊕2; v:=⊥ in which no ball is drawn:
the final hyper-distributions are

{{ (⊥, {{1@ 1
3 , 2@ 2

3 }}), (⊥, {{0@ 2
3 , 1@ 1

3 }}) }} (Δ′
S)

and {{ (⊥, {{0, 1, 2}})}} . (Δ′
I1

)

In neither case does the final value ⊥ of v reveal anything about h. But Δ′
S ,

unlike Δ′
I1

, has separated pairs which recall implicitly the intermediate value v̂
of v. Generally, if two final pairs (v′, δ′1) and (v′, δ′2) occur with δ′1 �=δ′2 then it

2 It is effectively the Kleisli composition over the outer distribution.
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means an attacker can deduce whether h’s distribution is δ′1 or δ′2 even though
v has the same final value v′ in both cases. Although the direct evidence v̂ has
been overwritten, the separated pairs preserve the attacker’s deductions from it.

The meaning of probabilistic choice P1 p⊕ P2 makes it behave like [[P1]] with
probability p and [[P2]] with the remaining probability. (In Fig. 1 we gave the
definition only for constant p; but in general p can be an expression over v, h.) The
definition allows an attacker to observe which branch was taken: thus unlike (ii)
above we have [[h:= 0⊕h:= 1]].(v, δ) = {{(v, {{0}}), (v, {{1}})}}, which is an example
of implicit flow. Conditional choice has the same effect, revealing G.v.h.

Both perfect recall and implicit flow are built-in because, in our earlier
“Shadow” semantics of noninterference and demonic- rather than probabilistic
choice [13, 14], we found via program-algebraic gedanken experiments that com-
positionality (equivalently, monotonicity of refinement) required the adversary
to be treated as if it had those two abilities.

3 The Bayes-Risk Based Elementary Testing Order

The elementary testing order has both traditional, functional characteristics and
specialised, information-based security characteristics.

Say that two programs are functionally equivalent iff from the same input
they produce the same overall output distribution [8, 12], defined for hyper-
distribution Δ′ to be ft.Δ′:= {{(v′, δ′):Δ′;h′: δ′ · (v′, h′)}}. We consider state-
space V×H jointly, i.e. not only V , because differing distributions over h alone
can be revealed by the context (− ; v:= h) that appends an assignment v:= h.

We measure the security of a program with “Bayes Risk” [1–3, 18], an at-
tacker’s chance of guessing the final value of h in one try. The most effective
such attack is to determine which split-state (v′, δ′) in a final hyper-distribution
actually occurred, and then to guess that h has some value h′ that maximises
δ′, i.e. so that δ′.h′ = (δ′. For a whole hyper-distribution we average the attacks
over its elements, weighted by the probability it gives to each, and so we we
define the Bayes Risk of Δ′ to be br.Δ′:= (� (v′, δ′):Δ′ ·(δ′).3

For Program S the Risk is the chance of guessing h by remembering v’s in-
termediate value, say v̂, and then guessing that h at that point had the value
most likely to have produced that v̂: when v̂=w (probability 1/2), guess h=2;
when v̂=b, guess h=0. Via br.Δ′

S that Risk is 1/2∗2/3 + 1/2∗2/3 = 2/3. For I1
however, where there is no “leaking” v̂, the Risk is the lower br.Δ′

I1
= 1/3.

The elementary testing order on (final) hyper-distributions is then defined so
that Δ′

S�Δ′
I just when ft.Δ′

S=ft.Δ′
I and br.Δ′

S≥br.Δ′
I , and it extends pointwise

to the elementary testing order on whole programs. That is, we say that
S�I just when for corresponding inputs (i) S, I are functionally equivalent and
(ii) the Risk for I is no more than the Risk for S. Thus S�I1 because they are
functionally equivalent and the Risks of S, I1 are 2/3, 1/3 resp.

3 “Greatest chance of leak” is more convenient than the dual (and more usual) “least
chance of no leak.” Our definition corresponds to vulnerability [18, for example].
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4 Non-compositionality of the Elementary Testing Order

For stepwise development we require more than just S�I: we must ensure that
C(S)�C(I) holds for all contexts C(·) in which S, I might be placed — and we
do not know in advance what those contexts might be.

Consider Program I2 in which also Box 1 has two black balls, defined by the
code h:= 0⊕1⊕2; v:∈{{w@(h÷2), b@1−(h÷2)}}; v:=⊥ with final hyper-distribution

{{ (⊥, {{2}})@ 1
3 , (⊥, {{0, 1}})@2

3 }} . (Δ′
I2

)

The Risk for I2 is 1/3∗1 + 2/3∗1/2, again 2/3 so that S�I2. Now if context C
is defined (− ; h:= h÷2), the Risk for C(S) is 1/2∗2/3 + 1/2∗1 = 5/6: it is more
than for S alone because there are fewer final h-values to choose from. But for
C(I2) it is greater still, at 1/3∗1 + 2/3∗1 = 1.

Since S�I2 but C(S)��C(I2), the order (�) is not compositional (monotonic).

5 The Refinement Order, and Compositional Closure

To address the non-compositionality exposed just above, we seek the composi-
tional closure of (�), the unique refinement relation (!) such that (soundness)
if S!I then for all C we have C(S)�C(I); and (completeness) if S �!I then for
some C we have C(S)��C(I). Soundness gives refinement the property (refer §4)
we need for stepwise development; and completeness makes refinement as liberal
as possible consistent with that.

We found above that S �!I2; we show later (§6.1) that we do have S!I1.

6 Constructive Definition of the Refinement Order (�)

We give a detailed example to help introduce our definition. Let x rnd n be a
distribution over the multiple(s) of n closest to x, weighted inversely by their
distance: thus 1rnd4 is (03/4⊕4) and 3rnd4 is (01/4⊕4); but 2rnd4 is (01/2⊕4).
When x divides n exactly, the outcome is definite: thus 2 rnd 2 = {{2}}. Now
consider the two programs

P2:= h:= 1⊕2⊕3; v:∈ h rnd 2; v:= h mod 2
and P4:= h:= 1⊕2⊕3; v:∈ h rnd 4; v:= h mod 2 .

(2)

Both reveal hmod2 in v’s final value v′, but each Pn also reveals in the overwrit-
ten visible v̂, say, something about h rnd n; and intuition suggests that Pn!Pm

for n≤m only. Yet the Risk is 5/6 for both P2,4, which we can see from the final
hyper-distributions; they are

{{ (0, {{2}})@ 1
3 , (1, {{1}})@ 1

6 , (1, {{1, 3}})@1
3 , (1, {{3}})@ 1

6 }} (Δ′
P2

)
{{ (0, {{2}})@ 1

3 , (1, {{1@ 3
4 , 3@ 1

4 }})@ 1
3︸ ︷︷ ︸

With overall probability 1/3∗3/4 + 1/3∗1/4 = 1/3 the final v′ will be 1 and v̂ will
be 0; since v′ is 1 then h must be 1 or 3; but if v̂ was 0 that h is three times as
likely to have been 1.

, (1, {{1@ 1
4 , 3@ 3

4 }})@ 1
3 }} (Δ′

P4
)
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so that e.g. indeed 1/3∗1+1/3∗3/4+1/3∗3/4 = 5/6 for P4. The overall distribu-
tion of (v′, h′) is {{(0, 2), (1, 1), (1, 3)}} in both cases, so that P2,4 are functionally
equivalent; but they have different residual uncertainties of h.

Now we consider just the h-distributions associated with v′=1 and, by multi-
plying through their associated probabilities from the hyper-distributions, present
them as a collection of fractions, sub-distributions overH. We call such collections
partitions and here they are given for P2 and P4 respectively by

when v′=1
{

Π ′
P2

: 〈{{1@ 1
6 }}, {{1@ 1

6 , 3@ 1
6 }}, {{3@ 1

6 }}〉
Π ′

P4
: 〈{{1@ 1

4 , 3@ 1
12 }}, {{1@ 1

12 , 3@ 1
4 }}〉 . (3)

Fractions can be summed, so that e.g. {{1@ 1
6 }}+ {{1@ 1

6 , 3@ 1
6 }} gives {{1@ 1

3 , 3@ 1
6 }}.

6.1 Constructive Definition of Refinement

Let the function fracs.Δ.v for hyper-distribution Δ and value v give the partition
of fractions extracted from Δ for v=v. Say that one partition is finer than
another if its fractions can be summed in groups to realise the coarser one. It is
sim-finer if only fractions that are multiples of each other are summed.

Definition 1. Secure refinement We say that hyper-distribution ΔS is secure-
refined by ΔI , written ΔS ! ΔI , just when for every v there is some intermediate
partition Π of fractions so that both (i) Π is sim-finer than fracs.ΔS .v and (ii)
Π is finer than fracs.ΔI .v.4 Refinement of hyper-distributions extends pointwise
to the programs that produce them. �

Note that the (sim-)finer relation preserves the sum of all a partition’s fractions,
so that (!) from Def. 1 implies functional equality.

Referring to Δ′
S , we get fracs.Δ′

S .⊥ = 〈{{1@ 1
6 , 2@ 1

3 }}, {{0@ 1
3 , 1@ 1

6 }}〉 by multi-
plying through, and fracs.Δ′

I1
.⊥ = 〈{{0@ 1

3 , 1@ 1
3 , 2@ 1

3 }}〉. The two fractions of the
former sum to the single fraction of the latter, and so S!I1 according to our
definition Def. 1 of secure refinement.

For the more detailed Δ′
P2
!Δ′

P4
and v′=1, we need the intermediate partition

Π := 〈{{1@ 1
6 }}, {{1@ 1

12 , 3@ 1
12 }}, {{1@ 1

12 , 3@ 1
12 }}, {{3@ 1

6 }}〉, whose middle two fractions
turn out to be equal: summing them gives the middle {{1@ 1

6 , 3@ 1
6 }} of Π ′

P2
. Sum-

ming the first two gives {{1@ 1
4 , 3@ 1

12 }}, the first fraction of Π ′
P4

; and the last two
give the second fraction of Π ′

P4
. Partition 〈{{2@ 1

3 }}〉 deals trivially with v′=0,
and so indeed P2!P4. In §7.2 and in §B we show however that P4 �!P2.

Refinement (!) is a partial order, and our programs preserve it [11]:

Lemma 1. Monotonicity of refinement. If S!I then C(S)!C(I) for all con-
texts C built from programs as defined in Fig. 1. �

4 In our earlier qualitative work [14] refinement reduces to taking unions of equivalence
classes of hidden values, so-called “Shadows.” Köpf et al. observe similar effects [7].
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7 Refinement (�) Is the Compositional Closure of (�)

7.1 Soundness (Sketch)

Our approach shows first that ΔS!ΔI implies ΔS�ΔI , using arithmetic prop-
erties of maximum, and the addition and multiplication by non-negative scalars
that occur in the operations (i,ii) of Def. 1. Since S!I implies C(S)!C(I) from
Lem. 1, the above gives C(S)�C(I) as required. The full proof is in §A.1.

7.2 Completeness (Sketch)

Here from S �!I we must discover a context C such that C(S)��C(I). This is
done by reformulating the set of all refinements of specification S as a convex
subset XS of (higher-dimensional) Euclidean space, and the implementation I
as a single point xI in that space: the refinement-failure then becomes xI �∈XS.

The Separating Hyperplane Lemma [19] then gives us a hyperplane having all
of XS on one side and xI on the other, and the coefficients of its normal M
determine the parameters of a context (− ; C) that assigns conditionally to h
and distinguishes xI from all xS ’s in XS . For example, if we take C to be

if v=1 then h:∈ ( {{1@ 1
2 , 2@ 1

4 , 3@ 1
4 }} if h=1 else {{2@ 1

2 , 3@ 1
2 }} )

else h:= 1 fi ,
(4)

whose probabilities 1
2 ,

1
4 ,

1
4 and 0, 1

2 ,
1
2 come from just such an M (Fig. 4 in §B),

then we can concentrate on v′=1 and use (3,4) to give the partitions

v′=1

{
Π ′

P2;C
: 〈{{1@ 1

12 , 2@ 1
24 , 3@ 1

24 }}, {{1@ 1
12 , 2@ 1

8 , 3@ 1
8 }}, {{2@ 1

12 , 3@ 1
12 }}〉

Π ′
P4;C

: 〈{{1@ 1
8 , 2@ 5

48 , 3@ 5
48 }}, {{1@ 1

24 , 2@ 7
48 , 1@ 7

48 }}〉 .

Now the Risk of a partition on its own is obtained by simple summing of maxima,
since its constituent fractions have been scaled already: thus at (3) above for
Π ′

P2
we get 1/6+1/6+1/6 = 1/2, and for Π ′

P4
we get 1/4+1/4 = 1/2, the same.

But for partition Π ′
P2;C

we get 1/12+1/8+1/12 = 7/24; and for Π ′
P4;C we get

1/8+7/48 = 13/48, just smaller. Since the other partition (for v′=0) is 〈{{1@ 1
3 }}〉

in both cases, we establish (P4;C) �� (P2;C) . The full proof is in §A.2.

8 Case Study: The Three Judges Protocol

The motivation for our case study is to suggest and illustrate techniques for rea-
soning compositionally from specification to implementation of noninterference
[6]. Our previous examples include (unboundedly many) Dining Cryptographers
[4, 6, Morgan:06], Oblivious Transfer [16, 14] and Multi-Party Shared Computa-
tion [20, 13]. All of them however used our qualitative model for compositional
noninterference [14, 13, 6, Morgan:06]; here we have instead a quantitative model.

To demonstrate the utility of our approach, we invented the following exam-
ple. Three judges A,B,C are to give a majority decision, innocent or guilty,
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by exchanging messages but concealing their individual votes.5 We describe this
protocol with a program fragment, a specification which captures exactly the
functional and security properties we want. Its variables are Boolean, equiv-
alently {0, 1} and, including some notational conventions explained below, it
evaluates (a+b+c ≥ 2) atomically, and assigns it to visible j :

vis j; visA a; visB b; visC c; ← These are global variables.
j:= (a+b+c ≥ 2) . ← Atomic assignment.

(5)

We borrow features introduced in our earlier case studies to extend the reach
of our technique without essentially changing its character, a sort of “syntactic
sugaring.” They include a convention –used in (5) above– that allows us to
treat multiple-observer systems: annotation vis declares a variable visible to all
observers, whereas e.g. visA declares visiblity to the observer “Judge A” only.
Furthermore, we allow multiple variables so that, in terms of Fig. 1, for A’s view
we would have (j, a) as v jointly and (b, c) as h; similarly for Judge B we treat
(j, b) as v and (a, c) as h.

Although the vis-convention suggests that protocol development, e.g. as in
§8.2 to come, requires proofs for each observer (since the patterns of variables’
visibility might differ), in fact we can usually follow a single chain of reasoning
whose steps are shown to be valid for two or even all three observers at once.

We also allow local variables, with which (as usual) implementations introduce
extra structure that does not appear in the specification and so escapes any
requirements of functional correctness. But local variables are still security risks
as much as global variables, especially when they are used to describe message
passing: with perfect recall, their visibility is not affected by their being local.

8.1 The Encryption Lemma: Qualitative vs. Quantitative Reasoning

Rather than appeal constantly to the basic semantics (Fig. 1) instead we have
accumulated, with experience, a repertoire of identities –a program algebra–
which we use to reason at the source level. Those identities themselves are proved
directly in the semantics but, after that, they become permanent members of
the designer’s toolkit. One of the most common is the Encryption Lemma.

Let statement (v∇h):=E set Booleans v, h so that their exclusive-or v∇h
equals Boolean E: there are exactly two possible ways of doing so. In our earlier
work [14], we proved that when the choice is made demonically, on a single run
nothing is revealed about E; in our refinement style we express that as

skip = ‖[ vis v;hid h; (v∇h):=E ]‖ , (6)

where equality is “refinement both ways,” and the “begin-end” brackets ‖[ · · · ]‖
enclose local declarations. In our current model we can prove that exactly the
same identity holds if the choice is made uniformly [11]. That means that extant

5 The generalised dining cryptographers would instead reveal the actual number of
guilty votes. Here we reveal only the majority, a more difficult job [6, Morgan:09a].
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qualitative source-level proofs that rely only on “upgradeable identities” like (6)
can be used as is for quantitative results provided the demonic choices involved
are converted to uniform choice. And that is the case with our current example.

Beyond the Encryption Lemma, we use Two-party Conjunction [20, 13] and
Oblivious Transfer [16, 14] in our implementation, but in our development we
refer only to their specifications. Just as for the Encryption Lemma, the alge-
braic proofs of their implementations [14, 13] apply quantitatively provided we
interpret the (formerly) demonic choice as uniform.

8.2 The Three-Judges Development (Sketch)

Here we present only a sketch of the steps used to take specification (5) to an
implementation (Fig. 2); details are given elsewhere [11].

We begin with a two-party conjunction [20, 13] which sets variables b0, c0 so
that their exclusive-or equals the conjunction of two other variables b, c. We show
how to implement this elsewhere [13]; but here we need only refer to its spec-
ification to check –via (6)– that the introduction of the two-party conjunction
into (5) preserves both its functional and secure correctness. We have

j:= (a+b+c ≥ 2) = skip; j:= (a+b+c ≥ 2) “skip is identity”

= ‖[ visB b0;visC c0; (b0∇c0):= b ∧ c; ]‖;
j:= (a+b+c ≥ 2) . . .

“Introduce two-party conjunction:
correctness trivial for A; use (6) for B, C.”

We must justify this step for all three observers: for A the introduced block
equals skip since all assignments are to local variables hidden from A; for B the
block is equivalent to skip because it is an instance of the Encryption Lemma
with v as b0 and h as c0; for C it is as for B, but reversed. With similar reasoning
we introduce a two-party disjunction and reorganise:

. . . = ‖[ visB b0;visC c0; (b0∇c0):= b ∧ c; ]‖;
‖[ visB b1;visC c1; (b1∇c1):= b ∨ c; ]‖;
j:= (a+b+c ≥ 2)

“Introduce two-party disjunction
with same justification as above.”

= ‖[ visB b0, b1;visC c0, c1;

(b0∇c0):= b ∧ c; (b1∇c1):= b ∨ c;
j:= (a+b+c ≥ 2) ]‖

“Reorganise declarations and scoping”

= ‖[ visB b0, b1;visC c0, c1;

(b0∇c0):= b ∧ c; (b1∇c1):= b ∨ c;
j:= ba∇ca ]‖ . . .

“Boolean algebra;
expression ba∇ca abbreviates

b1∇c1 if a else b0∇c0.”

Now since its being assigned to j will reveal ba∇ca to everyone, and thus to A
in particular, it does no harm first to capture that value in variables visible to
A alone and then to have Agent A reveal those to everyone else:
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‖[ visA a0, a1; visB b0, b1; visC c0, c1;

two
party
conjunction

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

→

→

b0:= true ⊕ false; ← These are uniform choices.
b1:= true ⊕ false; ←

c0:= (b∇b0 if c else b0);
c1:= (¬b1 if c else b∇b1);
a0:= (b1 if a else b0);
a1:= (c1 if a else c0);

⎫⎪⎪⎬⎪⎪⎭
Four oblivious transfers:
each one’s implementation
contains further uniform choices.

j:= a0∇a1 ]‖
We replace the two Two-Party ’junctions by their implementations as oblivious trans-
fers [13]: each becomes two statements instead of one. The uniformly random flipping
of bits b{0,1} is then collected at the start. Correctness is preserved by compositionality.

Fig. 2. Three-Judges Protocol assuming Oblivious Transfers as primitives

. . . = ‖[ visA a0, a1; visB b0, b1; visC c0, c1;

(b0∇c0):= b ∧ c; (b1∇c1):= b ∨ c;
(a0∇a1):= ba∇ca; (†)
j:= a0∇a1 ]‖ .

“Introduce private variables of A”

The point of using two variables a{0,1} rather than one is to separate the com-
munication (B,C)→A at (†) into two oblivious transfers B→A and C→A [16].
Our last step does that [11], giving finally the code of Fig. 2.

A full implementation at the level of assignments is indicated in Fig. 5 of §C.

9 Conclusions — And an Open Question

There are many alternatives for a definition of “elementary testing.” Bayes Risk
measures how difficult it is to determine h using only one query h=h, while
Marginal Guesswork [15, 7] allows multiple queries of that form. And Shannon
Entropy [17] can be related to multiple queries of the form h∈H . Other measures,
such as Guessing Entropy [9, 7], are further variations.

No single one of these elementary testing orderings is objectively the best.
Although Shannon Entropy is a well-accepted measure of uncertainty, Pliam
observes [15] that e.g. Marginal Guesswork might be better for measuring vul-
nerability to brute-force attacks; he also shows that there can be no general
ordering between these two measures. Smith compares Bayes Risk and Shannon
Entropy, speculating that also those measures are mutually incomparable [18].

Whichever definition of elementary testing is chosen, a crucial practical con-
cern is to determine whether compositional reasoning can be based on it. Smith
suggested that Bayes Risk might not be compositional [18]; we prove it isn’t
compositional — and then we identify a subset (!) of it that is. Further, we
have given a practical –and non-trivial– example of how useful that can be (§8).
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Our refinement ensures that uncertainty cannot decrease for Marginal Guess-
work, Shannon- or Guessing Entropy [11]: it is sound for those three as well as for
Bayes Risk (§7). This means that –in spite of the speculations above– in fact the
orders are comparable: with contexts, Bayes Risk is at least as discriminating as
any of the others. Still open is whether (!) is complete for those others.
If it were, then –again, with contexts– they would all be equally discriminating.

With concurrency over visible- and hidden actions giving attackers strong
capabilities as we do (§2.4), Braun et al. [1] identify safe contexts Csafe such that
I “�” Csafe(I); with our emphasis on implementations I and their specifications
S, by analogy we would be looking for S�I implies Csafe(S)�Csafe(I). But rather
than restrict contexts C to Csafe’s, instead we restrict the testing-relation (�) to
a subset (!), keeping contexts as they are — a complementary approach.

We are not aware of others’ having identified a refinement relation that is
either sound or complete with respect to all contexts in their language.

The semantics presented here is similar to a Hidden Markov Model (HMM)
augmented with an ordering which determines when a program yields more or
less information about the hidden state than another. Whether the established
techniques of HMM’s apply here (and vice versa) has not yet been explored.

Finally the merits of compositional refinement and its relationship to other
treatments of noninterference are discussed in detail elsewhere [14, 11, 6].

The Appendices §A,§B,§C to this paper may be found online [10, 11].
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Abstract. We demonstrate the feasibility of throughput-efficient rout-
ing in a highly unreliable network. Modeling a network as a graph with
vertices representing nodes and edges representing the links between
them, we consider two forms of unreliability: unpredictable edge-failures,
and deliberate deviation from protocol specifications by corrupt nodes.
The first form of unpredictability represents networks with dynamic
topology, whose links may be constantly going up and down; while the
second form represents malicious insiders attempting to disrupt commu-
nication by deliberately disobeying routing rules in an arbitrary man-
ner, for example by introducing junk messages or deleting or altering
messages. We present a robust routing protocol for end-to-end commu-
nication that is simultaneously resilient to both forms of unreliability,
achieving provably optimal throughput performance.
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1 Introduction

With the immense range of applications and the multitude of networks encoun-
tered in practice, there has been an enormous effort to study routing in various
settings. For the purpose of developing network models in which routing pro-
tocols can be developed and formally analyzed, networks are typically modeled
as a graph with vertices representing nodes (processors, routers, etc.) and edges
representing the connections between them. Beyond this basic structure, addi-
tional assumptions and restrictions are then made in attempt to capture various
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features that real-world networks may display. In deciding which network model
is best-suited to a particular application, developers must make a choice with
respect to each of the following considerations: 1) Synchronous or Asynchronous;
2) Static or Dynamic Topology; 3) Global Control or Distributed/Local Control;
4) Connectivity/Liveness Assumptions; 5) Existence of Faulty/Malicious Nodes.

Notice that in each option above there is an inherent trade-off between gen-
erality/applicability of the model verses optimal performance within the model.
For instance, a protocol that assumes a fixed network topology will likely out-
perform a protocol designed for a dynamic topology setting, but the former
protocol may not work in networks subject to edge-failures. Similarly, a protocol
that protects against the existence of faulty or deliberately malicious nodes will
likely be out-performed in networks with no faulty behavior by a protocol that
assumes all nodes act honestly.

From both a theoretical and a practical standpoint, it is important to under-
stand how each (combination) of the above listed factors affects routing perfor-
mance. In this paper, we explore the feasibility of end-to-end routing in highly
unreliable networks, i.e. networks that simultaneously consider all of the more
general features: Asynchronous, Dynamic Topology, Local Control, no Connec-
tivity Assumptions, and the presence of Malicious Nodes. In this “worst-case”
model it is unlikely that any protocol will perform well, and stronger assump-
tion(s) must be made to achieve a reasonable level of performance. However,
understanding behavior in the worst case, even with respect to the most basic
task of end-to-end communication, is important to determine how much (if any)
the addition of each assumption improves optimal protocol performance.

1.1 Previous Work

As mentioned above, development and analysis of routing protocols relies heav-
ily on the choices made for the network model. To date, all network models
have guaranteed at least one (and more commonly multiple) “reliability” as-
sumption(s) with respect to the above list of five network characteristics. In this
section, we explore various combinations of assumptions that have been made in
recent work, highlighting positive and negative results with respect to each net-
work model, and emphasizing clearly which assumptions are employed in each
case. Since our work focuses on theoretical results, for space considerations we
do not discuss below the vast amount of research and analysis of routing issues
for specific network systems encountered in practice, e.g. the Internet. Still, the
amount of research regarding network routing and analysis of routing protocols
is extensive, and as such we include only a sketch of the most related work,
indicating how their models differ from ours and providing references that offer
more detailed descriptions.

End-to-End Communication: One of the most relevant research directions to
our paper is the notion of End-to-End communication in distributed networks,
where two nodes (sender and receiver) wish to communicate through a network.
While there is a multitude of problems that involve end-to-end communication
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(e.g. End-to-End Congestion Control, Path-Measurement, and Admission Con-
trol), we discuss here work that consider networks whose only task is to facilitate
communication between sender and receiver. Some of these include a line of work
developing the Slide protocol (the starting point of our protocol) of Afek, Gafni
and Rosén [3] (see also Afek et al. [1].) The Slide protocol (and its variants) have
been studied in a variety of network settings, including multi-commodity flow
(Awerbuch and Leighton [11]), networks controlled by an online bursty adversary
(Aiello et al. [4]), and networks that allow corruption of nodes (Amir et al. [7]).
However, prior to our work there was no version of Slide that considered routing
in the “worst case” network setting: only [7] considers networks with corrupt-
ible nodes, but their network model assumes synchronous communication and
demands minimal connectivity guarantees.

Fault Detection and Localization Protocols: There have been a number
of papers that explore the possibility of corrupt nodes that deliberately disobey
protocol specifications in order to disrupt communication. In particular, there
is a recent line of work that considers a network consisting of a single path
from the sender to the receiver, culminating in the recent work of Barak et al.
[13] (for further background on fault localization see references therein). In this
model, the adversary can corrupt any node (except the sender and receiver) in
a dynamic and malicious manner. Since corrupting any node on the path will
sever the honest connection between sender and receiver, the goal of a protocol
in this model is not to guarantee that all messages sent are received. Instead, the
goal is to detect faults when they occur and localize the fault to a single edge.

Goldberg et al. [19] show that a protocol’s ability to detect faults relies on the
assumption that One-Way Functions (OWF) exist, and Barak et al. [13] show
that the (constant factor) overhead (in terms of communication cost) incurred
for utilizing cryptographic tools (such as MACs or Signature Schemes) is manda-
tory for any fault-localization protocol. Awerbuch et al. [10] also explore routing
in the Byzantine setting, although they do not present a formal treatment of
security, and indeed a counter-example that challenges their protocol’s security
is discussed in the appendix of [13].

Fault Detection and Localization protocols focus on very restrictive network
models (typically synchronous networks with fixed topology and some connectiv-
ity assumptions), and throughput-performance is usually not considered when
analyzing fault detection/localization protocols.

Competitive Analysis: Competitive Analysis was introduced by Sleator and
Tarjan [22] as a mechanism for measuring the worst-case performance of a pro-
tocol, in terms of how badly the given protocol may be out-performed by an off-
line protocol that has access to perfect information. Recall that a given protocol
has competitive ratio 1/λ (or is λ-competitive) if an ideal off-line protocol has ad-
vantage over the given protocol by at most a factor of λ. One place competitive
analysis has been used to evaluate performance is the setting of distributed algo-
rithms in asynchronous shared memory computation, including the work of Ajtai
et al. [6]. This line of work has a different flavor than the problem considered in
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the present paper due to the nature of the algorithm being analyzed (computa-
tion algorithm verses network routing protocol). In particular, network topology
is not a consideration in this line of work (and malicious deviation of processors
is not considered). Competitive Analysis also plays a role in Adversarial Queuing
Theory, see, for example [15]. (We discuss this aspect in greater detail below.)

Competitive analysis is a useful tool for evaluating protocols in unreliable
networks (e.g. asynchronous networks and/or networks with no connectivity
guarantees), as it provides best-possible standards (since absolute performance
guarantees may be impossible due to the lack of network assumptions). For a
thorough description of competitive analysis, see [14].

Max-Flow and Multi-Commodity Flow: The Max-flow and multi-com-
modity flow models assume synchronous networks with connectivity/liveness
guarantees and have incorruptible nodes (max-flow networks also typically have
fixed topology and are global-control). There has been a tremendous amount
of work in these areas, see e.g. Leighton et al. [21] for a discussion of the two
models and a list of results, as well as Awerbuch and Leighton [11] who show
optimal throughput-competitive ratio for the network model in question.

Admission Control and Route Selection: The admission control/route
selection model differs from the multi-commodity flow model in that the goal of
a protocol is not to meet the demand of all ordered pairs of nodes (s, t), but rather
the protocol must decide which requests it can/should honor, and then designate
a path for honored requests. There are numerous models that are concerned with
questions of admission control and route selection: The Asynchronous Transfer
Model (see e.g. Awerbuch et al. [9]), Queuing Theory (see e.g. Borodin and
Kleinberg [15] and Andrews et al. [8]), Adversarial Queuing Theory (see e.g.
Broder et al. [16] and Aiello et al. [5]).

The admission control/route selection model assumes synchronous commu-
nication and incorruptible nodes and makes connectivity/liveness guarantees.
Among the other options (fixed or dynamic topology, global or local control),
each combination has been considered by various authors, see the above refer-
ences for further details and results within each specific model.

1.2 Our Results

In this paper, we consider the feasibility of end-to-end routing in unreliable net-
works controlled by a malicious adversary with polynomial computing power. In
particular, we present a local-control protocol that achieves optimal throughput
in asynchronous networks with untrustworthy nodes and dynamic topology with
no connectivity guarantees.

The first step in obtaining our result is to first consider networks where nodes
are guaranteed to behave honestly, but otherwise the network demonstrates all
of the unreliability features. In these networks, we have the following matching
upper and lower bounds on throughput performance:
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Theorem 1 (Informal). The best competitive-ratio that any protocol can
achieve in a distributed asynchronous network with dynamic topology (and no
connectivity assumptions) is 1/n (where n is the number of nodes). In particu-
lar, given any protocol P, there exists an alternative protocol P ′, such that P ′

will out-perform P by a factor of at least n.

Theorem 2 (Informal). There exists a protocol that achieves a competitive
ratio of 1/n in a distributed asynchronous network with dynamic topology (and
no connectivity assumptions).

Due to space constraints, we do not prove Theorems 1 and 2 here, but refer the
reader to [17] for full details of the proofs of each of these. In this paper, we focus
on the following result, which extends Theorem 2 to networks in which nodes are
no longer assumed to behave honestly; i.e. they may deviate from the specified
protocol in any desired manner to disrupt communication as much as possible.
Somewhat surprisingly, we show that this increased level of unreliability does
not affect optimal throughput performance; indeed, we demonstrate a protocol
that achieves 1/n competitive ratio, matching the lower-bound of Theorem 1.

Theorem 3 (MAIN THEOREM, Informal). Assuming Public-Key Infras-
tructure, there exists a protocol with competitive ratio 1/n in a distributed asyn-
chronous network with dynamic topology (and no connectivity assumptions), even
if a polynomially bounded adversary can dynamically corrupt an arbitrary set of
nodes.

2 The Model

In this section, we describe formally the model in which we will be analyzing
routing protocols. We begin by modeling the network as a graph G with n vertices
(or nodes). Two of these nodes are designated as the sender and receiver, and
the sender has a stream of messages {m1,m2, . . . } that it wishes to transmit
through the network to the receiver.

Asynchronous communication networks vary from synchronous networks in
that the transmission time across an edge in the network is not fixed (even
along the same edge, from one message transmission to the next). Since there is
no common global clock or mechanism to synchronize events, an asynchronous
network is often said to be “message driven,” in that the actions of the nodes
occur exactly (and only) when they have just sent/received a message.

Asynchronous networks are commonly modeled by introducing a scheduling
adversary that controls the edges of the network as follows. Informally, we focus
on a single edge E(u, v), and then a “round” consists of allowing the edge to
deliver a message in both directions.1 To model unpredictable delivery times
across each edge, we have each node u decide on the next message to send to v

1 An adversary that is allowed to deliver messages in only one direction can be modelled
by defining a round to consist of (at least) one communication in each direction. Since
competitive analysis can be used to show that acknowledgements of some kind are
requisite for a finite competitive-ratio, it is natural to define a round as above.
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immediately after receiving a message from v, and this message is then sent to
the adversary who stores it until the next time he activates edge E(u, v).

Formally, we define a round to consist of a single edge E(u, v) in the network
chosen by the adversary in which two sequential events occur: 1a) Among the
packets from u to v that the adversary is storing, it will choose one (in any
manner it likes) and deliver it to v; 1b) Similarly, the adversary chooses one of
the packets it is storing from v to u and delivers it to u; 2a) After seeing the
delivered packet, u sends requests of the form (u, v,m) = (sending node, target
node, message) to the adversary, which will be stored by the adversary and may
be delivered the next time E(u, v) is made a round; 2b) Similarly for v.

Modeling asynchronicity in this manner captures the intuition that a node has
no idea how long a message “sent” to an adjacent node will take to arrive, and
this definition also captures the “worst-case” asynchronicity, in that a (potentially
deliberately malicious) adversary controls the scheduling of rounds/edges.

Aside from obeying the above specified rules, we place no restriction on the
scheduling adversary. In other words, it may activate whatever edges it likes (this
models the fact our network makes no connectivity assumptions), wait indefinitely
long between activating the same edge twice (modeling both the dynamic and
asynchronous features of our network), and do anything else it likes (so long as
it respects steps (1) and (2) above each time it activates an edge) in attempt to
hinder the performance of a routing protocol.

Our model also allows a polynomially bounded node-controlling adversary to
corrupt the nodes in the network. The node-controlling adversary is malicious,
meaning that takes complete control over the nodes he corrupts, and can there-
fore force them to deviate from any protocol in whatever manner he likes. We
also allow for a dynamic adversary, which means that he can corrupt nodes at
any stage of the protocol, deciding which nodes to corrupt based on what he has
observed thus far. We do not impose any “access-structure” limitations on the
adversary. That is, the adversary may corrupt any nodes it likes (although if the
sender and/or receiver is corrupt, secure routing between them is impossible).
Because integrity of the messages received by the receiver is now a concern (as
corrupt nodes can delete and/or modify messages), we will say a routing protocol
is secure if the receiver eventually gets all of the messages sent by the sender, in
order and without duplication or modification.

The separation of the adversaries into two distinct entities is solely for con-
ceptual reasons. Note that the scheduling adversary cannot be controlled or
eliminated: edges themselves are not inherently “good” or “bad,” so identifying
an unresponsive edge does not allow us to forever refuse the protocol to uti-
lize this edge. By contrast, our protocol will limit the amount of influence the
node-controlling adversary has in the network. Specifically, we will show that
if a node deviates from the protocol in a sufficiently destructive manner (in a
well-defined sense), then our protocol will be able to identify it as corrupted in
a timely fashion. Once a corrupt node has been identified, it will be eliminated
from the network by excluding it from all future communication.
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Note that our network model is on-line and distributed, in that we do not as-
sume that the nodes have access to any information (including future knowledge
of the adversary’s schedule) aside from the packets they receive. Also, we insist
that nodes have bounded memory which is at least Ω(n2).2

Our mechanism for evaluating protocols will be to measure their throughput,
a notion we can now define formally in the context of rounds and the scheduling
adversary. In particular, let fA

P : N → N be a function that measures, for a
given protocol P and adversary A, the number of packets that the receiver has
received as a function of the number of rounds that have passed. Note that in
this paper, we will consider only deterministic protocols, so fA

P is well-defined.
The function fA

P formalizes our notion of throughput.
As mentioned in the Introduction, we utilize competitive analysis to gauge

the performance (with respect to throughput) of a given protocol against all
possible competing protocols. In particular, for any fixed adversary A, we may
consider the ideal “off-line” protocol P ′ which has perfect information: knowledge
of all future decisions of the scheduling adversary, as well as knowledge of which
nodes are/will become corrupt. That is, for any fixed round x, there exists an
ideal off-line protocol P ′(A, x) such that fA

P′(x) is maximal. We demand that
the ideal protocol P ′ never utilizes corrupt nodes once they have been corrupted
(this restriction is not only reasonable, it is necessary, as it can easily be shown
that allowing P ′ to utilize corrupt nodes will result in every on-line protocol
having competitive ratio 1/∞).

Definition 1. We say that a protocol P has competitive ratio 1/λ (respectively is
λ-competitive) if there exists a constant k and function g(n,C) (C is the memory
bound per node) such that for all adversaries A and for all x ∈ N:3

fA
P′(x) ≤ (k · λ) · fA

P (x) + g(n,C) (1)

We assume a Public-Key Infrastructure (PKI) that allows digital signatures. In
particular, this allows the sender and receiver to sign messages to each other that
cannot be forged (except with negligible probability in the security parameter) by
any other node in the system. It also allows nodes to verify/sign communications
with their neighbors (see Section 3.2).

3 Description of Protocol

In this section we present an on-line protocol that enjoys competitive ratio 1/n in
the network model of Section 2. Our protocol uses as its starting point the “Slide”
protocol (or gravitational-flow), which was first introduced by Afek, Gafni, and
Rosén [3], and further developed in a series of work [1], [20], and [17]. As is shown
in [17], Slide+ enjoys competitive ratio 1/n in networks in which all nodes behave
2 For simplicity, we assume that all nodes have the same memory bound, although our

argument can be readily extended to handle the more general case.
3 Typically, λ is a function of the number of nodes in the network n, and Definition 1

implicitly assumes the minimal value of λ for which (1) holds.
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honestly (but otherwise the network is as modelled here). We first describe this
protocol in Section 3.1, and then in Section 3.2 describe how we modify this
protocol to address networks allowing misbehaving nodes.

3.1 Description of the Slide+ Protocol

Recall that we model an asynchronous network via a scheduling adversary that
maintains a buffer of requests of the form (u, v, p), which is a request from node
u to send packet p to node v. The scheduling adversary proceeds in a sequence
of activated edges (called rounds), and a protocol can be completely described
by the actions of node u (and symmetrically v) during a round E(u, v). Let C
denote the size of each node’s memory, then Slide+ requires that C ≥ 8n2, and
for simplicity we will assume that C/n ∈ N.

During activated edge E(u, v), let (v, u, (p′, h′)) denote the message that u
receives from v in Step 1 of the round (via the scheduling adversary). Also, u
has recorded the request (u, v, (p, h)) that it made during Step 2 of the previous
round in which E(u, v) was activated; note that v will be receiving this message
during Step 1 of the current round. Then during round E(u, v), u does:

1. If u is the Sender, then:

(a) If h < C: u deletes packet p from his input stream {p1, p2, . . . }, ignores
the received p′, and proceeds to Step (1c)

(b) If h′ ≥ C: u keeps p, ignores the received p′, and proceeds to Step (1c)
(c) The Sender finds the next packet pi ∈ {p1, p2, . . . } that has not been

deleted and is not currently an outstanding request already sent to the
adversary, and sends the request (u, v, (pi, C + C

n −n)) to the adversary.

2. If u is the Receiver, then u sends the request (u, v, (⊥, −C
n − 2n + 1)) to

the adversary. Meanwhile, if p′ �= ⊥, then u stores/outputs p′ as a packet
successfully received.

3. If u is any internal node, then:

(a) If h ≥ h′ + (C/n+ 2n): u ignores p′, deletes p, updates height h = h− 1,
and proceeds to Step (3d)

(b) If h ≤ h′ − (C/n+ 2n): u keeps both p and p′, updates height h = h+ 1,
and proceeds to Step (3d)

(c) If |h − h′| < C/n + 2n: u ignores packet p′, keeps p, and proceeds to
Step (3d)

(d) Node u finds a packet p′′ that it has not already committed in an out-
standing request to the adversary, and sends the request (u, v, (p′′, h)) to
the adversary

3.2 Our Protocol

Our protocol extends the Slide+ protocol described above to provide security
against the node-controlling adversary by using digital signatures in the following
two ways:
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1. The sender signs every packet, so that honest nodes do not waste resources on
modified or junk packets, and so that packets the receiver gets are unmolested

2. Communication between nodes will be signed by each node. This information
will be used later by the sender (if there has been malicious activity) to hold
nodes accountable for their actions, and ultimately eliminate corrupt nodes

The routing rules for each internal node are the same as in the Slide+ protocol,
except that whenever a node u sends a packet to a neighbor v, there will be four
parts to this communication:

(a) The packet itself, i.e. a packet from the sender intended for the receiver
(b) The current height of u, i.e. how many packets u is currently storing
(c) A signature on the communication thatuhas hadwith v, as describedbelow
(d) Signatures from other nodes that the sender requested, as described below

The first two parts of each communication are identical to the Slide+ protocol, so
it remains to discuss the second two items, which are used for the identification
of corrupt nodes. Note that the second two items each consist of a signature on
some quantity; for this reason we will require that the bandwidth of each edge is
large enough to allow for simultaneous transmission of two signatures (plus the
packet itself). The signature that u includes on his communications with v for
Item (c) above pertains to the following four items:

Sig1 The total number of packets u has sent to v so far
Sig2 The total number of times the previous packet p that was exchanged

between them has crossed the edge E(u, v) (can be more than once)
Sig3 The cumulative difference in u and v’s heights, measured from each

time u and v exchanged a packet
Sig4 An index representing how many times E(u, v) has been activated, to

serve as a time-stamp on the above three items

It remains to explain Item (d) from above, for which it will be useful to first
describe from a high-level how our protocol handles malicious activity by corrupt
nodes. Since secure routing is impossible if either the sender or receiver is cor-
rupted, we will assume that they remain uncorrupted through the protocol, and
they will be responsible for regulation of the network (e.g. identifying and elim-
inating corrupt nodes). Also, because our definition of security (see Section 2)
requires that the receiver gets all of the packets sent by the sender, we will
use error-correction and first expand the messages into codewords so that the
receiver can reconstruct each message if he has a constant fraction of the code-
word packets. See e.g. [7] for a specific description of how this can be done. We
note that because the definition of throughput only cares about asymptotic per-
formance (i.e. constants are absorbed in the k that appears in Definition 1), the
use of error-correction will not affect the throughput of our protocol.

From a high-level, the protocol attempts to transfer one message (codeword),
consisting of Θ(nC) bits, at a time (this is called a message/codeword trans-
mission). The sender will continue inserting packets corresponding to the same
codeword until one of the following occurs:
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S1 Sender gets amessage indicating the receiver decoded the current codeword
F2 Sender gets a message alerting him of inconsistencies in height differences
F3 Sender has inserted all packets corresponding to the current codeword
F4 Sender gets a message indicating the receiver got the same packet twice
F5 Sender is able to identify a corrupt node

Cases S1, F2, and F4 come from messages sent by the receiver, a process we
do not explicitly describe due to space constraints. In the case of S1 (successful
codeword transmission), the sender will begin inserting packets corresponding
to the next codeword. In the case of F5, the sender will eliminate the identified
node (i.e. alert all nodes in the network to forever ignore the corrupt node), and
begin anew transmitting packets corresponding to the current codeword. The
other three cases correspond to failed attempts to transfer the current codeword
due to corrupt nodes disobeying protocol rules, and in each case the sender will
use the signed information from Item (c) above to identify a corrupt node.

In cases F2-F4, the sender will begin anew transmitting packets corresponding
to the current codeword. Before nodes are allowed to participate in transferring
the codeword packets, they must first learn that the last transmission failed,
the reason for failure (F2-F4), and the sender must receive all of the signatures
the node was storing from its neighbors, called the node’s status report (i.e. all
signed information from Item (c) above). Note that the network itself is the only
medium of communication available for relaying the signatures a node is storing
to the sender, and hence part of the bandwidth of each edge (and part of the
storage capacity of each node) is devoted to returning these pieces of signed
information to the sender (this is Item (d) from the above list).

Until the sender has received a node’s status report for a failed transmission,
the node will remain on the blacklist. That is, no honest node u will transfer
any codeword packets to another node v until u obtains verification from the
sender that the sender has received v’s status report.

4 Analysis of Our Protocol

We use competitive analysis to evaluate the throughput performance of the above
protocol. To this end, let (A,P ′) denote an adversary/off-line protocol pair for
which we compare our routing protocol P . Due to space constraints, we provide
only a proof sketch of Theorem 3 (see [18] for details):

Theorem 3. If at any time P ′ has received Θ(xn) messages, then P has received
Ω((x − n2)) messages. Thus, if the number of messages x ∈ Ω(n2), then our
protocol has competitive ratio 1/n.

Theorem 3 will follow immediately from the following three Lemmas:

Lemma 1. Suppose transmission T failed and at some later time (after T but
before any nodes are eliminated) the sender has the status report from all nodes
not on the blacklist during T. Then the sender can eliminate a corrupt node.
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Proof. (Sketch) We split the proof into the three cases of transmission failure:

Handling Case F2. If a misbehaving node u tries to jam the network by dupli-
cating packets, then there will be a discrepancy between the recorded values of
cumulative height differences from packets transferred from u’s neighbors to u
and packets transferred from u to its neighbors. Therefore, if the sender has Sig3
from all of u’s neighbors, the he can identify u as corrupt.
Handling Case F3. The number of packets per codeword (Θ(nC)) is chosen so
that even if nC packets are missing, the receiver can still decode. Therefore,
since the capacity of the network is bounded by nC, if the sender has inserted
all of the codeword packets and the receiver cannot decode, then necessarily a
corrupt node is deleting packets. The information from the status reports (in
particular information from Sig1) can be used to identify such a node.
Handling Case F4. A corrupt node is duplicating packets, and the status reports
(in particular information from Sig2) can be used to identify such a node.

Lemma 2. There can be at most n−1 (not necessarily consecutive) failed code-
word transmissions {Ti}n−1

i=1 (i.e. cases F2-F4) before there is necessarily some
Ti such that the sender has gathered the complete status report from every node
that was not on the blacklist during Ti.

Proof. (Sketch) A node is not allowed to participate in a transmission (it is
placed on the blacklist) until the sender has received the node’s status report(s)
for all previous failed transmissions. Thus, for each failed transmission Ti for
which the sender has not collected all status reports, there is (at least) one
distinct node whose status report is missing, and hence this node will be on the
blacklist for all later transmissions until the sender gets this report. Since there
are n− 1 nodes (excluding the sender), this can happen at most n− 1 times.

The final lemma guarantees that one of the cases S1-F5 necessarily happens by
the time the off-line protocol P ′ has delivered O(n2C) packets. For any trans-
mission T, let Y P

T and ZP
T (respectively Y P′

T and ZP′
T ) denote the set of packets

sent and received during T by protocol P (respectively by P ′).

Lemma 3. In any transmission T, |ZP′
T | = O(n2C). If the transmission was

successful (as in case S1), then |ZP
T | = Θ(nC).

Proof. (Sketch) The second statement of the theorem is immediate, since the
receiver requires Θ(nC) packets to decode a codeword. For the first statement,
we first fix a transmission T, and split the packets of ZP′

(we will suppress
subscripts T) into subsets as follows. We can view the scheduling adversary A as
simply a schedule (order) of edges that the adversary will honor. We will imagine
a virtual world, in which P and P ′ are run simultaneously. Let ZP′

3 denote the
set of packets in ZP′

that traveled between two honest nodes in some round
of T, and P did not transfer a packet in this round because (at least) one of
these nodes was on the blacklist. Define ZP′

1 to be the subset of ZP′ \ ZP′
3

consisting of packets p′ for which there exists at least one round E(u, v) such



Asynchronous Throughput-Optimal Routing in Malicious Networks 247

that both p′ and some packet p ∈ Y P were both transferred this round.4 Set
ZP′

2 = ZP′ \ (ZP′
1 ∪ZP′

3 ). Also, let TP denote the number of packet transfers in
P between two honest nodes during T. Then Lemma 3 follows from:

Claim. (1) TP=O(n2C), (2) |ZP′
1 | ≤ TP, (3) |ZP′

2 | ≤ TP, (4) |ZP′
3 |=O(n2C)

Proof. (Sketch) (1) follows from transfer rules: a packet transfer corresponds to a
packet dropping in height by C/n, so this can happen n times per inserted packet,
and there are Θ(nC) packets per codeword. (2) is immediate, and (4) comes from
the fact that by the time O(nC) packets have reached any honest node u, the
sender will necessarily have received any outstanding status report of u. (3) is the
most difficult to obtain, and is done using potential function arguments together
with the following observations: 1) when any packet p′ ∈ ZP′

2 is first inserted,
it was necessarily inserted into some node u such that with respect to P , u had
height ≈ C (otherwise P would have also inserted a packet this round, and then
p′ ∈ ZP′

1 ). Similarly, when p′ ∈ ZP′
2 is received by the Receiver from some node

v, then with respect to P , v had height zero. The idea will then be to assign a
potential function ϕp′ to every packet p′ ∈ ZP′

2 that represents the current height
with respect to P of the node in which p′ is currently stored. Thus, when a packet
p′ ∈ ZP′

2 is first inserted, ϕp′ = C, and when p′ ∈ ZP′
2 is received, ϕp′ = 0. Then

roughly speaking, we show that for each p′ ∈ ZP′
2 , decreases in ϕp′ can be linked

to decreases in height of packets transferred by P .
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Abstract. In the problem of almost-everywhere agreement (denoted a.e.
agreement), introduced by Dwork, Peleg, Pippenger, and Upfal [STOC
’86], n parties want to reach agreement on an initially held value, despite
the possible disruptive and malicious behavior of up to t of them. So far
this is reminiscent of the classical Byzantine agreement problem, except
that in the alternative formulation the underlying connectivity graph is
sparse—i.e., not all parties share point-to-point reliable channels—thus
modeling the actual connectivity of real communication networks. In this
setting, one may not be able to guarantee agreement amongst all honest
parties, and some of them, say x, must be given up. Thus, in this line
of work the goal is to be able to tolerate a high value for t (a constant
fraction of n is the best possible) while minimizing x. As shown in the
original paper, the dependency on d, the degree of the network, to achieve
this goal is paramount.

Indeed, the best polynomial-time a.e. agreement protocol tolerating
a constant fraction of corruptions t = αn, for some constant α > 0
(presented in the original paper, over two decades ago) has parameters,
d = nε for constant ε > 0 and x = μt for some constant μ > 1. In
this work, we significantly improve on the above parameters obtaining a
protocol with t = αn, d = O(logq n), for constant q > 0 and x = O( t

log n
).

Our approach follows that of Dwork et al. of reducing the a.e. agreement
problem to constructing a reliable transmission scheme between pairs
of nodes for a large fraction of them; however, given our setting’s more
stringent conditions—poly-logarithmic degree and a linear number of
corruptions, such a task is significantly harder.

We also consider the problem of secure computation on partially con-
nected networks, as formulated by Garay and Ostrovsky [Eurocrypt ’08],
and as a corollary to our main result obtain an almost-everywhere secure
multi-party computation protocol with the same parameters as above,
again significantly improving on the bound on the number of left-out
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parties—x = O( t
log n

) for t ≤ αn corruptions, as opposed to x = O(t) in
the original work.

1 Introduction

Clearly, partially connected networks are far more realistic than fully connected
networks, especially as the number of nodes grows. Indeed, essentially all de-
ployed practical networks do not have dedicated links between each pair of nodes,
and instead rely on routing and multi-hop message transmission protocols. In
a seminal paper, Dwork, Peleg, Pippenger and Upfal [10] introduced the no-
tion of almost-everywhere agreement (a.e. agreement for short) in an effort to
model the reality of communication networks, as well as to capture the impact of
limited connectivity on the properties of fundamental fault-tolerant distributed
tasks, such as Byzantine agreement [21,18], which requires that parties agree
on a value based on initial inputs held by each of them, despite the disruptive
behavior of some of the nodes, and which so far had only been studied assuming
full connectivity amongst the parties.

Instead, in the Dwork et al. formulation, the n parties, or nodes, are connected
by a graph G. Nodes that are connected by an edge in G share a point-to-
point reliable channel with each other; other nodes have to communicate by
transmitting messages over the paths that might be available to them, through
other nodes in the network. Clearly, in such a setting, one may not be able
to guarantee agreement for all nodes in the network, even if they are honest.
For example, if an honest node is connected only to misbehaving (or “corrupt”)
nodes, then guaranteeing that this node reaches agreement with other honest
nodes is impossible. In other words, these honest nodes have to be “given up”
(hence the term “almost-everywhere” agreement) and its number becomes a
new relevant parameter to the problem. Thus, the added goal of fault-tolerant
protocols for partially connected settings, besides tolerating the maximal number
of faults or corruptions, is to minimize the number of such excluded parties—a
task which, as shown in [10], heavily depends on the degree of the graph.

Indeed, Dwork et al. constructed a.e. agreement protocols for several classes
of partially connected networks, which make the interplay between the various
parameters apparent. For example, they presented a protocol for a.e. agreement
on a constant-degree graph tolerating up to t = O( n

log n ) corrupt nodes, while
guaranteeing that no more than x = O(t) are left out. They also constructed a
protocol on a graph of degree nε for constant ε tolerating up to t = O(n) corrupt
nodes, with x = O(t). The main problem left open in [10] was to construct
graphs of low degree tolerating t = O(n) corrupt nodes with x = O(t) (or even
lower) excluded nodes. In a remarkable result, Upfal [22] showed the existence
of an a.e. agreement protocol on constant-degree graphs tolerating a constant
fraction of corrupt nodes, while giving up a linear (in t) number of honest nodes.
Unfortunately, the protocol of [22] runs in exponential time (in n).

In this work, we construct graphs of poly-logarithmic degree (O(logq n), for
constant q > 0), on which we show an efficient (i.e., polynomial-time) a.e.
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agreement protocol tolerating up to a constant fraction of corrupt nodes; further,
and in contrast to previous results, we only give up O( t

log n ) nodes, as opposed
to linear (in t). Thus, our protocol is the first significant (in fact, exponential)
improvement on the degree of graphs, as well as on the number of given-up nodes
from a constant fraction to a sub-constant, admitting deterministic polynomial-
time protocols since the work of [10] more than 20 years ago. We remark that,
similarly to [22], we construct a specific graph of poly-logarithmic degree along
with an a.e. agreement protocol on this graph network.

We also consider the problem of (unconditional, or information-theoretic) se-
cure multi-party computation (MPC) [2,8] in the context of partially connected
networks, as formulated by Garay and Ostrovsky [13]. By applying our new a.e.
agreement protocol to the construction of [13], we immediately obtain an a.e. MPC
protocol for graphs of poly-logarithmic degree, tolerating a linear number of cor-
ruptions, while giving up only O( t

log n ) parties from the secure computation.

Related work. We already mentioned above the formulation of the a.e. agreement
problem by Dwork et al. [10], and the result, albeit inefficient, by Upfal [22]
for constant-degree graphs tolerating a constant fraction of corruptions and yet
guaranteeing agreement also for a constant fraction of the nodes. Berman and
Garay [4,5], improved the efficiency of the protocols from [10], while Ben-Or and
Ron [3] considered the problem in which faults are random and not adversari-
ally chosen. Bagchi et al. [1] considered a related problem of obtaining a large
connected component of a graph (that avoids all adversarial nodes), such that
this connected component has high expansion given that the original graph had
high expansion. This result can be applied to improve the bounds obtained by
Upfal [22]. However, the algorithm for obtaining this large connected compo-
nent also does not run in polynomial time (in addition to the exponential-time
protocol from [22] that one would have to run on this connected component).

An alternative view to limited network connectivity is to try to minimize the
communication costs of fault-tolerant distributed tasks (Ω(n2) in the case of
Byzantine agreement [9]) for scalability purposes. In that vein, King et al. [17]
constructed a randomized a.e. agreement protocol with low communication and
parameters similar to ours, i.e., their protocol tolerates linear number of cor-
ruptions and gives up O( t

log n ) honest nodes. However, besides being non-error-
free and requiring parties to have access to private random bits (something
unavoidable if the communication complexity lower bound is to be overcome),
the protocol is only able to tolerate static corruptions (meaning which parties are
corrupted must be specified before the protocol execution starts); in contrast,
our protocol enjoys adaptive security, allowing an adversary to use information
obtained from a set of corrupted parties at one round to determine which node(s)
to corrupt next. In the fully connected network model, further work by King and
Saia [16] builds on [17] in the sense of avoiding all-to-all communication, and
yet achieve full agreement at a lower communication cost. The work of [16] also
differs from our setting in the following ways – it considers a fully connected
network, utilizes private random bits, and considers only static corruptions.
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Overview of our techniques. We will call the honest nodes for which we guarantee
agreement the privileged nodes, and the honest nodes for which we do not the
doomed nodes. Effectively, we follow the general approach of [10] and [22] for
a.e. agreement by constructing a reliable remote message transmission scheme
between any two nodes in a large set of privileged nodes. However, given only
poly-logarithmic degree and a linear number of corruptions, this is significantly
harder than in [10]. On the other hand, the technique used by Upfal [22] is to
simply “flood” all the paths with the message, and showing that at least one
uncorrupted path exists; one can then exhaustively search for the set of corrupted
nodes and obtain the message m, which leads to an exponential-time algorithm.
In contrast, we will need to obtain polynomially many good paths between two
privileged nodes using just poly-logarithmic degree, even though a linear number
of nodes may be corrupted.

Further, unlike the transmission schemes of [10] and [22], nodes along the
path in our scheme will be more “proactive” and will not just simply forward the
message being sent. This is necessary in order to ensure that the correct message
keeps being transmitted along majority of the paths at the different stages.
This will then enable us to get a polynomial-time reliable message transmission
scheme, which in turn will be sufficient both for our result on a.e. agreement as
well as for a.e. MPC.

Our starting point is the reliable remote message transmission scheme TSdppu

from [10] mentioned above for constant degree networks, which tolerates t =
O( n

log n ) number of corruptions and gives reliable communication between any
two nodes from a set of privileged nodes of size n − O(t). At a high level, the
scheme associates with every node u in the graph a fan-in set and a fan-out
set of a fixed (but not necessarily constant) size. In addition, (not necessarily
vertex-disjoint) paths from a node to its sets are specified, as well as (vertex-
disjoint) paths for all ordered pairs of one node’s fan-out set to any other node’
fan-in set. When node u wants to send a message to node v, TSdppu consists of
three phases: first u sends the message to all members of its fan-out set; each
member then sends the message to its connected (via a path) pair in v’s fan-in
set; and finally each member in v’s set forwards the message to v, who accepts
the value resulting from the majority of received values.

Given such a scheme, our construction proceeds as follows. We start with
the technique of forming partially overlapping “committees,” introduced by
Bracha [6] and used in several other contexts (e.g., [20,23,15,11]). However, while
this is a somewhat standard first step, we need to make use of several additional
tools in order for the technique to be successful in our a.e. agreement context.
Our construction works through the following steps:

1. We create N = n logk′
n committees (for some constant k′) such that at

most O( N
log N ) of these committees are “bad” (by “bad” here we mean that some

threshold fraction of the nodes in the committee are corrupted).
2. For every node in the graph, we assign a poly-logarithmic number of these

committees as the helper committees for this node. We view these committees
as “super-nodes” that can be connected by “super-edges”; when two committees
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are connected by a super-edge, we have to connect node i in the first committee
with node i in the second, ordering nodes in each committee lexicographically.

3. Now, if we assume that these N committees are nodes connected by edges
as per the graph Gdppu from [10], then using the transmission scheme TSdppu, one
can obtain a large set of committees (call them the “privileged” committees) such
that any two committees can reliably communicate between themselves. This is
because only O( N

log N ) of the committees are corrupt. But, for this to work, com-
mittees need to be able to communicate across super-edges in exactly the same
way as nodes communicate across edges. In order to achieve this task, we will
make use of a suitable differential agreement protocol, specified in Section 2.3.
The validity condition of this agreement protocol has the property that if many
honest nodes begin the protocol with some value v then at the end of the pro-
tocol all honest nodes will output v. In this way, reliable message transmission
across a super-edge can be obtained by having nodes in one committee send
the message to nodes in the other committee and running the above differential
agreement protocol amongst the nodes of the second committee.

4. We next show that forn−t−O( t
log n )nodes (those are the“privileged”nodes),

most helper committees assigned to these nodes are also privileged committees.
5. The idea now is to first make a privileged sender node us send the mes-

sage m to all its helper committees (most of which are privileged). Second,
these helper committees can communicate with the privileged committees in the
helper-committee set of the receiver node ur using the protocol TSdppu. Finally,
ur can obtain the value m from its set of helper committees.

Organization of the paper. We begin in Section 2 with the description of our
model, as well as the definitions and building blocks needed for our protocol. Sec-
tion 3 is dedicated to our main result: the construction of our poly-logarithmic
degree graph, and presentation of our protocol for reliable remote message trans-
mission. Due to space limitations, some of the background material, the “re-
duction” of a.e. agreement and secure computation on sparse networks to our
reliable remote message transmission protocol, as well as proofs, are given in the
full version [7] of this paper.

2 Model, Definitions and Building Blocks

Let G = (V,E) denote a graph with n nodes (i.e., |V | = n). We also refer to the
nodes of the network as parties. The edges of the graph model communication
links or channels. We assume a synchronous network and assume that the com-
munication is divided into rounds. In every round, a player can send (possibly
different) messages on its incident edges; these messages are delivered before the
next round. An adversary A can corrupt a set of nodes T in the network such
that T ⊂ V, |T | ≤ t. A has unlimited computational power, can corrupt nodes
adaptively (i.e., can use information obtained from a set of corrupted parties at
one round to determine which node(s) to corrupt next) and is rushing (i.e., A
can learn messages sent by honest parties before deciding the messages to be
sent by corrupted parties in a particular round).
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2.1 Expander Graphs

Expander graphs are graphs with the property that for any (not too large)
subset of nodes S, the number of outgoing edges from this set is proportional to
its size. Expander graphs can also be viewed as bipartite graphs. When we wish
to consider this representation, we will use the following definition.

Definition 1. A bipartite multi-graph with n left vertices and m right vertices,
where every left vertex has degree d, can be specified by a function Γ : [n]× [d] →
[m], where Γ (u, r) denotes the rth neighbor of vertex u ∈ [n]. For a set S ⊆ [n],
we write Γ (S) to denote the set of neighbors of S. That is, Γ (S) = {Γ (x, y) :
x ∈ S, y ∈ [d]}.

Definition 2. A bipartite graph Γ : [n]×[d] → [m] is an (n,m, d, l, A)-expander,
if for every set S ⊆ [n], with |S| = l, we have |Γ (S)| ≥ A · l. Γ is an (n,m, d,≤
lmax, A) expander if it is an (n,m, d, l, A) expander for every l ≤ lmax.

A bipartite expander is balanced if m = n. It is right-regular if all nodes on the
right also have the same degree D (nodes on the left all have degree d). We will
make use of constant-degree balanced expander graphs1 that are right D-regular,
where A = ε′d for some constant ε′, lmax ≤ θn for constant θ and D = O(d).
Such graphs can be constructed using any constant-degree unbalanced (m < n)
expander following the work of Guruswami et al. [14].

2.2 Almost-Everywhere Agreement

The problem of almost-everywhere agreement (a.e. agreement for short) was in-
troduced by Dwork et al. [10]. A.e. agreement “gives up” certain honest nodes
in the network, which is unavoidable due to their poor connectivity with other
honest nodes. We refer to the given-up nodes as doomed nodes; the honest nodes
for which we guarantee agreement are referred to as privileged nodes. Let the set
of doomed nodes be denoted by X and the set of privileged nodes by P . Note
that the sets P and X are a function of the set of corrupted nodes (T ) and the
underlying graph. Let |X | = x and |P| = p. Clearly, we have p + x + t = n. We
begin with the formal definition of a.e. agreement.

Definition 3. A protocol for parties {P1, P2, · · · , Pn}, each holding initial value
vi, is an almost-everywhere agreement protocol if the following conditions hold
for any adversary A that corrupts a set of nodes T with |T | ≤ t:

Agreement: All nodes in P output the same value.
Validity: If for all nodes in P, vi = v, then all nodes in P output v.

The difference with respect to standard Byzantine agreement is that in the latter
the two conditions above are enforced on all honest nodes, as opposed to only
the nodes in P . For brevity, we keep the same names.
1 Strictly speaking, we do not require the expander to be balanced, only that n =

m logs m, for some constant s ≥ 0.
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In the context of a.e. agreement, one would like the graph G to have as small
a degree as possible (i.e., in relation to the size of the graph and to the number of
corrupted parties). We would like the protocol to guarantee agreement amongst
n−O(t) parties, while allowing t = αn for some constant 0 < α < 1.

Dwork et al. constructed graphs with constant degree tolerating at most t =
O( n

log n ) corruptions and at the same time guaranteeing agreement amongst n−
O(t) nodes in the network. That is, the graph Gdppu = (Vdppu, Edppu) on n nodes
has constant degree. The number of corrupted parties t, tolerated by the protocol
can be at most O( n

log n ), while the number of doomed nodes is a constant times
t. The idea behind the protocol is to simulate a complete graph on the set of
privileged nodes. The theorem from [10] is as follows:

Theorem 1. There exist constants μ and d independent of n and t, an n-vertex
d-regular graph Gdppu that can be explicitly constructed, and a communication
protocol TSdppu such that for any set of adversarial nodes T in Gdppu such that
|T | = t = O( n

log n ), the communication protocol guarantees reliable communica-
tion between all pairs of nodes in a set of honest nodes P of size ≥ n − μt, for
constant μ > 1. The protocol generates polynomial (in n) number of messages
and has polynomial (in n) running time.

Given the above theorem, Dwork et al. observe that one can run any Byzantine
agreement protocol designed for a fully connected graph on Gdppu by simulating
all communication between nodes in the network with the communication proto-
col TSdppu. We remark that this results in a slow down of the agreement protocol
by a factor proportional to the diameter of the graph. (A high-level idea of how
TSdppu works was given in the overview of our techniques in Section 1; we refer
the reader to [10] for further details.)

As a result, let μ, d, and t be as defined above and let BA(n, t′) be an agree-
ment protocol for a complete network with up to t′ = μt faulty processors. Then,
simulating the protocol BA(n, t′) on the network Gdppu using the communication
protocol TSdppu, guarantees agreement among at least n − μt honest nodes in
the presence of up to t = O( n

log n ) faulty nodes.

2.3 Differential Agreement

Fitzi and Garay [12] introduced the problem of δ-differential agreement (also,
“consensus”) developing on the so-called “strong consensus” problem [19], in
which every party begins with an input v from a larger (than binary) domain
D.2 We describe the problem below and state the results from [12].

In the standard Byzantine agreement problem, n parties attempt to reach
agreement on some value v (either 0 or 1). Let cv denote the number of honest
parties whose initial value is v, and δ be a non-negative integer. δ-differential
agreement is defined as follows:
2 In contrast to standard Byzantine agreement, the validity condition in the strong

consensus problem states that the output value v must have been the input of some
honest party Pi (which is implicit in the case of binary Byzantine agreement).
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Definition 4. A protocol for parties {P1, P2, · · · , Pn}, each holding initial value
vi, is a δ-differential agreement protocol if the following conditions hold for any
adversary A that corrupts a set T of parties with |T | ≤ t:

Agreement: All honest parties output the same value.
δ-Differential Validity: If the honest parties output v, then cv + δ ≥ cv̄.

Theorem 2. [12] In a synchronous, fully connected network, δ-differential
agreement is impossible if n ≤ 3t or δ < t. On the other hand, there exists an ef-
ficient (i.e., polynomial-time) protocol that achieves t-differential agreement for
n > 3t in t + 1 rounds.

Let DA(n, t, δ) denote a δ-differential agreement protocol for a fully connected
network tolerating up to t faulty processors.

3 Reliable Remote Communication on Sparse Networks

In this section we show how to build a reliable message transmission scheme,
TSlow, between any two nodes ui and uj that are in a large set of privileged nodes
P , on a low-degree (i.e., poly-logarithmic) graph. We begin with the construction
of the graph, followed by the description of the transmission scheme, followed
by its proof of correctness.

Given only poly-logarithmic degree and a linear number of corruptions, con-
structing a reliable remote message transmission scheme is significantly harder
than in the case of [10]. As mentioned before, the technique used by Upfal [22]
of simply “flooding” all the paths with the message, and showing that at least
one corrupted path exists, leads to an exponential-time algorithm. To avoid
that, we will need to obtain multiple good paths between two privileged nodes
using just poly-logarithmic degree, even though a linear number of nodes may
be corrupted. A salient feature of our transmission scheme compared to those of
[10] and [22] will be that nodes along the path in our scheme play and active role
and do not just simply forward the message being sent. This is done in order to
ensure that the correct message is transmitted along a majority of the paths.

3.1 The Low-Degree Graph Construction

The graph G = (V,E) that we construct is as follows. Let the nodes in V be
denoted by u1, u2, · · · , un. Let Gexp = (V,Eexp) be an (n, d, ε)-expander graph for
constants d, ε > 0 on the nodes u1, u2, · · · , un. We begin, by first forming partial
overlapping “virtual committees.” The notion of such committees was introduced
by Bracha [6] in the context of Byzantine agreement and has since been used in
the construction of several protocols for other problems, including leader election,
secure message transmission and secure multi-party computation [20,23,15,11].

We form committees in the following manner. Start at any node ui ∈ V , and
consider all possible walks of length γ = k log logn starting at this node. Group
nodes in each walk to form a committee Cj . We repeat this procedure beginning
at every node in V . Let k′ = k log d. Note that, by the above procedure, we
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create N = n logk′
n committees C = {C1, · · · , CN}, each of size γ = k log logn.

We construct the set of edges E in graph G in the following three ways:

1. First, If ui, uj ∈ Cl for some Cl, then we connect ui and uj by an edge. In
other words, we connect all nodes within a committee by a clique.

2. Next, let Gdppu = (Vdppu, Edppu) be a constant-degree r-regular graph on the
“nodes” C = {C1, C2, · · · , CN} as constructed in the work of [10]. Now, if
(Ci, Cj) ∈ Edppu, then for all 1 ≤ l ≤ γ, we connect the lth node in Ci with
the lth node in Cj , ordering nodes in Ci and Cj lexicographically; we say
“Ci and Cj are connected by a super-edge” to express this.

3. Finally, let Gbiexp be a (N,N, d′,≤ θN, ε′d′) bipartite expander graph that
is right D-regular for constants d′, ε′, θ,D > 0. Let the nodes on the left of
this graph (call it Vl) represent the nodes of G (i.e., V ) where each node
ui ∈ V appears in Vl a (logk′

n) number of times; we use ui,1, · · · , ui,logk′
n

to denote these logk′
n nodes. Let the nodes on the right of this graph (call

it Vr) represent the N committees formed by the above outlined method.
Now, if (ui,m, Cj), 1 ≤ m ≤ logk′

n, is an edge in Gbiexp, we connect ui and
all nodes in Cj by an edge.

This completes the construction of graph G = (V,E). In the full version [7], we
show that the degree of every node in G is poly-logarithmic in n.

3.2 The Reliable Remote Message Transmission Scheme

We begin with a high-level description of our reliable remote message transmis-
sion scheme, TSlow.

High-level intuition. Let the number of nodes in the network be n and let the num-
ber of corrupt nodes be t = αn. Using the n nodes of G, following our graph con-
struction above we formed N = n logk′

n committees each of size k log logn. We
call a committee bad if thenumber of corruptednodes in it is≥ k log log n

4 ; otherwise,
we call a committee good. Now, again according to our graph construction, nodes
within each committee are connected by a clique and hence can run any standard
Byzantine agreement protocol successfully within themselves if the number of cor-
rupted nodes in them is less than 1

4

th fraction. In other words, any honest node in a
good committee can agree upon a value with other honest nodes in the committee.

We begin by showing that the number of bad committees (or super-nodes) is
at most T = N

cμ log N , for constants μ, c > 1. Recall that the N committees are
connected by the graph Gdppu. Therefore, out of these N committees, at least
N − μT of them are “privileged” and hence any two privileged committees can
execute reliable remote message transmission between themselves.

In order to do this, we will describe a protocol for simulating the transmission
of message m across a super-edge that connects two good committees. In par-
ticular, we need to make sure that while transmitting a message across a path
consisting of committees, the number of honest players holding the message m
in every committee along the path, remains the same. For this, we make use of
a differential agreement protocol (Section 2.3).
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Now that we have the guarantee that any two privileged committees can re-
liably communicate, we can outline our transmission scheme. Recall that every
node ui is connected to β = d′ logk′

n committees according to the bipartite
expander graph Gbiexp. Let these β committees be called helpers (or helper com-
mittees) of node ui. We will show that for at least n− μ′t

log n (for some constant
μ′) of the nodes in V (this will be the set of privileged nodes P), more than 5β

6
of the nodes’ helpers are privileged committees. This means that for every priv-
ileged node ui, more than a 5

6

th fraction of ui’s helper committees are privileged
according to the [10] graph connecting the committees.

Suppose now that ui ∈ P wishes to send message m reliably to uj ∈ P . ui first
sends m to all its helper committees; call these helper committees Cui

1 , · · · , Cui

β .
Let uj ’s helper committees be denoted by C

uj

1 , · · · , Cuj

β . Next, for all 1 ≤ l ≤ β,
Cui

l sends message m to C
uj

l using the transmission scheme TSdppu simulating
the communication across super-edges with the (differential agreement-based)
protocol mentioned before. Since we have the guarantee that more than a 5

6

th

fraction of ui and uj’s helper committees are privileged and any two privileged
committees can reliably send messages to each other (according to [10]), we have
that a 2

3

rds majority (> 1
2 ) of the helper committees of uj receive the message

m. Since in a privileged committee, greater than a 3
4

ths fraction of the nodes are
honest, a simple majority (> 2

3 ×
3
4 ) of the nodes (these nodes are honest) in the

helper committees of uj receive message m. Finally, ui simply receives a value
from all its helper committees and takes a majority of the values received. We
now describe the transmission scheme in detail.

Message transmission between committees. We begin by describing the protocol
for reliable remote message transmission executed by committees. We have a
set of N committees, C = {C1, · · · , CN}, each of size γ = k log logn. Nodes
within a committee are connected by a clique. The N committees are connected
through super-edges according to a constant degree graph Gdppu from [10]. A
super-edge between two committees Ci and Cj is obtained by connecting the lth

node in Ci to the lth node in Cj (for all 1 ≤ l ≤ γ), ordering the nodes in Ci

and Cj lexicographically. A committee is bad if at least k log log n
4 of the nodes

in it are corrupt. Let the number of bad committees be denoted by TC , with
|TC | = T . We have a sender committee Cs and a receiver committee Cr. Both
these committees are good and furthermore are “privileged” according to the
graph Gdppu. All honest nodes in Cs begin the protocol with a message m. We
require that at the end of the protocol all honest nodes in Cr output the same
message m. Furthermore, we require that the set of privileged committees PC be
large; i.e., at least N − μT for some constant μ > 0. We outline such a protocol
below, which essentially consists of running the TSdppu transmission scheme, but
at a committee level:

TSC
dppu(Cs,Cr,T, μ,m) :

1. Committees {C1, · · · , CN} view themselves as nodes in the graph Gdppu. Cs

uses the reliable remote message transmission scheme TSdppu to send message



Improved Fault Tolerance and Secure Computation on Sparse Networks 259

m to Cr. However, whenever committee Ci is supposed to send messagem to
committee Cj , such that Ci and Cj are connected by a super-edge, the com-
mittees execute the protocol SendC(Ci, Cj ,m) described below.

2. Let the output of committee Cr be mr from the above protocol. Every node
u ∈ Cr outputs mr as the output of the protocol.

SendC(Ci,Cj,m) :
1. Let the nodes in Ci be denoted by ui

1, · · · , ui
γ and the nodes in Cj be denoted

by uj
1, · · · , uj

γ . ui
l sends message m to uj

l across the edge connecting the two
nodes, for all 1 ≤ l ≤ γ. Let the value received by uj

l be denoted by mj
l .

2. The nodes uj
1, · · · , uj

γ execute a differential agreement protocol DA(γ, +γ
4 ,−

1, +γ
4 , − 1) with inputs mj

1, · · · ,mj
γ . Let the value agreed by honest nodes in

Cj be denoted by m′. The output of the committee Cj in the protocol is m′.

The main protocol. Let ui, uj ∈ V be two privileged nodes. ui is connected to
β = d′ logk′

n helper committees Cui
1 , · · · , Cui

β . In turn, let the nodes in Cui

l

be denoted by Cui

l [1], · · · , Cui

l [γ], where γ = k log logn (likewise for uj). The
protocol for reliable remote message transmission between two privileged nodes
ui and uj is given below.

TSlow(ui,uj,m) :
1. For all 1 ≤ l ≤ β, 1 ≤ w ≤ γ, ui sends Cui

l [w] the value m using the edge
connecting ui and Cui

l [w].

2. For all 1 ≤ l ≤ β, Cui

l sends C
uj

l message m using protocol TSC
dppu(C

ui

l ,
C

uj

l , T, μ,m).

3. For all 1 ≤ l ≤ β, 1 ≤ w ≤ γ, let m
uj

l [w] denote the output of node C
uj

l [w]
after execution of protocol TSC

dppu(C
ui

l , C
uj

l , T, μ,m). For all 1 ≤ l ≤ β, 1 ≤
w ≤ γ, Cuj

l [w] sends node uj the value m
uj

l [w] using the edge connecting
C

uj

l [w] and uj .

4. uj takes the majority of all muj

l [w] values received and outputs this ma-
jority (call it m′) as the output of the protocol.

3.3 Proof of Correctness

We prove the correctness of our transmission scheme (theorem below) through
a series of lemmas that can be found in the full version [7] of this paper.

Theorem 3. Let ui and uj be two privileged nodes in graph G. Then TSlow(ui,
uj,m) is a reliable remote message transmission protocol between ui and uj.

To conclude, following the approaches of [10,13], we show in the full version [7]
how to use our transmission scheme to achieve a.e. agreement on graph G, and
a.e. secure computation on a graph with degree a constant times G’s.
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Sparse Reliable Graph Backbones

Shiri Chechik1,�, Yuval Emek2,3, Boaz Patt-Shamir3,��, and David Peleg1,�

1 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel
2 Microsoft Israel R&D Center, Herzelia, Israel

3 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel

Abstract. Given a connected graph G and a failure probability p(e) for
each edge e in G, the reliability of G is the probability that G remains con-
nected when each edge e is removed independently with probability p(e).
In this paper it is shown that every n-vertex graph contains a sparse back-
bone, i.e., a spanning subgraph with O(n log n) edges whose reliability is
at least (1−n−Ω(1)) times that of G. Moreover, for any pair of vertices s, t
in G, the (s, t)-reliability of the backbone, namely, the probability that s
and t remain connected, is also at least (1− n−Ω(1)) times that of G. Our
proof is based on a polynomial time randomized algorithm for construct-
ing the backbone. In addition, it is shown that the constructed backbone
has nearly the same Tutte polynomial as the original graph (in the quarter-
plane x ≥ 1, y > 1), and hence the graph and its backbone share many
additional features encoded by the Tutte polynomial.

Keywords: network reliability, sparse subgraphs, Tutte polynomial.

1 Introduction

Finding a sparse subgraph that approximately preserves some key attribute of
the original graph is fundamental to network algorithms: any lazy network man-
ager would find the capability to maintain fewer links in a large network a pre-
cious gift. This can also be considered from the perspective of identifying a set
of redundant edges in a graph. Whether an edge is redundant or not depends of
course on the attributes that should be preserved. Spanners [14,15] for example,
approximately preserve pairwise distances in graphs, with a trade-off spectrum
between the quality of approximation and the number of edges in the spanner.
The general graph attribute we focus on in the current paper is connectivity
under random edge failures.

Specifically, we consider the classical setting of network reliability, defined
over a graph G whose edges e are associated with failure probabilities p(e). The
reliability of G is the probability that G remains connected when each edge e
of G is removed independently with probability p(e). Clearly, the reliability of
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a graph is monotone non-increasing with respect to edge removal. We seek a
sparse spanning subgraph (containing all vertices and only a small subset of the
edges) of G, referred to henceforth as a backbone, whose reliability is almost as
good as that of G.

Our main result is a randomized algorithm for constructing a backbone with
O(n log n) edges that approximates the reliability of G to within a (multiplica-
tive) factor of 1−n−Ω(1), where n denotes the number of vertices. The random-
ized algorithm allows edge multiplicities, so G may have significantly more than(
n
2

)
edges. This construction is tight: we show that there are graphs whose re-

liability cannot be approximated to within any positive factor by any subgraph
with significantly less than n logn edges. Moreover, the backbone graph approx-
imates not only the all-terminal variant of the reliability (the probability that
the whole graph remains connected), but also the (s, t)-reliability of G for any
two vertices s and t, defined as the probability that s and t remain in the same
connected component. Our construction is presented first for the homogeneous
case, where the failure probability of every edge is some constant 0 < p < 1,
and then extended to the general heterogeneous case, assuming that there aren’t
“too many” edges whose failure probabilities are very close to 1 (see Sect. 3.1
for a precise statement).

It turns out that our backbone also provides a good approximation for the
Tutte polynomial1. Specifically, in the quarter-plane x ≥ 1, y > 1 the Tutte
polynomial of the backbone approximates the Tutte polynomial of the original
graph to within a factor of 1±n−Ω(1) after multiplying by a (trivially calculated)
normalizing factor that accounts for the different number of edges. Since the
Tutte polynomial encodes many interesting features of the graph (including its
reliability), this result seems to indicate that our backbone construction provides
a good representation of the graph in some deeper sense.

Related Work. Network reliability is a fundamental problem in operations
research since the early days of that discipline [13]; see the survey [2] for a
comprehensive account. It is also well-known in the area of computational com-
plexity; various versions of the network reliability problem are listed among the
14 basic #P-complete problems2 presented in [18]. In particular, both the all-
terminal reliability problem and the (s, t)-reliability problem are known to be
#P-hard even when the failure probabilities p(e) are homogeneous. [10] estab-
lishes a fully polynomial time randomized approximation scheme (FPRAS) for
the problem of evaluating the probability that the graph disconnects under ran-
dom edge failures. Although this disconnection probability is simply one minus
the reliability of the graph, the algorithm of [10] does not translate to a (multi-
plicative) approximation for the problem of evaluating the reliability. In fact, the
approximability of the all-terminal reliability and the (s, t)-reliability problems
is still an open question.

1 The Tutte polynomial TG(x, y) is a bivariate polynomial whose coefficients are de-
termined by the graph G. See Sect. 5 for details.

2 The complexity class #P consists of the counting problems whose decision versions
are in NP.
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A notion somewhat related to ours is that of graph sparsifiers [16,17]: An n
vertex weighted graph H is said to be a κ-sparsifier of an n vertex weighted
graph G if xTLGx ≤ xTLHx ≤ κ · xTLGx for every vector x ∈ Rn, where LH

and LG are the Laplacian matrices of H and G, respectively. Sparsifiers are
a generalization of the cut-preservers of [3], that approximately preserve the
total weight of edges crossing any cut in the graph. Indeed, the cut-preserving
condition corresponds to the sparsifier condition restricted to vectors x ∈ {0, 1}n.

One is interested in constructing sparse sparsifiers (hence the name) and the
state of the art in that context is the recent construction of (1 + ε)-sparsifiers
with O(n) edges presented in [6]. Note that unlike the backbone constructed in
the current paper, sparsifiers are not required to be subgraphs of the original
graph. Furthermore, even if a sparsifier edge is present in the original graph, its
weight may be different. In fact, there exist unweighted graphs for which every
good sparsifier must introduce edges of widely varying weights [17].

A brief overview of the Tutte polynomial is given in Sect. 5. Here we comment
that the computational complexity of evaluating the Tutte polynomial on various
points (x, y) ∈ R

2 is almost completely understood. The problem admits an
efficient algorithm if (x, y) ∈ {(1, 1), (−1,−1), (0, 1), (−1, 0)} or if (x−1)(y−1) =
1; otherwise it is #P-hard [8]. An FPRAS exists for the y > 0 portion of the
“Ising” hyperbola (x − 1)(y − 1) = 2 [9]; and unless RP = NP, an FPRAS
does not exist if x < −1 or if y < −1 except for the aforementioned easy-to-
compute points, the ray x < −1, y = 1, and the y < −1 portion of the hyperbola
(x− 1)(y − 1) = 2 [7]. An FPRAS also exists for the quarter-plane x ≥ 1, y ≥ 1
if the minimum degree in G is Ω(n) [1] and for the half-plane y > 1 if the size
of a minimum cut in G is Ω(log n) [10].

Technique. Our backbone construction samples each edge with probability
inverse proportional to its strength, a parameter closely related to edge con-
nectivity. This technique was introduced in [3] for the construction of sparse
cut-preservers. In [3], the weights of the selected edges are then modified to
meet the cut-preserving condition. This cannot be done when constructing a
backbone: we can only remove edges, and we cannot change intrinsic attributes
(namely failure probabilities) of the remaining edges. Nevertheless, we show that
with high probability, the resulting backbone approximately preserves the relia-
bility of the original graph. The main ingredient in our analysis is the fact that
graphs with logarithmic edge connectivity are highly reliable [12,10]. (Note that
we do not make any assumptions on the connectivity of the original graph.) The
Tutte polynomial analysis is slightly more involved and it essentially relies on
an observation of [1] combined with a theorem of [10].

Paper Organization. The remainder of this paper is organized as follows.
Section 2 includes the preliminaries used throughout the paper. The backbone
construction is presented in Sect. 3 and the matching lower bound is established
in Sect. 4. In Sect. 5 we prove that our backbone also provides a good approxi-
mation for the Tutte polynomial.
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2 Preliminaries

Unless stated otherwise, all graphs mentioned in this paper are undirected and
not necessarily simple (i.e., they may contain parallel edges and self loops). We
denote the vertex set and edge set of a graph G by V (G) and E (G), respectively.
The graph induced on G by a vertex subset U ⊆ V (G) is G(U) = (U,E (G) ∩
(U × U)). The graph induced on G by an edge subset F ⊆ E (G) is simply
G(F ) = (V (G), F ). Consider some partition of V (G) into V (G) = U1 ∪ · · · ∪Ur

and let U = {U1, . . . , Ur}. We refer to the edges in E (G) ∩
⋃r

i=1 Ui × Ui as the
internal edges of U and to the edges in E (G) ∩

⋃
i�=j Ui × Uj as the external

edges of U .
A cut C of a graph G is a partition of V (G) into two non-empty subsets, that

is, C = {U1, U2}, where U1 ∩U2 = ∅ and U1 ∪ U2 = V (G). We say that an edge
e ∈ E (G) crosses C if e ∈ U1 × U2. The set of edges crossing C is denoted by
E (C). The cardinality |E (C)| is referred to as the size of C; if the edges of G are
associated with weights, then the total weight of all edges in E (C) is referred to
as the weight of C. A min cut (respectively, min weight cut) is a cut of minimum
size (resp., weight).

3 Backbone Construction and Reliability Analysis

A network reliability instance consists of a connected graph G and a failure
probability 0 < p(e) < 1 associated with each edge e ∈ E (G). The network is
assumed to occasionally undergo an edge failure event F . Upon such an event,
each edge e ∈ E (G) fails, i.e., is removed from the graph, with probability p(e)
independently of all other edges. In the all terminal network reliability prob-
lem, one is interested in the probability that G remains connected following the
failure event F , whereas in the two terminal network reliability problem one is
interested in the probability that two designated vertices s and t remain in the
same connected component of G following the event F . The former probability,
denoted REL(G, p), is referred to as the reliability of G and the latter, denoted
REL(G, s, t, p), is referred to as the reliability of s and t in G.

Our goal in this section is to establish the existence of a backbone with
O(n log n) edges that approximates the reliability of the original graph. We first
focus on homogeneous failure probabilities, proving Theorem 1. The extension
to heterogeneous failure probabilities is discussed in Sect. 3.1.

Theorem 1. There exists an efficient randomized algorithm that given a con-
nected graph G, failure probability 0 < p < 1, and performance parameters
δ1, δ2 ≥ 1, outputs a backbone G′ of G that satisfies the following three require-
ments with probability 1 −O(n−δ1):

(1) |E (G′)| = O
(
n logn ·

(
δ1 + δ2

1−p

))
;

(2) REL(G′, p) ≥ REL(G, p) ·
(
1 −O

(
n−δ2

))
; and

(3) REL(G′, s, t, p) ≥ REL(G, s, t, p) ·
(
1 −O

(
n−δ2

))
for every s, t ∈ V (G).
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Our technique derives from that presented in [3]; for completeness, we describe
some ingredients in detail.

Strong Components. A graph G is said to be k-connected if the size of every
cut in G is at least k. Fix some vertex subset U ⊆ V (G). The vertex induced
subgraph G(U) is called a k-strong component of G if it is k-connected and G(U ′)
is not k-connected for any vertex subset U ′ ⊆ V (G) such that U ′ � U . If G(U1)
and G(U2) are k-strong components of G, then U1 and U2 must be disjoint, as
otherwise G(U1∪U2) is k-connected. Therefore if the size of a minimum cut in G
is c, then the k-strong components of G for k = c, c+1, . . . define a laminar family
over V (G), that is, G itself is the sole c-strong component, and for every k ≥ c,
the collection Uk of vertex sets of the k-strong components forms a partition of
V (G), refined by the partition Uk+1.

The strength of an edge e = (u, v) ∈ E (G), denoted ke, is defined to be the
maximum k such that u and v belong to the same k-strong component of G.
Note that ke ≥ k for every internal edge of Uk and ke < k for every external edge
of Uk. Moreover, if G(U) is a k-strong component, then the strength in G(U) of
every edge e ∈ E (G) ∩ (U × U) is equal to its original strength ke in G.

Edge Sampling. Consider some n-vertex graph G and let q : E (G) → [0, 1] be
a mapping that assigns some sampling probability q(e) to each edge e ∈ E (G).
Given some edge subset F ⊆ E (G), let F q be a random subset of F that contains
each edge e ∈ F with probability q(e) independently of all other edges and let
Gq = (V (G),E (G)q) be the random graph obtained from G by selecting each
edge e ∈ E (G) in that manner. The expected graph Ḡq of Gq is the weighted
graph obtained from G by associating a weight q(e) with each edge e ∈ E (G).
As the name implies, for each cut C in G, the weight of C in Ḡq reflects the
expected size of C in Gq. The following theorem, established in [11], guarantees
that if every cut in the expected graph is sufficiently heavy, then the sizes of
cuts in Gq can be “predicted” with high probability.

Theorem 2 ([11]). Let c̄ be the weight of a min weight cut in Ḡq and fix some
0 < ε < 1 and d > 0. If c̄ ≥ 3(d + 2) ln(n)/ε2, then with probability 1 − O(n−d),
every cut in Gq has size between 1 − ε and 1 + ε times its expected size (i.e., its
weight in Ḡq).

Consider some r disjoint graphs G1, . . . , Gr. Let ni = |V (Gi)| for every 1 ≤ i ≤ r
and let n =

∑r
i=1 ni. For i = 1, . . . , r, let qi : E (Gi) → [0, 1] be a mapping

that assigns some probability qi(e) to each edge e ∈ E (Gi). The statement of
Theorem 2 can be extended to hold for all graphs Gi simultaneously:

Corollary 1. Let c̄i be the weight of a min weight cut in Ḡqi

i for i = 1, . . . , r
and fix some 0 < ε < 1 and d > 0. If min1≤i≤r c̄i ≥ 3(d + 2) ln(n)/ε2, then with
probability 1 − O(n−d), every cut in Gqi

i has size between 1 − ε and 1 + ε times
its expected size (i.e., its weight in Ḡqi

i ) for all 1 ≤ i ≤ r.

Sampling Edges by their Strength. We now turn to describe Algorithm
SRGB, performing the actual construction of the sparse reliable backbone.
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The algorithm is given an n-vertex graph G with edge failure probability p
and two performance parameters δ1, δ2 ≥ 1. Let

ρ =
⌈
12 lnn · max

{
δ1 + 2, 2

δ2 + 2
1 − p

}⌉
(1)

and define q(e) = min{1, ρ/ke} for all e ∈ E (G), where ke is the strength of
e in G. The algorithm constructs the backbone G′ of G by selecting each edge
e ∈ E (G) independently with probability q(e), namely, G′ ← Gq.

We need to show that Algorithm SRGB guarantees the requirements of The-
orem 1. The authors of [3] analyze a very similar construction3 and show, among
other things, that E[|E (G′)|] = ρ(n− 1). By Chernoff’s inequality, the probability
that |E (G′)| is greater than, say, twice its expected value is exponentially small.
Part (1) of Theorem 1 follows. Our goal in the remainder of this section is to prove
that with probability 1 − O(n−δ1), the random graph G′ satisfies REL(G′, p) ≥
REL(G, p) · (1−O(n−δ2)). Proving Part (3) of the theorem, namely, showing that
with probability 1 − O(n−δ1 ) the random graph G′ satisfies REL(G′, s, t, p) ≥
REL(G, s, t, p) · (1 −O(n−δ2)) for every s, t ∈ V (G), is analogous.

Let G(U1), . . . , G(Ur) be the ρ-strong components of G and consider some
G(Ui), 1 ≤ i ≤ r. Let C be a cut in G(Ui) and let e be some edge in E (C).
Recall that the strength of e in G(Ui) is equal to its strength in G, denoted
ke. Since e crosses a cut of size |C| in G(Ui), it follows that ke ≤ |C|, thus∑

e∈E(C) 1/ke ≥ 1. On the other hand, G(Ui) is ρ-connected, hence ke ≥ ρ and
q(e) = ρ/ke. Therefore the weight of C in the expected graph Ḡq is∑

e∈E(C)

q(e) = ρ
∑

e∈E(C)

1/ke ≥ ρ .

By Eq. (1), ρ ≥ 12(δ1+2) lnn, so Corollary 1 can be applied to G(U1), . . . , G(Ur)
to conclude that with probability 1−O(n−δ1), every cut in G′(Ui), 1 ≤ i ≤ r, has
size at least ρ/2 (probability is w.r.t. the random choices of Algorithm SRGB).
Since Eq. (1) also implies that (1 − p)ρ/2 ≥ 12(δ2 + 2) lnn, an application of
Corollary 1 to G′(U1), . . . , G′(Ur) derives4 that with probability 1 − O(n−δ2),
all of these components remain connected following an edge failure event F (in
fact, the size of all cuts decreases by at most half).

Let A (respectively, A′) denote the event that G (resp., G′) remains connected
after an edge failure event F and let B (resp., B′) denote the event that all
the components G(U1), . . . , G(Ur) (resp., G′(U1), . . . , G′(Ur)) remain connected
after an edge failure event F . We argue that P(A′) ≥ P(A) · (1 − O(n−δ2)).
We know that P(B′) ≥ 1 − O(n−δ2) and by definition, P(B′) ≤ P(B) ≤ 1. Let
EX ⊆ E (G) be the set of all edges external to {U1, . . . , Ur}. Note that every

3 The construction in [3] assigns (new) weights to the edges of the random graph, and
hence its analysis requires some additional complications.

4 The fact that components of large edge connectivity admit high reliability was origi-
nally discovered by [12] and later on restated in [10]. Using their frameworks instead
of Corollary 1 would have resulted in slightly better constants.
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edge e ∈ EX has strength ke < ρ in G, and therefore was selected by Algorithm
SRGB with probability 1. It follows that all those edges are included in G′,
i.e., EX ⊆ E (G′), and thus P(A′ | B′) = P(A | B) ≥ P(A | ¬B). The argument
follows by rewriting

P(A′) ≥ P(A′ | B′) · P(B′) ≥ P(A | B) · (1 −O(n−δ2))

and

P(A) ≤ P(A | B) + P(A | ¬B) · P(¬B) ≤ P(A | B) · (1 + O(n−δ2 )) .

This completes the proof of part (2) of Theorem 1 as REL(G, p) = P(A) and
REL(G′, p) = P(A′).

Las-Vegas Implementation. As discussed above, our algorithm satisfies all
three requirements with very high probability. However, once invoking the al-
gorithm on some instance graph G, one may wish to ensure that indeed all
three requirements are satisfied. As stated above, the approximability of the all-
terminal reliability and (s, t)-reliability problems is still an open question. So, it
may seem hopeless to be able to check if requirements (2) and (3) indeed hold for
a specific invocation of our algorithm. However, following our line of arguments,
one can see that to guarantee that requirements (2) and (3) hold, it suffices to
check that the minimal cut in all ρ-strong components G(U1), . . . , G(Ur) is at
least ρ/2. This, of course, can be done in polynomial time.

Running Time. The running time of our algorithm is dominated by finding the
strength of the edges. It is not hard to see that this can be done in polynomial
time (by hierarchically decomposing the graph via n minimum cut computa-
tions). However, this could be too slow for certain applications. Luckily, our
algorithm does not require the exact values ke; rather, one can settle for approx-
imate values k̃e satisfying some properties. This can be done, using some ideas
presented in [3], so as to improve the overall running time to O(m log2 n).

3.1 Heterogeneous Failure Probabilities

We now turn to discuss the heterogeneous case, where each edge e has a
different failure probability p(e). It’s not hard to verify that setting ρ =⌈
12 lnn · max

{
δ1 + 2, 2 δ2+2

1−p̂

}⌉
, where p̂ is the highest failure probability in

G, yields the same analysis and results as for the homogeneous case. How-
ever, if p̂ is close to 1, then this would result in a backbone G′ with too
many edges. Consider, for example, an arbitrary graph G− where all edges
have the same (constant) failure probability 0 < p < 1, and augment it into
a graph G by adding a single new edge with very high failure probability, say,
p̂ = 1 − 1/n2. Clearly, applying Algorithm SRGB to G− will generate, with
probability at least 1 − O(n−δ1 ), a backbone G′− with O(n logn) edges such
that REL(G′−, p) ≥ REL(G, p) · (1 − O(n−δ2)). Using the algorithm with p̂,
however, will yield a very high value for ρ, and the resulting backbone G′ is
likely to contain Ω(n2) edges.
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Hence we are interested in constructing a backbone G′ with O(n log n) edges
that approximates the reliability of G even when some of the failure probabili-
ties are close to 1. We show that if the average failure probability of every cut
in G is at most p̄, then it is possible to construct a backbone G′ such that
with probability at least 1 − O(n−δ1 ), G′ has O

(
n log n
1−p̄

(
δ1 + δ2

1−p̄

))
edges and

REL(G′, p) ≥ REL(G, p) · (1−O(n−δ2)). This is depicted by the following theo-
rem whose proof is deferred to the full version of this paper.

Theorem 3. There exists an efficient randomized algorithm that given a con-
nected graph G, failure probability p(e) for each e ∈ E (G), where the average
failure probability of every cut in G is at most p̄, and performance parameters
δ1, δ2 ≥ 1, outputs a backbone G′ of G that satisfies the following three require-
ments with probability 1 −O(n−δ1):

(1) |E (G′)| = O
(

n log(n)
1−p̄

(
δ1 + δ2

1−p̄

))
;

(2) REL(G′, p) ≥ REL(G, p) ·
(
1 −O

(
n−δ2

))
; and

(3) REL(G′, s, t, p) ≥ REL(G, s, t, p) ·
(
1 −O

(
n−δ2

))
for every choice of s, t ∈

V (G).

4 A Tight Lower Bound

We now turn to show that the O(n log n) upper bound on the number of edges is
indeed tight. Consider some graph G and let SG be the collection of all spanning
subgraphs of G. Given some failure probability 0 < p < 1 and some real ε > 0,
let

ψp,ε(G) = max
{
REL(H, p) | H ∈ SG, |E (H)| ≤ (1 − ε)n log1/p n

}
.

We establish the following theorem.

Theorem 4. For every failure probability 0 < p < 1, the family {Kn,n}∞n=1 of
complete bipartite graphs with n vertices on each side satisfies

(1) limn→∞ REL(Kn,n, p) = 1; and
(2) for every constant ε > 0, limn→∞ ψp,ε(Kn,n) = 0.

Proof. Requirement (1) is immediately satisfied by Theorem 2, so it remains to
establish requirement (2). To that end, fix some n and consider some constant ε >
0 and some spanning subgraph H of Kn,n such that |E (H)| ≤ (1 − ε)n log1/p n.
The subgraph H is bipartite as well; let Z = {v1, . . . , vk} be the set of vertices of
degree at most (1 − ε/2) log1/p n on its left side. By a straightforward counting

argument, k ≥ n
(
1 − 1−ε

1−ε/2

)
> εn/2.

Let Ai be the event that vi becomes an isolated vertex under an edge failure
event F . By definition, P(Ai) ≥ p(1−ε/2) log1/p n = n−(1−ε/2). Since H is bipartite,
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the events A1, . . . , Ak are independent (each determined by a disjoint set of
edges), hence the probability that none of them occurs is at most(

1 − n−(1−ε/2)
)k

≤
(
1 − n−(1−ε/2)

)εn/2

≤ e−εnε/2/2 ,

which tends to 0 as n → ∞. The assertion follows as REL(H, p) ≤ P(¬A1 ∧· · ·∧
¬Ak). '(

5 The Tutte Polynomial of the Backbone

The Tutte polynomial, introduced by W.T. Tutte, is a bivariate polynomial
whose coefficients are determined by a given graph. The Tutte polynomial is
a central concept in algebraic graph theory, as it captures many interesting
properties of the graph from which it is derived. [4] gives a relatively updated
treatment of the concept. Below, we only review the basic definitions and some
key results.

Let G be a graph. The Tutte polynomial of G at point (x, y) ∈ R
2, denoted

TG(x, y), is defined by

TG(x, y) =
∑

F⊆E(G)

(x − 1)K(F )−K(G)(y − 1)K(F )+|F |−n ,

where n = |V (G)|, and for F ⊆ E (G), K(F ) denotes the number of connected
components in the graph (V (G), F ), and K(G) = K(E (G)). The Tutte poly-
nomial contains many interesting points and lines that capture combinatorial
features of the graph G, including:

– TG(1, 1) counts the number of spanning trees of G.
– TG(2, 1) counts the number of spanning forests of G.
– TG(1, 2) counts the number of connected spanning subgraphs of G.
– At y = 0 and x = 1−λ for positive integer λ, the Tutte polynomial specializes

to yield the chromatic polynomial χG(λ) = (−1)n−K(G)λK(G)TG(1 − λ, 0)
that counts the number of legal vertex colorings of G using λ colors.

– At x = 1 and y = 1/(1−p) for 0 < p < 1, the Tutte polynomial specializes to
yield the reliability of G, REL(G, p) = (1−p)|E(G)|−n+1pn−1TG(1, 1/(1−p)).

– Along the hyperbolas (x− 1)(y− 1) = s for any positive integer s, the Tutte
polynomial specializes to the partition function of the s-state Potts model of
statistical mechanics.

The reader is referred to the survey [5] for more interpretations.
Our goal in this section is to prove the following theorem.

Theorem 5. For every point (x, y) in the quarter-plane x ≥ 1, y > 1, there
exists an efficient randomized algorithm that given a connected graph G and per-
formance parameters δ1, δ2 ≥ 1, outputs a backbone G′ of G that satisfies the
following two requirements with probability 1 −O(n−δ1):
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(1) |E (G′)| = O
(
n log(n)

(
δ1 + δ2

1−1/y

))
; and

(2) TG(x, y) ·
(
1 −O

(
n−δ2

))
≤ y|E(G)|−|E(H)| · TG′(x, y) ≤ TG(x, y) ·(

1 + O
(
n−δ2

))
.

Note first that along the ray x = 1, y > 1, the Tutte polynomial of G special-
izes to the reliability of G following the identity

REL(G, p) = (1 − p)|E(G)|−n+1pn−1TG(1, 1/(1 − p)) .

Therefore when x = 1, Theorem 5 follows directly from Theorem 1. Assume
hereafter that x > 1.

Fix q = 1−1/y. The construction of G′ is identical to that described in Sect. 3
when setting p = 1 − q. In Sect. 3 we argued that with very high probability,
|E (G′)| = O(nρ), which implies requirement (1) of Theorem 5 by the choice of ρ.
Our goal in the remainder of this section is to prove that requirement (2) holds
with probability 1 − O(n−δ1).

The authors of [1] observe that in the quarter-plane x > 1, y > 1, the Tutte
polynomial of a connected graph G with n vertices and m edges can be expressed
as

TG(x, y) =
ym

(x− 1)(y − 1)n
E

[
zK(Gq)

]
,

where z = (x − 1)(y − 1). Theorem 5 will be established by showing that
E[zK(Gq)] ≈ E[zK(G′q)].

Let G(U1), . . . , G(Ur) be the ρ-strong components of G and Let EX ⊆ E (G)
be the set of all edges external to {U1, . . . , Ur}. Consider the collection H of all
spanning subgraphs H of G such that
(1) EX ⊆ E (H); and
(2) H(Ui) is (ρ/2)-connected for every 1 ≤ i ≤ r.
By definition, G itself is in H. Recall that G′ contains all edges whose strength in
G is smaller than ρ. Eq. (1) implies that ρ ≥ 12(δ1+2) lnn, thus we can follow the
line of arguments used in Sect. 3 and apply Corollary 1 to G(U1), . . . , G(Ur) to
conclude that with probability 1−O(n−δ1), G′ is also in H, where the probability
is taken with respect to the random choices of Algorithm SRGB. Our analysis
relies on showing that E[zK(Hq)] is approximately the same for all graphs H ∈ H.

Consider an arbitrary graph H ∈ H. Partition the edges of H into E (H) =
EI ∪ EX , where EI =

⋃r
i=1 E (H) ∩ (Ui × Ui) and EX = E (H) − EI . We express

E[zK(Hq)] as

E

[
zK(Hq)

]
=
∑

F⊆EX

E

[
zK(Hq) | Eq

X = F
]
· P (Eq

X = F )

and establish Theorem 5 by proving that

E

[
zK(Hq) | Eq

X = F
]

= zKF
(
1 ±O

(
n−δ2

))
for every F ⊆ EX , where KF = K(V (H), EI ∪ F ) denotes the number of con-
nected components in the graph induced on H by the edges in EI ∪ F .
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Assume first that 0 < z ≤ 1. By Eq. (1), qρ/2 ≥ 12(δ2 + 2) lnn, thus an
application of Corollary 1 to H(U1), . . . , H(Ur) implies that with probability
1 − O(n−δ2), all these components remain connected, where the probability is
taken with respect to the experiment Hq. Therefore

zKF
(
1 −O

(
n−δ2

))
≤ E

[
zK(Hq) | Eq

X = F
]
≤ zKF

which establishes the assertion.
Now, assume that z > 1 and fix some edge subset F ⊆ EX . Let Γ =

(V (H), Eq
I ∩ F ) be the random graph obtained from H by taking the edges

in F and selecting each edge e ∈ EI independently with probability q. Let
HI = (V (H), EI) be the graph induced on H by the edges in EI and let
κ = K(Hq

I )−K(HI) be a random variable that takes on the number of connected
components “added” to HI due to the experiment Hq

I . We have

zKF ≤ E

[
zK(Hq) | Eq

X = F
]

=
∑
j≥0

P (K(Γ ) = KF + j) · zKF +j

= zKF ·
∑
j≥0

P (K(Γ ) = KF + j) · zj ≤ zKF ·
∑
j≥0

P (K(Γ ) ≥ KF + j) · zj

≤ zKF ·
∑
j≥0

P (κ ≥ j) · zj = zKF

⎛⎝1 +
∑
j≥1

P (κ ≥ j) · zj

⎞⎠ ,

where the last inequality follows from the definition of κ as the event K(Γ ) ≥
KF + j cannot occur unless κ ≥ j. It remains to show that

∑
j≥1 P(κ ≥ j) · zj =

O(n−δ2). The following theorem is established in [10].

Theorem 6 ([10]). Let G be a connected n-vertex graph and let c be the size
of a minimum cut in G. Fix some reals d > 1 and q ∈ [0, 1] and integer t ≥ 2.
If c ≥ (d + 2) log1/(1−q) n, then P(K(Gq) ≥ t) < n−dt/2.

Theorem 6 can be extended to yield the following corollary by following the same
“black-box” type of argument employed in the proof of Corollary 1.

Corollary 2. Consider some r disjoint graphs G1, . . . , Gr. Let ni = |V (Gi)|
for every 1 ≤ i ≤ r and let n =

∑r
i=1 ni. Let ci be the size of a minimum

cut in Gi for i = 1, . . . , r. Set G̃ = (
⋃r

i=1 V (Gi),
⋃r

i=1 E (Gi)). Fix some reals
d > 1 and q ∈ [0, 1] and integer t ≥ 2. If min1≤i≤r ci ≥ (d+ 2) log1/(1−q) n, then
P(K(G̃q) ≥ r + t− 1) < n−dt/2.

Recall that we wish to show that
∑

j≥1 P(κ ≥ j) · zj = O(n−δ2). Eq. (1) yields
ρ/2 ≥ 12(δ2 + 2) ln(n)/q > (δ2 + 2) log1/(1−q) n, so we can use Corollary 2 to
deduce that P(κ ≥ j) < n−δ2(j+1)/2. Therefore∑

j≥1

P(κ ≥ j) · zj <
∑
j≥1

n−δ2(j+1/2) · zj = z−1 ·
∑
j≥2

(
zn−δ2/2

)j

= z−1 ·
(
zn−δ2/2

)2
1 − zn−δ2/2

≤ 2zn−δ2 ,
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where the last inequality follows by assuming that n is sufficiently large so that
zn−δ2/2 ≤ 1/2. This completes the proof of Theorem 5.
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Abstract. A fundamental issue in Web search is ranking search results
based on user logs, since different users may have different preferences
and intents with regards to a search query. Also, in many search query
applications, users tend to look at only the top part of the ranked result
list in order to find relevant documents. The setting we consider contains
various types of users, each of which is interested in a subset of the search
results. The goal is to rank the search results of a query providing highly
ranked relevant results. Our performance measure is the discounted cu-
mulative gain which offers a graded relevance scale of documents in a
search engine result set, and measures the usefulness (gain) of a docu-
ment based on its position in the result list. Based on this measure, we
suggest a general approach to developing approximation algorithms for
ranking search results that captures different aspects of users’ intents.
We also take into account that the relevance of one document cannot be
treated independently of the relevance of other documents in a collection
returned by a search engine. We first consider the scenario where users are
interested in only a single search result (e.g., navigational queries). We
then develop a polynomial time approximation scheme for this case. We
further consider the general case where users have different requirements
on the number of search results, and develop efficient approximation al-
gorithms. Finally, we consider the problem of choosing the top k out of n
search results and show that for this problem (1−1/e) is indeed the best
approximation factor achievable, thus separating the approximability of
the two versions of the problem.

1 Introduction

Satisfying users querying a search engine has become immensely complex given
the rapid growth of the Internet, its content diversity, and its usage as a primary
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source of information. The satisfaction of users with search results has tradition-
ally been characterized by the notion of relevance of a document. Since users
tend to look only at the top part of a ranked result list in order to find relevant
documents, ranking search results is a fundamental problem in Web search. The
goal is to rank the search results of a query providing highly ranked relevant
results. A common performance metric for relevance is the discounted cumula-
tive gain [8,10] which offers a graded relevance scale of documents in a search
engine result set, and measures the usefulness (gain) of a document based on its
position in the result list. The gain is accumulated cumulatively, starting from
the top of the result list, with the gain of each result discounted at lower ranks.

Recent approaches to ranking search results have placed more emphasis on
inferring relevance and intents of queries from user logs and understanding the
distribution of users running a query. One major issue that arises here is that
most queries have multiple intents1, since different users may have different
preferences, and therefore a ranking system should provide diverse results that
cover a wide spectrum of intents.

It is common practice to partition search queries into three broad categories
[10]. The first one is an informational query, in which users typically try to
assimilate information from multiple web pages. The second one is a navigational
query where a user looks for a particular (single) website among the search
results. The third one is a transactional query which is typically a prelude to a
transaction on the web. Note that the categories differ (among other things) in
the number of search results needed to satisfy a user.

We suggest the following approach for quantifying aggregate user satisfaction.
Assume that for a particular search query a set of search results is obtained.
There are several user types, corresponding to the multiple intents associated
with the query, each of which is a-priori known to be interested in a (known)
subset of the results. For each user type we assume that we know the number of
relevant search results needed to satisfy it. This number depends, among other
things, on the category to which the query belongs. The question is which order
should the search results be ranked in, so that all user types are satisfied, and
the discounted cumulative gain is maximized. As explained later, this problem
turns out to be computationally intractable, and thus we develop approximation
algorithms for it.

So far we have made the common assumption that the relevance of one doc-
ument can be treated independently of the relevance of other documents in the
collection returned by a search engine. Carbonell and Goldstein [4] were among
the first to note that documents retrieved by a search engine are not necessar-
ily informationally independent and are frequently characterized by a high level
of redundancy. Thus, the relevance of a document should be replaced by its

1 For example, users searching for “cricket” could be interested in different things: the
insect, the sport, the wireless company, . . . , etc. Similarly, even for unambiguous
queries such as for some researcher’s name, say “John Smith”, different users might
have different intents. Some might be interested in his list of publications, some in
his Facebook account, some in his personal web page and so on.
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marginal relevance with respect to other documents in a collection [4,11,14]. In
[4] it is suggested to maximize marginal relevance (MMR), which is a ranking
method that maximizes a linear combination of the relevance of a document and
its novelty (a measure of diversity) with respect to already retrieved documents.
User studies have shown that MMR is generally preferred to a standard ranking
algorithm.

Chen and Karger [6] introduced a probabilistic approach to the relevance
problem in which, given a probabilistic metric, the expected value of the met-
ric is optimized. For a variety of metrics used in information retrieval (search
length, reciprocal rank, %no, and instance recall), they showed that the opti-
mization problem is computationally intractable. They empirically studied the
performance of greedy algorithms and suggested the study of more sophisticated
approximation techniques as future work on the topic.

The work of Agrawal et al. [1] is the closest to ours. The authors define
their objective function as maximizing the probability of satisfying an average
user. They observed that the optimized function is submodular and proposed
to use a greedy algorithm to obtain a (1 − 1/e)-approximate solution. However,
[1] implicitly assumed that users study all the documents returned by a search
engine with equal attention, while (as we argued) it is more reasonable to assume
the attention decreases while going through the list of results from top to bottom.

1.1 The Model

We assume that there exists a taxonomy of information, and that user intents
are modeled at the topical level of this taxonomy. Let us focus on a single search
query. Denote the search results by e1, . . . , en and suppose that there are m
user types, or intents. For each user type there is a subset of the search results
which are relevant to this type. We model our setting as a hypergraph or an
instance of the hitting set problem. The search results correspond to elements
e1, . . . , en in a universe U and each user type corresponds to a set, or a hyperedge,
containing the elements in which the user type is interested. The collection of sets
is denoted by S = {S1, . . . , Sm}. For each set S there is a coverage requirement,
denoted by k(S), corresponding to the number of relevant search results needed
to satisfy user type S. Recall that k(S) = 1 corresponds to a navigational query,
and k(S) corresponds to an informational query. Given an ordering φ of the
elements e1, . . . , en, set S is covered at the earliest time (position) t(S) in which
k(S) elements from S have already appeared. The goal is to find an ordering
maximizing the discounted cumulative gain (DCG):

DCG =
∑
S

1
log(t(S) + 1)

.

The logarithmic factor in the denominator is to the base e and it is the discount
factor of the gain of each search result. Intuitively, elements that can provide
coverage to many sets should be placed in the beginning of the ordering φ so as
to maximize the objective function. One can consider more general discounting
functions but the logarithmic discounting seems to be most commonly considered
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in practice [8, Chapter 8.4.3]. We consider this problem in two settings. First,
when there is an bound on the number of elements k that must be chosen. This
is motivated by the problem of choosing which query results to display on the
first page. Second, when there is no bound on the number of pages to display.

In the case of k(S) = 1, we can further consider a more general model when
one can model correlations between different search results using information
theoretical tools. Given a query q and the set of search results e1, e2, . . . , en,
we define the information function Hq(e1, e2, . . . , en) that captures the overall
knowledge about q that can be obtained from observing all the search results
in the set. For any subset S of search results define Hq(S) to be the function
capturing the information about query q contained in S. We assume that Hq(S)
has the following entropy properties:

1. Hq(∅) = 0;
2. Hq(S) ≤ Hq(T ), ∀S ⊆ T (monotonicity);
3. Hq(S ∪ e)−Hq(S) ≥ Hq(T ∪ e)−Hq(T ), ∀S ⊆ T, e /∈ T (submodularity).

For a ranked list of search results, the marginal relevance (MR) of result ei is:

MR(ei) = Hq({e1, . . . , ei}) −Hq({e1, . . . , ei−1}).

Since most currently used evaluation metrics in information retrieval make use
of relevance labels assigned to search results, we get a natural generalization
of these metrics by substituting the relevance of ei by its marginal relevance
MR(ei). Then, the generalization of DCG is:

GDCG =
n∑

i=1

Hq({e1, . . . , ei}) −Hq({e1, . . . , ei−1})
log(i + 1)

. (1)

Note that GDCG captures the model of Agrawal et al. [1], as well as probabilistic
ranking models.

1.2 Our Results

We first consider the problem of choosing and ordering the top k out of n search
results so as to maximize the DCG, where k is an input to the problem. We show
that for the case in which users are only interested in a single search result,
a natural greedy algorithm achieves an approximation factor of (1 − 1/e) ≈
0.632. Moreover, we show that this is the best approximation factor achievable,
assuming P �= NP. Our (1− 1/e) approximation also holds for the more general
GDCG measure where each user type can have a monotone submodular utility
function (satisfying the properties stated in Section 1.1) over the set of search
results. Finally, for the case where the users can be interested in an arbitrary
number of search results, i.e. k(S) is arbitrary, we show that the problem is hard
in the following sense. It is at least as hard as the notorious Densest-k-Subgraph
problem for which the best known approximation is only O(n1/3) [9].

Next, we consider the above models in the setting where there is no restriction
on the number of search results that we wish to display. Most of our paper is
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devoted to this setting. In particular, the goal is to simply to find an ordering
of all n results maximizing GDCG.

For the case of k(S) = 1 (i.e., navigational queries), we develop an approx-
imation algorithm that yields a polynomial-time approximation scheme (ptas).
That is, the algorithm achieves a (1 + ε) approximation given any arbitrarily
small constant ε > 0, and has running time polynomial in n. This approxima-
tion scheme also generalizes to the more general GDCG setting. (I.e., with the
Informational function Hq(S).)

For the case of arbitrary values of k(S), we give a linear programming based
O(log logn)-approximation. We also show how to adapt these ideas to obtain a
quasi-polynomial time approximation scheme2. The natural linear programming
relaxations for this problem have a large integrality gap. We go around this by
strengthening the relaxation by adding exponentially many so-called knapsack
cover inequalities [5]. Even though the number of constraints is exponential, it
can be solved optimally in polynomial time. Our approximation algorithm is
based on rounding these fractional solutions and exploits various properties of
the problem structure. While our approach is related to recent work of [3], there
are major differences. In particular, while [3] considers a minimization problem,
ours is a maximization problem, which does not seem amenable to a local term-
by-term analysis as in [3], and we need a much more complex and global analysis.

Our results can be viewed as showing a strong separation between the two
versions of the problem, depending on whether the number of search results to
be displayed is fixed or not.

1.3 Related Work

Our modeling of user types as hyperedges with a covering demand follows the
work of Azar et al. [2]. They defined a model for re-ranking search results where
the goal is to minimize the average time (in a certain sense) of satisfying user
types. Their model generalizes classic problems like minimum sum set cover and
minimum latency. They developed logarithmic approximation factors for their
problem using a linear programming formulation. The approximation factor was
improved to a constant by Bansal et al. [3] who strengthened the linear program
by adding knapsack cover constraints.

Generating a diverse set of search result is a well studied topic and we mention
a few relevant papers. Accounting for different meanings of ambiguous queries
and document redundancy was considered by Zhai et al. [14], who proposed
a generalization of the classic precision and recall metrics. Ziegler et al. [15]
considered the diversification of personalized recommendation lists by reducing
the intralist similarity (the sum of pairwise similarities between items in the
list). Their user study showed that increased diversity of the recommendation
list improved user satisfaction, but also revealed that human perception can
capture the level of diversification inherent to a list only to some extent. Beyond
that point, increasing diversity remains unnoticed.

2 A (1 + ε)-approximation for any constant ε > 0 with a running time of npolylog(n).
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Radlinski and Dumais [11] studied the problem in the context of query re-
formulations. They proposed to build a diversified set of related queries and
then provide the top N results retrieved for each query as an input to a stan-
dard ranking algorithm. Relevant studies were also carried out in the domain of
online shopping, relational databases [13], and online learning algorithms [12].

In the field of question answering, Clarke et al. [7] developed a probabilistic
ranking principle by viewing documents as sets of “information nuggets”. They
measured the relevance of a document as the probability that it contains at least
one relevant and new information nugget. Then, they presented a generalization
of the DCG metric and proved that the computation of the ideal gain is NP-hard.

2 Unit Covering Requirements

In this section we consider the case when all the covering requirements k(S)
are equal to 1. We will give an approximation scheme for maximizing GDCG.
However, it will be easier to describe the scheme in the simpler setting of inde-
pendent search results where we maximize DCG. The generalization to GDCG
is quite straightforward.

2.1 Top k Out of n Documents

We first describe a simple and efficient greedy algorithm for maximizing the gain
(GDCG) by choosing and ordering k out of n documents. The greedy algorithm
simply chooses at each step the element that maximizes the incremental profit.
The proof of the next statement is left out due to lack of space.
Statement 1. The greedy algorithm for GDCG is a (1 − 1/e)-approximation.

Perhaps not too surprisingly, our analysis is similar to that of the classical max
k-coverage problem defined as follows: We are given a set of elements U =
{e1, . . . , en} and a collection of sets S = {S1, . . . , Sm} defined over U . The goal
is to choose k elements that cover the maximum number of sets. A set S is said
to be covered if some element from S is chosen. This problem is NP-hard and
it is well known that the greedy algorithm, that at any point of time chooses
the element that covers the maximum number of uncovered sets thus far, gives
a (1 − 1/e)-approximation.

It is somewhat surprising that the greedy algorithm still achieves a (1 − 1/e)
approximation even in the more general setting of using a submodular informa-
tion function (e.g. Hq(S)) together with a logarithmic discount function, instead
of maximizing cardinality. This generalization allows for generalizing the ap-
proximation to GDCG. We note that we can also show that this result is best
possible unless P=NP.

2.2 No Restriction on the Number of Documents

We do not have here a restriction on the number of documents we can display
and the goal is simply to order the pages so as to maximize DCG. A (1 − 1/e)-
approximation follows by setting k = n in Statement 1. We now describe how
to adapt it to obtain a polynomial time approximation scheme (ptas).
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The Approximation Scheme. Consider the following algorithm.

– Given the parameter ε > 0, we consider all possible candidate choices for
the ordering of the first g(ε) = (2/ε2)(1/ε) elements. There are at most(

n
g(ε)

)
g(ε)! ≤ ng(ε) such choices. Such a choice is determined by the set of

elements G and permutation π.
– For each choice G of elements above, let SG denote the collection of sets

covered by G. Apply the following algorithm to the system U \G,S \ SG to
obtain the sets A0, A1, . . ..

• Initialize: Let T0 = ∅. In general, Ti denotes the sets covered before phase
i begins.

• Phase: For i = 0, 1, . . . , +logn,, apply the following steps.
1. Consider the max k-coverage instance defined on the universe U \G

and the set collection (S \ SG) \ Ti. Let k = 2i.
2. Apply the greedy algorithm to the instance above and let Ai denote

the k = 2i elements chosen.
3. Let Si denote the sets in S \ Ti that are covered by elements in Ai.

Set Ti+1 = Ti ∪ Si.
• Output: Concatenate the lists π(G), A0,A1,. . . in that order. Within each

set Ai the elements can be ordered arbitrarily.
– Over all choices of G and π, output the ordering with the maximum gain.

Analysis. Consider the case when G consists of the first g(ε) elements in the
optimum ordering Πopt, and the elements in G are also ordered as in Πopt. Let
alg1 and opt1 denote the gain obtained by the first g(ε) elements in the respective
orderings and let alg2 = alg − alg1 and opt2 = opt − opt1 denote the respective
gain from the remaining elements (that lie after the first g(ε) elements).

Theorem 1. The above scheme is a polynomial-time approximation scheme.

Proof. Clearly alg1 = opt1. We will show that alg2 ≥ (1− ε)opt2. Let Oi denote
the sets covered by elements that appear in Πopt in positions [2i, 2i+1 − 1] after
the first g(ε) elements (i.e. in absolute positions [g(ε) + 2i, g(ε) + 2i+1 − 1]).
Similarly, let Ti+1 denote the sets covered by elements A0 ∪ . . . , Ai. We claim
the following without proof (due to lack of space).

Claim. For any 0 ≤ i ≤ n, after phase i, the number of sets covered by the
algorithm, i.e. |Ti+1|, satisfies

|Ti+1| ≥
i∑

j=0

(1 − ej−i)|Oj |. (2)

alg2 ≥
∞∑

i=0

(|Ti+1| − |Ti|)
log(g(ε) + 2i+1)
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=
∞∑

i=0

(
1

log(g(ε) + 2i+1)
− 1

log(g(ε) + 2i+2)

)
|Ti+1|

≥
∞∑

i=0

(
1

log(g(ε) + 2i+1)
− 1

log(g(ε) + 2i+2)

)
·

i∑
j=0

(1 − ej−i)|Oj |

=
∞∑

j=0

∞∑
i=j

(
1 − ej−i

)
·
(

1
log(g(ε) + 2i+1)

− 1
log(g(ε) + 2i+2)

)
|Oj |

≥
∞∑

j=0

∞∑
i=j+2 ln(1/ε)

(1 − ε2) ·
(

1
log(g(ε) + 2i+1)

− 1
log(g(ε) + 2i+2)

)
|Oj |

=
∞∑

j=0

(1 − ε2)
1

log(g(ε) + (2j+1/ε2))
|Oj |. (3)

The last step follows since the terms are telescoping.
To complete the proof, we note that the contribution of Oj to the optimum

ordering is at most |Oj |/(log(g(ε) + 2i + 1)). On the other hand, by (3) the
contribution of Oj to alg2 is at least:

(1 − ε2)(1/ log(g(ε) + 2j+1/ε2))|Oj | ≥ (1 − ε2)(1/ log((g(ε) + 2j)(2/ε2))|Oj |

= (1 − ε2)
1

log(g(ε) + 2j) + log(2/ε2)
|Oj | ≥ (1 − ε)

1
log(g(ε) + 2j)

|Oj |.

The last step follows as log(2/ε2) ≤ ε log(g(ε)) ≤ ε log(g(ε) + 2j) by our choice
of g(ε).

The algorithm has a huge running time of n2O(1/ε)
, but this is still a polynomial-

time approximation scheme. It would be an interesting open problem to see if
the dependence of the running time on ε can be made to be singly exponential.

3 General Requirements

In this section we consider the scenario when k(S) can be arbitrary. We first
consider the setting where only k documents can be displayed, and show that
the problem is extremely hard even for very special cases of the problem. We then
consider the case when there is no bound on the number of documents that can
be displayed. We describe an O(log logn)-approximation for maximizing DCG
in this setting. Our algorithm is based on an LP formulation using knapsack
cover inequalities. Finally, we will show how to adapt the algorithm to obtain a
quasi-polynomial time approximation scheme.

3.1 Top k Out of n Documents

We show that in this setting, the DCG problem already captures the notoriously
hard densest k-subgraph problem. In the densest k-subgraph problem, we are
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given an undirected graph G = (V,E) and the goal is to find a subset of k
vertices V ′ that maximizes the number of induced edges (i.e. edges that have
both end points in V ′). The best known algorithm for the densest k-subgraph
problem essentially achieves a guarantee of only n1/3 [9]. It is an outstanding
open question whether this bound can be improved. To see the connection to
Densest-k-Subgraph, consider the following for a given graph G = (V,E). Define
the elements as the vertices V and sets S as the edges E, where each S has
a covering requirement of k(S) = 2. Clearly, finding k elements that cover the
maximum number of sets for this instance is equivalent to solving the densest
k-subgraph problem. Since the 1/ log(t+1) term in the objective function of the
DCG is bounded between 1 and log(k+1) this implies that the problem is as hard
to approximate as the Densest-k-Subgraph problem within an O(log(k)) factor.
Moreover, note that this is a very special case of our problem, since k(S) = 2
for all sets, and each set has size 2.

3.2 No Restriction on the Number of Documents

Given the discussion above, we note that the approach taken in the previous sec-
tion of solving the max k-coverage problem for geometrically increasing values of
k, and then concatenating the resulting sets, will yield a very poor approxima-
tion. Given this limitation, our approximation algorithm will use quite different
ideas which are based on a linear programming (LP) formulation of the problem.
In particular, we will strongly use the fact that we do not have a bound on the
number of elements we need to choose (i.e., we can avoid the max k-coverage
approach), and also exploit the specific nature of our objective function.

Our approach is based on the recent work of [3], however, there are crucial
differences. Most notably, [3] considers a minimization problem, while here we
are interested in a maximization problem. Our LP formulation, described below,
is based on knapsack cover inequalities first introduced by [5]. It is known that
a naive LP relaxation for our problem that does not use these inequalities can
have a very large integrality gap (we defer this discussion here, and refer the
interested reader to [3]).

An LP Relaxation. Let [n] = {1, 2, . . . , n}, where n = |U |, the number of
elements in the universe. In the following, xet is the indicator variable for whether
element e ∈ U is selected at time t ∈ [n], and ySt is the indicator variable for
whether set S has been covered by time t ∈ [n].

Maximize
∑

1≤t≤|U|

∑
S∈S

(yS,t − yS,t−1)/ log(t + 1)

subject to
∑
e∈U

xet = 1 ∀ t ∈ [n] (4)∑
t∈[n]

xet = 1 ∀ e ∈ U (5)

∑
e∈S\A

∑
t′<t

xet′ ≥ (k(S) − |A|) · ySt (6)



282 N. Bansal et al.

∀S ∈ S, ∀A ⊆ S, ∀t ∈ [n]
xet, ySt ∈ [0, 1] ∀ e ∈ U, S ∈ S, t ∈ [n]

If xet and ySt are restricted to take {0, 1} values, then this is easily seen to be a
valid formulation for the problem. Constraints (4) require that only one element
can be assigned to a time slot and constraints (5) require that each element must
be assigned to some time slot. Constraints (6) correspond to the knapsack cover
inequalities and require that if ySt = 1, then for every subset of elements A, at
least k(S) − |A| elements must be chosen from S \A before time t.

The Algorithm. Let (x∗, y∗) denote an optimal (fractional) solution to the
above linear programming formulation and let opt denote its value. Clearly, opt
is an upper bound on an integral optimal solution. Our rounding algorithm
proceeds in O(log n) stages, with the ith stage operating in the time interval
[1, 2i+1 − 1]. In stage i, for i = 0, 1, . . ., we perform one round of randomized
rounding (as described below) on the fractional solution restricted to the interval
[1, 2i+1 − 1] and obtain a set Ai of elements. At the conclusion of these stages,
we output the elements of A0, followed by the elements of A1, and then A2, . . . ,,
with the elements of any set Aj being output in an arbitrary order.

The rounding process for stage i that generates set Ai is the following:

– Let ti = 2i.
– Define the fractional extent to which e is selected before time ti, for each

e ∈ U , to be: ze,i ←
∑

t′≤ti
x∗

et′ .
– Define for all e ∈ U , pe,i ← min(1, 8 log2(n + 1)ze,i).
– Pick each element e ∈ U independently with probability pe,i. Let Ai be the

set of these elements. If Ai > 16 log2(n + 1) · 2i, then set Ai = ∅.

Analysis. In the solution (x∗, y∗), for each set S, let t∗(S) denote the earliest
time that S has been allocated to an extent of 1/ log(n + 1), i.e., yt∗(S),S ≥
1/ log(n + 1). The next lemma shows that t∗(S) is a good estimate for the time
when a set is covered.

Lemma 1. opt ≤
∑

S 2/ log(t∗(S) + 1).

Proof. Since any set S is covered to an extent of at most 1/ log(n + 1) by
time t∗(S), this fraction can yield a gain of at most (1/ log(n + 1)) · (1/ log 2) ≤
1/ log(n + 1). This is at most (1/ log(t∗(S) + 1)), since t∗(S) ≤ n (as each set
is covered by time n). The remaining 1 − 1/ log(n + 1) portion can yield a total
gain of at most (1−1/ log(n+1)) ·(1/ log(t∗(S)+1)) ≤ (1/ log(t∗(S)+1)). Thus,
the total gain is at most 2/ log(t∗(S) + 1).

Due to space constraints we state the next lemma without proof.

Lemma 2. For any set S and any stage i such that ti ≥ t∗S, the probability that
k(S) elements from S are not picked in stage i is at most 1 − 2/n2.

Theorem 2. The algorithm above is an O(log logn)-approximation.
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Proof. Since |Ai| ≤ 16 log2(n + 1)2i, each element in Ai appears no later than
time 16 log2(n + 1)(2i+1 − 1) in the ordering produced by the algorithm. By
Lemma 2, with probability at least 1 − 2/n2, each set S appears in a set Ai

where i ∈ [t∗(S), 2t∗(S) − 1]. Thus, with probability 1 − 2/n2, set S appears in
the ordering of the algorithm by time 64 log2(n + 1)t∗(S) − 1.

Thus, the expected contribution of set S to the algorithm is at least(
1 − 1

n2

)
·
(

t∗(S)
log 64 log2(n + 1)

)
= Ω

(
1

log logn
· log(t∗ + 1)

)
.

By Lemma 1, opt can obtain a gain of at most 2/(log(t∗ + 1)), and hence we get
an O(log logn)-approximation.

Next, we show that the algorithm can be modified to obtain a quasi-polynomial
time approximation scheme. That is, a (1 + ε)-approximation for any ε > 0, but
with running time O(npolylog(n)).

A Quasi-Polynomial Time Approximation Scheme. We modify the al-
gorithm above to first guess (by trying out all possibilities) the first f(ε) =
(logn)4/ε elements in the ordering of opt. Let us assume that n ≥ 1/ε ≥ 8
(otherwise the problem can be solved trivially in O(1) time).

Given the optimum LP solution, let us define t∗(S) to be the earliest time
when set S is covered to extent ε/ logn. A slight modification of Lemma 1 implies
that opt ≤ (1 + ε)/ log(t∗ + 1).

The analysis of our rounding algorithm guarantees that the expected contri-
bution of set S to the algorithm is at least(

1 − 1
n2

)
·
(

t∗(S)
log 64 log2(n + 1)

)
≥ 1 − ε2

log t∗(S) + 4(log log(n + 1)
,

since n ≥ 1/ε ≥ 8. If log t∗(S) ≤ (4/ε) log logn), or equivalently t∗(S) ≤ logn4/ε,
the contribution of S to the algorithm is at least (1 − ε) times its contribution
to opt. Thus, we can apply the same idea as the one used for obtaining a ptas
for the case of k(S) = 1, and guess the first f(ε) = (logn)4/ε positions in the
ordering of opt.

4 Conclusions

A natural question is to consider more general forms of discounting in the def-
inition of DCG, beyond just γ(t) = 1/ log(t + 1). In [8, Chapter 8.4.3] it is
mentioned that the choice of the logarithmic discount function is somewhat ar-
bitrary and has no theoretical justification, although it does provide a relatively
smooth (gradual) reduction. It is easily seen that our (1 − 1/e)-approximation
for unit covering requirements works for any monotonically decreasing γ(t). In
the case when there is no limit on the number of documents returned, our ptas
can also be extended to the case where γ(t) satisfies the following property. For
any ε, the inequality γ(2t) ≥ γ(t)/(1 + ε) holds for all but � = Oε(1) integers t.
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In this case our algorithm has running time nO(�). Note that for the logarithmic
function, � = 2O(1/ε). The above condition is satisfied for any γ(t) of the type
1/polylog(t), but it is not satisfied for a polynomial such as f(t) = 1/tδ.
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Abstract. We present a method for verifying measurement-based quan-
tum computations, by producing a quantum circuit equivalent to a given
deterministic measurement pattern. We define a diagrammatic presenta-
tion of the pattern, and produce a circuit via a rewriting strategy based
on the generalised flow of the pattern. Unlike other methods for translat-
ing measurement patterns with generalised flow to circuits, this method
uses neither ancilla qubits nor acausal loops.

1 Introduction

The one-way quantum computer (1WQC) [1] is model of quantum computa-
tion which is a very promising candidate for physical implementation, and also
has many interesting theoretical properties (in complexity theory, for instance
[2,3]). The basis of the 1WQC is an entangled resource state, which is gradu-
ally consumed by performing local measurements upon it. By careful choice of
measurements, any quantum computation can be performed. In this paper we
address the task of verifying properties of one-way computations by using rewrit-
ing strategies in a graphical framework, which originates in categorical analyses
of quantum mechanics [4].

The main task is to verify the correctness of a given one-way computation—
presented in the pattern syntax of the measurement calculus [5]—by producing
an equivalent quantum circuit. We will also verify that the pattern can be car-
ried out deterministically: that is, we check that the non-deterministic effects of
quantum measurement are properly corrected by the pattern.

The question of determinism in the one-way model has been previously ad-
dressed by flow techniques ; see [6,7]. These techniques examine the resource
state: if it has the correct geometry then any errors introduced by the non-deter-
ministic nature of quantum measurements can be corrected, and the resulting
computation will be deterministic. Both causal flow [6] and generalised flow [7]
do not address any concrete pattern, rather they simply assert the existence of
a deterministic computation using the given resource state. In fact, generalised
flow (gflow) characterises the notion of uniform determinism, where the actual
� Supported by EPSRC postdoctoral fellowship EP/E045006/1.
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choice of the measurements is irrelevant. (Causal flow provides a sufficient condi-
tion.) Our work relaxes the uniformity restriction and derive correctness proofs
in cases where the choice of measurement is significant.

The problem of producing a circuit equivalent to a given measurement-based
quantum computation is of great importance. In [8], an automated translation
has been proposed for measurement-based computations which have a causal
flow. In [9], the author presents a similar technique based on causal flow and
notes that her method produces circuits with “time-like loops” if applied on
measurement-based computations which do not have a causal flow. In this work
we rely on the bialgebraic structure induced by quantum complementarity to pro-
duce equivalent circuits from measurement-based quantum computations which
do not have causal flow. Unlike other translations from 1WQC, the circuits we
generate do not make use of any ancilla qubits.

The diagrammatic calculus we employ draws from the long tradition of graph-
ical representations of monoidal categories. Aside from providing a very intuitive
notation for reasoning about information flow, the categorical approach to quan-
tum computation (see for example [10,11,12]), provides a clearer view of the
structure of quantum informatic phenomena than conventional approaches. The
particular system of this paper is essentially that of [4], and the bialgebraic rela-
tions between complementary quantum observables exposed there form the core
of the main lemma of this paper1.

The structure of this paper is as follows: in Section 2, we introduce the di-
agrammatic syntax and its semantics; in Section 3 we introduce the rewrite
system used to derive our results. This rewrite system has no particularly nice
properties—it is neither confluent nor terminating—but in the rest of the paper
we will define strategies to achieve our results. Section 4 introduces the measure-
ment calculus and its translation into diagrams, and Section 5 how to derive the
circuit-like form Due to space restrictions, the proofs have been omitted.

Notational conventions. When u, v are vertices in some graph G, we write u ∼ v
to indicate that they are adjacent. The neighbourhood of u, denoted NG(u), is
defined NG(u) = {v ∈ V : u ∼ v}. Given some K ⊆ V , the odd neighbourhood
of K is defined by OddG(K) = {v ∈ V : |NG(v) ∩K| = 1 mod 2}, i.e.
OddG(K) is the set of vertices which have an odd number of neighbours in K.
We use Dirac notation to denote vectors, e.g. |ψ〉. The standard basis for C

2

is denoted |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
; we will also use the complementary basis

|+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1
−1

)
.

2 Diagrams

Definition 1. An open graph is a triple (G, I,O) consisting of an undirected
graph G = (V,E) and distinguished subsets I,O ⊆ V of input and output
1 The calculus has been implemented in a mechanised rewriting tool: see [13].
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...

...
α, S′

...

...
α, S′ H

Fig. 1. Permitted interior vertices

vertices I and O. The set of vertices I ∪ O is called the boundary of G, and
V \ (I ∪O) is the interior of G.

Definition 2. Let S be some set of variables. A formal diagram over S is an
open graph whose boundary vertices are always of degree 1, and whose interior
vertices are restricted to the following types:

– Z vertices, labelled by an angle α ∈ [0, 2π) and some collection of variables
S′ ⊆ S; these are shown as (light) green circles,

– X vertices, labelled by an angle α ∈ [0, 2π) and some collection of variables
S′ ⊆ S; these are shown as (dark) red circles,

– H (or Hadamard) vertices, restricted to degree 2; shown as squares.

The allowed vertices are shown in Figure 1.

Diagrams are oriented such that the inputs are at the top and the outputs are at
the bottom, and hence the implied temporal (partial) order of the components
is from top to bottom.

If an X or Z vertex is labelled by α = 0 then the label is omitted. In the case
where S′ is not empty then the corresponding vertex is called conditional ; if no
conditional vertices occur in a diagram it is unconditional. For each S the formal
diagrams over S form a symmetric monoidal category (in fact compact closed) in
the evident way: the objects of the category are sets and an arrow g : A → B is a
diagram whose underlying open graph is (G,A,B). The tensor product is disjoint
union, and composition g ◦ f is defined by identifying the output vertices of f
with the input vertices of g. For more details see [14,15]. Denote this category
D(S); we denote the category D(∅) of unconditional diagrams by D. Note that
the components shown in Figure 1 are the generators of D(S).

Informally, the edges of a diagram are interpreted as qubits, though some
caution is required. Different edges can represent the same physical qubit at
different stages of the computation, and certain edges do not represent qubits at
all: they encode correlations between different parts of the system. Example 7
shows how 2-qubit gates are encoded using such correlations. The vertices of
the diagram are interpreted as local operations, possibly conditioned on the
variables, so that the entire diagram yields a superoperator from its inputs to
its outputs. We define an interpretation functor to make this intuition precise.

Definition 3. Call v : S → {0, 1} a valuation of S; for each valuation v, we
define a functor v̂ : D(S) → D which simply instantiates the labels of Z and X
vertices occurring in each diagram. If a vertex z is labelled by α and S′, then
v̂(z) is labelled by 0 if

∏
s∈S′ v(s) = 0 and α otherwise.
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Definition 4. Let �·� : D → FDHilb be a traced monoidal functor; define its
action on objects by �A� = C2n

whenever n = |A|; define its action on the
generators as:

�
...

...
α � =

{
|0〉⊗m �→ |0〉⊗n

|1〉⊗m �→ eiα |1〉⊗n �
...

...
α � =

{
|+〉⊗m �→ |+〉⊗n

|−〉⊗m �→ eiα |−〉⊗n

� H � =
1√
2

(
1 1
1 −1

)
.

The value of �·� on all other arrows is then fixed by the requirement that it be a
traced monoidal functor2.

Definition 5. The denotation of a diagram D over variables S is a superoper-
ator constructed by summing over all the valuations of S:

ρ )→
∑
v∈2S

�v̂(D)�ρ�v̂(D)�† .

Example 6 (Pauli Matrices). The Pauli X and Z matrices can be defined by
degree 2 vertices:

� π � =
(

0 1
1 0

)
� π � =

(
1 0
0 −1

)
Example 7 (2-qubit gates). Composing an X with a Z vertex yields the 2-qubit
∧X (controlled-NOT) gate where the Z vertex is the control qubit. The ∧Z gate
is defined similarly.

∧X = � � = � � =

⎛⎜⎝ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎠ ; ∧Z = � H � = � H � =

⎛⎜⎝
1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎠ .

In both cases, the diagonal edge connecting the two sides of the diagram produces
the correlation of the two physical qubits represented by the vertical edges.

Example 8 (Preparing and measuring qubits). The preparation of a fresh qubit
is represented by a single vertex with no input edges and one output edge:

� � =
(

1
0

)
= |0〉 ; � � =

1√
2

(
1
1

)
= |+〉 .

To encode a projection we use a dual diagram to preparation; the non-determinism
of measurement is represented using a conditional operation whose two possible
valuations correspond to the two possible outcomes:
2 Again, the full details of this construction regarding cyclic graphs and traces can be

found in [14].
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π, {x} �

x �→ 0 x �→ 1

, π
� ρ �→ 〈+| ρ |+〉+ 〈+|ZρZ |+〉

= 〈+| ρ |+〉+ 〈−| ρ |−〉

From the preceding examples, it will be obvious that our diagrammatic language
can represent a universal set of quantum gates, and hence can represent all
quantum circuits. However, not every diagram corresponds to a quantum circuit.

Definition 9. A diagram is called circuit-like if (1) all of its boundary, X, and
Z vertices can be covered by a set P of disjoint paths, each of which ends in
an output; (2) every cycle in the diagram traverses at least one edge covered by
P in the direction opposite to that induced by the path; and, (3) it is weakly
3-coloured in the following sense: in every connected subgraph whose vertices are
all the same type, no two (non-boundary) vertices are labelled by the same set S
of variables.

The paths mentioned in the condition (1) represent the physical qubits of a
quantum circuit, and condition (2) prevents information being fed from a later
part of the circuit to an earlier part. Notice that condition (1) allows, but does
not require, H vertices to be covered by the path; hence the ∧Z example above is
circuit-like. Condition (3) is a requirement that circuit-like diagrams are normal
with respect to certain rewrite rules introduced in Section 3.

The path-cover P of a circuit-like diagram gives a factorisation of the diagram
into unitary gates, thus defining a quantum circuit, possibly with some part of its
input fixed. More precisely, every such diagram can be obtained from a circuit
by the rewrite rules of the following section. The following is an immediate
consequence.

Proposition 10. If D is unconditional and circuit-like then �D� is a unitary
embedding.

3 Rewrites

The map �·� gives an interpretation of diagrams as linear maps. This interpre-
tation, however, is not injective: there are numerous diagrams which denote the
same linear map. To address this difficulty, an equational theory on D is required.
We will now introduce such a theory via a set of rewriting rules.

Definition 11. Let R be least transitive and reflexive relation on D generated by
the local rewrite rules shown in Figure 2. Let ↔∗ denote the symmetric closure
of R.

The diagrammatic syntax, and the equations of the rewrite rules are derived
from those introduced in [4]. The Z family of vertices correspond to operations
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...

...

α, S

β, S

�
...

...
α + β, S

...
α, S �

...
α, S 0, S �

(spider) (anti-loop) (identity)

...
β, T

α, S � ...
β, T

α, S ...
α, S

π, S �

...
π, S

−α, S

π, S

(α-commute) (π-commute)

�

...
α, S

�
...

...

...
α, S

β, T

�

...

...
α, S

β, T

(bialgebra) (copying) (hopf)

H

...
α, S

�
H H

...

α, S H

H

�

(H-commute) (H-cancel)

Fig. 2. Rewrite rules for system R. We present the rules for the Z subsystem; to obtain
the complete set of rules exchange the colours in the rules shown above.

defined with respect to the eigenbasis of the Pauli Z operator; a copying op-
eration for this basis and phase rotations which leave it fixed. Similarly the X
family are defined with respect to the Pauli X . The H vertices represent the
familiar 1-qubit Hadamard, which maps sends each family onto the other. Each
family individually forms a special Frobenius algebra, and together they form
a Hopf algebra with trivial antipode. Space does not permit a more thorough
justification of these particular operations and rules, beyond the following:

Proposition 12. The rewrite system R is sound with respect to the interpreta-
tion map �·�.

Despite its soundness, this rewrite system does not have many good properties. It
is not complete with respect to the interpretation in Hilbert space; an example of
an unprovable true equation is discussed in [16]. It is manifestly not terminating
since several of the rules are reversible, for example the α-commutation rule;
other rules can generate an infinite sequence of rewrites, for example the π-
commutation rule. The subsystem without H is known to be neither confluent
nor terminating [17]. Rather than attempt to remedy these defects by tinkering
with the system, in this paper we will use particular rewrite strategies to produce
circuit-like diagrams.
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Proposition 10 implies that any unconditional circuit-like diagram has a nat-
ural interpretation as a quantum circuit, hence the existence of such a reduct
for a given diagram shows that the diagram is equivalent to the derived circuit.
In the following sections we will see how to apply this idea to the verification of
one-way quantum computations.

Lemma 13 (Main Lemma). Given a diagram D, let X = {x0, . . . xk} and
Z = {z0, . . . , z�} be sets of its X and Z vertices respectively, such that the
subdiagram G, induced by Z∪X , is bipartite—that is, for all i, j, we have xi �∼ xj

and zi �∼ zj in G.
Define a new graph G′ with vertices VG′ = VG∪{u1, . . . u�}∪{v1, . . . , v�}, and

such that for any 0 ≤ i ≤ k and 1 ≤ j ≤ �,

– there are edges (uj , vj), (uj , xj−1) and (uj , xj) ∈ G′;
– there is an edge (xi, z0) ∈ G′ iff xi ∈ OddG(Z)
– there is an edge (xi, vj) ∈ G′ iff xi ∈ OddG({zj, . . . z�}).

j

G =

z0 z1 z�

x0 x1 xk

...

...

←→∗

z0 z1 z�

x0 x1 xk

u1 u2 u�

v1 v2 v�

...

...

= G′

Then G ↔∗ G′.

Note that there is an edge between an X vertex x and a Z vertex z in G if and
only if there is an odd number of paths between x and z in G′.

A direct proof of the lemma can be given using rewrites or R, although we
note that is a special case of the well known normal form theorem for Hopf
algebras (see [18] for a nice version).

Each instance of the Main Lemma provides a new admissible rule G � G′;
since ↔∗ is just the equivalence relation generated by R, these new rules are
sound with respect to the interpretation map �·�. One way to view the lemma is
as a new set of rewrite rules S compatible with R.

Example 14. An admissible rule from the schema S. :

�
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4 The Measurement Calculus

The measurement calculus, introduced by Danos, Kashefi and Panangaden [5],
is a formal calculus for one-way quantum computations [1]. We review here the
basic features of the calculus; for a complete exposition see [5].

Definition 15. A measurement pattern consists of a set V of qubits, with dis-
tinguished subsets I and O of inputs and outputs respectively, and, in addition,
a sequence of commands chosen from the following operations.

– 1-qubit preparations, Ni, which prepare the qubit i �∈ I to the state |+〉.
– 2-qubit entangling operations, Eij , which applies a ∧Z to qubits i and j.
– 1-qubit measurements, s[Mα

i ]t, which act as destructive measurements on the
qubit i �∈ O, in the basis |0〉 ± e(−1)siα+tπ |1〉, where s, t ∈ {0, 1} are boolean
values called signals.

– 1-qubit corrections Xs
i and Zt

j, which act as the Pauli X and Z operators on
qubits i and j, if the signals s and t, respectively, are equal to 1; otherwise
the corrections have no effect.

A qubit is measured if and only if it is not an output. The set of signals is
in bijection with the set V \ O of measured qubits: signal s is set to 0 if the
corresponding measurement yields the +1 eigenstate, and 1 otherwise.

Each pattern can be interpreted as a superoperator C2|I| → C2|O|
via a linear

map, called the branch map, for each possible vector of measurement outcomes,
much as in Def. 5. Indeed each pattern can be translated into diagram with the
same semantics.

Remark 16. The measurement operation s[Mα
i ]t is equivalent to the sequence

Mα
i Xs

i Z
t
i . The following assumes that all measurements have been so decom-

posed.

Definition 17. Let P be a pattern. Define a diagram DP over V \O by translat-
ing the command sequence according to table 1, and composing in these elements
in the the evident way.

Example 18. The ubiquitous CNOT operation can be computed by the pattern
P = X3

4Z
2
4Z

2
1M

0
3M

0
2E13E23E34N3N4 [5]. This yields the diagram,

Table 1. Translation from pattern to diagram

Ni Eij Mα
i Xs

i Zs
i

H π, {i}
−α

π, {s} π, {s}
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DP =
H

H

H

π, {3}

π, {2}

π, {2}

π, {3}π, {2}

,

where each qubit is represented by a vertical “path” from top to bottom, with
qubit 1 the leftmost, and qubit 4 is the rightmost.

By virtue of the soundness of R and Proposition 10, if DP can be rewritten
to a circuit-like diagram without any conditional operations, then the rewrite
sequence constitutes a proof that the pattern computes the same operation as
the derived circuit.

Example 19. Returning to the CNOT pattern of Example 18, there is a rewrite
sequence, the key steps of which are shown below, which reduces the DP to
the unconditional circuit-like pattern for CNOT introduced in Example 7. This
proves two things: firstly that P indeed computes the CNOT unitary, and that
the pattern P is deterministic.

H

H

H

π, {3}

π, {2}

π, {2}

π, {3}π, {2}

∗�
H

H

H

π, {3}

π, {2}

π, {2}
π, {2} π, {3}

∗� H

H

H

π, {3}
π, {3}

π, {2}

π, {2}

π, {2}

∗�
π, {2}

π, {2}
π, {2}

∗�
π, {2}π, {2}

π, {2} π, {2}
∗�

One can clearly see in this example how the non-determinism introduced by
measurements is corrected by conditional operations later in the pattern. The
possibility of performing such corrections depends on the geometry of the pat-
tern, the entanglement graph implicitly defined by the pattern.

Definition 20. Let P be a pattern; the geometry of P is an open graph γ(P) =
(G, I,O) whose vertices are the qubits of P and where i ∼ j iff Eij occurs in the
command sequence of P.

Definition 21. Given a geometry Γ = ((V,E), I, O) we can define a diagram
DΓ = ((VD, ED), ID, OD) as follows:

– VD = V + E + I + O, coloured such that:
• v ∈ V is an unconditional Z vertex in DΓ , labelled by α = 0;
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• e ∈ E is an H vertex;
• b ∈ I + O is a boundary vertex.

– The edge relation is as follows:
• if v ∈ I, or v ∈ O, in Γ then vI ∼ vV , respectively vO ∼ vV , in DΓ ;
• if e = (v, v′) in Γ , then eE ∼ vV and eE ∼ v′V in DΓ ;

– vI ∈ ID and vO ∈ OD.

The Z vertices of Dγ(P) are in bijective correspondence with the qubits of P.

Example 22. Let P = E12E13E23N1N2N3. This pattern has no inputs or mea-
surements: it simply prepares a triangular graph state. Notice that Dγ(P) is a
reduct of DP.

H

HH �∗ H

H

H

γ(P) Dγ(P) DP

Given Dγ(P), we can adjoin measurements to construct a diagram D∗
P, such

that DP
∗� D∗

P. Justified by this, we shall use Dγ(P) in place of DP, to allow
properties based on the geometry to be imported directly. The most important
such property is the generalised flow, or gflow.

Definition 23. Let (G, I,O) be an open graph; a generalised flow (or gflow) is
a pair (g,≺), with ≺ a partial order and g a function g : Oc → P(Ic) which
associates with every non output vertex a set of non input vertices such that:

(G1). if j ∈ g(i) then i ≺ j;
(G2). if j ∈ OddG(g(i)) then j = i or i ≺ j;
(G3). i ∈ OddG(g(i)).

In the special case that |g(v)| = 1 for all vertices v, the gflow is called a causal
flow, or simply a flow.

Theorem 24 ([7]). If (G, I,O) has a gflow, then there exists a pattern P0

such that γ(P0) = (G, I,O) and P0 is deterministic, in the sense that all of its
branch maps are equal. Further, this property does not depend on the angle of
any measurement in P0.

Since different patterns may have the same geometry, it may be that γ(P) =
γ(P′) but one is deterministic and the other is not. In the next section we de-
scribe how to produce a circuit-like diagram from Dγ(P) using a rewrite strategy
based on the existence of a gflow.
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5 Rewriting to Circuits

Now we relate the various flow structures on a geometry, to the possibility that
the corresponding pattern is deterministic.

Notice that Def. 23 can be readily adapted to define a gflow over an uncon-
ditional diagram: simply replace the vertices of the geometry with the non-H
vertices of the diagram, and replace “adjacent” with “reachable via a path of
zero or more H vertices”. It is easy to see that the original definition on γ(P)
and the modified version on Dγ(P) exactly coincide.

Now we demonstrate a rewriting strategy that will perform two tasks at once.
If the open graph has a gflow, we will discover it. And, we will, in the process,
transform the graph into a new graph which has a casual flow.

Lemma 25. There is a convergent rewriting strategy such that if P has a gflow
then Dγ(P) ↓ is circuit like.

Proof (Sketch). Suppose we know the gflow on Dγ(P). For every non-output
qubit i, the sets g(i) and {i}∪{j ∈ V : j ≺ i} provide the situation of the main
lemma, hence we can rewrite the diagram according the induced rules. The new
graph has again a gflow, and further, the overall size of the sets g(i) has been
reduced. It just remains to find the gflow if it exists; for this we can essentially
simulate the method of [7] by the choice of admissible rules S.

Lemma 26. P has a causal flow if and only if Dγ(P) is circuit like.

Theorem 27. If a geometry Γ has a gflow then DΓ can be rewritten to a circuit
like diagram.

Example 28. The existence of a gflow is a sufficient condition for a pattern P
to be circuit-like, but not necessary. For instance, although the pattern P =
M0

3M
α
2 E23E12N2N3 has no gflow, it can be rewritten to a circuit-like diagram:

H H

π, {i}
−α

π, {j}
0

∗�
H

π, {i}
−α

π, {j} ∗�
π, {j}

This example shows that the verification using our rewriting technique is more
powerful than the static gflow condition: the rewriting techniques can verify
non-uniform properties, i.e. properties which depend on the actual measurement
angles.

6 Conclusions, Extensions, and Future Work

We have shown how to represent the measurement calculus in a diagrammatic
form, and demonstrated how rewriting of these diagrams can prove the equiva-
lence of computations. Our main result describes a rewriting strategy for trans-
forming a measurement pattern it into a circuit-like diagram, which furthermore
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uses no ancilla qubits. Although space limitations prevent its description here,
this result can be extended. We can rewrite the resulting diagram to an uncon-
ditional diagram if and only if the given pattern is in fact deterministic—that
is, free of programming errors. Indeed by suitable annotations of the diagram
this strategy can discover where additional corrections should be added to the
pattern to make it deterministic, effectively debugging the pattern. These tech-
niques extend outside the realm of gflow since we can also show non-uniform
determinism, as discussed in at the end of Section 5. One important area which
we have not treated here is the depth complexity of the circuits constructed by
our strategy. This will be examined in future work.
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The Compositional Structure of
Multipartite Quantum Entanglement

Bob Coecke and Aleks Kissinger�

Oxford University Computing Laboratory

Abstract. Multipartite quantum states constitute a (if not the) key
resource for quantum computations and protocols. However obtaining a
generic, structural understanding of entanglement in N-qubit systems
is a long-standing open problem in quantum computer science. Here we
show that multipartite quantum entanglement admits a compositional
structure, and hence is subject to modern computer science methods.

Recall that two N-qubit states are SLOCC-equivalent if they can be
inter-converted by stochastic local (quantum) operations and classical
communication. There are only two SLOCC-equivalence classes of gen-
uinely entangled 3-qubit states, the GHZ-class and the W-class, and we
show that these exactly correspond with two kinds of internal commu-
tative Frobenius algebras on C

2 in the symmetric monoidal category of
Hilbert spaces and linear maps, namely ‘special’ ones and ‘anti-special’
ones. Within the graphical language of symmetric monoidal categories,
the distinction between ‘special’ and ‘anti-special’ is purely topological,
in terms of ‘connected’ vs. ‘disconnected’.

These GHZ and W Frobenius algebras form the primitives of a graphi-
cal calculus which is expressive enough to generate and reason about rep-
resentatives of arbitrary N-qubit states. This calculus refines the graphi-
cal calculus of complementary observables in [5, ICALP’08], which has al-
ready shown itself to have many applications and admit automation. Our
result also induces a generalised graph state paradigm for measurement-
based quantum computing.

1 Introduction

Spatially separated compound quantum systems exhibit correlations under mea-
surement which cannot be explained by classical physics. Bipartite states are
used in protocols such as quantum teleportation, quantum key distribution, su-
perdense coding, entanglement swapping, and many other typically quantum
phenomena. The tripartite GHZ-state allows for a purely qualitative Bell-type
argument demonstrating the non-locality of quantum mechanics [17], a phe-
nomenon which has recently been exploited to boost computational power [2]. In
one-way quantum computing, multipartite graph states which generalise GHZ-
states constitute a resource for universal quantum computing [19]. There are
� This work is supported by EPSRC Advanced Research Fellowship EP/D072786/1,

by a Clarendon Studentship, by US Office of Naval Research Grant N00014-09-1-0248
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also many other applications of GHZ-states and graph states in the areas of
fault-tolerance and communication protocols [24]. The tripartite W-state, which
is qualitatively very different from the GHZ-state, supports distributed leader-
election [12]. However, very little is known about the structure and behaviours
of general multipartite quantum states.

What is known is that the variety of different possible behaviours is huge.
For example, there is an infinite number of 4-qubit states which are not inter-
convertible by stochastic local (quantum) operations and classical communica-
tion (SLOCC) [28]. States that are not SLOCC-equivalent correspond to incom-
parable forms of ‘distributed quantum-ness,’ so each will have distinct behaviours
and applications.

For three qubits there are only two non-degenerate SLOCC-classes [16], one
that contains the GHZ-state and another one that contains the W-state:

|GHZ〉 = |000〉+ |111〉 |W 〉 = |100〉+ |010〉+ |001〉 .
We will now argue that tripartite qubit states can be seen as algebraic opera-
tions on C2. The most fundamental operations in nearly all branches of algebra
have two inputs and one output. Quantum protocols like gate teleportation have
taught us not to care much about distinguishing inputs and outputs, as there is
little distinction between information flowing forward through an operation and
flowing ‘horizontally’ across an entangled state. Hence the ‘total arity’ (inputs
+ outputs) becomes a cogent feature. In this sense, tripartite states, regarded as
operations with zero inputs and three outputs, are analogous to binary algebraic
operations.

In this paper, we show that GHZ-states and W-states play a foundational
role in the composition of multipartite entangled states. Just as + and ∗ can be
used to generate arbitrary polynomials, W and GHZ can be used to generate
arbitrary N -partite qubit states.

These results are presented in the context of categorical quantum mechanics,
initiated by Abramsky and one of the authors in [1, LiCS’04]. An appealing
feature of this framework is its formulation in symmetric monoidal categories,
which admit a rich graphical calculus [25,18,27]. Frobenius algebras, specifically
in their categorical formulation due to Carboni and Walters [4], have become a
key focus of categorical quantum mechanics by accounting for observables and
corresponding classical data flows [8,9,7,10]. This picture of complementarity ob-
servables was axiomatised by Coecke and Duncan in [5, ICALP’08], resulting in
a powerful graphical calculus, which we shall refer to here as the Z/X-calculus.
It has since had applications in quantum foundations [6], in measurement-based
quantum computation [5, ICALP’08], [14] and [15, ICALP’10], and for the anal-
ysis of quantum cryptographic protocols [11,10]. There is also a software tool
called quantomatic [13], developed by Dixon, Duncan and Kissinger, which per-
forms semi-automated reasoning within the Z/X-calculus.

Section 2 reviews commutative Frobenius algebras in a categorical context. In
section 3 we introduce a calculus which is similar to Z/X-calculus, in that it also
has two commutative Frobenius algebras (CFAs) as its main ingredients. How-
ever, while in Z/X-calculus the CFAs are both special [21], here we introduce
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‘anti-special’ CFAs which will account for the W -state behaviour. We then show
in section 4 that this calculus is a powerful tool for generating and reasoning
about multipartite states. In section 5 we show how the W/GHZ-calculus actu-
ally refines Z/X-calculus, by reconstructing the latter’s generators and relations.
Since Z/X-calculus subsumes reasoning with graph states [14], GHZ/W-calculus
provides a generalised graph state paradigm, and could also lead to a gener-
alised measurement-based quantum computational model, among many other
potential applications. We conclude by noting how the quantomatic software
can easily be adjusted to semi-automate reasoning within the more powerful
GHZ/W-calculus, giving a computational handle on this much richer language.

We formally don’t distinguish ‘states’ from ‘vectors’; it should be clear to
the reader that by ‘state |ψ〉’ we mean the ray spanned by the vector |ψ〉. By
|i〉 we refer to a vector of a chosen orthonormal basis, also referred to as the
computational basis. It is in this basis that our GHZ- and W-states are expressed.

An extended version of this paper, arXiv:1002.2540, contains all proofs.

2 Background: Commutative Frobenius Algebras

Let C be a symmetric monoidal category. We work within the induced graph-
ical calculus and take associativity and unit laws to be strict. A commutative
Frobenius algebra (CFA) in C is an object A and morphisms μ, η, δ, ε such that:

– (A ,μ : A⊗A→ A , η : I → A) is an internal commutative monoid,
– (A , δ : A→ A⊗A , ε : A→ I) is an internal cocommutative comonoid, and
– (1⊗ μ) ◦ (δ ⊗ 1) = δ ◦ μ.

Depicting μ, δ, η, ε respectively as , , and the Frobenius identity becomes:

=

Definition 1. For a CFA A = (A, μ, η, δ, ε), an A-graph is a morphism obtained
from the following maps: 1A, σA,A (the swap map), μ, η, δ, and ε, combined with
composition and the tensor product. An A-graph is said to be connected precisely
when its graphical representation is connected.

The following is a well-known result about Frobenius algebras, for a proof, see
e.g. [21].

Proposition 1. The Frobenius identity guarantees that any connected A-graph
is uniquely determined by its number of inputs, outputs, and its number of loops.1

1 Here, the number of loops is the maximum number of edges one can remove without
disconnecting the graph. Equivalently, it is the number of holes in the corresponding
cobordism [21].
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This makes CFA’s highly topological, in that A-graphs are invariant under de-
formations that respect the number of loops. In the special case where there are
0 loops, we make the following notational simplification, called spider -notation.

Sn
m =

...

...
:= ... S0

m := S1
m ◦ Sn

0 := ◦ Sn
1

For example, we can use this notation to construct the following maps:

S0
2 = ‘cap’ = S2

0 = ‘cup’ =

We usually omit the dots from caps and cups when there is no ambiguity, e.g.

:= := ◦ := ◦

Definition 2. A CFA is special (a SCFA), resp. anti-special (an ACFA) iff:

= resp. =

While the notion of special Frobenius algebras is standard, that of anti-special
ones seems new. For CFAs we assume that circles admit an inverse 2 i.e. ◦ − =
− ◦ = 1I . Interpreting maps I → I as scalars, this just means is non-zero.

3 GHZ- and W-States as Commutative Frobenius
Algebras

Let Σ be a distributed N -qubit system. A local operation on Σ is an operation
on a single subsystem of Σ.3 Two states of Σ are SLOCC-equivalent if with
some non-zero probability they can be inter-converted with only local physical
operations and classical communication. We shall use the following important
theorem to characterise such states.

Theorem 1 ([16]). Two states |Ψ〉, |Φ〉 of Σ are SLOCC-equivalent iff there
exist invertible linear maps Li : Hi → Hi such that |Ψ〉 = (L1 ⊗ . . .⊗ LN )|Φ〉.

By the induced tripartite state of a CFA we mean S0
3 = . We denote the

symmetric monoidal category of finite-dimensional Hilbert spaces, linear maps,
the tensor product and with C as the tensor unit by FHilb. In FHilb, any
morphism ψ : C → H uniquely defines a vector |ψ〉 := ψ(1) ∈ H and vice versa.

2 In FHilb, = D, the dimension of the underlying space. Therefore − = 1/D.
3 These may also be generalised measurements, i.e. those arising when measuring the

system together with an ancillary system by means of a projective measurement, as
well unitary operations applied to extended systems.
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Theorem 2. For each SCFA (resp. ACFA) on C2 in FHilb its induced tripar-
tite state is SLOCC-equivalent to |GHZ〉 (resp. |W 〉). Conversely, any symmet-
ric state in C2⊗C2⊗C2 that is SLOCC-equivalent to |GHZ〉 (resp. |W 〉) is the
induced tripartite state for some SCFA (resp. ACFA) on C2 in FHilb.

Each SCFA on H in FHilb induces a state that is SLOCC-equivalent to |GHZ〉
because the copied states |ψi〉 ∈ H, that is, those satisfying δ(|ψi〉) = |ψi〉⊗ |ψi〉,
form a basis of H (see [9]§6). The induced tripartite state is then

∑
i |ψiψiψi〉

which is evidently SLOCC-equivalent to
∑

i |iii〉.
For the GHZ-state the induced SCFA is:

= |0〉 〈00|+ |1〉 〈11| = |+〉 := |0〉+ |1〉
= |00〉 〈0|+ |11〉 〈1| = 〈+| := 〈0|+ 〈1|

(1)

and for the W-state the induced ACFA is:

= |1〉 〈11|+ |0〉 〈01|+ |0〉 〈10| = |1〉
= |00〉 〈0|+ |01〉 〈1|+ |10〉 〈1| = 〈0|

(2)

We know from [16] that W and GHZ are the only genuine tripartite qubit states,
up to SLOCC-equivalence. Thus, the result above offers an exhaustive classifi-
cation of CFA’s on C2, up to local operations.

Corollary 1. Any CFA on C2 in FHilb is ‘locally equivalent’ to a SCFA or an
ACFA. Concretely, there exists an invertible linear map L : C2 → C2 such that
the induced maps

L

and
L L

define a CFA that is either special or anti-special.

Corollary 2. Every (commutative) monoid on C2 in FHilb extends to a CFA.

We now show that an SCFA and an ACFA each admit a normal form. By the
previous theorem these govern the graphical calculi associated to GHZ and W
SLOCC-class states.

Theorem 3. Let C be any symmetric monoidal category. For an SCFA on C,
any connected CFA-morphism is equal to a spider, for an ACFA, any connected
CFA-morphism is either equal to a spider or is of the following form:

...

...
scalar

where the scalar is some tensor product of , − , and . The total number of
loops minus the number of − is moreover preserved.

A key ingredient in the proof is that δ (resp. μ) ‘copies’ (resp. ).
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Proposition 2. For any ACFA we have: =

Thm 2 shows that the structure of either an SCFA or an ACFA alone generates
relatively few morphisms, and the only non-degenerate multipartite states which
arise are the canonical n-qubit analogous to the GHZ- and W-state. However,
when combining these two a wealth of states emerges, as we show now.

4 Generating General Multipartite States

For the specific cases of the GHZ-SCFA and the W-ACFA as in Eqs (1) and
(2) there are many equations which connect ( , , , ) and ( , , , ). A
small subset of these provide us with a calculus that helps us to realise the
main goal of this section, to show that representatives of all known multipartite
SLOCC-classes arise from the interaction of a SCFA with an ACFA.

The cups and caps induced by each CFA in general do not coincide, e.g.

|10〉+ |01〉 = = = |00〉+ |11〉

Therefore we always place dots on caps and cups in order to distinguish them,

except in the case of and , which are always assumed to consist of a (co)
multiplication and a cap or cup of the same colour.

Definition 3. A GHZ/W-pair consists of a SCFA ( , , , ) and an ACFA
( , , , ) which satisfy the following four equations.

(i.) - := = (ii.)
-

= - -

(iii.) = (iv.) - =

In FHilb these conditions have a clear interpretation. By compactness of cups
and caps, the first condition implies that a ‘tick’ on a wire is self-inverse which
together with the second condition implies that it is a permutation of the copied
states of the SCFA (see [7]§3.4). The third condition asserts that is a copiable

point. The fourth condition implies that is also a (scaled) copiable point since
it is the result of applying a permutation to a scalar multiple of .

=
-

=
- -

= - - =

We have shown abstractly that the ACFA structure defines the copiable points
of the SCFA structure, which uniquely determines the structure itself.
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Theorem 4. For any SCFA G on C2, there is a unique ACFA W such that
(G,W) forms a GHZ/W-pair. Furthermore, for any ACFA W ′ on C2, there is a
unique SCFA G′ such that (G′,W ′) forms a GHZ/W-pair.

There is necessarily an infinite number of SLOCC classes when N ≥ 4 [16]. To
obtain finite classification results many authors have expanded to talk about
SLOCC super-classes, or families of SLOCC classes parameterised by one or
more continuous variables. An example of this approach is [22], where the au-
thors introduce a classification scheme based upon the right singular subspace
of a pure state. They begin with the observation that a column vector with 2N

entries has the same data as a 2(N−1) × 2 matrix. Therefore, they treat a pure
state on N qubits as a map from

⊗(N−1)
C2 to C2. Performing a singular value

decomposition on such a matrix yields a 1- or 2-dimensional right singular sub-
space, spanned by vectors in

⊗N−1
C2. The SLOCC super-class of this state is

then labeled by the SLOCC super-classes of these spanning vectors, thus per-
forming the inductive step. The base case is C

2⊗C
2, where the only two SLOCC

classes are represented by the product state and the Bell state.
An alternative way of looking at this scheme is to consider N -partite states

as “controlled” (N − 1)-partite states. That is to say, the right singular space of
a state is spanned by {|Ψ〉, |Φ〉} iff there exists a SLOCC-equivalent state of the
form |0Ψ〉 + |1Φ〉. This provides an operational description of a SLOCC super-
class. Namely, a state |Θ〉 is in the SLOCC superclass {|Ψ〉, |Φ〉} if there exists
some (two-dimensional, possibly non-orthogonal) basis B such that projecting
the first qubit on to an element of B yields a state that is SLOCC-equivalent to
|Ψ〉 for outcome 1 and |Φ〉 for outcome 2. From this point of view, we can show
that the language of GHZ/W-pairs realises the inductive step.

Theorem 5. In FHilb, when considering the GHZ/W-pair on C2 as in Eqs (1)
and (2), the linear map

QMUX := -

-

-

-
- (3)

takes states |ψ〉⊗|φ〉 to a state that is SLOCC-equivalent to 〈1|φ〉|0ψ〉+〈1|ψ〉|1φ〉.
From this it follows that more generally,

QMUX ...

...

... ...

QMUX QMUX

takes the states |Ψ〉 ⊗ |Φ〉 ∈
(⊗N−1

C2
)
⊗
(⊗N−1

C2
)

to

〈1 . . . 1︸ ︷︷ ︸
N−1

|Φ〉|0Ψ〉+ 〈1 . . . 1︸ ︷︷ ︸
N−1

|Ψ〉|1Φ〉 .
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Proof. We show this by using axioms (i.)-(iv.). We only require the result to
hold up to SLOCC-equivalence, so we shall disregard the scalars and − .
Note that 〈0| = − and 〈1| = :

ψ φ

-

-

-

-

-
1=

ψ φ

- -

-

-
2=

ψ φ

- -

-

-
3=

ψ φ

-
-

-

-
4=

ψ φ

-

-
5=

ψ φ

ψ φ

-

-

-

-

- =

ψ φ

- -

-

- =

ψ φ

- -

-

- =

ψ φ

-

-

- =

ψ φ

-

-

-
=

ψ φ

-

-

=
ψ φ

We shall explain the first sequence of equalities. The second proceeds similarly.
Step 1 is due to axiom (iv.). For step 2, we can show that is a copiable point
of (c.f. the remark following Def 3). Step 3 is due to anti-specialness and step
4 to axiom (iv.). Step 5 is two applications of the unit and axiom (i.), which
implies that - is involutive. �

Scalars 〈1 . . . 1|Ψ〉 and 〈1 . . . 1|Φ〉 are be assumed to be non-zero. If this is not
the case we vary the representatives of SLOCC-classes. It is an easy exercise to
show that any state is SLOCC-equivalent to a state that is not orthogonal to
|1 . . . 1〉.
Theorem 6. In FHilb, when considering the GHZ/W-pair on C2 as in Eqs (1)
and (2), a linear map L : C2 → C2 can always be realised either as:

L :=

ψ

- φ

ξ

-

- or as L :=

ψ

- φ

ξ
-

for some single-qubit states ψ, φ and ξ. Consequently, given a representative of
a SLOCC-class we can reproduce the whole SLOCC-class when we augment the
GHZ/W-calculus with ‘variables’, i.e. single-qubit states.

Since we can produce a witness for any SLOCC-class, as well as any other mul-
tipartite state that is SLOCC-equivalent to it, we can produce any multipartite
state. Via map-state duality, from arbitrary N + M -qubit states we obtain ar-
bitrary linear maps L :

⊗N
C2 →
⊗M

C2.

Corollary 3. If we adjoin variables to the graphical language of GHZ/W-pairs
then any N -qubit entangled state and consequently also any linear map L :⊗N

C
2 →
⊗M

C
2 can be written in graphical language.
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What is important here, since all variables are local, is that all genuine new
kinds of entanglement arise from the GHZ/W-calculus only.

Of course, the graphs that we obtain in the above prescribed manner are
not at all the simplest representatives of a SLOCC-superclass. With 4 qubits,
for example, it is easy to construct much simpler representatives of distinct
SLOCC-superclasses. Here are representatives of five distinct superclasses:

where:

- := - = -

The first two are the 4 qubit GHZ- and W-state respectively for which we have:
– |GHZ4〉 = |0〉|000〉+ |1〉|111〉
– |W4〉 = |0〉|W 〉+ |1〉|000〉

and one easily verifies that the other three are:
– |0〉 (|000〉+ |101〉+ |010〉)︸ ︷︷ ︸

SLOCC� |W 〉

+|1〉(|0〉 (|01〉+ |10〉)︸ ︷︷ ︸
SLOCC� |Bell〉

)

– |0〉|000〉+ |1〉(|1〉 (|01〉+ |10〉)︸ ︷︷ ︸
SLOCC� |Bell〉

)

– |0〉 (|000〉+ |111〉)︸ ︷︷ ︸
SLOCC� |GHZ〉

+|1〉|010〉

respectively, from which we can read off the corresponding right singular vectors.
We can also obtain examples of fully parametrized SLOCC-superclasses. That

is, the values of the variables yield all SLOCC-classes that the superclass con-
tains. For example, the following figure corresponds with the given SLOCC su-
perclass.

φ ψ

= |0〉((|00〉+ |1ψ〉)︸ ︷︷ ︸
SLOCC� |Bell〉

|φ〉) + |1〉|0〉|Bell〉

So in addition to providing an inductive method to generate arbitrary multi-
partite states, the graphical calculus provides an intuitive tool to produce and
reason about multipartite states. Since individual components exhibit well-
defined primitive behaviours via the graph rewriting, one could imagine con-
structing composite states to meet specific, complex behavioural specifications
in a quantum algorithm or protocol.

5 Induced Z/X-Calculus

Z/X-pairs (also called complementary classical structures) provide a graphical
means to reason about the behaviour of interacting, maximally non-commuting
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observables in a quantum system. Here, we show how (in two dimensions) the
theory of GHZ/W-pairs subsumes the theory of Z/X-pairs.

Definition 4. A Z/X-pair consists of two SCFAs ( , , , ) and ( , , , )
which satisfy the following equations:

(I.) = (II.) =

(III.) = (IV.) =

as well as the horizontal mirror image of these equations.

The key example of a Z/X-pair on C2 in FHilb are the SCFAs corresponding
to the Z- and the X-eigenstates, i.e. a pair of complementary observables. By
composition one for example obtains:

CNOT = := =

and the calculus then enables to reason about circuits, measurement-based
quantum computing, QKD and many other things [5,14,6,15,11]. Meanwhile
there is the quantomatic software which semi-automates reasoning within
Z/X-calculus.

Theorem 7. Under the assumption of the ‘plugging rule’:4⎛⎝ f
...

= g
...

∧ f
-

...

= g
-

...

⎞⎠ ⇒ f
...

= g
...

(4)

and for
√

: I → I an isomorphism such that
√ √

= , and with inverse√
− : I → I, each GHZ/W-pair induces a Z/X-pair, in particular:

=
√

−

- --

- -

-
=
√

−

-

-- =
√

- =
√

(5)

One particular application of Z/X-calculus is that it enables to write down graph
states and reason about them. Graph states constitute the main resource in
measurement-based quantum computing. What is particular appealing about
them is that they relate physical properties to combinatorial properties of graphs.

Z/X-graph graph state

4 In FHilb, this condition can be read as “the vectors { , - } span C
2.”
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The results in this section tell us that the GHZ/W-calculus gives rise to a more
powerful generalised notion of graph state.

6 Conclusion and Outlook

In the light of the results in Sec 5, and given the power of the graphical cal-
culus of complementary observables, we expect even more to come from our
GHZ/W-calculus. As the W-state and the GHZ-state have very different kinds
of applications [17,12] we expect their blend to give rise to a wide range of new
possibilities. The graphical paradigm has been very successful in measurement-
based quantum computing [19,3,15] and other areas [24], and our generalised
graphical paradigm would substantially expand the scope of this practice, which
with support of a forthcoming quantomatic mark II can be semi-automated.

We can now ask which fragment of equations that hold for Hilbert space
quantum mechanics can be reproduced with GHZ/W-calculus, augmented with
the plugging rule Eq (4). Does there exist an extension which provides a com-
pleteness result? This question is less ambitious than it may sound at first,
given Selinger’s theorem that dagger compact closed categories are complete
with respect to finite-dimensional Hilbert spaces [26]. The obvious next step is
to explore the states representable in this theory, and the types of (provably
correct) protocols they can implement.
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Compositionality in Graph Transformation
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Abstract. Graph transformation works under a whole-world assumption. In
modelling realistic systems, this typically makes for large graphs and sometimes
also large, hard to understand rules. From process algebra, on the other hand,
we know the principle of reactivity, meaning that the system being modelled is
embedded in an environment with which it continually interacts. This has the ad-
vantage of allowing modular system specifications and correspondingly smaller
descriptions of individual components. Reactivity can alternatively be understood
as enabling compositionality: the specification of components and subsystems are
composed to obtain the complete model.

In this work we show a way to ingest graph transformation with composition-
ality, reaping the same benefits from modularity as enjoyed by process algebra.
In particular, using the existing concept of graph interface, we show under what
circumstances rules can be decomposed into smaller subrules, each working on a
subgraph of the complete, whole-world graph, in such a way that the effect of the
original rule is precisely captured by the synchronisation of subrules.

1 Introduction

Graph transformation has shown to be a very useful specification formalism, enabling
the rapid modelling of systems of all kinds, ranging from physical systems to protocols
and concrete software. However, one drawback of graph transformation systems is that
they require a “whole-world” view of the system to be modelled: the model at hand
always describes the entire system, and thus can grow very large. There is no support
for component submodels which can be analysed individually and composed later.

This is a consequence of the fact that graph transformation, like all rewriting tech-
niques, has a reductive semantics: applying a graph transformation rule involves finding
a match in the current model (the host graph) and making local changes in the model
without any reference to an external environment (a step which in some contexts is
called a reduction). This is in contrast to the reactive semantics enjoyed by, for instance,
process algebra: there the application of a rule typically involves communication with
an environment that is unknown at the moment (often called a reaction); the overall
system behaviour results from synchronisation of different models, in which one plays
the role of environment for the other.

In this paper we study a notion of reactivity for graph transformation. We compose
individual models by “gluing them together” along a predefined interface; the result is
like union, where the interface identifies the parts that are are merged. (Technically, this
comes down to constructing pushouts in an appropriate category.) Transformation rules

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 309–320, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Start graph and transformation rules for a simple, 4-cell buffer

are glued together in a similar fashion. Let us use the symbol ‘+’ to represent composi-
tion (which is partial since only objects with compatible interfaces can be composed).
We then compare transitions of individual components, Gi −pi−→ Hi for i = 1, 2, where
the Gi and Hi are graphs and the pi transformation rules, to transitions G1 +G2 −p→ H
of the composed system. We then investigate the following crucial properties (or actu-
ally a slightly more involved version that also takes matches into account):

Soundness. Compatible local transitions always give rise to global transitions: when
the Gi and pi are compatible, then Gi −pi−→ Hi for i = 1, 2 implies that the Hi are
compatible and that G1 + G2 −p1+p2−−−→ H1 + H2.

Completeness. All global transitions can be obtained by composing compatible local
transitions: G1 + G2 −p→ H implies that there are compatible pi for i = 1, 2 such
that Gi −pi−→ Hi, p = p1 + p2 and H = H1 + H2.

We illustrate the results on a simple example of a buffer. The whole-world model with
corresponding rules (consisting of a left hand side and a right hand side graph) is given
in Fig. 1. The intuitive meaning of the rules is that a match is found for the left hand
side, which is then replaced by the right hand side. A modular specification will allow
us to specify the behaviour per cell (with sufficient context information to glue the cells
together). For instance, Fig. 2 shows how the original graph can be decomposed into
four individual cells, and also shows the decomposition of the rules.

The structure of the paper is as follows: Sect. 2 defines concrete graphs and their com-
position; subsequently, Sect. 3 generalises this to the more abstract setting of adhesive
categories. We prove soundness and state sufficient conditions for completeness. Sect. 4
concludes the paper with an overview of related work and open questions.

A somewhat extended version of the paper, including all the proofs, can be found in
the report [15].

2 Graph Composition

In this section we introduce a concrete definition of graphs with interfaces, called
marked graphs, as well as the rules to transform them.
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Fig. 2. Decomposed start graph and shift-rule. Dotted lines indicate sharing

2.1 Graphs and Their Transformation

Throughout this paper we assume global (countable) disjoint universes N of nodes, E
of edges, and L of labels, with (also globally defined) functions src, tgt : E → N and
lab : E → L. In particular, for every combination of v, w ∈ N and a ∈ L, there are
assumed to be countably many e ∈ E such that src(e) = v, tgt(e) = w and lab(e) = a.

Furthermore, we will use structure-preserving functions over N∪E, which are func-
tions f = fV ∪ fE with fV : V →N for some V ⊆ N and fE : E→ E for some E ⊆ E
such that src ◦ fE = fV ◦ src � E, tgt ◦ fE = fV ◦ tgt � E and lab ◦ fE = lab � E.
Note that this implies src(E) ∪ tgt(E) ⊆ V .

Definition 1 (graph)

– A graph is a finite set G ⊆ N∪E, such that src(G∩E)∪ tgt(G∩E) ⊆ G. We often
write VG for G∩N and EG for G∩E, or just V and E if the index G is clear from
the context.

– Given graphs G,H , a graph morphism f : G→H is a structure-preserving func-
tion. If f is bijective we also call it an isomorphism and G and H isomorphic.

We often use the pointwise extension of morphisms to sets of elements. Due to the use of
globally defined sets of nodes and edges, graphs are closed under union and intersection,
but not under set difference: G \ H may contain “dangling edges”. Moreover, for a
morphism f : G→H and a subgraph H ′ ⊆ H , f−1(H ′) is also a graph.

Definition 2 (rule). A graph transformation rule is a tuple p = 〈L,R〉, consisting of
a left hand side (LHS) graph L and a right hand side (RHS) graph R. The intersection
I = L ∩R is often called the interface of p.

Let p = 〈L,R〉 be a transformation rule. p is applicable to a graph G (often called the
host graph) if there exists a match m : L→G, which is a graph morphism satisfying

No dangling edges: For all e ∈ EG, src(e) ∈ m(L \R) or tgt(e) ∈ m(L \R) implies
e ∈ m(L \R);

No delete conflicts: m(L \ I) ∩m(I) = ∅.
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The intuition is that the elements of G that are in m(L) but not in m(I) are scheduled
to be deleted by the production. If a node is deleted, then so must its incident edges,
or the result would not be a graph. Note that, due to the absence of delete conflicts,
m(L \R) = m(L \ I) = m(L) \m(I). Given such a match m, the application of p to
G is defined by extending m to a morphism m′ : L ∪R→H ′, where H ′ ⊇ G and all
elements of R \ L have distinct, fresh images under m′, and defining

H = (G \m(L)) ∪m′(R) .

H is called the target of the production; we write G −p,m−−→ H to denote that m is a valid
match on host graph G, giving rise to target graph H , and G −p→ H to denote that there
is a match m such that G −p,m−−→ H . Note that H is not uniquely defined for a given p and
m, due to the freedom in choosing the fresh images for R\L; however, it is well-defined
modulo isomorphism. From now on we assume that the fresh images are chosen in some
deterministic fashion, depending on the element of R\L that triggers their introduction
as well as the elements that have been generated “so far”. (This is a kind of requirement
that is quite hard to formalise but easy to realise in any implementation.)

2.2 Marked Graphs and Their Composition

We now define the notion of graphs and rules with interfaces, discussed above.

Definition 3 (marked graphs and rules)

– A marked graph G is a pair of graphs (G,G) with G ⊆ G. G is called the inner
graph or subgraph, and G the outer graph. Two marked graphs G,H are called
compatible if G = H = G ∩H; in that case, we use G + H to denote the graph
G ∪H.

– A marked morphism between two marked graphs G,H is a pair of morphisms
m = (m : G→H,m : G→H) such that m = m � G. We write m : G→H .

– A marked rule p is a pair of marked graphs (L,R), such that L ∩ R = L ∩ R.
This can alternatively be interpreted as a pair of rules (p, p) with p = (L,R) and

p = (L,R). As before, p is called the inner rule or subrule and p the outer rule.
Two marked rules p, q are compatible if Lp and Lq as well as Rp and Rq are
compatible; the composition is denoted p + q (= (Lp + Lq, Rp + Rq)).

Obviously, the intention is that a marked rule should act upon a marked graph by apply-
ing the outer rule to the outer graph and the inner rule to the inner graph. The outcome
should be a new marked graph. For this purpose, we define a (marked) match of a
marked rule p into a marked graph G as a marked morphism m : L→G such that m is
a match of p into G (meaning that there are no dangling edges or delete conflicts) and
in addition the following condition is satisfied:

Delete consistency: m(L) ∩G ⊆ m(L ∪ I)

Delete consistency essentially states that elements deleted from the outer graph (by the
outer rule) should either not occur in the inner graph in the first place, or be explicitly
deleted from the inner graph (by the inner rule). The following states that delete consis-
tency is a necessary and sufficient conditions for marked rule application to yield a new
marked graph.
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Proposition 4. Let p be a marked rule, G a marked graph, and m : L→ G a marked
morphism. m is a marked match if and only if the pair H = (H,H) defined by G −p,m−−→
H and G −p,m−−→ H is a marked graph. We write G −p,m−−→ H .

2.3 Soundness and Completeness

We can now formulate the notion of composition of graph transformations that is cen-
tral to this paper. Composition is defined only for compatible marked transformations,
where two marked transformations Gi −pi,mi−−−→ Hi for i = 1, 2 are called compatible if
(G1, G2), (p1, p2) and (m1,m2) are compatible pairs. The assumption of determinism
then implies that H1 and H2 are also compatible.

As discussed in the introduction, the crucial properties that we are after are soundness
and completeness of subgraph transformations with respect to transformation of the
complete graph. Soundness holds for all marked matches: the following theorem is a
consequence of the more general Th. 14 proved in the next section.

Theorem 5 (soundness for graphs). Any compatible pair of marked transformations
is composable; i.e., if Gi −pi,mi−−−→ Hi for 1 = 1, 2 are compatible marked transforma-
tions, then G1 + G2 −p1+p2,m1+m2−−−−−−−−−→ H1 + H2.

For instance, Fig. 3 shows how transformations on two marked fragments of a buffer,
using the shifti-rules of Fig. 2, give rise to a global transformation using the composed
rule shift of Fig. 1. As before, the common subgraphs are indicated by dotted lines.

Completeness, on the other hand, only holds under an additional constraint. This is
due to the fact that rules cannot be decomposed arbitrarily. We give a sufficient condi-
tion for decomposability, based on the concept of accommodation.

Definition 6 (accommodation of graphs). Let p be a rule, and m : L→G a match of
p in G. A subgraph G′ ⊆ G accommodates a subgraph R′ ⊆ R under m if L ∩ R′ =
R ∩m−1(G′).

Intuitively,G′ accommodatesR′ if for all edges created according to R′ (with respect to
L), the end nodes are either themselves created by p or matched in G′. This ensures that
a subrule p′ of p exists with RHS R′ and LHS m−1(G′) (being the largest subgraph of L
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that matches into G′). For instance, in a match of the rule shift of Fig. 1 in a graphG, the
subgraph G′ ⊆ G consisting only of the image of the right hand C-node accommodates
the subgraph of Rshift consisting of the v-edge and its end nodes, since the other end
node (the O-node) is itself created. On the other hand, consider the following variation:

CC

O

n

v

e
CC

O

v

e

n
(1)

Here the O-node is not created by the rule: hence, in order to accommodate the RHS’
v-edge, a subgraph must include an image of the O-node.

The completeness result for the concrete graphs studied in this section is given by
the following theorem, the proof of which follows from the more general Th. 17
below.

Theorem 7 (completeness for graphs). Let Gi be compatible marked graphs for
i = 1, 2. A transformation G1 + G2 −p,m−−→ H can be decomposed into marked transfor-
mations Gi −pi,mi−−−→ Hi if there exist graphs Ri for i = 1, 2 such that (i) R = R1 ∪ R2

and (ii) Gi accommodates Ri under m.

For our running example, the rules in Fig. 1 are such that all created edges have pre-
cisely one pre-existing end node; for that reason, the conditions for decomposability
are always satisfied, meaning that we can soundly and completely decompose all trans-
formations under arbitrary decompositions of the graphs. Indeed, the following (fixed)
rule decomposition turns out to be sufficient:

– put is decomposed into put1, which is identical to put, and an empty rule put2;
– shift is decomposed into shift1 and shift2;
– get is decomposed into get1, which is empty, and get2, which is identical to get.

An example is shown in Fig. 4. To the left is the transition system T resulting from
the repeated application of the composed rules to an initial graph consisting of two
empty cells. To the right are the transition systems T1 and T2 generated from subgraphs
consisting of one cell each, and the subrules discussed above. The matches are not
included. The correctness of the (de)composition can be seen from the fact that T is the
product of T1 and T2 in the automata sense, where xi-transitions (x = put, shift, get
and i = 1, 2) are synchronised and relabelled to x.

3 Composition for Marked Objects

We now lift the framework for concrete graphs presented above to a more ab-
stract, categorical level, and we prove the soundness and completeness results on this
level.
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Fig. 4. Transformations of a complete and decomposed 2-cell buffer

3.1 Transformation in Adhesive Categories

Unfortunately, there is no space to recall the concepts from category theory used in this
section (but see the report version [15]). We now recall the definitions of adhesive and
quasiadhesive categories from [11,10]:

Definition 8 ((quasi-)adhesive category). A category C is quasiadhesive if it satisfies
the following properties:

1. C has pushouts along regular monomorphisms;
2. C has pullbacks;
3. Pushouts along regular monomorphisms are Van Kampen squares.

A quasiadhesive category is called adhesive if all monos are regular.

For those that are not familiar with this theory, the following intuitions may be helpful:

– A regular mono f : A→ B identifies a subobject of B that is isomorphic to A;
– The pushout of B ←f− A −g→ C may be thought of as the union of B and C, where

the shared subset is given by A and its “embedding” in B and C;
– The pullback of B −h→ D ←k− C may be thought of as the intersection of B and C,

where their “embedding” in D determines which elements they have in common.

It has been shown in [11,10] that (quasi-)adhesive categories form a nice, general frame-
work in which properties of graph transformation systems can be proved abstractly; they
generalise in some part the High-Level Replacement systems studied in, e.g., [4]. The
graphs used in the previous section fall into this framework.

Proposition 9. Graphs with graph morphisms form an adhesive category Graph.

The notion of transformation rule used in the previous section generalises to categories
in the standard way: the pair (L,R) turns into a span L←↩ I ↪→ R, where I acts as the
interface between L and R — which in the setting of the previous section corresponds
to the intersection L ∩R. We also introduce morphisms over rules.
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Definition 10 (rule). Let C be a quasiadhesive category.

– A rule p is a span of regular monos L←l− I −r→ R.
– A rule p is applicable to a given graph G if there exists a morphism m : L→ G

such that I ↪→ L −m−→ G has a pushout complement. In that case, the application of
p to G is defined by the diagram

L I R

G K H

m

l r

k
m′

g h

PO PO

– A rule morphism f : p→ q is a triple of regular monomorphisms 〈fL, fI , fR〉 such
that the following diagram commutes and both squares are pullbacks:

Lp Ip Rp

Lq Iq Rq

fL

lp rp

fI
fR

lq rq

PB PB

The purpose of insisting that the squares of a rule morphism are pullbacks is to en-
sure that Ip is essentially the intersection of Lp and Iq , or alternatively, of Rp and Iq .
This implies that elements preserved by the target rule (q) will also be preserved by
the source rule (p). For an arbitrary (quasiadhesive) category C, the rules with rule
morphisms form a category Rule(C).

3.2 Marked Objects

We now define the general notion of a marked object. As in the concrete case of graphs,
a marked object is a monomorphism from an inner object to an outer object. The inner
object is an interface used to glue marked objects together: gluing two marked objects
with the same interface comes down to taking the pushout of the corresponding span.

Definition 11 (marked object). Let C be an arbitrary category.

– A marked object X is a monomorphism eX : X ↪→ X . X is called the inner object
and X the outer object.

– Given two marked objects X,Y , a marked morphism f : X → Y is a pair of mor-
phisms f : X → Y and f : X → Y such that the resulting square commutes:

X

X

Y

Y

f

eX

f
eY

– Two marked objects X,Y are compatible if X = Y . If this is the case, we will use
X + Y to refer to the pushout object in the diagram

Y = X X

Y X + Y

eX

eY PO
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For a category C, we use CM to denote the category consisting of markedC-objects and
marked C-morphisms. This construction is a special case of the Artin gluing studied in
[10]. From that paper we may infer

Corollary 12 ([10, Th. 24]). If C is an adhesive category, then CM is a quasiadhesive
category in which the regular monos are pullbacks of monos in C.

This means that transformation of marked objects is well-defined, and that rules in CM

correspond to arrows in Rule(C) (cf. Def. 11). In the remainder of this section, unless
stated otherwise we implicitly restrict ourselves to adhesive categories C. The follow-
ing proposition states how the transformation of marked objects works: it essentially
consists of the individual transformation of the inner and outer objects.

Proposition 13. For any marked rule p, marked object G and marking consistent mor-
phism m : L→G, G −p,m−−→ H if and only if G −p,m−−→ H and G −p,m−−→ H .

In the full paper [15], we also take a look at the existence of pushout complements for
marked objects. We give a sufficient criterion for their existence, which in the case of
Graph is implied by the delete consistency defined in Sect. 2.2.

3.3 Soundness and Completeness

We now arrive at the main results of this paper, which establish the relation between
marked transformations of marked subgraphs and global transformations of the com-
posed graph. The first main result of this paper states that we can compose arbitrary
(compatible) marked transformations.

Theorem 14 (soundness). For i = 1, 2, let Gi be compatible marked objects and pi

compatible marked rules. If Gi −pi,mi−−−→ Hi for i = 1, 2 such that m1 = m2, then
G1 + G2 −p1+p2,m1+m2−−−−−−−−−→ H1 + H2.

The second main result states that, under some circumstances, we can also decom-
pose global transformations into transformations of subgraphs. The circumstances in-
volve that the decomposition into subgraphs allows an analogous decomposition of the
rule’s RHS. To formulate this precisely, we lift the notion of accommodation, defined
in Def. 6, to the categorical level.

Definition 15 (accommodation). Let p be a rule, G an object and m : L→ G a mor-
phism. A subobject G′ ↪→ G accommodates a subobject R′ ↪→ R if they give rise to the
following diagram:

G

G′

L I R

I ′ R′

m

PB PB

This notion of accommodation generalises the one of Def. 6. The intuition is the same:
the intersection of R′ and I (given by the right hand pullback), which determines where
to connect the elements to be created according to R′, should coincide with the part of
I that matches into G′.
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Proposition 16. Accommodation in Graph coincides with the property in Def. 6.

We can now formulate the generalised completeness theorem:

Theorem 17 (completeness). Let p be a rule and for i = 1, 2 let Gi be compatible
marked objects. If G1 + G2 −p,m−−→ H , and R = R1 + R2 for marked graphs Ri (i =
1, 2) such that Gi accommodates Ri under m, then there are marked transformations
Gi −pi,mi−−−→ Hi for i = 1, 2 such that p = p1 + p2, m = m1 + m2 and H = H1 + H2.

The accommodation criterion in Def. 15 is sufficient but not necessary for a transfor-
mation to be decomposable. This can be seen by observing that the construction in
the proof of Th. 17 always gives rise to marked matches mi that are actually pullback
squares in C; but composition also works for “ordinary” matches. In particular, it is
quite possible to have component rules pi of which the outer LHS Li is not the pull-
back of Gi and L, but some subgraph of this pullback. The search for a more precise
criterion is future work (see below).

4 Conclusion

We have defined a notion of composition for graph transformations that acts on graphs
as well as rules. We have proved that composition is sound, and have given sufficient
conditions under which it is complete. This is a first, and essential, ingredient for en-
abling graph transformation to move from a purely reductive, whole-world specification
formalism to a reactive, compositional formalism.

4.1 Related Work

Though we believe our aims and approach to be completely original, there is a number
of loosely related topics, which we review here.

Synchronised Hyperedge Replacement. This is a paradigm in which graph transforma-
tion rules (more specifically, hyperedge replacement rules) can be synchronised based
one the adjacency of their occurrences within a graph; see [9,7]. The synchronised rules
are not themselves understood as graph transformation rules, an consequently the work
does not address the type of compositionality issues that we have studied here. Still, it
is interesting to see whether SHR synchronisation can be understood as a special type
of composition in our sense.

History-Dependent Automata. This is a behavioural model in which states are enriched
with a set of names (see [13] for an overview). Transitions expose names to the en-
vironment, and can also record the deletion, creation and permutation of names. HD-
automata can be composed while synchronising their transitions: this provides a model
for name passing. Transition systems induced by graph transformation rules (such as the
ones depicted in Fig. 4) can be understood as a variant of HD-automata where the states
are enriched with graphs rather than just sets, and the information on the transitions is
extended accordingly. We intend to investigate this connection in the future.

Rule amalgamation. Studied first in [3] and later, much more extensively, in [16], the
principle of rule amalgamation provides a general mechanism for rule (de)composition.
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This is a sub-problem of the one we have addressed here (we study composition of the
graphs as well as the rules), and indeed for that sub-problem our approach is entirely
based on amalgamation.

Borrowed contexts. Like our paper, the work on borrowed contexts [5,1] uses a setting
where only part of a graph is available, and studies the application of rules to such sub-
graphs in a way that is compatible with the original, reductive semantics. In contrast to
our approach, however, they do not decompose rules: instead, when a rule is applied to a
graph in which some of the required structure (“context”) for the match is missing, this
is imported (“borrowed”) as part of the transformation. As a result, in this paradigm the
subgraphs grow while being transformed, incorporating ever more context information.
This is quite different from the basic intuitions behind our approach.

Summarising, where only rules are (de)composed in rule amalgamation, and only
graphs in borrowed contexts, in our approach both rules and graphs are subject to
(de)composition.

Compositional model transformation. The recent [2] studies a notion of composition-
ality in model transformation. Though on the face of it this sounds similar, in fact they
study a different question altogether, namely whether a transformation affects the se-
mantics of a model (given as a separate mapping to a semantic domain) in a predictable
(compositional) manner. This is in sharp contrast with our work, which rather addresses
the compositionality of the graph transformation framework itself.

4.2 Open Issues

Adhesive HLR categories. Adhesive categories as a foundation for graph transformation
have been generalised to classes of categories with weaker assumptions; for instance,
adhesive HLR categories in [6] and weak adhesive HLR categories in [14]. A natural
question is whether our results also carry over to this generalisation.

Negative application conditions. For the use of graph transformation in practice, neg-
ative application conditions (NACs) as introduced in [8] have shown to be extremely
useful. We plan to investigate the extension of our results to a setting with NACs.

Improved criteria for completeness. Th. 17 only gives a sufficient criterion for decom-
posing a transformation. It is not clear if this is weak enough to be usable in practice.
From a theoretical point of view, in any case it would be interesting to have a more
precise, necessary and sufficient criterion.

More general types of synchronisation. Our notion of composition requires marked rules
to be compatible, meaning that they have a common subrule. This implies that joint
nodes can only be created and deleted from subgraphs simultaneously. In other words,
it is not possible to hand over a node from one subgraph to another. This is illustrated
by the non-decomposable rule in (1) (page 314). Since such hand-over is definitely a
desirable feature (used, e.g., in mobile calculi [12] to communicate channel names), we
intend to study a generalisation of our framework that does not synchronise on subrules.

The larger picture. We have studied decomposition for individual rules. We want to ex-
tend this to rule systems; ideally, it should be possible to give a fixed decomposition of a
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rule system which is guaranteed to remain correct for arbitrary sequences of transitions.
At that point, also the connection with SOS semantics for process algebra (which was
our starting point, see Sect. 1) should be strengthened.
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Abstract. We prove that TAUT has a p-optimal proof system if and only if a
logic related to least fixed-point logic captures polynomial time on all finite struc-
tures. Furthermore, we show that TAUT has no effective p-optimal proof system if
NTIME(hO(1)) �⊆ DTIME(hO(log h)) for every time constructible and increasing
function h.

1 Introduction

As the title already indicates, this paper relates two topics which at first glance seem to
be unrelated. On the one hand we consider optimal proof systems. A proof system in
the sense of Cook and Reckhow [6], say for the class TAUT of tautologies of propo-
sitional logic, is a polynomial time computable function defined on {0, 1}∗ and with
TAUT as range. A proof system is p-optimal if it simulates any other proof system in
polynomial time.1 In their fundamental paper [13] Krajı́c̆ek and Pudlák derive a series
of statements equivalent to the existence of a p-optimal proof system for TAUT and
state the conjecture:

Conjecture 1. There is no p-optimal proof system for TAUT.

On the other hand, the question of whether there is a logic capturing polynomial time
remains the central open problem in descriptive complexity. There are artificial logics
capturing polynomial time, but they do not fulfill a natural requirement to logics in this
context:

There is an algorithm that decides whether A is a model of ϕ
for all structures A and sentences ϕ of the logic and that does this
for fixed ϕ in time polynomial in the size ‖A‖ of A.

(1)

If this condition is fulfilled for a logic capturing polynomial time, we speak of a P-
bounded logic for P. In [10] Gurevich states the conjecture:

Conjecture 2. There is no P-bounded logic for P.

The conjecture is false if one waives the effectivity condition (1). This is shown in [10,
Section 7, CLAIM 2]) by considering a logic introduced by Blass and Gurevich and
which we denote by L≤. For any vocabulary the sentences of L≤ are the sentences

1 All notions will be defined in a precise manner in Section 2.
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of least fixed-point logic in a vocabulary with an additional binary relation symbol for
orderings. In L≤ for a structure A to be a model of ϕ it is required that in all structures
of cardinality less than or equal to that of A, the validity of ϕ (as a sentence of least
fixed-point logic) does not depend on the chosen ordering, and A with some ordering
satisfies ϕ.

As L≤ satisfies all requirements of a P-bounded logic for P except (1), Gurevich
implicitly states the conjecture:

Conjecture 2a. L≤ is not a P-bounded logic for P.

The main result of this paper (cf. Theorem 6) tells us that

Conjecture 1 is true ⇐⇒ Conjecture 2a is true. (2)

We mentioned that at first glance “p-optimal proof systems for TAUT” and “logics
for P” seem to be unrelated topics. However, there are reformulations of Conjecture 1
and Conjecture 2 that are alike. In fact, it is known [15] that TAUT has a p-optimal proof
system if and only if there is a (computable) enumeration of all subsets of TAUT that
are in P by means of Turing machines that decide them. And it is not hard to see that
there is a P-bounded logic for P if and only if there is an enumeration of all polynomial
time decidable classes of graphs closed under isomorphisms, again an enumeration in
terms of Turing machines that decide these classes. In fact the question for a logic for P
was stated in this way by Chandra and Harel [2] in the context of an analysis of the
complexity and expressiveness of query languages.

Hence one consequence of (2) (which we only mention in this Introduction) is:

Theorem 1. If there is an enumeration of all polynomial time decidable subsets of
TAUT, then there is an enumeration of all polynomial time decidable classes of graphs
closed under isomorphisms.

Using a special feature of the semantics of the logic L≤, one can construct (cf. Proposi-
tion 11) a logic that is an effectively P-bounded logic for P, if L≤ is a P-bounded logic
for P. Here this “effectively” means that in (1) we can compute from ϕ a polynomial
bounding the time to decide whether A is a model of ϕ. In this way we can strengthen
the conclusion of Theorem 1 by requiring that every Turing machine in the enumer-
ation comes with a polynomial time clock. Apparently this is a strengthening, while
from any enumeration of the polynomial time decidable subsets of TAUT we obtain
one with polynomial time clocks in a trivial manner, namely by systematically adding
such clocks.

In general, the experts tend to believe Conjecture 1, as the existence of a p-optimal
proof system for TAUT would have various consequences which seem to be unlikely
(see [12,13]). It is worthwhile to emphasize that we show that Conjecture 1 is equivalent
to Conjecture 2a and do not claim its equivalence to Conjecture 2. The situation with
Conjecture 2 is quite different; no known consequences of the existence of a P-bounded
logic for P seem to be implausible. Moreover, due to results showing that there are logics
capturing polynomial time on always larger classes of structures, Grohe [9] “mildly
leans towards believing” that there is a P-bounded logic for P.
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In [3] we have shown that L≤ is not an effectively P-bounded logic for P under the as-
sumption NP[TC] ⊆ P[TClog TC], which means that NTIME(hO(1)) ⊆ DTIME(hO(log h))
for every time constructible and increasing function h. Under this assumption, we get
(see Theorem 15) that TAUT has no effectively p-optimal proof system. Here a proof
system P for TAUT is effectively p-optimal if from every other proof system for TAUT
we can compute a polynomial time simulation by P .

On the other hand, Krajı́c̆ek and Pudlák [13] showed, assuming E = NE, that TAUT
has a p-optimal proof system. Using our result [3] that under the assumption E = NE
the logic

(
L= and hence

)
L≤ is an effectively P-bounded logic for P, we can derive (see

Corollary 17) that TAUT has an effectively p-optimal proof system if E = NE.
In [5] we extract the main idea underlying the proof of (2), apply it to other problems,

and generalize it to the “nondeterministic case,” thus obtaining statements equivalent to
the existence of an optimal (not necessarily p-optimal) proof system for TAUT.

2 Preliminaries

In this section we recall concepts and results from complexity theory and logic that we
will use later and fix some notation.

2.1 Complexity

We denote the alphabet {0, 1} by Σ. The length of a string x ∈ Σ∗ is denoted by |x|. We
identify problems with subsets Q of Σ∗. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form. We denote by P the class of problems Q
such that x ∈ Q is solvable in polynomial time.

All Turing machines have Σ as their alphabet and are deterministic ones if not stated
otherwise explicitly. If necessary we will not distinguish between a Turing machine and
its code, a string in Σ∗. If M is a Turing machine we denote by ‖M‖ the length of its code.

By mO(1) we denote the class of polynomially bounded functions from N to N. Some-
times statements containing a formulation like “there is d ∈ N such that for all x ∈ Σ∗:
. . . ≤ |x|d” can be wrong for x ∈ Σ∗ with |x| ≤ 1. We trust the reader’s common sense
to interpret such statements reasonably.

Optimal proof systems, almost optimal algorithms and enumerations of P-easy
subsets. A proof system for a problem Q ⊆ Σ∗ is a surjective function P : Σ∗ → Q
computable in polynomial time. The proof system P for Q is polynomially optimal or
p-optimal if for every proof system P ′ for Q there is a polynomial time computable
T : Σ∗ → Σ∗ such that for all w ∈ Σ∗

P (T (w)) = P ′(w).

If A is any algorithm we denote by tA(x) the number of steps of the run of A on input x;
if A on x does not stop, then tA(x) is not defined.

An algorithm A deciding Q is almost optimal or optimal on positive instances of Q
if for every algorithm B deciding Q there is a polynomial p ∈ N[X] such that for all
x ∈ Q

tA(x) ≤ p(tB(x) + |x|)
(note that nothing is required of the relationship between tA(x) and tB(x) for x /∈ Q).
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By definition a subset Q′ of Q is P-easy if Q′ ∈ P. An enumeration of P-easy subsets
of Q is a computable function M : N → Σ∗ such that

– for every i ∈ N the string M (i) is a polynomial time Turing machine deciding a
P-easy subset of Q;

– for every P-easy subset Q′ of Q there is i ∈ N such that M (i) decides Q′.

We denote by TAUT the class of tautologies of propositional logic. The following the-
orem is well-known (cf. [13] for the equivalence of the first two statements and [15] for
the equivalence to the third one):

Theorem 2. The following are equivalent:
(1) TAUT has a p-optimal proof system.
(2) TAUT has an almost optimal algorithm.
(3) TAUT has an enumeration of the P-easy subsets.

2.2 Logic

A vocabulary τ is a finite set of relation symbols. Each relation symbol has an ar-
ity. A structure A of vocabulary τ , or τ -structure (or, simply structure), consists of
a nonempty set A called the universe, and an interpretation RA ⊆ Ar of each r-ary
relation symbol R ∈ τ . All structures in this paper are assumed to have finite universe.

For a structure A we denote by ‖A‖ the size of A, that is, the length of a reasonable
encoding of A as a string in Σ∗ (e.g., cf. [8] for details). We only consider properties of
structures that are invariant under isomorphisms, so it suffices that from the encoding
of A we can recover A up to isomorphism. We can assume that there is a computable
function lgth such that for every vocabulary τ and m ≥ 1:

– ‖A‖ = lgth(τ,m) for every τ -structure A with universe of cardinality m;
– for fixed τ , the function m �→ lgth(τ,m) is computable in time mO(1);
– lgth(τ ∪ {R},m) = O(lgth(τ,m) +mr) for every r-ary relation symbol R not in τ .

We assume familiarity with first-order logic and its extension least fixed-point logic
LFP (e.g. see [7]). We denote by LFP[τ ] the set of sentences of vocabulary τ of LFP.
As we will introduce further semantics for the formulas of least fixed-point logic, we
writeA |=LFP ϕ if the structureA is a model of the LFP-sentence ϕ. An algorithm based
on the inductive definition of the satisfaction relation for LFP shows (see [17]):

Proposition 3. The model-checking problem A |=LFP ϕ for structures A and LFP-
sentences ϕ can be solved in time

‖A‖O(|ϕ|).

Logics capturing polynomial time. For our purposes a logic L consists

– of an algorithm that for every vocabulary τ and every string ξ decides whether ξ is
in the set L[τ ], the set of L-sentences of vocabulary τ ;

– of a satisfaction relation |=L; if (A, ϕ) ∈ |=L, then A is a τ -structure and ϕ ∈ L[τ ]
for some vocabulary τ ; furthermore for each τ and ϕ ∈ L[τ ] the class of structures
A with A |=L ϕ is closed under isomorphisms.
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We say that A is a model of ϕ if A |=L ϕ
(
that is, if (A, ϕ) ∈ |=L

)
. We set ModL(ϕ) :=

{A | A |=L ϕ} and say that ϕ axiomatizes the class ModL(ϕ).

Definition 4. Let L be a logic.
(a) L is a logic for P if for all vocabularies τ and all classes C (of encodings) of τ -

structures closed under isomorphisms we have

C ∈ P ⇐⇒ C = ModL(ϕ) for some ϕ ∈ L[τ ].

(b) L is a P-bounded logic for P if (a) holds and if there is an algorithm A deciding |=L

(that is, for every structure A and L-sentence ϕ the algorithm A decides whether
A |=L ϕ) and if moreover A, for every fixed ϕ, polynomial in ‖A‖.

Hence, if L is a P-bounded logic for P, then for every L-sentence ϕ the algorithm A

witnesses that ModL(ϕ) ∈ P. However, we do not necessarily know ahead of time a
bounding polynomial.

(c) L is an effectively P-bounded logic for P if L is a P-bounded logic for P and if in
addition to the algorithm A as in (b) there is a computable function that assigns to
every L-sentence ϕ a polynomial q ∈ N[X] such that A decides whether A |=L ϕ
in ≤ q(‖A‖) steps.

The logic L≤ and invariant sentences. In this section we introduce the logic L≤, a
variant of least fixed-point logic.

For every vocabulary τ we let τ< := τ ∪ {<}, where < is a binary relation symbol
not in τ chosen in some canonical way. We set

L≤[τ ] = LFP[τ<]

for every vocabulary τ . Before we define the satisfaction relation for L≤ we introduce
the notion of ≤ m-invariant sentence.

Definition 5. Let ϕ be an L≤[τ ]-sentence.
– For m ≥ 1 we say that ϕ is ≤ m-invariant if for all structuresA with |A| ≤ m and

all orderings <1 and <2 on A we have

(A, <1) |=LFP ϕ ⇐⇒ (A, <2) |=LFP ϕ.

– ϕ is invariant if it is ≤ m-invariant for all m ≥ 1.

Finally we introduce the semantics for the logic L≤ by

A |=L≤ ϕ ⇐⇒
(
ϕ is ≤ |A|-invariant and (A, <) |=LFP ϕ for some ordering < on A

)
.

Immerman [11] and Vardi [16] have shown that LFP is an effectively P-bounded logic
for P on the class of ordered structures, a result we will not need in the proof of our
main theorem. However, using it one can easily show that L≤ is a logic for P.
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For later purposes we remark that for every L≤[τ ]-sentence ϕ and m ≥ 1 we have

ϕ is ≤ m-invariant ⇐⇒ ¬ϕ is ≤ m-invariant,

and thus for every τ -structure A

ϕ is ≤ |A|-invariant ⇐⇒
(
A |=L≤ ϕ or A |=L≤ ¬ϕ

)
.

In particular,

ϕ is ≤ m-invariant ⇐⇒
(
A(τ,m) |=L≤ ϕ or A(τ,m) |=L≤ ¬ϕ

)
,

whereA(τ,m) is the τ -structure with universe {1, . . . ,m}, where every relation symbol
in τ is interpreted by the empty relation of the corresponding arity.

Finally we remark that it can happen for L≤-sentences ϕ and ψ and a structure A
that A |=L≤ (ϕ ∧ ψ) but neither A |=L≤ ϕ nor A |=L≤ ψ.

3 The Main Theorem

In this section we want to show:

Theorem 6. TAUT has a p-optimal proof system iff L≤ is a P-bounded logic for P.

In view of Theorem 2 we get one direction of Theorem 6 with the following lemma.

Lemma 7. If L≤ is a P-bounded logic for P, then there is an enumeration of the P-easy
subsets of TAUT.

Proof. It is easy to introduce a vocabulary τ such that in polynomial time we can asso-
ciate with every propositional formula α a τ -structure A(α) such that

– every propositional variable X of α corresponds to two distinct elements aX , bX

of A(α) and there is a unary relation symbol P ∈ τ such that PA(α) = {aX |
X variable of α};

– there is an LFP-sentence ϕ(PROP) of vocabulary τ axiomatizing the class

{B | B ∼= A(α) for some α ∈ PROP}

(by PROP we denote the class of formulas of propositional logic);
– if B |= ϕ(PROP), then one can determine the unique α ∈ PROP with B ∼= A(α) in

polynomial time.

Again let τ< := τ ∪ {<} with a new binary <. Note that a τ<-structure of the form
(A(α), <) yields an assignment of the variables of α, namely the assignment sending a
variable X to TRUE if and only if aX < bX . There is an LFP[τ<]-formula ϕ(sat) that
for every α ∈ PROP expresses in (A(α), <) that the assignment given by < satisfies α.

We introduce the L≤[τ ]-sentence

ϕ0 :=
(
ϕ(PROP) → ϕ(sat)

)
.
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By the definition of |=L≤ we see that for every α ∈ PROP and every L≤[τ ]-sentence ϕ

if A(α) |=L≤ (ϕ0 ∧ ϕ), then α ∈ TAUT. (3)

We claim that the class of models of (ϕ0 ∧ ϕ), more precisely,

Q(ϕ) := {α ∈ PROP | A(α) |=L≤ (ϕ0 ∧ ϕ)},

where ϕ ranges over all L≤[τ ]-sentences, yields the desired enumeration of P-easy
subsets of TAUT. By (3), we have Q(ϕ) ⊆ TAUT.

For ϕ ∈ L≤[τ ] let the Turing machine Mϕ, given an input α ∈ PROP, first construct
A(α) and then check whether A(α) |=L≤ (ϕ0 ∧ϕ). Clearly, Mϕ decides Q(ϕ) and does
this in polynomial time, as L≤ is a P-bounded logic for P.

Conversely, let Q be a P-easy subset of TAUT. If Q is finite, it is easy to see that
Q = Q(ϕ) for some ϕ ∈ L≤[τ ]. Now let Q be infinite. The class

{B | B ∼= A(α) for some α ∈ Q}

is in P, and therefore it is axiomatizable by an L≤[τ ]-sentence ϕ. As the class contains
arbitrarily large structures, the formula ϕ is invariant. We show that Q = Q(ϕ).

Assume first that α ∈ Q(ϕ), i.e., A(α) |=L≤ (ϕ0 ∧ ϕ). Then, by invariance of ϕ, we
haveA(α) |=L≤ ϕ and thus α ∈ Q. Conversely, assume that α ∈ Q. ThenA(α) |=L≤ ϕ.
As α ∈ TAUT, in order to get A(α) |=L≤ (ϕ0 ∧ϕ)

(
and hence, α ∈ Q(ϕ)

)
it suffices to

show that (ϕ0 ∧ ϕ) is ≤ |A(α)|-invariant. So let B be a τ -structure with |B| ≤ |A(α)|.
If B |=L≤ ϕ, then, by invariance of ϕ, we have (B, <B) |=LFP (ϕ0 ∧ ϕ) for all orderings
<B on B; if B |=L≤ ϕ, then B ∼= A(β) for some β ∈ Q ⊆ TAUT. Hence, (B, <B) |=LFP

(ϕ0 ∧ ϕ) for all orderings <B on B. �

Remark 8. In the previous proof we have used the definition of the satisfaction relation
|=L≤ in order to express the universal second-order quantifier in the statement “all as-
signments satisfy α.” Similarly, we can do with every Π1

1-sentence ∀Rϕ, where ϕ is a
first-order formula or (equivalently) LFP-formula and show in this way that there is an
enumeration of the P-easy subsets closed under isomorphisms of the class of models of
∀Rϕ, if L≤ is a P-bounded logic for P. In fact, let k be the arity of R. If a structure
A has n elements, we consider a structure B with additional disjoint unary relations
UB, PB

0 , PB
1 such that

B = UB ∪ PB
0 ∪ PB

1 , UB = A, |PB
0 | = nk |PB

1 | = nk

and with an ordering <B.
With the elements in PB

0 interpreted as 0s and the elements in PB
1 interpreted as 1s,

the first nk-elements of the ordering in PB
0 ∪PB

1 represent a natural number < 2nk

and
thus a k-ary relation R on A, which we can compute in polynomial time (polynomial in
n); hence we can define R by an LFP-formula. As in this way, by changing the ordering,
we have access to all such k-ary relations R on A, we can express the quantifier ∀R
using the invariance requirement of |=L≤ .
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For example, let C be the class of all pairs (G,H) of graphs such that H is not a
homomorphic image of G. By the previous observation, we see that there is an enumer-
ation of the P-easy subclasses of C closed under isomorphisms if L≤ is a P-bounded
logic for P. Of course, a subclass D of C is closed under isomorphisms if

G ∼= G′, H ∼= H′ and (G,H) ∈ D imply (G′,H′) ∈ D.

As the models of such a Π1
1-sentence corresponds to a problem Q in co-NP, a simple

complexity-theoretic argument shows that there is an enumeration of the P-easy subsets
of Q provided there is one for the P-easy subsets of TAUT (see also [1]). However, in
this way, in the previous example we would not get an enumeration of those P-easy
subclasses that are closed under isomorphisms.

In view of Theorem 2 the remaining direction in Theorem 6 is provided by the following
result.

Lemma 9. If TAUT has an almost optimal algorithm, then L≤ is a P-bounded logic
for P.

Proof. We assume that TAUT has an almost optimal algorithm O and have to show that
there is an algorithm that decides B |=L≤ ϕ and does this for fixed ϕ in time ‖B‖O(1).

By the definition of B |=L≤ ϕ and Proposition 3 it suffices to show the existence of
an algorithm A that for every L≤-sentence ϕ and every m ∈ N decides whether ϕ is
≤ m-invariant and does this for fixed ϕ in time mO(1).

We set

Q :=
{(

χ, �, lgth(τ, �)|χ|
) ∣∣∣ τ a vocabulary, χ ∈ LFP[τ ], � ≥ 1, lgth(τ, �)|χ|

in unary, there is a τ -structure B with
(
|B| ≤ � and B |=LFP χ

) }
(compare Section 2.2 for the definition of the function lgth). By Proposition 3, Q ∈ NP.
Thus there is a polynomial time reduction R : Q ≤p SAT. We can assume that from
R(x) we can recover x in polynomial time.

Let ϕ be an L≤[τ ]-sentence. Then

ϕ is not ≤ m-invariant ⇐⇒ there is a τ -structure B and orderings <1, <2 with(
|B| ≤ m and (B, <1, <2) |=LFP (ϕ(<1) ∧ ¬ϕ(<2))︸ ︷︷ ︸

ϕ∗

)
⇐⇒
(
ϕ∗,m, lgth(τ ∪ {<1, <2},m)|ϕ

∗|
)
∈ Q

⇐⇒ R
(
ϕ∗,m, lgth(τ ∪ {<1, <2},m)|ϕ

∗|
)
∈ SAT.

We set α(ϕ,m) := R
(
ϕ∗,m, lgth(τ ∪ {<1, <2},m)|ϕ

∗|). Hence

ϕ is ≤ m-invariant ⇐⇒ ¬α(ϕ,m) ∈ TAUT. (4)
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It is clear that there is an algorithm that on input (ϕ,m) computes α(ϕ,m) and for
fixed ϕ

it computes α(ϕ,m) in time mO(1), in particular, |α(ϕ,m)| ≤ mO(1), (5)

as for fixed τ , the function m �→ lgth(τ,m) is polynomial in m.
Let S be the algorithm that on inputϕ by systematically going through all τ -structures

with universe {1}, all with universe {1, 2},. . . and all orderings of these universes com-
putes m(ϕ) := the least m such that ϕ is not≤ m-invariant. If ϕ is invariant, then m(ϕ)
is not defined and S does not stop.

We show that the following algorithm A has the desired properties.

A(ϕ,m)
// ϕ an L≤-sentence, m ∈ N

1. Compute α(ϕ,m).
2. In parallel simulate S on input ϕ and O on input ¬α(ϕ,m).
3. if O stops first, then output its answer.
4. if S stops first, then
5. if m < m(ϕ) then accept else reject.

By our assumptions on O and S and by (4), it should be clear that A on input (ϕ,m)
decides whether ϕ is ≤ m-invariant. We have to show that for fixed ϕ it does it in
time mO(1).

Case “ϕ is invariant”: Then for all m we have ¬α(ϕ,m) ∈ TAUT. Thus the following
algorithm Oϕ decides TAUT: on input β ∈ PROP the algorithm Oϕ checks whether
β = ¬α(ϕ,m) for some m ≥ 1. If so, it accepts and otherwise it runs O on input β and
answers accordingly. By (5), we have

tOϕ(¬α(ϕ,m)) ≤ mO(1). (6)

As O is optimal, we know that there is a constant d such that for all β ∈ TAUT

tO(β) ≤
(
|β| + tOϕ(β)

)d
. (7)

In particular, we have

tO(¬α(ϕ,m)) ≤
(
|¬α(ϕ,m)| + tOϕ (¬α(ϕ,m))

)d ≤ mO(1).

By this inequality, (5) and (6), we see that for invariant ϕ we have tA(ϕ,m) ≤ mO(1).

Case “ϕ is not invariant”: Then S will stop on input ϕ. Thus, in the worst case, A on
input (ϕ,m) has to wait till the simulation of S on ϕ stops and then must check whether
the result m(ϕ) of the computation of S is bigger than m or not and answer accordingly.
So the algorithm A at most takes time mO(1) + O(tS(ϕ) + m) ≤ mO(1) (note that we fix
ϕ, so that tS(ϕ) is a constant). �

Corollary 10. If TAUT has a p-optimal proof system, then there is an effectively P-
bounded logic for P.
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This result follows from Theorem 6 using the following proposition:

Proposition 11. If L≤ is a P-bounded logic for P, then there is an effectively P-bounded
logic for P.

Proof. In Section 2.2 we have seen that for every L≤-sentence ϕ and m ≥ 1 it holds
that

ϕ is ≤ m-invariant ⇐⇒
(
A(τ,m) |=L≤ ϕ or A(τ,m) |=L≤ ¬ϕ

)
, (8)

whereA(τ,m) denotes the “empty structure” of vocabulary τ with universe {1, . . . ,m}.
Now assume that L≤ is a P-bounded logic for P and let A be an algorithm witnessing

that L≤ is a P-bounded logic for P. By (8), there is a function h assigning to every L≤-
sentence ϕ a polynomial h(ϕ) ∈ N[X] such that A decides whether ϕ is ≤ m-invariant
in time h(ϕ)(m).

We consider the logic T (L≤), time-clocked L≤, defined as follows:

– for every vocabulary τ

T (L≤)[τ ] := {(ϕ, p) | ϕ ∈ L≤[τ ] and p ∈ N[X]};

– A |=T (L≤) (ϕ, p) iff (a) and (b) are fulfilled, where
(a) A shows via (8) in ≤ p(|A|) steps that ϕ is ≤ |A|-invariant;
(b) (A, <) |=LFP ϕ for some ordering <, say with the ordering of A given by the

encoding of A.

It is not hard to verify that T (L≤) is an effectively P-bounded logic for P. �

Remark 12. In a slightly different way but using the same idea one can define the time-
clocked version T (L) for any P-bounded logic L for P. However, in general, T (L) is not
even a logic, as it can happen that the class of models of a T (L)-sentence is not closed
under isomorphisms. In the case of T (L≤) this is guaranteed by the fact that condition
(a) in the definition of A |=T (L≤) (ϕ, p) only refers to the cardinality of the universe
of A.

There is a further consequence of Theorem 6. By a reformulation of the statement “L≤
is a P-bounded logic for P” due to Nash et al. [14] (see [3] for a proof), we get:

Theorem 13. The following are equivalent:

(a) TAUT has a p-optimal proof system.
(b) There is an algorithm deciding for every nondeterministic Turing machine M and

every natural number m whether M accepts the empty input tape in≤ m steps and
the algorithm does this for every fixed M in time mO(1).

4 Effective Versions

Let NP[TC] ⊆ P[TClog TC] mean that NTIME(hO(1)) ⊆ DTIME(hO(log h)) for every time
constructible and increasing function h. In [3] we have shown:
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Proposition 14. Assume that NP[TC] ⊆ P[TClog TC]. Then L≤ is not an effectively P-
bounded logic for P.

Are there natural effective versions of the properties of TAUT listed in Theorem 2 equiv-
alent to the statement “L≤ is not an effectively P-bounded logic for P” and which there-
fore, by Proposition 14, could not hold under the assumption NP[TC] ⊆ P[TClog TC]?
We did not find them. However, by analyzing the proof of Proposition 14, we isolate
a property of an effective P-bounded logic for P that cannot be fulfilled if NP[TC] ⊆
P[TClog TC]. It turns out that this is equivalent to natural effective versions of the proper-
ties on TAUT under consideration. We already state the result we aim at and then define
the concepts appearing in it and present the generalization of Theorem 2 on which its
proof is based. Due to space limitations all proofs of results in this section will be given
in the full version of the paper.

Theorem 15. If NP[TC] ⊆ P[TClog TC], then TAUT has no effectively p-optimal proof
system.

Let Q ⊆ Σ∗. A proof system P for Q is effectively p-optimal if there are two com-
putable functions S : Σ∗ × N[X] → Σ∗ and b : Σ∗ × N[X] → N[X] such that for
every proof system P ′ for Q with time bound p ∈ N[X] and every w′ ∈ Σ∗, we have

P ′(w′) = P
(
S(P ′, p)(w′)

)
,

where S(P ′, p) is (the code of) a Turing machine with time bound b(P ′, p) and
S(P ′, p)(w′) denotes the output of S(P ′, p) on input w′.

An algorithm A deciding Q is effectively almost optimal if there is a computable
function b : Σ∗ → N[X] such that for every algorithm B deciding Q we have for every
x ∈ Q we have

tA(x) ≤ b(B)
(
tB(x) + |x|

)
.

We say that Q has an effective enumeration of P-easy subsets, if it has an enumeration
M : N → Σ∗ of P-easy subsets of Q such that there are functions I : Σ∗ × N[X] → N

and b : Σ∗ × N[X] → N[X] such that for every Turing machine M and polynomial
p ∈ N[X],

if the Turing machine M recognizes a subset Q′ ⊆ Q with time bound p, then
the machine M (I(M, p)) recognizes Q′ with time bound b(M, p).

We can prove the effective analogue of Theorem 2:

Theorem 16. The following are equivalent:

(1) TAUT has an effectively p-optimal proof system.
(2) TAUT has an effectively almost optimal algorithm.
(3) TAUT has an effective enumeration of the P -easy subsets.

In [3] we have shown that if E = NE, then (the logic L= and hence) L≤ are effectively
P-bounded logics for P. The proof of the previous result shows that TAUT has an effec-
tively p-optimal proof system if L≤ is an effectively P-bounded logic for P . Therefore
we obtain the following “effective version” of a result due to Krajı́c̆ek and Pudlák.

Corollary 17. If E = NE, then TAUT has an effectively p-optimal proof system.
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Abstract. The placement of regenerators in optical networks has
become an active area of research during the last years. Given a set of
lightpaths in a network G and a positive integer d, regenerators must
be placed in such a way that in any lightpath there are no more than
d hops without meeting a regenerator. While most of the research has
focused on heuristics and simulations, the first theoretical study of the
problem has been recently provided in [10], where the considered cost
function is the number of locations in the network hosting regenerators.
Nevertheless, in many situations a more accurate estimation of the real
cost of the network is given by the total number of regenerators placed
at the nodes, and this is the cost function we consider. Furthermore,
in our model we assume that we are given a finite set of p possible
traffic patterns (each given by a set of lightpaths), and our objective
is to place the minimum number of regenerators at the nodes so that
each of the traffic patterns is satisfied. While this problem can be easily
solved when d = 1 or p = 1, we prove that for any fixed d, p ≥ 2 it does
not admit a PTAS, even if G has maximum degree at most 3 and the
lightpaths have length O(d). We complement this hardness result with
a constant-factor approximation algorithm with ratio ln(d · p). We then
study the case where G is a path, proving that the problem is NP-hard
for any d, p ≥ 2, even if there are two edges of the path such that any
lightpath uses at least one of them. Interestingly, we show that the
problem is polynomial-time solvable in paths when all the lightpaths
share the first edge of the path, as well as when the number of lightpaths
sharing an edge is bounded. Finally, we generalize our model in two
natural directions, which allows us to capture the model of [10] as
a particular case, and we settle some questions that were left open in [10].

Keywords: optical networks, regenerators, overprovisioning, approxi-
mation algorithms, hardness of approximation.

� This research was supported by the Israel Science Foundation (grant No. 1249/08)
and by the British Council (grant No. UKTELHAI09).

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 333–344, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



334 G.B. Mertzios et al.

1 Introduction

1.1 Background

In modern optical networks, high-speed signals are sent through optical fibers
using WDM (Wavelength Division Multiplexing) technology. Networks with each
fiber typically carrying around 80 wavelengths are operational, whereas networks
with a few hundreds wavelengths per fiber are already experimental. As the en-
ergy of the signal decreases with the traveled distance, optical amplifiers are
required every some fixed distance (a typical value being around 100 km). How-
ever, optical amplifiers introduce noise into the signal, so after a certain number
of amplifications, the optical signal needs to be regenerated in order to keep
the SNR (Signal-to-Noise Ratio) above a specified threshold. In current technol-
ogy, the signal is regenerated as follows. An ROADM (Reconfigurable Optical
Add-Drop Multiplexer) has the capability of inserting/extracting a given num-
ber of wavelengths (typically, around 4) to/from the optical fiber. Then, for each
extracted wavelength, an optical regenerator is needed to regenerate the signal
carried by that wavelength. That is, at a given optical node, one needs as many
regenerators as wavelengths one wants to regenerate. See Fig. 1 for a simplified
illustration of the aforementioned devices in the case when the network is a path
and the fiber carries 3 wavelengths.

The problem of placing regenerators in optical networks has attracted the
attention of several recent research works [5,8,9,13,18,19,22,23]. Mostly, these
articles propose heuristics and run simulations in order to reduce the number of
regenerators, but no theoretical analysis is presented. Recently, the first theoret-
ical study of the problem has been done by Flammini et al. in [10]. In the next
paragraph we discuss how our model differs from the one studied in [10].

Nowadays the cost of a regenerator is considerably higher than the cost of
an ROADM (as an example, $160K vs $50K). Moreover, the regenerator cost
is per wavelength, as opposed to ROADM cost that is payed once per several
wavelengths. Therefore the total number of regenerators seems to be the right
cost to minimize. Another possible criterion is to minimize the number of loca-
tions (that is, the number of nodes) in which optical regenerators are placed.
This measure is the one assumed in [10], which makes sense when the dominant
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Fig. 1. A simplified optical network: amplifiers introduce noise into the signal, which
needs to be regenerated after at most d = 3 hops. When the signal is regenerated
through an ROADM, a different regenerator is needed for each wavelength.
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cost is given by the set-up of new optical nodes, or when the equipment to be
placed at each node is the same for all nodes. Nevertheless, the total number of
regenerators seem to be a better estimate of the real cost of the network, and
therefore we consider this cost in this article.

It is worth mentioning here that when all the connection requests are known
a priori, minimizing the number of regenerators is an easy task. Indeed, suppose
that the maximum number of hops a lightpath can make without meeting a
regenerator is an integer d (in the example of Fig. 1, we have d = 3). Then, for
each lightpath �, we need to place one regenerator every d consecutive vertices
in �, to get an optimal solution.

Unfortunately, when designing a network, it is usually the case that the traffic
requests are not known in advance. For instance, the traffic in a given network
may change dramatically depending on whether in the foreseeable future an
Internet supplier or an email storage server opens or closes a site within the
area of the network. In such a situation of uncertain traffic forecast, a common
approach in order to minimize capital expenses is to predeploy (or overprovision)
resources [12,14,15,17]. That is, the network is designed to satisfy several possible
traffic patterns. A similar setting arises in networks in which there are several
possible traffic configurations that alternate according to some phenomena, like
the weather, the season, an overflow of the capacity of another network, or a
breakdown. In that case, the network must be designed so that it can satisfy
each of the traffic configurations independently.

In our model, we assume that we are given a finite set of p possible traffic
patterns (each given by a set of lightpaths), and our objective is to place the
minimum total number of regenerators at the nodes so that each of the traffic
patterns is satisfied. That is, the number of regenerators that must be placed
at a node of the network is the maximum of the number of regenerators needed
by any of the traffic patterns at that node. We aim at minimizing the total
number of regenerators placed at the network. We formally define the problem
in Section 1.2.

1.2 Definitions

Given an undirected underlying graph G = (V, E) that corresponds to the net-
work topology, a lightpath is a simple path in G. That is, we assume that the
routing of the requests is given (see [10] for complexity results when the routing
of the requests is not given). We also assume that lightpaths sharing an edge
use different wavelengths. That is, we deal with optical networks without traffic
grooming [2]. The length of a lightpath is the number of edges it contains. We
consider symmetric lightpaths, that is, a lightpath with endpoints u and v con-
sists of a request from u to v and a request from v to u. The internal vertices
(resp. edges) of a lightpath or a path � are the vertices (resp. edges) in � different
from the first and the last one. Given an integer d, a lightpath � is d-satisfied
if there are no d consecutive internal vertices in � without a regenerator. A set
of lightpaths is d-satisfied if each of its lightpaths is d-satisfied. Given p sets of
lightpaths L1, . . . , Lp, with Li = {�i,j | 1 ≤ j ≤ xi}, we consider the union of
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all lightpaths in the p sets ∪Li = {�i,j | 1 ≤ i ≤ p, 1 ≤ j ≤ xi}. An assignment
of regenerators is a function reg : V × ∪Li → {0, 1}, where reg(v, �) = 1 if and
only if a regenerator is used at vertex v by lightpath �.

We study the following problem: given p ≥ 1 sets of lightpaths, and a distance
d ≥ 1, determine the smallest number of regenerators that d-satisfy each of the
p sets. Formally, for two fixed integers d, p ≥ 1, the optimization problem we
study is defined as follows.

(d, p)-Total Regenerators ((d, p)-TR)

Input: A graph G = (V, E) and p sets of lightpaths L = {L1, . . . , Lp}.
Output: A function reg : V × ∪Li → {0, 1} such that each lightpath

in ∪Li is d-satisfied.

Objective: Minimize
∑

v∈V reg(v), where
reg(v) = max1≤i≤p

∑
�∈Li

reg(v, �).

Note that, as mentioned in Section 1.1, in the case p = 1 (that is, when there
is a single set of requests) the problem is trivially solvable in polynomial time, as
the regenerators can be placed for each lightpath independently. The case d = 1
is not interesting either, as for each internal vertex v ∈ V and each � ∈ ∪Li,
reg(v, �) = 1, so there is only one feasible solution, which is optimal.

1.3 Our Contribution

In this article we provide hardness results and approximation algorithms for the
(d, p)-Total Regenerators problem ((d, p)-TR for short). We first prove in
Section 3 that for any two fixed integers d, p ≥ 2, (d, p)-TR does not admit a
PTAS unless P = NP, even if the underlying graph G has maximum degree at
most 3, and the lightpaths have length at most

⌈
7d
2

⌉
. In Section 4 we complement

this hardness result with a constant-factor approximation algorithm with ratio
min{p, Hd·p−1/2}, where Hn =

∑n
i=1

1
i is the n-th harmonic number. Section 5

is devoted to the case where the underlying graph is a path. In Section 5.1 we
prove that (d, p)-TR is NP-hard in paths for any fixed d, p ≥ 2, even if there are
two edges of the path such that any lightpath uses at least one of them. Inter-
estingly, we show in Section 5.2 that the problem is polynomial-time solvable in
paths when all the lightpaths share the first (or the last) edge, as well as when
the maximum number of lightpaths sharing an edge is bounded. In Section 6
we generalize the model presented in Section 1.2 in two natural directions. This
generalization allows us to capture the model of [10] as a particular case, and to
settle some complexity issues that were left open in [10]. (Since we need some
further definitions, we defer the precise statement of these results to Section 6.)
Finally, in Section 7 we conclude the article and present a number of interesting
avenues for further research. We first provide in Section 2 some standard prelim-
inaries. Due to space limitations, almost all proofs are omitted in this extended
abstract (except that of Proposition 1); they can be found in [16].
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2 Preliminaries

We use standard terminology concerning graphs, complexity, and algorithms; see
for instance [7,11,21], respectively.

Graphs. All the graphs considered in this article are simple and undirected.
Given a graph G we denote by V (G) and E(G) the sets of vertices and edges of
G, respectively. If H is a subgraph of G, we denote it by H ⊆ G. Given a graph G
and F ⊆ E(G), we denote by G[F ] the subgraph of G induced by the edges in F
together with their endpoints. Given a a subset S ⊆ V (G), we define NG[S] to be
the set of vertices of V (G) at distance at most 1 from at least one vertex of S. If
S = {v}, we simply use the notation NG[v]. We also define NG(v) = NG[v]\{v}.
The degree of a vertex v ∈ V (G) is defined as degG(v) = |NG(v)|. A graph is
cubic if all its vertices have degree 3. The maximum degree of G is defined as
Δ(G) = maxv∈V (G) degG(v). A matching in a graph is a set of disjoint edges,
and a vertex cover is a set of vertices that contains at least one endpoint of
every edge. The girth of a graph is the length of a shortest cycle. Given an
edge e = {u, v}, by subdividing e we denote the operation of deleting the edge
e = {u, v}, adding a new vertex w, and making it adjacent to both u and v.

Complexity and approximation algorithms. Given an NP-hard mini-
mization problem Π , we say that a polynomial-time algorithm A is an α-
approximation algorithm for Π , with α ≥ 1, if for any instance of Π , algorithm
A finds a feasible solution with cost at most α times the cost of an optimal
solution. For instance, a maximal matching constitutes a 2-approximation al-
gorithm for the Minimum Vertex Cover problem. In complexity theory, the
class APX (Approximable) contains all NP-hard optimization problems that
can be approximated within a constant factor. The subclass PTAS (Polyno-
mial Time Approximation Scheme) contains the problems that can be approx-
imated in polynomial time within a ratio 1 + ε for any fixed ε > 0. In some
sense, these problems can be considered to be easy NP-hard problems. Since,
assuming P �= NP, there is a strict inclusion of PTAS in APX (for instance,
Minimum Vertex Cover ∈ APX \ PTAS), an APX-hardness result for a
problem implies the non-existence of a PTAS unless P = NP.

3 Hardness Results for General Graphs

In this section we prove that, unless P = NP, (d, p)-TR does not admit a PTAS

for any d, p ≥ 2, even if the underlying graph G has maximum degree at most 3
and the lightpaths have length O(d). Before this, we need two technical results
to be used in the reductions.

Minimum Vertex Cover is known to be APX-hard in cubic graphs [1]. By
a simple reduction, we prove in the following lemma that Minimum Vertex

Cover is also APX-hard in a class of graphs with degree at most 3 and high
girth, which will be used in the sequel.
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Lemma 1. Minimum Vertex Cover is APX-hard in the class of graphs H
obtained from cubic graphs by subdividing each edge twice.

Thomassen proved [20] that the edges of any cubic graph can be two-colored
such that each monochromatic connected component is a path of length at most
5. In addition, the aforementioned coloring can be found in polynomial time [20].
Note that in such a coloring of a cubic graph, each vertex appears exactly once
as an endpoint of a path, and exactly once as an internal vertex of another path.
We next show that this result can be easily extended to graphs with maximum
degree at most 3.

Lemma 2. The edges of any graph with maximum degree at most 3 can be two-
colored such that each monochromatic connected component is a path of length
at most 5.

We are now ready to announce the main results of this section. For the sake of
presentation, we first present in Proposition 1 the result for d = p = 2, and then
we show in Theorem 1 how to extend the reduction to any fixed d, p ≥ 2.

Proposition 1. (2, 2)-TR does not admit a PTAS unless P = NP, even if G
has maximum degree at most 3 and the lightpaths have length at most 7.

Proof. The reduction is from Minimum Vertex Cover (VC for short) in the
class of graphs H obtained from cubic graphs by subdividing each edge twice,
which does not admit a PTAS by Lemma 1 unless P = NP. Note that by
construction any graph in H has girth at least 9. Given a graph H ∈ H as
instance of Vertex Cover, we proceed to build an instance of (2, 2)-TR. We
set G = H , so G has maximum degree at most 3.

To define the two sets of lightpaths L1 and L2, let {E1, E2} be the partition
of E(H) given by the two-coloring of Lemma 2. Therefore, each connected com-
ponent of H [E1] and H [E2] is a path of length at most 5. Each such path in
H [E1] (resp. H [E2]) will correspond to a lightpath in L1 (resp. L2), which we
proceed to define. A key observation is that, as the paths of the two-coloring
have length at most 5, if any endpoint v of a such path P had one neighbor in
V (P ), it would create a cycle of length at most 6, a contradiction to the fact
that the girth of H is at least 9. Therefore, as the vertices of H have degree 2
or 3, any endpoint v of a path P has at least one neighbor in V (H) \ V (P ).

We are now ready to define the lightpaths. Let P be a path with endpoints
u, v, and let u′ (resp. v′) be a neighbor of u (resp. v) in V (H) \V (P ), such that
u′ �= v′ (such distinct vertices u′, v′ exist by the above observation and by the
fact that H has girth at least 9). The lightpath associated with P consists of the
concatenation of {u′, u}, P , and {v, v′}. Therefore, the length of each lightpath is
at most 7. This completes the construction of the instance of (2, 2)-TR. Observe
that since we assume that d = 2, regenerators must be placed in such a way
that all the internal edges of a lightpath (that is, all the edges except the first
and the last one) have a regenerator in at least one of their endpoints. We can
assume without loss of generality that no regenerator serves at the endpoints
of a lightpath, as the removal of such regenerators does not alter the feasibility
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of a solution. Note that in our construction, each vertex of G appears as an
internal vertex in at most two lightpaths, one (possibly) in L1 and the other one
(possibly) in L2, so we can assume that reg(v) ≤ 1 for any v ∈ V (G).

We now claim that OPTVC(H) = OPT(2,2)−TR(G, {L1, L2}).
Indeed, let first S ⊆ V (H) be a vertex cover of H . Placing one regenerator

at each vertex belonging to S defines a feasible solution to (2, 2)-TR in G with
cost |S|, as at least one endpoint of each internal edge of each lightpath contains
a regenerator. Therefore, OPTVC(H) ≥ OPT(2,2)−TR(G, {L1, L2}).

Conversely, suppose we are given a solution to (2,2)-TR in G using r regen-
erators. Since E1 and E2 are a partition of E(G) = E(H) and the set of in-
ternal edges of the lightpaths in L1 (resp. L2) is equal to E1 (resp. E2), the
regenerators placed at the endpoints of the internal edges of the lightpaths
constitute a vertex cover of H of size at most r. Therefore, OPTVC(H) ≤
OPT(2,2)−TR(G, {L1, L2}).

Summarizing, since OPTVC(H) = OPT(2,2)−TR(G, {L1, L2}) and any
feasible solution to OPT(2,2)−TR(G, {L1, L2}) using r regenerators defines a
vertex cover of H of size at most r, the existence of a PTAS for (2, 2)-TR

would imply the existence of a PTAS for Vertex Cover in the class of graphs
H, which is a contradiction by Lemma 1, unless P = NP. �

Theorem 1. (d, p)-TR does not admit a PTAS for any d ≥ 2 and any p ≥ 2
unless P = NP, even if the underlying graph G satisfies Δ(G) ≤ 3 and the
lightpaths have length at most

⌈
7d
2

⌉
.

4 Approximation Algorithms for General Graphs

We have seen in Section 3 that (d, p)-TR does not admit a PTAS for d, p ≥ 2
unless P = NP. In this section we complement this result with a constant-factor
approximation algorithm for (d, p)-TR in general graphs.

Theorem 2. For any fixed d, p ≥ 2, there is a polynomial-time approximation
algorithm for the (d, p)-TR problem with ratio min{p, Hd·p−1/2}, where Hd·p =∑d·p

i=1
1
i .

Note that for big d, p, Hd·p ≈ ln d+ln p+1/2, so comparing both approximation
ratios, we have that p < ln d + ln p when d = Ω(2p).

5 The Case of the Path

In this section we focus on the case where the network topology is a path,
which is one of the most important topologies in real networks, as well as one of
the most natural and apparently simplest underlying graphs to study. Clearly,
hardness results obtained for this topology will carry over all topologies. We first
present in Section 5.1 an NP-hardness result, and then we present in Section 5.2
polynomial-time optimal algorithms for two families of instances.
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5.1 Hardness Result

The model of [10] turns out to be polynomial-time solvable when the underlying
topology is a tree. Surprisingly enough, in this section we show that our model
remains NP-hard even if the network is a path, for any d ≥ 2 and any p ≥ 2.

Theorem 3. (d, p)-TR is NP-hard in paths for any d, p ≥ 2, even if each vertex
is the endpoint of at most 10 lightpaths and there are two edges of the path such
that any lightpath uses at least one of them.

5.2 Polynomial-Time Solvable Cases

In this section we present polynomial-time optimal algorithms in path networks
for two restricted sets of instances, namely when all the lightpaths go through a
common edge, and when the load of the path (that is, the maximum number of
lightpaths in any set Li crossing an edge of the path) is bounded by a logarithmic
function of the input size.

Edge instances. In an edge instance there is an edge e ∈ E(G) that is used
by all the lightpaths. Note that the instance built in the reduction used in the
proof of Theorem 3 contains two edges intersecting all the lightpaths.

Proposition 2. For any fixed d, p ≥ 2, there is a polynomial-time algorithm
solving the (d, p)-TR problem for edge instances in a path where all the lightpaths
share the first edge.

Bounded load. From Theorem 3 it follows that (d, p)-TR remains hard in
paths even if each vertex is the endpoint of at most 10 lightpaths. It turns out
that if we further impose that not only the number of lightpaths per vertex is
bounded, but also the load of the path is bounded by an appropriate function
of the size of the instance, then the problem is solvable in polynomial time.
Intuitively, this special case of instances is in the opposite extreme of the edge
instances, where there is an edge with unbounded load.

Proposition 3. For any fixed d, p ≥ 2, (d, p)-TR is polynomial-time solvable
in paths if the load is O

(
log |I|−log p

2p·log d

)
= O(log |I|), where |I| is the size of the

instance.

6 More General Settings

In this section we generalize the (d, p)-TR problem in two natural directions.
Namely, in Section 6.1 we allow the number p of traffic patterns to be unbounded,
and in Section 6.2 we introduce a parameter k that bounds the number of re-
generators that can be placed at a vertex. Technologically, the latter constraint
captures the fact of having a bounded number of ROADMs per vertex, as the
number of wavelengths (and therefore, the number of regenerators) an ROADM
can handle is usually not too big (see Section 1.1).
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6.1 Unbounded Number of Sets of Lightpaths

If p is part of the input, then (d, p)-TR contains as a particular case the model
studied in [10] (the so-called location problem, denoted RPP/∞/+ in [10]). In-
deed, if each set of lightpaths consists of a single lightpath (that is, when p is the
number of lightpaths), then the objective is to place the minimum number of
regenerators such that each lightpath is satisfied. Therefore, the hardness results
stated in [10] also apply to this more general setting, in particular an approxima-
tion lower bound of Ω(log(d · p)) unless NP can be simulated in subexponential
time. Note that this hardness bound matches the approximation ratio given by
Theorem 2. Nevertheless, note also that the approximation algorithm presented
in Theorem 2 runs in polynomial time only for bounded p.

We now reformulate the problem studied in [10] using our terminology. Let
d ≥ 1 be a fixed integer.

d-Regenerators Location (d-RL)

Input: An undirected graph G = (V, E) and a set of lightpaths L.

Output: A function reg : V × L→ {0, 1} such that each lightpath
� ∈ L is d-satisfied.

Objective: Minimize
∑

v∈V reg(v), where reg(v) = max�∈L reg(v, �).

Note that in the above problem, reg(v) ∈ {0, 1}. We now focus on the case
d = 2 of d-RL.

Remark 1. Given an instance of 2-RL in a graph G, the problem can be reduced
to a Minimum Vertex Cover problem in a subgraph of G. Indeed, given a set
of lightpaths L, remove the first and the last edge of each lightpath, and let H
be the subgraph of G defined by the union of the edges in the modified lightpaths.
It is then clear that the minimum number of regenerators to 2-satisfy all the
lightpaths in L equals the size of a minimum vertex cover of H.

By Remark 1 and König’s theorem [7], it follows that 2-RL can be solved in
polynomial time in bipartite graphs. This result extends the results of [10] for
d = 2, where it is proved that for any d ≥ 2, d-RL is polynomial-time solvable in
trees and rings. Finally, it also follows from Remark 1 that 2-RL admits a PTAS

in planar graphs [4] and, more generally, in any family of minor-free graphs [6].

6.2 Bounded Number of Regenerators per Vertex

From a technological point of view, it makes sense to introduce a parameter
k that limits the number of regenerators that can be used at a single vertex.
Adding this restriction to the d-RL problem, we get the following problem, which
is actually the so-called k-location problem and denoted RPP/k/+ in [10].

Again, we restate the problem using our terminology. Let d, k ≥ 1 be two
fixed integers.
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(d, k)-Regenerators Location ((d, k)-RL)

Input: An undirected graph G = (V, E) and a set of lightpaths L.

Output: A function reg : V × L→ {0, 1} such that each lightpath � ∈ L
is d-satisfied and reg(v) ≤ k, where reg(v) =

∑
�∈L reg(v, �).

Objective: Minimize |{v ∈ V | reg(v) > 0}|.

We now resolve two questions that were left open in [10]. Namely, it is proved
in [10] that given an instance of (3, 1)-RL, it is NP-complete to decide whether
there exists a feasible solution for it, which in particular implies that the (3, 1)-
RL problem itself is NP-hard to approximate within any ratio. In the following
we prove that, surprisingly, the situation changes for d = 2 and k = 1. More
precisely, it is in P to decide whether there exists a feasible solution for an
instance of (2, 1)-RL, while finding an optimal one is NP-hard.

Proposition 4. Given an instance of (2, 1)-RL, it can be decided in polynomial
time whether there exists a feasible solution for it, while the (2, 1)-RL problem
itself (that is, finding an optimal solution) is NP-hard.

7 Conclusions and Further Research

In this article we presented a theoretical study of the problem of placing regen-
erators in optical networks, so that on each lightpath we must put a regenerator
every at most d hops. The cost is the total number of regenerators. We considered
the case when p possible traffic patters are given (each by a set of lightpaths), and
the objective is to place the minimum number of regenerators satisfying each of
these patterns. This setting arises naturally when designing real networks under
uncertain traffic forecast. The problem is called (d, p)-Total Regenerators

problem, or (d, p)-TR for short. We now summarize our results and propose a
number of lines for further research.

We proved that for any fixed d, p ≥ 2, (d, p)-TR does not admit a PTAS

unless P = NP, even if the network topology has maximum degree at most
3, by reduction from Minimum Vertex Cover in cubic graphs. It would be
interesting to determine which is the explicit approximation lower bound given
by Theorem 1. The recent results of Austrin et al. [3] about the hardness of
Minimum Vertex Cover in graphs of bounded degree may shed some light
on this question. We provided an approximation algorithm for (d, p)-TR with
constant ratio ln(d · p), by reducing it to Minimum Set Cover. Finding a
polynomial-time approximation algorithm matching the hardness lower bound
given by Theorem 1 seems to be a challenging task.

We proved that (d, p)-TR is NP-hard in paths for any d, p ≥ 2, by reduction
from the problem of whether the edges of a tripartite graph can be partitioned
into triangles. It is easy to see that the proof of Theorem 3 can be adapted to
the case when the network is a ring. In fact, the optimization version where the
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objective is to find the maximum number of edge-disjoint triangles is APX-hard
in tripartite graphs [2]. Nevertheless, the proof of Theorem 3 does not allow – at
least, without major modifications – to prove that (d, p)-TR does not admit a
PTAS in paths, although we believe that this is indeed the case. Therefore, the
existence of a PTAS for (d, p)-TR in paths, trees, rings, or even planar graphs,
remains open.

The NP-hardness result for paths holds even if there are two edges of the path
such that each lightpath uses at least one of them. In order to better understand
what makes the problem hard, we proved that when all lightpaths use the first
(or the last) edge of the path, then (d, p)-TR becomes polynomial-time solvable
for any d, p ≥ 2. Between these two cases, it only remains to settle the complexity
of the case when the edge shared by all lightpaths is an internal edge of the path,
which could be polynomial or NP-hard.

Still in the path, but in the opposite extreme of the type of instances, we also
proved that (d, p)-TR can be solved in polynomial time when the maximum num-
ber of lightpaths using an edge is logarithmically bounded by the size of the in-
stance. It may be possible to extend our dynamic programming approach to trees
with instances having this property, and even to graphs with bounded treewidth.

We generalized our model by allowing the number of sets of lightpaths to
be unbounded, and by introducing a parameter k that bounds the number of
regenerators that can be placed at a node. This way, the model studied in [10]
becomes a particular case. We settled several complexity questions that were
left open in [10] concerning the case k = 1 and d = 2. As future work, it seems
to be of high importance to consider the parameter k in the original statement
of our (d, p)-TR problem.

Acknowledgement. We would like to express our gratitude to Ori (Ornan)
Gerstel from CISCO, Israel, for sharing with us the new trends concerning the
placement of regenerators in optical networks, and especially for suggesting this
research direction concerning multiple sets of requests.
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Abstract. In this paper, we focus our attention on the fragment of
Halpern and Shoham’s modal logic of intervals (HS) that features four
modal operators corresponding to the relations “meets”, “met by”, “be-
gun by”, and “begins” of Allen’s interval algebra (AĀBB̄ logic). AĀBB̄

properly extends interesting interval temporal logics recently investigated
in the literature, such as the logic BB̄ of Allen’s “begun by/begins” rela-
tions and propositional neighborhood logic AĀ, in its many variants (in-
cluding metric ones). We prove that the satisfiability problem for AĀBB̄,
interpreted over finite linear orders, is decidable, but not primitive recur-
sive (as a matter of fact, AĀBB̄ turns out to be maximal with respect to
decidability). Then, we show that it becomes undecidable when AĀBB̄ is
interpreted over classes of linear orders that contains at least one linear
order with an infinitely ascending sequence, thus including the natural
time flows N, Z, Q, and R.

1 Introduction

For a long time, the role of interval temporal logics in computer science has been
controversial. On the one hand, it is commonly recognized that they provide a
natural framework for representing and reasoning about temporal properties in
many computer science areas (quoting Kamp and Reyle [11], “truth, as it per-
tains to language in the way we use it, relates sentences not to instants but
to temporal intervals”), including specification and design of hardware compo-
nents, concurrent real-time processes, event modeling, temporal aggregation in
databases, temporal knowledge representation, systems for temporal planning
and maintenance, qualitative reasoning, and natural language semantics [9]. On
the other hand, the computational complexity of most interval temporal logics
proposed in the literature has been a barrier to their systematic investigation
and their extensive use in practical applications. This is the case with the modal
logic of time intervals HS introduced by Halpern and Shoham in [10]. HS makes
it possible to express all basic binary relations that may hold between any pair
of intervals (the so-called Allen’s relations [1]) by means of four unary modal-
ities, namely, ⟨B⟩, ⟨E⟩ and their transposes ⟨B̄⟩, ⟨Ē⟩, corresponding to Allen’s
relations “begun by”, “ended by” and their inverses “begins”, “ends”, provided

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 345–356, 2010.
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that singleton intervals are included in the temporal structure [21]. HS turns
out to be highly undecidable under very weak assumptions on the class of linear
orders over which its formulas are interpreted [10]. In particular, undecidability
holds for any class of linear orders that contains at least one linear order with
an infinitely ascending or descending sequence, thus including the natural time
flows N, Z, Q, and R. In fact, undecidability occurs even without infinitely as-
cending/descending sequences: undecidability also holds for any class of linear
orders with unboundedly ascending sequences, that is, for any class such that
for every n, there is a structure in the class with an ascending sequence of length
at least n, e.g., for the class of all finite linear orders. In [12], Lodaya sharpens
the undecidability of HS showing that the two modalities ⟨B⟩, ⟨E⟩ suffice for un-
decidability over dense linear orders (in fact, the result applies to the class of all
linear orders [9]).

The recent identification of expressive decidable fragments of HS, whose decid-
ability does not depend on simplifying semantic assumptions such as locality and
homogeneity [9], shows that such a trade-off between expressiveness and decid-
ability of interval temporal logics can actually be overcome. The most significant
ones are the logic BB̄ (resp., EĒ) of Allen’s “begun by/begins” (resp., “ended
by/ends”) relations [9], the logic AĀ of temporal neighborhood, whose modal-
ities correspond to Allen’s “meets/met by” relations (it can be easily shown
that Allen’s “before/after” relations can be expressed in AĀ) [8], and the logic
DD̄ of the subinterval/superinterval relations, whose modalities correspond to
Allen’s “contains/during” relations [14]. In this paper, we focus our attention
on the logic AĀBB̄ that joins BB̄ and AĀ (the case of AĀEĒ is fully symmet-
ric). The decidability of BB̄ (resp., EĒ) can be proved by translating it into the
point-based propositional temporal logic of linear time with temporal modalities
F (sometime in the future) and P (sometime in the past), which has the finite
(pseudo-)model property and is decidable [9]. Unfortunately, such a reduction
to point-based temporal logics does not work for most interval temporal logics
as their propositional variables are evaluated over pairs of points and translate
into binary relations. This is the case with AĀ. Unlike the case of BB̄ (resp.,
EĒ), when dealing with AĀ one cannot abstract away from the left (resp., right)
endpoint of intervals, as contradictory formulas may hold over intervals with the
same right (resp., left) endpoint and a different left (resp., right) one. The decid-
ability of AĀ, over various classes of linear orders, has been proved by Bresolin
et al. [3] by reducing its satisfiability problem to that of the two-variable frag-
ment of first-order logic over the same classes of linear orders [17]. An optimal
(NEXPTIME) tableau-based decision procedure for AĀ over the integers has
been given in [5] and later extended to the classes of all (resp., dense, discrete)
linear orders [6], while a decidable metric extension of the future fragment of
AĀ over the natural numbers has been proposed in [7] and later extended to
the full logic [4]. Finally, a number of undecidable extensions of AĀ have been
given in [2, 3].

In [16], Montanari et al. consider the effects of adding the modality ⟨A⟩ to
BB̄, interpreted over the natural numbers. They show that ABB̄ retains the
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simplicity of its constituents, but it improves a lot on their expressive power.
In particular, besides making it possible to easily encode the until operator of
point-based temporal logic (this is possible neither with BB̄ nor with A), ABB̄

allows one to express accomplishment conditions as well as metric constraints.
Such an increase in expressiveness is achieved at the cost of an increase in com-
plexity: the satisfiability problem for ABB̄ is EXPSPACE-complete (that for
A is NEXPTIME-complete). In this paper, we show that the addition of the
modality ⟨Ā⟩ to ABB̄ drastically changes the characteristics of the logic. First,
decidability is preserved (only) if AĀBB̄ is interpreted over finite linear orders,
but the satisfiability problem is not primitive recursive anymore. Moreover, we
show that the addition of any modality in the set {⟨D⟩, ⟨D̄⟩, ⟨E⟩, ⟨Ē⟩, ⟨O⟩, ⟨Ō⟩}
(modalities ⟨O⟩, ⟨Ō⟩ correspond to Allen’s “overlaps/overlapped by” relations)
to AĀBB̄ leads to undecidability. This allows us to conclude that AĀBB̄, inter-
preted over finite linear orders, is maximal with respect to decidability. Next,
we prove that the satisfiability problem for AĀBB̄ becomes undecidable when
it is interpreted over any class of linear orders that contains at least one lin-
ear order with an infinitely ascending sequence, thus including the natural time
flows N, Z, Q, and R. As matter of fact, we prove that the addition of B to AĀ

suffices to yield undecidability (the proof can be easily adapted to the case of
B̄). Paired with undecidability results in [2, 3], this shows the maximality of AĀ

with respect to decidability when interpreted over these classes of linear orders.

2 The Interval Temporal Logic AĀBB̄

In this section, we first give syntax and semantics of the logic AĀBB̄. Then,
we introduce the basic notions of atom, type, and dependency. We conclude the
section by providing an alternative interpretation of AĀBB̄ over labeled grid-like
structures (such an interpretation is quite common in the interval temporal logic
setting).

2.1 Syntax and Semantics

Given a set Prop of propositional variables, formulas of AĀBB̄ are built up from
Prop using the boolean connectives ¬ and ∨ and the unary modal operators
⟨A⟩, ⟨Ā⟩, ⟨B⟩, ⟨B̄⟩. As usual, we shall take advantage of shorthands like ϕ1 ∧ ϕ2 =
¬(¬ϕ1 ∨ ¬ϕ2), [A]ϕ = ¬⟨A⟩¬ϕ, [B]ϕ = ¬⟨B⟩¬ϕ, ⊺ = p ∨ ¬p, and � = p ∧ ¬p,
with p ∈ Prop. Hereafter, we denote by ∣ϕ∣ the size of ϕ.

We interpret formulas of AĀBB̄ in interval temporal structures over finite
linear orders with the relations “meets”, “met by”, “begins”, and “begun by”.
Precisely, given N ∈ N, we define IN as the set of all (non-singleton) closed
intervals [x,y], with 0 ≤ x < y ≤ N. For any pair of intervals [x,y], [x ′,y′] ∈ IN,
Allen’s relations “meets” A, “met by” Ā, “begun by” B, and “begins” B̄ are
defined as follows:
• “meets”: [x,y] A [x ′,y′] iff y = x ′;
• “met by”: [x,y] Ā [x ′,y′] iff x = y′;



348 A. Montanari, G. Puppis, and P. Sala

• “begun by”: [x,y] B [x ′,y′] iff x = x ′ and y′ < y;
• “begins”: [x,y] B̄ [x ′,y′] iff x = x ′ and y < y′.
Given an interval structure S = (IN,A, Ā,B, B̄,σ), where σ ∶ IN → P(Prop) is
a labeling function that maps intervals in IN to sets of propositional variables,
and an initial interval I, we define the semantics of an AĀBB̄ formula as follows:
• S, I ⊧ a iff a ∈ σ(I), for any a ∈ Prop;
• S, I ⊧ ¬ϕ iff S, I /⊧ ϕ;
• S, I ⊧ ϕ1 ∨ ϕ2 iff S, I ⊧ ϕ1 or S, I ⊧ ϕ2;
• for every relation R ∈ {A, Ā,B, B̄}, S, I ⊧ ⟨R⟩ϕ iff there is an interval J ∈ IN

such that I R J and S, J ⊧ ϕ.
Given an interval structure S and a formula ϕ, we say that S satisfies ϕ if there
is an interval I in S such that S, I ⊧ ϕ. We say that ϕ is satisfiable if there
exists an interval structure that satisfies it. We define the satisfiability problem
for AĀBB̄ as the problem of establishing whether a given AĀBB̄-formula ϕ is
satisfiable.

2.2 Atoms, Types, and Dependencies

Let S = (IN,A, Ā,B, B̄,σ) be an interval structure and ϕ be a formula of AĀBB̄.
In the sequel, we shall compare intervals in S with respect to the set of subfor-
mulas of ϕ they satisfy. To do that, we introduce the key notions of ϕ-atom and
ϕ-type.

First of all, we define the closure Cl(ϕ) of ϕ as the set of all subformulas
of ϕ and of their negations (we identify ¬¬α with α, ¬⟨A⟩α with [A]¬α, etc.).
For technical reasons, we also introduce the extended closure Cl +(ϕ), which is
defined as the set of all formulas in Cl(ϕ) plus all formulas of the forms ⟨R⟩α
and ¬⟨R⟩α, with R ∈ {A, Ā,B, B̄} and α ∈ Cl(ϕ).

A ϕ-atom is any non-empty set F ⊆ Cl +(ϕ) such that (i) for every α ∈ Cl +(ϕ),
we have α ∈ F iff ¬α ∉ F and (ii) for every γ = α ∨ β ∈ Cl +(ϕ), we have γ ∈ F iff
α ∈ F or β ∈ F (intuitively, a ϕ-atom is a maximal locally consistent set of formulas
chosen from Cl +(ϕ)). Note that the cardinalities of both sets Cl(ϕ) and Cl +(ϕ)
are linear in the number ∣ϕ∣ of subformulas of ϕ, while the number of ϕ-atoms
is at most exponential in ∣ϕ∣ (precisely, we have ∣Cl(ϕ)∣ = 2∣ϕ∣, ∣Cl +(ϕ)∣ = 18∣ϕ∣,
and there are at most 29∣ϕ∣ distinct atoms).

We also associate with each interval I ∈ S the set of all formulas α ∈ Cl +(ϕ)
such that S, I ⊧ α. Such a set is called ϕ-type of I and it is denoted by TypeS(I).
We have that every ϕ-type is a ϕ-atom, but not vice versa. Hereafter, we shall
omit the argument ϕ, thus calling a ϕ-atom (resp., a ϕ-type) simply an atom
(resp., a type).

Given an atom F, we denote by Obs(F) the set of all observables of F, namely,
the formulas α ∈ Cl(ϕ) such that α ∈ F. Similarly, given an atom F and a re-
lation R ∈ {A, Ā,B, B̄}, we denote by ReqR(F) the set of all R-requests of F,
namely, the formulas α ∈ Cl(ϕ) such that ⟨R⟩α ∈ F. Note that, for every pair
of intervals I = (x,y) and J = (x ′,y′) in S, if y = y′ (resp., x = x ′) holds, then
ReqA(TypeS(I)) = ReqA(TypeS(J)) (resp., ReqĀ(TypeS(I)) = ReqĀ(TypeS(J)))
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follows. Taking advantage of the above sets, we can define the following relations
between atoms F and G:

F A
�→G iff

⎧
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎩

ReqA(F) = Obs(G) ∪Req B̄(G)

ReqB(G) = ∅

Obs(F) ⊆ Req Ā(G)

F B
�→G iff

⎧
⎪
⎪

⎨

⎪
⎪
⎩

ReqB(F) = Obs(G) ∪ReqB(G)

Req B̄(G) = Obs(F) ∪Req B̄(F).

Note that the above relations satisfy a view-to-type dependency, namely, for every
pair of intervals I = [x,y] and I ′ = [x ′,y′], we have

x ′ = y ∧ y ′ = y + 1 implies Type
S
(I) A
�→ TypeS(I

′

)

x ′ = x ∧ y ′ = y − 1 implies Type
S
(I) B
�→ TypeS(I

′

).

2.3 Compass Structures

The logic AĀBB̄ can be equivalently interpreted over the so-called compass struc-
tures [20], namely, over grid-like structures. Such an alternative interpretation
exploits the existence of a natural bijection between the intervals I = [x,y] and
the points p = (x,y) of an N ×N grid such that x < y. As an example, Figure
1 depicts five intervals I0, ..., I4 such that I0 A I1, I0 Ā I2, I0 B I3, and I0 B̄ I4,
together with the corresponding points p0, ...,p4 of a discrete grid (note that the
four Allen’s relations A, Ā,B, B̄ between intervals are mapped to corresponding
spatial relations between points; for the sake of readability, we name the latter
ones as the former ones).

Definition 1. Given an AĀBB̄ formula ϕ, a (finite, consistent, and fulfilling)
compass (ϕ-)structure of length N ∈ N is a pair G = (PN,L), where PN is the
set of points p = (x,y), with 0 ≤ x < y ≤ N, and L is function that maps any
point p ∈ PN to a (ϕ-)atom L(p) in such a way that
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• for every relation R ∈ {A, Ā,B, B̄} and every pair of points p,q ∈ PN such
that p R q, we have Obs(L(q)) ⊆ ReqR(L(p)) (consistency);

• for every relation R ∈ {A, Ā,B, B̄}, every point p ∈ PN, and every formula
α ∈ ReqR(L(p)), there is a point q ∈ PN such that p R q and α ∈ Obs(L(q))
(fulfillment).

It is easy to see that the (finite, consistent, and fulfilling) compass structures
are exactly those structures G = (PN,L), with N ∈ N, that satisfy the following
conditions for all pair of points p,q in G:
i) if p = (x,y) and q = (y,y + 1), then L(p) A�→L(q);
ii) if p = (x,y) and q = (x,y + 1), then L(q) B�→L(p);
iii) if p = (y − 1,y), then ReqĀ(L(p)) = ⋃0≤x<y−1Obs(L(x,y − 1));
iv) if p = (x,N), then ReqA(L(p)) = ∅ and ReqB̄(L(p)) = ∅.
We say that a compass structure G = (PN,L) features a formula α if there is a
point p ∈ PN such that α ∈ L(p). We conclude the section with the following
basic result (the proof is straightforward and thus omitted).

Proposition 1. An AĀBB̄-formula ϕ is satisfied by some finite interval struc-
ture iff it is featured by some finite ϕ-compass structure.

3 Decidability and Complexity of the Satisfiability
Problem for AĀBB̄ over Finite Linear Orders

In this section, we prove that the satisfiability problem for AĀBB̄ interpreted
over finite linear orders is decidable, but not primitive recursive. In order to
do that, we use a technique similar to [16], namely, we fix a formula ϕ and
a finite compass structure G = (PN,L) satisfying ϕ and we show that, under
suitable conditions, G can be reduced in length while preserving the existence
of atoms featuring ϕ. For the sake of brevity, we call contraction the operation
that reduces the length of a given compass structure G while preserving the
existence of atoms featuring ϕ. Such an operation has been introduced in its
simple variant in [16] and it precisely consists of removing the portion of the
compass structure G included between two distinguished rows y0 and y1 and
selecting a subset of atoms from the upper row y1 that match with the atoms
of the lower row y0. Hereafter, we refer the reader to Figure 2 for an intuitive
account of the contraction operation (the colored nodes represent the atoms
associated with the points of G). According to the definition given in [16], the
contraction operation is applicable whenever the set of atoms of the lower row
y0 is included in the set of atoms of the upper row y1 (the arrows in Figure 2
represent a matching function f between the atoms of the lower row y0 and the
atoms of the upper row y1). Such a condition on the set of atoms associated with
the rows y0 and y1 guarantees the correctness of the contraction operation with
respect to the definition of consistent and fulfilling compass structure, provided
that the use of the modal operator ⟨Ā⟩ is avoided. However, in the presence of the
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Fig. 2. Contraction of a compass structure

modal operator ⟨Ā⟩, things get more involved, since some points p = (x,y1) from
the upper row y1 (e.g., the one labeled by F4 in Figure 2) might be necessary in
order to fulfill the Ā-requests enforced by other points p ′ = (x ′,y′), with x ′ = y1

and y′ > y1. In the following, we describe a suitable variant of the contraction
operation which is applicable to models of AĀBB̄ formulas.

Let us fix an AĀBB̄ formula ϕ that is featured by a finite compass structure
G = (PN,L). Without loss of generality, we can assume that ϕ is of the form
(φ ∧ [B]�) ∨ (⟨B̄⟩φ) ∨ (⟨B̄⟩⟨A⟩φ) and, furthermore, it belongs to the atom
associated with the point p = (0, 1) at the bottom of the structure G. Before
turning to our main result, we need to introduce some preliminary notation
and terminology. For every 1 ≤ y ≤ N, we denote by RowG(y) the row y of G,
namely, the set of all points p = (x,y) of G. We associate with each row y the
set ShadingG(y) = L(RowG(y)), which consists of the atoms associated with
the points in RowG(y). Clearly, for every pair of atoms F,G in ShadingG(y),
we have ReqA(F) = ReqA(G). We also associate with the row y the function
CountG(y), which maps an atom F to the number CountG(y)(F) of F-labeled
points in RowG(y).

In order to deal with Ā-requests, we need to introduce the notion of cover of
a compass structure. Intuitively, this is a selection of points that fulfills all Ā-
requests coming from other points (hence the points in a cover should not disap-
pear during the operation of contraction). Formally, a cover of a compass structure
G = (PN,L) is a subset C of PN that satisfies the following two conditions:
• if (x,y) ∈ C and x < y − 1, then (x,y − 1) ∈ C as well;
• for every point q = (y − 1,y) ∈ PN, the set ReqĀ(L(q)) coincides with the

union of the sets Obs(L(p)) for all p = (x,y − 1) ∈ C.
Given a cover C of G, we extend the notations RowG(y), ShadingG(y), and
CountG(y) respectively to RowG∣C(y), ShadingG∣C(y), and CountG∣C(y), having
the obvious meaning (e.g., RowG∣C(y) is the set of all points of G along the row
y that also belong to C). Moreover, we say that a cover is minimal if it does not
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let φ be an input formula
let ϕ be (φ ∧ [B]�) ∨ (⟨B̄⟩φ) ∨ (⟨B̄⟩⟨A⟩φ)
proc CheckRows( FΔ,SΔ,CΔ,

FΔ+1,SΔ+1,CΔ+1
)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S+Δ+1 ← SΔ+1 ∪ {FΔ+1}
if there is F ∈ S+Δ+1 such that F A/�→FΔ

then return false

Scov
Δ+1 ← {F ∶ CΔ+1(F) > 0}

if ReqĀ(FΔ) ≠ ⋃Obs(Scov
Δ+1)

then return false

f ← any function from S+Δ+1 to SΔ

if there is F ∈ S+Δ+1 such that f(F) B/�→F
then return false

MΔ ← {(F, i) ∶ F ∈ SΔ, 1 ≤ i ≤ CΔ(F)}
M+

Δ+1 ← {(F, i) ∶ F ∈ S+Δ+1, 1 ≤ i ≤ CΔ+1(F)}
g ← any injective function

from MΔ to M+

Δ+1
if there is (F, i) ∈ MΔ and (F ′, i ′) = g(F, i)

such that F B/�→F ′

then return false

return true

proc CheckContraction( F1,S1,C1, ... ,
FΔ,SΔ,CΔ

)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

if SΔ ≠ ∅ and there is 1 ≤ Δ ′ < Δ such that
SΔ ∪ {FΔ} ⊆ SΔ ′ ∪ {FΔ ′} and CΔ ≥ CΔ ′

then return true

return false

main⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ ← 1

F1 ← any ϕ-atom F such that
ReqA(F) = ReqB̄(F) = ReqB(F) = ∅

S1 ← any set of ϕ-atoms F such that
ReqA(F) = ReqB̄(F) = ∅, ReqB(F) ≠ ∅

C1 ← the function C ∶ S1∪{F1} → N such

that C(F) = 0 for all F ∈ S1 ∪ {F1}
while SΔ ≠ ∅ or ϕ ∉ FΔ

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FΔ+1 ← any ϕ-atom F
such that ReqB(F) = ∅

SΔ+1 ← any set of ϕ-atoms F
such that ReqB(F) ≠ ∅

CΔ+1 ← any C ∶ SΔ+1∪ {FΔ+1} → N such

that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ≤ C(FΔ+1) ≤ 1

∑FC(F) ≥ ∑F≠FΔ
CΔ(F)

∑FC(F) ≤ ∑FCΔ(F) + ∣ϕ∣
if not CheckRows( FΔ,SΔ,CΔ,

FΔ+1,SΔ+1,CΔ+1
)

then return false

if CheckContraction(F1,S1,C1, ... ,
FΔ+1,SΔ+1,CΔ+1

)
then return false

Δ ← Δ + 1

return true

Fig. 3. Decision algorithm for the satisfiability problem over finite linear orders

include properly any other cover. We can easily verify that every minimal cover
C of G = (PN,L) satisfies

RowG∣C(N) = ∅
∣RowG∣C(y)∣ − 1 ≤ ∣RowG∣C(y − 1)∣ ≤ ∣RowG∣C(y)∣ + ∣ϕ∣.

(1)

The following proposition shows that, under suitable conditions, a given compass
structure G can be reduced in length while preserving the existence of atoms
featuring ϕ. Note that such a result can be thought of as a strenghtening of the
original “contraction lemma” for structures over the signature A,B, B̄ (indeed,
if the logic does not allow the modal operator ⟨Ā⟩, then the empty set is the
unique minimal cover of any compass structure G and hence the proposition
below becomes equivalent to Lemma 3.2 in [16]). For the sake of brevity, hereafter
we use ≤ to denote the componentwise partial order between functions that map
atoms to natural numbers, i.e., f ≤ g iff f(F) ≤ g(F) holds for all atoms F.

Proposition 2. Let G = (PN,L) be a compass structure that features a formula
ϕ in its bottom row. If there exist a cover C of G and two rows y0 and y1 in G,
with 1 < y0 < y1 ≤N, such that
i) ShadingG(y0) ⊆ ShadingG(y1),
ii) CountG(y0) ≥ CountG∣C(y1),
then there exists a compass structure G ′ of length N ′ <N that features ϕ.

On the grounds of Proposition 2, it makes sense to restrict ourselves to the
minimal models of ϕ and, in particular, to those compass structures G = (PN,L)
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that feature ϕ (= (φ ∧ [B]�) ∨ (⟨B̄⟩φ) ∨ (⟨B̄⟩⟨A⟩φ)) in the bottom row and
that cannot be contracted. The above argument leads to a non-deterministic
procedure that decides whether a given formula φ is satisfied by a (contraction-
free) interval structure S. The pseudo-code of such an algorithm is given in
Figure 3: the variable Δ represents the value N− y+ 1, where N is the length of
the model G to be guessed and y is the current row (note that we cannot use y

in place of Δ since there is no a priori bound on the length N of the model), the
variable FΔ represents the atom associated with the rightmost point p = (y−1,y)
along the current row y, the variable SΔ represents an over-approximation of the
set ShadingG(y), and the variable CΔ represents the function CountG∣C(y) for a
suitable cover C of G (note that the content of such a variable can be guessed
because the sum of its values is bounded in virtue of Equation 1).

The decidability of the satisfiability problem for AĀBB̄ interpreted over finite
linear orders is thus reduced to a proof of termination, soundness, and complete-
ness for the algorithm given in Figure 3 as formally stated by Theorem 1 (its
proof is reported in [15]). As a matter of fact, termination relies on the following
crucial lemma, which is often attributed to Dickson.

Lemma 1 (Dickson’s Lemma). Let (Nk,≤) be the k-dimensional vector space
over N equipped with the componentwise partial order ≤. Then, (Nk,≤) admits
no infinite anti-chains, namely, every subset of N

d that consists of pairwise ≤-
incomparable vectors must be finite.

Theorem 1. The satisfiability problem for AĀBB̄, interpreted over finite linear
orders, is decidable.

We conclude the section by analyzing the complexity of the satisfiability problem
for AĀBB̄. In [16], Montanari et al. show that the satisfiability problem for ABB̄

is EXPSPACE-complete. Here we prove that, quite surprisingly, the satisfiability
problem for AĀBB̄ (in fact, also that for the fragment AĀB) has much higher
complexity, precisely, it is not primitive recursive.

Theorem 2. The satisfiability problem for AĀB, and hence that for AĀBB̄,
interpreted over finite linear orders, is not primitive recursive.

The proof of Theorem 2 is given in the Appendix and it is based on a reduction
from the reachability problem for lossy counter machines, which is known to have
strictly non-primitive recursive complexity [19], to the satisfiability problem for
AĀB. In particular, it shows that there is an AĀB formula that defines a set
of encodings of all possible computations of a given lossy counter machine. The
key ingredients of the proof are as follows. First, we represent the value c(t)
of each counter c, at each instant t of a computation, by means of a sequence
consisting of exactly c(t) unit-length intervals labeled by c. Then, we guarantee
that suitable disequalities of the form c(t+1) ≤ c(t)+h, with h ∈ {−1, 0, 1}, hold
between the values of the counter c at consecutive time instants. This can be
done by enforcing the existence of a surjective partial function g from the set of
c-labeled unit-length intervals corresponding to the time instant t to the set of c-
labeled unit-length intervals corresponding to the next time instant t+1. Finally,
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we exploit the fact that surjective partial functions between sets of unit-length
intervals can be specified in the logic AĀB.

4 Undecidabiliy Is the Rule, Decidability the Exception

We conclude the paper by proving that AĀBB̄, interpreted over finite linear
orders, is maximal with respect to decidability. The addition of a modality for
any one of the remaining Allen’s relations, that is, of any modality in the set
{⟨D⟩, ⟨D̄⟩, ⟨E⟩, ⟨Ē⟩, ⟨O⟩, ⟨Ō⟩}, indeed leads to undecidability. The proof of the
following theorem can be found in [15].

Theorem 3. The satisfiability problem for the logic AĀBB̄D (resp., AĀBB̄D̄,
AĀBB̄E, AĀBB̄Ē, AĀBB̄O, AĀBB̄Ō), interpreted over finite linear orders, is
undecidable.

It is possible to show that the satisfiability problem for AĀBB̄ (in fact, this holds
for its proper fragment AĀB) becomes undecidable if we interpret it over any
class of linear orders that contains at least one linear order with an infinitely
ascending sequence. It follows that, in particular, it is undecidable when AĀBB̄

is interpreted over natural time flows like N, Z, Q, and R. We first consider the
satisfiability problem for AĀB interpreted over N. By definition, ϕ is satisfiable
over N if there exists an interval structure of the form S = (Iω,A, Ā,B,σ), with
Iω = {[x,y] ∶ 0 ≤ x < y < ω} and σ ∶ Iω → P(Prop), that satisfies it. A
straightforward adaptation of the proof of Theorem 2 (see the proof of Theorem
4 in [15]) shows that an undecidable variant of the universal reachability prob-
lem for lossy counter machines, called “structural termination” [13], is reducible
to the satisfiability problem for AĀB interpreted over interval structures of the
form S = (Iω,A, Ā,B,σ). It immediately follows that the latter problem is un-
decidable as well. Such a negative result can be easily transferred to any class of
linear orders that contains at least one linear order with an infinitely ascending
sequence.

Theorem 4. The satisfiability problem for the logic AĀB, and hence that for
the logic AĀBB̄, interpreted over over any class of linear orders that contains at
least one linear order with an infinitely ascending sequence is undecidable.

5 Conclusions

In this paper, we proved that the satisfiability problem for AĀBB̄, interpreted
over finite linear orders, is decidable, but not primitive recursive. We also showed
that all proper extensions of AĀBB̄ with a modality corresponding to one of the
remaining Allen’s relations yields undecidability, thus proving maximality of
AĀBB̄ with respect to finite linear orders. Moreover, we proved that the satisfi-
ability problem for AĀB (in fact, the proof for AĀB can be adapted to AĀB̄),
interpreted over any class of linear orders that contains at least one linear order
with an infinitely ascending sequence, is undecidable. The same results hold for
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AĀE and AĀĒ, provided that we replace the infinitely ascending sequence by an
infinitely descending one. As Bresolin et al. already proved that the extension of
AĀ with the operator ⟨D⟩ (resp., ⟨D̄⟩, ⟨O⟩, ⟨Ō⟩) is undecidable [2, 3], maximality
of AĀ, interpreted over any class of linear orders that contains at least one linear
order with an infinitely ascending/descending sequence, immediately follows. As
a matter of fact, this is the first case in the interval temporal logic setting where
the decidability/undecidability of a logic depends on the class of linear orders
in which it is interpreted (a similar result has been proved by Ouaknine and
Worrell for point-based metric temporal logics [18]).
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Abstract. The Halpern–Shoham logic is a modal logic of time inter-
vals. Some effort has been put in last ten years to classify fragments of
this beautiful logic with respect to decidability of its satisfiability prob-
lem. We contribute to this effort by showing (among other results), that
the BD fragment (where only the operators “begins” and “during” are
allowed) is undecidable over discrete structures.

1 Introduction

In classical temporal logic structures are defined by assigning properties (propo-
sitional variables) to points of time (which is an ordering, discrete or dense).
However, not all phenomena can be well described by such logics. Sometimes we
need to talk about actions (processes) that take some time and we would like
to be able to say that one such action takes place, for example, during or after
another.

The Halpern–Shoham logic [11], which is the subject of this paper, is one of
the modal logics of time intervals. Judging by the number of papers published,
and by the amount of work devoted to the research on it, this logic is probably
the most influential of time interval logics. But historically it was not the first
one. Actually, the earliest papers about intervals in context of modal logic were
written by philosophers, e.g., [10]. In computer science, the earliest attempts to
formalize time intervals were process logic [15,17] and interval temporal logic
[13]. Relations between intervals in linear orders from an algebraic point of view
were first studied systematically by Allen [1].

The Halpern–Shoham logic is a modal temporal logic, where the elements of
a model are no longer — like in classical temporal logics — points in time, but
rather pairs of points in time. Any such pair — call it [p, q], where q is not earlier
than p — can be viewed as a (closed) time interval, that is, the set of all time
points between p and q. HS logic does not assume anything about order — it
can be discrete or continuous, linear or branching, complete or not.

Halpern and Shoham introduce six modal operators, acting on intervals. Their
operators are “begins” B, “during” D, “ends” E, “meets” A, “later” L, “overlaps”
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O and the six inverses of those operators: B̄, D̄, Ē, Ā, L̄, Ō. It is easy to see that
the set of operators is redundant: D can be expressed using B and E (a prefix of
my suffix is my infix), L can be expressed by A (“later” means “meets an interval
that meets”) and O can be expressed using E and B̄.

In their paper, Halpern and Shoham show that (satisfiability of formulae of)
their logic is undecidable. Their proof requires logic with five operators (B,E
and A are explicitly used in the formulae and, as we mentioned above, once
B,E and A are allowed, D and L come for free) so they state a question about
decidable fragments of their logic.

Some effort has been put since this time to settle this question. First, it
was shown [12] that the BE fragment is undecidable. Recently, negative results
were also given for the classes BĒ, B̄E, B̄E, AĀD, ĀD∗B̄, ĀD∗B [3,7]. Another
surprising negative result was that OŌ is undecidable over discrete orders [4,5].

On the positive side, it was shown that some small fragments, like BB̄ or EĒ,
are decidable and easy to translate into standard, point-based modal logic [9].
The fragment using only A and Ā is a bit harder and its decidability was only
recently shown [7,8]. Obviously, this last result implies decidability of LL̄ as L is
expressible by A. The last remaining fragment with just one operator is D — in
this case, it was only shown that satisfiability is decidable over dense structures
([2,6]). Another interesting decidable fragment is ABB̄ [14].

In this paper we show that the BD fragment (and so DE) is undecidable. To
make the presentation simpler, instead of D we consider the operator D⊂ (see
Section 2.1), which is more convenient for our purposes. As explained later, our
technique can be easily modified to handle the case of D.

In Sections 2.2 – 2.4 we present the proof of the following result:

Theorem 1. Satisfiability of the BD⊂ fragment of the HS logic is undecidable
over the class of all finite orders.

In Section 2.5 we show how to modify the proof of Theorem 1 to get:

Theorem 2. Satisfiability of the BD⊂ fragment of the HS logic is undecidable
over the class of all discrete orderings.

Finally, in Section 2.6 we formulate, as exercises for the reader, more results
that can be proved by slight modifications of our technique. They concern some
logics similar to BD⊂, most importantly BD, but also B̄D, DE and others, and
different classes of orderings. In Exercise 5 we show that Theorem 2 remains
true even if the class of all discrete orderings is replaced by any nontrivial class
of discrete orderings.

What remains open is the status of the D fragment over discrete orders —
a slightly more expressible fragment BD is shown undecidable in this paper,
but on the other hand the DD̄ fragment over dense orderings is known to be
decidable ([2,6]).
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2 Technical Part

2.1 Preliminaries

Orderings. As in [11], we say that a total1 order 〈D,≤〉 is discrete if each
element is either minimal (maximal) or has a unique predecessor (successor); in
other words for all a, b ∈ D, if a < b, then there exist points a′, b′ such that
a < a′, b′ < b and there exists no c with a < c < a′ or b′ < c < b.

Semantics of the logic HS. Let 〈D,≤〉 be a discrete ordered set2.
An interval over D is a pair [a, b] with a, b ∈ D and a ≤ b. A labeling is a

function γ : I(D) → P(Var), where I(D) is a set of all intervals over D and Var is
a finite set of variables. A structure of the form M = 〈I(D), γ〉 is called a model.

The truth values of formulae are determined by the following (natural) se-
mantic rules:

1. For all v ∈ Var we have M, [a, b] |= v iff v ∈ γ([a, b]).
2. M, [a, b] |= ¬ϕ iff M, [a, b] |= ϕ.
3. M, [a, b] |= ϕ1 ∧ ϕ2 iff M, [a, b] |= ϕ1 and M, [a, b] |= ϕ2.
4. M, [a, b] |= 〈B〉ϕ iff there exists an interval [a, b′] such that b′ < b and

M, [a, b′] |= ϕ.
5. M, [a, b] |= 〈E〉ϕ iff there exists an interval [a′, b] such that a < a′ and

M, [a′, b] |= ϕ.

Boolean connectives ∨,⇒,⇔ are introduced in the standard way. We also use the
operators 〈D〉ϕ ≡ 〈B〉〈E〉ϕ and 〈D⊂〉ϕ ≡ 〈D〉ϕ∨ 〈E〉ϕ. For X ∈ {B,E,D,D⊂}
we abbreviate ¬〈X〉¬ϕ by [X ]ϕ. By B̄, D̄, D̄⊂, and Ē we denote inversed oper-
ators.

A formula ϕ is said to be satisfiable with respect to a class of orderings D
if there exist a structure D ∈ D, a labeling γ, and an interval [a, b] such that
〈I(D), γ〉, [a, b] |= ϕ. A formula is satisfiable in a given ordering D if it is satisfiable
with respect to {D}.

2.2 Convenient Automata

As for the tool in our undecidability proofs, we are going to use undecidability of
the problem of establishing whether a given two-counter automaton with a finite
set Q of states, starting from a given initial state q0 and two empty counters,
will ever halt. An instruction of such an automaton has the format:

if the current state is q, 1st counter is/isn’t 0, 2nd counter is/isn’t 0, then
change state to q’ and increase/decrease 1st/2nd counter

Notice that we assume, for simplicity, that exactly one counter is changed in
a single step.
1 Halpern and Shoham consider also partial orders. Our techniques can be easily mod-

ified to handle them. See Exercise 7 in Section 2.6.
2 To keep the notation light, we will identify the order 〈D,≤〉 with the set D
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There is, however, from the point of view of our encoding, a slight inconve-
nience in this format: being in the configuration after step k + 1 of the com-
putation, we will not be able to easily check if the counters after step k were
empty or not. For this reason we introduce the following notion of a convenient
two-counter finite automaton (or just a convenient automaton):

A convenient automaton is given by four disjoint sets of states Q00, Q01, Q10,
and Q11, and by a set of instructions of the form:

if the current state is q, then increase/decrease 1st/2nd counter and change
the state to one of {q00, q01, q10, q11}, where qij ∈ Qij for i, j ∈ {0, 1}

We assume here that there is exactly one instruction of this form for each
non-final state q. For each final state there is exactly one instruction of the form
“remain in the current state and do not change the counters”.

Formally, the state-transition relation is given by a set C ⊆ Q2, where Q =
Q00 ∪Q01 ∪Q10 ∪Q11, and a function ν : Q → {df , ds, if , is,⊥}, where d/if/s

means “decrease/increase first/second counter”, respectively, and ⊥ means “do
nothing”. We assume that there is no q ∈ Q00 ∪Q01 with ν(q) = df and there is
no q ∈ Q00 ∪Q10 with ν(q) = ds.

Definition 1. A configuration 〈q, x, y〉 of a convenient automaton is admissible,
with q ∈ Qij being a state and x, y being the numbers on the counters, if i =
0 ⇔ x = 0 and j = 0 ⇔ y = 0. We assume that q0 ∈ Q00, where q0 is the initial
state of the automaton.

The halting problem is the problem of establishing whether, for a given conve-
nient automaton with a single final state qF , there exists a computation start-
ing from 〈q0, 0, 0〉, consisting only of admissible configurations, and ending in
a configuration with the final state. By an obvious simulation of a standard
two-counter automaton we get:

Lemma 1. The halting problem for convenient automata is undecidable.

In Section 2.4 we are going to write, for a given convenient automaton with a
single final state, a formula of logic BD⊂ which will be satisfiable if and only if
the automaton halts.

In Section 2.5 we will consider automata with two final states qF and qG. We
say that qF accepts and qG rejects. The formula we are going to write for such
an automaton will be satisfiable if and only if the automaton does not reject.
Clearly, checking if an automaton does not reject is also an undecidable problem.

2.3 Finite Orders: Intervals, Slices, and Configurations

In this and the next section, we will prove Theorem 1. Suppose a convenient
automaton A, with the set of states Q = Q00 ∪ Q01 ∪ Q10 ∪ Q11, is given. We
consider any finite total order consisting of N +1 elements 0, . . .N , in this order.
Let I(D) be the set of all the intervals with endpoints in the set D = {0, . . .N}.
The intervals will be labeled with a set Var of propositional variables consisting
of the following elements
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– A variable q for every q ∈ Q. Variables of this kind will be called, not
surprisingly, states.

– A variable cq,q′ for each pair q, q′ such that there is an instruction in A,
allowing changing a state from q to q′. Variables of this sort will be called
step controllers. The set of all step controllers will be denoted as C.

– Variables f0, f1, f
l
0, f

l
1, f

u
0 , f

u
1 , called f -marks. Variables f1, f

l
1, f

u
1 will be also

called f-ones and f0, f
l
0, f

u
0 will be also called f -nulls. Variables fu

1 , f
u
0 will

be called f -upper critical and variables f l
1, f

l
0 will be called f -lower critical.

– Variables s0, s1, s
l
0, s

l
1, s

u
0 , s

u
1 called s-marks. Variables s1, s

l
1, s

u
1 will be also

called s-ones and s0, s
l
0, s

u
0 will be also called s-nulls.

The letter f above stands for “the first counter” and the letter s stands for “the
second counter”. From now on, we will usually only bother with first counter —
the way one deals with second one is completely analogous.

For any i, with 0 ≤ i ≤ N , the set of intervals vi = {[i, i], [i, i+1], . . . [i, N ]} will
be called a slice. Slices are going to serve us as devices to store the configurations
of A. Slices vi and vi−1 will be called consecutive. We will force consecutive
slices to store consecutive configurations of A. Notice that if slices w and w′ are
consecutive, then w′ is longer by one element than w — this is as it should be,
since to store future configurations of A we may possibly need more and more
room for counters (notice that the direction of time is slightly counterintuitive
here).

Definition 2. Let γ : I(D) → P(Var) be a labeling of intervals with proposi-
tional variables. We will say that γ is slicewise correct if for each slice vi there
exist q, q′ ∈ Q, with cq′,q ∈ C, such that the following conditions hold:

(i) q ∈ γ([i, i]) and for all other pairs q′′, j, where q′′ ∈ Q and i ≤ j ≤ N , we
have q′′ ∈ γ([i, j]).

(ii) cq′,q ∈ γ([i, i + 1]) and for all other tuples q1, q2, j, where q1, q2 ∈ Q and
i ≤ j ≤ N , we have cq1,q2 ∈ γ([i, j]).

(iii) For each j, where i ≤ j ≤ N , there is exactly one f -mark y such that
y ∈ γ([i, j]).

(iv) If y ∈ γ([i, j]) for some j > i and y ∈ {f1, f
l
0, f

l
1}, then f1 ∈ γ([i, k]) for

each i ≤ k < j . If y ∈ γ([i, j]) for some j > i and y ∈ {fu
0 , f

u
1 }, then for

all i ≤ k < j if z ∈ γ([i, k]) then z ∈ {f1, f
l
0, f

l
1}.

(v) If f0 ∈ γ([i, j]) for some j > i, then y ∈ γ([i, k]) for some i ≤ k < j and
upper-critical y. If y ∈ γ([i, j]) for some j > i and upper-critical y, then
z ∈ γ([i, k]) for some i ≤ k < j and lower-critical z.

(vi) Let y ∈ γ([i, i]) be an f -mark. Then y is an f -null if and only if q ∈
Q00 ∪Q01.

(vii) Let y ∈ γ([i, j]) for some f -upper critical y. Then y = fu
1 if and only if

the instruction of A concerning the action from the state q′ tells that the
first counter must be increased (i.e. ν(q′) = if ).
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(viii) Let y ∈ γ([i, j]) for some f -lower critical y. Then y = f l
0 if and only if

the instruction of A concerning the action from the state q′ tells that the
first counter must be decreased (i.e. ν(q′) = df ).

(ix) Conditions (iii)-(viii) hold analogously for s-marks and the second counter.

The way the conditions are written is not the simplest possible one. Actually,
they are not meant to be simple. They are meant to be expressible in the logic
BD⊂ (we will make use of it in Section 2.4). So we feel we owe the reader some
explanation.

A labeled slice which satisfies the conditions from the above definition can
naturally be understood as an admissible configuration of the convenient au-
tomaton A. We imagine vi as a tape of N − i + 1 cells, where the interval [i, i]
represents the first cell, [i, i+ 1] represents the second, and so on. If the labeling
is slicewise correct, then in each of those cells we keep one f -mark (and one
s-mark). The number of f -ones on the tape is understood to be the value of
the first counter. Conditions (iii)-(v) imply that the marks occur in some fixed
order: first there are f -ones in the cells [i, i] to [i, j], for some j, and then f -nulls
in the cells [i, j+1] to [j+1, N ]. Most of those f -marks are either equal f1 or f0

— only near the border between ones and nulls typically there are two f -critical
marks: one lower, and one upper (this follows from the conditions (iv) and (v)).
Those critical marks can be both ones, both nulls or the lower can be a one
and the upper a null — depending on the action of A in the state q′ which is
assumed to be the previous state of A. This is a crucial part of a mechanism
that will be used in Lemma 2. In fact, for technical reasons, in some borderline
cases (namely, in slices representing initial configurations, and successor config-
urations of configurations with empty counter) one of critical marks will not
appear.

Notice that the condition (vi) together with its counterpart concerning the
second counter, imply that the configuration described by the labeling is admis-
sible (in the sense of Definition 1).

In the figure below we present a slicewise correct labeling of I(D) for D =
{0, 1, . . . , 8}. The intervals are arranged in the triangular table, such that interval
[i, j], is located in the i-th row and j-th column. Notice that each row corresponds
to a slice. For transparency we do not present the values of s-marks.

0 1 2 3 4 5 6 7 8
f l
0, q8 fu

0 , cq7,q8 f0 f0 f0 f0 f0 f0 f0 0
f1, q7 f l

0, cq6,q7 fu
0 f0 f0 f0 f0 f0 1

f1, q6 f1, cq5 ,q6 f l
0 fu

0 f0 f0 f0 2
f1, q5 f1, cq4,q5 f l

1 fu
0 f0 f0 3

f1, q4 f l
1, cq3,q4 fu

1 f0 f0 4
f1, q3 f l

1, cq2,q3 fu
0 f0 5

f l
1, q2 fu

1 , cq1,q2 f0 6
fu
1 , q1 f0, cq0,q1 7

fu
0 , q0 8
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In fact, this model represents the following computation of an automaton
(again, we consider only one counter): q0

+1−→ q1
+1−→ q2

=−→ q3
+1−→ q4

=−→
q5

−1−→ q6
−1−→ q7

−1−→ q8. It appears that the labeling is also stepwise correct in
the following sense.

Definition 3. Let γ : I(D) → P(Var) be a labeling of intervals with proposi-
tional variables. We will say that γ is stepwise correct if it is slicewise correct
and for each two consecutive slices vi+1, vi the following conditions hold:

(i) If q, q′ are states, such that q ∈ γ([i + 1, i + 1]) and q′ ∈ γ([i, i]), then
cq,q′ ∈ γ([i, i + 1]).

(ii) For each j, where i < j ≤ N , the two conditions are equivalent:
– y ∈ γ([i + 1, j]) for some y being an f -null;
– f0 ∈ γ([i, j]).

(iii) Same as (ii) but for the second counter.

The following crucial lemma establishes the correspondence between stepwise
correct labelings and computations of the automaton A.

Lemma 2. Let γ be a slicewise correct labeling. The following two conditions
are equivalent:

(1) γ is stepwise correct.
(2) Any pair of consecutive slices vi+1, vi represents two consecutive (in the

sense of the transitions of the convenient automaton A) admissible configu-
rations of A.

Due to the space limit we are not able to present all details of the formal proof.
Instead, using our example, we only illustrate the mechanism required for the
⇒ direction.

Consider for example the transition from slice v5, which represents the au-
tomaton in the configuration in state q3 and the counter equal to 2. At this
point our automaton should increase the value of its counter. Let us see that v4

needs to look exactly as in our figure. Conditions (i) and (ii) of Definition 2 and
condition (i) of Definition 3 say that the state variable and the step controller
of v4 agree with the transition function, so in our case they have to be q4 and
cq3,q4 , respectively. By condition (ii) of Definition 3, the two rightmost positions
in v4 must be f0-s. The same condition forbids f0-s at earlier positions in v4. By
condition (v) of Definition 2, f0-s have to be preceded by a lower-critical and by
an upper-critical marks. Since we impose a specific order on marks, they have to
be located exactly at intervals [4, 5] and [4, 6]. By (vii) and (viii) those critical
marks have to be f l

1 and fu
1 , respectively. Finally, by (iv) the critical positions

may be proceeded by f1-s only.
Once we know how to simulate the steps of the automaton, it is time for:

Definition 4. Let γ : I(D) → P(Var) be a labeling of intervals with proposi-
tional variables. We will say that γ is globally correct if it is stepwise correct and
there exist 0 ≤ i < j ≤ N such that q0 ∈ γ([j, j]) and qF ∈ γ([i, i]).
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By Lemma 2, a globally correct labeling γ of D exists for some N if and only if
the convenient automaton A halts after at most N computation steps.

What remains to be done, in order to end the proof of Theorem 1, is writing
down a formula of logic BD⊂ which is satisfiable if and only if a globally correct
labeling γ exists for some N .

2.4 Finite Orders: The formula

The formula φ we are going to write will be of the form φ1 ∧ φ2 ∧ φ3, where φ1

will be satisfied in models whose labeling is slicewise correct, φ2 will be satisfied
in models whose labeling is stepwise correct, provided it is slicewise correct, and
φ3 will be satisfied in models whose labeling is globally correct, provided it is
stepwise correct. Formulae φ1 and φ3 are straightforward to write. To be able to
write φ2 we need one more easy lemma:

Lemma 3. Let γ be a stepwise correct labeling, and let 0 ≤ i < j ≤ N .
Then the following two conditions are equivalent:

(1) y ∈ γ([i + 1, j]), for some f -null y.
(2) There exists i < k ≤ j and an f -null variable x such that x ∈ γ([k, j])

Proof. Obviously (1) implies (2). Implication in the opposite direction follows
from condition (ii) of Definition 3. But one can also think, that it reflects the
fact, that if the first counter (in vk) stored a number smaller than j − k + 1
k− i−1 moves ago, then now (in vi+1) it stores a number smaller than j− i. � 
First notice that we can define, as 〈BG〉ψ = ψ ∨ 〈B〉ψ, an operator saying that
ψ holds true in some (interval which is) prefix of the current interval. Let also
atMostOne(X) =

∧
x∈X(x ⇒

∧
x′∈X\{x} ¬x′) be an operator saying that at

most one variable from the set X is true in the current interval. Another useful
abbreviation is the operator “globally” [G]ϕ = ϕ∧ [D⊂]ϕ ∧ [B]ϕ - it says that ϕ
is satisfied in every (reachable) interval.

Now we are able to write φ. Define φ1 = φ1
(i)∧φ1

(ii)∧ . . .∧φ1
(viii) ∧φ1

(ix), where
the subformulae mimic the conditions from Definition 2:

φ1
(i) = [G](([B]⊥ ⇔

∨
q∈Q

q) ∧ atMostOne(Q))

φ1
(ii) = [G](

∨
c∈C

c⇔ 〈B〉! ∧ [B]
∨
q∈Q

q) ∧ [G]atMostOne(C)

φ1
(iii) = [G](atMostOne({f1, f0, f

l
1, f

u
1 , f

l
0, f

u
0 }) ∧ (f1 ∨ f0 ∨ f l

1 ∨ fu
1 ∨ f l

0 ∨ fu
0 ))

φ1
(iv)

= [G]((f1 ∨ f l
1 ∨ f l

0) ⇒ [B]f1) ∧ [G]((fu
0 ∨ fu

1 ) ⇒ [B](f1 ∨ f l
1 ∨ f l

0))

φ1
(v) = [G](〈B〉! ⇒ (f0 ⇒ 〈B〉(fu

1 ∨ fu
0 )) ∧ ((fu

0 ∨ fu
1 ) ⇒ 〈B〉(f l

1 ∨ f l
0)))

φ1
(vi) = [G]([B]⊥ ∧ (f0 ∨ f l

0 ∨ fu
0 ) ⇔

∨
q∈Q00∪Q01

q)
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Let us split C into Cif , Cis, Cdf , Cds, C⊥ where Cif contains variables related to
instructions that increase the first counter, Cdf contains variables related to in-
structions that decrease the first counter, Cis and Cds contain variables related
to instructions increasing and decreasing second counter, respectively, and C⊥
contains variables related to the remaining instructions.

φ1
(vii) = [G]

⎛⎝(
∧

c∈Cif

〈BG〉c⇒ ¬〈BG〉fu
0 ) ∧ (

∧
c∈C\Cif

〈BG〉c⇒ ¬〈BG〉fu
1 )

⎞⎠
φ1

(viii) = [G]

⎛⎝(
∧

c∈Cdf

〈BG〉c⇒ ¬〈BG〉f l
1) ∧ (

∧
c∈C\Cdf

〈BG〉c⇒ ¬〈BG〉f l
0)

⎞⎠
And φ1

(ix)
is analogous to the conjunction of φ1

(iii) to φ1
(viii), but concerns the

second counter.
Define φ2 = φ2

(i) ∧ φ2
(ii) where φ2

(i) reflects condition (i) from Definition 3 and
φ2

(ii) reflects conditions (ii) and (iii):

φ2
(i) = [G]

(∧
cq1,q2∈C cq1,q2 ⇒ 〈B〉q2 ∧ 〈D⊂〉q1

)
φ2

(ii) = [G]
(
f0 ⇔ 〈D⊂〉(f l

0 ∨ fu
0 ∨ f0)

)
∧ [G]
(
s0 ⇔ 〈D⊂〉(sl

0 ∨ su
0 ∨ s0)

)
Finally, let φ3 = 〈B〉qF ∧ 〈D⊂〉q0.
Now, it follows from the construction, that the formula φ is satisfiable over

some finite ordering if and only if the convenient automaton A halts. This ends
the proof of Theorem 1.

2.5 Infinite Discrete Orders

The formula φ we wrote in Section 2.4 works fine for orders in which each interval
(with endpoints among the elements of the ordered set) contains only finitely
many points — for example for finite sets. But if arbitrary discrete orders are
allowed, then it may very well happen that φ will be satisfiable even if A does
not halt. Actually, as the following example shows, it will be satisfiable if there
exists a configuration c of A, which is final, in the sense that the state is qF , and
such that there exists an “infinite computation” which ends in c but never begins
(we mean here an infinite sequence c = c0, c1, c2 . . . of configurations, such that
for each i the configuration ci is the result of one computation step performed
in ci+1).

Example. Fix an “infinite computation” as above and imagine the order 〈V,≤〉
consisting of elements a0, a1, a2, . . . and b0, b1, b2, . . . with ai < aj and bj < bi for
i < j and with ai < bj for any i, j. Let d ∈ V . Like in Section 2.3, we can view
the set of sequences {[d, x] : x ≤ b0} as a slice, and encode any configuration
of A as a labeling of this slice. Let us label the slice {[ai, x] : x ≤ b0} as the
configuration ci of the above infinite sequence, and the slice {[bi, x] : x ≤ b0}
as the configuration which is reached by A after i computation steps, if started
in the beginning configuration. The described labeling turns out to satisfy φ.
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Obviously, some details are left here for the reader to fill — for example how to
label the intervals of the form [aj , bj]. � 
Still, the proof of Theorem 1 from Sections 2.2 - 2.4 can be easily modified so
that it proves Theorem 2.

It is enough to consider convenient automaton with two final states: qF (the
accepting state) and qG (the rejecting state). Let us remind that we assume that
there is one instruction of automaton for each state — also for the two final
states — but in the final states the instruction tells the automaton to freeze,
that is to leave the counters unchanged and remain in the same state.

The undecidable problem we will use now, is the problem if this new con-
venient automaton A ever rejects. More precisely, we write a formula φ′ such
that φ′ is satisfiable in some discrete order if and only if A (started from the
beginning configuration and visiting only admissible configurations) does not
reject (i.e. it accepts or runs forever). As it turns out, the only change we
need to make in φ concerns the subformula φ3: let φ′ = φ1 ∧ φ2 ∧ ψ3, where
ψ3 = 〈B〉qF ∧ 〈D⊂〉q0 ∧ ¬〈D⊂〉qG.

Now, suppose A does not reject. There are two possible cases: either it accepts
(after some finite number of steps reaches a configuration with qF ) or it does not
halt. In the former case we can build a finite model, like in Section 2.3. In the
latter, we proceed like in the example above — notice that, since the automaton
can freeze in the state qF , we can be sure that an “infinite computation” c exists.

What remains to be proved is that if A rejects then φ′ does not have a model.
Suppose it rejects after N steps, and that there is a model 〈I(D), γ〉 of φ′ where
a < b are such elements of D that qF ∈ γ([a, a]) and q0 ∈ γ([b, b]). Let qi be
the state of A after i steps of the rejecting computation (so that q0 = q0 and
qN = qG.)

Let b0 = b and let bi+1, for 0 ≤ i < N , be the predecessor of bi in the order,
if such a predecessor exists. Actually, this is exactly what we need qF for —
to make sure that there are many enough elements of D (smaller than b), to
accommodate the rejecting computation:

Lemma 4. Let 0 ≤ i ≤ N

(1) If bi exists then qi ∈ γ([bi, bi]).
(2) If bi exists and 0 ≤ j ≤ i then qF ∈ γ([bj, bj ]).
(3) If bi exists then a < bi.
(4) If bi exists then bi+1 exists.
(5) bN exists, and qG ∈ γ([bN , bN ]).

The proof of the lemma is by easy induction. Claim (1) of the induction step
follows from the construction of φ′ — remember that the interval [bi, b] is finite
and all the arguments from Section 2 apply. Claim (2) follows from (1), and
from the fact that a rejecting computation of A never enters the state qF . Claim
(3) follows from (2) and from the inequality a < b. Claim (4) follows from (3)
and from the assumption that each element of D is either the smallest or has a
predecessor. Finally, since qN = qG claim (5) follows from (4).
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But it follows from the lemma, that there exists d ∈ D such that qG ∈ γ([d, d]),
which is not allowed by φ′. This contradiction ends the proof of Theorem 2.

2.6 More Results (in Exercises)

Exercise 1. Show that the satisfiability problem for the logic BD⊆ over discrete
orderings is undecidable, where D⊆ is the reflexive variant of D, i.e., M, [a, b] |=
〈D⊆〉ϕ iff there exist a′, b′ such that a ≤ a′ ≤ b′ ≤ b′′, and M, [a′, b′] |= ϕ.
Similarly for the logic BD�, where D� is the proper variant of D, i.e., M, [a, b] |=
〈D⊆〉ϕ iff there exist a′, b′ such that a ≤ a′ ≤ b′ ≤ b′′, [a, b] = [a′, b′] and
M, [a′, b′] |= ϕ. Hint : In our proof we use the convenient property that intervals
visible by B are not visible by D⊂. The analogous fact does not hold for BD⊆ and
BD�. Use an additional variable p and formulae [G](〈B〉p → p) ∧ [G](〈B〉¬p →
¬p) and [G]((

∨
c∈C C) ⇒ 〈D〉p ∧ 〈D〉¬p). This will allow to distinguish between

the current slice and the previous one.

Exercise 2. Show that the satisfiability problem for the logic BD over discrete
orderings is undecidable. Recall that 〈D〉ϕ ≡ 〈B〉〈E〉ϕ. Such variant of D is
called strict. Hint : The idea is to use three “critical levels” instead of two.

Exercise 3. Show that the satisfiability problem for the logic B̄D over discrete
orderings is undecidable. Hint : Modify the formula for BD. The formula φ1, can
be easily expressed — use B̄ to define the order on the marks and D to label
intervals with the states and the step controllers (note that the property φ1

(v)

needs to be slightly modified). Finally, formula φ3 can be replaced by 〈D〉(qF ∧
〈B̄〉〈D〉q0), and φ2

(i) can be adjusted in the same way.

Exercise 4. Show that the satisfiability problem for logic DE and DĒ over
discrete orderings is undecidable. Hint : Actually, no hint is needed here. Just
replace every occurrence of B by E in the formula.

Exercise 5. Show that for any class of discrete orderings D, BD is undecidable
over D iff D contains orderings with arbitrarily large chains. Hint : For undecid-
ability result, consider two cases: if there exist D ∈ D and a, b ∈ D such that
{c|a ≤ c ≤ b} if infinite, then you can use the proof of Theorem 2, otherwise you
can use the proof of Theorem 1. For decidability result observe that the number
of non-isomorphic chains with bounded size is bounded.

Exercise 6. Show that BDD̄ logic is undecidable over the class of all orderings.
Hint : Consider the formula [G](length0 ⇒ 〈D̄〉(p∧length1)∧〈D̄〉(¬p∧length1)),
where lengthi is true in intervals with the length i.

Exercise 7. In this paper we focused on total orderings. Originally, HS logic was
defined for any order that satisfy the following condition. For each a1, a2, a3, a4

if a1 ≤ a2, a1 ≤ a3, a2 ≤ a4, and a3 ≤ a4, then a2 ≤ a3 or a3 ≤ a2. Show that
our theorems still hold in this case. Hint : Again, no hint is needed here — just
read carefully the definition above.
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Abstract. We investigate the parameterized computational complexity
of the satisfiability problem for modal logic and attempt to pinpoint
relevant structural parameters which cause the problem’s combinatorial
explosion, beyond the number of propositional variables v. To this end we
study the modality depth, a natural measure which has appeared in the
literature, and show that, even though modal satisfiability parameterized
by v and the modality depth is FPT, the running time’s dependence on
the parameters is a tower of exponentials (unless P=NP). To overcome
this limitation we propose possible alternative parameters, namely dia-
mond dimension and modal width. We show fixed-parameter tractability
results using these measures where the exponential dependence on the
parameters is much milder (doubly and singly exponential respectively)
than in the case of modality depth thus leading to FPT algorithms for
modal satisfiability with much more reasonable running times. We also
give lower bound arguments which prove that our algorithms cannot be
improved significantly unless the Exponential Time Hypothesis fails.

1 Introduction

In this paper we consider the computational complexity of deciding formula sat-
isfiability, for modal logics, focusing on the standard modal logic K. We attempt
to present a new point of view on this important topic by making use of the
parameterized complexity framework, which was pioneered by Downey and Fel-
lows. Although the complexity of satisfiability for modal logic has been studied
extensively in the past, to the best of our knowledge this is the first time this
has been done from an explicitly parameterized perspective. Moreover, the pa-
rameterized complexity of logic problems has been a fruitful field of research
and we hope to extend this success to modal logic (some examples are the cel-
ebrated theorem of Courcelle [3] or the results of [7]; for an excellent survey on
the interplay between logic, graph problems and parameterized complexity see
[8]).

Modal logic is a family of systems of formal logic where the truth value of a
sentence φ can be qualified by modality operators, usually denoted by 	 and
♦. Depending on the specific modal logic and the application one considers, 	φ
and ♦φ can be informally read to mean, for example, “it is necessary that φ”,
or “it is known that φ” for 	 and “it is possible that φ” for ♦. The fundamental
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normal modal logic system is known as K, while other common variations of this
logic system include T, D, S4, S5. Modal logic systems provide a diverse universe
of logics able to fit many modern applications in computer science (for example
in AI or in game theory), making modal logic a widespread topic of research.
The interested reader in the recent state of modal logic and its applications is
directed to [1].

As in propositional logic, the satisfiability problem for modal logic is one of
the most important and fundamental problems considered and many results are
known about its (traditional) computational complexity. Ladner in [11] showed
that satisfiability for K, T and S4 is PSPACE-complete, while for S5 the problem
is NP-complete. Furthermore, in [2] it is shown that satisfiability for K and K4 is
PSPACE-complete even for formulae without any variables. It should be noted
that the satisfiability of propositional logic is a subcase of satisfiability for any
normal modal logic, thus for any normal modal logic the problem is NP-hard.
In this paper we will focus on the standard modal logic K. For an introduction
to modal logic and its complexity see [10,5].

Traditional computational complexity theory attempts to characterize the
complexity of a problem as a function of the input size n. The notion of param-
eterized complexity introduces to every hard problem a structural parameter k,
which attempts to capture the aspect of the problem which causes its intractabil-
ity. The central notion of tractability in this theory is called fixed-parameter
tractability (FPT): an algorithm is called FPT if it runs in time O(f(k) · nc),
where f is any recursive function and c a constant. For an introduction to the
vast area of parameterized complexity see [4,6].

Because the definition of FPT allows for any recursive function f(k), fixed-
parameter tractable problems can have complexities which depend on k in very
different ways, ranging from sub-exponential to non-elementary. Thus, it is one
of the main goals of parameterized complexity research to find the best possible
f(k) for every problem and this will be one of the main concerns of our work.

Our Contribution. In this paper we study the complexity of modal satisfiabil-
ity from a parameterized, or multi-variate, point of view. Just as parameterized
complexity attempts to refine traditional complexity theory by more specifically
identifying the aspects of an intractable problem which cause the problem’s
unavoidable combinatorial explosion, we attempt to identify some structural
aspects of modal formulae which can have an impact on the solvability of satis-
fiability.

One natural parameter for the satisfiability problem (in any logic) is the num-
ber of propositional letters in the formula, which we denote by v. In propositional
logic, when v is taken as a parameter, the propositional satisfiability problem
trivially becomes fixed-parameter tractable. As was already mentioned, this does
not generally hold in the case of satisfiability for modal logics where the problem
is hard even for constant number of variables.

On the other hand since the satisfiability problem for modal logics is a gen-
eralization of the same problem for propositional logics, considering the modal
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satisfiability problem without bounding the number of variables or imposing
some other propositional restriction on the formulae will result in an intractable
problem. Although it would be interesting to investigate modal satisfiability
when certain structural propositional restrictions are placed (for example, we
could say we are interested in formulae such that removing all modality symbols
leaves a 2-CNF or a Horn formula, which are tractable cases of propositional
satisfiability) this goes beyond the scope of this work1. In this paper we will
focus on strictly modal structural formula restrictions and therefore we will
assume that the best way to make propositional satisfiability tractable is to
restrict the number of variables. For our purposes the conclusion is that for modal
satisfiability to become tractable, bounding v is necessary but not sufficient.

Motivated by the above we take the approach of a double parameterization:
we investigate the complexity of satisfiability when v is considered a parameter
and at the same time some other aspect contributing to the problem’s complexity
is identified and bounded.

We first study a natural notion of formula complexity called modality depth
or modal depth. This complexity measure was already known in [9] where in
fact a fixed-parameter tractability result was shown when the problem is pa-
rameterized by the sum of v and the modality depth of the formula. However,
since parameterized complexity was not well-known at the time, in [9] it is only
pointed out that the problem is solvable in linear time for fixed values of the
parameters, without mentioning how different values of v and the depth affect
the running time. We address this by upper bounding the running time by an
exponential tower of height equal to the modality depth of the formula. More im-
portantly, we show a lower bound argument which proves that even though the
problem is FPT, this exponential tower in the running time cannot be avoided
unless P=NP (Theorem 2). Our hardness proof follows an approach of encoding
a propositional formula into a modal formula with very small modality depth.
This draws a nice connection with previously known lower bound results of this
form which also use a similar idea to prove the hardness of some (non-modal)
model checking problems for first and second-order logic ([7] and the relevant
chapter in [6]).

This result indicates that modal depth is unlikely to be a very useful parameter
because even for formulae where the depth is very moderate the satisfiability
problem is still very hard. This begs the natural question of whether there is a
way to work around the lower bound of Theorem 2 by using another formula
complexity measure in the place of modal depth. We show that this is indeed
possible by introducing two alternative formula complexity notions.

Specifically, we define the notion of diamond dimension and show that satis-
fiability is FPT when parameterized by v and the diamond dimension and the
dependence on the parameters is (only) doubly exponential. We then demon-
strate a lower bound argument which proves that this dependence cannot be
significantly improved unless the Exponential Time Hypothesis fails, that is, un-
less there exists an algorithm for n-variable 3-CNF-SAT running in time 2o(n).

1 However, see [12] for related (non-parameterized) complexity results.
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Then we define a measure called modal width and show that satisfiability is
FPT when parameterized by v and the modal width and the dependence on the
parameters is now just singly exponential.

Thus, our work shows that there exist many natural formula complexity pa-
rameters worth examining in the context of modal satisfiability and what’s more
that their complexity behavior can be vastly different and this could be an inter-
esting field of study. Let us also note in passing that our results for modal width
and depth directly apply also to satisfiability’s dual problem, formula validity,
since the validity of a formula can be solved by checking the satisfiability of its
negation and every formula has the same width and depth as its negation. Our
results for diamond dimension can also be extended for this problem by defining
a dual “box dimension” measure, suitable for the validity problem.

Due to space constraints, several proofs have been omitted. Results with omit-
ted proofs are denoted with a *.

Notation. The modal language of logic K contains exactly the formulae that
can be constructed using propositional variables, the standard propositional op-
erators ∧,∨,¬ (and the operators which can be defined using these, such as
→,↔) and the unary modality operators (	,♦). Standard Kripke semantics are
considered here: a Kripke frame is a set of states W and an accessibility relation
R between states. A Kripke frame together with a valuation of propositional
letters in each state is called a Kripke model or a Kripke structure. A modal for-
mula’s truth value in a state is defined in the usual way, as in propositional logic,
with the addition of 	φ being true in s iff φ is true in every accessible state. ♦φ
is true in s iff φ is true in some accessible state. We implicitly assume that our
language includes the constants ⊥ and !, for false and true, but these too can
also be considered shorthand for x∧¬x and x∨¬x respectively. When a formula
φ is true (satisfied) in a state s of a Kripke structure M we write (M, s) |= φ.
A formula φ is said to be satisfiable if there exists a Kripke structure M and a
state s of that structure that satisfy the formula. A formula φ is said to be valid
if any Kripke structure M and state s of that structure satisfy the formula.

2 Modal Depth

In this section we give the definition of modality depth. As we will see, a fixed-
parameter tractability result can be obtained when satisfiability is parameterized
by v and the modality depth of the input formula. This was first observed in
[9], but in this section we more precisely bound the running time (in [9] it was
simply noted that the running time is linear for constant depth and constant v
with a hidden constant which “may be huge”). More importantly we show that
the “huge constant” cannot be significantly improved by giving a hardness proof
which shows that, if the running time of an algorithm for modal satisfiability
is significantly less than an exponential tower of height equal to the modality
depth, then P=NP.
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Definition 1. The modality depth of a modal formula φ is defined inductively
as follows:

– md(p) = 0, if p is a propositional letter,
– md(♦φ) = md(	φ) = 1 + md(φ),
– md(φ1 ∨ φ2) = md(φ1 ∧ φ2) = max{md(φ1),md(φ2)},
– md(¬φ) = md(φ)

Theorem 1. [*]([9]) Modal satisfiability for the logic K is FPT when parame-
terized by v and md(φ).

The running time of the algorithm of [9] is O(fv(md(φ))|φ|) where fv(d) is the
function recursively defined as fv(0) = 2v and fv(d + 1) = 2fv(d)+v.

Lower Bound. Let us now proceed to the main result of this section, which is
that even though modal satisfiability is fixed-parameter tractable, the exponen-
tial tower in the running time cannot be avoided. Specifically, we will show that
solving modal satisfiability parameterized by modality depth, even for constant
v, requires a running time which is a tower of exponentials with height linear
in the modality depth. We will prove this under the assumption that P =NP, by
reducing the problem of propositional satisfiability to our problem. Our proof
follows ideas similar to those found in [7].

Suppose that we are given a propositional CNF formula φp with variables
x1, . . . , xn and we need to check whether there exists a satisfying assignment for it.
We will encode φp into a modal formula with small depth and a constant number of
variables. In order to do so we inductively define a sequence of modal formulae.

– In order to encode the variables of φp we need some formulae to encode num-
bers (the indices of the variables). The modal formula vi is defined induc-
tively as follows: v0 ≡ 	⊥ and vn ≡

∧
i:ni=1 ♦vi where by ni we denote the

i-th bit of n when n is written in binary and the least significant bit is num-
bered 0. So, for example v1 = ♦v0, v2 = ♦v1, v5 = ♦v2 ∧♦v0 = (♦♦v1)∧♦v0

and so on. Observe that v0 can only be true in a state with no successor
states. Also, what is important is that these formulae allow us to encode
very large numbers using only a very small modality depth and no variables
(or just one variable if ⊥ is considered short for x ∧ ¬x).

– Next, we need to encode the literals of φp. The modal formula L(xi) is
defined as L(xi) ≡ ♦vi ∧ 	vi. The formula L(¬xi) is defined as L(¬xi) ≡
♦vi ∧ ♦v0 ∧	 (vi ∨ v0).

– Now, to encode clauses we set C(l1 ∨ l2 ∨ . . . ∨ lk) ≡
(∧k

i=1 ♦L(li)
)
∧

	
(∨k

i=1 L(li)
)
.

– Finally, to encode the whole formula we use F(c1∧c2∧. . .∧cm) ≡
∧m

i=1 ♦C(ci)

So far we have described how to construct a modal formula F(φp) from φp.
F(φp) encodes the structure of φp. Now we need to add two more ingredients:
we must describe with a modal formula that φp is satisfied by an assignment and
that the assignment is consistent among clauses. We give two more formulae, S
and CA(n), which play the previously described roles respectively:
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Fig. 1. A partial example, illustrating our construction for a specific clause. For the
encoding of the clause (x5 ∨¬x6) we build the formula C(x5 ∨¬x6) which holds in the
state at the top of the depicted model.

– S ≡ 	♦ [((♦v0) → (	¬y)) ∧ ((¬♦v0) → (	y))], where we have introduced a
single variable y.

– CA(n) ≡
∧n

i=1 (♦♦♦(y ∧ vi) ↔ ¬♦♦♦(¬y ∧ vi))

Our full construction is, given a propositional CNF formula φp with n variables
named x1, . . . , xn, we create the modal formula φm ≡ F(φp) ∧ S ∧ CA(n).

Lemma 1. φp is satisfiable if and only if φm is satisfiable in K.

Proof. Suppose that φm is true in a state s of some Kripke structure. Then
CA(n) is true in s therefore for each i we have either ♦♦♦(y ∧ vi) is true in s or
♦♦♦(¬y ∧ vi) is true in s. From this we create a satisfying assignment: for those
i for which the first holds we set xi = ! and for the rest xi = ⊥. We will show
that this assignment satisfies φp.

Suppose that it does not, therefore there is some clause ci which is not satis-
fied. However, since F(φp) is true in s there exists a state p with sRp such that
C(ci) is true in p. In every successor state of p we have that L(lj) is true for some
literal lj of ci and there exists such a state for every literal of ci. Also, in s we have
that S is true, therefore in p we have ♦ [((♦v0) → (	¬y)) ∧ ((¬♦v0) → (	y))].
Therefore, in some q such that pRq we have ((♦v0) → (	¬y))∧((¬♦v0) → (	y))
and we also have that L(lj) is true for some literal lj of ci. Suppose that lj is a
negated literal, that is lj ≡ ¬xk. Then L(lj) ≡ ♦vk∧♦v0∧	(vk∨v0). Therefore,
since ♦v0 is true in q this means that 	¬y is true. Because ♦vk and 	¬y are
both true in q there exists an r such that qRr and vk ∧¬y is true in r. But then
♦♦♦(vk ∧¬y) is true in s which implies that our assignment gives the value false
to xk. Since ci contains ¬xk it must be satisfied by our assignment, a contradic-
tion. Similarly, if lj ≡ xk then L(lj) ≡ ♦vk ∧	vk. Clearly, v0 and vk cannot be
true in the same state for k > 0 therefore in q we have ¬♦v0 which implies 	y.
Therefore in some r with qRr we have y ∧ vk which implies that our assignment
sets xk to true and since ci has the literal xk it must be satisfied.

The other direction is easier. We build a Kripke structure where for each vi

there exists a state such that vi holds in that state. We start by introducing a
state without successors, in which v0 holds. Then, for each i ∈ {1, . . . , n} we add
a state with appropriate transitions to states previously introduced so that vi

holds in that state (see Figure 1 for an example).
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Now the completion of the Kripke structure so that φm is satisfied is straight-
forward. For every i with 1 ≤ i ≤ n we create two more states: the first has as
its only successor the state where vi is true. The other has two successors: the
state where vi is true and a state without successors (where v0 holds). Thus,
for each i we have a state where L(xi) is true and a state where L(¬xi) is true.
For every clause we create a state and for each literal lj in the clause we add a
transition to the state where L(lj) is true. Therefore, for each clause ci we have a
state where C(ci) is true. Finally, we add a state and transitions to all the states
where some C(ci) is true. Clearly, F(φp) is true in that state, which we call the
root state. It is not hard to see that CA(n) will also be satisfied independent of
where y is true, because for every i ∈ {1, . . . , n} we have made a unique state pi

where vi is true and pi is at distance exactly 3 from the root.
Take a satisfying assignment; for every xi which is true set the variable y

to true in the states of the Kripke structure where vi is true. Set y to false in
every other state. Now, we must show that S is true in the root state. This is
not hard to verify because for every clause in the original formula there is a
true literal, call it l. If that literal is not negated then in the state where L(l)
is true we have ¬♦v0 (because the literal is not negated) and 	y (because the
literal is true, so its variable is true thus we must have set y to true in the
variable’s corresponding state). Therefore (¬♦v0 → 	y) ∧ (♦v0 → 	¬y) is true
in the literal’s corresponding state and ♦ [(¬♦v0 → 	y) ∧ (♦v0 → 	¬y)] is true
in the clause’s corresponding state. Similar arguments can be made for a negated
literal. Since we start with a satisfying assignment the same can be said for every
clause, thus S is also true in the root state. � 

Now, we need to show that the produced modal formula has very small depth
and the hardness result will follow in a way very similar to the results of [7].

Lemma 2. [*] Suppose that φp is a propositional CNF formula with n variables.
Then, if tow(h) ≥ n the formula φm ≡ F(φp) ∧ S ∧ CA(n) has modality depth
at most 4 + h, where tow(h) is the inductively defined function tow(0) = 0 and
tow(h + 1) = 2tow(h).

Theorem 2. [*] There is no algorithm which can solve modal satisfiability in K
for formulae with a single variable and modality depth d in time f(d) · poly(|φ|)
with f(d) = O(tow(d − 5)), unless P=NP.

3 Diamond Dimension

In this Section we propose a structural characteristic of modal formulae called
diamond dimension. This is an alternative natural formula complexity measure
which intuitively bounds the size of a model required to satisfy a formula. As
we will see the parameter dependence of a satisfiability algorithm for formulae
of small diamond dimension is doubly exponential, immensely lower than the
dependence for modal depth. However, we will also show a lower bound indi-
cating that it is unlikely that an algorithm with singly exponential parameter
dependence could exist for this measure.
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Definition 2. Let φ be a modal formula in negation normal form, that is, with
the ¬ symbol appearing only directly before propositional variables. Then its di-
amond dimension, denoted by d♦(φ) is defined inductively as follows:

– d♦(p) = d♦(¬p) = 0, if p is a propositional letter
– d♦(φ1 ∧ φ2) = d♦(φ1) + d♦(φ2)
– d♦(φ1 ∨ φ2) = max{d♦(φ1), d♦(φ2)}
– d♦(	φ) = d♦(φ)
– d♦(♦φ) = 1 + d♦(φ)

Our goal with this measure is to prove that if d♦(φ) is small then φ’s satisfiability
can be checked in models with few states. This is why the two properties of φ
which can increase d♦(φ) are ♦ (which requires the creation of a new state) and
∧ (which requires the creation of states for both parts of the conjunction).

Lemma 3. [*] If a modal formula φ is satisfiable and d♦(φ) ≤ k then there
exists a Kripke structure with O(2k/2) states which satisfies φ.

Theorem 3. Given a modal formula φ with v variables and diamond dimension
d♦(φ) = k we can solve the satisfiability problem for φ in time 2O(2k·v) · |φ|.

Proof. From Lemma 3 it follows that if φ is satisfiable, this can be verified in a
model of O(2k/2) states. There are at most 2O(2k) Kripke frames from which we
can get such models. For each we just enumerate through all possible assignments
to the v variables in the O(2k/2) states, a total of 2O(2k/2·v) different assignments.
Once we have fixed a model deciding if φ holds can be done in bilinear time. � 

Lower Bound. We will now present a lower bound argument showing that,
under reasonable complexity assumptions, the results we have shown for dia-
mond dimension cannot be improved significantly. We will once again encode
a propositional 3-CNF formula into a modal formula, this time with a goal of
achieving small diamond dimension. We will also use a small number of proposi-
tional variables. We assume without loss of generality that we are given a 3-CNF
formula φp with n variables, where n is a power of 2.

Let 	j be short-hand for j consecutive repetitions of 	, with 	0φ being
equivalent to φ. We recursively define the formulae F (i) as F (0) = 	⊥ and
F (i) =

(
♦(
∧i−1

j=0 	jbi)
)
∧
(
♦(
∧i−1

j=0 	j¬bi)
)
∧ 	F (i− 1), where bi are proposi-

tional variables. It is not hard to see that d♦(F (i)) = 2i and also that F (i) can
only be satisfied in a model with at least 2i states. The model to keep in mind
here is a complete binary tree of height i.

We will use the formula F (logn) to encode a 3-CNF formula with n variables
and each leaf of the tree that must be constructed to satisfy it will correspond to
a variable. It is now natural to encode the variables of the original formula using
their binary representation. We define B(xm) =

∧
mi=1 bi ∧

∧
mi=0 ¬bi, where

once again mi denotes the i-th bit in the binary representation of m, now with
the least significant bit numbered 1.
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Our modal formula will also have a propositional variable y which will
be true in leaves that correspond to variables of the 3-CNF formula that
must be set to true. We encode a literal consisting of the variable xm as
L1(xm) ≡ 	log n(B(m) → y). The corresponding negated literal is L2(¬xm) ≡
	log n(B(m) → ¬y). A clause is encoded as the disjunction of the encodings of
its three literals. Our final modal formula φm is a conjunction of F (logn) with
the encodings of all the clauses of the propositional formula φp.

Lemma 4. Given a propositional 3-CNF formula φp the modal formula φm is
satisfiable in K iff φp is satisfiable.

Proof. Suppose that φp is satisfiable. We construct a binary tree of height logn
as our model and φm will be made true at the root. It is not hard to satisfy
F (logn) at the root: simply set blog n to be true on all states on one of the
subtrees of height logn− 1 and false in all states of the other, then proceed to
satisfy F (logn−1) at the subtrees recursively in the same manner. Every leaf of
the model corresponds to a variable of φ if we read the variables bi as encoding
the binary representation of the index of the variable. We set y to be true in the
leaves that correspond to variables which are true in a satisfying assignment.
It is not hard to see that this satisfies the encoding of all the clauses on the
assumption that we started with an assignment satisfying φp.

Now for the other direction, suppose that φm is satisfied in a state of some
model. A first observation is that for all i ∈ {1, . . . , n} there must exist a state in
which B(i) holds and is at distance logn from the state where φm holds, as this
is required for F (log n) to hold. From this we can infer that 	log n(B(i) → y)
and 	log n(B(i) → ¬y) cannot both hold in the state where φm holds. Therefore,
we can extract a consistent assignment for the variables of φ from the model,
by setting to true the xi for which 	log n(B(i) → y) holds. It is not hard to see
that this assignment must satisfy φp because its clauses are encoded in φm. � 

Now that we have described how to embed a 3-CNF formula into a modal formula
with only logarithmically many variables and logarithmic diamond dimension we
can use this fact to prove a lower bound. This time we rely on the stronger, but
widely believed, assumption that 3-CNF SAT with n variables cannot be solved
in time 2o(n), also known as the Exponential Time Hypothesis. This allows us
to obtain a much sharper bound than simply assuming that P =NP.

Theorem 4. There is no algorithm which can decide the satisfiability in K of a
modal formula φ with v variables and d♦(φ) = k in time 22o(v+k)

poly(|φ|) unless
the Exponential Time Hypothesis (ETH) fails (this is a standard assumption,
see for example [13]).

Proof. Suppose that an algorithm running in time 22o(v+k)poly(|φ|) did exist.
Then we could use the described construction to decide 3-CNF satisfiability for
any formula with n variables. It is not hard to see that v+k = O(log n) and that
the size of the produced modal formula is polynomial in the size of the 3-CNF
formula, thus this would give an algorithm running in time 2o(n), contradicting
the ETH. � 
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4 Modal Width

In this section we give another structural parameter for modal formulae called
modal width in an attempt to solve modal satisfiability more efficiently. We will
show that satisfiability can be solved in time only singly exponential in the modal
width and v.

First we define inductively the function s(φ) which given a modal formula
returns a set of modal formulae. Intuitively, whether φ holds in a given state
s of a Kripke structure depends on two things: the values of the propositional
variables in s and the truth values of some formulae ψi in the successor states
of s. These formulae are informally the subformulae of φ which appear at modal
depth 1. s(φ) gives us exactly this set of formulae.

– s(p) = ∅ if p is a propositional letter
– s(¬φ) = s(φ), s(φ1 ∨ φ2) = s(φ1 ∧ φ2) = s(φ1) ∪ s(φ2)
– s(	ψ) = s(♦ψ) = {ψ}

Now we inductively define the set Si(φ), which intuitively corresponds to the set
of subformulae of φ at depth i.

– S1(φ) = s(φ)
– Si+1(φ) =

⋃
ψ∈Si(φ) s(ψ)

Finally, we can now define the modal width of a formula φ at depth i as mwi(φ) =
|Si(φ)| and the modal width of a formula as mw(φ) = maxi mwi(φ).

Theorem 5. [*] There exists an algorithm which decides the satisfiability of a
modal formula φ with v variables, md(φ) = d and mw(φ) = w in time O(22v+3w ·
d · w · |φ|).

To give some intuition, the modal width measures how many different modal
subformulae our formula contains at depth i. The idea is that the truth value
of the subformulae of depth i at some state s depends only on the truth value
of the subformulae of depth i + 1 at the successors of s. If the maximum width
of the formula is bounded we can exhaustively check all possible truth values
for subformulae at the next level of depth and decide if some particular truth
assignment to the subformulae of depth i is possible. Using this idea it is possible
to obtain an algorithm with the promised running time if we use a dynamic
programming technique.

Lower Bound. Intuitively, one would probably not expect that a significantly
better algorithm is possible in this case, since the algorithm we have described
is singly exponential in the parameter v + w. Indeed, it follows if one accepts
the ETH that for formulae of width 0 (that is, propositional formulae) it is not
possible to achieve time 2o(v+w). Nevertheless, this kind of lower bound argument
is not entirely satisfactory for our purposes, since it completely neglects the
contribution of the modal width to the problem’s hardness. For all we know, the
best algorithm’s dependence on w alone may be sub-exponential, though this
would be surprising.
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However, a more careful examination of the lower bound arguments we have
presented for diamond dimension is useful here. The formulae constructed there
have a logarithmic number of variables and linear modal width. Therefore, an
algorithm which in general runs in 2O(v)+o(w) would in this case give an algorithm
running in time 2o(n) for propositional SAT, contradicting the ETH. In addition,
even if one assumes a constant v, things cannot improve much. A second reading
of the lower bound argument for modal depth shows that our construction has
modal width O(n · polylog(n)). This implies that any algorithm which runs in
2O(wc) for any c < 1 in the case of constant v would imply a 2o(n) algorithm
for SAT, again contradicting the ETH. Thus, the existence of an algorithm with
significantly better dependence on w than the one presented here is unlikely.

5 Conclusions and Open Problems

In this paper we defined and studied several modal formula complexity measures
and investigated how each can be used to attack cases of modal satisfiability.
Our results show that proving fixed-parameter tractability is only a first step in
such problems, because the dependence on the parameters can vary significantly
and some parameters offer much better algorithmic footholds than others.

It is worthy of remark that the measures of formula complexity we have dis-
cussed are not directly comparable; for example it is possible to construct a
formula with small modality depth and very high modal width, or vice-versa.
In this sense it is not possible to infer solely from our results which formula
complexity measure is the “best”, since each corresponds to a different family of
modal formulae. However, our results can be seen as a first attempt at drawing
a complexity “map” for different modal formula parameters, looking for areas
where satisfiability becomes more or less tractable. This perspective creates a
nice connection between this work and for example the research area of graph
widths, where the complexity of model checking problems on graphs is explored
in different graph families depending on a graph complexity measure. This is a
well-developed area whose insights may be applicable and helpful in the study
of the problems of this paper. (For a summary of the current complexity “map”
for graph width parameters see Figure 8.1 in [8])

A possible future direction is the investigation of yet more natural formula
complexity measures. Additionally, extending our results to other modal logics,
such as modal logics where Kripke structures are required to be reflexive or
transitive (e.g. S4) would also be an interesting next step.
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Abstract. Universal Coalgebra provides the notion of a coalgebra as
the natural mathematical generalization of state-based evolving systems
such as (infinite) words, trees, and transition systems. We lift the theory
of parity automata to this level of abstraction by introducing, for a set
Λ of predicate liftings associated with a set functor T , the notion of a
Λ-automata operating on coalgebras of type T . In a familiar way these
automata correspond to extensions of coalgebraic modal logics with least
and greatest fixpoint operators.

Our main technical contribution is a general bounded model prop-
erty result: We provide a construction that transforms an arbitrary Λ-
automaton A with nonempty language into a small pointed coalgebra
(S, s) of type T that is recognized by A, and of size exponential in that
of A. S is obtained in a uniform manner, on the basis of the winning
strategy in our satisfiability game associated with A. On the basis of our
proof we obtain a general upper bound for the complexity of the non-
emptiness problem, under some mild conditions on Λ and T . Finally,
relating our automata-theoretic approach to the tableaux-based one of
Ĉırstea et alii, we indicate how to obtain their results, based on the ex-
istence of a complete tableau calculus, in our framework.

Keywords: coalgebra, modal logic, parity automata, predicate lifitings,
fixpoint logic.

1 Introduction

The theory of finite automata, seen as devices for classifying (possibly) infinite
structures [6], combines a rich mathematical theory, dating back to the seminal
work of Büchi and Rabin, with an wide range of applications, particularly in
areas related to program verification and synthesis. The main purpose of our
paper is to contribute to this theory by showing that some of its fundamental
ideas can be lifted to a coalgebraic level of generality.

Universal Coalgebra [14] provides the notion of a coalgebra as the natural
mathematical generalization of state-based evolving systems such as streams,
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(infinite) trees, Kripke models, (probabilistic) transition systems, and many oth-
ers. Formally, a coalgebra is a pair S = (S, σ), where S is the carrier or state
space of the coalgebra, and σ : S −→ T S is its unfolding or transition map.
This approach combines simplicity with generality and wide applicability: many
features, including input, output, nondeterminism, probability, and interaction,
can easily be encoded in the coalgebra type T (formally an endofunctor on the
category Set of sets as objects with functions as arrows).

Logic enters the picture if one wants to specify and reason about behavior,
one of the most fundamental notions admitting a coalgebraic formalization. With
Kripke structures constituting key examples of coalgebras, it should come as no
surprise that most coalgebraic logics are some kind of modification or general-
ization of modal logic.

Moss [11] introduced a modality ∇T generalizing the so-called ‘cover modal-
ity’ from Kripke structures to coalgebras of arbitrary type. This approach is
uniform in the functor T , but as a drawback only works properly if T satisfies
a certain category-theoretic property (viz., it should preserve weak pullbacks);
also the nabla modality is syntactically rather nonstandard. As an alternative,
Pattinson [12] and others developed coalgebraic modal formalisms, based on a
completely standard syntax, that work for coalgebras of arbitrary type. In this
approach, the semantics of each modality is determined by a so-called predicate
lifting (see Definition 3 below). Many well-known variations of modal logic in
fact arise as the coalgebraic logic MLΛ associated with a set Λ of such predicate
liftings; examples include both standard and (monotone) neighborhood modal
logic, graded and probabilistic modal logic, coalition logic, and conditional logic.
The theory of coalgebraic modal logic has developed rather rapidly; to mention
just one example, it presently includes generic PSPACE upper bounds for the
satisfiability problem [15].

The fact that ordinary modal formulas have a finite depth severely restricts
the expressive power of plain coalgebraic modal logic, and thus limits its use-
fulness as a language for specifying ongoing behavior. For the latter purpose
one needs to extend the language with fixpoint operators, generalizing the modal
μ-calculus [9]. A coalgebraic fixpoint language on the basis of Moss’ modality
was introduced by Venema [16]. Recently, Cı̂rstea, Kupke and Pattinson [5] in-
troduced the coalgebraic μ-calculus μMLΛ parametrized by a set Λ of predicate
liftings for a functor T .

Given the success of automata-theoretic approaches towards fixpoint logics,
one may expect a rich and elegant universal automata theory that generalizes the
theory of specific devices for streams, trees or graphs, by dealing with automata
that operate on coalgebras. A first step in this direction was the introduction of
so-called coalgebra automata by Venema [16]. Kupke & Venema [10] generalized
many results in automata theory, such as closure properties of recognizable lan-
guages, to this class of automata. However, coalgebra automata are related to
fixpoint languages based on Moss’ modality ∇, and do not correspond directly
to coalgebraic modal languages associated with predicate liftings (such as the
graded modal μ-calculus). In addition, the theory of coalgebra automata needs



Automata for Coalgebras: An Approach Using Predicate Liftings 383

the type of the coalgebras to be a functor that preserves weak pullbacks, and
hence cannot be applied as generally as possible.

This paper introduces automata for coalgebras of arbitrary type (Definition
4). More precisely, given a set Λ of monotone predicate liftings, we introduce
Λ-automata as devices that accept or reject pointed T -coalgebras (that is, coal-
gebras with an explicitly specified starting point) on the basis of so-called accep-
tance games. Λ-automata provide the counterpart to the coalgebraic μ-calculus
for Λ. In particular, there is a construction transforming a μMLΛ-formula into an
equivalent Λ-automaton (of size quadratic in the length of the formula). Hence
we may use the theory of Λ-automata in order to obtain results about coalgebraic
modal fixpoint logic.

The main technical contribution of this paper concerns a small model property
for Λ-automata (Theorem 3). We show that any Λ-automaton A with a non-
empty language recognizes a pointed coalgebra (S, s) that can be obtained from
A via some uniform construction involving a satisfiability game (Definition 7)
that we associate with A. The size of S is exponential in the size of A. On
the basis of our proof, in Theorem 4 we give a doubly exponential bound on
the complexity of the satisfiability problem of μMLΛ-formulas in T -coalgebras
(provided that the one-step satisfiability problem of Λ over T has a reasonable
complexity).

Compared to the work of Cı̂rstea, Kupke and Pattinson [5], our results are
more general in the sense that they do not depend on the existence of a com-
plete tableau calculus. On the other hand, the cited authors obtain a much
better complexity result: Under some mild conditions on the efficiency of their
complete tableau calculus (conditions that are met by e.g. the modal μ-calculus
and the graded μ-calculus), they establish an EXPTIME upper bound for the
satisfiability problem of the μ-calculus for Λ. However, in Section 5 below we
shall make a connection between our satisfiability game and their tableau game,
and on the basis of this connection one may obtain the same complexity bound
as in [5] (if one assumes the same conditions on the existence and nature of the
tableau system).

2 Preliminaries

We assume familiarity with basic notions from category theory such as categories,
functors, natural transformations. We let Set denote the category with sets as
objects and functions as arrows. For convenience, and without loss of generality
[2], we assume our functors to be standard i.e to preserve set inclusions.

Definition 1. Let T : Set −→ Set be a functor. A T -coalgebra is a pair (S, σ)
where S is a set and σ is a function σ : S −→ T S. A morphism of T -coalgebras
from S to S′, written f : S −→ S′, is a function f : S −→ S′ such that T (f)σ = σ′f .
The size of a coalgebra S is the cardinality of the set S.

1. We write Q : Setop −→ Set for the contravariant power set functor, and P for
the covariant power set functor. Coalgebras for P are Kripke frames [1].
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2. The monotone neighborhood functor M maps a set X to M(X) = {U ∈
QQ(X) | U is upwards closed}, and a function f to M(f) = QQ(f) =
(f−1)−1. Coalgebras for this functor are monotone neighborhood frames [7].

3. We write D for the distribution functor which maps a set X to D(X) =
{μ : X −→ [0, 1] |

∑
x∈X μ(x) = 1} and a function f to the function D(f) :

D(X) −→ D(Y ) which maps a probability distribution μ to D(f)(μ)(y) =∑
f(x)=y μ(x). In this case coalgebras correspond to Markov chains [3].

4. We write B for the bags, or multiset, functor which maps a set X to N
X

,
where N = N+{∞}, the action on arrows is similar to that of D. Coalgebras
for B are often referred to as multigraphs [17].

We assume familiarity with the basic notions of the theory of automata and
infinite games [6]. Here we fix some notation and terminology.

Definition 2. (1) Given a set A, we let A∗ and Aω denote, respectively, the set
of words (finite sequences) and streams (infinite sequences) over A. Automata
operating on streams will be called stream automata (rather than ω-automata).
Given π ∈ A∗ + Aω we write Inf (π) for the set of elements in A that appear
infinitely often in π.

(2) A graph game is a tuple G = (G∃, G∀, E,Win) where G∃ and G∀ are
disjoint sets, and (with G := G∃ + G∀) we have E ⊆ G2, and Win ⊆ Gω. In
case G is a parity game, that is, Win is given by a parity function Ω : G −→ N,
we write G = (G∃, G∀, E,Ω) .

(3) A strategy for a player P in a game G = (G∃, G∀, E,Win) is a map
α : G∗ −→ G. A G-match π = v0v1 . . . is α-conform if vi+1 = α(v0 . . . vi) for all
i ≥ 0 such that vi ∈ G∃. A strategy α is winning for a player P if all α-conform
matches are winning for P .

(4) A strategy α is a finite memory strategy if there is a finite memory set
M , an element mI ∈ M and a map (α1, α2) : G ×M −→ G ×M such that for
all pairs of sequences v0 . . . vk ∈ V ∗ and m0 . . .mk ∈ M∗ if m0 = mI , vk ∈ G∃
and mi+1 = α2(vi,mi) (for all i < k), then α(v0 . . . vk) = α1(vk,mk).

(5) A game G = (G∃, G∀, E,Win) is called regular if there exists an ω-regular
language L over a finite alphabet C, and a map col : G −→ C, such that Win =
{v0v1 . . . ∈ Gω : col(v0)col(v1) . . . ∈ L}.

The following fact on regular games can be proved by putting together various
known results from [4] and [8].

Fact 1. Let G = (G∃, G∀, E,Win) be a regular game, let col : G −→ C be a
coloring of G, and let B be a deterministic parity stream automaton such that
Win = {v0v1 . . . ∈ Gω | col(v0)col (v1) . . . ∈ L(B)}. Let n,m, and b be the size of
G, E, and B, respectively, and let d be the index of B. Then for each player P
we may assume winning strategies for P to be finite memory ones, with memory
of size b. In addition, the problem, whether a given position v ∈ G is winning

for P , is decidable in time O
(
d ·m · b ·

(
n·b

�d/2�

)�d/2�
)

.
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3 Automata for the Coalgebraic μ-Calculus

As mentioned in the introduction, the following notion is fundamental in the
development of coalgebraic modal logic.

Definition 3. An n-ary predicate lifting for T is a natural transformation

λ : Qn −→ QT .

Such a predicate lifting is monotone if for each set S, the operation λS : (Q(S))n

−→ Q(S) preserves the (subset) order in each coordinate. The (Boolean) dual
of a predicate lifting λ : Qn −→ QT is the lifting λ : Qn −→ QT given by
λS(A1, . . . , An) = S \ λS(S \A1, . . . , S \An).

Predicate liftings allow one to see coalgebras as (polyadic) neighborhood frames.
Accordingly, with each n-ary predicate lifting we will associate an n-ary modality
♥λ. Its semantics in a coalgebra S is given by the following:

[[♥λ(φ1, . . . , φn)]]S = σ−1λS([[φ1]]S, . . . , [[φn]]S) (1)

where we inductively assume that [[φi]]S ⊆ S is the meaning of the formula φi in
S. In words, ♥λ(φ1, . . . , φn) is true at a state s iff the unfolding σ(s) belongs to
the set λS([[φ1]]S, . . . , [[φn]]S).

Example 1. (1) In case of the covariant power set functor the predicate lifting
given by λS(U) = {V ∈ PS |V ⊆ U} induces the usual universal modality �,
i.e. [[♥λφ]]σV = [[�φ]]σV , on Kripke Frames.

(2) Consider the monotone neighborhood functor. We can obtain the standard
modalities as predicate liftings. The universal modality is given by λS(U) =
{N ∈ M(S) | U ∈ N}.

(3) Let k be a natural number. A graded modality can be seen as a predicate
lifting for the multiset functor; λk

S(U) = {B : S −→ N |
∑

x∈UB(x) ≥ k}. In this
case S, V, s � ♥k

λφ holds iff s has at least k many successors satisfying φ.
(4) Let p be an element in the closed interval [0, 1]. The following defines

a predicate lifting for the distribution functor λp
S(U) = {μ : S −→ [0, 1] |∑

x∈Uμ(x) ≥ p}. In this case S, V, s � ♥p
λφ holds if the probability that s has a

successor satisfying φ is at least p.
(5) Propositional information can be provided by predicate liftings for the

functor P(P) × T , where P is a fixed set of proposition letters. The seman-
tics of the proposition letter p ∈ P is given by the predicate liftings λp

S(U) =
{(X, t) ∈ P(P)× T (S) | p ∈ X}, and λ¬p

S (U) = {(X, t) ∈ P(P)× T (S) | p ∈ X}.

Convention 2 In the remainder of this paper we fix a functor T on Set, and
a set Λ of monotone predicate liftings that we assume to be closed under taking
Boolean duals. In case we are dealing with a language containing proposition let-
ters, these are supposed to be encoded in appropriate liftings, as in Example 1(5).
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We can now introduce coalgebraic modal fixpoint logic, or the coalgebraic μ-
calculus. We fix a set X of variables, and define the set μMLΛ of fixpoint formulas
φ, φi as follows:

φ ::= x ∈ X | ⊥ | ! | φ0 ∧ φ1 | φ0 ∨ φ1 | ♥λ(φ0, . . . , φn) | μx.φ | νx.φ

where λ ∈ Λ. Syntactic notions pertaining to formulas, such as alternation depth,
are defined as usual. The size of a formula is defined as its length (with the proviso
that if Λ is infinite, to each occurrence of a modality we add a weight associated
with its index, as in [15]).

The semantics of this language is completely standard. Let S = (S, σ) be a
T -coalgebra. Given a valuation V : X −→ P(S), we define the meaning [[φ]]S,V of
a formula φ by a standard induction which includes the following clauses:

[[x]]S,V := V (x), [[μx.φ]]S,V := LFP.φS,V
x , [[νx.φ]]S,V := GFP.φS,V

x .

Here LFP.φS,V
x and GFP.φS,V

x are the least and greatest fixpoint, respectively, of
the monotone map φS,V

x : P(S) −→ P(S) given by φS,V
x (A) := [[φ]]S,V [x �→A] (with

V [x �→ A](x) = A and V [x �→ A](y) = V (y) for y = x). For sentences, that is,
formulas without free variables, the valuation does not matter; we write S, s � φ
iff s ∈ [[φ]]S,V for some/any valuation V .

By Convention 2, we may assume that the language μMLΛ contains propo-
sition letters and their negations, and we may see negation itself as a definable
connective.

Before we can turn to the definition of our automata we need some preliminary
notions. Given a set X , we denote the set of positive propositional formulas, or
lattice terms, over X , by L0(X):

φ ::= x ∈ X | ⊥ | ! | φ0 ∧ φ1 | φ0 ∨ φ1,

and we let Λ(X) denote the set {♥λ(x1, · · · , xn) | λ ∈ Λ, xi ∈ X}. Elements of
the set L0ΛL0(X) will be called depth-one formulas over X .

Any valuation V : X −→ P(S) can be extended to a meaning function [[−]]V :
L0X −→ P(S) in the usual manner. We write S, V, s � φ to indicate s ∈ [[φ]]V .
The meaning function [[−]]V naturally induces a map [[−]]1V : L0ΛL0(X) −→
P(T S) interpreting depth-one formulas as subsets of T S. This map is defined
inductively, with

[[♥λ(φ1, . . . , φn)]]1V = λS([[φ1]]V , . . . , [[φn]]V ) (2)

being the clause for the modalities, and with the standard clauses for the boolean
connectives. We write TS, V, τ �1 φ to indicate τ ∈ [[φ]]1V , and refer to this
relation as the one-step semantics.

We are now ready for the definition of the key structures of this paper, viz.,
Λ-automata, and their semantics.

Definition 4 (Λ-automata). A Λ-automaton A is a quadruple A=(A, aI , δ, Ω),
where A is a finite set of states, aI ∈ A is the initial state, δ : A −→ L0Λ(A) is
the transition map, and Ω : A −→ N is a parity map. The size of A is defined as
its number of states, and its index as the size of the range of Ω.
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The acceptance game of Λ-automata proceeds in rounds moving from one basic
position in A × S to another. In each round, at position (a, s) first ∃ picks a
valuation V that makes the depth-one formula δ(a) true at σ(s). Looking at this
V : A −→ PS as a binary relation {(a′, s′) | s′ ∈ V (a′)} between A and S, ∀
closes the round by picking an element of this relation.

Definition 5 (Acceptance game). Let S = (S, σ) be a T -coalgebra and let
A = (A, aI , δ, Ω) be a Λ-automaton. The associated acceptance game Acc(A, S)
is the parity game given by the table below.

Position Player Admissible moves Priority
(a, s) ∈ A× S ∃ {V : A −→ P(S) | S, V, σ(s) �1 δ(a)} Ω(a)
V ∈ P(S)A ∀ {(a′, s′) | s′ ∈ V (a′)} 0

A pointed coalgebra (S, s0) is accepted by the automaton A if the pair (aI , s0)
is a winning position for player ∃ in Acc(A, S).

As expected, and generalizing the automata-theoretic perspective on the modal
μ-calculus as in [6], Λ-automata are the counterpart of the coalgebraic μ-calculus
associated with Λ. As a formalization of this we need the following Proposition,
the proof of which is routine, and deferred to the Appendix. Here we say that a
Λ-automaton A is equivalent to a sentence φ ∈ μMLΛ if any pointed T -coalgebra
(S, s) is accepted by A iff S, s � φ.

Proposition 1. There is an effective procedure transforming a sentence φ in
μMLΛ into an equivalent Λ-automaton Aφ of size dn and index d, where n is
the size and d is the alternation depth of φ.

4 Finite Model Property

In this section we show that μMLΛ has the small model property. The key tool in
our proof is a satisfiability game that characterizes whether the class of pointed
coalgebras accepted by a given Λ-automaton, is empty or not.

Definition 6. Let A be a finite set and Ω a map from A to N. Given a se-
quence R0 . . . Rk in (P(A × A))∗ the set of traces through R0 . . . Rk is defined
as Tr(R0 . . . Rk) := {a0 . . . ak+1 ∈ A∗ | (ai, ai+1) ∈ Ri for all i ≤ k.}. Similarly
Tr(R0R1 . . . ) ⊆ Aω denotes the set of (infinite) traces through R0R1 . . . . With
NBT (A,Ω) we denote the set of R0R1 · · · ∈ (P(A × A))ω that contain no bad
trace, that is, no trace a0a1 . . . such that max{Ω(a) | a ∈ Inf (a0a1 . . . )} is odd.

Definition 7 (Satisfiability game). The satisfiability game Sat(A) associated
with an automaton A = (A, aI , δ, Ω) is the graph game given by the rules of the
tableau below. Here for an element a ∈ A and for a collection R ⊆ P(A × A),
ςa : A −→ A×A maps b to (a, b) and UR : A×A −→ P(R) denotes the valuation
given by such that UR(a, b) = {R ∈ R | (a, b) ∈ R}. The range of a relation R is
denoted by Ran(R).
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Position Player Admissible moves
R ⊆ A×A ∃ {R ∈ PP(A×A) | [[

∧
{ςaδ(a) | a ∈ Ran(R)}]]1UR = ∅}

R ∈ PP(A×A) ∀ {R | R ∈ R}

Unless specified otherwise, we assume {(aI , aI)} to be the starting position of
Sat(A). An infinite match R0R0R1 . . . is winning for∃ if R0R1 . . .∈NBT (A,Ω).

We leave it for the reader to verify that Sat(A) is a regular game, and that
its winning condition is an ω-regular language L of which the complement is
recognized by a nondeterministic parity stream automaton of size |A| and index
|Ran(Ω)|. So by [13], L is recognized by a deterministic parity stream automaton
of size exponential in |A| and index polynomial in |A|.

We are now ready to state and prove our main result.

Theorem 3. Given a Λ-automaton A, the following are equivalent.
(1) L(A) is not empty.
(2) ∃ has a winning strategy in the game Sat(A).
(3) L(A) contains a finite pointed coalgebra of size exponential in the size of A.

Proof. Details for the implication (1 ⇒ 2) are in the appendix, and (3 ⇒ 1)
is immediate. We focus on the hardest implication (2 ⇒ 3). Suppose that ∃
has a winning strategy in the game Sat(A) = (G∃, G∀, E,Win). By the remark
following Definition 7 and by Fact 1, we may assume this strategy to use finite
memory only: there is a finite set M , mI ∈M and maps α1 : G∃×M −→ G and
α2 : G∃ ×M −→ M which satisfy the conditions of Definition 2(3). Moreover,
the size of M is at most exponential in the size of A. Without loss of generality,
we may assume that for all (R,m) ∈ G∃ ×M , α2(R,m) = m.

We denote by W∃ the set of pairs (R,m) ∈ G∃ ×M satisfying the following:
For all Sat(A)-matches R0R0R1R1 . . . for which there exists a sequence m0m1 . . .
with R0 = R,m0 = m and for all i ∈ N, Ri = α1(Ri,mi), mi+1 = α2(Ri,mi),
we have that R0R0R1R1 . . . is won by ∃.

The finite coalgebra in L(A) that we are looking for will have the set G∃×M as
its carrier. Therefore we first define a coalgebra map ξ : G∃×M −→ T (G∃×M).
We base this construction on two observations.

First, let (R,m) be an element of W∃, and write R := α1(R,m); then by the
rules of the satisfiability game, there is an object g(R,m) ∈ T R such that for
every a ∈ Ran(R), the formula ςaδ(a) is true at g(R,m) under the valuation UR.
Note that R ⊆ G∃, and thus we may think of the above as defining a function g :
W∃ −→ T G∃. Choosing some dummy values for elements (R,m) ∈ (G∃×M)\W∃,
the domain of this function can be extended to the full set G∃ ×M . To simplify
our notation we will also let g denote the resulting map, with domain G∃ ×M
and codomain T G∃. Second, consider the map addm : G∃ −→ G∃ ×M , given by
addm(R) = (R,m). Based on this map we define the function h : T (G∃) ×M
−→ T (G∃ ×M) such that h(τ,m) = T (addm)(τ).

We let S be the coalgebra (G∃×M, ξ), where ξ : G∃×M −→ T (G∃×M) is the
map ξ := h◦ (g, α2). Observe that the size of S is at most exponential in the size
of A, since G∃ is the set P(A×A) and M is at most exponential in the size of A.
As the designated point of S we take the pair (RI ,mI), where RI := {(aI , aI)}.
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It is left to prove that the pointed coalgebra (S, (RI ,mI)) is accepted by A.
That is, using ∃’s winning strategy α in the satisfiability game we need to find a
winning strategy for ∃ in the acceptance game for the automaton A with starting
position (aI , (RI ,mI)). We will define this strategy by induction on the length of
a partial match, simultaneously setting up a shadow match of the satisfiability
game. Inductively we maintain the following relation between the two matches:
(*) If (a0, (R0,m0)), . . . , (ak, (Rk,mk)) is a partial match of the acceptance game
(during which ∃ plays the inductively defined strategy), then aIa0 . . . ak is a
trace through R0 . . . Rk (and so in particular, ak belongs to Ran(Rk)), and for
all i ∈ {0, . . . , k − 1}, Ri+1 ∈ α1(Ri,mi) and mi+1 = α2(Ri,mi).

Setting up the induction, it is easy to see that the above condition is met at
the start (a0, (R0,m0)) = (aI , (RI ,mI)) of the acceptance match: aIaI is the
(unique) trace through the one element sequence RI .

Inductively assume that, with ∃ playing as prescribed, the play of the accep-
tance game has reached position (ak, (Rk,mk)). By the induction hypothesis,
we have ak ∈ Ran(Rk) and the position (Rk,mk) is a winning position for ∃
in the acceptance game. Abbreviate R := α1(Rk,mk) and n := α2(Rk,mk). As
the next move for ∃ we propose the valuation V : A −→ P(G∃ ×M) such that
V (a) := {(R, n) | (ak, a) ∈ R and R ∈ R}.
Claim. V is a legitimate move at position (ak, (Rk,mk)).

Proof of Claim. We need to show that S, V, (Rk,mk) �1 δ(ak). First, recall that
(Rk,mk) belongs to W∃. Hence, the element γ := g(Rk,mk) of T R satisfies
the formula ςakδ(ak) under the valuation U := UR (where UR is defined as in
Definition 7). That is T R, UR, γ �1 ςakδ(ak). Thus in order to prove the claim
it clearly suffices to show that

S, V, (Rk,mk) �1 φ iff T R, U, γ �1 ςakφ (3)

for all formulas φ in L0(Λ(A)). The proof of (3) proceeds by induction on the
complexity of φ. We only consider a simplified version of the base step, where φ
is of the form ♥λa. We can prove (3) as follows (recall that n = α2(Rk,mk)):

S, V, (Rk,mk) �1 ♥λb ⇐⇒ ξ(Rk,mk) ∈ λG∃×M ([[b]]V ). (definition of �1)
⇐⇒ (T addn)(γ) ∈ λG∃×M ([[b]]V ). (definition of ξ)

⇐⇒ γ ∈ (T addn)−1(λG∃×M [[b]]V ) (definition of (·)−1)

⇐⇒ γ ∈ λG∃(add−1
n ([[b]]V )) (naturality of λ)

⇐⇒ γ ∈ λR([[(ak, b)]]U ) (‡)
⇐⇒ T R, U, γ �1 ♥λ(ak, b) (definition of �1)

⇐⇒ T R, U, γ �1 ςak♥λb (definition of ςak)

For (‡), consider the following valuation U ′ : A × A −→ P(G∃) such that
U ′(a′, b′) := U(a′, b′) ∩ R. It follows from R ⊆ G∃ and standardness that
λR[[a]]U = λG∃ [[a]]U ′ . But then (‡) follows because add−1

n ([[b]]V ) = [[(a, b)]]U ′ ,
which holds by a relatively routine proof. This finishes the proof of the Claim.
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We leave it for the reader to verify that with this definition of a strategy for
∃, the inductive hypothesis (including the relation (*) between the two matches)
remains true. In particular this shows that ∃ will never get stuck. Hence in order
to verify that the strategy is winning for ∃, we may confine our attention to
infinite matches of Acc(A, S). Let π = (a0, (R0,m0))(a1, (R1,m1)) . . . be such a
match, then it follows from (*) that aIa0a1 . . . is a trace through R0R1 . . ., and
so we may infer from the assumption that (α1, α2) is a winning strategy for ∃ in
Sat(A), that aIa0a1 . . . is not bad. This means that the match π is won by ∃.

Putting this theorem together with Proposition 1, we obtain a small model
property for the coalgebraic μ-calculus, for every set of predicate liftings.

Corollary 1. If φ ∈ μMLΛ is satisfiable in a T -coalgebra, it is satisfiable in a
T -coalgebra of size exponential in the size of φ.

Moreover, given some mild condition on Λ and T , we obtain the following com-
plexity result.

Definition 8. Given sets A and X ⊆ PA, let UX : A −→ PX be the valuation
given by UX : a �→ {B ∈ X | a ∈ B}. The one-step satisfiability problem for Λ
over T is the problem whether, for fixed A and X , a given formula φ is satisfiable
in T X under UX .

Theorem 4. If Λ has an EXPTIME one-step satisfiability problem over T , then
the satisfiability problem of μMLΛ over T -coalgebras is decidable in 2EXPTIME.

Proof. Let φ be a given sentence in μMLΛ of size n, and let Aφ be the Λ-
automaton associated with φ, as in Proposition 1. On the basis of the remark
following Definition 7, the reader may easily check that Sat(Aφ) is a regular game
of size doubly exponential in n, and with a winning condition that is recognizable
by a deterministic parity stream automaton of size exponential in n and index
polynomial in n. Hence by Fact 1 the problem of determining the winner of this
game can be solved in doubly exponential time.

However, the game Sat(Aφ) has to be constructed in doubly exponential time
as well. The problem here concerns the complexity of the problem whether a
given pair (R,R) is an edge of the game graph. Under the assumption of the
Theorem, this can be done in time doubly exponential in n — note that the
length of the one-step formulas in the range of the transition function of Aφ may
be exponential in n.

5 One-Step Tableau Completeness

In this section we show how our satisfiability game relates to the work of Cı̂rstea,
Kupke and Pattinson [5]. We need some definitions — for reasons of space limi-
tations we omit proofs and refer to opus cit. for motivation and examples.
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Definition 9. A one-step rule d for Λ is of the form

Γ0

γ1 · · · γn

where Γ0 ⊆ω Λ(X) and γ1, . . . , γn ⊆ω X, every propositional variable occurs at
most once in Γ0 and all variables occurring in each of the γi’s (i > 0) also occur
in Γ0. We write Conc(d) for the set Γ0 and Prem(d) for the set {γi | 1 ≤ i ≤ n}.

Given Γ, {φ} ⊆ω L0Λ(X), we say that Γ propositionally entails φ, notation:
Γ 'PL φ, if there are Γ ′, {φ′} ⊆ω L0(Y ) and a substitution τ : Y −→ Λ(X) such
that τ [Γ ′] = Γ , τ(φ′) = φ and Γ ′ ' φ′ in propositional logic,.

For a set of such rules, with an automaton A we associate a so-called tableau
game, in which the rules themselves are part of the game board.

Definition 10. Let A = (A, aI , δ, Ω) be a Λ-automaton and let D be a set of
one-step rules for Λ. The game Tab(A,D) is the two-player graph game given by
the table below.

Position Player Admissible moves
R ∈ P(A×A) ∃ {Γ ⊆ω Λ(A×A) | (∀a ∈ ran(R))(Γ 'PL ςaδ(a)}
Γ ⊆ω Λ(A×A) ∀

{
(d, τ) ∈ D× (A×A)X | τ [Conc(d)] ⊆ Γ )

}
(d, τ) ∈ D× (A×A)X ∃ {τ [γ] | τ : X −→ A×A, γ ∈ Prem(d)}

Unless specified differently, the starting position is {(aI , aI)}. An infinite match
R0Γ0(d0, τ0)R1Γ1(d1, τ1) . . . is won by ∃ if R0R1 . . . belongs to NBT (A,Ω).

Given the connection of Proposition 1 between formulas and automata, one may
show that our tableau games are virtually the same as the ones in [5]. Our
tableau game Tab(A,D) is (in some natural sense) equivalent to the satisfiability
game for A if we assume the set D to be one-step complete with respect to T .

Definition 11. A set D of one-step rules is one-step complete for T if for any
set Y of variables, any set S, Γ ⊆ω Λ(Y ) and valuation V : Y −→ P(S) the
following are equivalent:
(a) [[
∧

Γ ]]1V = ∅
(b) for all rules d ∈ D and all substitutions τ : X −→ Y with τ [Conc(d)] ⊆ω Γ ,
there exists γi ∈ Prem(d) such that [[

∧
τ [γi]]]1V = ∅.

The proof of the following equivalence is deferred to the appendix.

Theorem 5. Let A be a Λ-automaton and let D be a set of one-step rules for
Λ. If D is one-step complete with respect to T , then ∃ has a winning strategy in
Sat(A) iff ∃ has a winning strategy in Tab(A,D).

For the purpose of obtaining good complexity results for the coalgebraic μ-
calculus, in case we have a nice set D of derivation rules at our disposal, then
the tableau game has considerable advantages over the satisfiability game. The
point is that starting from a sentence φ ∈ μMLΛ, the size of the game board
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of Tab(A,D) is not necessarily doubly exponential in the size of φ. If we follow
exactly the ideas of [5], with a suitable restriction of D, some further manipu-
lations may in fact yield a single exponential size game board, which may also
be constructed in single exponential time (in the size of the original sentence).
More specifically, in our framework of Λ-automata we may prove the main re-
sult of [5] stating that if Λ admits a so-called exponentially tractable, contraction
closed one-step complete set D of rules, then the satisfiability problem for μMLΛ-
sentences over T -coalgebras may be solved in exponential time.
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Abstract. We formally study two methods for data sanitation that have
been used extensively in the database community: k-anonymity and 	-
diversity. We settle several open problems concerning the difficulty of
applying these methods optimally, proving both positive and negative
results:

– 2-anonymity is in P.
– The problem of partitioning the edges of a triangle-free graph into

4-stars (degree-three vertices) is NP-hard. This yields an alterna-
tive proof that 3-anonymity is NP-hard even when the database at-
tributes are all binary.

– 3-anonymity with only 27 attributes per record is MAX SNP-hard.
– For databases with n rows, k-anonymity is in O(4n · poly(n))) time

for all k > 1.
– For databases with 	 attributes, alphabet size c, and n rows, k-

Anonymity can be solved in 2O(k2(2c)�) + O(n	) time.
– 3-diversity with binary attributes is NP-hard, with one sensitive at-

tribute.
– 2-diversity with binary attributes is NP-hard, with three sensitive

attributes.

1 Introduction

The topic of data sanitization has received enormous attention in recent years.
The high-level idea is to release a database to the public in such a manner that
two conflicting goals are achieved: (1) the data is useful to benign researchers
who want to study trends and identify patterns in the data, and (2) the data
is not useful to malicious parties who wish to compromise the privacy of indi-
viduals. Many different models for data sanitization have been proposed in the
literature, and they can be roughly divided into two kinds: output perturbative
models (e.g., [2,8]) and output abstraction models (e.g., [16,17,12]). In perturba-
tive models, some or all of the output data is perturbed in a way that no longer
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corresponds precisely to the input data (the perturbation is typically taken to
be a random variable with nice properties). This include work which assumes
interaction between the prospective data collector and the database, such as dif-
ferential privacy. In abstraction models, some of the original data is suppressed
or generalized (e.g. an age becomes an age range) in a way that preserves data
integrity. The latter models are preferred in cases where data integrity is the
highest priority, or when the data is simply non-numerical.

In this work, we formally study two data abstraction models from the liter-
ature, and determine which cases of the problems are efficiently solvable. We
study k-anonymity and �-diversity.

1.1 K-Anonymity

The method of k-anonymization, introduced in [16,17], is a popular method in
the database community for publicly releasing part of a database while protecting
individual identities in that database. Formally speaking, an instance of the k-
anonymity problem is a matrix (a.k.a. database) with n rows and m columns
with entries drawn from an underlying alphabet. Intuitively, the rows correspond
to individuals and the columns correspond to various attributes of them. For
hardness results, we study a special case called the suppression model, where the
goal is to replace entries in the matrix with a special symbol � (called a ‘star’),
until each row is identical to at least k − 1 other rows. The intuition is that the
information released does not explicitly identify any individual in the database,
but rather identifies at worst a group of size k.1

A trivial way to k-anonymize a database is to suppress every entry (replacing
all entries with �), but this renders the database useless. In order to maximize
the utility of the database, one would like to suppress the fewest entries—this
is the k-Anonymity problem with suppression. Meyerson and Williams [13]
proved that in the most general case, this is a difficult task: k-Anonymity is
NP-hard for k ≥ 3, provided that the size of the alphabet is Ω(n). Aggarwal et
al. [1] improved this, showing that 3-Anonymity remains NP-hard even when
the alphabet size is 3. Bonizzoni et al. [5] further improved the result to show that
3-Anonymity is APX-hard, even with a binary alphabet. They also showed that
4-Anonymity with a constant number of attributes per record is NP-hard. In a
related, but independent work, Chakaravarthy et al. showed that 7-Anonymity

is MAX SNP-hard with just 3 attributes [6]. Two basic questions remain:

1. How difficult is 3-anonymity with a small number of attributes per record?
2. How difficult is the 2-anonymity problem?

Addressing the two questions above, we discover both a positive and negative
result. On the positive side, in Section 3 we present a polynomial time algorithm
for 2-Anonymity, applying a result of Anshelevich and Karagiozova [3]:

1 This intuition can break down when combined with background knowledge [12].
However, our intent in this paper is not to critique the security/insecurity of these
methods, but rather to understand their feasibility.
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Theorem 1. 2-Anonymity is in P.

The polynomial time algorithm works not only for the simple suppression model,
but also for the most general version of k-anonymity, where for each attribute
we are given a generalization hierarchy of ways to withhold data.

In Section 4, we consider k-anonymity in databases where the number of
attributes per record is constant. This setting seems to be the most relevant
for practice: in a database of users, the number of attributes per user is often
dwarfed by the number of users in the database. We find a surprisingly strong
negative result.

Theorem 2. 3-Anonymity with just 27 attributes per record is MAX SNP-
hard. Therefore, 3-Anonymity does not have a polynomial time approximation
scheme in this case, unless P = NP.

Our proof uses an alphabet with Ω(n) cardinality. This motivates the question:
how efficiently can we solve k-anonymity with a small alphabet and constant
number of attributes per record? Here we can prove a positive result, showing
that when the number of attributes is small and the alphabet is constant, there
are subexponential algorithms for optimal k-anonymity for every k > 1.

Theorem 3. For every k > 2, k-Anonymity can be solved in O(4npoly(n))
time, where n is the total number of rows in the database.

Theorem 4. Let � be the number of attributes in a database, let c be the size of
its alphabet, and let n be the number of rows. Then k-Anonymity can be solved
in 2O(k2(2c)�) + O(n�) time.

This improves on results in [9]. Theorem 4 implies that k-Anonymity is solv-
able in polynomial time when � ≤ (log logn)/log c and c ≤ logn. Theorem 4 also
implies that for c = no(1) and � = O(1), optimal k-anonymity is in subexponen-
tial time. Therefore it is unlikely that we can tighten the unbounded alphabet
constraint of Theorem 2, for otherwise all of NP has 2no(1)

time algorithms.
In the full version of the paper, we provide an alternative proof that Binary

3-Anonymity, the special case of the problem where all of the attributes are
binary-valued, is NP-hard. This result is weaker than [5] who recently showed
that Binary 3-Anonymity is APX-hard. However, our proof also shows that
a certain edge partitioning problem is NP-complete, which to the best of our
knowledge is new.2 Let Edge Partition Into Triangles and 4-Stars be
the problem of partitioning the edges of a given graph into 3-cliques (triangles)
and 4-stars (graphs with three degree-1 nodes and one degree-3 node).

Theorem 5. Edge Partition Into Triangles & 4-Stars is NP-complete.

Theorem 5 implies that the Ternary 3-Anonymity hardness reduction given
in [1] is sufficient to conclude that Binary 3-Anonymity is NP-hard.
2

Edge Partition Into Triangles is NP-Complete as is Edge Partition Into

4-Stars [7], but this does not imply that Edge Partition Into Triangles and

4-Stars is NP-Complete.
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1.2 L-Diversity

In the full version of the paper, we also consider the method of �-diversity intro-
duced in [12], which has also been well-studied. This method refines the notion
of k-anonymity to protect against knowledge attacks on particular sensitive at-
tributes.

We will work with a simplified definition of �-diversity that captures the es-
sentials. Similar to k-anonymity, we think of an �-diversity instance as a table
(database) with m rows (records) and n columns (attributes). However, each
attribute is also given a label q or s, inducing a partition of the attributes into
two sets Q and S. Q is called the set of quasi-identifier attributes and S called
the set of sensitive attributes.

Definition 1. A database D is said to be �-diverse if for every row u0 of D
there are (at least) �− 1 distinct rows u1, ..., u�−1 of D such that:

1. ∀q ∈ Q, 0 ≤ i < j < � we have ui[s] = uj[s]
2. ∀s ∈ S, 0 ≤ i < j < � we have ui[s] = uj[s]

Constraint 1 is essentially the same as k-anonymity. Any row must have at least
k− 1 other rows whose (non sensitive) attributes are identical. Intuitively, Con-
straint 2 prevents anyone from definitively learning any row’s sensitive attribute;
in the worst case, an individual’s attribute can be narrowed down to a set of at
least � choices. Similar to k-anonymity with suppression, we allow stars to be
introduced to achieve the two constraints.

We can show rather strong hardness results for �-diversity.

Theorem 6. Optimal 2-diversity with binary attributes and three sensitive at-
tributes is NP-hard.

Theorem 7. Optimal 3-diversity with binary attributes and one sensitive at-
tribute is NP-hard.

Independent of their applications in databases, k-anonymity and �-diversity are
also interesting from a theoretical viewpoint. They are natural combinatorial
problems with a somewhat different character from other standard NP-hard
problems. They are a kind of discrete partition task that has not been studied
much: find a partition where each part is intended to “blend in the crowd.” Such
problems will only become more relevant in the future, and we believe the generic
techniques developed in this paper should be useful in further analyzing these
new partition problems.

2 Preliminaries

We use poly(n) to denote a quantity that is polynomial in n.

Definition 2. Let n and m be positive integers. Let Σ be a finite set. A database
with n rows (records) and m columns (attributes) is a matrix from Σn×m. The
alphabet of the database is Σ.
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Definition 3. Let k be a positive integer. A database is said to be k-anonymous
or k-anonymized if for every row ri there exist at least k − 1 identical rows.

As mentioned earlier, there are two methods of achieving k-anonymity: sup-
pression and generalization. In the suppression model, cells from the table are
replaced with stars until the database is k-anonymous. Informally, the general-
ization model allows the entry of an individual cell to be replaced by a broader
category. For example, one may change a numerical entry to a range, e.g. (Age:
26 → Age: [20-30]). A formal definition is given in Section 8.

In our hardness results, we consider k-anonymity with suppression. Since sup-
pression is a special case of generalization, the hardness results also apply to k-
anonymity with generalization. Interestingly, our polynomial time 2-anonymity
algorithm works under both models.

Definition 4. Under the suppression model, the cost of a k-anonymous solution
to a database is the number of stars introduced.

We let Cost�k(D) denote the minimum cost of k-anonymizing database D.
For our inapproximability results, we need the notion of an L-reduction [14].

Definition 5. Let A and B be two optimization problems and let f : A→ B be
a polynomial time computable transformation. f is an L-reduction if there are
positive constants α and β such that

1. OPT (f(I)) ≤ α ·OPT (I)
2. For every solution of f(I) of cost c2 we can in polynomial time find a solution

of I with cost c1 such that

|OPT (I)− c1| ≤ β · |OPT (f(I))− c2|

3 Polynomial Time Algorithm for 2-Anonymity

Because 3-anonymity is hard even for binary attributes, it is natural to wonder
if 2-anonymity is also difficult. However it turns out that achieving optimal 2-
anonymity is polynomial time solvable. The resulting algorithm is nontrivial
and would require heavy machinery to implement. We rely on a special case of
hypergraph matching called Simplex Matching, introduced in [3].

Definition 6. Simplex Matching: Given a hypergraph H = (V,E) with hy-
peredges of size 2 and 3 and a cost function c : E → N such that

1. (u, v, w) ∈ E(H) =⇒ (u, v), (v, w), (u,w) ∈ E(H) and
2. c(u, v) + c(v, w) + c(u,w) ≤ 2 · c(u, v, w)

find M ⊆ E such that for all v ∈ V there is a unique e ∈ M containing v, and∑
e∈M c(e) is minimized.
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Anshelevich and Karagiozova gave a polynomial time algorithm to solve Simplex

Matching. We show that 2-Anonymity can be efficiently reduced to a simplex
matching.

Reminder of Theorem 1. 2-Anonymity is in P.

Proof. Given a database D with rows r1, . . . , rn, let Ci,j denote the number of
stars needed to make rows ri and rj . Similarly define Ci,j,k to be the number of
stars needed to make ri, rj , rk all identical. Observe that in a 2-anonymization,
any group with more than three identical rows could simply be split into sub-
groups of size two or three without increasing the anonymization cost. Therefore
we may assume (without loss of generality) that the optimal 2-anonymity solu-
tion partitions the rows into groups of size two or three.

Construct a hypergraph H as follows:

1. For every row ri of D, add a vertex vi.
2. For every pair ri, rj , add the 2-edge {vi, vj} with cost c(vi, vj) = Ci,j .
3. For every triple ri, rj , rk, add the 3-edge {vi, vj , vk} with cost c(vi, vj , vk) =

Ci,j,k.

Thus H is a hypergraph with n vertices and O(n3) edges. We claim that H meets
the conditions of the simplex matching problem. The first condition is trivially
met. Suppose we anonymize the pair of rows ri, rj with cost Ci,j , so both rows
have 1

2Ci,j stars when anonymized. Observe that if we decided to anonymize
the group ri, rj , rk, the number of stars introduced per row would not decrease.
That is, for all i, j, k we have

1
3
· Ci,j,k ≥

1
2
· Ci,j .

By symmetry, we also have

1
3
· Ci,j,k ≥

1
2
· Cj,k,

1
3
· Ci,j,k ≥

1
2
· Ci,k.

Adding the three inequalities together,

Ci,j,k ≥
1
2
(Ci,j + Cj,k + Ci,k).

Therefore H is an instance of the simplex matching problem.
Finally, observe that any simplex matching of H directly corresponds to a

2-anonymization of D with the same cost, and vice-versa. 	

In the full version of this paper [4], we show that the proof of Theorem 1 also
carries over to the most general case of 2-Anonymity, where instead of only
suppressing entries with stars, we have a generalization hierarchy of possible
values to write to an entry.

Theorem 8. For every generalization hierarchy T , k-Anonymity-T is in P.
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4 k-Anonymity with Few Attributes

We now turn to studying the complexity of k-Anonymity with a constant number
of attributes. First we show that for an unbounded alphabet, the 3-anonymity
problem is still hard even with only 27 attributes. We use the following MAX
SNP-hard problem in our proof.

Definition 7. Max 3DM-3 (Maximum 3-Dimensional Matching With 3 Oc-
currences)
Instance: A set M ⊆ W × X × Y of ordered triples where W,X and Y are
disjoint sets. The number of occurrences in M of any element in W,X or Y is
bounded by 3. Let

C3DM (M ′) =
3|M ′|

|W |+ |X |+ |Y | .

Goal: Maximize C3DM (M ′) over all M ′ ⊆M such that no two elements of M ′

agree in any coordinate.

Reminder of Theorem 2. 3-Anonymity with just 27 attributes per record
is MAX SNP-hard. Therefore, 3-Anonymity does not have a polynomial time
approximation scheme in this case, unless P = NP.

Proof. To show 3-anonymity is MAX SNP-hard, we show that there is an L-
reduction from Max 3DM-3 to 3-Anonymity with 27 Attributes [14], since
it is known that Max 3DM-3 is MAX SNP-complete [11].

Given a Max 3DM-3 instance I = (M,W,X, Y ), construct a 3-Anonymity

instance D as follows:

1. Define Σ = M
⋃

W
⋃

X
⋃

Y , so that it contains a special symbol for each
triple in t ∈M and each element r ∈W

⋃
X
⋃

Y .
2. Add a row to D corresponding to each element ri ∈ W

⋃
X
⋃

Y , as follows.
For r ∈ W

⋃
X
⋃

Y , let tr,1, tr,2, tr,3 ∈ M be the three triples of M which
contain r (if there are less than three triples then simply introduce new
symbols).
– If r ∈W then add the following row to D:

tr,1 tr,1 tr,1 tr,1 tr,1 tr,1 tr,1 tr,1 tr,1 tr,2 tr,2 . . . tr,3

That is, the row contains nine copies of tr,1, nine copies of tr,2, then nine
copies of tr,3.

– If r ∈ X , then add the row:
tr,1 tr,1 tr,1 tr,2 tr,2 tr,2 tr,3 tr,3 tr,3 tr,1 tr,1 . . . tr,3

– If r ∈ Y , then add the row:
tr,1 tr,2 tr,3 tr,1 tr,2 tr,3 tr,1 tr,2 tr,3 tr,1 tr,2 . . . tr,3

Suppose wi ∈ W,xj ∈ X, yk ∈ Y are arbitrary. Then the corresponding three
rows in the database have the form:

wi twi,1 twi,1 twi,1 twi,1 twi,1 twi,1 twi,1 twi,1 twi,1 . . . twi,3

xj txj ,1 txj,1 txj ,1 txj,2 txj ,2 txj,2 txj ,3 txj,3 txj ,3 . . . txj,3

yk tyk,1 tyk,2 tyk,3 tyk,1 tyk,2 tyk,3 tyk,1 tyk,2 tyk,3 . . . tyk,3



400 J. Blocki and R. Williams

Observe that D has a total of 27n entries, where n = |X |+ |W |+ |Y |. Recall
Cost�3(D) is the optimal number of stars needed to 3-anonymize D. It is useful
to redefine 3-Anonymity as a maximization problem (where one maximizes the
information released). Let P be a 3-anonymous solution to D, and define

C3ANON (P ) = 1− Cost�3(P )
27n

,

so that OPT (D) = maxP {C3ANON (P )}.
Suppose D = {r1, . . . , rn} is an instance of 3-Anonymity obtained from the

above reduction. Three properties are immediate from the construction of D:

1. For any x rows ri, rj , rk, rl, where x ≥ 4, the cost of anonymizing these rows
is

Ci,j,k,l = 27x

because there is no alphabet symbol that is used in all 4 rows.
2. If {ri, rj , rk} /∈M then the cost of anonymizing the three corresponding rows

is
Ci,j,k = 27 · 3 = 81

because there is no alphabet symbol that is used in all 3 rows.
3. If {ri, rj , rk} ∈M then the cost of anonymizing the three corresponding rows

is
Ci,j,k = 26 · 3 = 78

because the three rows match in exactly one of the 27 columns.

These properties lead directly to the lemma:

Lemma 1. There is a polynomial time mapping g from 3DM-3 feasible solutions
to 3-anonymity feasible solutions, such that if M ′ ⊆ M is a 3DM-3 feasible
solution then C3DM (M ′) = 27 · C3ANON (g(M ′)).

The proof of Lemma 1 can be found in the full version of the paper [4].
It remains for us to show that the above reduction is in fact an L-reduction.

Let I be a Max 3DM-3 instance, with corresponding 3-Anonymity instance
f(I), and set α = 1

27 , β = 27. Now by Lemma 1

OPT (f(I)) =
1
27

OPT (I) ≤ αOPT (I)

so that condition (1) of an L-reduction holds. Similarly, if we have a solution of
f(I) of cost c2, then again by Lemma 1 we can quickly compute a solution to I
of cost c1 = 27c2. Therefore,

|OPT (I)− c1| = |27OPT (f(I))− 27c2| = β|OPT (f(I))− c2|

so that condition (2) also holds. 	
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To complement the above bad news, we now give an efficient algorithm for
optimal k-anonymity when the number of attributes and the size of the alphabet
are both small. Along the way, we also give an algorithm for the general k-
anonymity problem that runs in about 4n time.

A naive algorithm for k-anonymity would take an exorbitant amount of time,
trying all possible partitions of n rows into groups with cardinality between k
and 2k − 1. We can reduce this greatly using a divide-and-conquer recursion.

Reminder of Theorem 3. For every k > 2, k-Anonymity can be solved in
O(4npoly(n)) time, where n is the total number of rows in the database.

Proof. Interpret our k-anonymity instance S as a multiset of n vectors drawn
from |Σ|�. Define Sk = {T : T ⊆ S, |T | ∈ [n

2 ,
n
2 + 2k]}. That is, Sk contains all

multisubsets which have approximately n/2 elements. Then

Costk(S) = argminT∈Sk
[Costk(S − T ) + Costk(T )] , (1)

where Costk(S) is the cost of the optimal k-anonymous solution for S. Equation
(1) holds because (without loss of generality) any k-anonymized group of rows in
a database is at most 2k−1, so we can always partition the k-anonymized groups
of a database into two multisets where their cardinalities are in the interval
[n/2− 2k, n/2 + 2k].

Suppose we compute the optimal k-anonymity solution by evaluating equation
(1) recursively, for all eligible multisubsets T . In the base case when |S| ∈ [k, 2k−
1], we add a minimum number of stars that make all rows in S identical, and
return that solution.

We can simply enumerate all 2n possible subcollections of rows in S to produce
all possible T in equation (1). The time recurrence of the resulting algorithm is

T (n) ≤ 2n+1 · T (n/2 + 2k) + 2n.

This recurrence solves to T (n) ≤ O(4n · poly(n)) for constant k. 	

Reminder of Theorem 4. Let � be the number of attributes in a database, let c
be the size of its alphabet, and let n be the number of rows. Then k-Anonymity

can be solved in 2O(k2(2c)�) + O(n�) time.

If � and c are constants then there are at most c� possible rows. To specify a
group G of k-anonymized rows we write G = 〈r′, t〉 where t is the number of
times the anonymized row r′ occurs in the group. We can think of a k-anonymous
solution as a partition of the rows into such anonymized groups. The following
lemma will be useful for our algorithm.

Lemma 2. Suppose that our database D contained at least k(2k−1)2� copies of
a row r. Then the optimal k-anonymity solution must contain a group containing
only row r, i.e. G = 〈r, t〉 where t ≥ k.

Proof. Suppose for contradiction that D contains at least k(2k − 1)2� copies of
row r, but that the optimal solution did not contain a group G = 〈r, t〉. Without
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loss of generality we can assume k ≤ t ≤ 2k − 1 for each group, since larger
groups could be divided into two groups without increasing the cost. Therefore,
we must have at least k2� groups of the form 〈r′, t〉 which contain the row r.
Notice that each attribute of r′ either matches r or is a �. Hence there are at
most 2� possible values of r′. By the pigeonhole principle there must be at least k
groups Gi = 〈r′, ti〉 containing r where the anonymized rows r′ are all identical.
Note r′ must contain at least one star, since we assumed there was no group of
the form 〈r, t〉. Merge the groups Gi into one big group G = 〈r′, Σk

i=1ti〉 at no
extra cost. Each of the original k groups contained at least one copy of the row
r, so we can split G into two groups 〈r, k〉 and 〈r′,

(
Σk

i=1ti
)
− k〉 while saving at

least k stars. Hence, our original solution was not optimal, a contradiction. 	
For each row r, define Index(r) to be a unique index between 0 and cl − 1,
by interpreting r as an �-digit number in base c. Using Lemma 2, the following
algorithm can be used to obtain a kernelization of k-Anonymity, in the sense
of parameterized complexity [10].

Algorithm 1. k-anonymize a database D with small alphabet and attributes
Require: rowCount[i] = |{r ∈ D | Index(r) = i}|
Require: c, 	 small

T ← k(2k − 1)2�

for Row r ∈ D do
i ← Index(r)
if rowCount[i] ≥ T then

print “〈r, k〉” {By Lemma 2}
rowCount[i] ← rowCount[i] − k

end if
end for
{Now ∀i, rowCount[i] < T , so there are at most k(2k)2�(c�) = k(2k)(2c)� rows
remaining}

Lemma 3. Algorithm 1 runs in O(n�) time on a database D and outputs a
database D′ with at most O(k2(2c)�) rows, with the property that an optimal
k-anonymization for D′ can be extended to an optimal k-anonymization for D
in O(n�) time.

That is, for the parameter k + c + �, the k-anonymity problem is not only fixed
parameter tractable, but can also be kernelized in linear time.

Proof. (Sketch) By implementing rowCount as a hash table, each Index(r) and
lookup operation takes O(�) time. Hence, the initialization takes O(n�) time as
does the loop. By Lemma 2 there must be an optimal k-anonymity solution con-
taining 〈r, t〉 with t ≥ k, when r occurs at least k(2k−1)2� times in D′. Therefore,
if r occurs at least k(2k)2� > k+k(2k−1)2� times in D then there is an optimal
k-anonymity solution which contains the groups 〈r, k〉 and 〈r, t〉, so adding back
k copies of row r to D′ does not change the optimal k-anonymization, except for
the extra 〈r, k〉 group. 	
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Proof of Theorem 4. By Lemma 3, Algorithm 1 takes an arbitrary k-anonymity
instance D and reduces it to a new instance D′ with m ≤ k(2k)(2c)� rows in
time O(n�). We can then apply Theorem 3 to k-anonymize the instance D′ in
time O(4m · poly(m)). The total running time is 2O(k2(2c)�) + O(n�). 	

5 Conclusion

We have demonstrated the hardness and feasibility of several methods used in
database privacy, settling several open problems on the topic. The upshot is that
most of these problems are difficult to solve optimally, even in very special cases;
however in some interesting cases these problems can be solved faster. Several
interesting open questions address possible ways around this intractability:

– To what degree can the hard problems be approximately solved? For exam-
ple, the best known approximation algorithm for k-anonymity, given by Park
and Shim [15], suppresses no more than O(log k) times the optimal number
of entries. Could better approximation ratios be achieved when the number
of attributes is small?

– The best known running time for Simplex Matching is O(n3 + n2m2) steps
[3]. Here, n is the number of nodes and m is the number of hyperedges in the
hypergraph. In our algorithm for 2-anonymity, n is also the number of rows
in the database while m =

(
n
3

)
= O(n3) because we add a hyperedge for

every triples. Hence our algorithm for 2-Anonymity has running time O(n8).
Can this exponent be reduced to a more practical running time?
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Abstract. We ask the question – how can websites and data aggregators contin-
ually release updated statistics, and meanwhile preserve each individual user’s
privacy? Given a stream of 0’s and 1’s, we propose a differentially private con-
tinual counter that outputs at every time step the approximate number of 1’s seen
thus far. Our counter construction has error that is only poly-log in the number
of time steps. We can extend the basic counter construction to allow websites to
continually give top-k and hot items suggestions while preserving users’ privacy.

1 Introduction

Websites such as online retailers, search engines and social networks commonly publish
aggregate statistics about their users to realize valuable social and economic utilities.
Moreover, the published statistics are continually updated over time as new data arrive.
Such practices are ubiquitous and we name a few examples below. Sites such as Ama-
zon, IMDB, Delicious and Flickr recommend popular items to users to enhance their
browsing experience and engage their interests. Search engines such as Google and
Yahoo help a user to auto-complete her search query by suggesting the most frequent
search terms matching the prefix specified by the user. During political campaigns,
websites survey the population and continually update the support rates for candidates.

Releasing aggregate information about users may seem harmless at first glance.
However, previous work has shown that such statistical disclosures can expose sen-
sitive information about an individual user [3, 11]. In particular, sites that continually
update the published statistics over time can give even more leverage to the adversary
and result in more severe privacy leakage [1].

In this paper, we ask the question – how can we guarantee the users’ privacy when a
website must continually publish new statistics as new data arrive? Independent from
our work, Dwork et.al. also consider essentially the same problem, and they phrase the
problem as “differential privacy under continual observation” [6, 9, 10].

The setting we consider is different from the traditional setting in which differential
privacy was studied. The traditional setting assumes a static database, and a curator who
must answer k interactive queries or publish some sanitized statistics of the database
non-interactively. In our setting, the database is dynamic and evolves over time, and
a mechanism must update the published statistics as new data items arrive. Therefore,
traditional differentially private mechanisms either fail to apply directly to our setting,
or result in an unsatisfactory loss in terms of utility or privacy if applied naively.

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 405–417, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1.1 Contributions

Differentially private continual counter with poly-log error. We consider the continual
counting problem. Assume that the input stream σ ∈ {0, 1}N is a sequence of bits. The
bit σ(t) at time t ∈ N may denote whether an event of interest occurred at time t, e.g.,
whether a user purchased an item at time t. At every time step t ∈ N, the mechanism
must output an approximate count of the number of 1’s seen thus far.

We design an ε-differentially private continual counter with small error. Specifically,
for each t ∈ N, with probability at least 1 − δ, we guarantee O(1

ε · (log t)1.5 · log 1
δ )

error1. In an independent work by Dwork et.al. [9], they also show a similar upper
bound of O(1

ε · (log t)1.5) (omitting the δ term). The above upper bound is almost tight,
since Dwork et.al. [9] show that any ε-differentially private mechanism will for some
stream, with probability at least δ, make an error of at least Ω(1

ε (log T + log 1
δ )) at

some time before T .
Our mechanism achieves time unboundedness, i.e., the mechanism does not require

a priori knowledge of an upper bound on the time for which it will run, and provides
guarantees even when it is run indefinitely. This represents an improvement over the
work by Dwork et.al. [6] – their mechanism requires a priori knowledge of an upper
bound on the number of time steps.

Pan privacy. Dwork et.al. first introduced the notion of pan privacy [6, 10]. A mecha-
nism is pan privacy if it can preserve differential privacy even when an adversary can
observe snapshots of the mechanism’s internal states, e.g., in subpoenas. We show how
to modify our mechanism to achieve pan privacy, without incurring any loss in the
asymptotic guarantees (Section 5).

Applications. Our continual counter construction has immediate practical applications.
As mentioned earlier, it is a common practice for websites to suggest to users the most
popular movies, news items or photos. We show how websites can continually make
such top-k or hot items suggestions in a differentially private manner. Due to limited
space, we describe applications in the full version of the paper [18].

The counter is also an important primitive in numerous data streaming algorithms
[2, 14, 16]. Our differentially private continual counter is an initial step towards design-
ing a broad class of streaming algorithms that continually report outputs over time.

1.2 Related Work

Most closely related work. Independent from our work, Dwork et.al. show a similar
result in a recent paper [9]. They also construct a differentially private continual counter
with error O(1

ε · (log t)1.5) where t is the number of timesteps. Moreover, they show
a lower bound of Ω(O(1

ε · (log t)), indicating that the upper bound is almost tight. A
preliminary version of the result was revealed at the SODA’10 conference [6] in an

1 For large values of t, we can actually get a better bound O( 1
ε
· (log t)1.5 ·

√
log 1

δ
). To get

a high probability statement, we can set δ := 1
poly(t)

and the corresponding error becomes

O((log t)2/ε).
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invited talk by Dwork. The preliminary result contains a slightly looser upper bound
– a differentially private continual counter with error square root in the number of 1’s
seen thus far.

Dwork, Naor, Pitassi and Rothblum [10] recently propose the notion of pan privacy,
i.e., how to achieve differential privacy even in the presence of intrusions, in which the
adversary is allowed access to the mechanism’s internal states. Dwork et.al. used the no-
tion of pan privacy in the continual counter mechanism [6, 9], and showed how to make
their counter mechanism resilient against a single unannounced intrusion. Inspired by
their techniques, we also convert our mechanism to a pan private version that is immune
to a single unannounced intrusion or multiple afterwards announced intrusions.

Differential privacy in the traditional setting. In the traditional setting, a trusted curator
who holds a large data set must respond to queries interactively or publish sanitized
statistics about the data non-interactively. The notion of differential privacy was first
proposed and studied by Dwork et.al. [4, 8]. An extensive literature has since emerged,
studying the different tradeoffs between utility and privacy. To better understand the
motivation and state-of-the-art of this line of research, we recommend the readers to
these excellent survey papers by Dwork [5, 7].

Researchers have also applied theoretical results in differential privacy to real-world
applications. For example, McSherry and Mironov show how to build privacy into the
Netflix database published for the Netflix contest [15]. Korolova et.al. show how to
release search logs and click logs privately [13].

Attacks against privacy. A complementary line of research is attacks against privacy.
Narayanan et.al. show how to de-anonymize the Netflix data set [17]. Jones et.al. show
how to break the privacy of query log bundles [12]. More relevant to this work, Calan-
drino et.al. [1] recently demonstrate that by observing continual updates from websites
such as Amazon over a period of time, an adversary can learn individual user behavior
at a fine level of granularity. Our work is partly inspired by the problem they expose.

2 Preliminaries

2.1 Definitions

We consider streams of 0’s and 1’s. Formally, a stream σ ∈ {0, 1}N is a bit-string of
countable length, where N := {1, 2, 3, . . .} is the set of positive integers. Specifically,
σ(t) ∈ {0, 1} denotes the bit at time t ∈ N. We write [T ] := {1, 2, 3, . . . , T} and
σT ∈ {0, 1}T is the length T prefix of the stream σ. We will use the term item to refer
to a bit in the stream.

At every time t, we wish to output the number of 1’s that have arrived up to time t.

Definition 1 (Continual Counting Query). Given a stream σ ∈ {0, 1}N, the count for
the stream is a mapping cσ : N → Z such that for each t ∈ N, cσ(t) :=

∑t
i=1 σ(i). We

write c instead of cσ when there is no risk of ambiguity on the stream σ in question.

We now formally define the notion of a continual counting mechanism which continu-
ally outputs the number of 1’s seen thus far.
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Definition 2 (Counting Mechanism). A counting mechanism M takes a stream σ ∈
{0, 1}N and produces a (possibly randomized) mappingM(σ) : N → R. Moreover, for
all t ∈ N, M(σ)(t) is independent of all σ(i)’s for i > t. We can also view M(σ) as
a point in RN. When there is no risk of ambiguity on the stream σ in question, we drop
the dependence on σ and use M(t) to mean M(σ)(t).

Definition 3 (Time-bounded Mechanism). A counting mechanism M is unbounded,
if it accepts streams of indefinite lengths, i.e., given any stream σ, M(σ) ∈ RN. Given
T ∈ N, a mechanism M is T -bounded if it only accepts streams of lengths at most T
and returns M(σ) ∈ RT . In other words, the mechanism needs to know the value T in
advance and only looks at the length T prefix of any given stream.

We would like the mechanism to be useful, that is, its output should well approximate
the true count at any point of time. We formally define the notion of utility below.

Definition 4 (Utility). A counting mechanism M is (λ, δ)-useful at time t, if for any
stream σ, with probability at least 1 − δ, we have |cσ(t)−M(σ)(t)| ≤ λ. Note that λ
may be a function of δ and t.

Intuitively, a mechanism is differentially private if it cannot be used to distinguish two
streams that are almost the same. In other words, an adversary is unable to determine
whether an event of interest took place or not by observing the output of the mechanism
over time. For example, the adversary is unable to determine whether a user purchased
an item at some time t.

Definition 5 (Differential Privacy). Two streams σ and σ′ are adjacent if they dif-
fer at exactly one time t. A counting mechanism M is ε-differentially private (or pre-
serves ε-differential privacy) if for any adjacent streams σ and σ′, and any measur-
able subset S ⊆ RN (or S ⊆ RT for T -bounded mechanisms), Pr[M(σ) ∈ S] ≤
exp(ε) · Pr[M(σ′) ∈ S].

2.2 Tools

In the design of differentially private mechanisms, the Laplace distribution is often used
to introduce random noise [4, 8]. We use Lap(b) to denote the Laplace distribution with
mean 0 and variance 2b2. Its probability density function is x �→ 1

2b exp(− |x|
b ).

Dwork et.al. showed that if we mask the true answer of a query with Laplacian
noise proportional to the sensitivity of the query function, such a mechanism preserves
differential privacy for static databases [4, 8]. This is stated formally in the Fact 1.

Fact 1 (Laplace Distribution Maintains Differential Privacy). Let a, b ∈ R and |a−
b| ≤ Δ. Let γ ∼ Lap(Δ

ε ) be a random variable having Laplace distribution. Then, for
any measurable subset S ⊆ R, Pr[a + γ ∈ S] ≤ exp(ε) · Pr[b + γ ∈ S].

In the constructions that we propose, the noise may not come from a single Laplace
distribution, but rather is the sum of multiple independent Laplace distributions. We
now derive a property of the sum of independent Laplace distributions.
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Lemma 1 (Sum of Independent Laplace Distributions). Suppose γi’s are indepen-
dent random variables, where each γi has Laplace distribution Lap(bi). Suppose Y :=∑

i γi, and bM := maxi bi. Let ν ≥
√∑

i b
2
i and 0 < λ < 2ν2

bM
. Then, Pr[Y > λ] ≤

exp(− λ2

8ν2 ).

The proof to Lemma 1 is a Chernoff-like argument using moment generating functions.
We provide the detailed proof in the full version [18].

Corollary 1 (Measure Concentration). Let Y , ν, {bi}i and bM be defined as in

Lemma 1. Suppose 0 < δ < 1 and ν > max{
√∑

i b
2
i , bM

√
2 ln 2

δ }. Then, Pr[|Y | >

ν
√

8 ln 2
δ ] ≤ δ.

To simplify our presentation and improve readability, we choose ν :=
√∑

i b
2
i ·√

2 ln 2
δ and use the following slightly weaker result: with probability at least 1−δ, the

quantity |Y | is at most O(
√∑

i b
2
i log 1

δ ).

3 Time-Bounded Counting Mechanisms

In this section, we describe mechanisms that require a priori knowledge of an upper
bound on time. In Section 4, we show how to remove this requirement, and achieve
unbounded counting mechanisms.

3.1 Simple Counting Mechanisms

To aid the understanding of our contributions and techniques, we first explain two sim-
ple constructions.

Simple Counting Mechanism I. The mechanism is given a stream σ ∈ {0, 1}N, a differ-
ential privacy parameter ε > 0, and an upper bound T on time. At each time step t, the
mechanism samples a fresh independent random variable γt ∼ Lap(1

ε ), and releases
αt = c(t) + γt, where c(t) is the true count at time step t. It is not hard to see that
the above mechanism is O(T ε)-differentially private, and at each time step, the error is
O(1

ε ) with high probability. Alternatively, one can substitute ε′ = ε/T , and add much
bigger noise ∼ Lap( 1

ε′ ) at every time step. In this way, we get ε differential privacy;
however, now the error at each time step is O(T

ε ).
Simple mechanism I is a straightforward extension of the Laplace mechanism pro-

posed by Dwork et.al. [4, 8]. Basically, at every time step, the mechanism answers a
new query, and randomizes the answer with fresh independent noise. The down side
of this approach is that the privacy loss grows linearly with respect to the number of
queries, which is t in our setting.

Simple Counting Mechanism II. In essence, Simple Counting Mechanism II produces
a “sanitized” stream by adding independent Laplacian noise to each item in the stream.
Suppose the mechanism is given a stream σ ∈ {0, 1}N and a differential privacy param-
eter ε > 0. For each time step t ∈ N, the mechanism samples an independent random
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variable γt with Laplace distribution Lap(1
ε ). Define αt := σ(t) + γt. Then, the mech-

anism M gives the output M(σ)(t) :=
∑

i≤t αi at time t. A similar idea has been
proposed as a survey technique by Warner [19].

It is not hard to see that Simple Mechanism II can be implemented with O(1) words
of memory and is unbounded and ε-differentially private. We use Corollary 1 to analyze
the utility of the mechanism. Fix some time T . Observe that M(σ)(T ) − cσ(T ) =∑

t≤T γt =: Y . In this case, all γt ∼ Lap(1
ε ). Hence, all bt := 1

ε .

Theorem 1. Let 0 < δ < 1, ε > 0. the Simple Counting Mechanism II is ε-differentially
private, and is (O(

√
t

ε · log 1
δ ), δ)-useful at any time t ∈ N.

3.2 Intuition

We will describe the Two-Level Counting Mechanism and the Binary Counting Mecha-
nism. Informally, the Two-Level Mechanism achieves ε-differential privacy and O(t

1
4 )

error. The Binary Mechanism is a further improvement, and achieves O((log t)1.5) er-
ror while maintaining ε-differential privacy. We now explain the intuitions for the Two-
Level Mechanism and the Binary Mechanism.

A framework for describing mechanisms. We will describe our counting mechanisms
using a common framework. Recall that the job of the mechanism is to output an ap-
proximate count at every time. However, from now on, we will think of our mechanisms
as releasing noisy “p-sums” instead of counts. One can think of p-sums as intermedi-
ate results from which an observer can estimate the count at every time step herself.

Definition 6 (p-sum). A p-sum is a partial sum of consecutive items. Let 1 ≤ i ≤ j.
We use the notation Σ[i, j] :=

∑j
k=i σ(k) to denote a partial sum involving items i

through j.

Furthermore, once we add noise to a p-sum, we obtain a noisy p-sum denoted as Σ̂.
The mechanisms we consider will release noisy versions of these p-sums as new

items arrive. When an observer sees the sequence of p-sums, she can compute an esti-
mate for the count at each time step, in particular, by summing up an appropriate selec-
tion of p-sums. For example, if an observer sees a noisy p-sum Σ̂[1, k] = Σ[1, k] +
noise released at time step k, and another noisy p-sum Σ̂[k+1, t] = Σ[k+1, t]+noise
released at time step t, then she can estimate the count at time t by summing up these
two noisy p-sums, i.e., Σ̂[1, k] + Σ̂[k + 1, t]. Notice that the observer needs to be able
to do this not only for a specific time t, but also for every time step in N.

Now we rethink Simple Mechanism I using this framework. The noisy p-sums
released are noisy versions of the true count for each time step, that is, {Σ̂[1, t] =
Σ[1, t] + noise}1≤t≤T , where Σ[1, t] = c(t) is the true count at time t. In this case, the
Σ̂[1, t] itself is the estimated count at time t; and therefore can be regarded as a sum of
noisy p-sums (with only one summand). Notice that each item σ(t) appears in O(T )
of these p-sums. This means that when you flip an item in the incoming stream, O(T )
of these p-sums will be affected – this is the reason why the privacy loss is linear in T .

Now consider Simple Mechanism II. The noisy p-sums released are noisy versions
of each item Σ̂t = Σ[t, t] + noise, where Σ[t, t] = σ(t) is the t-th item itself. In this
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Table 1. Informal intuition for the Two-Level Mechanism and the Binary Mechanism. For sim-
plicity, we omit the parameters ε and δ from the bounds.

Mechanism
Each item Each count is Asymptotic error (while

appears in ? p-sums the sum of ? p-sums maintaining ε diff. priv.)

Simple I O(T ) O(1) O(T )
Simple II O(1) O(T ) O(

√
T )

Two-Level O(1) O(
√

T ) O(T
1
4 )

Binary O(log T ) O(log T ) O((log T )1.5)

case, each item appears in only one p-sum, however, each count is the sum of O(T )
p-sums. More specifically, to estimate the count at time t, the observer sums up t noisy
p-sums Σ̂1, . . . Σ̂t. As each noisy p-sum contains some fresh independent noise, the
noises add up. In fact, over t time steps, the error would be O(

√
t) with high probability.

Observation 1. (Informal.) Suppose a mechanism M adds Lap(1
ε ) noise to every p-

sum before releasing it. In M, each item in the stream appears in at most x p-sums,
and each estimated count is the sum of at most y p-sums. Then, the mechanism M
achieves x · ε differential privacy. Moreover, from Corollary 1, the error is O(

√
y

ε ) with
high probability. Alternatively, to achieve ε-differential privacy, one can scale appro-
priately by having ε′ = ε

x . Now if the mechanism instead adds Lap( 1
ε′ ) noise to each

p-sum, we achieve ε-differential privacy, and O(x
√

y

ε ) error with high probability.

Goal. From the above analysis, it appears that an inherent tension exists between utility
(i.e., small error) and privacy, and our challenge is how to strike a balance between the
two conflicting goals. We would like to achieve the following goals.

– Each item appears in a small number of p-sums . Intuitively, this limits the influ-
ence of any item and guarantees small privacy loss. More specifically, when one
flips an item in the incoming stream, not too many p-sums will be affected.

– Each count is a sum of a small number of p-sums . Each noisy p-sum contains
some noise, and the noises add up as one sums up several noisy p-sums. If each
output count is the sum of a small number of noisy p-sums, the accumulation of
noises is bounded. In this way, we can achieve small error.

3.3 Two-Level Counting Mechanism

We can use the p-sum idea to construct a Two-level Mechanism. As this is not our main
construction, we give an overview of the Two-level mechanism below and leave details
of the construction to the full version [18]. The basic idea is to release two types of
noisy p-sums: 1) a noisy p-sum for every item, that is, Σ̂[1, 1], Σ̂[2, 2], . . ., Σ̂[T, T ]
where T is an upper bound on the number of time steps; and 2) a noisy p-sum for each
contiguous block ofB = Θ(

√
T ) items, namely, Σ̂[kB+1, (k+1)B] for k ≥ 0. It is not

hard to see that each item appears in only 2 p-sums, and each count can be expressed
as the sum of O(

√
T ) p-sums. According to Observation 1, such a mechanism is 2ε-

differentially private, and achieves O(T
1
4 /ε) error with high probability.
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3.4 Binary Counting Mechanism

We could extend the idea of the Two-Level Counting Mechanism to a Multi-level
Counting Mechanism, and compute the optimal number of levels given an upper bound
on time. However, we take a better approach called the Binary Mechanism. The idea is
that at any time t, the counting mechanism internally groups the items that have arrived
to form p-sums of different sizes. The precise grouping of the items depends on the
binary representation of the number t – hence the name Binary Mechanism.

Given any number t ∈ N , let Bini(t) ∈ {0, 1} be the ith digit in the binary repre-
sentation of t, where Bin0(t) is the least significant digit. Hence, t =

∑
i Bini(t) · 2i.

Informally, if Bini(t) = 1, then there is a p-sum involving 2i items. We formally
describe the Binary Mechanism in Figure 1.

Input: A time upper bound T , a privacy parameter ε, and a stream σ ∈ {0, 1}T .
Output: At each time step t, output estimate B(t).
Initialization: Each αi and α̂i are (implicitly) initialized to 0.
ε′ ← ε/ logT
for t← 1 to T do

Express t in binary form: t =
∑

j Binj(t) · 2j .
Let i := min{j : Binj(t) = 0}.

αi ←
∑
j<i

αj + σ(t) (1)

// previous value (if any) of αi is overwritten

// αi = Σ[t − 2i + 1, t] is a p-sum of involving 2i items

for j ← 0 to i− 1 do

αj ← 0, α̂j ← 0

end

α̂i ← αi + Lap(
1
ε′

) (2)

// α̂i is the noisy p-sum Σ̂[t − 2i + 1, t]
Output the estimate at time t:

B(t) ←
∑

j:Binj(t)=1

α̂j (3)

end

Fig. 1. Binary Mechanism B

Binary mechanism: the p-sum view. The best way to understand the Binary Mechanism
is to think in terms of the p-sum framework described earlier. Basically, instead of
outputting the estimated counts, the mechanism could equivalently release a sequence
of noisy p-sums which provide sufficient information for an observer to estimate the
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count at each time step t. In particular, at any time t, the Binary Mechanism “releases” a
new noisy p-sum Σ̂[t− 2i + 1, t] of length 2i and ending at position t, where i denotes
the position of the least significant non-zero bit in the binary representation of t. This
p-sum and its noisy version are (temporarily) saved in the variables αi and α̂i.

It remains to specify how to estimate the count at each time step from previously
“released” noisy p-sums. Let i1 < i2 < . . . < im denote the positions of non-zero
bits in the binary representation of t. It is not hard to see that the count at time t is the
sum of m p-sums of size 2i1 , 2i2 , . . . , 2im respectively. They correspond to the values
of variables αi1 , . . . , αim maintained by the mechanism at time t. Specifically, the p-
sums are 1) αi1 , of the most recent 2i1 items; 2) αi2 , of the preceding 2i2 items; 3) αi3 ,
of the further preceding 2i3 items and so on.

In the full version [18], we show that the Binary Mechanism can be implemented
with small memory, as the mechanism can reuse the variables α’s and α̂’s.

Differential Privacy. Consider an item arriving at t ∈ [T ]. We analyze which of the
p-sums would be affected if σ(t) is flipped. It is not hard to see that the item σ(t)
can be in at most logT p-sums. In particular, it can be in at most 1 p-sum of size 2j ,
where j ≤ logT . Observe that each noisy p-sum maintains ε

log T -differential privacy
by Fact 1. Hence, we can conclude the ε-differential privacy of the Binary Mechanism.

Theorem 2 (Differential Privacy). For T ∈ N, the Binary Mechanism preserves T -
bounded ε-differential privacy.

Utility. We next consider the usefulness of the Binary Mechanism. Each estimated
count B(t) is the sum of at most logT noisy p-sums, and each noisy p-sum con-
tains fresh, independent Laplace noise Lap( log T

ε ). Therefore, the error at time t is the
summation of at most O(log t) i.i.d. Laplace distributions Lap( log T

ε ). We use the Corol-
lary 1 to conclude the mechanism’s usefulness.

Theorem 3 (Utility). For each t ∈ [T ], the T -bounded Binary Mechanism is (O(1
ε ) ·

(logT ) ·
√

log t · log 1
δ , δ)-useful at time t ∈ [T ].

4 Unbounded Counting Mechanisms

Previously, we mainly considered time-bounded mechanisms, i.e., the mechanism re-
quires a priori knowledge of an upper bound on the time. We now describe how to
remove this assumption and derive unbounded counting mechanisms.

We describe the Hybrid Mechanism which gives a generic way to convert any time-
bounded mechanismM into an unbounded one by running two mechanisms in parallel:
(1) an unbounded mechanism that only outputs counts at time steps t being powers of 2;
(2) a time-bounded mechanism M to take care of items arriving at time steps between
successive powers of 2.

Logarithmic Counting Mechanism. First, consider an unbounded mechanism which
only reports the estimated counts at sparse intervals, in particular, when t is a power of
2. We would expect such a mechanism to have better guarantees than one that has to
report at every time step.
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So what do we do when t is not a power of 2? We know the approximate count ĉ1 for
the time period [1, T ] where T = 2k for some non-negative integer k. Suppose we also
know the approximate count ĉ2 for the time period [T + 1, t] where T + 1 ≤ t ≤ 2T .
Then we can estimate the count at time t as ĉ1 + ĉ2. Therefore, it remains for us to
count the 1’s between [T, t] for any t ∈ [T + 1, 2T ], We can simply apply a T -bounded
mechanism (e.g., the Binary Mechanism) for this task.

We now design an unbounded mechanism called the Logarithmic Mechanism which
reports the count only when the time t is a power of 2.

Input: Differential privacy parameter ε, and a stream σ ∈ {0, 1}N.
Output: ∀k ∈ Z, at time t = 2k, output estimate L(t).
Initialization: β ← 0.
foreach t ∈ N do

β ← β + σ(t)
if t = 2k for some k ∈ Z then

β ← β + Lap(1
ε )

Output L(t) ← β
end

end

Fig. 2. Logarithmic Mechanism L

The idea for the Logarithmic Mechanism is quite simple. The mechanism internally
keeps a value β which is initialized to 0. β is used to keep track of the approximate
count at any point of time. As an item comes in, its value is added to β. At t equal to a
power of 2, the mechanism adds fresh randomness to the value β (on top of randomness
previously added), and outputs β.

If t is a power of 2, it is clear that the accumulated error at time t is a sum of O(log t)
independent Laplace distributions Lap(1

ε ). Hence, we have the following guarantee
from Corollary 1.

Theorem 4. The Logarithmic Counting Mechanism is unbounded, preserves ε-
differential privacy and is (O(1

ε ) ·
√

log t · log 1
δ , δ)-useful at time t = 2k for some

k ≥ 0.

Logarithmic Mechanism: the p-sum view. The Logarithmic Mechanism also has a p-
sum interpretation. Equivalently, one can think of it as releasing the noisy p-sums
α̂0 = Σ̂[1, 1], as well as α̂k = Σ̂[2k−1 + 1, 2k] for every k ≥ 1, Now an observer can
estimate the count at time t = 2k as

∑k
i=0 α̂i.

Hybrid Mechanism. We combine the Logarithmic Mechanism and a time-bounded
counting mechanism to process a given stream σ. We run one copy of ε

2 -differentially
private Logarithmic Mechanism, which reports an approximate count when t is a
power of 2. Suppose the Logarithmic Mechanism has reported count L(T ) at T = 2k

for some non-negative integer k. For time t in the range T + 1 ≤ t ≤ 2T , we run an
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ε
2 -differentially private T -bounded counting mechanism denoted as M to count the
number of 1’s in the range [T + 1, t]. We write τ = t − T . At time t, let M(τ) be the
number of 1’s in [T + 1, T + τ ] reported by the T -bounded counting mechanism M.
Then, the hybrid mechanism reports L(T ) +M(τ) at time t.

Input: Differential privacy parameter ε, a stream σ ∈ {0, 1}N, Logarithmic
Mechanism L, and a time-bounded mechanism M.

Output: For each t ∈ N, output estimate H(t).
Initialization: T ← 1.
Initiate the mechanism L with privacy parameter ε

2 on stream σ.
foreach t ∈ N do

Feed σ(t) to mechanism L.
if t = 2k for some k ∈ Z then

Output H(t) ← L(t)
T ← t
Initiate an instance of the T -bounded mechanismMT with time upper
bound T , privacy parameter ε

2 and stream σ(T ) ∈ {0, 1}T , where
σ(T )(τ) := σ(τ + T ) for τ ∈ [1, T ].

else
τ ← t− T
Feed σ(T )(τ) := σ(t) to mechanism MT .
Output H(t) ← L(T ) +MT (τ)

end
end
// At time t, T is the largest power of 2 no bigger than t.

// σ(T ) is the sub-stream of σ for the duration [T + 1, 2T ].
// MT is a time-bounded mechanism that runs for [T + 1, 2T ].

Fig. 3. Hybrid Mechanism H (with Mechanism M)

Theorem 5. Assume that given any ε > 0 and 0 < δ < 1, Logarithmic Mechanism
L is ε-differentially private and is (f(ε, t, δ), δ)-useful at time t. Similarly, assume
that given any ε > 0, the T -bounded mechanism M is ε-differentially private and is
(g(ε, T, τ, δ), δ

2 )-useful at time τ ∈ [T ], where g is monotonically increasing with T and
τ . Then, the Hybrid Mechanism described above is unbounded, preserves ε-differential
privacy, and is (f( ε

2 , t,
δ
2 ) + g( ε

2 , t, t,
δ
2 ), δ)-useful at time t.

The proof of Theorem 5 can be found in the full version [18].

Corollary 2. If we instantiate the Hybrid Mechanism using the Binary Mechanism as
the T -bounded mechanism, the resulting Hybrid Mechanism is unbounded, preserves
ε-differential privacy, and is (O(1

ε ) · (log t)1.5 · log 1
δ , δ)-useful at time t.

For simplicity, in the remainder of the paper, when we refer to the Hybrid Mechanism,
we mean the Hybrid Mechanism instantiated with the Binary Mechanism.
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Hybrid Mechanism: the p-sum view. One can also interpret the Hybrid Mechanism nat-
urally using the p-sum framework. Basically, one can equivalently think of the Hybrid
Mechanism as releasing the union of the noisy p-sums of the Logarithmic Mechanism
and the Binary Mechanism. From this set of noisy p-sums, an observer can compute
the approximate count at every time step t ∈ N.

5 Pan Privacy

Dwork et.al. formalized the notion of pan privacy [6, 10] to deal with intruders who can
observe snapshots of the mechanism’s internal states, e.g., in a subpoena. For mecha-
nisms in the p-sum framework, we can apply techniques similar to those proposed in
the work [6] to make them pan private against a single unannounced intrusion, with only
a constant-factor loss in the error term. Furthermore, we extend the idea to construct
pan private counting mechanisms resilient against multiple announced (afterwards) in-
trusions. The error scales with a square root factor on the number of intrusions made.
We provide detailed definitions of pan privacy and constructions in the full version [18].
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Abstract. In this paper, we study the revenue maximization envy-free
pricing in multi-item markets: there are m items and n potential buyers
where each buyer is interested in acquiring one item. The goal is to deter-
mine allocations (a matching between buyers and items) and prices of all
items to maximize the total revenue given that all buyers are envy-free.

We give a polynomial time algorithm to compute a revenue maximiza-
tion envy-free pricing when every buyer evaluates at most two items a
positive valuation, by reducing it to an instance of weighted independent
set in a perfect graph and applying the Strong Perfect Graph Theorem.
We complement our result by showing that the problem becomes NP-
hard if some buyers are interested in at least three items.

Next we extend the model to allow buyers to demand a subset of
consecutive items, motivated from TV advertising where advertisers are
interested in different consecutive slots with different valuations and
lengths. We show that the revenue maximization envy-free pricing in
this setting can be computed in polynomial time.

1 Introduction

In a multi-item market [20,10], there are m homogeneous items and n potential
buyers where each buyer i is interested in acquiring one item at different valua-
tions vi(·). As an output of the market, an allocation (i.e., a matching between
buyers and items) and a price vector are specified; the goal of the market designer
is to find allocation and price vectors to satisfy certain fairness conditions. Wal-
rasian market equilibrium [21], one of the most classical economic goals, says
that all buyers are envy-free for the given price vector and the market clears
(i.e., all unallocated items are priced at zero). Walrasian equilibrium captures
both the fairness condition for buyers and market clearing condition for the mar-
ket from a global point of view. It is observed by Shapley and Shubik [20] that
in multi-item settings, a Walrasian equilibrium always exists; later Demange,
Gale and Sotomayor [10] propose a dynamic auction process that converges to
an equilibrium. Multi-item markets are of particular importance nowadays due
to huge applications in advertising markets.

While Walrasian equilibrium has long been recognized as an elegant tool and
benchmark for the analysis of competitive markets in economics, it may not
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exist in general and even when one exists, the revenue it generates (i.e., the
total price paid by buyers) can be rather low. The latter is a critical business
concern for market designers, e.g., search engines like Google and Yahoo!. As
a relaxation to Walrasian equilibrium, envy-free pricing [17] was proposed to
focus on the revenue aspect of the market. Envy-free pricing does not require the
market clearing condition and only insists on the fairness condition in Walrasian
equilibrium. As a result, an envy-free pricing always exists (for example all prices
are infinite); our goal is to find an envy-free pricing with maximum revenue.

In this paper, we study revenue maximization envy-free pricing in multi-item
matching markets. In terms of the terminologies of envy-free pricing, our problem
falls into the setting of unit-demand and unit-supply1. Despite of the recent surge
in studies of envy-free pricing [17,18,5,9,14,1,12,2,4,6,7,13], surprisingly, it has
not been received much attention in multi-item matching markets.

1.1 Our Results

Our main result relies on a polynomial time algorithm to compute revenue max-
imization envy-free pricing when every buyer evaluates at most two items a
positive valuation, i.e., |{j | vi(j) > 0}| ≤ 2 (such number is called the degree of
a buyer). Note that such implication of small degrees does happen in applica-
tions like housing market and keywords advertising. We complement our result
by showing an NP-hardness result of computing revenue maximization envy-free
pricing when the maximum degree of buyers is at least three. Our results imply
the limits of tractability of envy-free pricing in multi-item matching markets.
Note that by adding identical copies for items with multiple supplies, the hard-
ness proof of unit-demand setting given by Guruswami et al. [17] implies that
the problem is NP-hard when the maximum degree of buyers is eight.

At a high level view of the algorithm, we reduce the envy-free pricing prob-
lem to an instance of weighted independent set on a Berge graph and apply the
Strong Perfect Graph Theorem [8], which says that a graph is perfect if and only
if it is a Berge graph. While the weighted independent set problem is NP-hard
in general, it can be solved in polynomial time in perfect graphs by the seminal
result of Grötschel, Lovász and Schrijver [15]. Such reduction to independent set
on perfect graphs turns out to be a powerful approach in solving revenue maxi-
mization envy-free pricing problems and has been used in [6,13]. The reduction
in our setting, however, is more complicated and very different from that of [6].
In the setting of [6], there is a metric space among items behind all valuations,
which implies a transitivity property: if buyer i prefers (to buy the item at) lo-
cation j and buyer j prefers location k, then i prefers k as well. Such transitivity
property is crucial to derive a directed acyclic graph, and based on which it is
shown that the constructed graph is perfect. In our setting, however, we do not
have such transitivity condition as the valuations can be arbitrary. Therefore,

1 If items have multiple supplies, we can make the same number of identical copies
for each item so that buyers demand all these copies at the same value. In this way,
the envy-free pricing of the two instances are equivalent.
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we need to explore the structure of the problem in more depth to obtained the
desired result.

In general, envy-free pricing is easy if we simply look for a feasible solution.
The complication arises when the envy-free condition is imposed on the top of
revenue maximization — it has the tradeoff between whether it is more profitable
to charge a higher price from a buyer for an item or charge a lower price and make
up the difference in volume (since more buyers would be able to afford the item,
which forces them to win other items). A fundamental observation in our setting
is that in any revenue maximization solution, if buyer i wins item j with a price
equal to its full value vi(j), due to the fact that the degree of buyers is at most 2,
it effectively uniquely determines the allocations and prices of some other items
through a chain structure (i.e., if i′ demands j and j′ and vi′(j) > vi(j), then i′

has to win j′). The chain structure allows us to translate envy-free pricing to the
problem of finding buyer-item pairs where the buyer is fully charged at price vi(j)
(such a pair is called a price-setter). The chain structure and price-setters play a
critical role in constructing the perfect graph and inspire the connection between
revenue maximization and independent set. Although the chain structure does
not have transitivity, it has other nice properties like semi-Euclidean (Lemma 3)
and transitivity or symmetry (Lemma 4). These properties are the keys for our
reduction and proving the constructed graph is perfect.

Finally, we extend the unit-demand setting to allow buyers to demand a sub-
set of consecutive items, motivated from TV advertising [19] where advertisers
are interested in different consecutive slots with different values and lengths.
Note that when there are unlimited supplies for each item, this is precisely the
“highway” problem introduced in [17] and shown to be strongly NP-hard [11].
For our setting, we show that the revenue maximization envy-free solution can
be computed in polynomial time. Instead of describing the algorithm explicitly,
we show a stronger result — a Walrasian equilibrium always exists and can be
computed in polynomial time — by proving that the demand matrix is totally
unimodular, from which we know that a Walrasian equilibrium always exists [3].
Further, by the seminal result of Gul and Stacchetti [16], a Walrasian equilibrium
always maximizes social welfare (and therefore revenue in our setting).

1.2 Related Work

The problem of revenue maximization envy-free pricing was initiated by Gu-
ruswami et al. [17]; it was shown that computing an optimal envy-free pricing
is APX-hard, even items have unlimited supply and buyers are unit-demand or
single-minded (i.e., demand a fixed subset of items). Briest [4] showed that given
appropriate complexity assumptions (the hardness of the balanced bipartite in-
dependent set problem in constant degree graphs or refuting random 3CNF
formulas), the envy-free pricing problem in general can not be approximated
within O(logε n) for some ε > 0.

For the unit-demand setting, Guruswami et al. [17] gave an O(log n) approx-
imation algorithm. Chen et al. [6] provided a polynomial time algorithm to
compute a revenue maximization envy-free pricing when there is a metric space
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behind all items. For the multi-unit demand setting, [6] gave an O(logD) ap-
proximation algorithm under the same metric space assumption, where D is the
maximum demand, and Briest [4] showed that the problem is hard to approxi-
mate within a ratio of O(nε) for some ε, unless NP ⊆

⋂
ε>0 BPTIME(2nε

).
When buyers are single-minded, Guruswami et al. [17] and Balcan et al. [2]

gave an O(logm + logn)-approximation algorithm for unlimited supplies. An
almost tight lower bound was derived by Demaine et al. [9]. A number of special
cases has been studied, such as the highway problem [17,1,5,11], the tollbooth
problem [17,14,5] where buyers desire paths in a graph, and the graph vertex
pricing problem [1] where each buyer requests the two endpoints of an edge in a
given graph. When items have limited supply, Cheung and Swamy [7] showed an
O(
√
m log umax)-approximation algorithm, where umax is the maximum supply

of items, and an O(log umax)-approximation algorithm for the highway problem.

2 Model and Main Results

There are a set A of m homogeneous items with unit supply each and n potential
buyers where each buyer i is interested in acquiring one item. For each buyer i
and item j, there is a value vi,j denoting the maximum amount that i is willing
to pay for j. Let Ai = {j ∈ A | vi,j > 0} be the set of items that buyer i is
interested in. We denote by |Ai| the degree of buyer i.

An output of the market is composed of an allocation vector x = (x1, . . . , xn),
where xi is the item that i wins, and a price vector p = (p1, . . . , pm) for all items.
If i does not win any item, denote xi = 0. Note that xi = xi′ for any i = i′ unless
xi = xi′ = 0. Given an output (x,p), if buyer i wins item j, i.e., xi = j, we say i
is a winner and his utility is defined to be vi,j−pj; otherwise, his utility is defined
to be 0. An output (x,p) is envy-free if the utility of everyone is maximized for
the given prices p, i.e., vi,xi−pxi ≥ vi,j−pj for any item j (denote vi,0 = p0 = 0).

Our main focus is to consider the complexity of computing an optimal envy-
free pricing that maximizes the total revenue, i.e.,

∑n
i=1 pxi . Note that in our

model, for any given price vector, due to envy-freeness, we can find a corre-
sponding allocation that maximizes the total revenue by a matching technique
or conclude that there is no feasible solution. Hence, for simplicity we will ig-
nore allocations in the output and only focus on pricing. We have the following
hardness result.

Theorem 1. The optimal envy-free pricing is NP-hard when the maximum de-
gree of buyers is at least 3, even when each buyer has the same valuation towards
all his desired items.

On a positive side, if the degree of all buyers is at most 2, i.e., |Ai| ≤ 2, an
optimal envy-free pricing can be solved in polynomial time, as the following
claim states. (Details of the algorithm are given in the following section.)

Theorem 2. There is a polynomial time algorithm to compute an optimal envy-
free pricing when the degree of all buyers is at most 2.
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3 Main Algorithm

In this section, we will describe our polynomial time algorithm to compute an
optimal envy-free pricing when |Ai| ≤ 2. The main idea of the algorithm is as
follows: We define the notion of a “price-setter” as a pair of a buyer i and an
item j such that i wins j at a price equal to his full valuation pj = vi,j . By envy-
freeness, such assignment determines the allocations and prices for several other
buyers and items. Then, we can consider the total revenue collected from all
these items together, and assign them to the price-setter pairs. By considering a
graph of all pairs that can be simultaneously price setters, we reduce the revenue
maximization problem to weighted independent set. Our main insight is that the
graph is perfect, and the independent set can thus be found in polynomial time.

We will first introduce the notion of chain structure in Section 3.1 and analyze
its properties in Section 3.2. We will reduce an optimal envy-free pricing to a
weighted independent set problem in Section 3.3 and show that the constructed
graph is perfect in Section 3.4.

3.1 Price-Setter and Chain Structure

We first establish the following observation for an optimal envy-free pricing.

Lemma 1. Let p be an optimal envy-free pricing. If buyer i wins item j and
vi,j > pj, then there is a buyer i′ = i and an item j′ = j such that i′ wins j′ and
vi,j − pj = vi,j′ − pj′ .

Proof. By the given condition, buyer i wins item j and vi,j > pj . As we cannot
increase pj to obtain more revenue, there must be another item, say j′ = j, such
that i desires j′ as well (i.e., Ai = {j, j′}) and vi,j′ − pj′ = vi,j − pj. In this case,
there must be another buyer, say i′ = i, who wins j′. Otherwise, we can increase
the price of pj and pj′ by a sufficiently small amount ε > 0 such that i still
prefers to buy j. In the new pricing solution, the allocation and envy-freeness
of all other buyers will not change, and it generates a larger revenue, which
contradicts the optimality of p. 	

The above lemma implies a chain structure, illustrated by Figure 1:

– If i1 wins j1 and vi1,j1 > pj1 , there is j2 such that vi1,j1 − pj1 = vi1,j2 − pj2 .
– If i2 wins j2 and vi2,j2 > pj2 , there is j3 such that vi2,j2 − pj2 = vi2,j3 − pj3 .
– If i3 wins j3 and vi3,j3 > pj3 , there is j4 such that vi3,j3 − pj3 = vi3,j4 − pj4 .
– · · ·
– There is i� such that i� wins j� and vi�,j�

= pj�
.

We claim that items j1, . . . , j� are all different and there is no loop in the
above structure. This is because, if jα = jβ , where 1 ≤ α < β ≤ �, then
S � {iα, . . . , iβ−1} and A′ � {jα, . . . , jβ−1, jβ} form a self-contained system: As
the degree of all buyers in S is 2, their desired items are in A′ and all items in
A′ are allocated to buyers in S. By the construction of the chain structure, vi,j
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j1 j2 j3 j4 j�−1 j�

i1 i2 i3 i�−1 i�

Fig. 1. The chain structure

is strictly larger than pj for any i ∈ S and j ∈ Ai. Hence, we can increase each
price pj , for j ∈ A′, by ε > 0 such that all buyers in S are still satisfied with
their allocations, from which we get a higher revenue, a contradiction.

Note that at the end of the chain, i� wins j� at a price equal to his value
for j�. In other words, the price and allocation of j� effectively determine the
entire structure of the chain. In particular, the prices of j1, . . . , j�−1 cannot be
increased due to envy-freeness. All items and buyers in Figure 1 form a chain
structure when [i�, j�] is a price-setter, as defined below.

Definition 1 (Price-setter and chain structure). We say a tuple [i, j] a
price-setter if buyer i wins item j at price pj =vi,j . We say [j1, i1, j2, i2, . . . , j�, i�]
forms a chain structure if [i�, j�] is a price-setter and for k = 1, . . . , � − 1, ik
wins jk and vik,jk

− pjk
= vik,jk+1 − pjk+1 > 0.

By the above definition, if [j1, i1, j2, i2, . . . , j�, i�] forms a chain structure, then for
any 1 ≤ r ≤ �, [jr, ir, . . . , j�, i�] forms a chain structure as well. Intuitively, [i, j]
being a price-setter illustrates the fact that the seller charges a full value from
buyer i for the given allocation towards the goal of revenue maximization. The
effect of setting a price-setter is captured by a collection of chain structures where
the prices and allocations of those items are effectively uniquely determined.

For each buyer i and item j ∈ Ai, given the condition that i wins j at price
vi,j (i.e., [i, j] is a price-setter), we define H [i, j] ⊆ A and w[i, j] ∈ R as follows:

– If making [i, j] as a price setter leads to a contradiction2, let H [i, j] = ∅ and
w[i, j] = −∞.

– Otherwise, define H [i, j] ⊆ A to be the subset of items where j′ ∈ H [i, j] if
there are items j′ = j1, j2, . . . , j� = j and buyers i1, i2, . . . , i� = i such that
[j1, i1, j2, i2, . . . , j�, i�] forms a chain structure. (Note that in such a case,
{j1, . . . , j�} ⊆ H [i, j].) Let w[i, j] denote the total revenue obtained from
items in H [i, j], given that [i, j] is a price-setter.

Figure 2 shows an example of the definitions. For instance, when [i1, j2] is a
price-setter, i3 has to win j3 at a price no more than 0.5. Due to envy-freeness,

2 That is, given that [i, j] is a price-setter, it will lead to a situation where a buyer
cannot be satisfied. In other words, through the effect of the chain structure starting
from [i, j], eventually either at least two buyers request the same item or i desires
the other item rather than j.
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j1 j2 j3

i1 i2 i3 i4

2 0.5 4 3 2 2 1

H[i1, j1] = {j1, j2, j3}

H[i2, j1] = {j1}

H[i1, j2] = ∅

H[i2, j2] = {j2}

H[i3, j2] = {j1, j2}

H[i3, j3] = {j3}

H[i4, j3] = {j1, j2, j3}

w[i1, j1] = 4

w[i2, j1] = 4

w[i1, j2] = −∞

w[i2, j2] = 3

w[i3, j2] = 5

w[i3, j3] = 2

w[i4, j3] = 4

Fig. 2. Definition of H [·, ·] and w[·, ·]

i4 has to win j3 as well, which is impossible. Hence, H [i1, j2] = ∅. As another
example, when [i1, j1] is a price-setter, pj1 = vi1,j1 = 2 and we obtain a revenue
of 2 from i1, which implies that i2 must win j2 at price 1 and i3 must win j3 at
price 1. Hence, H [i1, j1] = {j1, j2, j3} and w[i1, j1] = 4.

Note that H [i, j] and w[i, j] can be computed in polynomial time. This is
because for each new item (with its price and allocation determined) added into
H [i, j], we can check in polynomial time if it leads any buyer unsatisfied, from
which we either can conclude that there is no feasible solution or need to add
more items. Further, the definition of H [i, j] and w[i, j] is independent of any
specific optimal envy-free pricing — it says that for any optimal solution where
[i, j] is a price-setter, due to envy-freeness, the price and allocation of all items
in H [i, j] are effectively uniquely determined, so as the total revenue obtained
from these items.

The following result implies that to find an optimal envy-free pricing, it suffices
to find the collection of price-setters of that pricing solution.

Lemma 2. Let S be the collection of price-setters of an optimal envy-free pricing
p. Let A′ be the set of items not allocated to any buyer. Then (i) A′∩H [i, j] = ∅
for any [i, j] ∈ S, (ii) H [i, j]∩H [i′, j′] = ∅ for any [i, j], [i′, j′] ∈ S, [i, j] = [i′, j′],
and (iii)

⋃
[i,j]∈S H [i, j] = A \ A′. That is, the collection of H [i, j] of all price-

setters plus A′ defines a partition of all items.

Proof. Consider any item k ∈ H [i, j] for any [i, j] ∈ S; there are items k =
j1, j2, . . . , j� = j and buyers i1, i2, . . . , i� = i such that [j1, i1, j2, i2, . . . , j�, i�]
forms a chain structure. Thus, k is allocated to buyer i1 in the chain, which im-
plies that A′∩H [i, j] = ∅. By the following semi-Euclidean property of Lemma 3,
k cannot be in another chain with a different price-setter, which implies that
H [i, j] ∩H [i′, j′] = ∅ for any [i′, j′] ∈ S.

It remains to show that the collection of H [i, j] of all price-setters plus A′

covers all items. Consider any item j′. Assume that buyer i′ wins j′ (if there is
no such a buyer, then j′ ∈ A′). If pj′ = vi′,j′ , then [i′, j′] itself is a price-setter,
which implies that [i′, j′] ∈ S and j′ ∈ H [i′, j′]. If pj′ < vi′,j′ , by the argument
of Figure 1 above, there must be a chain structure connecting i′ and j′ to some
price-setter [i, j], which implies that j′ ∈ H [i, j]. 	
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3.2 Properties of H[·, ·]
For each item j ∈ A, let T (j) = {i | vi,j > 0} be the set of buyers that are
interested in j. We have the following properties of H [·, ·], which will be used
crucially in the following discussions.

Lemma 3. (Semi-Euclidean) If there is an item k ∈ H [i, j] ∩ H [i′, j′], where
i = i′ and j = j′, then either j′ ∈ H [i, j] or j ∈ H [i′, j′].

Lemma 4. Assume that j′ ∈ H [i, j], j′ = j, where the corresponding chain is
C = [j′ = j1, i1, . . . , j�−1, i�−1, j� = j, i� = i]. Let the price of each item jr defined
by C be pr, r = 1, . . . , �. For any i′ ∈ T (j′),

– (Transitivity) if k ∈ H [i′, j′] and vi′,j′ > pj′ , then k ∈ H [i, j]. Further, if
Ai′ = {j′, j′′}, then j′′ ∈ H [i, j] when vi′,j′ > pj′ .

– (Symmetry) if H [i′, j′] = ∅ and vi′,j′ ≤ pj′ , then j ∈ H [i′, j′].

3.3 Construction of Graph G

We define a node-weighted graph G = (V,E) as follows: For each buyer i ∈
T (j), we include a vertex, denoted by i(j), with weight w(i(j)) = w[i, j]. Let
V = {i(j) | i ∈ T (j), j ∈ A}. The set of edges E is defined by the following three
categories Γ1, Γ2 and Γ3:

– Γ1: For each i, i′ ∈ T (j), there is an edge between i(j) and i′(j). That is, all
vertices in T (j) form a complete subgraph.

– Γ2: For each buyer i, if Ai = {j, j′} (i.e., i ∈ T (j) ∩ T (j′)), connect i(j) and
i(j′).

– Γ3: For each pair i(j), i′(j′) ∈ V , j = j′, there is an edge between i(j) and
i′(j′) if j′ ∈ H [i, j]. For the simplicity of the analysis below, we define the
direction of this type of edges to be i(j) → i′(j′).

Figure 3 gives an example of the construction of G of the instance given by
Figure 2. In the definition above, Γ1 ∩ (Γ2 ∪ Γ3) = ∅. Further, it is possible
that there are edges in both Γ2 and Γ3 (e.g., (i1(j1), i1(j2)) in Figure 3). In this
case, we will refer the edges to be in Γ3. A straightforward implication of the
definition of Γ3 is that if j′ ∈ H [i, j], there is an edge i(j) → i′(j′) for any
i′ ∈ T (j′).

Roughly speaking, edges in G capture the price-setter relation of the two
endpoints. That is, if there is an edge between i(j) and i′(j′), then at most one
of [i, j] and [i′, j′] can be a price-setter. This idea is illustrated by the following
key connection between envy-free pricing and graph G.

Theorem 3. Computing the optimal envy-free pricing is equivalent to finding
the maximum weighted independent set of G = (V,E).
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i1 i2 i3

i1

i2 i3

i4

T (j2)

T (j1) T (j3)

Fig. 3. Construction of graph G

3.4 G Is a Perfect Graph

Let Cn denote a cycle composed of n nodes, and co-Cn be the complement of Cn

(with respect to the complete graph with n nodes). A subgraph G′ of a graph G
is said to be induced if, for any pair of vertices i and j of G′, (i, j) is an edge of G′

if and only if (i, j) is an edge of G. A graph is called a Berge graph if it does not
contain Cn and co-Cn as an induced subgraph, for odd numbers n = 5, 7, 9, . . ..

Lemma 5. G does not have Cn and co-Cn as an induced subgraph, for odd
numbers n = 5, 7, 9, . . ..

From the above lemma, we know that G is a Berge graph. A graph is said to
be perfect if the chromatic number (i.e., the least number of colors needed to
color the graph) of every induced subgraph equals the clique number of that
subgraph. By the seminal Strong Perfect Graph Theorem [8], which states that
a graph is a perfect graph if and only if it is a Berge graph, we have the following
corollary:

Corollary 1. G is a perfect graph.

We know that the maximum weighted independent set problem can be solved in
polynomial time on perfect graphs by the seminal result of Grötschel et al. [15].
Combining all of these, we know the optimal envy-free pricing can be computed
in polynomial time, which completes the proof of Theorem 2.

4 The TV Advertising Problem

In this section, we extend the unit-demand setting to a special single-minded
setting motivated from TV advertising [19]: items j = 1, . . . ,m are consecutive
for a given order and each buyer i desires a subset of consecutive items. That
is, for each buyer i, there are αi and βi, where 1 ≤ αi ≤ βi ≤ m, such that i
demands the whole subset Si = {αi, αi + 1, . . . , βi} at value vi. (For instance,
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different advertisers are interested in different consecutive slots with different
values and lengths.)

Similar to the multi-item matching markets, the output here is composed of
an allocation vector x = (x1, . . . , xn) and a price vector p = (p1, . . . , pm), where
xi = 1 if buyer i wins all items in Si at price p(Si) =

∑
j∈Si

pj and xi = 0 if
i does not win anything. We require that xi = xj = 1 implies Si ∩ Sj = ∅ for
any i = j. An allocation x = (x1, . . . , xn) is called efficient if it maximizes social
welfare, i.e.,

∑
i vixi. The output (x,p) is envy-free if vi ≥ p(Si) when xi = 1

and vi ≤ p(Si) when xi = 0.
To study the revenue maximization envy-free solution, we consider a stronger

notion — Walrasian equilibrium: a tuple (x,p) is called a Walrasian equilibrium
if every buyer is envy-free and all unallocated items are priced at 0. In general,
Walrasian equilibrium may not exist; however, once it exists, it is well-known
that the allocation x is efficient [16].

The efficient allocation can be written by the following integer program (IP):

max
n∑

i=1

vixi

s.t.

n∑
i=1

ai,jxi ≤ 1, ∀ 1 ≤ j ≤ m

xi ∈ {0, 1}, ∀ 1 ≤ i ≤ n

where ai,j = 1 if item j ∈ Si and ai,j = 0 otherwise. Let M = (ai,j)n×m be
the coefficient matrix. Note that matrix M has the property that all 1’s are
consecutive in each row. We have the following observation.

Lemma 6. Any 0-1 matrix M = (ai,j)n×m where all 1’s are consecutive in each
row is totally unimodular, where a matrix is called totally unimodular if each
square sub-matrix has determinant equal to 0,+1, or −1.

Therefore, the linear program relaxation (LPR) of the above IP has an optimal
integral solution and thus the IP can be solved in polynomial time. Further,
the optimal solution of LPR being equal to IP gives an sufficient and necessary
condition for the existence of Walrasian equilibrium [3]. Hence, a Walrasian
equilibrium always exists in our setting. Further, for any given efficient allocation
x, an equilibrium pricing can be computed by the following linear inequalities
system (plus the condition where pj = 0 if j is unallocated), which always has a
feasible solution [16]: ∑

j∈Si

pj ≤ vi, ∀ i : xi = 1

∑
j∈Si

pj ≥ vi, ∀ i : xi = 0

Now return back to envy-freeness: for any optimal envy-free solution (x,p), it
can be seen that the revenue obtained from each winner i is exactly vi (otherwise,
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we can always increase pj for some j ∈ Si to obtain more revenue). Thus, the
total revenue obtained is

∑
i vixi, which is equal to social welfare. Therefore, a

Walrasian equilibrium also gives an optimal envy-free solution. In summary, we
have the following result:

Theorem 4. The optimal envy-free solution can be computed in polynomial time
for the TV advertising problem.

Finally, we remark that for the general single-minded buyers with unit-supply set-
ting, it is tempting to think that in any optimal envy-free solution (x,p), the al-
location x is efficient. However, as the following example shows, this is not true:
There are three items j1, j2, j3 and four buyers with S1 = {j1, j2, j3}, v1 = 4;
S2 = {j1, j2}, v2 = 3; S3 = {j2, j3}, v3 = 3; and S4 = {j1, j3}, v4 = 3. In the ef-
ficient allocation, the first buyer wins S1. To guarantee envy-freeness, there must
be p1 + p2 + p3 ≤ 4, p1 + p2 ≥ 3, p2 + p3 ≥ 3 and p1 + p3 ≥ 3, which has no
feasible solution. Indeed, a Walrasian equilibrium does not exist in this example
and the optimal envy-free solution will allocate, e.g., j1 and j2 to the second buyer
and charge p1 = p2 = 1.5 and p3 = ∞, which gives a total revenue of 3.

5 Conclusions and Future Research

We study the revenue maximization envy-free pricing in a multi-item matching
setting, showing that the problem is in polynomial time solvable if the degree of
very buyer is at most 2 (i.e., evaluates at most two items a positive valuation)
and becomes NP-hard if some buyers have degree of at least 3. Our results
imply the limits of tractability for envy-free pricing in multi-item markets. The
reduction from revenue maximization envy-free pricing to independent set in
perfect graphs turns out to be a powerful approach in solving algorithmic pricing
problems [6,13]. It is interesting to explore other applications of this approach
in either envy-free pricing or other equilibrium pricing concepts. Further, from
a practical point of view (e.g., towards applications in keywords advertising), it
would be interesting to develop better approximation results when the degrees
of buyers are small constants.
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Abstract. In many communications settings, such as wired and wireless local-
area networks, when multiple users attempt to access a communication channel at
the same time, a conflict results and none of the communications are successful.
Contention resolution is the study of distributed transmission and retransmission
protocols designed to maximize notions of utility such as channel utilization in
the face of blocking communications.

An additional issue to be considered in the design of such protocols is that self-
ish users may have incentive to deviate from the prescribed behavior, if another
transmission strategy increases their utility. The work of Fiat et al. [8] addresses
this issue by constructing an asymptotically optimal incentive-compatible proto-
col. However, their protocol assumes the cost of any single transmission is zero,
and the protocol completely collapses under non-zero transmission costs.

In this paper, we treat the case of non-zero transmission cost c. We present
asymptotically optimal contention resolution protocols that are robust to selfish
users, in two different channel feedback models. Our main result is in the Col-
lision Multiplicity Feedback model, where after each time slot, the number of
attempted transmissions is returned as feedback to the users. In this setting, we
give a protocol that has expected cost 2n + c logn and is in o(1)-equilibrium,
where n is the number of users.

1 Introduction

Consider a set of sources, each with a data packet to be transmitted on a shared chan-
nel. The channel is time-slotted; that is, the transmissions are synchronized and can
only take place at discrete steps. The packets are of fixed length and each fits within
one time slot. If only one user transmits in a given slot, the transmission is successful.
If more than one user attempts to transmit messages in the same slot, a collision occurs,
and all transmissions for that time step fail; the failed packets will need to be retrans-
mitted later. Typically, the goal of the system designer is to optimize global notions
of performance such as channel utilization or average throughput. If all of the sources
were under centralized control, avoiding collisions would be simple: Simply allow one
source to transmit at each time step, alternating in a round-robin or other “fair” fashion.
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What happens, though, if the transmission protocol must be executed in a distributed
fashion, with minimal additional communication? Further, what happens if each source
selfishly wishes to minimize the expected time before she transmits successfully, and
will only obey a protocol if it is in her best interest? Can we still design good protocols
in this distributed, adversarial setting? What information does each user need to receive
on each time step in order for such protocols to function efficiently?

In this game theoretic contention resolution framework, Fiat et al. [8] design an
incentive-compatible transmission protocol which guarantees that (w.h.p.) all players
will transmit successfully in time linear in the total number of users. One of the nice
features of their protocol is that it only needs a very simple feedback structure to work:
They assume only that each player receives feedback of the form 0/1/2+ after each
time step (ternary feedback), indicating whether zero, one, or more than one transmis-
sion was attempted. This positive result is actually based on a very negative observa-
tion, that the price of anarchy [15] in this model is unbounded: If transmission costs
are assumed to be zero, it is an equilibrium strategy for all users to transmit on all time
steps! Clearly, this is an undesirable equilibrium. Fiat et al. [8] construct their efficient
equilibrium using this bad equilibrium quite cleverly as a “threat”— the players agree
that if not all players have exited the game by a certain time, they will default to the
always-transmit threat strategy for a very large time interval. This harsh penalty then
incentivizes good pre-deadline behavior.

It is natural, however, to assume that players incur some transmission cost c > 0 (at-
tributable to energy consumption; see, for example, [17,24]) every time they attempt a
transmission, in addition to the costs they incur due to the total length of the protocol. If
the cost of transmitting is even infinitesimally non-zero, though, the threat strategy used
in [8] is no longer at equilibrium, and the protocol breaks down. We address this here,
by developing efficient contention resolution protocols that are ε-incentive-compatible
even under strictly positive transmission costs.

In this work, we consider the model of Collision Multiplicity Feedback (CMF). After
each collision, while the identity of the collided packets is lost, the number of the pack-
ets that participated in the collision is broadcast to all users. This information can be es-
timated (with small error) by a number of energy detectors. The CMF model has gained
substantial attention in the literature because it admits significantly better throughput
results than can be achieved with ternary feedback. In this setting, we present an effi-
cient contention resolution protocol that is robust to selfish players. We also propose
a contention resolution protocol for a perfect information feedback model, where all
players can identify which players transmitted.

1.1 Our Results

There are three main technical challenges we address:

1. Separating players by developing unique ids. Our protocols differ from previous
incentive-compatible contention resolution protocols in that they are history de-
pendent; that is, the protocol uses the transmission history in order to construct a
random ordering of the users. We will use algorithmic techniques similar to those
for “tree”-style protocols, originally developed by Capetanakis [7,6] and later fur-
ther developed in the information theory and networks literatures.
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2. Developing a “threat”. Like Fiat et al. [8], we use a threat strategy to incentivize
good behavior. However, the threat they use collapses under nonzero transmission
costs1. On the other hand, we use a weaker threat strategy and need to develop
efficient protocols that are incentive compatible despite our weaker punishment.

3. Detecting deviations. In order for a threat to be effective, the players need to be
able to detect and punish when one of them cheats. Our protocol employs a system
of checksums and transmissions whose purpose is to communicate information on
cheating—despite the fact that a “transmission” gives no other information to the
players than its presence or absence.

We address these challenges in two different feedback models, described below. In each
feedback model we consider, we present asymptotically optimal protocols that guaran-
tee to each user expected average cost that is linear in the total number of users. Our
protocols are in ε-equilibrium, where ε goes to 0 as the number of players grows. This
form of approximate equilibrium is a very reasonable equilibrium notion in our setting,
as games with a large number of players are technically the only interesting case—if
there were only a constant number of players, one could simply play the exact time-
independent equilibrium that appears in [8], although this has exponential cost.

Perfect Information. First, in Section 3, we consider the feedback model of perfect
information, where each user finds out after each time step what subset of sources
attempted a transmission. Perfect information is a very common assumption in non-
cooperative game theory. Making this strong assumption allows us to highlight the game
theoretic aspects of the problem, and the insight we develop in the context of this strong
feedback model is useful in developing algorithms under more restrictive feedback.

Unlike the trivial protocol under global ids, the randomized protocol that we present
is fair in the sense that all users have the same expected cost, regardless of how each
individual chooses to label them with local ids. Protocol PERFECT has expected cost
n/2 + logn and is a o(1)-equilibrium w.r.t. the number of players n.

Collision Multiplicity. Next, in Section 4, we present the main result of this work. Here,
we study a model with Collision Multiplicity Feedback (CMF), (otherwise known as M-
ary feedback; see e.g. [25,20,23]), in which after each time slot, users find out the exact
number of packets which were transmitted during the slot, but not the identities of the
transmitting players. In some practical situations, this feedback can be measured as the
total energy on the channel during one slot, by means of a number of energy detectors.
Our protocol MULTIPLICITY has expected cost 2n+c logn, where c is the transmission
cost, and is a o(1)-equilibrium.

1.2 Related Work

Contention resolution for communication networks is a well-studied problem. The
ALOHA protocol [1], given by Abramson in 1970 (and modified by Roberts [22] to
its slotted version), is one of the most famous multiaccess communication protocols.

1 Remember from the earlier description that the threat of Fiat et al. requires that all remaining
players will be transmitting in every step with probability 1 for a large number of steps. This
is an equilibrium only when the cost of a transmission is zero.
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However, Aloha leads to poor channel utilization due to an unnecessarily large num-
ber of collisions. Many subsequent papers study the efficiency of multiaccess protocols
when packets are generated by some stochastic process (see for example [12,11,21]).
Such statistical arrival models are very useful, but cannot capture worst-case scenarios
of bursty inputs, as in [5], where batched arrivals are modeled by all n packets arriving
at the same time. To model this worst-case scenario, one needs n nodes, each of which
must simultaneously transmit a packet; this is also the model we use in this work.

One class of contention resolution protocols explicitly deals with conflict resolution;
that is, if k ≥ 2 users collide (out of a total of n users), then a resolution algorithm is
called on to resolve this conflict (it makes sure that all the packets that collided are suc-
cessfully transmitted), before any other source is allowed to use the channel. For exam-
ple, [7,6,14,26] describe tree algorithms whose main idea is to iteratively give priority
to smaller groups, until all conflicts are resolved, with Θ(k+k log(n/k)) makespan. We
use a similar splitting technique in the algorithms we present here.

A variety of upper and lower bounds for the efficiency of various protocols have
been shown. For the binary model (transmitting players learn whether they succeed
or fail; non-transmitting players receive no feedback) when k is known, [10] provides
an O(k + logk logn) algorithm, while [18] provides a matching lower bound. For the
ternary model, [13] provides a bound of Ω(k(log n/ logk)) for all deterministic algo-
rithms. In all of the results mentioned so far in this subsection, it is assumed that players
will always follow the protocol given to them, even if it is not in their own best interest.

The CMF model we consider in this paper was first considered by Tsybakov [25],
where he proposed a protocol with throughput 0.533. Later Pippenger [20] showed,
using a random-coding existential argument, that the capacity of the channel is 1.
Ruszinkó and Vanroose later in [23] gave a constructive proof of the same result, by
designing a particular protocol reaching the throughput 1. Georgiadis and Papantoni-
Kazakos [9] considered the case when the collision multiplicity can be estimated by
energy detectors, up to an upper bound.

More recently, a variety of game theoretic models of slotted Aloha have also been
proposed and studied in an attempt to understand selfish users; see for example [2,16,3];
also [17,2] for models that include non-zero transmission costs. Much of the prior game
theoretic work only considers transmission protocols that always transmit with the same
fixed probability (a function of the number of players in the game). By contrast, we
consider more complex protocols, where a player’s transmission probability is allowed
to be an arbitrary function of her play history and the sequence of feedback she has
received. Other game theoretic approaches have considered pricing schemes [27] and
cases in which the channel quality changes with time and players must choose their
transmission levels accordingly [19,28], and [4] for a related model.

As discussed above, Fiat et al. [8] study a model very similar to the one we present
here; while the feedback mechanism they assume is not as rich as ours, crucially, their
model does not incorporate transmission costs. The idea of a threat is used both in [8]
and in our work, as a way to incentivize the players to be obedient. However, the tech-
nical issues involved are completely different in the two papers. [8] uses a threat in a
form of a deadline, while ours use a cheat detection mechanism to identify the fact that
someone deviated from the protocol. The protocol in Fiat et al. [8] relies for its threat
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on the existence of an extremely inefficient equilibrium, where all players constantly
transmit their packets for an exponentially long period. This equilibrium is used as an
artificial deadline, that is, the protocol switches to that inefficient equilibrium after lin-
ear time. This threat is history independent, in the sense that it will take place after a
linear number of time steps, regardless of any transmission history of the players. This
history-independent threat relies critically on the absence of transmission costs. On the
other hand, our threat is history dependent and makes use of a cheat-detection mech-
anism: any deviation from the protocol is identified with at least constant probability,
and the existence of a deviation is communicated to all players. In response, all play-
ers switch their transmission strategy according to the exponential time-independent
equilibrium (all players transmit at every slot with probability Θ(1/

√
n)).

The communication allowed by the feedback models we employ is critical in allow-
ing us to perform cheat detection and in allowing us to communicate the presence of a
cheater, so that she can be punished. Although we are not aware of lower bound results
that explicitly rule this out, we suspect that the ternary feedback mechanism used by
Fiat et al. [8] is not rich enough to allow such communication.

2 Definitions

Game structure. Let N = {1,2, . . . ,n} be the set of players in the game. Every player
carries a single packet of information that she wants to send through a common channel,
and all players (and all packets) are present at the start of the protocol. We assume that
time t is discretized, divided into slots t = 1,2, . . .. At any given slot t, a pending player
i has two available pure strategies: She can either try to transmit her packet in that slot
or stay quiet. We represent the action of a player i by an indicator variable Xit that takes
the value 1 if player i transmitted at time t, and 0 otherwise. The transmission vector
Xt at time t is represented by Xt = (X1t ,X2t , . . . ,Xnt), while the number of attempted
transmissions at time t is denoted by Yt = ∑n

i=1 Xit . The transmission sequence Xt is
the sequence of transmission vectors of time up to t: Xt = (X1,X2, . . . ,Xt). In a (mixed)
strategy pi, a player transmits at time t with probability pit = Pr[Xit = 1]. If exactly
one player transmits in a given slot, we say that the transmission is successful, and the
player who transmitted leaves the game;2 the game then continues with the rest of the
players. If two or more players attempt to transmit at the same slot, then they all fail
and remain in the game. The game ends when all players have successfully transmitted.

Feedback. At every time step t, the actual transmission vector is Xt . However, individ-
ual players do not have access to this complete information. Instead, after playing at
step t, each player i receives some feedback Iit that is a function of Xt . The feedback
is symmetric, i.e., every player who receives feedback gets the same information, i.e.,
I jt = Ikt = It . At any time step t, a player’s selected action is a (randomized) function of
the entire sequence of actions she has taken so far and the history Hit = (Ii1, . . . , Ii(t−1))
of the feedback that she has received from the channel. For convenience, we define a
player i’s personal history hit = (Xi1,Xi2, . . . ,Xit) as the sequence of actions she took.

We distinguish between two different feedback structures: (1) Perfect information:
After each time step t, all players receive as feedback the identities of the players who

2 Alternatively, we can assume the player transmits with pit = 0 on all subsequent rounds.
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attempted a transmission, i.e., Iit = Xt ,∀i ∈ N. However, there are not shared global
ids for the players; each player potentially has a different local ordering on the player
set, so, for example, the concept of the “lexicographically first player” has no common
meaning. (2) Collision Multiplicity Feedback (CMF): After each time step t, all players
receive as feedback the cardinality of the set of players who attempted a transmission,
but do not find out their identities. Here, Iit = Yt = ∑n

j=1 Xjt ,∀i ∈ N.

Transmission protocols. We define fit , a decision rule for player i at time t, as a func-
tion that maps a pair (hi(t−1),Hi(t−1)) to a probability pit . A protocol fi for player i is
simply a sequence of decision rules fi = fi1, fi2, · · · . A protocol is symmetric or anony-
mous and is denoted by f = f1 = . . . = fn iff the decision rule assigns the same proba-
bilities to all players with the same personal history. In other words, if hit = h jt for two
players i = j, it holds that fi,t+1(hit ,Hit) = pi(t+1) = p j(t+1) = f j,t+1(h jt ,Hjt).3

Individual utility. Given a transmission sequence XT wherein all players eventually
transmit successfully, define the latency or success time Si of agent i as argmint(Xit =
1,Xjt = 0, ∀ j = i). The cost to player i is made up of costs for the time-to-success
and transmission costs: Ci(XT ) = Si + c∑t≤Si

Xit . Given a transmission sequence XT

of actions so far, a decision rule f induces a probability distribution over sequences of
further transmissions. In that case, we write E f

i (XT ) for the expected total cost incurred
by a sequence of transmissions that starts with XT and then continues based on f . In
particular, for X0 := /0, E f

i (X0) is the expected cost of the sequence induced by f .

Equilibria. The objective of every player is to minimize her expected cost. We say
that a protocol f is in equilibrium if for any transmission sequence Xt the players can-
not decrease their cost by unilaterally deviating; that is, for all players i, E f

i (Xt) ≤
E

( f ′i , f−i)
i (Xt), for all f ′i ,t. Similarly, we say that a protocol f is in an ε-equilibrium if for

any transmission history Xt E f
i (Xt)≤ (1 + ε)E( f ′i , f−i)

i (Xt), for all f ′i , t.

Social utility. We are interested in providing the players with a symmetric protocol
that is in equilibrium (or ε-equilibrium, for some small ε > 0) such that the average
expected cost4 E f

i (X0) of any player i is low.

3 Perfect Information

In this section we consider the perfect information setting, where in every time slot
t, every user i receives feedback Iit = Xt , the exact vector of transmissions in t. It is
important to note that although in this setting each player can distinguish between her
opponents, we do not assume that the players have globally visible id numbers.5 Instead,
we assume that each player has a set of local id numbers to distinguish among her
opponents, but one player’s local labeling of all other players may be independent of
another’s. Unlike global ids, local ids do not pose very hard implementation constraints;

3 Notice that since the feedback is symmetric, hit = h jt implies Hit = Hjt .
4 Since we are interested in symmetric protocols, then the average expected cost is equal to the

expected cost of any player, and hence the social utility coincides with the individual utility.
5 In fact, if the identities of the players were common knowledge, then simply transmitting in

lexicographic order would be incentive-compatible and achievable.



436 G. Christodoulou, K. Ligett, and E. Pyrga

for instance, in sensor networks or ad-hoc mobile wireless networks, users may be able
to derive local ids for the other players based on relative topological position.

The main idea of the protocol we present here is to generate unique, random ids for
each player based on her transmission history. Next, with the use of those random ids,
the players are synchronized in a fair manner, and can exit the game within short time.

As mentioned earlier, this section is presented with transmission costs c as some neg-
ligible, nonzero ε , rather than treating general nonzero costs. This greatly simplifies the
presentation of this section and allows us to focus on the main ideas that the more com-
plicated protocol of Section 4 is based on. No such assumption on c will be made when
describing the protocol for the more restricted (and thus more challenging) feedback
model. Further, non negligible transmission costs can be incorporated into this protocol
as well. Due to lack of space, however, the details are omitted.

3.1 Protocol PERFECT

Protocol PERFECTworks in rounds. In each round k there is exactly one split slot and
some �k ≥ 0 leave slots. In a split slot, all pending players (i.e., the players that are
still in the game) transmit with probability 1/2, independently of each other and their
personal history. We define the id idi(k) of player i, after the kth split slot has taken
place, as a binary string of length k that represents the transmission history of player i
only on the split slots. When, after some round k, a player i manages to obtain a unique
id, i.e., idi(k) = id j(k), for all i = j, she will be assigned a leave slot. During a leave
slot a single prescribed player transmits with probability 1, while all other players stay
quiet. Such a player has a successful transmission and exits the game.

We will now describe what happens in a round in more detail. Consider the beginning
of round k + 1, for k ≥ 0. The first slot s is a split slot. Let nT be the total number of
players that transmitted in s. Every player observes the actions of all other players in
slot s, and updates their ids: The id of player j is updated by appending “1” or “0” at the
end of id j(k), depending on whether j transmitted in s or not. If there are players that
obtained unique ids within slot s then they must be assigned leave slots. Let Uk+1 be the
set containing those players. The order in which those players will be assigned leave
slots depends on the number nT of players that transmitted in s: The players in Uk+1 are
assigned leave slots in order of increasing id if nT is even, and in order of decreasing id
otherwise. All players in Uk+1 will transmit successfully and exit the game.6

The order in which the players in Uk+1 are assigned leave slots is not fixed, so as
to avoid giving incentive to a player to strategically create an id, instead of obtaining a
random one. If the players in Uk+1 were always assigned leave slots in order of increas-
ing id, then players would have incentive to remain quiet in split slots, as this would
result in an id of smaller value (they append a “0” to their id) than if they transmitted
(they would append a “1” to their id). To avoid this, the protocol prescribes the order to
be increasing or decreasing with equal probability (since nT is equally likely to be even
or odd); this way the players have nothing to gain by choosing any specific id.

6 A player i who is currently assigned a leave slot, keeps transmitting until she succeeds. This
technical detail ensures that the protocol will not collapse if some other player j tries to trans-
mit at that slot. This might happen only in the case that j deviates from the protocol and
transmits in the leave slot assigned to i.
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Fixing a player i, any player j (including i) is equally likely to obtain a unique id
in any round k, regardless of whether i transmits or stays quiet during the split slot of
round k. Therefore, i cannot reduce the expected number of rounds she needs until she
obtains a unique id, nor the expected number of players that will be assigned leave slots
before she does. Also, due to the assumption of arbitrarily small transmission cost c,
player i has no incentive to deterministically stay quiet during a split so as to save on
the transmission costs she incurs. Therefore, if no player could succeed during a split
slot (i.e, have a successful transmission due to being the single player transmitting in a
split), then the expected cost of i would have been exactly the same, whether i transmits
or stays quiet in a split. (Player i has no reason to deviate from the protocol in a leave
round, as this can only increase her total cost.) The possibility of players succeeding
during a split, creates an imbalance between the expected costs a player has per step
when she transmits and when she stays quiet during the split. However, the following
Theorem suggests that the maximum gain over all possible deviations is very small.

Theorem 1. Protocol PERFECT is a o(1)-equilibrium. Moreover, the expected total
cost of a player i is Ei(X0) = n/2 + logn.

Regarding the expected cost, note that player i is expected to obtain a unique id in
logn rounds and the players are equally likely to be assigned the k-th leave slot, for all
1≤ k ≤ n. Due to space limitations the proof of Theorem 1 is omitted.

4 Collision Multiplicity Feedback

In this section, we present the main result of the paper, Protocol MULTIPLICITY. This
protocol works under the CMF channel model, in which, after each slot t, all players
are informed about the number of attempted transmissions, i.e., Yt = ∑i∈N Xit . This in-
formation can be provided by a number of energy detectors, and it is broadcast to all
users. CMF is a well-studied and important feedback model in information theory, with
many nice theoretical results (see e.g. [25,20,9,23]).

Here we give an overview of the main ideas of Protocol MULTIPLICITY and we will
describe it in detail in Section 4.1. Protocol PERFECT presented in Section 3.1 crucially
relies on users knowing how each player acts at every time step, and thus does not work
under this feedback model. Instead, we design a different o(1)-equilibrium protocol
that overcomes this difficulty and has expected average cost 2n + c logn. Recall that in
Protocol PERFECT the id of a player is a string denoting all the random choices the
player had to make during split slots. For every time t, the players are partitioned into
groups according to their ids, i.e., all the players in the same group share the same id.
Moreover, all players perform a split at the same time, regardless of the group they
belong to. The protocol MULTIPLICITY that we present here, again uses the idea of
randomly generated ids, but here, each group splits separately, in a sequential manner.
Each split is followed by a validation slot, whose aim is to verify that the split has been
performed “correctly”.

In the CMF model, the players have an incomplete view of history. This might give
incentive to some players to “cheat” and pretend to belong to a different group (of
smaller size), in order to exit the game sooner. We discourage such a behavior us-
ing a “threat”: if any deviation from the protocol is observed, then all players switch
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their transmission strategy according to a costly equilibrium strategy. Finally, a cheat-
detecting mechanism is needed. The validation slots accomplish exactly this task; the
cheating is noted by all players if some validation step fails. In that case, all the players
get punished by switching to an exponential-cost time-independent equilibrium proto-
col (punishment protocol):

The punishment protocol. Fiat, Mansour and Nadav [8] show that, for transmission
cost c = 0 and k pending players, the time-independent symmetric protocol where ev-
ery player transmits with probability p = Θ(1/

√
k) is in equilibrium. It gives average

packet latency eΘ (
√

k), and thus switching to this protocol can be used as a high-cost
punishment for detected defections. For our punishment protocol, we adapt this proto-
col to the general case of transmission cost c≥ 0: the transmission probability becomes

pc = Θ(1/
√

k(1 + c)) and the expected cost is (1 + c)eΘ (
√

k/(1+c)).

4.1 Protocol MULTIPLICITY

The protocol works in rounds. Every round consists of a sequence of split and validation
slots such that each player participates in exactly one split slot in each round. We say
that a player participates in a split slot s, if the protocol requires the player to decide
randomly whether she will transmit in s or not.7

Assume that at the end of round k ≥ 0, there are Mk different groups (each group
consists of players that have the same transmission history with respect to the split slots
they have participated in).8 Let G j,k be the jth group. The players do not know which
players belong to group G j,k, but they will be aware of the size |G j,k| of the group.

Consider round k +1. At the beginning of the round, the players decide, using (as in
the perfect information setting) the parity of the total number xk of players that trans-
mitted during all the split slots of round k, whether groups will split in increasing or
decreasing order of ids. According to this order, every group will perform a split, fol-
lowed by a validation. Let G j,k be the current group performing a split and validation.

Split slot. When it is group G j,k’s turn, all players that belong to this group (and only
these players) will transmit with probability 1/2. All players (regardless of whether
they belong in G j,k or not) note the number nT, j of the members of G j,k that transmitted
in this slot. These nT, j players will form one of the new subgroups of G j,k.

Validation slot. The immediately next slot is a validation slot. All players of Gj,k that
transmitted in the previous split slot must now stay quiet, while those that did not, must
now transmit. This second set of players will form the other subgroup of G j,k. Again all
players can see their number nQ, j.

Right after the validation step has happened (and before the next group’s turn comes),
all players check if the members of G j,k were properly split into the two new subgroups,
by checking that the sum of the sizes of the two subgroups equals |G j,k|. If that is true,
this group is properly divided, and the next group will split.

If the check failed, then there is some player that deviated from the protocol: Either
one of the members of G j,k did not transmit in any of the split or validation slots of

7 As opposed to a player that the protocol instructs to stay quiet during s with probability 1.
8 At round 0 all players belong to the same group, i.e., M0 = 1.
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group G j,k (or even transmitted in both slots); or, some player that did not belong in
G j,k transmitted in either of these two slots. All players note therefore the fact that
someone has deviated, and they all switch to the punishment protocol.

We note that since now each group splits separately, there is no longer the need for
explicit leave-slots. A user that obtains a unique id in round k will transmit successfully
when her group G j,k performs a split if she is the only one to transmit (i.e., if she was
the only member of G j,k to append a ’1’ to her id); or she will transmit successfully
when her group performs the validation step if she was the only from G j,k that stayed
quiet in the split (i.e., she was the only member of G j,k to append a ‘0’ to her id).

If all players of a group G j,k transmitted during their corresponding split, the vali-
dation that normally follows will be skipped. The reason is that if all players of G j,k

transmitted in the split, no one would transmit in the validation slot. All players would
know that this slot should be empty, which would provide an incentive to “attack”, i.e.,
transmit during that slot, disobeying the protocol.

4.2 Analysis

Theorem 2. The expected cost of Protocol MULTIPLICITY for any player is 2n+c logn.

Proof. The expected number of split-slots required for a player to obtain a unique id,
is logn. Consider a round k. Every player will transmit exactly once during this round
(either in the split slot corresponding to her group, or in the validation slot immediately
following that split). If Mk−1 is the number of groups that have formed by the end of
round k− 1, then the duration of round k is at most 2Mk−1 slots, where Mk−1 ≤ 2k−1.
Therefore the total expected cost for i is bounded by 2n + c logn.

Theorem 3. Protocol MULTIPLICITY is a o(1)-equilibrium.

Proof. First, we will show that no player has an incentive to cheat. We say that a player
“cheats” if she transmits during a slot she was not supposed to or did not transmit when
she was expected to do so. If a player belonging to group G j,k, for some j,k, did not
transmit at the split slot of G j,k, nor at the corresponding validation slot, then the sum
nT, j + nQ, j will be found less than |G j,k|. This will make all players switch to the (high
cost) punishment protocol. Similarly, if a player transmits to the validation slot of group
G j,k when she was not supposed to, then nT, j + nQ, j > |G j,k|.

The remaining case is when a player i /∈ G j,k cheats by transmitting during the split
slot9 of group G j,k. Assume that i cheats when there are n′ ≤ n pending players in
total. She will get caught with probability at least 1/4 (if G j,k is of minimum size, i.e.

2).10 In that case she will have expected future cost (1+c)eΘ (
√

n′/(1+c)), worse than the
corresponding cost of following the protocol, i.e., O(n′). Therefore, the expected cost
of i becomes larger if she deviates instead of following the protocol.

9 Validation slots only happen if there is at least one player from G j,k that is supposed to transmit
in them. Thus, a player cannot have a successful transmission by attacking a validation slot.

10 If none of the members of G j,k transmitted during the split slot, then i has a successful trans-
mission. If all members but one transmitted, then the cheating does not get caught (and i only
had a failed transmission). In this case, it looks as if all members of G j,k transmitted, and the
validation slot is skipped. In all other cases, i gets caught.
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We note that a player cannot gain by deterministically choosing to stay quiet during
a split she participates in. She cannot save on the transmission cost c, as she would have
to transmit during the validation slot anyway. Moreover, staying quiet or transmitting
in the split does not affect the number of rounds a player must wait until she obtains a
unique id: Consider a player i belonging to some group G j,k. All other players from G j,k

transmit during the corresponding split slot with probability 1/2; the expected sizes of
the two new groups to be formed are the same and i has exactly the same probability of
obtaining a unique id, whether she transmits in the split, or stays quiet.

On the other hand, splits always happen before the corresponding validations. If i
obtains a unique id during round k, then she exits the game earlier if she was the only
player of her group transmitting at the split, than if she were the only quiet player. This
implies that “always transmit” gives a smaller expected (future) cost. It is therefore the
optimal strategy. Nevertheless, if pτ is the probability for a player that transmits during
split slots to succeed at the time step τ , then pτ is also the probability for a player that
stays quiet during split slots to succeed at the time step τ + 1 (since validation slots
occur immediately after split slots). Let Xt be any transmission history, and suppose
that t + 1 is a split slot that i participates in (otherwise i’s optimal strategy is to behave
according to the protocol). Let A(Xt) = t + ∑τ≤t Xiτ be the actual cost incurred by i
until time t, and let T (Xt),Q(Xt) be the total expected cost of player i if she always
transmits, stays quiet, respectively, in all future split slots she participates in. Then,

T (Xt)−A(Xt) = ∑∞
τ=t+1 τ pτ

Q(Xt)−A(Xt) = ∑∞
τ=t+1(τ + 1)pτ = ∑∞

τ=t+1(τ pτ + pτ) = T (Xt)−A(Xt)+ 1,

and therefore, Q(Xt)
T (Xt) = T (Xt )+1

T (Xt) = 1 + o(1).
Q(Xt) is an upper bound on the total expected cost of the protocol: Staying quiet in

split slots is always worse than transmitting; according to the protocol a player stays
quiet only in half (in expectation) of the future split slots she participates in. Thus,
Protocol MULTIPLICITY is a o(1)-equilibrium.
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Abstract. Higher-order process calculi are calculi in which processes can be
communicated. We study the expressiveness of strictly higher-order process cal-
culi, and focus on two issues well-understood for first-order calculi but not in the
higher-order setting: synchronous vs. asynchronous communication and polyadic
vs. monadic communication. First, and similarly to the first-order setting, syn-
chronous process-passing is shown to be encodable into asynchronous process-
passing. Then, the absence of name-passing is shown to induce a hierarchy of
higher-order process calculi based on the arity of polyadic communication, thus
revealing a striking point of contrast with respect to first-order calculi. Finally,
the passing of abstractions (i.e., functions from processes to processes) is shown
to be more expressive than process-passing alone.

1 Introduction

Higher-order process calculi are calculi in which processes can be communicated. In
this paper, we study the expressive power of strictly higher-order process calculi, and
concentrate on fundamental questions of expressiveness in process calculi at large:
asynchronous vs. synchronous communication and polyadic vs. monadic communi-
cation. These are well-understood issues for first-order process calculi: several works
(see, e.g., [1,2,3]) have studied the asynchronous π-calculus [4,5] and its relationship
with the (synchronous) π-calculus. Also, the encoding of polyadic communication into
monadic communication in the π-calculus [6] is simple and very robust [7,8]. However,
analogous studies are lacking for calculi in the higher-order setting.

We approach these questions in the context of HOπ, a strictly higher-order process
calculus (i.e., it has no name-passing features) [9]. HOπ is very expressive: it is Tur-
ing complete and several modelling idioms are expressible in it as derived constructs.
Hence, answers to the questions we are interested in are far from obvious. We shall
consider SHO and AHO, the synchronous and asynchronous variants of HOπ with
polyadic communication (Section 2). SHO and AHO represent two families of higher-
order process calculi: given n ≥ 0, SHOn (resp. AHOn) denotes the synchronous
(resp. asynchronous) higher-order process calculus with n-adic communication.

A fundamental consideration in strictly higher-order process calculi is that scope
extrusions have a limited effect. In a process-passing setting, received processes can
only be executed, forwarded, or discarded. Hence, an input context cannot gain access
to the (private) names of the processes it receives; to the context, received processes are
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much like a “black box”. Although higher-order communications might lead to scope
extrusion of the private names contained in the transmitted processes, such extrusions
are of little significance: without name-passing, a receiving context can only use the
names contained in a process in a restricted way, namely the way decreed by the sender
process.1 In a process-passing setting, sharing of (private) names is thus rather limited.

We begin by investigating the relationship between synchrony and asynchrony. Our
first contribution is an encodability result: an encoding of SHOn into AHOn (Section
4). This reveals a similarity between first- and higher-order process calculi. Intuitively,
a synchronous output is encoded by an asynchronous output that communicates both
the communication object and its continuation. In Section 5 we move to examine the
situation for polyadic communication. We consider variants of SHO with different arity
in communications, and study their relative expressive power. Interestingly, in the case
of polyadic communication, the absence of name-passing causes a loss in expressive
power. Our second contribution is a non-encodability result: for every n > 1, SHOn

cannot be encoded into SHOn−1. We thus obtain a hierarchy of higher-order process
calculi of strictly increasing expressiveness. Hence, polyadic communication is a strik-
ing point of contrast between first- and higher-order process calculi. Finally, in Section
6 we consider the extension of SHO with abstraction-passing. An abstraction is an
expression parametric on processes; the expressiveness of abstraction-passing is thus
specific to the higher-order setting. We consider SHOn

a , the extension of SHOn with
abstractions of order one (i.e., functions from processes to processes). We show that
SHOn can be encoded into SHO1

a. Our final contribution uses this result to show that
there is no encoding of SHOn

a into SHOm for n,m > 0.
Our notion of encoding exploits a refined account of internal actions: in SHO, the

internal actions that result from synchronizations on restricted names are distinguished
from those resulting from synchronizations on public names. Only the former are con-
sidered as internal actions; the latter are regarded as visible actions. While this distinc-
tion might appear as demanding in the light of recent proposals for “good encodings”
(e.g., [10]), we find it useful to focus on compositional encodings that are robust with
respect to interferences, that is, encodings that work in an arbitrary context of the tar-
get language (i.e., not necessarily a context in the image of the encoding). Further, the
distinction is crucial in certain technical details of our proofs.

Extended discussions and full technical details can be found in [11, Chapter 6].

2 The Calculi

We define SHOn and AHOn, the two families of higher-order process calculi we shall
be working with.

Definition 1. Let x, y range over process variables, and a, b, . . . r, s, . . . denote names.
The language of SHO processes is given by the following syntax:

P,Q, . . . ::= a(x̃).P | ā〈Q̃〉.P | P1 ‖ P2 | νr P | x | 0

1 Here we refer to process-passing without passing of abstractions, i.e. functions from processes
to processes. As we shall see, the situation is rather different with abstraction-passing.
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INP

a(x̃). P
a(x̃)−−−→ P

OUT

a〈Q̃〉. P a〈Q̃〉−−−→ P
ACT1

P1
α−→ P ′

1 cond(α, P2)

P1 ‖ P2
α−→ P ′

1 ‖ P2

RES
P

α−→ P ′ r �∈ n(α)

νr P
α−→ νr P ′

OPEN
P

(νs̃)a〈P̃ ′′〉−−−−−−−→ P ′ r �= a, r ∈ fn(P̃ ′′) − s̃

νr P
(νrs̃)a〈P̃ ′′〉−−−−−−−→ P ′

TAU1
P1

(νs̃)a〈P̃ 〉−−−−−−→ P ′
1 P2

a(x̃)−−−→ P ′
2 s̃ ∩ fn(P2) = ∅

P1 ‖ P2
aτ−−→ νs̃ (P ′

1 ‖ P ′
2{P̃/x̃}) INTRES

P
aτ−−→ P ′

νaP
τ−→ νaP

Fig. 1. The LTS of SHO. Symmetric rules ACT2 and TAU2 are omitted.

Using standard notations and properties for tuples of syntactic elements, polyadicity in
process-passing is interpreted as expected: an output prefixed process a〈Q̃〉.P sends
the tuple of processes Q̃ on name (or channel) a and then continues as P ; an input

prefixed process a(x̃).P can receive a tuple Q̃ on name a and continue as P{Q̃/x̃}. In
both cases, a is said to be the subject of the action. We write | x̃ | for the length of tuple
x̃; the length of the tuples that are passed around determines the actual arity in polyadic
communication. In interactions, we assume inputs and outputs have the same arity; we
shall rely on notions of types and well-typed processes as in [9]. Parallel composition
allows processes to interact, and νr P makes r private (or restricted) to the process P .
Notions of bound and free names and variables (bn(·), fn(·), bv(·), and fv(·), resp.)
are defined in the usual way: an input a(x̃).P binds the free occurrences of variables
in x̃ in P ; similarly, νr P binds the free occurrences of name r in P . We abbreviate
a(x̃).P as a.P when none of the variables in x̃ is in fv(P ); a〈0̃〉.P as a.P ; a〈Q〉.0
as a〈Q〉; and νa νb P as νa b P . Notation

∏k P stands for k copies of process P in
parallel.

The semantics for SHO is given by the Labelled Transition System (LTS) in Figure
1; we use cond(α, P ) to abbreviate bv(α) ∩ fv(P ) = ∅ ∧ bn(α) ∩ fn(P ) = ∅. As an-
ticipated, we distinguish between internal and public synchronizations. The former are
given by synchronizations on restricted names, are the only source of internal behavior,
and are denoted as

τ−−→. The latter are given by synchronization on public names: a
synchronization on the public name a leads to the visible action

aτ−→. We thus have four
kinds of transitions: in addition to internal and public synchronizations, there are input

transitions P
a(x̃)−−−→ P ′, and output transitions P

(νs̃)a〈Q̃〉−−−−−−→ P ′ (with extrusion of the
tuple of names s̃), which have the expected meaning. We use α to range over actions.
The signature of α, sig(α), is defined as sig(a(x̃)) = a in, sig((νs̃)a〈Q̃〉) = a out,
sig(aτ) = aτ , sig(τ) = τ , and is undefined otherwise. Notions of bound/free names
and variables extend to actions as expected. We use &α to denote a sequence of actions
α1, . . . , αn. Weak transitions are defined in the usual way. We write =⇒ for the reflexive,
transitive closure of

τ−−→. Given an action α = τ , notation
α=⇒ stands for =⇒ α−→=⇒ and

τ=⇒ stands for =⇒. Given a sequence &α = α1, . . . , αn, we define
�α=⇒ as

α1==⇒ · · · αn==⇒.
By varying the arity in polyadic communication, Definition 1 actually gives a family

of higher-order process calculi. We have the following notational convention:
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Convention 1. For each n > 0, SHOn corresponds to the calculus obtained from the
syntax given in Definition 1 in which polyadic communication has arity at most n.

Definition 2. AHO corresponds to the fragment of SHO where output actions have no
continuations. All the definitions extend to AHO processes as expected; AHOn is thus
the asynchronous calculus with n-adic communication.

The following definition is standard.

Definition 3 (Barbs). Given a process P and a name a, we write (i) P ↓a —a strong
input barb— if P can perform an input action with subject a; and (ii) P ↓a —a strong
output barb— if P can perform an output action with subject a. Given μ ∈ {a, a}, we
define a weak barb P ⇓μ if, for some P ′, P =⇒ P ′ ↓μ.

3 The Notion of Encoding

Our definition of encoding is inspired by the notion of “good encoding” in [10]. We
say that a language L is given by: (i) an algebra of processes P , with an associated
function fn(·); (ii) a labeled transition relation −→ on P , i.e., a structure (P ,A,−→)
for some set A of actions (or labels) with an associated function sig(·); and (iii) a weak

behavioral equivalence≈ such that: if P ≈ Q and P
α=⇒ P ′ then Q

α′
==⇒ Q′, P ′ ≈ Q′,

and sig(α) = sig(α′). Given languages Ls = (Ps,−→s,≈s) and Lt = (Pt,−→t,≈t),
a translation of Ls into Lt is a function [[·]] : Ps → Pt. We shall call encoding any
translation that satisfies the following syntactic and semantic conditions.

Definition 4 (Syntactic Conditions). Let [[·]] : Ps → Pt be a translation of Ls into Lt.
We say that [[·]] is:

1. compositional if for every k-ary operator op of Ls and for all S1, . . . , Sk with
fn(S1, . . . , Sk) = N , there exists a k-ary context CN

op ∈ Pt that depends on N and
op such that [[op(S1, . . . , Sk)]] = CN

op [[[S1]], . . . , [[Sk]]];
2. name invariant if [[σ(P )]] = σ([[P ]]), for any injective renaming of names σ.

Definition 5 (Semantic Conditions). Let [[·]] : Ps → Pt be a translation of Ls into Lt.
We say that [[·]] is:

1. complete if for every S, S′ ∈ Ps and α ∈ As such that S
α=⇒s S′, it holds that

[[S]]
β

=⇒t≈t [[S′]], where β ∈ At and sig(α) = sig(β);

2. sound if for every S ∈ Ps, T ∈ Pt, β ∈ At such that [[S]]
β

=⇒t T there exists an
S′ ∈ Ps and an α ∈ As such that S

α=⇒s S
′, T =⇒≈t [[S′]], and sig(α) = sig(β);

3. adequate if for every S, S′ ∈ Ps, if S ≈s S
′ then [[S]] ≈t [[S′]];

4. diverge-reflecting if for every S ∈ Ps, [[S]] diverges only if S diverges.

Adequacy is crucial to obtain composability of encodings (see Prop. 1 below). We stress
that we always use weak behavioral equivalences. Some properties of our notion of
encoding are given in the following proposition, whose proof we omit for space reasons.
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Proposition 1. Let [[·]] be an encoding of Ls into Lt. Then [[·]] satisfies:

Barb preservation. For every S ∈ Ps it holds that S ⇓a (resp. S ⇓a) if and only if
[[S]] ⇓a (resp. [[S]] ⇓a).

Preservation of free names. Let a be a name. If a ∈ fn(P ) then a ∈ fn([[P ]]).
Composability. If C[[·]] is an encoding of L1 into L2, and D[[·]] is an encoding of L2

into L3 then their composition (D · C)[[·]] is an encoding of L1 into L3.

4 An Encodability Result for Synchronous Communication

Here we study the relationship between synchronous and asynchronous communica-
tion. While it is easy to define an encoding of SHOn into AHOn+1 (i.e., by sending
the communication object and the continuation of the output action in a single synchro-
nization, the continuation being an additional parameter), an encoding of asynchronous
process-passing into synchronous communication of the same arity is much more chal-
lenging. We now describe such an encoding. Intuitively, the idea is to send a single
process consisting of a guarded choice between a communication object and the con-
tinuation of the synchronous output. For the monadic case the encoding is as follows:

[[a〈P 〉.S]] = νk l (a〈k. ([[P ]] ‖ k) + l. ([[S]] ‖ k)〉 ‖ l) [[a(x).R]] = a(x). (x ‖ [[R]])

where “+” stands for the encoding of disjoint choice proposed for HOCORE [12]; k, l
are names not in fn(P, S); and [[·]] is an homomorphism for the other operators in SHO1.
The encoding exploits the fact that the continuation should be executed exactly once,
while the communication object can be executed zero or more times. In fact, there is
only one copy of l, the trigger that executes the encoding of the continuation. Notice
that l releases both the encoding of the continuation and a trigger for executing the
encoding of the communication object (denoted k); such an execution will only occur
when the choice sent by the encoding of output appears at the top level. This way, it is
easy to see that a trigger k is always available. This idea can be generalized as follows:

Definition 6 (Synchronous to Asynchronous). For each n>0, the encoding of SHOn

into AHOn is defined as follows:

[[a〈P1, . . . , Pn〉.S]] = νk l (a〈[[P1]], . . . , [[Pn−1]], Tk,l[ [[Pn]], [[S]] ]〉 ‖ l)
[[a(x1, . . . , xn).R]] = a(x1, . . . , xn). (xn ‖ [[R]])

with Tk,l[M1,M2]
def
= k. (M1 ‖ k) + l. (M2 ‖ k), {k, l} ∩ fn(P1, . . . , Pn, S) = ∅, and

where [[·]] is an homomorphism for the other operators in SHOn.

Correctness of the encoding (i.e. proofs that the encoding satisfies the conditions in
Section 3) is presented in [11]. The encoding provides compelling evidence on the ex-
pressive power of (asynchronous) process-passing. The observation that the encoding of
synchronous into asynchronous communication is a particular case of that of polyadic
into monadic communication leaves open the possibility that an encoding as in the π-
calculus might exist in a process-passing setting. In the next section we prove that this
is not the case.
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5 Separation Results for Polyadic Communication

Here we present the separation results for SHO. Section 5.1 introduces the notion of
disjoint forms, which are useful to capture a number of stability conditions, i.e., in-
variant properties of higher-order processes with respect to their sets of private names.
Stability conditions are essential in defining the hierarchy of SHO calculi based on
polyadic communication, which is reported in Section 5.2.

5.1 Disjoint Forms

The disjoint forms for SHO processes are intended to capture the invariant structure
of processes along communications, focusing on the private names shared among the
participants. Their definition exploits contexts, that is, processes with a hole. We shall
consider multi-hole contexts, that is, contexts with more than one hole. More precisely,
a multi-hole context is n-ary if at most n different holes [·]1, . . . , [·]n, occur in it. (A
process is a 0-ary multi-hole context.) We will assume that any hole [·]i can occur more
than once in the context expression. Notions of free and bound names for contexts are
as expected and denoted bn(·) and fn(·), respectively.

Definition 7. The syntax of (guarded, multihole) contexts is defined as:

C,C′, . . . ::= a(x).D | ā〈D〉.D | C ‖ C | νr C | P

D,D′, . . . ::= [·]i | C | D ‖ D | νr D

Definition 8 (Disjoint Form). Let T ≡ νñ(P ‖ C[R̃]) be a SHOm process where

1. ñ is a set of names such that ñ ⊆ fn(P, R̃) and ñ ∩ fn(C) = ∅;
2. C is a k-ary (guarded, multihole) context;
3. R̃ contains k closed processes.

We then say that T is in k-adic disjoint form with respect to ñ, R̃, and P .

A disjoint form captures the fact that processes R̃ and context C do not share private
names, i.e., that their sets of names are disjoint. A disjoint form can arise as the result of
the communication between two processes that do not share private names; processes R̃
would be then components of some process P0 that evolved into P by communicating
R̃ to C. The above definition decrees an arbitrary (but fixed) arity for the context. We
shall say that processes in such a form are in n-adic disjoint form, or NDF. By restricting
the arity of the context, this general definition can be instantiated:

Definition 9 (Monadic and Zero-adic Disjoint Forms). Let T be a process in disjoint
form with respect to some ñ, R̃, and P . If | R̃ |= 1 then T is said to be in monadic
disjoint form (or MDF) with respect to ñ, R, and P . If | R̃ |= 0 then T is said to be in
zero-adic disjoint form (or ZDF) with respect to ñ and P .

Proposition 2 (Encodings preserve ZDFs). Let [[·]] be an encoding. If T is in ZDF
with respect to some ñ and P then [[T ]] is in ZDF with respect to ñ and [[P ]].
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Properties of Disjoint Forms I: Stability Conditions. Stability conditions are central
to capture the following insight: without name-passing, the set of names private to a
process remains invariant along computations. Hence, two processes that interact re-
specting the stability conditions and do not share any private name will never be able to
establish a private link. The distinction on internal actions is essential to define stability
conditions for internal synchronizations (Lemma 1) and output actions (Lemma 2).

Lemma 1. Let T ≡ νñ (P ‖ C[R̃]) be a process in NDF with respect to ñ, R̃, and P .
If T

τ−→ T ′ then: T ′ ≡ νñ (P ′ ‖ C′[R̃]); fn(P ′, R̃) ⊆ fn(P, R̃) and fn(C′) ⊆ fn(C);
T ′ is in NDF with respect to ñ, R̃, and P ′.

The following results state that there is a stability condition for output actions, and the
way in which a ZDF evolves after a public synchronization.

Lemma 2. Let T ≡ νñ (P ‖ C[R̃]) be a process in NDF with respect to ñ, R̃, and

P . If T
(νs̃)a〈Q〉−−−−−−→ T ′ then: there exist P ′, C′, ñ′ such that T ′ ≡ νñ′ (P ′ ‖ C′[R̃]);

fn(P ′, R̃) ⊆ fn(P, R̃), fn(C′) ⊆ fn(C) and ñ′ ⊆ ñ hold; T ′ is in NDF with respect to
ñ′, R̃, and P ′.

Lemma 3. Let T be a SHOn process in ZDF with respect to ñ and P . Suppose T
aτ−→

T ′ where
aτ−→ is a public n-adic synchronization with P

(νñ)a〈R̃〉−−−−−−→ P ′ as a premise.
Then T ′ is in n-adic disjoint form with respect to ñ, R̃, and P ′.

Properties of Disjoint Forms II: Origin of Actions. We now give some properties
regarding the order and origin of internal and output actions of processes in DFs.

Definition 10. Let T = νñ (A ‖ C[R̃]) be a process in NDF with respect to ñ, R̃, and
A. Suppose T

α−→ T ′ for some action α.

– Let α be an output action. We say that α originates in A if A
α′
−→ A′ occurs as a

premise in the derivation of T
α−→ T ′, and that α originates in C if C[R̃] α′

−→ C′[R̃]
occurs as a premise in the derivation of T

α−→ T ′. In both cases, α = (νs̃)α′ for
some s̃.

– Let α = τ . We say that α originates in A if, for some a ∈ ñ, A
aτ−→ A′ occurs as

a premise in the derivation of T
α−→ T ′, or if A

τ−→ A′ occurs as a premise in the
derivation of T

α−→ T ′. We say that α originates in C if C[R̃] τ−→ C′[R̃] occurs as a
premise in the derivation of T

α−→ T ′.

The lemma below formalizes when two actions of a disjoint form can be swapped.

Lemma 4 (Swapping Lemma). Let T = νñ (A ‖ C[R̃]) be a process in NDF with
respect to ñ, R̃, and A. Consider two actions α and β that can be either output actions
or internal synchronizations. Suppose that α originates in A, β originates in C, and

that there exists a T ′ such that T
α−→ β−→ T ′. Then T

β−→ α−→ T ′ also holds, i.e., action β
can be performed before α without affecting the final behavior.
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The converse of the Swapping Lemma does not hold: since an action β originated in C
can enable an action α originated in A, these cannot be swapped. We now generalize
the Swapping Lemma to a sequence of internal synchronizations and output actions.

Lemma 5 (Commuting Lemma). Let T = νñ (A ‖ C[R̃]) be a NDF with respect to

ñ, R̃, and A. Suppose T
�α=⇒ T ′, where &α is a sequence of output actions and internal

synchronizations. Let &αC (resp. &αA) be its subsequence without actions originated in A
(resp. C) or in its derivatives. Then, there exists a process T1 such that

1. T
�αC==⇒ T1

�αA==⇒ T ′.
2. T1 ≡ νñ′ (A ‖

∏m1 R1 ‖ · · · ‖
∏mk Rk ‖ C′[R̃]), for some m1, . . . ,mk ≥ 0.

5.2 A Hierarchy of Synchronous Higher-Order Process Calculi

We introduce a hierarchy of synchronous higher-order process calculi. The hierarchy is
defined in terms of the impossibility of encoding SHOn into SHOn−1. We first present
the result that sets the basic case of the hierarchy, namely that biadic process-passing
cannot be encoded into monadic process-passing (Theorem 1). The proof exploits the
notion of MDF and its associated stability conditions. We then state the general result,
i.e., the impossibility of encoding SHOn+1 into SHOn (Theorem 2).

Theorem 1. There is no encoding of SHO2 into SHO1.

Proof (Sketch). Assume, towards a contradiction, that an encoding [[·]] : SHO2 →
SHO1 does indeed exist. In what follows, we use i, j to range over {1, 2}, assuming
that i = j. Assume processes S1 = s1 and S2 = s2. Consider the SHO2 process
P = E(2) ‖ F (2), where E(2) and F (2) are defined as follows:

E(2) = a〈S1, S2〉.0
F (2) = νb (a(x1, x2). (b〈b1.x1〉.0 ‖ b〈b2.x2〉.0 ‖ b(y1). b(y2). y1))

where both b1, b2 ∈ fn(E(2)) (with b1 = b2) and s1, s2 ∈ fn(F (2)) (with s1 = s2) hold.
P can perform only the following computations:

P
aτ−→ P0

τ−−→ τ−−→ P1
b1−→ P2

s1−→ 0 (1)

P
aτ−→ P0

τ−−→ τ−−→ P ′
1

b2−→ P ′
2

s2−→ 0 . (2)

In P0 there is an internal choice on b, which has direct influence on: (i) the output
action on bi and (ii) the output action on si. Notice that each of these actions enables
the following one, and that an output on bi precludes the possibility of actions on bj and
sj . The behavior of [[P ]] —the encoding of P— can thus be described as follows:

[[P ]] aτ==⇒≈ [[P0]] =⇒≈ [[P1]]
b1=⇒≈ [[P2]]

s1==⇒≈ 0 and (3)

[[P ]] aτ==⇒≈ [[P0]] =⇒≈ [[P ′
1]]

b2=⇒≈ [[P ′
2]]

s2==⇒≈ 0 . (4)
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Actually, outputs may have parameters, but this does not change our results. The first
(weak) transition, namely [[P ]] aτ==⇒≈ [[P0]], is the same in both possibilities. For SHO1

processes T, T ′, and T0, it holds

[[P ]] =⇒ T
aτ−→ T ′ =⇒ T0 ≈ [[P0]] . (5)

By examining the disjoint forms in the processes in (5) and using the stability conditions
(Prop. 2, Lemma 3, Lemma 1) one can show that T0 is in MDF with respect to a set of
names l̃, and some processes R and A0. Indeed, for some context C0 (with private name
b), we have that T0 = νl̃ (A0 ‖ C0[R]). Notice that (5) ensures that T0 ≈ [[P0]]. Hence,
by definition of ≈, T0 should be able to match each action from [[P0]] by performing
either the sequence of actions given in (3) or the one in (4). Crucially, both (3) and (4)
involve only internal synchronizations and output actions. Therefore, by Lemmas 1 and
2, every derivative of T0 intended to mimic the behavior of [[P0]] (and its derivatives) is
in MDF with respect to R, some li and some Ai.

By analyzing the bisimilarity game between T0 and [[P0]], it is possible to infer the
following behavior starting in T0:

T0 =⇒ T1
b1=⇒ T2

s1==⇒≈ 0 and (6)

T0 =⇒ T ′
1

b2=⇒ T ′
2

s2==⇒≈ 0. (7)

where, by definition of ≈, [[Pi]] ≈ Ti for i ∈ {0, 1, 2} and [[P ′
j ]] ≈ T ′

j for j ∈ {1, 2}.
Call C2 and C′

2 the derivatives of C0 in T2 and T ′
2, respectively. It is worth noticing that

by conditions on names, output actions on s1 and s2 cannot originate in C2 and C′
2.

The behavior of T0 described in (6) and (7) can be equivalently described as T0
α1==⇒

0 and T0
α2==⇒ 0, where α1 contains outputs on b1 and s1, and α2 contains outputs on b2

and s2, respectively. Using the Commuting Lemma (Lemma 5) on T0, we know there
exist processes T ∗

1 , and T ∗
2 such that

1. T ∗
1 ≡ νñ1 (A0 ‖

∏m
R ‖ C∗

1 [R]) and T ∗
2 ≡ νñ2 (A0 ‖

∏m′
R ‖ C∗

2 [R]), for
some m,m′ ≥ 0. Recall that T ∗

1 and T ∗
2 are the results of performing every output

action and internal synchronization originated in C0. Since the encoding does not
introduce divergence, we have that C∗

1 [R] −→ and C∗
2 [R] −→.

2. T ∗
1 (resp. T ∗

2 ) can only perform an output action on s1 (resp. s2) and internal ac-
tions. Hence, we have that T ∗

1 ⇓s1 , T ∗
1 ⇓s2 and T ∗

2 ⇓s2 , T ∗
2 ⇓s1 should hold.

Item (1) allows to observe that the only difference between T ∗
1 and T ∗

2 is in the number
of copies of R (the sets of restricted names are also different, but these do not involve
the names we are interested in). This number has direct influence on performing an
output action on s1 or on s2; as such, it has influence on the bisimulation game between

[[P2]] and T2, and that between [[P ′
2]] and T ′

2. More precisely, we have both T0
b1=⇒ T ∗

1

(with T ∗
1 ⇓s1) and T0

b2=⇒ T ∗
2 (with T ∗

2 ⇓s2). By assuming m > m′, we obtain that
T ∗

1 corresponds to the composition of T ∗
2 and a number of copies of R. Hence, T ∗

1 ⇓s2

and T0
b1=⇒ T ∗ with T ∗ ↓s2 . By operational correspondence, we have P0

b1=⇒ P ′ such
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that T ∗ =⇒ T ′ with T ′ ≈ [[P ′]]. Notice that since the strong barb on s2 in T ∗ cannot
disappear (there is no reception on s2), it is still in T ′. Thus P ′ has a weak barb on s2,
which is impossible. � 

The scheme used in the proof of Theorem 1 can be generalized for calculi with arbitrary
polyadicity. Therefore we have the following.

Theorem 2. For every n > 1, there is no encoding of SHOn into SHOn−1.

Remark 1 (A hierarchy for asynchronous calculi). Theorem 2 holds for calculi in
AHO as well. The main structure of the proof is the same, but one needs to adapt the
different pieces.

6 The Expressive Power of Abstraction-Passing

In this section we show that abstraction-passing, i.e., the communication of parameter-
izable processes, is strictly more expressive than process-passing. We consider SHOn

a ,
the extension of SHOn with the communication of abstractions of order one, i.e., func-
tions from processes to processes. The language of SHOn

a processes is obtained by
extending the syntax of SHOn processes (Definition 1) in the following way:

P,Q, . . . ::= · · · | (x)P | P1+P2,

That is, we consider abstractions (x)P and applications P1+P2,, that allow to ap-
ply an abstraction P1 to an argument P2. As usual, (x1) . . . (xn)P is abbreviated as
(x1, . . . , xn)P . The LTS of SHOn

a extends that of SHOn with the rule:

APP
(x)P +Q, τ−−→ P{Q/x}

.

Moreover, for SHOn
a we rely on types and well-typed processes as in [9]; roughly

speaking, the type system ensures consistent uses of application w.r.t. abstractions.
We now show that abstraction-passing increases the expressive power of pure

process-passing in SHO. The result is based on the encoding below.

Definition 11 (Monadic abstraction-passing can encode polyadic communication).
The encoding [[·]] : SHO2 → SHO1

a is defined as:

[[a〈P1, P2〉.R]] = a(z). ([[R]] ‖ νmn c (n ‖ z+n. (c ‖ m) + m. ([[P1]] ‖ m),
‖ c. z+[[P2]],))

[[a(x1, x2).Q]] = νb (a〈(y)b〈y〉〉 ‖ b(x1). (x1 ‖ b(x2). [[Q]]))

where [[·]] is an homomorphism for the other operators in SHO2.

The encoding is correct, except that it does not preserve signatures (as inputs are trans-
lated into outputs and viceversa); a correct encoding can be written by resorting to
abstractions with abstractions as parameters. This encoding leads also to the separation
result below. The result is remarkable since it formalizes the fact that the expressive
power of abstraction-passing is beyond any arity of polyadic communication.
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Theorem 3. For every n,m > 1, there is no encoding of SHOn
a into SHOm.

Proof. Suppose, for the sake of contradiction, there is an encoding A[[·]] : SHOn
a →

SHOm. Thanks to Def. 11, we have an encodingB[[·]] : SHOm+1 → SHOn
a .2 Now, the

composition of two encodings is an encoding (Prop. 1), and so (A·B)[[·]] is an encoding
of SHOm+1 into SHOm. However, by Theorem 2 such an encoding does not exist, and
we reach a contradiction. � 

7 Concluding Remarks

Summary. In first-order process calculi (a)synchronous and polyadic communication
are well-understood mechanisms. In this paper, we have studied the expressiveness of
these mechanisms in the context of strictly higher-order process calculi. Our results
strengthen and complement expressiveness studies for higher-order process calculi in
[12,13,11,9,14]. We have studied two families of higher-order process calculi: the first
one, called AHOn, is the asynchronous higher-order process calculus with n-adic com-
munication; the second, called SHOn, is the synchronous variant of AHOn. Our first
contribution was an encodability result of SHOn into AHOn. We then moved to ana-
lyze polyadic communication, and showed that in this case the absence of name-passing
does entail a loss in expressiveness; this is represented by the impossibility of encod-
ing SHOn into SHOn−1. This non-encodability result induces a hierarchy of higher-
order process calculi based on the arity allowed in process-passing communications.
This hierarchy holds for AHO as well. Finally, we showed an encoding of SHOn into
SHO1 extended with abstraction-passing, and used it in our final contribution: the non-
existence of an encoding of abstraction-passing into process-passing of any arity.

Related Work. Sangiorgi [9] proposed a hierarchy of HOπ fragments, based on the
degree of the abstractions allowed (the level of arrow nesting in the type of the abstrac-
tion). This hierarchy is shown to match the expressiveness of a hierarchy of first-order
calculi with only internal mobility. The argument that the hierarchy is strict is however
intensional, counting the causal dependencies among names. In contrast, the hierarchy
we consider here is given by the size of the tuples that can be passed around in polyadic
communications. Also related are [12,13,11], in which expressiveness/decidability is-
sues of HOCORE—roughly, the fragment of HOπ without restriction— are addressed.

Other works have used the distinction between internal and public synchronizations
that we have used in the LTS for SHO. In [15], labels of internal actions are anno-
tated with the name on which the synchronization occurs so as to define located se-
mantics for the π-calculus; such semantics are then used to study concurrent semantics
using a standard LTS. In the higher-order setting, [16] defines a variant of CHOCS in
which synchronizations on so-called activation channels (i.e., the fresh channels used
in the encoding of CHOCS into the π-calculus to trigger a copy of a process) are dis-
tinguished from other synchronizations. An LTS based on such a distinction is shown
to be finitely branching; its induced bisimilarity is shown to coincide with bisimulation
in CHOCS.

2 The fact that the encoding does not preserve signatures can be overcome with a direct proof.
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Future Work. It would be interesting to explore whether the hierarchy in Section 5 can
be presented without resorting to the distinction on internal actions. This would require
to formalize the concept of encoding robust with respect to interferences. Also, the
result in Section 6 gives the base case of a hierarchy based on abstraction-passing. Here
we have considered abstractions of order one; we plan to generalize such a result to
abstractions of arbitrary order so as to define a hierarchy based on abstraction-passing.
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Abstract. We prove a new congruence result for the π-calculus: bisim-
ilarity is a congruence in the sub-calculus that does not include restric-
tion nor sum, and features top-level replications. Our proof relies on
algebraic properties of replication, and on a new syntactic characteri-
sation of bisimilarity. We obtain this characterisation using a rewriting
system rather than a purely equational axiomatisation. We then deduce
substitution closure, and hence, congruence. Whether bisimilarity is a
congruence when replications are unrestricted remains open.

1 Introduction

We study algebraic properties of behavioural equivalences, and more precisely, of
strong bisimilarity (∼). This has long been an important question in concurrency
theory, with a particular focus on the search for axiomatisations of bisimilarity
(see [1] for a survey). Our primary goal is to establish congruence results for the
π-calculus [14]. At the heart of the π-calculus is the mechanism of name-passing,
which is the source of considerable expressive power. Name-passing however in-
troduces substitutions in the formalism, and these in turn lead to irregularities in
the behavioural theory of processes: due to the input prefix, we need bisimilarity
to be closed under substitutions for it to be a congruence.

To establish substitution closure, we exploit a new axiomatisation of bisimi-
larity. Several axiomatisation results for process calculi that feature an operator
of parallel composition (|) have been derived by decomposing this operator using
sum, and possibly left merge [4,3,1]. We, on the contrary, are interested in treat-
ing parallel composition as a primitive operator. One reason for this is that the
sum operator is often absent from the π-calculus since it can be encoded [10],
under certain conditions. More importantly, this operator makes substitution clo-
sure fail [14,2], so that existing axiomatisations of bisimilarity in calculi featuring
sum do not help when it comes to reason about congruence in the π-calculus.

In the present paper, we focus on properties of the replication operator [9],
denoted by ‘!’. As [14,2] shows, bisimilarity is not substitution closed when both
replication and name restriction are present in the calculus, and we have es-
tablished in [6] that it is when we renounce to replication. To our knowledge,
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congruence of bisimilarity in the restriction-free π-calculus with replication is an
open problem [14]; we provide here a partial answer.

Behavioural properties of replication. Replication is an “infinitary version” of
parallel composition. Structural congruence traditionally contains the following
structural laws : !a.P | a.P ≡ !a.P and !a.P | !a.P ≡ !a.P (given here for CCS), so
that a replicated process acts as an unbounded number of parallel copies of that
process. A contribution of this work is an analysis of behavioural laws capturing
other properties of replication. For example, for any context C, we have

!a.P |C[a.P ] ∼ !a.P |C[0] and !a.C[a.C[0]] ∼ !a.C[0] .

The left-hand side law is a generalisation the first structural congruence law:
a replicated process can erase one of its copies arbitrarily deep in a term. The
right-hand side law is more involved: read from right to left, it shows that a
replicated process is able to replicate itself. Its most trivial instance is !a.a ∼ !a.

Although the above laws are the basic ingredients we need in order to char-
acterise bisimilarity in our setting, they do not form a complete axiomatisation
of bisimilarity, as the following example shows:

P1 = !a.(b|a.c) | !a.(c|a.b) ∼ !a.b | !a.c = P2 .

P1 can be obtained from P2 by inserting a copy of a.b inside !a.c, and, symmet-
rically, a copy of a.c inside !a.b. It seems reasonable to consider P2 as a kind of
normal form of P1; however, P1 and P2 cannot be related using the above laws.
Describing this phenomenon of “mutual replication” in all its generality leads to
complicated equational schemata, so that we take another approach.

Overview. Our first contribution is a syntactic characterisation of bisimilarity
on a fragment of CCS with top-level replications. This characterisation relies
on a rewriting system for processes (such that P1 above rewrites into P2). An
important technical notion we need to introduce is that of seed : a seed of P is a
process bisimilar to P of minimal size; for example, P2 is a seed of P1. Our proof
goes by characterising bisimilarity on seeds, and establishing that any process
P can be rewritten into a seed of P .

Our second contribution is congruence of bisimilarity in the corresponding
fragment of the π-calculus. Concretely, we prove that bisimilarity is substitution
closed by considering visible bisimilarity (sometimes called io-bisimilarity [8]),
the equivalence obtained by disallowing challenges along internal communica-
tions. Visible bisimilarity is inherently substitution closed, and our characteri-
sation allows us to show that it coincides with bisimilarity.

We provide detailed proofs and present most intermediate steps for CCS. We
indeed view the reasonings we use in our proofs as an important contribution of
this work. In particular, we make use of both algebraic and coinductive reasoning,
notably using “up-to techniques” for bisimulation [13,11,12]. On the contrary,
we omit most of the technical developments that lead to congruence in the π-
calculus: they follow to a large extent the path of our proofs for CCS. We collect
these proofs in an extended version of this abstract [5].
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Outline. We describe the subset of CCS we work with and we prove general
properties of replication in Sect. 2. In Sect. 3, we introduce the notion of seed,
and give a characterisation of bisimilarity on seeds. The rewriting system is
defined in Sect. 4, where we show that any process can be rewritten into a seed,
and where we characterise strong bisimilarity. We present our new congruence
result for the π-calculus in Sect. 5. Section 6 suggests directions for future work.

2 General Setting, and Properties of Replication

We let a, b range over a countable set of names ; we work in a fragment of CCS
which we call mCCS (pronounced ‘miniCCS’), defined by the following grammar:

α, β ::= a
∣∣ a μ ::= α

∣∣ τ (actions and labels)

E,F ::= 0
∣∣ α.F ∣∣ F |F P,Q ::= F

∣∣ !α.F ∣∣ P |P (processes)

D ::= []
∣∣ α.D ∣∣ D|F C ::= D

∣∣ !α.D ∣∣ C|P (contexts)

This calculus features no restriction, no sum, and allows only top-level repli-
cated prefixes. Note that the τ prefix is not included in the syntax, and only
appears in labels (μ); we return to this point in Rmk. 19. We use P,Q to range
over processes; according to the syntax, a finite process (F ) is a process which
does not contain an occurrence of the replication operator (!α.). We omit trail-
ing occurrences of 0, and write, e.g., α.β for α.β.0. We shall sometimes write∏

i∈[1..k] αi.Fi for α1.F1 | . . . |αk.Fk. We extend the syntactic operator of repli-
cation to a function defined over processes by letting

!0 � 0 !(P |Q) � !P |!Q !!α.F � !α.F .

In particular, !F will always denote a process having only replicated (parallel)
components. We let C range over single-hole contexts, mapping finite processes
to processes, and similarly for finite contexts, ranged over using D. Note that
the hole cannot occur immediately under a replication in C.

The following labelled transition system (LTS) for mCCS is standard (we omit
symmetric rules for parallel composition).

α.F
α−→ F !α.F

α−→ !α.F |F
P

μ−→ P ′

P |Q μ−→ P ′|Q
P

a−→ P ′ Q
a−→ Q′

P |Q τ−→ P ′|Q′

This LTS yields the following standard notion of bisimilarity, (∼). We also define
visible bisimilarity (∼̇), where silent transitions are not taken into account.

Definition 1. Strong bisimilarity (∼) is the largest symmetric binary relation
over processes such that whenever P ∼ Q and P

μ−→ P ′, there exists Q′ such that
P ′ ∼ Q′ and Q

μ−→ Q′. Visible bisimilarity (∼̇) is defined similarly, by restricting
challenges to the cases where μ = τ .
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Both bisimilarities are congruences. They are moreover preserved by the ex-
tended replication function, and we have ∼ ⊆ ∼̇ . On finite processes, bisimilar-
ity and visible bisimilarity coincide and can be characterised using the following
distribution law, where there are as many occurrences of F on both sides [6]:

α.(F |α.F | . . . |α.F ) ∼ α.F |α.F | . . . |α.F . (D)

We now present some important properties of replicated processes w.r.t. bisim-
ilarity. The following proposition allows us to obtain the two laws from the
introduction, that involve copying replicated sub-terms.

Proposition 2. If C[0] ∼ !α.F |P , then C[0] ∼ C[α.F ].

Proof. We show that R= {(C[0], C[α.F ]) / ∀C s.t. C[0] ∼ !α.F |P for some P}
is a bisimulation up to transitivity [11,12]. There are several cases to consider:

– the hole occurs at top-level in the context (C = []|Q) and the right-hand
side process does the following transition: C[α.F ] α−→ F |Q. By hypothesis,
Q ∼ !α.F |P so that we find Q′ such that Q

α−→ Q′ and Q′ ∼ !α.F |F |P .
Injecting the latter equality gives Q′ ∼ Q|F , so that Q′ closes the diagram.

– the hole occurs under a replicated prefix of the context (C = !β.D|Q) that is
fired: we have C[0]

β−→ Pl = C[0]|D[0] and C[α.F ]
β−→ Pr = C[α.F ]|D[α.F ].

This is where we reason up to transitivity: these processes are not related
by R (we work with single-hole contexts), but we have Pl R Pc R Pr, for
Pc = C[0]|D[α.F ], using contexts Clc = C[0]|D and Ccr = C|D[α.F ].

– the hole occurs under a non-replicated prefix in the context (C = β.D|Q), or
the context triggers a transition that does not involve or duplicate the hole;
it suffices to play the bisimulation game.

– we are left with the cases where a synchronisation is played; they can be
handled similarly (in particular because contexts have a single hole). � 

As a consequence, we obtain the validity of the following laws. We shall see in
the sequel that together with the distribution law (D), they capture the essence
of bisimilarity in our calculus.

!α.F | C[α.F ] ∼ !α.F | C[0] (A)
!α.D[α.D[0]] ∼ !α.D[0] (A′)

(Note that Prop. 2 and the above laws hold for full CCS and for the π-calculus,
as long as the hole does not occur as argument of a sum in C and D, and C and
D do not bind names occurring in α.F .) We now give two useful cancellation
properties of visible bisimilarity; they are actually also valid for bisimilarity (∼).

Lemma 3. If !F ∼̇ P |Q, then !F ∼̇ !F |P .

Proof. We reason purely algebraically: we replicate both sides of !F ∼̇ P |Q, and
add P in parallel (since !P ∼̇ !P |P ): this gives !F ∼̇ !P |!Q ∼̇ !P |!Q|P . We deduce
!F ∼̇ !F |P by injecting the first equivalence into the second one. � 
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Proposition 4. If !F |F0 ∼̇ !E|E0 with F0, E0 finite, then !F ∼̇ !E.

Proof. By emptying F0 on the left-hand side1, we find a finite process E1 such
that !F ∼̇ !E|E1 (∗). Similarly, by emptying E0 on the right-hand side we find
F1 such that !F |F1 ∼̇ !E (∗∗). By injecting the former equivalence in the latter,
we have !E|E1|F1 ∼̇ !E (†). By Lemma 3, (∗∗) gives !E ∼̇ !E|F1, that we can
inject into (∗) to obtain !E|E1|F1 ∼̇ !F . We finally deduce !E ∼̇ !F from (†). � 

Again, these properties are not specific to the subset of CCS we focus on: Prop. 4
holds provided that both F0 and E0 can be reduced to the empty process using
transitions (this is the case, e.g., for the normed processes of [7]). The counterpart
of this cancellation property does not hold; the replicated parts of bisimilar
processes cannot always be cancelled: we cannot deduce a ∼̇ 0 from !a|a ∼̇ !a|0.

3 Seeds

Definition 5 (Size, seed). The size of P , noted +P , is the number of prefixes
in P . A seed of P is a process Q of least size such that P ∼̇ Q, whose number
of replicated components is largest among the processes of least size. When P is
a seed of P , we simply say that P is a seed.

We show how to rewrite an arbitrary process into a seed in Sect. 4; in this section,
we give a characterisation of bisimilarity on seeds (Prop. 11).

Definition 6 (Distribution congruence). We call distribution congruence
the smallest congruence relation ≡ that satisfies the laws of an abelian monoid
for (|,0) and the distribution law (D).

Fact 7. We have ≡ ⊆ ∼ ⊆ ∼̇ ; the latter equivalence is substitution closed; on
finite processes, the three relations coincide.

Proof. See [5], where we exploit some results about finite processes from [6]. � 

It is easy to show that distribution congruence is decidable, and only relates
processes having the same size. In the sequel, we always work modulo distribution
congruence. We shall prove that on seeds, bisimilarity actually coincides with
distribution congruence. Thanks to Prop. 4, the replicated parts of bisimilar
seeds are necessarily bisimilar. As a consequence, in the remainder of this section,
we fix a seed S having only replicated components: S =

∏
i !αi.Si , and we study

processes obtained by composing S with finite processes.

Definition 8 (Clean process, residual). A finite process F is clean w.r.t.
S, written S#F , if F does not contain a sub-term of the form αi.Si: for all
i and finite context D, F ≡ D[αi.Si]. A finite process R is a residual of S,
written S � R, when there exist k > 0, α1, .., αk, and P1, .., Pk such that S α1−→
P1 . . .

αk−−→ Pk ≡ S|R. We shall use R to range over such residual processes.
1 In the present case, “emptying F0” means playing all prefixes of F0 in the bisimulation

game between !F |F0 and !E|E0. We shall reuse this terminology in some proofs below;
note that this is possible only with finite processes.
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Note that if S � R, then R is a parallel composition of sub-terms of the Sis. We
can also remark that residuals and clean processes are stable under transitions:
if S#F (resp. S � F ) and F

α−→ F ′, then S#F ′ (resp. S � F ′). As shown
by the following lemma, a seed cannot absorb its non-trivial residuals (ii), and
sub-terms of seeds are clean (i,iii):

Lemma 9. (i) If S|F is a seed, then S#F .
(ii) If S � R and S ∼̇ S|R, then R ≡ 0.
(iii) If S � R, then S#R.

Proof. (i) By contradiction: if F ≡ D[αi.Si], then S|F ∼ S|D[0] by law (A),
which contradicts the minimality hypothesis about S|F .

(ii) Suppose by contradiction R ≡ α.R0|R1. Lemma 3 gives S ∼̇ S|α.R0, hence
S ∼̇ S|!α.R0 (∗) by replicating all processes. Moreover, S � α.R0, so that
we have i,D such that Si ≡ D[α.R0]. Therefore, by (∗) and law (A), we
obtain S ∼̇

∏
j �=i!αj .Sj |!αi.D[0]|!α.R0. The latter process has the same size

as S, but it has strictly more replicated components, which contradicts the
fact that S is a seed (Def. 5).

(iii) By contradiction, suppose that R ≡ D[αi.Si]. By emptying the prefixes of
D, we have S � αi.Si. Since S ∼̇ S|αi.Si, this contradicts (ii). � 

The third point above leads to the following cancellation result:

Lemma 10. If S|F ∼̇ S|E , S#F , and S#E, then F ≡ E.

Proof. We prove the following stronger property, by induction on n: for all n, F,E
such that +F, +E ≤ n, S#F , and S#E, we have:{

(i) ∀P, S|F ∼̇ P |E entails +E ≤ +F ;
(ii) S|F ∼̇ S|E entails F ≡ E .

The case n = 0 is trivial; assume n > 0.

(i) Suppose +F < +E by contradiction. By emptying F , we get P ′, E′ such that
S ∼̇ P ′|E′, with 0 < +E′ ≤ +E. Write E′ = α.E0|E1, then S ∼̇ S|α.E0 by
Lemma 3, and S|Si ∼̇ S|E0 for some i with αi = α. Necessarily, +Si ≤ +E0:
otherwise, by emptying E0, we would obtain a non empty residual R such
S|R ∼̇ S, which would contradict Lemma 9(ii). Since +E0 < +E′ ≤ +E ≤ n,
we can use the induction hypothesis, so that Si ≡ E0, and hence αi.Si ≡
α.E0, which contradicts S#E.

(ii) By the above point, +F = +E. We show that R � {(F,E)} ∪ ≡ is a visible
bisimulation. If F

α−→ F ′, then S|F α−→ S|F ′, and S|E can answer this
challenge: S|E α−→ S|E′ with S|F ′ ∼̇ S|E′. If the answer comes from E,
we are done by induction: +E′ = +F ′ = +F − 1 ≤ n− 1. Otherwise, i.e., if
S|F ′ ∼̇ S|Si|E for some i, we get a contradiction with (i): we would have
+E ≤ +F ′ = +E − 1. Challenges of E are handled symmetrically. � 

We can now characterise bisimilarity on seeds:
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Proposition 11. For all seeds P, P ′, P ∼̇ P ′ iff P ∼ P ′ iff P ≡ P ′.

Proof. By Fact 7, it suffices to show that P ∼̇ P ′ entails P ≡ P ′. Write P
and P ′ as S|F and S′|F ′, where S, S′ are replicated processes. By Prop. 4,
S ∼̇ S′. Moreover, S and S′ are necessarily seeds because P and P ′ are (hence
the notation). Write S ≡

∏
i≤m !αi.Si and S′ ≡

∏
j≤n !α′

j .S
′
j, play each prefix

on the left-hand side and apply Lemma 10 to show that there exists a map
σ : [1..m] → [1..n], such that αi.Si ≡ α′

σi.S
′
σi (recall that S#Sj by Lemma 9(iii)).

This map is bijective: we could otherwise construct a smaller seed. Therefore,
S ≡ S′. By Lemma 9(i), S#F and S′#F ′, which allows us to deduce F ≡ F ′,
using Lemma 10. Finally, P ≡ P ′. � 
We conclude this section by the following remark: seeds are stable under transi-
tions, so that they actually form a proper sub-calculus of mCCS.

Proposition 12. If P is a seed and P
μ−→ P ′, then P ′ is a seed.

4 Rewriting Processes to Normal Forms

By Prop. 11, the seed of a process P is unique up to distribution congruence (≡);
in the sequel, we denote it by s(P ). In this section, we show that the seed of a
process can be obtained using a rewriting system. This entails two important
properties of mCCS: visible and strong bisimilarity coincide and bisimilarity is
closed under substitutions (i.e., bisimilar processes remain bisimilar when ap-
plying an arbitrary name substitution).

Definition 13 (Rewriting). Any process T induces a relation between pro-
cesses, written T−→, defined by the following rules, modulo ≡:

T ≡ !α.F |Q
C[α.F ] T−→ C[0]

(R1)
!α.F | !α.F |P T−→ !α.F |P

(R2)

The reflexive transitive closure of T−→ is written T−→∗.
We give some intuitions about how the rewriting rules work. First, only the
replicated part of T matters when rewriting with T−→ . Relation T−→ is nevertheless
defined for an arbitrary process T in order to facilitate the presentation of some
results below. Then, we observe that it is only sensible to rewrite P using T−→
when T is a seed of P . This means in particular that the rewriting system
does not provide a direct way to compute the seed of a process (since the seed
has to be guessed). It is rather a procedure to check that some process T is
a “simplification” of P—Lemma 14 below validates this intuition. Rule (R2) is
rather self-explanatory. The rewriting rule (R1) is related to laws (A) and (A′);
we illustrate its use by considering the following examples:

!a.b | !b | b.a !a|!b−−−→ !a.b | !b | b !a|!b−−−→ !a.b | !b !a|!b−−−→ !a | !b (1)
!a.(b | a.b) !a.b−−→ !a.b (2)

!a.b | !b.a !a|!b−−−→ !a.b | !b !a|!b−−−→ !a | !b (3)

!a|!a.b
!a|!b−−−→ !a|!a !a|!b−−−→ !a (4)
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(1) The first example shows how (R1) can be used to “implement” law (A) and
erase redundant sub-terms. At each rewrite step, a copy of a component
of the seed (here, !a|!b) is erased. In the third rewriting step, simplification
occurs in a replicated component.

(2) Law (A′) is applied: a replicated component can be “simplified with itself”.
(3) This example illustrates how the rewriting system solves the problem we

exposed in the introduction (processes P1 and P2), where two replicated
components have to simplify each other: by guessing the seed (!a|!b), we are
able to apply the two simplifications in sequence.

(4) Here, we make a wrong guess about the seed: when assuming that !b is part
of the seed, we can erase the prefix b in !a.b. However, at the end, we are
not able to validate this assumption: !b does not appear in the normal form.

Accordingly, we introduce the following correctness criterion:

Lemma 14 (Soundness). If P T−→∗ T , then P ∼ T .

Definition 15 (Joinability). We say that processes P and Q are joinable,
written P � Q, if there exists a process T such that P T−→∗ T and Q

T−→∗ T .

By Lemma 14, � ⊆ ∼ ; the other property which is required in order to charac-
terise bisimilarity is completeness of the rewriting system, i.e., that all bisimilar
processes can be joined. For this, we show that any process can be rewritten into
a seed. The proof necessitates the following technical lemma (recall that s(P )
denotes the seed of P ):

Lemma 16. For all P , either P is a seed, or P
s(P )−−−→ P ′ for some P ′ s.t. P ∼ P ′.

Proof. Write P ≡ !F |FP and s(P ) ≡ S|FS , with F ≡
∏

i βi.Fi and S ≡∏
j !αj .Sj . By Prop. 4, and since P ∼̇ s(P ), !F ∼̇ S (∗).
Any transition at βi by !F is answered by S at some ασi, yielding equivalence

!F |Fi ∼̇ S|Sσi, which in turn gives S|Fi ∼̇ S|Sσi, by injecting (∗). By
Lemma 10, either (a) Fi ≡ Sσi, or (b) ¬(S#Fi). In the latter case, (b), this
means that P admits some αj .Sj as a sub-term, and can be rewritten using rule
(R1), the resulting process being bisimilar to P , by Prop. 2.

Suppose now that we are in case (a) for all transitions from !F , that is, for all
i, there exists σi such that βi.Fi ≡ ασi.Sσi. We observe that the converse (as-
sociating a ηj to all js) also holds, and that the number of parallel components
in !F is necessarily greater than the number of components in S (otherwise, we
would obtain a smaller seed). In the case where this number is strictly greater,
this means a replicated component appears twice in !F , so that P can be rewrit-
ten using rule (R2). We are left with the case where the two processes have the
same number of components, which entails that they are equated by ≡.

To sum up, either P can be rewritten, or !F ≡ S. In the latter case, we deduce
S | FP ∼̇ S | FS from (∗), and since S#FS by Lemma 9(i), there are two cases
according to Lemma 10: either FP ≡ FS , in which case P ≡ s(P ): P is a seed;
or ¬(S#FP ), i.e., FP admits some αj .Sj as a sub-term, and we can rewrite P
using (R1), getting a process bisimilar to P by Prop. 2. � 
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Proposition 17 (Completeness). For all P , P
s(P )−−−→∗ s(P ).

Thanks to our characterisation of bisimilarity on seeds (Prop. 11), we obtain:

Theorem 18 (Characterisation). In mCCS, visible and strong bisimilarity
coincide with joinability: P ∼̇ Q iff P ∼ Q iff P � Q.

Proof. We have � ⊆ ∼ ⊆ ∼̇ by Lemma 14. Then, P ∼̇ Q entails s(P ) ≡ s(Q) by

Prop. 11. Since P
s(P )−−−→∗ s(P ) and Q

s(Q)−−−→∗ s(Q) by Prop. 17, we get P � Q. � 

This result has several consequences. First, we do not need to play silent transi-
tions in bisimulation games (recall the absence of τ prefix). Second, bisimilarity
is substitution closed in mCCS. Third, bisimilarity is decidable in mCCS: the
definition of joinability is a priori not effective (we are not told how to find T );
however, according to the proof of Thm. 18, it suffices to search for T among
the processes whose size is smaller than both P and Q to test whether P � Q.

It should be noted that Christensen et al. already proved decidability of bisim-
ilarity in a larger subset of CCS [3], so that the latter consequence is not surpris-
ing. However, their axiomatisation exploits the expansion law, so that it cannot
be used to establish substitution closure in our setting.

Remark 19. The τ prefix is not included in our presentation of mCCS. We
extend our results in [5] to handle this prefix. The overall strategy is the same, but
the proof involves some non-trivial additional technicalities. Basically, difficulties
arise when a process answers to a transition emanating from a τ-prefix using a
synchronisation (consider, e.g., !a|!a|τ ∼ !a|!a). From the point of view of the
axiomatisation, it suffices to extend the rewriting system using the following law:

!a.E | !a.F | !τ.(E |F ) ∼ !a.E | !a.F

5 Congruence of Strong Bisimilarity in the π-Calculus

In this section, we adapt the previous results from CCS to the π-calculus in order
to obtain closure of bisimilarity under substitutions, and deduce congruence in
the restriction-free π-calculus with only top-level replications.

In moving from CCS to π, some care has to be taken. The first reason for that
is that “being a sub-term of” is more subtle in π than in CCS, because of issues
related to binding and α-conversion. The second reason is that the LTS for the
π-calculus involves substitutions, and we must choose how to handle these in the
definition of behavioural equivalence. Among the various notions of bisimilarity
that exist for π, we shall actually adopt the simplest and coarsest one, namely
ground bisimilarity: when ground bisimilarity is closed under substitutions, the
ground, early and late versions of the equivalence coincide [14].

We let x, y, a, b range over a countable set of names. We work in the subset
of the π-calculus, called mπ, defined by replacing actions from the syntax of
mCCS (Sect. 2) with the following productions: α, β ::= a(x)

∣∣ a〈b〉. As usual,
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a〈b〉.F a〈b〉−−→ F !a〈b〉.F a〈b〉−−→ !a〈b〉.F |F
P

μ−→ P ′ bn(μ) ∩ fn(Q) = ∅
P |Q μ−→ P ′|Q

y /∈ fn(a(x).F )

a(x).F
a(y)−−−→ F{y/x}

y /∈ fn(a(x).F )

!a(x).F
a(y)−−−→ !a(x).F |F{y/x}

P
a〈b〉−−→ P ′ Q

a(x)−−−→ Q′

P |Q τ−→ P ′|Q′{b/x}

Fig. 1. Labelled Transition System for mπ

the operator of input prefix is binding, we write fn(P ) for the set of free names
of P , bn(α) for the set of names bound by α, and we let P{y/x} stand for the
capture-avoiding substitution of x with y in P . Note that contexts (C) can bind
names (e.g., a(x).[]). The LTS for mπ is presented on Fig. 1, where symmetric
rules for parallel composition are omitted. The conditions involving freshness of
names ensure that P

a(x)−−−→ P ′ entails x /∈ fn(P ); this allows us to give a simple
definition of ground bisimilarity:

Definition 20. Ground bisimilarity, denoted by ∼, is the largest symmetric bi-
nary relation such that P ∼ Q entails that fn(P ) = fn(Q), and that whenever
P

μ−→ P ′, there exists Q′ s.t. Q μ−→ Q′ and P ′ ∼ Q′. Visible ground bisimilarity
(∼̇) is defined similarly, by restricting challenges to the cases where μ = τ .

Since we lack the restriction operator, the condition on free names is actually en-
forced by standard notions of bisimilarity. In particular, this definition coincides
with the standard definition of ground bisimilarity on mπ [14]: input prefixes
are tested with fresh names. On finite mπ-processes, ground bisimilarity is a
substitution closed congruence [6], so that it coincides with early and late bisim-
ilarities. We need to show that it also coincides with visible bisimilarity (the
proof, given in [5], exploits some technical results from [6]):

Theorem 21. On finite mπ processes, ∼̇ and ∼ coincide.

As for CCS, we then establish that visible and ground bisimilarities coincide
on all mπ processes. Since visible bisimilarity is easily shown to be substitution
closed (Prop. 22 below), this allows us to deduce congruence and coincidence
with the other notions of bisimilarity (Thm. 23).

Proposition 22. Visible bisimilarity is a substitution closed congruence.

The reasoning goes along the same lines as for CCS, so that we only review
the main differences, referring to [5] for detailed proofs. We need to adapt the
definition of distribution congruence, and we rely on Thm. 21 to prove that
distribution congruence is contained in ground bisimilarity. As expected, we
need to impose conditions on names when stating results involving contexts;
for example, in Prop. 2, C should not bind free names of α.F . Note moreover
that we need to go against a Barendregt convention to perform some rewriting

steps. For example, we want to allow !a(x).a(x)
!a(x)−−−→ !a(x) . We finally obtain

coincidence of visible and ground bisimilarities, which yields congruence:
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Theorem 23 (Characterisation and congruence). In mπ, early, late, visi-
ble and ground bisimilarity coincide and define a substitution closed congruence.

6 Conclusions and Future Work

We have presented a characterisation of strong bisimilarity in the restriction-
and sum-free fragment of CCS, where replications are only allowed at top-level
(Thm. 18). This has allowed us to put forward important algebraic properties of
replication w.r.t. bisimilarity. By extending this result to the π-calculus, we have
established congruence of bisimilarity in the corresponding fragment (Thm. 23).

We would like to generalise our results further, by finding extensions of the
calculi we have studied for which bisimilarity is substitution closed. A counterex-
ample involving the operators of restriction and replication is presented in [2] to
establish non-congruence of bisimilarity. Therefore, in light of [6, Corollary 5.9]
and Thm. 23, we can think of two paths to explore: either add a limited usage
of restriction to the language, or study the full replication operator.

Adding the restriction operator. The counterexample of [2] suggests that restric-
tions occurring immediately under replications are problematic. A natural exten-
sion of mCCS would therefore consist in adding restriction only to the grammar
for finite processes—we indeed know from [6] that restriction does not break
substitution closure on finite processes. Adding the τ prefix is a first step (cf. [5]
and Rmk. 19) in this direction: this prefix can be encoded as (νc) (c|c.P ), for a
fresh c. However, an important difficulty in adapting our proofs is the definition
and analysis of a counterpart of visible bisimilarity in presence of restriction.

Beyond top-level replications. Handling arbitrary replications seems really chal-
lenging. We have started investigating the case where replication is not at top-
level, but where nested replications (i.e., replications that occur under replica-
tions) are forbidden. The law

α.C[!α.C[0]] ∼ !α.C[0]

seems important to capture bisimilarity in this setting: it somehow generalises
the distribution law (D) to replicated processes, and it allows one to equate
processes like !a and a.!a. We do not know at the moment whether this law,
together with the laws presented above, is sufficient to characterise bisimilarity.
One of the difficulties in studying this richer language is that seeds are no longer
stable under reduction (Prop. 12): for example, !a.b|c.!b is a seed while its reduct
along c, !a.b|!b, is not, being bisimilar to !a|!b.

Related to this question is the work on HOcore [8], a restriction-free higher-
order π-calculus where strong bisimilarity is characterised by the distribution
law. In this calculus, replication can be encoded using the higher-order features.
The encoding is not fully abstract, however, so that it does not entail substitution
closure in presence of “standard” replication.
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Weak bisimilarity. Rather complex laws appear when moving from the strong
to the weak case. For example, the following laws are valid for weak bisimilarity:

!a.a | a.b ≈ !a.a | a | b , !a | !a.b ≈ !a | !a | !b .

In both cases, although the related processes have the same size, the right-hand
side process could be considered as a seed. We do not know how to generalise
the first equivalence. For the second one, the following law, where 〈P 〉a is de-
fined homomorphically, except for 〈a.P 〉a = 〈a.P 〉a = 〈P 〉a, is an interesting
candidate:

!a.P | !a.Q ≈ !a | !a | !〈P 〉a | !〈Q〉a .

Acknowledgements. We are grateful to the anonymous referees for their nu-
merous and valuable comments.
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Abstract. We show that the downward-closure of a Petri net language
is effectively computable. This is mainly done by using the notions de-
fined for showing decidability of the reachability problem of Petri nets.
In particular, we rely on Lambert’s construction of marked graph tran-
sition sequences — special instances of coverability graphs that allow us
to extract constructively the simple regular expression corresponding to
the downward-closure. We also consider the remaining language types
for Petri nets common in the literature. For all of them, we provide algo-
rithms that compute the simple regular expressions of their downward-
closure. As application, we outline an algorithm to automatically analyse
the stability of a system against attacks from a malicious environment.

1 Introduction

Petri nets or the very similar vector addition systems are a popular fundamental
model for concurrent systems. Deep results have been obtained in Petri net
theory, among them and perhaps most important decidability of the reachability
problem [6,10,8], whose precise complexity is still open.

Petri nets have also been studied in formal language theory, and several no-
tions of Petri net languages have been introduced. The standard notion to which
we simply refer as Petri net language accepts sequences of transition labels in
a run from an initial to a final marking. Other notions are the prefix language
considering all markings to be final, the covering language where sequences lead-
ing to markings that dominate a given final marking are accepted, and terminal
languages where all sequences leading to a deadlock are computed.

We study the downward-closure of all these languages wrt. the subword or-
dering [4]. It is well known that given a language L over some finite alphabet
its downward-closure is regular; it can always be written as the complement of
an upward-closed set, which in turn is characterised by a finite set of minimal
elements. Even more, downward-closed languages correspond to simple regular
expressions [1]. However, such an expression is not always effectively computable.
This depends on L. For example, the reachability set of lossy channel systems is
downward-closed but not effectively computable [11], even though membership
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in the set is decidable. On the contrary, for pushdown-automata the problem
has been solved positively by Courcelle [2].

We show as our main result that the downward-closure of Petri net languages
is effectively computable. This is done by a careful inspection of the proof of
decidability of the reachability problem due to Lambert [8]. From his so-called
perfect marked graph transition sequences (MGTS) we directly extract the sim-
ple regular expression corresponding to the downward-closure of the language.
Key to this is an iteration argument that employs Lambert’s pumping lemma
for Petri nets and the particular structure of MGTS in a non-trivial way.

We also establish computability of the downward-closure for the remaining
language types. For terminal languages we rely on the previous result, whereas
for covering and prefix languages we directly construct the expressions from the
coverability tree of the Petri net.

To be able to compute the downward-closure of a language is important for
several reasons. For example, it is precisely what an environment observes from
a language in an asynchronous interaction. A component which periodically ob-
serves the actions (or alternatively states) of another process will see exactly
the downward-closure of the language of actions the partner issues. Another
application of the downward-closure of a language is the use as a regular overap-
proximation of the system behaviour, allowing for safe inclusion checks between
a Petri net language and all types of languages for which inclusion of a regular
language (or even only simple regular expressions) is decidable.

We apply our results to automatically analyse the stability of a system against
attacks. Consider a malicious environment that tries to force the system into an
undesirable state. Then the downward-closure of the environment’s language
provides information about the intrusions the system can tolerate.

The paper is organised as follows. In Section 2, we provide preliminary defini-
tions concerning Petri nets, languages, and downward-closed sets. In Section 3,
we state our main result. The downward-closure of Petri net languages is ef-
fectively computable. In Section 4, we investigate the other language types. In
Section 5 we illustrate an application of our result before concluding in Section 6.

2 Petri Nets and Their Languages

Petri nets generalise finite automata by distributed states and explicite synchro-
nisation of transitions. A Petri net is a triple (P, T, F ) with finite and disjoint
sets of places P and transitions T . The flow function F : (P ×T )∪ (T ×P ) → N

determines the mutual influence of places and transitions.
States of Petri nets, typically called markings, are functions M ∈ NP that

assign a natural number to each place. We say that a place p has k tokens under
M if M(p) = k. A marking M enables a transition t, denoted by M [t〉, if the
places carry at least the number of tokens required by F , i.e., M(p) ≥ F (p, t) for
all p ∈ P . A transition t that is enabled in M may be fired and yields marking
M ′ with M ′(p) = M(p) − F (p, t) + F (t, p) for all p ∈ P . The firing relation is
extended inductively to transition sequences σ ∈ T ∗.
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Let symbol ω represent an unbounded number and abbreviate N ∪ {ω} by
Nω. The usual order ≤ on natural numbers extends to Nω by defining n ≤ ω for
all n ∈ N. Similar to markings, ω-markings are functions in NP

ω . The ordering
-ω ⊆ NP

ω × NP
ω defines the precision of ω-markings. We have M -ω M ′ if

M(p) = M ′(p) or M ′(p) = ω.
To adapt the firing rule to ω-markings, we define ω − n := ω =: ω + n for

any n ∈ N. The relation defined above can now be applied to ω-markings, and
firing a transition will never increase or decrease the number of tokens for a place
p with M(p) = ω. An ω-marking M ′ is reachable from an ω-marking M in a
net N if there is a firing sequence leading from M to M ′. We denote the set of
ω-markings reachable from M by R(M).
Definition 1. The reachability problem RP is the set

RP := {(N,M,M ′) | N = (P, T, F ),M,M ′ ∈ N
P
ω , and M ′ ∈ R(M)}.

The reachability problem RP is known to be decidable. This was first proved
by Mayr [9,10] with an alternative proof by Kosaraju [6]. In the ’90s, Lambert
[8] presented another proof, which can also be found in [13].

To deal with reachability, reachability graphs and coverability graphs were
introduced in [5]. Consider N = (P, T, F ) with an ω-marking M0 ∈ NP

ω . The
reachability graph R of (N,M0) is the edge-labelled graph R = (R(M0), E, T ),
where a t-labelled edge e = (M1, t,M2) is in E whenever M1[t〉M2.

A coverability graph C = (V,E, T ) of (N,M0) is defined inductively. First, M0

is in V . Then, if M1 ∈ V and M1[t〉M2, check for every M on a path from M0 to
M1 if M ≤M2. If the latter holds, change M2(s) to ω whenever M2(s) > M(s).
Add, if not yet contained, the modified M2 to V and (M1, t,M2) to E. The
procedure is repeated, until no more nodes and edges can be added.

Reachability graphs are usually infinite, whereas coverability graphs are al-
ways finite. But due to the inexact ω-markings, coverability graphs do not allow
for deciding reachability. However, the concept is still valuable in dealing with
reachability, as it allows for a partial solution to the problem. A marking M
is not reachable if there is no M ′ with M ′ ≥ M in the coverability graph. For
a complete solution of the reachability problem, coverability graphs need to be
extended as discussed in Section 3.

Our main contributions are procedures to compute representations of Petri
net languages. Different language types have been proposed in the literature that
we shall briefly recall in the following definition [12].
Definition 2. Consider a Petri net N = (P, T, F ) with initial and final mark-
ings M0,Mf ∈ NP , Σ a finite alphabet, and h ∈ (Σ ∪ {ε})T a labelling that is
extended homomorphically to T ∗. The language of N accepts firing sequences to
the final marking:

Lh(N,M0,Mf) := {h(σ) | M0[σ〉Mf for some σ ∈ T ∗}.
We write L(N,M0,Mf ) if h is the identity. The prefix language of the net
accepts all transition sequences:

Ph(N,M0) := {h(σ) | M0[σ〉M for some σ ∈ T ∗ and M ∈ N
P }.
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The terminal language of the Petri net accepts runs to deadlock markings, i.e.,
markings where no transition is enabled:

Th(N,M0) := {h(σ) | M0[σ〉M with σ ∈ T ∗,M ∈ NP , and M is a deadlock}.

The covering language requires domination of the final marking:

Ch(N,M0,Mf ) := {h(σ) | M0[σ〉M ≥Mf for some σ ∈ T ∗ and M ∈ NP }.

Note that the prefix language Ph(N,M0) is the covering language of the marking
that assigns zero to all places, Ph(N,M0) = Ch(N,M0,0).

We are interested in the downward-closure of the above languages wrt. the
subword ordering - ⊆ Σ∗×Σ∗. The relation a1 . . . am - b1 . . . bn requires word
a1 . . . am to be embedded in b1 . . . bn, i.e., there are indices i1, . . . , im ∈ {1, . . . , n}
with i1 < . . . < im so that aj = bij for all j ∈ {1, . . . ,m}. Given a language
L, its downward-closure is L ↓ := {w | w - v for some v ∈ L}. A downward-
closed language is a language L such that L ↓ = L. Every downward-closed
language is regular since it is the complement of an upward-closed set which
can be represented by a finite number of minimal elements with respect to -.
This follows from the fact that the subword relation is a well-quasi-ordering on
words [4]. More precisely, every downward-closed set can be written as a simple
regular expression over Σ (see [1]): We call an atomic expression any regular
expression e of the form (a + ε) where a ∈ Σ, or of the form (a1 + · · · + am)∗

where a1, . . . , am ∈ Σ. A product p is either the empty word ε or a finite sequence
e1e2 . . . en of atomic expressions. A simple regular expression is then either ∅ or
a finite union p1 + · · ·+ pk of products.

3 Downward-Closure of Petri Net Languages

Fix a Petri net N = (P, T, F ) with initial and final markings M0,Mf ∈ NP and
labelling h ∈ (Σ ∪ {ε})T . We establish the following main result.

Theorem 1. Lh(N,M0,Mf )↓ is computable as (♣) below.

Recall that any downward-closed language is representable by a simple regular
expression [1]. We show that in case of Petri net languages these expressions
can be computed effectively. In fact, they turn out to be rather natural; they
correspond to the transition sets in the precovering graphs of the net. To see
this, we shall need some insight into the decidability proof for reachability in
Petri nets. We follow here essentially the presentation given in [14] for solving
the infinity problem of intermediate states in Petri nets.

3.1 A Look at the Decidability of RP

We present here some main ideas behind the proof of decidability of RP accord-
ing to Lambert [8,13]. The proof is based on marked graph transition sequences
(MGTS), which are sequences of special instances of coverability graphs Ci al-
ternating with transitions tj of the form G = C1.t1.C2 . . . tn−1.Cn. These special
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instances of coverability graphs are called precovering graphs in [8] and have
additional structure from which we shall only use strong connectedness. Each
precovering graph Ci is augmented by two additional ω-markings, the input mi,in

and the output mi,out. The initial marking Mi of Ci is less concrete than input
and output, mi,in -ω Mi and mi,out -ω Mi. The transitions t1, . . ., tn−1 in an
MGTS connect the output mi,out of one precovering graph to the input mi+1,in

of the next, see Figure 1.

m1,in

M1

m1,out

t1
m2,in

M2

m2,out

t2
m3,in

M3

m3,out

t3
m4,in

M4

m4,out

Fig. 1. A marked graph transition sequence C1.t1.C2 . . . t3.C4. Dots represent markings
and circles represent strongly connected precovering graphs with in general more than
one node. The initial marking is depicted in the center. Solid lines inside these circles
are transition sequences that must be firable in the Petri net. Dotted lines show the
entry to and exit from precovering graphs, which do not change the actual marking in
the Petri net. Both mi,in �ω Mi and mi,out �ω Mi hold for every i.

A solution of an MGTS is by definition a transition sequence leading through
the MGTS. In Figure 1 it begins with marking m1,in, leads in cycles through the
first precovering graph until marking m1,out is reached, then t1 can fire to reach
m2,in, from which the second coverability graph is entered and so on, until the
MGTS ends. Whenever the marking of some node has a finite value for some
place, this value must be reached exactly by the transition sequence. If the value
is ω, there are no such conditions. The set of solutions of an MGTS G is denoted
by L(G) [8, page 90].

An instance RP = (N,M0,Mf ) of the reachability problem can be formulated
as the problem of finding a solution for the special MGTS GRP depicted in Fig-
ure 2. The node ω (with all entriesω) is the only node of the coverability graph, i.e.,
we allow for arbitrary ω-markings and firings of transitions between m1,in = M0

and m1,out = Mf , but the sequence must begin exactly at the (concrete) initial

m1,in

ω

m1,out

Fig. 2. MGTS representation of an instance (N, m1,in, m1,out) of the reachability prob-
lem. The MGTS consists of one precovering graph with a single node ω which represents
the ω-marking where all places have an unbounded number of tokens and from which
every transition can fire. A solution for this MGTS is a transition sequence from m1,in

to m1,out.
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marking of the net and end at its final marking. The solutions to this MGTS are
precisely the runs in the net N leading from M0 to Mf :

L(N,M0,Mf) = L(GRP ).

Hence, to decide RP it is sufficient to solve arbitrary MGTS. Lambert defines for
each MGTS a characteristic equation that is fulfilled by all its solutions. In other
words, the equation is a necessary condition for solutions of the MGTS. More
precisely, the author derives a system of linear equations Ax = b where A and
b range over integers. It encodes the firing behaviour of the precovering graphs
and intermediary transitions and can become quite large. There is one variable
for every marking entry mi,in and mi,out (including zero and ω entries) as well as
one variable for each edge in every precovering graph. Since markings must not
become negative, solutions sought must be semi-positive. This (possibly empty)
set of semi-positive solutions can always be computed [7].

If the characteristic equation was sufficient for the existence of solutions of
an MGTS, RP would have been solved immediately. While not valid in general,
Lambert provides precise conditions for when this implication holds. Generally
speaking, a solution to the characteristic equation yields a solution to the MGTS
if the variables for the edges and the variables for all ω-entries of the markings are
unbounded in the solution space. An MGTS with such a sufficient characteristic
equation is called perfect and denoted by G. Unboundedness of the variables can
be checked effectively [7].

Since not all MGTS are perfect, Lambert presents a decomposition procedure
[8]. It computes from one MGTS G a new set of MGTS that are to a greater
degree perfect and have the same solutions as G. This means each transition se-
quence leading through the original MGTS and solving it will also lead through
at least one of the derived MGTS and solve it, and vice versa. The degree of
perfectness is discrete and cannot be increased indefinitely. Therefore the de-
composition procedure terminates and returns a finite set ΓG of perfect MGTS.
With the assumption that m1,in and mn,out are ω-free, the corresponding de-
composition theorem is simplified to the following form.

Theorem 2 (Decomposition [8,13]). An MGTS G can be decomposed into
a finite set ΓG of perfect MGTS with the same solutions, L(G) =

⋃
G∈ΓG

L(G).

When we apply the decomposition procedure to the MGTS GRP for the instance
RP = (N,m1,in,m1,out) of the reachability problem (Figure 2), we obtain a set
ΓGRP of perfect MGTS. For each of these perfect MGTS G we can decide whether
it has solutions, i.e., whether L(G) = ∅. If at least one has a solution, we obtain
a positive answer to the reachability problem, otherwise a negative answer. This
means, the following algorithm decides RP:

input RP = (N,m1,in,m1,out)
create GRP according to Figure 2
decompose GRP into ΓGRP with G perfect for all G ∈ ΓGRP

if ∃G ∈ ΓGRP with L(G) = ∅ answer yes else answer no.
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The reachability problem is not only decidable. If it has a solution, it is also
possible to calculate a solving transition sequence. Consider a perfect MGTS
G = C1.t1.C2 . . . tn−1.Cn and let each precovering graph have the initial marking
Mi (cf. Figure 1). We search for covering sequences ui that indefinitely increase
the token count on ω-places of Mi. More precisely, ui is a transition sequence
from Mi to Mi with the following properties.

– The sequence ui is enabled under marking mi,in.
– If Mi(s) = ω > mi,in(s), then ui will add tokens to place s.
– If Mi(s) = mi,in(s) ∈ N, then ui will not change the token count on place s.

In case Mi(s) = ω = mi,in(s), no requirements are imposed. Sequence ui is
accompanied by a second transition sequence vi with similar properties, except
that the reverse of vi must be able to fire backwards from mi,out. This decreases
the token count on ω-places and lets vi reach the output node mi,out from Mi.
Having such pairs of covering sequences ((ui, vi))1≤i≤n available for all precov-
ering graphs, the following theorem yields a solution to the perfect MGTS.

Theorem 3 (Lambert’s Iteration Lemma [8,13]). Consider some perfect
MGTS G with at least one solution and let ((ui, vi))1≤i≤n be covering sequences
satisfying the above requirements. We can compute k0 ∈ N and transition se-
quences βi, wi from Mi to Mi such that for every k ≥ k0 the sequence

(u1)kβ1(w1)k(v1)kt1(u2)kβ2(w2)k(v2)kt2 . . . tn−1(un)kβn(wn)k(vn)k

is a solution of G.

Lambert proved that such covering sequences ui, vi always exist and that at least
one can be computed [8]. Firing ui repeatedly, at least k0 times, pumps up the
marking to the level necessary to execute βi(wi)k. Afterwards vi pumps it down
to reach mi,out. Transition ti then proceeds to the next precovering graph.

3.2 Computing the Downward-Closure

According to the decomposition theorem, we can represent the Petri net language
L(N,M0,Mf ) by the decomposition of the corresponding MGTS GRP . We shall
restrict our attention to perfect MGTS G that have a solution, i.e., L(G) = ∅.
They form the subset Γ�

GRP
of ΓGRP . As the labelled language just applies a

homomorphism, we derive

Lh(N,M0,Mf ) = h(L(N,M0,Mf)) = h(
⋃

G∈Γ �
GRP

L(G)) =
⋃

G∈Γ �
GRP

h(L(G)).

Since downward-closure − ↓ and the application of h commute, and since
downward-closure distributes over ∪, we obtain

Lh(N,M0,Mf)↓ =
⋃

G∈Γ �
GRP

h(L(G)↓ ).
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The main result in this section is a characterisation of L(G)↓ as a simple regu-
lar expression φG. By the previous argumentation this solves the representation
problem of Lh(N,M0,Mf )↓ and hence proves Theorem 1. We compute φG for
the language of every perfect MGTS G ∈ Γ�

GRP
. Then we apply the homomor-

phism to these expressions, h(φG), and end up in a finite disjunction

Lh(N,M0,Mf )↓ = L(
∑

G∈Γ �
GRP

h(φG)). (♣)

We spend the remainder of the section on the representation of L(G)↓ . Surpris-
ingly, the simple regular expression turns out to be just the sequence of transition
sets in the precovering graph,

φG := T ∗
1 .(t1 + ε).T ∗

2 . . . (tn−1 + ε).T ∗
n ,

where G = C1.t1.C2 . . . tn−1.Cn and Ci contains the transitions Ti.

Proposition 1. L(G)↓ = L(φG).

The inclusion from left to right is trivial. The proof of the reverse direction
relies on the following key observation about Lambert’s iteration lemma. The
sequences ui can always be chosen in such a way that they contain all transitions
of the precovering graph Ci. By iteration we obtain all sequences uk

i . Since ui

contains all transitions in Ti, we derive

T ∗
i ⊆ (
⋃
k∈N

uk
i )↓ =

⋃
k∈N

uk
i ↓ .

Hence, all that remains to be shown is that ui can be constructed so as to contain
all edges of Ci and consequently all transitions in Ti. Lets start with a covering
sequence u′

i that satisfies the requirements stated above and that can be found
with Lambert’s procedure [8]. Since Ci is strongly connected, there is a finite
path zi from Mi to Mi that contains all edges of Ci. The corresponding transition
sequence may have a negative effect on the ω-places, say at most m ∈ N tokens
are removed. Concrete token counts are, by construction of precovering graphs,
reproduced exactly. Since u′

i is a covering sequence, we can repeat it m+1 times.
By the second requirement, this adds at least m + 1 tokens to every ω-place. If
we now append zi, we may decrease the token count by m but still guarantee a
positive effect of m + 1−m = 1 on the ω-places. This means

ui := u′
i
m+1

.zi

is a covering sequence that we may use instead of u′
i and that contains all tran-

sitions. This concludes the proof of Proposition 1.

4 Downward-Closure of Other Language Types

We consider the downward-closure of terminal and covering languages. For ter-
minal languages that accept via deadlocks we provide a reduction to the previous
computability result. For covering languages, we avoid solving reachability and
give a direct construction of the downward-closure from the coverability tree.
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4.1 Terminal Languages

Deadlocks in a Petri net N = (P ′, T, F ) are characterised by a finite set P of
partially specified markings where the token count on some places is arbitrary,
MP ∈ NP with P ⊆ P ′. Each such partial marking corresponds to a case where
no transition can fire. Hence, the terminal language is a finite union of partial lan-
guages that accept by a partial marking, Th(N,M0) =

⋃
MP ∈P Lh(N,M0,MP ).

We now formalise the notion of a partial language and then prove computability
of its downward-closure. With the previous argumentation, this yields a repre-
sentation for the downward-closure of the terminal language.

A partial marking MP ∈ NP with P ⊆ P ′ denotes a potentially infinite set of
markings M that coincide with MP in the places in P , M|P = MP . The partial
language is therefore defined to be Lh(N,M0,MP ) :=

⋃
M|P =MP

Lh(N,M0,M).
We apply a construction due to Hack [3] to compute this union.

. . . P . . .

. . . P ′/P . . .h(t1)

. . .

h(tn)N

ε ε

ε
run clear

ε

Fig. 3. Hack’s construction to reduce partial Petri net languages to ordinary languages

We extend the given net N = (P ′, T, F ) to Ne = (P ′ ∪ Pe, T ∪ Te, Fe) as
illustrated in Figure 3. The idea is to guess a final state by removing the run
token and then empty the places outside P ⊆ P ′. As a result, the runs in N
from M0 to a marking M with M|P = MP are precisely the runs in Ne from M r

0

to the marking Mf , up to the token removal phase in the end. Marking M r
0 is

M0 with an additional token on the run place. Marking Mf coincides with MP

and has no tokens on the remaining places. Projecting away the new transitions
t with he(t) = ε characterises the partial language by an ordinary language.

Lemma 1. Lh(N,M0,MP ) = Lh∪he(Ne,M
r
0 ,Mf ).

Combined with Theorem 1, a simple regular expression φMp is computable that
satisfies Lh(N,M0,MP ) ↓ = L(φMp). As a consequence, the downward-closure
of the terminal language is the (finite) disjunction of these expressions.

Theorem 4. Th(N,M0)↓ = L(ΣMP ∈P φMp).

Note that the trick we employ for the partially specified final markings also
works for partial input markings. Hence, we can compute the language and the
terminal language also for nets with partially specified input markings.
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4.2 Covering Languages

We extend the coverability tree to a finite automaton where the downward-
closure coincides with the downward-closure of the covering-language. Hence,
the desired regular expression is computable. The idea is to add edges to the
coverability tree that represent the domination of markings by their successors
and thus, by monotonicity of Petri nets, indicate cyclic behaviour. The final
states reflect domination of the final marking. In the remainder, fix N = (P, T, F )
with initial and final markings M0 and Mf and labelling h ∈ (Σ ∪ {ε})T .

The coverability tree CT = (V,E, λ) is similar to the coverability graph dis-
cussed in Section 2 but keeps the tree structure of the computation. Therefore,
the vertices are labelled by extended markings, λ(v) ∈ (N∪{ω})P , and the edges
e ∈ E ⊆ V ×V by transitions, λ(e) ∈ T . A path is truncated as soon as it repeats
an already visited marking.

We extend CT to a finite automaton FA = (V, v0, Vf , E∪E′, λ∪λ′) by adding
backedges. The root of CT is the initial state v0. States that cover Mf are final,
Vf := {v ∈ V | λ(v) = M ≥Mf}. If the marking of v dominates the marking of
an E-predecessor v′, λ(v) = M ≥M ′ = λ(v′), we add a backedge e′ = (v, v′) to
E′ and label it by λ′(e′) = ε. The downward-closed language of this automaton
is the downward-closed covering language without labelling.

Lemma 2. L(FA)↓ = C(N,M0,Mf)↓ .

To compute L(FA) ↓ we represent the automaton as tree of its strongly con-
nected components SCC(FA). The root is the component C0 that contains v0.
We need two additional functions to compute the regular expression. For two
components C,C′ ∈ SCC(FA), let γC,C′ = (t + ε) if there is a t-labelled edge
from C to C′, and let γC,C′ = ∅ otherwise. Let τC = ε if C contains a final
state and τC = ∅ otherwise. Concatenation with γC,C′ = ∅ or τC = ∅ suppresses
further regular expressions if there is no edge or final state, respectively. Let TC

denote the transitions occurring in component C as edge labels. We recursively
define regular expressions φC for the downward-closed languages of components:

φC := T ∗
C .
(
τC +

∑
C′∈SCC(FA)

γC,C′ .φC′
)
.

Due to the tree structure, all regular expressions are well-defined. The following
lemma is easy to prove.

Lemma 3. L(FA)↓ = L(φC0).

As the application of h commutes with the downward-closure, a combination of
Lemma 2 and 3 yields the desired representation.

Theorem 5. Ch(N,M0,Mf)↓ = L(h(φC0)).

Note that h(φC0) can be transformed into a simple regular expression by dis-
tributivity of concatenation over + and removing possible occurrences of ∅.
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5 Applications to Stability Analysis

Consider a system modelled as a Petri net Ns . It typically interacts with some
potentially malicious environment. This means, Ns = (Ps , Ts , Fs ) is embedded1

in a larger net N = (P, T, F ) where the environment changes the token count or
restricts the firing behaviour in the subnet Ns . Figure 3 illustrates the situation.
The environment is Hack’s gadget that may stop the Petri net and empty some
places. The results obtained in this paper allow us to approximate the attacks
system Ns can tolerate without reaching undesirable states.

Consider an initial marking M s
0 of Ns and a bad marking M s

b that should
be avoided. For the full system N we either use M s

0 ,M
s
b ∈ NPs as partially

specified markings or assume full initial and final markings, M0,Mb ∈ NP with
M0|Ps = M s

0 and Mb|Ps = M s
b . The stability of Ns is estimated as follows.

Proposition 2. An upward-closed language is computable that underapproxi-
mates the environmental behaviour Ns tolerates without reaching M s

b from M s
0 .

We consider the case of full markings M0 and Mb of N . For partially speci-
fied markings, Hack’s construction in Section 4.1 reduces the problem to this
one. Let the full system N be labelled by h. Relabelling all transitions of Ns

to ε yields a new homomorphism h′ where only environmental transitions are
visible. By definition, the downward-closure always contains the language itself,
Lh′(N,M0,Mb)↓ ⊇ Lh′(N,M0,Mb). This is, however, equivalent to

Lh′(N,M0,Mb)↓ ⊆ Lh′(N,M0,Mb).

By Theorem 1, the simple regular expression for Lh′(N,M0,Mb) ↓ is com-
putable. As regular languages are closed under complementation, the expression
for Lh′(N,M0,Mb)↓ is computable as well. The language is upward-closed and
underapproximates the attacks the system can tolerate.

Likewise, if we consider instead of Mb a desirable good marking Mg , then
language Lh′(N,M0,Mg) ↓ overapproximates the environmental influences re-
quired to reach it. The complement of the language provides behaviour that
definitely leads away from the good marking. Note that for covering instead of
reachability similar arguments apply that rely on Theorem 5.

6 Conclusion

We have shown that the downward-closures of all types of Petri net languages
are effectively computable. As an application of the results, we outlined an al-
gorithm to estimate the stability of a system towards attacks from a malicious
environment. In the future, we plan to study further applications. Especially in
concurrent system analysis, our results should yield fully automated algorithms
for the verification of asynchronous compositions of Petri nets with other models
1 Formally, N = (P, T, F ) is embedded in N ′ = (P ′, T ′, F ′) if P ⊆ P ′, T ⊆ T ′, and

F ′|(S×T )∪(T×S) = F . If homomorphism h labels N and h′ labels N ′ then h′|T = h.
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like pushdown-automata. A different application domain is compositional verifi-
cation of Petri nets. For an observer of a system, it is sufficient to check whether
it reaches a critical state in the composition with the downward-closure of the
system’s language. However, cyclic proof rules are challenging.
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Abstract. We consider two-player turn-based games with zero-reachability and
zero-safety objectives generated by extended vector addition systems with states.
Although the problem of deciding the winner in such games in undecidable in gen-
eral, we identify several decidable and even tractable subcases of this problem ob-
tained by restricting the number of counters and�or the sets of target configurations.

1 Introduction

Vector addition systems with states (VASS) are an abstract computational model equiv-
alent to Petri nets (see, e.g., [27,29]) which is well suited for modelling and analysis of
distributed concurrent systems. Roughly speaking, a k-dimensional VASS, where k � 1,
is a finite-state automaton with k unbounded counters which can store non-negative in-
tegers. Depending on its current control state, a VASS can choose and perform one of
the available transitions. A given transition changes the control state and updates the
vector of current counter values by adding a fixed vector of integers which labels the
transition. For simplicity, we assume that transition labels can increase�decrease each
counter by at most one. Since the counters cannot become negative, transitions which
attempt to decrease a zero counter are disabled. Configurations of a given VASS are
written as pairs pv, where p is a control state and v � �k a vector of counter values.
In this paper, we consider extended VASS games which enrich the modelling power of
VASS in two orthogonal ways.

(1) Transition labels can contain symbolic components (denoted by �) whose intuitive
meaning is “add an arbitrarily large non-negative integer to a given counter”. For
example, a single transition p �� q labeled by (1� �) represents an infinite number
of “ordinary” transitions labeled by (1� 0), (1� 1), (1� 2), � � � A natural source of
motivation for introducing symbolic labels are systems with multiple resources that
can be consumed and produced simultaneously by performing a transition. The
� components can then be conveniently used to model an unbounded “reloading”
of resources.
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(2) To model the interaction between a system and its environment, the set of control
states is split into two disjoint subsets of controllable and environmental states,
which induces the corresponding partition of configurations. Transitions from the
controllable and environmental configurations then correspond to the events gener-
ated by the system and its environment, respectively.

Hence, the semantics of a given extended VASS game � is a possibly infinitely-
branching turn-based game G� with infinitely many vertices that correspond to the
configurations of �. The game G� is initiated by putting a token on some configu-
ration pv. The token is then moved from vertex to vertex by two players, � and �,
who select transitions in the controllable and environmental configurations according
to some strategies. Thus, they produce an infinite sequence of configurations called a
play. Desired properties of � can be formalized as objectives, i.e., admissible plays.
The central problem is the question whether player � (the system) has a winning strat-
egy which ensures that the objective is satisfied for every strategy of player � (the
environment). We refer to, e.g., [32,13,35] for more comprehensive expositions of re-
sults related to games in formal verification. In this paper, we are mainly interested in
zero-safety objectives consisting of plays where no counter is decreased to zero, i.e.,
a given system never reaches a situation when some of its resources are insuÆcient.
Player � always aims at satisfying a given zero-safety objective, while player � aims at
satisfying the dual zero-reachability objective.

As a simple example, consider a workshop which “consumes” wooden sticks,
screws, wires, etc., and produces puppets of various kinds which are then sold at the
door. From time to time, the manager may decide to issue an order for screws or other
supplies, and thus increase their number by a finite but essentially unbounded amount
Controllable states can be used to model the actions taken by workshop employees,
and environmental states model the behaviour of unpredictable customers. We wonder
whether the workshop manager has a strategy which ensures that at least one puppet of
each kind is always available for sell, regardless of what the unpredictable customers
do. Note that a winning strategy for the manager must also resolve the symbolic �

value used to model the order of screws by specifying a concrete number of screws that
should be ordered.

Technically, we consider extended VASS games with non-selective and selective
zero-reachability objectives, where the set of target configurations that should be
reached by player � and avoided by player � is either Z and ZC , respectively. Here,
the set Z consists of all pv such that v� � 0 for some � (i.e., some counter is zero); and
the set ZC , where C is a subset of control states, consists of all pv � Z such that p � C.

Our main results can be summarized as follows:

(a) The problem of deciding the winner in k-dimensional extended VASS games
(where k � 2) with Z-reachability objectives is in (k-1)-EXPTIME.

(b) A finite description of the winning region for each player (i.e., the set of all vertices
where the player wins) is computable in (k�1)-exponential time.

(c) Winning strategies for both players are finitely and e�ectively representable.

We note that the classical result by Lipton [24] easily implies EXPSPACE-hardness
(even in the case when player� has no influence). These (decidability) results are com-
plemented by noting the following straightforward undecidability:
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(d) The problem of deciding the winner in 2-dimensional VASS games with “ordinary”
(non-symbolic) transitions and ZC-reachability objectives is undecidable. The same
problem for 3-dimensional extended VASS games is highly undecidable (beyond
the arithmetical hierarchy).

Further, we consider the special case of one-dimensional extended VASS games, where
we provide the following (tight) complexity results:

(e) The problem of deciding the winner in one-dimensional extended VASS games
with Z-reachability objectives is in P. Both players have “counterless” winning
strategies constructible in polynomial time.

(f) The problem of deciding the winner in one-dimensional extended VASS games
with ZC-reachability objectives is PSPACE-complete. A finite description of the
winning regions is computable in exponential time.

To the best of our knowledge, these are the first positive decidability�tractability re-
sults about a natural class of infinitely branching turn-based games, and some of the
underlying observations are perhaps of broader interest (in particular, we obtain slight
generalizations of the “classical” results about self-covering paths achieved by Racko�
[28] and elaborated by Rosier&Yen [30]).

To build some intuition behind the technical proofs of (a)–(f), we give a brief outline
of these proofs and sketch some of the crucial insights. The details are available in [4].

A proof outline for (a)–(c). Observe that if the set of environmental states that are
controlled by player � is empty, then the existence of a winning strategy for player �
in pv is equivalent to the existence of a self-covering zero-avoiding path of the form
pv ��� qu ��� qu�, where u � u� and the counters stay positive along the path. The
existence and the size of such paths has been studied in [28,30] (actually, these works
mainly consider the existence of an increasing self-covering path where u� is strictly
larger than u in at least one component, and the counters can be decreased to zero
in the intermediate configurations). One can easily generalize this observation to the
case when the set of environmental states is non-empty and show that the existence of a
winning strategy for player � in pv is equivalent to the existence of a self-covering zero-
avoiding tree initiated in pv, which is a finite tree, rooted in pv, describing a strategy
for player � where each maximal path is self-covering and zero-avoiding.

We show that the existence of a self-covering zero-avoiding tree initiated in a given
configuration of a given extended VASS is decidable, and we give some complexity
bounds. Let us note that this result is more subtle than it might seem; one can easily
show that the existence of a self-covering (but not necessarily zero-avoiding) tree for
a given configuration is already undecidable. Our algorithm constructs all minimal pv
(w.r.t. component-wise ordering) where player � has a winning strategy. Since this set
is necessarily finite, and the winning region of player � is obviously upwards-closed,
we obtain a finite description of the winning region for player �. The algorithm can be
viewed as a concrete (but not obvious) instance of a general approach, which is dealt
with, e.g., in [33,10,11]. First, we compute all control states p such that player� can win
in some configuration pv. Here, a crucial step is to observe that if this is not the case,
i.e., player � can win in every pv, then player � has a counterless winning strategy
which depends only on the current control state (since there are only finitely many
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counterless strategies, they can be tried out one by one). This computation also gives an
initial bound B such that for every control state p we have that if player � wins in some
pv, then he wins in all pv� where v�

�
� B for all indexes (counters) � � �1� 2� � � � � k�. Then

the algorithm proceeds inductively, explores the situations where at least one counter is
less than B, computes (bigger) general bounds for the other k�1 counters, etc.

A finite description of a strategy for player � which is winning in every configura-
tion of his winning region is obtained by specifying the moves in all minimal winning
configurations (observe that in a non-minimal winning configuration p(v�u) such that
pv is minimal, player � can safely make a move p(v�u) �� q(v�

�u) where pv �� qv� is
the move associated to pv). Note that this also resolves the issue with � components in
transitions performed by player �. Since the number of minimal winning configurations
is finite, there is a finite and e�ectively computable constant c such that player � never
needs to increase a counter by more than c when performing a transition whose label
contains a symbolic component (and we can even give a simple “recipe” which gives
an optimal choice for the � values for every configuration separately).

The winning region of player � is just the complement of the winning region of
player �. Computing a finite description of a winning strategy for player� is somewhat
trickier and relies on some observations made in the “inductive step” discussed above
(note that for player � it is not suÆcient to stay in his winning region; he also needs to
make some progress in approaching zero in some counter).

A proof outline for (d). The undecidability result for 2-dimensional VASS games is
obtained by a straightforward reduction from the halting problem for Minsky machines
with two counters initialized to zero, which is undecidable [26] (let us note that this
construction is essentially the same as the one for monotonic games presented in [1]).
After some minor modifications, the same construction can be also used to establish
the undecidability of other natural problems for VASS and extended VASS games, such
as boundedness or coverability. The high undecidability result for 3-dimensional ex-
tended VASS games is proven by reducing the problem whether a given nondetermin-
istic Minsky machine with two counters initialized to zero has an infinite computation
such that the initial instruction is executed infinitely often (this problem is known to be
�1

1 -complete [15]). This reduction is also straightforward, but at least it demonstrates
that symbolic transitions do bring some extra power (note that for “ordinary” VASS
games, a winning strategy for player � in a given pv can be written as a finite tree, and
hence the existence of such a strategy is semidecidable).

A proof outline for (e)–(f). The case of one-dimensional extended VASS games with
zero-reachability objectives is, of course, simpler than the general case, but our re-
sults still require some e�ort. In the case of Z-reachability objectives, we show that the
winning region of player � can be computed as the least fixed point of a monotonic
function over a finite lattice. Although the lattice has exponentially many elements,
we show that the function reaches the least fixed point only after a quadratic number
of iterations. The existence and eÆcient constructibility of counterless winning strate-
gies is immediate for player �, and we show that the same is achievable for player �.
The results about ZC-reachability objectives are obtained by applying known results
about the emptiness problem for alternating finite automata with one letter alphabet [16]
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(see also [21]) and the emptiness problem for alternating two-way parity word automata
[31], together with some additional observations.

Related work. As already mentioned, some of our results and proof techniques use and
generalize the ones from [28,30]. VASS games can be also seen as a special case of
monotonic games considered in [1], where it is shown that the problem of deciding the
winner in monotonic games with reachability objectives is undecidable (see the proof
outline for (d) above). Let us note that the results presented in [1] mainly concern the
so-called downward-closed games, which is a model di�erent from ours. Let us also
mention that (extended) VASS games are di�erent from another recently studied model
of branching vector addition systems [34,6] which has di�erent semantics and di�er-
ent algorithmic properties (for example, the coverability and boundedness problems for
branching vector addition systems are complete for 2-EXPTIME [6]). Generic proce-
dures applicable to upward-closed sets of states are studied in, e.g., [3,12,33,10,11].

Note that one-dimensional VASS games are essentially one-counter automata where
the counter cannot be tested for zero explicitly (that is, there are no transitions en-
abled only when the counter reaches zero). Such one-counter automata are also called
one-counter nets because they correspond to Petri nets with just one unbounded place.
The models of one-counter automata and one-counter nets have been intensively stud-
ied [18,20,22,2,7,9,19,31,14]. Many problems about equivalence-checking and model-
checking one-counter automata are known to be decidable, but only a few of them are
solvable eÆciently. From this point of view, we find the polynomial-time result about
one-dimensional extended VASS games with Z-reachability objectives encouraging.

2 Definitions

In this paper, the sets of all integers, positive integers, and non-negative integers are
denoted by �, ��0, and �, respectively. For every finite or countably infinite set M,
the symbol M� denotes the set of all finite words (i.e., finite sequences) over M. The
length of a given word w is denoted by 	w	, and the individual letters in w are denoted
by w(0)�w(1)� � � � . The empty word is denoted by �, where 	�	 � 0. We also use M� to
denote the set M�

� ���. A path in � � (M��), for a binary relation � 
 M � M, is
a finite or infinite sequence w � w(0)�w(1)� � � � such that w(i) � w(i�1) for every i. A
given n � M is reachable from a given m � M, written m �� n, if there is a finite path
from m to n. A run is a maximal path (infinite, or finite which cannot be prolonged).
The sets of all finite paths and all runs in � are denoted by FPath(�) and Run(�),
respectively. Similarly, the sets of all finite paths and runs that start in a given m � M
are denoted by FPath(��m) and Run(��m), respectively.

Definition 1. A game is a tuple G � (V� ��� (V��V�)) where V is a finite or countably
infinite set of vertices, �� 
 V � V is an edge relation, and (V��V�) is a partition of V.

A game is played by two players, � and �, who select the moves in the vertices of
V� and V�, respectively. Let  � �����. A strategy for player  is a (partial) function
which to each wv � V�V�, where v has at least one outgoing edge, assigns a vertex
v� such that v �� v�. The set of all strategies for player � and player � is denoted
by � and � , respectively. We say that a strategy � is memoryless if �(wv) depends just on
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the last vertex v. In the rest of this paper, we consider memoryless strategies as (partial)
functions from V� to V .

A winning objective is a set of runs � 
 Run(G). Every pair of strategies (	� 
) �
� �� and every initial vertex v � V determine a unique run G(���)(v) � Run(G� v) which
is called a play. We say that a strategy 	 � � is �-winning for player � in a given
v � V if for every 
 � � we have that G(���)(v) � �. Similarly, a strategy 
 � � is
�-winning for player � if for every 	 � � we have that G(���)(v) � �. The set of
all vertices where player  has a �-winning strategy is called the winning region of
player  and denoted by Win(��).

In this paper, we only consider reachability and safety objectives, which are specified
by a subset of target vertices that should or should not be reached by a run, respectively.
Formally, for a given T 
 V we define the sets of runs �(T ) and �(T ), where �(T ) �
�w � Run(G) 	 w(i) � T for some i�, and �(T ) � Run(G) � �(T ). We note that the
games with reachability and safety objectives are determined [25], i.e., Win(���(T )) �
V � Win(���(T )), and each player has a memoryless winning strategy in every vertex
of his winning region.

Definition 2. Let k � ��0. A k-dimensional vector addition system with states (VASS)
is a tuple � � (Q� T� �� �� Æ) where Q � � is a finite set of control states, T � � is a
finite set of transitions, � : T �Q and � : T �Q are the source and target mappings,
and Æ : T ���1� 0� 1�k is a transition displacement labeling. For technical convenience,
we assume that for every q � Q there is some t � T such that �(t) � q.

An extended VASS (eVASS for short) is a VASS where the transition displacement
labeling is a function Æ : T ���1� 0� 1� ��k.

A VASS game (or eVASS game) is a tuple � � (Q� (Q��Q�)� T� �� �� Æ) where
(Q� T� �� �� Æ) is a VASS (or eVASS) and (Q��Q�) is a partition of Q.

A configuration of � is an element of Q � �k. We write pv instead of (p� v), and the
�-th component of v is denoted by v�. For a given transition t � T , we write t : p �� q
to indicate that �(t) � p and �(t) � q, and p v

�� q to indicate that p �� q and Æ(t) � v.
A transition t � T is enabled in a configuration pv if �(t) � p and for every 1 � � � k
such that Æ(t)� � �1 we have v� � 1.

Every k-dimensional eVASS game � � (Q� (Q��Q�)� T� �� �� Æ) induces a unique
infinite-state game G� where Q��k is the set of vertices partitioned into Q� ��

k and
Q� � �

k, and pv �� qu i� the following condition holds: There is a transition t � T
enabled in pv such that �(t) � q and for every 1 � � � k we have that u� � v� is either
non-negative or equal to Æ(t)�, depending on whether Æ(t)� � � or not, respectively.
Note that any play can get stuck only when a counter is zero, because there is at least
one enabled transition otherwise.

In this paper, we are interested in VASS and eVASS games with non-selective and
selective zero-reachability objectives. Formally, for every C 
 Q we define the set
ZC � �pv � Q ��k 	 p � C and vi � 0 for some 0 � i � k� and we also put Z � ZQ. Se-
lective (or non-selective) zero-reachability objectives are reachability objectives where
the set T of target configurations is equal to ZC for some C 
 Q (or to Z, respectively).

As we have already noted, our games with reachability objectives are memoryless de-
termined and this result of course applies also to eVASS games with zero-reachability
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objectives. However, since eVASS games have infinitely many vertices, not all memo-
ryless strategies are finitely representable. In this paper we will often deal with a simple
form of memoryless strategies, where the decision is independent of the current counter
values; such strategies are called counterless strategies.

Definition 3. Given an eVASS � � (Q� (Q��Q�)� T� �� �� Æ), a strategy � of player
 � ����� is counterless if it determines a (fixed) transition tp for each p � Q�, together
with (fixed) values cp�� � � for all those � for which Æ(tp)� � �, so that �(pv) is the
configuration obtained by performing tp in pv where �’s are instantiated with cp��.

3 VASS and eVASS Games with Zero-Reachability Objectives

In this section, we analyze VASS and eVASS games with zero-reachability objectives
(full proofs can be found in [4]). We first note that the problems of our interest are
undecidable for �(ZC) objectives; this can be shown by standard techniques.

Proposition 4. The problem of deciding the winner in 2-dimensional VASS games with
�(ZC) objectives is undecidable. For 3-dimensional eVASS games, the same problem is
highly undecidable (i.e., beyond the arithmetical hierarchy).

Let us note that Proposition 4 does not hold for one-dimensional eVASS games, which
are analyzed later in this section. Further, by some trivial modifications of the proof of
Proposition 4 we also get the undecidability of the boundedness�coverability problems
for 2-dimensional VASS games.

Now we turn our attention to �(Z) objectives. For the rest of this section, we fix a
k-dimensional eVASS game � � (Q� (Q��Q�)� T� �� �� Æ). Since we are interested only
in �(Z) objectives, we may safely assume that every transition p v

�� q of � where
p � Q� satisfies v� � � for every 1 � � � k (if there are some �-components in v, they
can be safely replaced with 0). We also use d to denote the branching degree of �, i.e,
the least number such that every q � Q has at most d outgoing transitions.

Let � be the partial order on the set of configurations of � defined by pu � qv i�
p � q and u � v (componentwise). For short, we write Win� instead of Win(���(Z))
and Win� instead of Win(���(Z)). Obviously, if player � has a winning strategy in qv,
then he can use “essentially the same” strategy in qu for every u � v (behaving in q�v�

as previously in q�(v��v�u), which results in reaching 0 in some counter possibly even
earlier). Similarly, if qv � Win� then qu � Win� for every u � v. Hence, the sets Win�
and Win� are downwards closed and upwards closed w.r.t. �, respectively. This means
that the set Win� is finitely representable by its subset Min� of minimal elements (note
that Min� is necessarily finite because there is no infinite subset of �k with pairwise
incomparable elements, as Dickson’s Lemma shows). Technically, it is convenient to
consider also symbolic configurations of � which are introduced in the next definition.

Definition 5. A symbolic configuration is a pair qv where q � Q and v � (�����)k. We
say that a given index � � �1� 2� � � � � k� is precise in qv if v� � �, otherwise it is symbolic
in qv. The precision of qv, denoted by P(qv), is the number of indexes that are precise
in qv. We say that a configuration pu matches a symbolic configuration qv if p � q and
u� � v� for every � precise in qv. Similarly, we say that pu matches qv above a given
bound B � � if pu matches qv and u� � B for every � symbolic in qv.
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We extend the set Win� by all symbolic configurations qv such that some configura-
tion matching qv belongs to Win�. Similarly, the set Win� is extended by all symbolic
configurations qv such that all configurations matching qv belong to Win� (note that
every symbolic configuration belongs either to Win� or to Win�). We also extend the
previously fixed ordering on configurations to symbolic configurations by stipulating
that � � � and n  � for all n � �. Obviously, this extension does not influence the set
Min�, and the winning region Win� can be now represented by its subset Max� of all
maximal elements, which is necessarily finite.

Our ultimate goal is to compute the sets Min� and Max�. Since our reachability
games are determined, it actually suÆces to compute just one of these sets. In the fol-
lowing we show how to compute Min�.

We start with an important observation about winning strategies for player �, which
in fact extends the “classical” observation about self-covering paths in vector addi-
tion systems presented in [28]. Let q � Q be such that qv � Win� for some v, i.e.,
q(�� � � � � �) � Win�. This means that there is a strategy of player � that prevents un-
bounded decreasing of the counters; we find useful to represent the strategy by a finite
unrestricted self-covering tree for q. The word “unrestricted” reflects the fact that we
also consider configurations with negative and symbolic counter values. More precisely,
an unrestricted self-covering tree for q is a finite tree � whose nodes are labeled by the
elements of Q � (� � ���)k satisfying the following (� is treated in the standard way,
i.e., � � � � � � c � � for every c � �):

– The root of � is labeled by q(0� � � � � 0).
– If n is a non-leaf node of � labeled by pu, then

� if p � Q�, then n has only one successor labeled by some r t such that � has a
transition p v

�� r where t � u � v;
� if p � Q�, then there is a one-to-one correspondence between the successors

of n and transitions of � of the form p v
�� r. The node which corresponds to a

transition p v
�� r is labeled by r t where t � u � v.

– If n is a leaf of � labeled by pu, then there is another node m (where m � n) on the
path from the root of � to n which is labeled by pt for some t � u.

The next lemma bounds the depth of such a tree.

Lemma 6. Let q(�� � � � � �) � Win� (i.e., qv � Win� for some v). Then there is an
unrestricted self-covering tree for q of depth at most f (	Q	� d� k) � 2(d�1)��Q� � 	Q	c�k

2
,

where c is a fixed constant independent of �, and d is the branching degree of �.

Lemma 6 thus implies that if q(�� � � � � �) � Win�, then qu � Win� for all u with u� �

f (	Q	� d� k) for all � � �1� 2� � � � � k� (recall that each counter can be decreased at most
by one in a single transition). The next lemma shows that we can compute the set of
all q � Q such that q(�� � � � � �) � Win� (the lemma is formulated “dually”, i.e., for
player �).

Lemma 7. The set of all q � Q such that q(�� � � � � �) � Win� is computable in space
bounded by g(	Q	� d� k), where g is a polynomial in three variables.

An important observation, which is crucial in our proof of Lemma 7 and perhaps inter-
esting on its own, is that if q(�� � � � � �) � Win�, then player� has a counterless strategy
which is winning in every configuration matching q(�� � � � � �).
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To sum up, we can compute the set of all q(�� � � � � �) � Win� and a bound B
which is “safe” for all q(�� � � � � �) � Win� in the sense that all configurations match-
ing q(�� � � � � �) above B belong to Win�. Intuitively, the next step is to find out what
happens if one of the counters, say the first one, stays bounded by B. Obviously, there
is the least j � B such that q( j� �� � � � � �) � Win�, and there is a bound D � B such
that all configurations matching q( j� �� � � � � �) above D belong to Win�. If we manage
to compute the minimal j (also for the other counters, not just for the first one) and the
bound D, we can go on and try to bound two counters simultaneously by D, find the
corresponding minima, and construct a new “safe” bound. In this way, we eventually
bound all counters and compute the set Min�. In our next definition, we introduce some
notions that are needed to formulate the above intuition precisely. (Recall that P(qv)
gives the number of precise, i.e. non-�, elements of v.)

Definition 8. For a given 0 � j � k, let SymMinj
�

be the set of all minimal qv � Win�
such that P(qv) � j. Further, let SymMin

�
�
�k

i�0 SymMini
�
. We say that a given B � �

is safe for precision j, where 0 � j � k, if for every qv �
� j

i�0 SymMini
�

we have that
v� � B for every precise index � in v, and every configuration matching qv above B
belongs to Win�.

Obviously, every SymMinj
�

(and hence also SymMin
�
) is finite, and Min� � SymMink

�
.

Also observe that SymMin0
�

is computable in time exponential in 	Q	 and k by Lemma 7,
and a bound which is safe for precision 0 is computable in polynomial time by
Lemma 6. Now we design an algorithm which computes SymMinj�1

�
and a bound safe

for precision j�1, assuming that SymMini
�

for all i � j and a bound safe for precision j
have already been computed.

Lemma 9. Let 0 � j  k, and let us assume that
� j

i�0 SymMini
�

has already been
computed, together with some bound B � � which is safe for precision j. Then
SymMinj�1

�
is computable in time exponential in 	Q	 �B j�1, d, and k� j�1, and the bound

B� f (	Q	 � B j�1� d� k� j�1) is safe for precision j � 1 (here f is the function of Lemma 6
and d is the branching degree of �).

Now we can easily evaluate the total complexity of computing SymMin
�

(and hence also
Min�). If we just examine the recurrence of Lemma 9, we obtain that the set SymMin

�

is computable in k-exponential time. However, we can actually decrease the height of
the tower of exponentials by one when we incorporate the results presented later in
this section, which imply that for one-dimensional eVASS games, the depth of an unre-
stricted self-covering tree can be bounded by a polynomial in 	Q	 and d, and the set of all
q � Q where q(�) � Win� is computable in polynomial time. Hence, we actually need
to “nest” Lemma 9 only k�1 times. Thus, we obtain the following (where 0-exponential
time denotes polynomial time):

Theorem 10. For a given k-dimensional eVASS, the set Min� is computable in
(k�1)-exponential time.

Let us note a substantial improvement in complexity would be achieved by improving
the bound presented in Lemma 6. Actually, it is not so important what is the depth of an
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unrestricted self-covering tree, but what are the minimal numbers that allow for apply-
ing the strategy described by this tree without reaching zero (i.e., what is the maximal
decrease of a counter in the tree). A more detailed complexity analysis based on the
introduced parameters reveals that if the maximal counter decrease was just polyno-
mial in the number of control states (which is our conjecture), the complexity bound of
Theorem 10 would be polynomial for every fixed dimension k (see also Section 4).

Note that after computing the set Min�, we can easily compute a finite description
of a strategy 	 for player � which is winning in every configuration of Win�. For every
pv � Min� such that p � Q�, we put 	(pv) � qv�, where qv� is (some) configuration
such that qv� � qt for some qt � Min�. Note that there must be at least one such qv�

and it can be computed e�ectively. For every configuration pu such that pu � pv for
some pv � Min�, we put 	(pu) � q(v�

�u�v) where 	(pv) � qv� (if there are more
candidates for pv, any of them can be chosen). It is easy to see that 	 is winning in
every configuration of Win�. Also observe that if we aim at constructing a winning
strategy for player � which minimizes the concrete numbers used to substitute �’s, we
can use Min� to construct an “optimal” choice of the values which are suÆcient (and
necessary) to stay in the winning region of player �.

Now we present the promised results about the special case of one-dimensional
VASS and eVASS games with zero-reachability objectives. Let us fix a one-dimensional
eVASS game� � (Q� (Q��Q�)� T� �� �� Æ) and C 
 Q. For every i � �, let Win�(C� i) �
�p � Q 	 p(i) � Win(���(ZC))�. It is easy to see that if Win�(C� i) � Win�(C� j) for
some i� j � �, then also Win�(C� i�1) � Win�(C� j�1). Let mC be the least i � � such
that Win�(C� i) � Win�(C� j) for some j � i, and let nC be the least i � 0 such that
Win�(C�mC) � Win�(C�mC�i). Obviously, mc � nc � 2�Q� and for every i � mc we have
that Win�(C� i) � Win�(C�mC � ((i � mC) mod nC)). Hence, the winning regions of
both players are fully characterized by all Win�(C� i), where 0 � i  mC � nC.

The selective subcase is analyzed in the next theorem. The PSPACE lower bound
is obtained by reducing the emptiness problem for alternating finite automata with one
letter alphabet, which is known to be PSPACE complete [16] (see also [21] for a sim-
pler proof). The PSPACE upper bound follows by employing the result of [31] which
says that the emptiness problem for alternating two-way parity word automata (2PWA)
is in PSPACE (we would like to thank Olivier Serre for providing us with relevant
references). The e�ective constructability of the winning strategies for player � and
player � follows by applying the results on non-selective termination presented below.

Theorem 11. The problem whether p(i) � Win(���(ZC)) is PSPACE-complete. Fur-
ther, there is a strategy 	 winning for player � in every configuration of Win(���(ZC))
such that for all p � Q� and i � mC we have that 	(p(i)) � 	(p(mC � ((i � mC)
mod nC))). The numbers mC� nC and the tuple of all Win�(C� i) and 	(p(i)), where
0 � i  mC�nC and p � Q�, are constructible in time exponential in 	�	.

In the non-selective subcase, the situation is even better. The winning regions for both
players are monotone, which means that mQ � 	Q	 and nQ � 1. Further, all of the
considered problems are solvable in polynomial time.
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Theorem 12. The problem whether p(i) � Win(���(Z)) is in P. Further, there are
counterless strategies	 and 
 such that	 is winning for player� in every configuration
of Win(���(Z)) and 
 is winning for player � in every configuration of Win(���(Z)).
The tuple of all Win�(Q� i), 	(p), and 
(q), where 0 � i � mC, p � Q�, and q � Q�, is
constructible in time polynomial in 	�	.

4 Conclusions, Future Work

Technically, the most involved result presented in this paper is Theorem 10. This decid-
ability result is not obvious, because most of the problems related to formal verification
of Petri nets (equivalence-checking, model-checking, etc.) are undecidable [8,17,23,5].
Since the upper complexity bound given in Theorem 10 is complemented only by the
EXPSPACE lower bound, which is easily derivable from [24], there is a complexity
gap which constitutes an interesting challenge for future work.
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4. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition systems
with states. CoRR abs�1002.2557 (2010)

5. Burkart, O., Caucal, D., Moller, F., Ste�en, B.: Verification on infinite structures. Handbook
of Process Algebra, 545–623 (2001)
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21. Jančar, P., Sawa, Z.: A note on emptiness for alternating finite automata with a one-letter
alphabet. Information Processing Letters 104(5), 164–167 (2007)

22. Kučera, A.: The complexity of bisimilarity-checking for one-counter processes. Theoretical
Computer Science 304(1-3), 157–183 (2003)
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{clementi,pasquale}@mat.uniroma2.it

2 Dipartimento di Informatica, Università di Roma “La Sapienza”
silvestri@di.uniroma1.it

Abstract. We introduce a new approach to model and analyze Mobility.
It is fully based on discrete mathematics and yields a class of mobility
models, called the Markov Trace Model. This model can be seen as the
discrete version of the Random Trip Model: including all variants of the
Random Way-Point Model [14].

We derive fundamental properties and explicit analytical formulas for
the stationary distributions yielded by the Markov Trace Model. Such
results can be exploited to compute formulas and properties for concrete
cases of the Markov Trace Model by just applying counting arguments.

We apply the above general results to the discrete version of the Man-
hattan Random Way-Point over a square of bounded size. We get formu-
las for the total stationary distribution and for two important conditional
ones: the agent spatial and destination distributions.

Our method makes the analysis of complex mobile systems a feasi-
ble task. As a further evidence of this important fact, we first model a
complex vehicular-mobile system over a set of crossing streets. Several
concrete issues are implemented such as parking zones, traffic lights, and
variable vehicle speeds. By using a modular version of the Markov Trace
Model, we get explicit formulas for the stationary distributions yielded
by this vehicular-mobile model as well.

1 Introduction

A crucial issue in modeling mobility is to find a good balance between the goal
of implementing important features of concrete scenarios and the possibility to
study the model from an analytical point of view. Several interesting approaches
have been introduced and studied over the last years [3,12,16,14]. Among them,
we focus on those models where agents move independently and according to
some random process, i.e., random mobility models. Nice examples of such ran-
dom models are the random-way point and the walker models [3,5,12,14,16]
which are, in turn, special cases of a family of mobility models known as random
trip model [14]. Mobile networks are complex dynamical systems whose analysis
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is far to be trivial. In particular, deriving explicit formulas of the relative sta-
tionary probabilistic distributions, such as the agent spatial one, requires very
complex integral calculus [4,6,14,15].

We propose a new approach to model and analyse mobility. This approach is
based on a simple observation over concrete network scenarios:

It is not so important to record every position of the agents at every
instant of time and it thus suffices to discretize the space into a set of
cells and record the current agent cell at discrete time steps.

We exploit the above observation to get a class of fully-discrete mobility models
based on agent movement-traces (in short, traces). A trace is the representation
of an agent trajectory by means of the sequence of visited cells. Similarly to the
Random Trip Model, our mobile model is defined by fixing the set of feasible
traces and the criterium the agent adopts to select the next trace after arriving
at the end of the current trace.

We define the (Discrete) Markov Trace Model (in short, MTM) where, at ev-
ery time step, an agent either is (deterministically) following the selected trace
or is choosing at random (according to a given probability distribution) the next
trace over a set of feasible traces, all starting from the final cell of the previ-
ous trace. It is important to observe that the same trajectory run at different
speeds yields different traces (cell-sequences are in general ordered multi-sets):
so, it is possible to model variable agent speeds that may depend on the specific
area traffic or on other concrete issues. A detailed description of the MTM is
given in Section 2. We here discuss its major features and benefits. Any MTM
D determines a discrete-time Markov chain MD whose generic state is a pair
〈T, i〉: an agent has chosen trace T and, at that time step, she is in position T (i).
We first study the stationary distribution(s) of the Markov chain MD (in what
follows we will say shortly: ”stationary distribution of D”). We show evidence
of the generality of our model, derive an explicit form of the stationary distri-
bution(s), and establish existence and uniqueness conditions for the stationary
distributions of an MTM. We then give a necessary and sufficient condition for
uniformness of the stationary distribution of an MTM. The above results for
the stationary phase can be applied to get explicit formulas for the stationary
(agent) spatial distribution and the stationary (agent) destination one. The for-
mer gives the probability that an agent lies in a given cell, while the latter gives
the probability that an agent, conditioned to stay in a cell v, has destination cell
w, for any choice of v and w. The knowledge of such distributions is crucial to
achieve perfect simulation, to derive connectivity properties of Mobile Ad-hoc
NETworkS (MANETS) defined over the mobility model, and for the study of
information spreading over such MANETS [7,8,11]. We emphasize that all the
obtained explicit formulas can be computed by counting arguments (it mainly
concerns calculating the number of feasible traces passing over or starting from
a cell). If the agent’s behaviour can be described by using a limited set of typical
traces (this happens in most of MANETS applications), then such formulas can
be computed by a computer in few minutes.
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Our MTM model can thus serve as a general framework that allows an ana-
lytical study of concrete mobility scenarios. We provide two examples that show
its power and applicability.

In the first one, we consider the Manhattan Random Way-Point (MRWP)
model [11,5,14]. This version of the Random Way-Point model is motivated by
scenarios where agents travel over an urban zone and try to minimize the number
of turns while keeping the chosen route as short as possible. We then implement
this model as a specific MTM and we derive explicit formulas for its stationary
distributions. In particular, we provide the spatial and the destination distribu-
tions for any choice of the cell resolution parameter ε > 0. We observe that, by
taking the limit for ε → 0, our explicit formula of the spatial distribution coin-
cides to that computed by using rather complex integral calculus in [11] for the
continuous space-time MRWP model (in terms of probability density functions).

Finally, we give, for the first time, the destination distribution of the continuous
space-time MRWP model as well. Both these formulas have been recently used to
derive the first analytical bounds on flooding time for the MRWP model [10].

Our approach can make the analysis of complex scenarios much simpler: it is
just a matter of modelling objects and events as ingredients of an MTM. After
doing that, you do not need to prove new properties or new formulas, you can
just apply ours.

As a second concrete example of this fact, we consider a more complex vehicular-
mobility scenario: The Down-Town model where a set of horizontal and vertical
streets cross each other and they alternate with building blocks (see Fig 1). Agents
(i.e. vehicles) move over the streets according to Manhattan-like paths and park on
the border of the streets (a detailed description of the model is given in Section 4.1).
Different agent speeds and red and green events of traffic lights can be implemented
by considering different traces over the same street path.

Thanks to a modular version of our MTM model, we are also able to analyze
this more complex scenario. In fact, the main advantage of our approach is that
a given scenario can be analyzed by simply modelling objects and events as
”ingredient” of an MTM, thus obtaining the stationary probability distributions
directly from our formulas.

2 The Markov Trace Model

The mobility model we are introducing is discrete with respect to time and space.
The positions an agent can occupy during her movement belong to the set of
points (also called cells) R and they are traced at discrete time steps. The set
R might be a subset of Rd, for some d = 1, 2, . . ., or it might be some other set.
It is only assumed that R is a metric space.

A movement trace, or simply a trace, is any (finite) sequence T=(u0, u1, . . . ,uk)
of at least two points. When we mention points we tacitly assume that they
belong to R. The points of a trace are not necessarily distinct. The length of
a trace T (i.e., the number of points of T ) is denoted by |T | and, for each
i = 0, 1, . . . |T | − 1, let T (i) denote the i-th point of the trace T . A trace T can



Modelling Mobility: A Discrete Revolution 493

be interpreted as the recording of the movement of an agent starting from some
initial time t0: for every i = 0, 1, . . . , |T | − 1, T (i) is the traced position of the
agent at time t0 + i · τ , where τ > 0 is the duration of a time step.

In our model, an agent can move along trajectories that are represented by
traces. For any trace T , let Tstart and Tend denote, respectively, the starting
point and the ending point of the trace. Let T be any set (possibly infinite) of
traces. We say that T is endless if for every trace T ∈ T , there is a trace T ′ ∈ T
such that T ′

start = Tend.
For any point u ∈ R, T out(u) denotes the subset of traces of T whose starting

point is u. Let

P (T ) = {u | T out(u) = ∅} and S(T ) = {〈T, i〉 | T ∈ T ∧ 1 � i � |T | − 1}

A Markov Trace Model (MTM ) is a pair D = (T , Ψ) such that:

i) T is an endless trace set such that |P (T )| <∞;
ii) Ψ is a Trace Selecting Rule for T (TSR), that is, Ψ is a family of probability
distributions {ψu}u∈P (T ) such that for each point u ∈ P (T ), ψu is a probability
distribution over T out(u).

Similarly to the random trip model [14], any MTM D determines a Markov
chain MD = (S(T ), P [T , Ψ ]) whose state space is S(T ) and the transition prob-
abilities P [T , Ψ ] are defined as follows: for every T ∈ T ,

- Deterministic-move Rule. For every i with 1 � i < |T |−1, Pr (〈T, i〉→〈T, i+1〉)
= 1;
- Next-trace Rule. For every T ′ in T out(Tend), Pr (〈T, |T | − 1〉 → 〈T ′, 1〉) =
ψTend

(T ′);

all the other transition probabilities are 0. It is immediate to verify that for any
s ∈ S(T ) it holds that

∑
r∈S(T ) Pr (s→ r) = 1.

Stationary Properties. We first introduce some notions that are useful in
studying the stationary distributions of a MTM. For any u, v ∈ R, T (u, v)
denotes the subset of traces of T whose starting point is u and whose ending
point is v. Define also T in(u) = {T ∈ T | Tend = u}.

Let D = (T , Ψ) be a MTM. For any two distinct points u, v ∈ P (T ), we
say that u is connected to v in D if there exists a sequence of points of P (T )
(z0, z1, . . . , zk) such that z0 = u, zk = v, and, for every i = 0, 1, . . . , k − 1,∑

T∈T (zi,zi+1) ψzi(T ) > 0 Informally, this can be interpreted as saying that if
an agent is in u then, with positive probability, she will reach v. We say that
D is strongly connected if, for every u, v ∈ P (T ), u is connected to v. Observe
that if D is not strongly connected then at least a pair of points u, v ∈ P (T )
exists such that u is not connected to v. In the full version of this work [9], by
applying standard results concenring Markov chains, we prove that: i) Any MTM
D always admits a stationary probability distribution; If D is strongly connected
then it has a unique stationary distribution. Let D = (T , Ψ) be any MTM. We
say that D is uniformly selective if ∀u ∈ P (T ), ψu is a uniform distribution.
We say that D is balanced if ∀u ∈ P (T ), |T in(u)| = |T out(u)| Observe that if
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a MTM D = (T , Ψ) has a uniform stationary distribution then it must be the
case that |S(T )| < ∞ or, equivalently, |T | < ∞. We also prove that an MTM
D = (T , Ψ) has a uniform stationary distribution iff it is both uniformly selective
and balanced.

Stationary Spatial and Destination Distributions. We use the following
notations. For any trace T ∈ T and for any u ∈ R, define

#T,u = |{i ∈ N | 1 � i < |T | − 1 ∧ T (i) = u}| and Tu = {T ∈ T | #T,u � 1}
- We now derive the function s(u) representing the probability that an agent
lies in point u ∈ R w.r.t. the stationary distribution π. This is called Stationary
(Agent) Spatial Distribution. By definition, for any point u ∈ R, it holds that

s(u) =
∑

〈T,i〉∈S(T )∧T (i)=u

π(〈T, i〉) =
∑

T∈Tu

#T,u · π(〈T, 1〉)

If the stationary distribution π is uniform, then s(u) = (1/|S(T )|)·
∑

T∈Tu
#T,u.

We say that an MTM is simple if, for any trace T ∈ T and u ∈ R, #T,u � 1.
Then, if the MTM is simple and π is uniform, then it holds

s(u) =
|Tu|
|S(T )| (1)

- Another important distribution is given by function du(v) representing the
probability that an agent has destination v under the condition she is in position
u. This function will be called Stationary (Agent) Destination Distribution. By
definition, it holds that

du(v) =

∑
〈T,i〉∈S(T )∧T (i)=u∧Tend=v π(〈T, i〉)

s(u)
=

∑
T∈Tu∧Tend=v #T,u · π(〈T, 1〉)

s(u)

We define Γu(v) = |Tu ∩ T in(v)| and Γu = |Tu| and observe that, if the MTM is
simple and π is uniform, then

du(v) =
Γu(v)
Γu

(2)

3 The Manhattan Random-Way Point

In this section, we study a mobility model, called Manhattan Random-Way
Point, an interesting variant of the Random-Way Point that has been recently
studied in [11].

Consider a finite 2-dimensional square of edge length L > 0. In order to
formally define the MTM, we introduce the following support graph Gε(Vε, Eε)
where Vε = {(iε, jε) : i, j ∈ {0, 1, . . . , N − 1}} and Eε = {(u, v) : u, v ∈
Vε ∧ d(u, v) = ε} where, here and in the sequel, N = /L/ε0 and d(·, ·) is the
Euclidean distance.

Now, given any point v ∈ Vε, we define a set C(v) of feasible paths from v
as follows. For any point u, C(v) includes the (at most) two Manhattan paths
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having exactly one corner point. More precisely, let v = (x, y) and u = (x′, y′)
we consider the path having first the horizontal segment from (x, y) to (x′, y) and
then the vertical segment to (x′, y′). The second path is symmetrically formed by
the vertical segment from (x, y) to (x, y′) and the horizontal segment to (x′, y′).
Observe that if x = x′ or y = y′, then the two paths coincides. We are now able to
define the Manhattan Markov Trace Model (in short Manhattan-mtm) (Tε, Ψε),
where Tε = {T | T is the point sequence of a path in C(v) for some v ∈ Vε },
and Ψε is the uniform TSR for Tε. It is easy to verify the Manhattan-mtm enjoys
the following properties. The Manhattan-mtm is balanced, uniformly-selective
and strongly-connected. So, the Manhattan-mtm has a unique stationary distri-
bution and it is the uniform one. Moreover, since the Manhattan-mtm is simple,
the stationary spatial and the destination distributions are given by Eq.s 1 and 2,
respectively.

So, we just have to count the size of some subsets of traces (i.e paths in
Gε(Vε, Eε)). The point (iε, jε) will be denoted by its grid coordinates (i, j). The
stationary spatial distribution for (Tε, Ψε) is

sε(i, j) =
3((4N2 − 6N + 2)(i + j) − (4N − 2)(i2 + j2) + 6N2 − 8N + 3)

(N4 − N2)(4N − 2)
(3)

We now study the Manhattan Random-Way Point over grids of arbitrarily high
resolution, i.e. for ε → 0 in order to derive the probability densitiy functions of
the stationary distributions. We first compute the probability that an agent lies
into a square of center (x, y) (where x and y are the Euclidean coordinates of
a point in Vε) and side length 2δ w.r.t. the spatial distribution; then, we take
the limits as δ, ε→ 0. We thus get the probability density function of the spatial
distribution

s(x, y) =
3
L3

(x + y) − 3
L4

(x2 + y2) (4)

This is also the formula obtained in [11] for the classic (real time-space) MRWP
model.
- The stationary destination density function can be computed very similarly by
applying Eq. 2. The probability density f(x0,y0)(x, y) that an agent, conditioned
to stay in position (x0, y0), has destination (x, y) is

f(x0,y0)(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2L−x0−y0
4L(L(x0+y0)−(x2

0+y2
0))

if x < x0 and y < y0

x0+y0
4L(L(x0+y0)−(x2

0+y2
0))

if x > x0 and y > y0

L−x0+y0
4L(L(x0+y0)−(x2

0+y2
0))

if x < x0 and y > y0

L+x0−y0
4L(L(x0+y0)−(x2

0+y2
0))

if x > x0 and y < y0

+∞ if x = x0 and y = y0

+∞ if x = x0 and y < y0 (South Case)
+∞ if x < x0 and y = y0 (West Case
+∞ if x = x0 and y > y0 (North Case)
+∞ if x > x0 and y = y0 (East Case)

(5)

It is also possible to derive the probability that an agent, visiting point (x0, y0),
has destination in one of the last four cases (south, west, north, and east)
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φsouth(x0,y0) = φnorth(x0,y0) =
y0(L− y0)

4L(x0 + y0)− 4(x2
0 + y2

0)
, φwest(x0,y0) = φeast(x0,y0) =

x0(L− x0)

4L(x0 + y0)− 4(x2
0 + y2

0)

We observe that the resulting cross probability, (i.e. the probability an agent
has destination over the cross centered on its current position), is equal to 1/2
despite the fact that this region (i.e. the cross) has area 0. This is crucial for
getting an upper bound on flooding time [10].

4 Modular Trace Models

Defining a MTM whose aim is the approximate representation of a concrete mobil-
ity scenario might be a very demanding task. We thus introduce a technique that
makes the definition of MTMs easier when the mobility scenario is modular. For
example, consider vehicular mobility in a city. Any mobility trace can be viewed
as formed by the concatenation of trace segments each of which is the segment of
the trace that lies on a suitable segment of a street (e.g., the segment of a street
between two crossings). Moreover, given a street segment we can consider all the
trace segments that lies on it. Then, it is reasonable to think that two alike street
segments (e.g., two rectilinear segments approximately of the same length), have
similar collections of trace segments. This leads us to the insight that all the traces
can be defined by suitably combining the collection of trace segments relative to
street segments. It works just like combining Lego blocks.

In the sequel, we use the term trace segment to mean a trace that is a part of
longer traces. Given a trace (or a trace segment) T , the shadow of T , denoted
by ST , is the sequence of points obtained from T by replacing each maximal run
of repetitions of a point u by a single occurrence of u. For example, the shadow
of (u, u, v, w,w,w, u) is (u, v, w, u) (where u, v, w are distinct points). Given any
two sequences of points T and T ′ (be them traces, trace segments, or shadows),
the combination of T and T ′, in symbols T · T ′, is the concatenation of the two
sequences of points. Moreover, we say that T and T ′ are disjoint if no point
occurs in both T and T ′. Given any multiset X we denote the cardinality of X
by |X |, including repeated memberships.

A bundle B is any non-empty finite multiset of trace segments such that, for
every T, T ′ ∈ B, ST = ST ′ . The common shadow of all the trace segments in B
is called the shadow of B and it is denoted by SB.

Two bundles B and B′ are non-overlapping if SB and SB′ are disjoint. Given
two non-overlapping bundles B and B′ the combination of B and B′, in symbols
B · B′, is the bundle consisting of all the trace segments T · T ′ for all the T, T ′

with T ∈ B and T ′ ∈ B′. Notice that, since B and B′ are non-overlapping, it
holds that SB·B′ = SB · SB′ . Moreover, it holds that |B ·B′| = |B| · |B′|.

A bundle-path is a sequence of bundles P = (B1, B2, . . . , Bk) such that any
two consecutive bundles of P are non-overlapping. A bundle-path P determines
a bundle Bundle(P ) = B1 · B2 · · ·Bk. Observe that |Bundle(P )| =

∏k
i=1 |Bi|.

Given a bundle-path P , let Pstart and Pend denote, respectively, the starting
point and the ending point of the traces belonging to Bundle(P ).
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A route R is a multiset of bundle-paths all having the same starting point
Rstart and the same ending point Rend (i.e. there exist points Rstart and Rend

such that for every bundle-path P in R it holds Pstart = Rstart and Pend = Rend).
Informally speaking, a bundle-path is formed by traces having the same

shadow; introducing such different traces allows to model agents travelling on
the same path at different speeds (in this way, it is also possible to change speed
around cross-ways and modeling other concrete events). Moreover, routes are
introduced to allow different bundle-paths connecting two points. By introduc-
ing more copies of the same bundle-path into a route, it is possible to determine
paths having more agent traffic. As described below, all such issues can be imple-
mented without making the system analysis much harder: it still mainly concerns
counting traces visiting a given bundle.

A Route System is a pair R = (B,R) where: (i) B is a set of bundles, and (ii)
R is a multiset of routes over the bundles of B such that, for every R ∈ R, there
exists R′ ∈ R with R′

start = Rend.
We need some further notations. Let Ru be the multiset {R ∈ R|Rstart = u}.

#P,T is the multiplicity of trace T in Bundle(P ). #P,B is the number of occur-
rences of bundle B in the bundle-path P . Moreover #R,B =

∑
p∈R #P,B and

#B,u =
∑

T∈B #T,u, where the sums vary over all the elements, including re-
peated memberships. Let #B denote the total number of occurrences of points
in all the trace segments of B, including repeated memberships, that is,

#B =
∑

u in SB

#B,u

A Route System R = (B,R) defines a MTM D[R] = (T [R], Ψ [R]) where

(i) T [R] = {T | ∃R ∈ R ∃P ∈ R : T ∈ Bundle(P )} Notice that T [R] is a set
not a multiset. (ii) for every u ∈ P (T [R]) and for every T ∈ T [R]out(u),

ψ[R]u(T ) =
1

|Ru|
∑

R∈Ru

1
|R|
∑
P∈R

#P,T

|Bundle(P )|

The above probability distribution assigns equal probability to routes starting
from u, then it assigns equal probability to every bundle path of the same route
and, finally, it assigns equal probability to every trace occurrence of the same
bundle path.

The ”stationary” formulas for general route systems are given in the full version
of the paper [9]. We here give the simpler formulas for balanced route systems. A
Route System R = (B,R) is balanced if, for every u ∈ S, it holds that

|{R ∈ R|Rstart = u}| = |{R ∈ R|Rend = u}|.
We are now able to derive the explicit formulas for the spatial and the desti-
nation distributions; observe that such formulas can be computed by counting
arguments or by computer calculations.

Proposition 1 Let R = (B,R) be a balanced Route System such that the associ-
ated MTM D[R] = (T [R], Ψ [R]) is strongly connected. Then, (i) The stationary
spatial distribution s of D[R] is, for every u ∈ S,
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s(u) =
1

Λb[R]

∑
B∈B

#B,u

|B|
∑
R∈R

#R,B

|R| with Λb[R] =
∑
B∈B

#B

|B|
∑
R∈R

#R,B

|R|

(ii) the stationary destination distributions d of D[R] are, for every u, v ∈ S,

du(v) =
1

s(u)Λb[R]

∑
B∈B

#B,u

|B|
∑

R∈R∧Rend=v

#R,B

|R|

4.1 Application: The DownTown Model

We now use the Modular Trace Model to describe vehicles that move over a
squared city-like support. This support consists of a square of (n + 1) × (n + 1)
crossing streets (horizontal and vertical) and buildings (where n is an even num-
ber). Buildings are interdicted zones, while veichles move and park on the streets.
Streets are in turn formed by parking and transit cells and every transit cells of a
given street has its own direction (see Fig.s 1 and 2). Moreover, a parking cell has
its natural direction given by the direction of its closest transit cells.

A vehicle (agent) moves from one parking cell (the start) to another parking
one (the destination) by choosing at random one of the feasible paths. To every
feasible path, a set of traces is uniquely associated that models the different ways
a vehicle may run over that path: this will also allow to simulate traffic lights
on the cross-ways.

Every street is an alternating sequence of cross-ways and blocks. We enumerate
horizontal streets by an increasing even index {0, 2, . . . , n}, starting from the
left-top corner. We do the same for vertical streets as well. In this way, every
cross-way gets a pair of coordinates (i, j). We say that a direction is positive over
a horizontal street if it goes from left to right and while the opposite direction is
said to be negative. As for vertical streets, the positive direction is the one going
from top to bottom and the opposite is said to be negative (see Fig.s 1 and 2).

Then, the blocks of a horizontal street i will be indexed from left to right with
coordinates (i, 1), (i, 3), (i, 5), . . .. Similarly, the block of a vertical street j will
be indexed from top to bottom with coordinates (1, j), (3, j), . . ..

We now formally introduce the DownTown Route System RD = 〈BD,RD〉; let’s
start with the bundle set BD. We here only describe the bundle shadows; the
complete description is given in the full version [9].

[Blocks.] Each (street) block is formed by 4 stripes of m cells each with indexing
shown in Fig. 2. Two stripes are for transit while the two external ones are for park-
ing use. The parking stripe adjacent to the transit stripe with positive direction is
said positive parking stripe while the other one is said negative parking stripe.

For every 0 � i, j � n such that (i odd ∧ j even ) ∨ (i even ∧ j odd ),
Block (i, j) has the following bundles. Bundle B+

T (i, j) whose shadow is the
stripe having positive direction; Bundle B−

T (i, j) is symmetric to B+
T (i, j) for the

negative direction; For each parking cell of index k, there are four start-Bundles
B++

S,k (i, j), B+−
S,k (i, j), B−−

S,k (i, j), and B−+
S,k (i, j); For each parking cell of index k,
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Fig. 1. The DownTown
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there are four end-Bundles B++
E,k(i, j), B+−

E,k(i, j), B−−
E,k(i, j), and B−+

E,k(i, j). The
shadows of the above bundles are shown in Fig. 2.

[Cross-Ways.] A cross-way is formed by 12 cells as shown in Fig. 2. We have
two types of associated bundles.

For every 0 � i, j � n such that (i even ∧ j even ), we have: The 4 straight
bundles BH,+

C (i, j), BH,−
C (i, j), BV,+

C (i, j), and BV,−
C (i, j); The 8 turn bundles

BH,++
C (i, j), BH,+−

C (i, j), BH,−−
C (i, j) BH,−+

C (i, j); Moreover, BV,++
C (i, j),

BV,+−
C (i, j), BV,−−

C (i, j), and BV,−+
C (i, j). The relative shadows are shown in

Fig. 2. Observe that the first sign indicates the sign of the in-direction and the
other indicates the out-direction.

The set of DownTown routes RD formed by combining the bundles described
above are depicted in Fig. 1 (a formal description is given in the full version).
Notice that some paths are not the shortest ones.

Fig. 3. Asymptotical behaviour of the
spatial probability distribution of hori-
zontal positive transit cells (0 < α < 1).
The role of vertical coordinate i is almost
negligible since the only transit direction
of such cells is the positive horizontal
one. This representation takes no care
about the slowness of the cells. Clearly,
in vertical positive cells, the roles of i
and j interchange.

0 1 2 . . . n

n

.

.

.

2
1
0

n−3 n−3+α n−2 n−3+α n−3

Let Λ = Λb[RD]/m2 be the normalization constant with Λb[RD] defined in
Prop 1. Let u be a transit cell of index k (with any k ∈ {1, . . . ,m}) in the positive
transit stripe of the horizontal transit block (i, j) (i.e. i even and j odd). (with
i /∈ {0, n}). By calculations provided in the full version, we obtain the formula
of the stationary spatial distribution

s(u) =
slow(k)

Λ

(
a(i, j) +

k

m
b(j) +

1
m

c(j)
)

where

a(i, j) = (n − j)(2nj + j + n − i − 1) + (n − 2)j − n

2
+ i − 2,

b(j) = n(n + 1) +
n

2
− 2(n + 1)j, and c(j) = (n + 1)(n + j) + n − 3

where slow(k) is the slowness parameter that summarizes the impact of trace
segments on the transit bundles (see the full version). An informal representation
of the asymptotical behaviour of the above function is given in Fig. 3.

Acknowledgements. We are very grateful to Paolo Penna for useful comments.



Modelling Mobility: A Discrete Revolution 501

References

1. Koberstein, J., Peters, H., Luttenberger, N.: Graph-based mobility model for urban
areas fueled with real world datasets. In: Proc. of the 1st SIMUTOOLS 2008, pp.
1–8 (2008)

2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs
(2002), http://stat-www.berkeley.edu/users/aldous/RWG/book.html

3. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communication and Mobile Computing 2(5), 483–502 (2002)
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Abstract. In this paper we study efficient rendezvous of two mobile
agents moving asynchronously in the Euclidean 2d-space. Each agent
has limited visibility, permitting it to see its neighborhood at unit range
from its current location. Moreover, it is assumed that each agent knows
its own initial position in the plane given by its coordinates. The agents,
however, are not aware of each others position. The agents possess co-
herent compasses and the same unit of length, which permit them to
consider their current positions within the same system of coordinates.
The cost of the rendezvous algorithm is the sum of lengths of the trajec-
tories of both agents. This cost is taken as the maximum over all possible
asynchronous movements of the agents, controlled by the adversary.

We propose an algorithm that allows the agents to meet in a local
neighborhood of diameter O(d), where d is the original distance between
the agents. This seems rather surprising since each agent is unaware of
the possible location of the other agent. In fact, the cost of our algo-
rithm is O(d2+ε), for any constant ε > 0. This is almost optimal, since a
lower bound of Ω(d2) is straightforward. The only up to date paper [12]
on asynchronous rendezvous of bounded-visibility agents in the plane
provides the feasibility proof for rendezvous, proposing a solution expo-
nential in the distance d and in the labels of the agents. In contrast,
we show here that, when the identity of the agent is based solely on its
original location, an almost optimal solution is possible.

An integral component of our solution is the construction of a novel
type of non-simple space-filling curves that preserve locality. An infinite
curve of this type visits specific grid points in the plane and provides a
route that can be adopted by the mobile agents in search for one another.
This new concept may also appear counter-intuitive in view of the result
from [22] stating that for any simple space-filling curve, there always
exists a pair of close points in the plane, such that their distance along
the space-filling curve is arbitrarily large.

1 Introduction

1.1 The Problem and the Model

A pair of identical mobile agents is located at two points in the plane. Each agent
has limited visibility, permitting it to see its neighborhood at unit range from its
current location. We assume that each agent knows its own initial position in the

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 502–514, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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plane given by its coordinates, i.e., it is location aware. However, the agents do
not know each others position. We also assume that the agents possess coherent
compasses and the same unit of length, which permit them to consider their
current positions within the same system of coordinates. Therefore each agent
may consider its initial location as its unique ID.

The route of each agent is a sequence of segments which are subsequently
traversed during its movement. The entire route of the agent depends uniquely
on its initial position. The actual walk of each agent along every segment is
asynchronous, i.e., it is controlled by an adversary. The agents meet if they
eventually get within the visibility range of each other, i.e., at some point in
time the distance between their current positions will not be greater than one.

We now define more precisely the power of the adversary. The adversary
initially places both agents at any two points in the plane. Given its initial
location a0, the route chosen by the agent is a sequence of segments (e1, e2, . . .),
such that in stage i the agent traverses segment ei = [ai−1, ai], starting at ai−1

and ending at ai. Stages are repeated indefinitely (until rendezvous). We assume
that each agent may start its walk at any time, but both agents are placed by
the adversary at their respective initial positions at the same moment, and since
that time any moving agent may find the other agent, even if the other agent
didn’t start its walk yet.

We describe the walk f of an agent on its route, similarly as in [12]: let
R = (e1, e2, . . .) be the route of an agent. Let (t1, t2, . . .), where t1 = 0, be an
increasing sequence of reals, chosen by the adversary, that represent points in
time. Let fi : [ti, ti+1] → [ai, ai+1] be any continuous function, chosen by the
adversary, such that fi(ti) = ai and fi(ti+1) = ai+1. For any t ∈ [ti, ti+1], we
define f(t) = fi(t). The interpretation of the walk f is as follows: at time t the
agent is at the point f(t) of its route. The adversary may arbitrarily vary the
speed of the agent, as long as the walk of the agent in each segment is continuous,
eventually bringing the agent from the starting endpoint to the other endpoint
of the corresponding segment of its route1.

Agents with routes R1 and R2 and with walks f (1) and f (2) meet at time t, if
points f (1)(t) and f (2)(t) are identical. A rendezvous is guaranteed for routes R1

and R2, if the agents using these routes meet at some time t, regardless of the
walks chosen by the adversary. The cost of the rendezvous algorithm is measured
by the sum of the lengths of the trajectories of both agents from their starting
locations until the time t of the rendezvous. Since the actual portions of these
trajectories may vary depending on the adversary, we consider the maximum of
this sum, i.e., the worst-case over all possible walks chosen for both agents by
the adversary. In this paper we are looking for the rendezvous algorithm of the
smallest possible cost with respect to the original distance d between the agents.

1 This defines a very powerful adversary. Notice that the presented algorithm is valid
even with this powerful adversary, and the lower bound argument works also for a
weaker adversary that can only speed up or slow down the robot, without moving it
back (corresponding to a walk function f which must be additionally monotonous).
Hence our results also hold in this (perhaps more realistic) model.
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1.2 Related Work

The rendezvous problem is often presented as a search game involving two play-
ers (or agents) which cooperate in order to meet as quickly as possible. An
extensive presentation of the large literature on rendezvous can be found in the
excellent book [2]. The majority of research concern deterministic algorithms,
which is also the model adopted in this paper. Most papers on rendezvous assume
either the graph environment, e.g., [2,3] or the geometric environment. In the
geometric scenario the agents move in some geometric terrain, e.g. line [6,7,20],
plane [4,5,12], or unknown bounded environment [11,21].

One of the fundamental issues in the deterministic rendezvous algorithms is
the problem of symmetry breaking, since identical agents starting at some sym-
metric positions may never meet, indefinitely performing symmetric moves. One
possible way to break symmetry is to have agents identified with different labels.
For the case of agents which are unlabeled, i.e., anonymous, [19] studied ren-
dezvous in trees, assuming that agents have bounded memory. However, trees are
a special case in which rendezvous is often feasible, supposing that neither nodes
nor agents are labeled or marked. The rendezvous in a graph is feasible, see [13],
if and only if the starting positions of the anonymous agents are asymmetric, i.e.,
the views of the graph from the initial positions of the agents are distinguish-
able, cf. [30]. In [31] the problem of gathering many agents with unique labels
was studied. In [15,23] deterministic rendezvous in graphs with labeled agents
was considered. One usual approach used for labeled agents consists in finding
a (usually non simple) cycle in the graph, computable by an agent placed at
any starting vertex, and an integer bijection f on the set of labels. The agent A
goes f(A) times around such cycle and different agents are forced to meet (see
e.g. [11,13,14,23]). In [13] it was proved that the log-space memory is sufficient
in order to decide whether a given instance of the rendezvous problem is feasible
for any graph and any initial positions of the agents.

However, in most of the papers above, the synchronous setting was assumed.
In the asynchronous setting it is assumed that the timing of each action may
be arbitrarily slowed down by an adversary. The efficiency of the asynchronous
algorithms is determined by the worst-case possible behavior of the adversary.
Asynchronous gathering in geometric environments has been studied, e.g., in
[10,18] in different models than ours: anonymous agents are oblivious (they can
not remember past events), but they are assumed to have at least partial visi-
bility of the scene. The first paper to consider deterministic asynchronous ren-
dezvous in graphs was [14], where the complexity of rendezvous in simple classes
of graphs, such as rings and infinite lines, was studied for labeled agents. In [12]
the feasibility of asynchronous rendezvous for labeled agents was considered both
for graphs and the 2d-space. It was proved that rendezvous is feasible in any con-
nected (even countably infinite) graph. For this purpose, an enumeration of all
quadruples containing possible pairs of agent labels and their starting positions
is considered. According to this enumeration, the routes of the agents involved
in each quadruple is extended in such a way that their meeting is always en-
sured. If the graph is unknown, the enumeration is constructed while the graph
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is explored. The cost of the rendezvous algorithm is exponential in the origi-
nal distance between the agents. On the other hand, asynchronous rendezvous
is unfeasible for agents starting at arbitrary positions in the plane, unless the
agents have an ε > 0 visibility range, see [12]. The assumption that the agents
operating in the geometric environment has a bounded, non-zero visibility range
is very natural (cf. [4,5,12,21]).

The assumption that the distributed mobile entities know their initial location
in the geometric environment was considered in the past, e.g., in the context of
geometric routing, see, e.g., [1,8,24,25], where it is typically assumed that the
source node knows the position of the destination as well as its own position,
or broadcasting [16,17], where the position awareness of only the broadcasting
node is admitted. Such assumption, partly fueled by the expansion of the Global
Positioning System (GPS), is sometimes called location awareness of agents or
nodes of the network, and it often leads to better bounds of the proposed so-
lutions. A technique consisting in the construction of the partition of the plane
into bounded diameter cells is usually used here.

An interesting context of this work is its relationship to space-filling curves
extensively studied at various contexts in the literature, see, e.g., [9,22,26,29].
One of the most important attributes of space-filling curves is sometimes called
the preservation of locality, i.e., that if two points are close in the 2d-space
they are also closely located on the space-filling curve. In this context, however,
Gotsman and Lindenbaum pointed out in [22] that space-filling curves fail in
preserving the locality in the worst case. They show that, for any space-filling
curve, there always exist some close points in the 2d-space that are arbitrarily
far apart on the space-filling curve. In this paper we show that such deficiency of
space-filling curves comes from a very strong assumption that curves visit each
point in a discrete 2d-space exactly once. We propose an alternative to space-
filling curves that preserves locality also in the worst case. Namely, we introduce
space-covering sequences that traverse points in a discrete 2d-space multiple
times. We show that, for any ε > 0, there exists a space-covering sequence, s.t.,
for any two points located at distance d in the 2d-space there are well defined and
efficiently computable instances of these two points in the sequence at distance
O(d2+ε) apart.

2 Efficient Construction of Space-Covering Sequences

The trajectories constructed in the paper follow grid lines except for their initial
segments by which each agent, starting from its arbitrary initial position, reaches
its closest grid point. It is possible that the first agent traverses an arbitrarily
long portion of its route, while the adversary holds the other agent on its initial
segment being not visible from any grid line. To prevent this we assume, w.l.o.g.,
that the 2d-space is rescaled so that the value of

√
2

2 corresponds to the unit
length of the 2d-space. This way the considered grid is fine enough, and the
agent visiting an integer grid point v will see another agent, situated in any
interior point of a unit grid square with vertex v.
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The fundamental concept used in the design of the rendezvous algorithm is
the space-covering sequence on which both robots are walking until rendezvous.
The space-covering sequence is infinite in both directions. It is formed of short
segments with the endpoints located at the integer grid points. Every point of
the integer grid is visited by the space-covering sequence infinitely many times.
Each agent starting from its arbitrary initial position in the plane walks first to
the closest grid point and then it starts making a special zigzag movement on
the sequence, each time covering more and more distance. The actual points at
which the agent changes the direction of its movement are determined by the
coordinates of the initial position of the agent and the purpose of our algorithm
is to determine them so that an efficient rendezvous will always be possible.

The construction of the space-covering sequence utilizes a hierarchy of infinite
grids of squares of increasing sizes This hierarchy is an amalgamate HQC of two
complementary hierarchies of square partitions: the quad-tree partition hierarchy
HQ and the central square partition hierarchy HC . For the clarity of presentation
we first demonstrate an argument leading to the rendezvous algorithm of cost
O(d4) and later extend it to obtain a O(d2+ε) cost solution.

Quad-tree hierarchy HQ: The first hierarchy of partitionsHQ has a form of an
infinite quad-tree like structure, (for information on quad-trees see, e.g., [28]) in
which the central point of the partition from each layer is aligned with the origin
(0, 0) of the plane. The ith layer Li

Q of the hierarchy, for i = 0, 1, 2, ..., is formed
of an infinite grid of squares of size 2i. Hence the lowest level of the hierarchyHQ

corresponds to the standard integer grid. In layer Li
Q we denote by Si

Q(x, y) a
square with the corners located at points (listed in the clockwise order counting
from the top-left corner) (x·2i, y ·2i), ((x+1)·2i, y ·2i), ((x+1)·2i, (y−1)·2i) and
(x·2i, (y−1)·2i). The overlapping squares at two neighboring layers Li

Q and Li+1
Q

are engaged in a parent-child relationship. In particular, a square Si+1
Q (x, y) at

layer Li+1
Q has four children squares Si

Q(2x, 2y), Si
Q(2x+1, 2y), Si

Q(2x+1, 2y−1)
and Si

Q(2x, 2y − 1) at the layer Li
Q, for i = 0, 1, 2, . . .

Central-square hierarchy HC : The second hierarchical partitionHC is formed
of (infinitely many) enumerated layers, where the ith layer Li

C is an infinite grid
with squares of size 2i, for i = 1, 2, . . . Each layer in HC is aligned, s.t., the
origin (0, 0) of the plane is associated with the center of one of the squares
in this layer. In particular, in layer Li

C we denote by Si
C(x, y) a square with

the corners located at points (listed in the clockwise order counting from the
top-left corner) ((x · 2i) − 2i−1, (y · 2i) + 2i−1), ((x · 2i) + 2i−1, (y · 2i) + 2i−1),
((x · 2i) + 2i−1, (y · 2i)− 2i−1), and ((x · 2i)− 2i−1, (y · 2i)− 2i−1).

Hierarchy HQC : By HQC we understand the infinite sequence of plane parti-
tions

π1 = L0
Q, π2 = L1

C , π3 = L1
Q, π4 = L2

C , π5 = L2
Q, . . .

Hence πi is a grid partition of the 2d-space into squares of size 2�i/2�, with grid
point having each coordinate of the form 2�i−1/2� + k2�i/2�, for any integer k.
To assure that each layer of HQC forms an exact partition, we assume that each
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square contains, besides its interior points, its right and top open sides as well
as the top-right vertex.

Intuitively, the hierarchical partitionHQC provides a mechanism used to guar-
antee that any two points p1 and p2 located at distance d in the 2d-space are
covered by some square of size O(d) in either HQ or in HC . The smallest square
in the hierarchical structure with this property is referred to as the rendezvous
square R(p1, p2).

We state two lemmas directly following from the definitions of HQ and HC .

Lemma 1. Any square Si
C(x, y) located in layer Li

C , for i = 1, 2, . . ., encapsu-
lates exactly four squares Si−1

Q (2x − 1, 2y + 1), Si−1
Q (2x, 2y + 1), Si−1

Q (2x, 2y),
and Si−1

Q (2x− 1, 2y), in layer Li−1
Q .

Lemma 2. Any square Si
Q(x, y) located in layer Li

Q, for i = 1, 2, . . ., overlaps
with exactly four squares Si

C(x, y), Si
C(x+1, y), Si

C(x+1, y−1) and Si
C(x, y−1)

in layer Li
C .

The following tree-like structure TQC is useful to visualize the functioning of our
approach: each square of every layer of HQC is a node of TQC . For every such
square S from layer i > 1 of HQC the squares from layer i − 1 intersecting S
are children of S in TQC . By lemmas 1 and 2 TQC is a quaternary tree. TQC is
infinite (does not a have a root) and its leaves are unit squares of the integer
grid.

The observation stated in the following lemma is the basis of the complexity
proof of our algorithm.

Lemma 3. For any two points p1 and p2 located at distance d in the 2d-space
there exists a square in HQC of size O(d) that contains p1 and p2.

Proof. Assume that 2i−1 < d ≤ 2i. Consider five consecutive layers from HQC ,
Li

Q, Li+1
C , Li+1

Q , Li+2
C , and Li+2

Q , where i meets the condition stated. Since any
layer in HQC forms a partition of the 2d-space into squares, within the layer
Li+2

Q there exists a unique square Si+2
Q (x, y) containing p1. Since four quad-tree

children of Si+2
Q (x, y) partition it, exactly one of them, a square belonging to

Li+1
Q also contains p1. Similarly, there is exactly one square from Li

Q, one of
the sixteen grandchildren of Si+2

Q (x, y) in the quad-tree, which contains p1, see
Figure 1. Let S∗ ∈ Li

Q denote the square containing p1. Note that, since d ≤ 2i,
the d-neighborhood of S∗ intersects nine squares of Li

Q - the square S∗ itself
and eight squares surrounding S∗. Hence p2 must belong to one of these nine
squares.

We consider now the cases depending which of these sixteen squares is S∗.
Due to the symmetry of the five layers in HQC , w.l.o.g., we can consider only
one, e.g., the top-left quadrant of Si+2

C (x, y), which contains four squares at Li
Q.

One of the three possible cases can occur.

Case 1. If S∗ containing p1 corresponds to the square depicted by α1, then
p2 must be located within Si+2

C (x, y), since Si+2
C (x, y) contains the entire d-

neighborhood of α1.
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Fig. 1. The symmetric structure of layers Li
Q, Li+1

C , Li+1
Q , Li+2

C and Li+2
Q

Case 2. If S∗ corresponds to the square depicted by α2 then p2 must be located
within Si+2

Q (x, y).

Case 3. If S∗ is one of the two remaining, symmetrically located squares within
the selected quadrant depicted by α3, then p2 is located either in Si+2

Q (x, y),
Si+2

C (x, y) or in Si+1
C (2x, 2y − 1).

Thus in all three cases there exists a square within layers Li
Q, Li+1

C , Li+1
Q ,

Li+2
C , and Li+2

Q , that contains both p1 and p2. Moreover, since squares at those
layers are of size O(d), the thesis of the lemma follows. �

In fact a stronger result holds too.

Corollary 1. Take any fragment of HQC formed of three consecutive layers Li
Q,

Li+1
Q , and Li+2

Q in HQ interleaved with two respective layers Li+1
C and Li+2

C in
HC , s.t., d ≤ 2i. This fragment contains also a square that contains p1 and p2.

Proof. The three cases from Lemma 3 also apply here. �

Space-covering sequences. Recall, that at the lowest layer of the structure
HQC there is partition π1 containing unit squares of L0

Q. On the basis of unit
squares, we form atomic space-covering sequences, constituting basic components
of length O(1). The atomic sequence based on a point p belonging to a unit
square in the 2d-space is referred to as the source s(p) of p. We suppose that
s(p) is the sequence formed of a single point, being the top left corner of the
unit square containing p. At any higher layer πi we recursively form a longer
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sequence associated with each square S from this layer by concatenating the
sequences from layer πi−1, corresponding to the children of S in the tree TQC

(i.e., for even i - squares from πi−1 that are covered by S∗, see Lemma 1, and, for
odd i - squares from πi−1 that overlap with S∗, see Lemma 2). To perform such
construction we need to define connectors linking together the portions of the
space-covering curve already created for the squares at the lower level. For the
simplicity of presentation we suppose that the portion of the space-covering curve
corresponding to any square S starts and ends at the top left corner of S. We
assume that the children of the same parent of TQC are arranged in the clockwise
order starting from the top left child. The connectors are the line segments
joining the top left corners of the siblings. The connectors are used twice, once
in the increasing order of the siblings (which, by convention, corresponds to
the left-to-right traversal of the space-covering sequence) and the other time in
the decreasing order. For example connectors A,B,C link, respectively, squares
Si

Q(2x − 1, 2y + 1), Si
Q(2x, 2y + 1), Si

Q(2x, 2y) and Si
Q(2x − 1, 2y) in Figure 2

(a) and squares Si
C(x, y), Si

C(x + 1, y), Si
C(x + 1, y − 1) and Si

C(x, y − 1) in
Figure 2(b). Note that, in the former case, the obtained curve already starts
and ends at the top left corner of the parent square Si+1

C (x, y). In the latter
case, we also add connector D (cf. Fig. 2 (b)), taken twice, in order to make
the constructed portion start and end at the top left corner of the parent square
Si

Q(x, y). This process can be iterated for as long as it is required. The space-
covering sequence associated with the rendezvous square R(p1, p2) will be used
to obtain rendezvous of two participating agents located initially at points p1

and p2. In what follows, we show how to explore the space-covering sequence
efficiently during the rendezvous process.

Note that, since each layer in HQC is a partition of the 2d-space into
squares, every point p in the 2d-space can be associated with a unique infi-
nite list of squares S1(p), S2(p), . . . from the consecutive layers π1(p), π2(p), . . .
in HQC , respectively, s.t., each square contains p. Note also, that the space-
covering sequence associated with Si(p), for each i ≥ 1 forms a contiguous seg-
ment of positions in the space-covering sequence associated with Si+1(p). Let
left(S) and right(S) denote, respectively, the leftmost and the rightmost posi-
tion on the space-covering sequence corresponding to square S. Then we have
left(Si+1(p)) ≤ left(Si(p)) ≤ right(Si(p)) ≤ right(Si+1(p)).

Lemma 4. For any two points p1 and p2 at distance d in the 2d-space, the
space-covering sequence associated with the rendezvous square R(p1, p2), is of
length O(d4).

Proof. Recall that the lengths of space-covering sequences associated with
squares in π1 = L0

Q are O(1). Assume now that the sequences associated
with squares of size 2k−1 at layer Lk−1

Q are of size f(2k−1), for some pos-
itive integer function f. Note that the connectors from layer k, used for
linking the endpoints of the space-covering sequences for the squares from
layer k − 1, are of length O(2k). Thus the space-covering sequences asso-
ciated with squares in Lk

C have length 4 · f(2k−1) + O(2k). Similarly, we



510 A. Collins et al.

Si+1
C (x, y)

Si
Q(2x, 2y)

Si
Q(2x− 1, 2y + 1)

Si
Q(2x− 1, 2y)

Si
Q(2x, 2y + 1)

A

B

C

(a)

A

B

C

D

Si
Q(x, y)

Si
C(x, y)

Si
C(x, y − 1) Si

C(x + 1, y − 1)

Si
C(x + 1, y)

(b)

Fig. 2. Connectors between siblings (dotted line squares) and parent (solid lines). In
case (a) parent comes from HC family and in case (b) parent comes from HQ.

associate the squares in layer Lk
Q with space-covering sequences of length

4(4 · f(2k−1) + O(2k)) + O(2k) = 16 · f(2k−1) + O(2k). Thus the length of the
space-covering sequences associated with the squares in Lk

Q (also in Lk
C) can be

described by the recurrence:

(1) f(21) = O(1),
(2) f(2k) = 16 · f(2k−1) + O(2k), for any integer k > 1.

Since, by Lemma 3, the rendezvous square R(p1, p2) is of size O(d), the recurrence
will be applied at most log d + O(1) times. Thus the total length of the space-
covering sequences for the squares from the layers Lk

Q and Lk
C is O(d4). �

We show now, that we can remove from HQC certain layers coming from HC ,
obtaining a new hierarchy H∗

QC , such that the distance separating p1 and p2 on
the corresponding space-covering sequence can be reduced to O(d2+ε), for any
constant ε > 0.

Hierarchy H∗
QC : Fix a natural number z.H∗

QC is formed of a sequence of blocks,
each block containing z + 4 layers. The i-th block, for i = 0, 1, . . . , contains z

consecutive layers of HQ - L
i(z+2)
Q , L

i(z+2)+1
Q , . . . , L

i(z+2)+z−1
Q , followed by four

layers L
i(z+2)+z
C , L

i(z+2)+z
Q , L

i(z+2)+z+1
C , L

i(z+2)+z+1
Q . E.g., the portion of H∗

QC

corresponding to the first two blocks is

L0
Q, L

1
Q, ..., L

z−1
Q , Lz

C , L
z
Q, L

z+1
C , Lz+1

Q , Lz+2
Q , ..., L2z+1

Q , L2z+2
C , L2z+2

Q , L2z+3
C , L2z+3

Q

Note that, if some layer of H∗
QC comes from HC , i.e., it is Lk

C , for some value of
k, its predecessor in H∗

QC is Lk−1
Q , hence Lemma 1 directly applies. On the other

hand, for any layer of H∗
QC coming from HQ, say Lk

Q, its predecessor in H∗
QC is

either Lk
C or Lk−1

Q . In the former case Lemma 2 directly applies. In the latter
case each square from Lk

C partitions exactly into four squares of Lk−1
Q , hence
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the claim of Lemma 2 is true as well. Therefore the tree T ∗
QC representing hier-

archy H∗
QC may be obtained and the space-covering sequences are constructed

similarly as in the case of HQC , where in case of missing layers from HC the
concatenation process is performed according to the structure of squares lo-
cated in the hierarchical partition HQ. Similarly, in H∗

QC the rendezvous square
R(p1, p2) of two points p1 and p2 is the square on a lowest layer which contains
the two points. The following lemma holds.

Lemma 5. For any constant ε > 0, there exists H∗
QC in which the space-

covering sequence associated with the rendezvous square R(p1, p2) of two arbi-
trary points p1 and p2 located at distance d in the 2d-space is of length O(d2+ε).

Proof. According to Corollary 1, R(p1, p2) - the rendezvous square for p1 and
p2 is present in H∗

QC . Moreover, R(p1, p2) belongs to layer k, such that k =
log d+z+O(1) = log d+O(1), for some constant z, meaning that the size of the
rendezvous square is still O(d). The size of the space-covering sequence at layer k
in H∗

QC is then bounded by O(4k ·42· k
z+2 ), where contribution O(4k) comes from

the structure of HQ and O(42· k
z+2 ) comes from HC . Note that we can choose the

constant z, s.t., the exponent in the second term is the smallest constant that
we require. Also since k = log d + z + O(1) the second term translates to

O(42· log d+z+O(1)
z+2 ) ≤ O(42· log d+z+O(1)

z ) = O(4
2
z ·log d) = O(d

4
z ).

Thus for any ε > 0, we can find an integer constant z ≥ 4
ε , s.t., the length of the

space-covering sequence in H∗
QC for any two points at distance d in the 2d-space

is O(d2+ε). �

3 The Rendezvous Algorithm

Our rendezvous algorithm utilizes the nested structure of space-covering se-
quences associated with the list of squares defined for each point p in the 2d-
space. The agent determines the list of squares in H∗

QC according to its initial
location p. Then, for each square Si(p) from the list, the agent visits the leftmost
and the rightmost point on the space-covering sequence, corresponding to the
computed traversal of Si, until it encounters the other agent.

Algorithm. RV (point p ∈ 2d-space )
1. visit an integer grid point of the 2d-space which the closest to p;
2. i← 1;
3. repeat
4. Let Si(p) be the square from layer i of H∗

QC containing p;
5. Go right on the space-covering curve until reaching right(Si(p));
6. Go left on the space-covering curve until reaching left(Si(p));
7. i← i + 1;
8. until rendezvous is reached ;
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Theorem 1. Two location aware agents located in points p1 and p2 at distance d
in the 2d-space executing algorithm RV will meet after traversing asynchronously
a trajectory of length O(d2+ε), for any constant ε > 0.

Proof. By Corollary 1, there exists the square R(p1, p2) inH∗
QC containing p1 and

p2. This square is on the list of squares considered in step 4 of the algorithm by
each agent. Suppose, by symmetry, that agent A1 is the first one to terminate at
time t step 6 of the algorithm for the iteration i during which Si(p1) = R(p1, p2).
If agentA2 has not yet completed its execution of step 1 of the algorithm, it must
belong to S1(p2) - a unit square included in R(p1, p2) - and A1 completing step 6
must meet A2. Hence we may assume that, at time t agentA2 must be traversing
a portion of the space-covering sequence, corresponding to some square included
in R(p1, p2). All intermediate space-covering sequences associated with the prede-
cessors of R(p1, p2) in the lists of squares for p2 form the space-covering sequences
included in the interval [left(R(p1, p2)), right(R(p1, p2))]. Hence, while agent A1

traverses this interval in step 6, it must meet agent A2, which, by our assump-
tion, is within this segment at time t. The total length of the trajectory adopted
by the agents is linear in the size of the space-covering sequence due to exponential
growth of intermediate sequences associated with the consecutive squares in the
list of squares. �

Remark. Note that there are Ω(d2) integer grid points within distance d from
any point in the 2d-space. Therefore, since the adversary can keep one of the
agents immobile, the rendezvous implies that the other agent has to explore its
d-environment, adopting a route of length Ω(d2). Thus the cost of our algorithm
is almost optimal.

4 Final Comments and Open Problems

Our algorithm may be extended in a standard way in order to solve gathering of
a set of agents. However, instead of instantly stopping while a meeting occurs,
a group of n ≥ 2 agents involved in the meeting chooses a leader (e.g. the agent
with the lexicographically smallest initial position) and all agents follow its route.
If the total number of agents is known in advance they gather after traversing
a route of length O(d2+ε), provided they were initially within a d-neighborhood
of some point in the 2d-space.
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Abstract. The exploration of a connected graph by multiple mobile
agents has been previously studied under different conditions. A funda-
mental coordination problem in this context is the gathering of all agents
at a single node, called the Rendezvous problem. To allow deterministic
exploration, it is usually assumed that the edges incident to a node are
locally ordered according to a fixed function called local orientation. We
show that having a fixed local orientation is not necessary for solving ren-
dezvous; Two or more agents having possibly distinct local orientation
functions can rendezvous in all instances where rendezvous is solvable
under a common local orientation function. This result is surprising and
extends the known characterization of solvable instances for rendezvous
and leader election in anonymous networks. On one hand, our model is
more general than the anonymous port-to-port network model and on
the other hand it is less powerful than qualitative model of Barrière et
al. [4,9] where the agents have distinct labels. Our results hold even in
the simplest model of communication using identical tokens and in fact,
we show that using two tokens per agent is necessary and sufficient for
solving the problem.

Keywords: Distributed Coordination, Mobile Agents, Rendezvous, Syn-
chronization, Anonymous Networks, Incomparable Labels.

1 Introduction

Consider an undirected connected graph G that is explored by some mobile enti-
ties (called agents) that move along the edges of G. Such a setting occurs in many
practical scenarios such as network monitoring, search and rescue operations, in-
truder detection and exploration of unknown territories by robots. The objective
of the agents may be to gather information, search for some resource or make
periodic visits to the vertices of G. When there are multiple autonomous agents
operating in such an environment, it may be sometimes necessary to gather all
the agents at a single location, for example to exchange information or for as-
signment of duties to the agents. This is a fundamental problem in distributed
coordination, known as the Rendezvous problem and there is a long history of
research on achieving rendezvous in graphs using either deterministic or prob-
abilistic means (see [1] for a survey). This paper focusses on the deterministic

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 515–526, 2010.
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setting. Notice that if the nodes of the graph G have distinct labels (and the
agents can perceive these labels), then rendezvous can be achieved trivially by
moving to a predetermined location. The more challenging problem is to ren-
dezvous in a graph where the nodes do not have distinct identifiers. This problem
relates to the more general question of what can be computed in a distributed
network of anonymous processors [2,3,16].

As an example, consider the case of agents moving on an asynchronous ring,
starting from distinct nodes. Clearly, rendezvous is not possible here if the agents
keep following each other on the cycle forever. To facilitate rendezvous in such
situations, each agent can be equipped with a marking device called the token (or
pebble)1 which can be used to mark the starting location of the agent [5]. Even
with the capability of marking nodes, it is not always possible to deterministi-
cally solve rendezvous. We are interested in algorithms that achieve rendezvous
whenever it is solvable, and otherwise detect and report the fact that is not solv-
able for the given instance. Such an algorithm is said to solve the Rendezvous
with Detect problem.

Solving the rendezvous problem requires the agent to explore the graph G. In
order to allow the agents to navigate through the graph G, it is usually assumed
that the edges incident at any node v are locally ordered as 1, 2, . . . d where d is
the degree of v. While local orientation (or port numbering) is usually introduced
to ensure navigability, it is inadvertently assumed that the agents agree on the
local orientation, and a common order on the port numbers is then used to break
symmetries. In this paper, we show that with or without agreement on the local
orientation, rendezvous can be solved in the same distributed environments.
In general, the edges of G may be assigned labels from some set Γ which is
unknown to the algorithm designer and thus there may not be a predetermined
order on the set of labels. Each agent, depending on its perceptions of the labels
it encounters, may choose some arbitrary order on the set of labels. We define
the rendezvous problem in this setting as “Rendezvous without (agreement on)
common port numbering” or, RVwA to distinguish it from the usual setting
where all agents agree on a common port numbering. The latter problem, which
is a special case of the former, would be called “Rendezvous with common port
numbering” or, RVCP.

Notice that the traversal path followed by the agent would vary depending
on the port numbering used by that agent. Thus, it is no longer possible to
determine the actions of an agent based only on the starting location of the
agent in the graph. This is an important distinction between the two models
(i.e. with or without common port numbering). In the former model, each agent
can determine the so called view [16] of the other agents based on its traversal
path and one common strategy for rendezvous is to compare the views of the
agents and elect a leader. Such a strategy is no longer possible in our model and
we require completely different techniques for solving the problem.

1 The tokens can not be used for identifying an agent, since all agents carry identical
tokens.
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Our model is similar to the qualitative model of computation [4,9] where the
incident edges at a node have distinct labels but the agents do not agree on a
total order on these labels (i.e. the labels are said to incomparable). However, the
model considered in the above papers also assume the agents to be distinct (i.e.
distinguishable) and gives them the ability to write messages on public white-
boards available at each node. We, on the other hand, consider the much weaker
model where the agents are indistinguishable from each other and have to ren-
dezvous in an anonymous network using only tokens to mark the nodes (and no
explicit communication). In fact, we show that the problem of RVwA is solv-
able in exactly those instances where rendezvous with common port numbering
is possible. In contrast, in the qualitative model of Barrière et al. [4,9] the class
of solvable instances is much larger.

Our Results: We present an algorithm for solving rendezvous of mobile agents
in arbitrary graphs when there is no agreement on a common port numbering.
Our algorithm solves the problem whenever a deterministic solution is possible
and otherwise detects the impossibility of rendezvous. This gives us a character-
ization of the solvable instances for the RVwA problem. Surprisingly, it turns
out that this characterization coincides with that for the conventional version
of the problem (RVCP) where a common port numbering is assumed. In other
words, our result shows that for solving rendezvous, the assumption of a com-
mon port numbering is not necessary (it is sufficient that the incident edges are
distinguishable).

The algorithm presented in this paper uses exactly two tokens per agent and
we show that two tokens are necessary for solving the problem in the absence of
other capabilities (e.g. whiteboards or distant communication). This contrasts
nicely with the simpler problem of RVCP, where a single token per agent is
known to be necessary and sufficient (e.g. see [12]). In fact, our algorithm uses
two tokens because we need to synchronize between the actions of the agents2.
We believe our synchronization technique, using tokens, will be useful for solving
other problems in asynchronous settings.

Related Results: Our work is related to a long line of research on computabil-
ity in anonymous environments starting from the work of Angluin [2]. Many
researchers have focussed on characterizing the conditions under which dis-
tributed coordination problems (such as leader election) can be solved in the
absence of unique identifiers for the participating entities. Characterizations of
the solvable instances for leader election in message passing systems have been
provided by Boldi et al. [3] and by Yamashita and Kameda [16] among others.
In the message-passing model with port-to-port communication, each vertex of
the graph is associated with a single agent; the agents are stationary and can
send and receive messages over the incident edges to communicate with neigh-
bors. The leader election problem in message-passing systems is equivalent to
the rendezvous problem in the mobile agent model [7].

2 Note that for synchronous environments, our algorithm can be adapted to use only
one token.
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In the deterministic setting, initial solutions for rendezvous were for syn-
chronous environments with the prior knowledge of the topology [18]. An inter-
esting line of research is determining what minimum capabilites allow the agents
to solve rendezvous. For instance, Fraigniaud and Pelc [13] consider agents with
small memory while Klasing et al. [14] consider robots with no memory of pre-
vious steps (though these robots can see at each step, the complete graph and
the current location of the other robots). Recently, Czyzowicz et al. [10] con-
sidered a model where the agents have unique identifiers, but they have no way
to communicate with each other (they cannot leave messages or tokens on the
nodes).

2 Definitions and Notations

The Model: The environment is represented by a simple undirected connected
graph G = (V (G), E(G)) and a set E of mobile agents that are located in the
nodes of G. The initial placement of the agents is denoted by the function p :
E → V (G). We denote such a distributed mobile environment by (G, E , p) or by
(G,χp) where χp is a vertex-labelling of G such that χp(v) = 1 if there exists an
agent a such that p(a) = v, and χp(v) = 0 otherwise.

In order to enable navigation of the agents in the graph, at each node v ∈
V (G), the edges incident to v are distinguishable to any agent arriving at v.
For each agent a ∈ E , there is a bijective function δ(a,v) : {(v, u) ∈ E(G) : u ∈
V (G)} → {1, 2, . . . d(v)} which assigns unique labels to the edges incident at
node v (where d(v) is the degree of v). In the literature, it is generally assumed
that all agents have a common local orientation function: in that case, there
exists a port numbering δ such that for each agent a, δa = δ. The nodes of
G do not have visible identities by which the agents can identify them. Each
agent carries some identical tokens. Each node v of G is equipped with a stack
and any agent that is located at v can insert tokens or remove tokens from the
stack. Access to the stack at each node, is in fair mutual exclusion Each time
an agent gains access to the stack, the agent can see the number of tokens in
the stack, and depending on this number, it may put a token, remove a token,
or do nothing. Initially no node contains any token and each agent has exactly
two tokens. The system is asynchronous; an agents may start at the any time
and every action it performs may take an unpredictable (but finite) amount of
time. The agents have no means of direct communication with each other. An
agent can see another agent only when they are both located at the same node
(and not when they are traversing the same edge). All agents start in active
state, but during the algorithm an agent a may become passive and return to
its homebase p(a) to sleep. Any other agent located at the same node can see a
sleeping agent and can initiate a process to wake-up such a sleeping agent. Note
that the agents can distinguish a sleeping agent a from any other agent that
may be waiting (actively) at the node v.

We also assume that initially each agent knows n, the size of G. We will
explain in Section 5, how we can weaken this hypothesis. The agents have no
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other prior knowledge about the environment (e.g. the topology, the number of
agents, are both unknown a priori).

Graph Coverings and Automorphisms: We now present some definitions
and results related to coverings of directed graphs (or multigraphs, since we
allow multiple arcs). A directed graph(digraph) D = (V (D), A(D), s, t) possibly
having parallel arcs and self-loops, is defined by a set V (D) of vertices, a set
A(D) of arcs and by two maps s and t that assign to each arc two elements
of V (D): a source and a target. A symmetric digraph D is a digraph endowed
with a symmetry, i.e. an involution Sym : A(D)→ A(D) such that for every a ∈
A(D), s(a) = t(Sym(a)). We now define the notion of graph coverings, borrowing
the terminology of Boldi and Vigna [6]. A covering projection is a homomorphism
ϕ from a digraph D to a digraph D′ satisfying the following: For each arc a′

of A(D′) and for each vertex v of V (D) such that ϕ(v) = v′ = t(a′) (resp.
ϕ(v) = v′ = s(a′)) there exists a unique arc a in A(D) such that t(a) = v (resp.
s(a) = v) and ϕ(a) = a′. If a covering projection ϕ : D → D′ exists, D is said to
be a covering of D′ via ϕ and D′ is called the base of ϕ. For symmetric digraphs
D,D′, ϕ is a symmetric covering if ∀a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)). A
digraph D is symmetric-covering-minimal if there does not exist any graph D′

not isomorphic to D such that D is a symmetric covering of D′.
We consider labelled (di)graphs: a (di)graph G whose vertices are labelled

over L will be denoted by (G, λ), where λ : V (G) → L is the labelling func-
tion3. We will consider homomorphisms which preserve the labelling on the
vertices. Given a connected undirected graph G = (V (G), E(G)), we can as-
sociate it with a symmetric strongly connected digraph denoted by Dir(G)
and defined as follows: V (Dir(G)) = V (G) and for each edge {u, v} ∈ E(G),
there exist two arcs a(u,v), a(v,u) ∈ A(Dir(G)) such that s(a(u,v)) = t(a(v,u)) =
u, t(a(u,v)) = s(a(v,u)) = v and Sym(a(u,v)) = a(v,u). A distributed mobile
environment (G, E , p) can be represented by the symmetric labelled digraph
(Dir(G), χp).

For simple connected undirected graph, Yamashita and Kameda [16] intro-
duced the concept of views which we present below:

Definition 1. Given a labelled graph (G, λ) with a port numbering δ, the view
of a node v is the infinite rooted tree denoted by TG(v) defined as follows. The
root of TG(v) represents the node v and for each neighbor ui of v, there is a
vertex xi in TG(v) (labelled by λ(ui)) and an edge from the root to xi with the
same labels as the edge from v to ui in (G, δ). The subtree of TG(v) rooted at xi

is again the view TG(ui) of node ui.

It is known that from the view of any vertex v truncated to depth 2n, one can
construct a labelled digraph (D,μD) such that (Dir(G), δ) is a symmetric cov-
ering of (D,μD) (See e.g. [3]). The digraph (D,μD) corresponds to the quotient
graph in Yamashita and Kameda’s work [16].

3 Note that this labelling is not necessarily injective, i.e. two vertices may have the
same label.
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For any labelled undirected graph (G, λ), two vertices v, v′ ∈ V (G) are similar
(we write v ∼ v′) if there exists a label-preserving automorphism σ of (Dir(G), λ)
such that v = σ(v′). The relation ∼ is an equivalence relation over the vertices of
G; the equivalence class of v ∈ V (G) is denoted by [v]. For two disjoint subsets of
vertices V, V ′ ⊆ V (G), G[V ] denotes the subgraph of G induced by the vertices
in V and G[V, V ′] denotes the bipartite subgraph of G defined as follows. The
vertices of G[V, V ′] are V ∪V ′ and there is an edge {v, v′} in G[V, V ′] if and only
if v ∈ V, v′ ∈ V ′ and {v, v′} ∈ E(G).

3 Characterization for Rendezvous

We present the following theorem that relates the various existing characteri-
zations [6,16,17] of distributed mobile environments where the RVCP problem
can be solved. Note that some of these characterizations were initially given for
the problem of leader election in message passing systems.

Theorem 1 ([6,16,17]). For any distributed mobile environment (G, E , p), the
following statements are equivalent:
1. For any common port-numbering function δ, Rendezvous with common port-

numbering can be solved in (G, E , p, δ);
2. For any port-numbering function δ, all vertices of (G,χp, δ) have a different

view;
3. There is no partition V1, V2, . . . Vk of V (G) with k ∈ [1, |V (G)|−1] such that

for any distinct i, j ∈ [1, k], the following conditions hold:
(i) G[Vi] is d-regular for some d, and if d is odd, it contains a perfect

matching,
(ii) G[Vi, Vj ] is regular.

4. (Dir(G), χp) is symmetric-covering-minimal.

Since the RVCP problem is a special case of the RVwA problem, the conditions
of Theorem 1 are also necessary for solving rendezvous when the agents do not
agree on the local orientation. The following theorem is the main result of our
paper; it shows that when each agent is supplied with a sufficient number of
(identical) tokens, RVwA can be solved in (G, E , p) if and only if RVCP can
be solved in (G, E , p). We prove the theorem by providing an algorithm that
achieves this result.

Theorem 2. There exists an algorithm for rendezvous without common port-
numbering in a distributed mobile environment (G, E , p) if and only if
(Dir(G), χp) is symmetric-covering-minimal.

4 Our Rendezvous Algorithm

We present an algorithm for achieving rendezvous in the absence of a common
port numbering (see Algorithm 1). The algorithm has an initialization round
and multiple rounds of marking where the agents collectively try to break the
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symmetry among the vertices of the graph, until a single vertex can be chosen
as the rendezvous location. Figure 1 illustrates the execution of the algorithm
on a small toy-graph.

Initialization and Map Construction: At the beginning of the algorithm,
each agent a puts a token on its homebase and constructs its view up to depth
2n (recall that the agent knows n, the number of vertices of G). Since the other
agents may not have started at the same time, agent a may reach a homebase
containing a sleeping agent. In that case agent a wakes-up the sleeping agent
and waits until this agent puts a token on the node.

Algorithm 1. Rdv (n)
Put a token on your own homebase ;
(D, μ) := ConstructMap(n) ;
/* Each agent computes (D, μ) such that (Dir(G), χp) covers (D, μ) */

if (G, χp) is not symmetric-covering-minimal then
Terminate and report that rendezvous cannot be solved in (G, E , p) ;

else
/* Each agent knows a rooted map of (G, μ) = (G, χp) */

Synchronize ;
Construct equivalence partition of (G, μ) ;
repeat

H := The minimal class that contains active homebases ;
/* H defines the set of active agents for this round */

Active agents wait for passive agents to return to their homebases;
if there exists a class C such that |H | > |C| then

/* We split the class H into two */

C := minimal class such that |H | > |C| ;
Active agents (i.e. whose homebase ∈ H) try to mark vertices in C ;
/* The ones that do not succeed become passive */

Synchronize ;
Distinguish active homebases from passive homebases;
Refine the labelling μ to give fresh labels to passive homebases;

else if there exists C = [v] such that |H | < |C| then
/* We split the class C in two. */

C := minimal class such that |H | < |C| ;
Each active agent mark a vertex in C ;
Synchronize ;
Refine the labelling μ to give fresh labels to marked vertices ;

Re-construct equivalence partition of (G, μ);
until There is only one vertex in each class ;

h := The active homebase with minimum label ;
The agent whose homebase is h, marks h and wakes up all the other agents;
All other agents go to the only marked vertex, when woken up;
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As mentioned before, the information contained in the view is sufficient to
construct the quotient graph (D,μ) such that (Dir(G), χp) is a symmetric cov-
ering of (D,μ). Since each agent initially knows n = |V (G)|, it can determine
whether (G,χp) is symmetric covering minimal or not. In the former case, the
agent has obtained a map of (G,χp), while in the latter case, the agent reports
that rendezvous is not solvable and terminates the algorithm.
Each agent r executes the following steps during the initialization procedure:

(Step A) Agent r puts a token on its homebase.
(Step B) Agent r constructs its view and builds the quotient graph. If (Dir(G),

χp) is not minimal, agent r detects it and terminates the algorithm.
(Step C) Agent r puts a second token on its homebase
(Step D) Agent r checks that all agents have put zero or two tokens on their

homebases.
(Step E) Agent r removes the two tokens from its homebase
(Step F) Agent r goes to each homebase h, and waits until either there is no

token on h, or there is a sleeping agent on h.
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Fig. 1. The different labellings of a graph G computed by the agents during one par-
ticular execution of our algorithm on the distributed environment (G, E , p) represented
on the left (black vertices represent homebases)

Constructing an order on equivalence classes: Given any vertex-labelled
graph (G,μ), there exists standard procedures for partitioning the vertex set of
G to obtain an ordered sequence of equivalence classes that respect the labelling.
(See [4,9] for example.) Note that since the agents start with the same labelled
graph (G,μ), they compute the same ordered sequence of equivalence classes.

Synchronization Procedure: We now describe the procedure for the marking
round. At the beginning of each marking round, the agents choose two classes H
and C, where H is the class of active homebases and C is the class of vertices to
be marked by the agents during this round. Since the agents agree on the order
of the equivalence classes, they also agree on the choice of H and C. (H is the
first class in the sequence that contains active homebases and C is the first class
whose size is either larger or smaller than that of H).
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An agent whose homebase belongs to the class H is active during the current
round. Each active agent r executes the following instructions. We suppose that
at the beginning of the round, each agent carries its two tokens.

(Step 0) Agent r goes to the homebase of each passive agent (i.e. any homebase
/∈ H) and waits until there is a sleeping agent at that node.

(Step 1) Agent r traverses the graph G using its map, and if it arrives at a node
c ∈ C where there is no token, it puts a token at c and sets its state to
SUCCESS. If agent r does not manage to mark any vertex of C (this
can happen only when |C| < |H |), then it puts a token on any vertex c
of C (that has already been marked by another agent). Such an agent
sets its state to FAIL.

(Step 2) The agent r does a traversal of the graph and counts the total number
of tokens on the vertices ∈ C. If there are strictly less tokens on vertices
of C than the number of active agents (because some other agent has
not finished the previous step), then agent goes back to its homebase
and sleeps until it is woken up by another agent; On wake-up, agent r
traverses the graph again to count the number of tokens on the vertices
of C. When agent r completes this step, all other agents must have
completed the previous step.

(Step 3) The agent r puts the second token on its homebase.
(Step 4) The agent r does a traversal of the graph and each time it arrives on

the homebase h of another active agent r′, it waits until there is a token
or a sleeping agent at h. If there is a sleeping agent at h, agent r wakes
it up and waits until there is a token on node h.

(Step 5) The agent goes back to the vertex c ∈ C where it placed a token during
Step 1 and removes a token from c.

(Step 6) The agent r does a traversal of the network. Each time it arrives on a
vertex c′ ∈ C, it waits until all tokens have been removed from c′.

(Step 7) The agent r removes the token from on its homebase. If the state of
the agent is FAIL, then it becomes passive (goes to sleep). Otherwise
the agent executes the next step.

(Step 8) The agent r does a traversal of the network. Each time it arrives on
the homebase h of an active agent r′, it waits until there is no token or
there is a sleeping agent at h.

Let us consider two different scenarios.
If |C| > |H|, then the class C will be partitioned into marked and unmarked

vertices. Moreover, each agent knows from the information it has stored on the
map at Step 2 which vertices of C has been marked in this round. The agents
would relabel the marked vertices to obtain the new labelling μ.

If |C| < |H|, then there would be two categories of agents: those whose
state=SUCCESS and those whose state=FAIL. The former would remain ac-
tive but the latter would become passive at the end of this procedure. In order
to distinguish the active homebases in H from the passive homebases another
procedure (explained below) is executed by the active agents.
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Distinguishing Active from Passive Homebases: The following procedure
is used for partitioning the class H in a round where the class C is smaller than
the class of homebases H . The active agents (i.e. those who were successful in
the marking process) can put tokens on their homebases to distinguish them.
However, in order to avoid conflicts during consecutive rounds, the active agents
must first mark vertices of C and not of H . Indeed, when an agent starts this
procedure, there may be another agent that is still performing Step 8 of the
synchronization procedure. The following steps are followed by an active agent
r during this procedure (Note that exactly |C| agents execute this procedure).

(Step 1’) Agent r traverses the graph and puts a token on a vertex c of C that
contains no token.

(Step 2’) The agent r does a traversal of the graph and on each vertex c of C,
the agent waits until there is a token on c.

(Step 3’) The agent r puts a token on its homebase.
(Step 4’) The agent r does a traversal of the graph and at each node h ∈ H ,

agent r waits until there is a token or there is a sleeping agent. Note
that if node h is homebase of an active agent r′, then agent r′ will even-
tually complete Step 3’ and thus there will be a token at h. Otherwise
if h is the homebase of a passive agent r′′ then agent r′′ will eventually
complete the previous procedure and return to its homebase to sleep.

(Step 5’) The agent r goes to the node c that it marked in Step 1’ and removes
the token.

(Step 6’) The agent r does a traversal of the network. Each time it arrives on a
vertex c′ of C, it waits until there is no token on c′.

(Step 7’) The agent r removes the token from its homebase.
(Step 8’) The agent r does a traversal of the graph and at each node h ∈ H ,

agent r waits until there is no token at h or there is a sleeping agent
at h.

At the end of this procedure each active agent knows which homebases are still
active. Hence the agent can relabel the passive homebases to obtain the new
labelling μ (i.e. the class H is partitioned into two subclasses).

Refining the Vertex Labelling μ of (G,μ): During the algorithm, each
agent keeps track of the labels assigned to the vertices of G by writing them in
its local map. Since all active agents agree on the order of equivalence classes,
they would agree on the label-assignment.

During each round, some class Cj is split into two sub-classes and vertices in
the first subclass are assigned a new label (e.g. the smallest integer not yet used
as a label). At the end of a round, the vertex set is repartitioned while respecting
the labels assigned to the vertices and after the repartitioning the labelling is
refined accordingly. If the new labelling is injective, the algorithm terminates;
Otherwise the next round is started.
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Correctness of the Algorithm: During our algorithm, the equivalence parti-
tioning is refined in each round using two classes of distinct sizes. We consider
now a configuration such that all equivalence classes have the same size. Let
q be the maximum number appearing on a vertex of (G,μ); the vertices from
G are labelled by numbers in [0, q]. Let V0, V1, . . . , Vq be the partition of V (G)
defined by μ, i.e., v ∈ Vi if μ(v) = i. For any distinct i, j ∈ [0, q], since Vi and
Vj are equivalence classes of (G,μ), all vertices in Vi (resp. Vj) have the same
number d(i,j) (resp. d(j,i)) of neighbors in Vj (resp. Vi). Since the number of
edges in G[Vi, Vj ] is |Vi|d(i,j) = |Vj |d(j,i) and since |Vi| = |Vj |, d(i,j) = d(j,i)

and thus G[Vi, Vj ] is regular. For any i ∈ [0, q], since Vi is an equivalence class,
G[Vi] is vertex-transitive and thus di-regular for some di. From Gallai-Edmonds
decomposition (see [15]), we know that any vertex-transitive graph of odd de-
gree admits a perfect matching. Consequently, if di is odd, we know that G[Vi]
admits a perfect matching. Thus, from the characterization of Yamashita and
Kameda [17] given in Theorem 1, and since we know that (G,χp) is symmetric-
covering-minimal, we know that each Vi contains exactly one vertex. In other
words, the labelling μ is injective. Thus, the algorithm succeeds in selecting a
unique rendezvous location whenever (G,χp) is symmetric-covering-minimal.

5 Further Remarks

In this section we justify some of the assumption made in this paper. Based
on Angluin’s impossibility result [2] (see also [8]), we know that there does not
exist any universal algorithm that solves rendezvous with detect. Thus, some
prior knowledge about the environment is necessary. We assumed the knowledge
of n, the size of the graph; However we can easily adapt our algorithm to use
only a bound on the size of the graph instead.

Proposition 1. If the agents initially know a tight bound B ∈ [n, 2n − 1] on
the size of G, the agents can rendezvous in (G, E , p), or detect it is impossible.
Further, if the agents initially know that (Dir(G), χp) is symmetric-covering-
minimal then knowledge of an arbitrary bound B ≥ n on the size of G is sufficient
to solve rendezvous in (G, E , p).
Our algorithm presented in Section 4 requires two identical tokens per agent.
Under the assumption that each agent knows only the size of G, but has no
information on the number of agents, we show that two tokens (per agent) are
necessary to solve RVwA. However, it remains open to determine if two tokens
are still necessary when the agents know completely the environment (G, E , p).
Proposition 2. There exists graphs G such that there is no algorithm using
one token per agent such that for each distributed mobile environment (G, E , p),
either the agents solve rendezvous in (G, E , p), or detect that it is impossible.

Finally, we consider the cost of solving RVwA in terms of the number of moves
made by the agents. Our algorithm requires an additional O(n2k) moves for
solving rendezvous without common port numbering, compared to the solution
for rendezvous with common port-numbering [12] using tokens.
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Abstract. This paper tackles three algorithmic problems for probabilis-
tic automata on finite words: the Emptiness Problem, the Isolation Prob-
lem and the Value 1 Problem. The Emptiness Problem asks, given some
probability 0 ≤ λ ≤ 1, whether there exists a word accepted with proba-
bility greater than λ, and the Isolation Problem asks whether there exist
words whose acceptance probability is arbitrarily close to λ. Both these
problems are known to be undecidable [11,4,3]. About the Emptiness
problem, we provide a new simple undecidability proof and prove that it
is undecidable for automata with as few as two probabilistic transitions.
The Value 1 Problem is the special case of the Isolation Problem when
λ = 1 or λ = 0. The decidability of the Value 1 Problem was an open
question. We show that the Value 1 Problem is undecidable. Moreover,
we introduce a new class of probabilistic automata, �-acyclic automata,
for which the Value 1 Problem is decidable.

Introduction

Probabilistic automata on finite words are a computation model introduced by
Rabin [12]. Like deterministic automata on finite words, a probabilistic automa-
ton reads finite words from a finite alphabet A. Each time a new letter a ∈ A is
read, a transition from the current state s ∈ Q to a new state t ∈ Q occur. In a
deterministic automaton, t is a function of s and a. In a probabilistic automaton,
a lottery determines the new state, according to transition probabilities which
depend on the current state s and letter a.

Since the seminal paper of Rabin, probabilistic automata on finite words have
been extensively studied, see [6] for a survey of 416 papers and books about
probabilistic automata published in the 60s and 70s.

Quite surprisingly, relatively few algorithmic results are known about prob-
abilistic automata on finite words and almost all of them are undecidability
results. There are two main algorithmic problems for probabilistic automata on
finite words: the Emptiness Problem and the Isolation Problem. The Empti-
ness Problem asks, given some probability 0 ≤ λ ≤ 1, whether there exists
a word accepted with probability greater than λ, while the Isolation Problem
asks whether there exist words whose acceptance probability is arbitrarily close
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to λ. Both these problems were shown undecidable, respectively by Paz [11] and
Bertoni [4,3]. To our knowledge, most decidability results known for probabilis-
tic automata on finite words are rather straightforward: they either apply to
one-letter probabilistic automata, in other words Markov chains, or to problems
where the probabilistic nature of the automaton is not taken into account. A
notable exception is the decidability of language equality [13].

In contrast, several algorithmic results were proved for probabilistic automata
on infinite words. The existence of an infinite word accepted with probability
1 is decidable [1]. For probabilistic Büchi automata [2], the emptiness problem
may be decidable or not depending on the acceptance condition. A class of
probabilistic Büchi automata which recognize exactly ω-regular languages was
presented in [7]. In this paper, we only consider automata on finite words but
several of our results seem to be extendable to probabilistic automata on infinite
words.

Our contributions are the following.
First, we provide in Section 2.1 a new proof for the undecidability of the

Emptiness Problem.
Second, we strengthen the result of Paz: the Emptiness Problem is undecidable

even for automata with as few as two probabilistic transitions (Proposition 4).
Third, we solve an open problem: Bertoni’s result shows that for any fixed

cut-point 0 < λ < 1, the Isolation Problem is undecidable. However, as stated
by Bertoni himself, the proof seems hardly adaptable to the symmetric cases
λ = 0 and λ = 1. We show that both these cases are undecidable as well, in
other words the Value 1 Problem is undecidable (Theorem 4).

Fourth, we introduce a new class of probabilistic automata, +-acyclic au-
tomata, for which the Value 1 Problem is decidable (Theorem 5 in Section 4).
To our opinion, this is the main contribution of the paper. Moreover, this re-
sult is a first step towards the design of classes of stochastic games with partial
observation for which the value 1 problem is decidable.

These undecidability results show once again that probabilistic automata are
very different from deterministic and non-deterministic automata on finite or
infinite words, for which many algorithmic problems are known to be decidable
(e.g. emptiness, universality, equivalence). Surprisingly maybe, we remark that
several natural decision problems about deterministic and non-deterministic au-
tomata are undecidable as well (Corollaries 1 and 2).

Due to space restrictions most proofs are omitted, a long version is available
online.

1 Probabilistic Automata

A probability distribution on Q is a mapping δ ∈ [0, 1]Q such that
∑

s∈S δ(s) = 1.
The set {s ∈ Q | δ(s) > 0} is called the support of δ and denoted Supp(δ). For
every non-empty subset S ⊆ Q, we denote δS the uniform distribution on S
defined by δ(q) = 0 if q 
∈ S and δ(q) = 1

|S| if q ∈ S. We denote D(Q) the set of
probability distributions on Q.
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Formally, a probabilistic automaton is a tuple A = (Q,A, (Ma)a∈A, q0, F ),
where Q is a finite set of states, A is the finite input alphabet, (Ma)a∈A are
the transition matrices, q0 is the initial state and F is the set of accepting
states. For each letter a ∈ A, Ma ∈ [0, 1]Q×Q defines transition probabilities:
0 ≤ Ma(s, t) ≤ 1 is the probability to go from state s to state t when reading
letter a. Of course, for every s ∈ S and a ∈ A,

∑
t∈S Ma(s, t) = 1, in other word

in the matrix Ma, the line with index s is a probability distribution on Q.
Transition matrices define a natural action of A∗ on D(Q). For every word

a ∈ A and δ ∈ D(S), we denote δ ·a the probability distribution in D(Q) defined
by (δ · a)(t) =

∑
s∈Q δ(s) ·Ma(s, t). This action extends naturally to words of

A∗: ∀w ∈ A∗, ∀a ∈ A, δ · (wa) = (δ · w) · a.
The computation of A on an input word w = a0 . . . an ∈ A∗ is the sequence

(δ0, δ1, . . . , δn) ∈ D(Q)n+1 of probability distributions over Q such that δ0 =
δ{q0} and for 0 ≤ i < n, δi+1 = δi · ai.

For every state q ∈ Q and for every set of states R ⊆ Q, we denote PA(q w−→
R) =

∑
r∈R(δq · w)(r) the probability to reach the set R from state q when

reading the word w.

Definition 1 (Value and acceptance probability). The acceptance proba-
bility of a word w ∈ A∗ by A is PA(w) = PA(q0

w−→ F ). The value of A, denoted
val(A), is the supremum acceptance probability: val(A) = supw∈A∗ PA(w).

2 The Emptiness Problem

Rabin defined the language recognized by a probabilistic automaton as LA(λ) =
{w ∈ A∗ | PA(w) ≥ λ}, where 0 ≤ λ ≤ 1 is called the cut-point. Hence, a
canonical decision problem for probabilistic automata is:

Problem 1 (Emptiness Problem) Given a probabilistic automaton A and
0 ≤ λ ≤ 1, decide whether there exists a word w such that PA(w) ≥ λ.

The Strict Emptiness Problem is defined the same way except the large inequality
PA(w) ≥ λ is replaced by a strict inequality PA(w) > λ.

The special cases where λ = 0 and λ = 1 provide a link between proba-
bilistic and non-deterministic automata on finite words. First, the Strict Empti-
ness Problem for λ = 0 reduces to the emptiness problem of non-deterministic
automata, which is decidable in non-deterministic logarithmic space. Second,
the Emptiness Problem for λ = 1 reduces to the universality problem for non-
deterministic automata, which is PSPACE-complete [9]. The two other cases are
trivial: the answer to the Emptiness Problem for λ = 0 is always yes and the
answer to the Strict Emptiness Problem for λ = 1 is always no.

In the case where 0 < λ < 1, both the Emptiness and the Strict Emptiness
Problems are undecidable, which was proved by Paz [11]. The proof of Paz is a
reduction from an undecidable problem about free context grammars. An alter-
native proof was given by Madani, Hanks and Condon [10], based on a reduction
from the emptiness problem for two counter machines. Since Paz was focusing
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on expressiveness aspects of probabilistic automata rather than on algorithmic
questions, his undecidability proof is spread on the whole book [11], which makes
it arguably hard to read. The proof of Madani et al. is easier to read but quite
long and technical.

In the next section, we present a new simple undecidability proof of the Empti-
ness Problem.

2.1 New Proof of Undecidability

In this section we show the undecidability of the (Strict) Emptiness Problem for
the cut-point 1

2 and for a restricted class of probabilistic automata called simple
probabilistic automata:

Definition 2 (Simple automata). A probabilistic automaton is called simple
if every transition probability is in

{
0, 1

2 , 1
}
.

The proof is based on a result of Bertoni [4]: the undecidability of the Equality
Problem.

Problem 2 (Equality problem) Given a simple probabilistic automaton A,
decide whether there exist a word w ∈ A∗ such that PA(w) = 1

2 .

Proposition 1 (Bertoni). The equality problem is undecidable.

The short and elegant proof of Bertoni is a reduction of the Post Correspondence
Problem (PCP) to the Equality Problem.

Problem 3 (PCP) Let ϕ1 : A → {0, 1}∗ and ϕ2 : A → {0, 1}∗ two functions,
naturally extended to A∗. Is there a word w ∈ A∗ such that ϕ1(w) = ϕ2(w)?

Roughly speaking, the proof of Proposition 1 consists in encoding the equality of
two words in the decimals of transition probabilities of a well-chosen probabilistic
automaton. While the reduction of PCP to the Equality problem is relatively
well-known, it may be less known that there exists a simple reduction of the
Equality problem to the Emptiness and Strict Emptiness problems:

Proposition 2. Given a simple probabilistic automaton A, one can compute
probabilistic automata B and C whose transition probabilities are multiple of 1

4
and such that:(

∃w ∈ A+,PA(w) =
1
2

)
⇐⇒
(
∃w ∈ A+,PB(w) ≥ 1

4

)
(1)

⇐⇒
(
∃w ∈ A+,PC(w) >

1
8

)
. (2)

Proof. The construction of B such that (1) holds is based on a very simple fact:
a real number x is equal to 1

2 if and only if x(1−x) ≥ 1
4 . Consider the automaton

B which is the cartesian product of A with a copy of A whose accepting states
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are the non accepting states of A. Then for every word w ∈ A∗, PA1(w) =
PA(w)(1 − PA(w)), thus (1) holds.

The construction of C such that (2) holds is based on the following idea. Since
A is simple, transition probabilities of B are multiples of 1

4 , thus for every word
w of length |w|, PB(w) is a multiple of 1

4|w| . As a consequence, PB(w) ≥ 1
4 if

and only if PB(w) > 1
4 −

1
4|w| . Adding three states to B, one obtains easily a

probabilistic automaton C such that for every non-empty word w ∈ A∗ and
letter a ∈ A, PC(aw) = 1

2 · PB(w) + 1
2 ·

1
4|w| , thus (2) holds. To build C, simply

add a new initial state that goes with equal probability 1
2 either to the initial

state of B or to a new accepting state qf . From qf , whatever letter is read, next
state is qf with probability 1

4 and with probability 3
4 it is a new non-accepting

absorbing sink state q∗. ��

As a consequence:

Theorem 1 (Paz). The emptiness and the strict emptiness problems are un-
decidable for probabilistic automata. These problems are undecidable even for
simple probabilistic automata and cut-point λ = 1

2 .

To conclude this section, we present another connection between probabilistic
and non-probabilistic automata on finite words.

Corollary 1. The following problem is undecidable. Given a non-deterministic
automaton on finite words, does there exists a word such that at least half of the
computations on this word are accepting?

We do not know a simple undecidability proof for this problem which does not
make of use of probabilistic automata.

2.2 Probabilistic Automata with Few Probabilistic Transitions

Hirvensalo [8] showed that the emptiness problem is undecidable for probabilistic
automata which have as few as 2 input letters and 25 states, see also [5] for similar
result about the isolation problem.

On the other hand, the emptiness problem is decidable for deterministic au-
tomata. This holds whatever the number of states, as long as there are no prob-
abilistic transition in the automaton. Formally, a probabilistic transition is a
couple (s, a) of a state s ∈ S and a letter a ∈ A such that for at least one state
t ∈ S, 0 < Ma(s, t) < 1.

This motivates the following question: what is the minimal number of proba-
bilistic transitions for which the emptiness problem is undecidable?

The following undecidability result is a rather surprising answer:

Proposition 3. The emptiness problem is undecidable for probabilistic
automata with two probabilistic transitions.

Moreover, a slight variant of the emptiness problem for probabilistic automata
with one probabilistic transition is undecidable:
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Proposition 4. The following problem is undecidable: given a simple probabilis-
tic automaton over an alphabet A with one probabilistic transition and given a
rational language of finite words L ⊆ A∗, decide whether PA(w) ≥ 1

2 for some
word w ∈ L.

For probabilistic automata with a unique probabilistic transition, we do not
know whether the emptiness problem is decidable or not.

3 Undecidability of the Value 1 Problem

In his seminal paper about probabilistic automata [12], Rabin introduced the
notion of isolated cut-points.

Definition 3. A real number 0 ≤ λ ≤ 1 is an isolated cut-point with respect to
a probabilistic automaton A if:

∃ε > 0, ∀w ∈ A∗, |PA(w) − λ| ≥ ε .

Rabin motivates the introduction of this notion by the following theorem:

Theorem 2 (Rabin). Let A a probabilistic automaton and 0 ≤ λ ≤ 1 a cut-
point. If λ is isolated then the language LA(λ) = {u ∈ A∗ | PA(u) ≥ λ} is
rational.

This result suggests the following decision problem.

Problem 4 (Isolation Problem) Given a probabilistic automaton A and a
cut-point 0 ≤ λ ≤ 1, decide whether λ is isolated with respect to A.

Bertoni [4] proved that the Isolation Problem is undecidable in general:

Theorem 3 (Bertoni). The Isolation Problem is undecidable for probabilistic
automata with five states.

A closer look at the proof of Bertoni shows that the Isolation Problem is unde-
cidable for a fixed λ, provided that 0 < λ < 1.

However the same proof does not seem to be extendable to the cases λ = 0
and λ = 1. This was pointed out by Bertoni in the conclusion of [4]:

“Is the following problem solvable: ∃δ > 0, ∀x, (p(x) > δ)? For au-
tomata with 1-symbol alphabet, there is a decision algorithm bound with
the concept of transient state [11]. We believe it might be extended but
have no proof for it”.

The open question mentioned by Bertoni is the Isolation Problem for λ = 0. The
case λ = 1 is essentially the same, since 0 is isolated in an automaton A if and
only if 1 is isolated in the automaton obtained from A by turning final states into
non-final states and vice-versa. When λ = 1, the Isolation Problem asks whether
there exists some word accepted by the automaton with probability arbitrarily
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close to 1. We use the game-theoretic terminology and call this problem the
Value 1 Problem.

The open question of Bertoni can be rephrased as the decidability of the
following problem:

Problem 5 (Value 1 Problem) Given a probabilistic automaton A, decide
whether A has value 1.

Unfortunately,

Theorem 4. The Value 1 Problem is undecidable.

The proof of Theorem 4 is a reduction of the Strict Emptiness Problem to the
Value 1 Problem. It is similar to the proof of undecidability of the Emptiness
Problem for probabilistic Büchi automata of Baier et al. [2]. The core of the
proof is the following proposition.

Proposition 5. Let 0 < x < 1 and Ax be the probabilistic automaton depicted
on Fig. 1. Then Ax has value 1 if and only if x > 1

2 .

The proof of Theorem 4 relies on the fact that there is a natural way to combine
Ax with an arbitrary automaton B so that the resulting automaton has value
1 if and only if some word is accepted by B with probability strictly greater
than 1

2 .
The value 1 problem for simple probabilistic automata can be straigntfor-

wardly rephrased as a ”quantitative” decision problem about non-deterministic
automaton on finite words, which shows that:

Corollary 2. This decision problem is undecidable: given a non-deterministic
automaton on finite words, does there exists words such that the proportion of
of non-accepting computation pathes among all computation pathes is arbitrarily
small?

0

1

2

34

5

6
b, 1

2b, 1
2

a, 1− x
a, xb

a

b

a, b

a, x
a, 1− x b

a

b

a, b

Fig. 1. This automaton has value 1 if and only if x > 1
2
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4 The Class of �-acyclic Probabilistic Automata

In this section, we introduce a new class of probabilistic automata, +-acyclic
probabilistic automata, for which the value 1 problem is decidable.

To get a decision algorithm for the value 1 problem, our starting point is the
usual subset construction for non-deterministic automata, defined by mean of
the natural action of letters on subsets of Q. However the quantitative aspect of
the Value 1 Problem stressed in Corollary 2 suggests that the subset construction
needs to be customized. Precisely, we use not only the usual action S · a of a
letter a on a subset S ⊆ Q of states but consider also another action a�. Roughly
speaking, a� deletes states that are transient when reading letter a forever.

Definition 4 (Actions of letters and +-reachability). Let A a probabilistic
automaton with alphabet A and set of states Q. Given S ⊆ Q and a ∈ A, we
denote:

S · a = {t ∈ Q | ∃s ∈ S,Ma(s, t) > 0} .

A state t ∈ Q is a-reachable from s ∈ Q if for some n ∈ N, PA(s an

−−→ t) > 0.
A state s ∈ Q is a-recurrent if for any state t ∈ Q,

(t is a-reachable from s) =⇒ (s is a-reachable from t) ,

in other words s is a-recurrent if it belongs to a bottom strongly connected com-
ponent of the graph of states and a-transitions.

A set S ⊆ Q is a-stable if S = S · a. If S is a-stable, we denote:

S · a� = {s ∈ S | s is a-recurrent} .

The support graph GA of a probabilistic automaton A with alphabet A and
set of states Q is the directed graph whose vertices are the non-empty subsets of
Q and whose edges are the pairs (S, T ) such that for some letter a ∈ A, either
(S · a = T ) or (S · a = S and S · a� = T ).

Reachability in the support graph of A is called +-reachability in A.

The class of +-acyclic probabilistic automata is defined as follows.

Definition 5 (+-acyclic probabilistic automata). A probabilistic automaton
is +-acyclic if the only cycles in its support graph are self-loops.

Obviously, this acyclicity condition is quite strong. However, it does not forbid
the existence of cycles in the transition table, see for example the automaton
depicted on Fig. 2. Note also that the class of +-acyclic automata enjoys good
properties: it is closed under cartesian product and parallel composition.

4.1 The Value 1 Problem Is Decidable for �-acyclic Automata

For +-acyclic probabilistic automata, the value 1 problem is decidable:
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a

a
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b

a

b

a

b�

a�

b�

a�

a�, b�

a

b

a

b

Fig. 2. A �-acyclic automaton (on the left) and its support graph (on the right). All
transition probabilities are equal to 1

2
.

Theorem 5. Let A be a probabilistic automaton with initial state q0 and final
states F . Suppose that A is +-acyclic . Then A has value 1 if and only if F is
+-reachable from {q0} in A.

The support graph can be computed on-the-fly in polynomial space thus de-
ciding whether a probabilistic automaton is +-acyclic and whether an +-acyclic
automaton has value 1 are PSPACE decision problems.

The rest of this section is dedicated to the proof of Theorem 5. This proof
relies on the notion of limit-paths.

Definition 6 (Limit paths and limit-reachability). Let A be a probabilistic
automaton with states Q and alphabet A. Given two subsets S, T of Q, we say that
T is limit-reachable from S in A if there exists a sequence w0, w1, w2, . . . ∈ A∗

of finite words such that for every state s ∈ S:

PA(s wn−−→ T ) −−−−→
n→∞

1 .

The sequence w0, w1, w2, . . . is called a limit path from S to T , and T is said to
be limit-reachable from S in A.

In particular, an automaton has value 1 is and only if F is limit-reachable from
{q0}.

To prove Theorem 5, we show that in +-acyclic automata, +-reachability and
limit-reachability coincide. The following proposition shows that +-reachability
always implies limit-reachability, may the automaton be +-acyclic or not.

Proposition 6. Let A be a probabilistic automaton with states Q and S, T ⊆ Q.
If T is +-reachable from S in A then T is limit-reachable from S in A.
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1 2 3

a
a

b
a a

b

b

a

b

a

{1}{2}

{3}

{1, 2}{1, 2, 3}

{2, 3}

{1, 3}

aa

b a

a

a, b

a, a#, b b, b#

b, b# b

b#

b#

b# a

b, b#

Fig. 3. This automaton has value 1 and is not �-acyclic

The converse implication is not true in general. For example, consider the au-
tomaton depicted on Fig. 3. There is only one final state, state 3. The initial
state is not represented, it leads with equal probability to states 1, 2 and 3. The
transitions from states 1, 2 and 3 are either deterministic or have probability 1

2 .
It turns out that the automaton on Fig. 3 has value 1, because ((bna)n)n∈N

is a limit-path from {1, 2, 3} to {3}. However, {3} is not reachable from {1, 2, 3}
in the support graph. Thus, limit-reachability does not imply +-reachability in
general. This automaton is not +-acyclic , because his support graph contains a
cycle of length 2 between {1, 2, 3} and {1, 3}. It is quite tempting to add an edge
labelled (ab�)� between {1, 3} and {3}.

Now we prove that for +-acyclic automata, limit-reachability implies +-
reachability.

Definition 7 (Stability and +-stability). Let A be a probabilistic automaton
with states Q. The automaton A is stable if for every letter a ∈ A, Q is a-stable.
A stable automaton A is +-stable if for every letter a ∈ A Q · a� = Q.

The proof relies on the three following lemmata.

Lemma 1 (Blowing lemma). Let A be a +-acyclic probabilistic automaton
with states Q and S ⊆ Q. Suppose that A is +-acyclic and +-stable. If Q is
limit-reachable from S in A, then Q is +-reachable from S as well.

Proof (of the blowing lemma). If S = Q there is nothing to prove. If S 
= Q,
we prove that there exists S1 ⊆ Q such that (i) S1 is +-reachable from S, (ii)
S � S1, and (iii) Q is limit-reachable from S1. Since S � Q and since there
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exists a limit-path from S to Q there exists at least one letter a such that S is
not a-stable, i.e. S · a 
⊆ S. Since A is +-acyclic , there exists n ∈ N such that
S · an+1 = S · an i.e. S · an is a-stable. We choose S1 = (S · an) · a� and prove
(i),(ii) and (iii) First, (i) is obvious.

To prove (ii), we prove that S1 contains both S and S · a. Let s ∈ S. By
definition, every state t of S · an is a-accessible from s. Since A is +-stable,
state s is a-recurrent and by definition of a-recurrence, s is a-accessible from
t. Since t ∈ S · an and S · an is a-stable, s ∈ S · an and since s is a-recurrent
s ∈ (S · an) · a� = S1. The proof that S · a ⊆ S1 is similar.

If S1 = Q the proof is complete, because (i) holds. If S1 � Q, then (iii) holds
because S ⊆ S1 thus Q is limit-reachable not only from S but from S1 as well,
using the same limit-path. As long as Sn 
= Q, we use (iii) to build inductively an
increasing sequence S � S1 � S2 � . . . � Sn = Q such that for every 1 ≤ k < n,
Sk+1 is +-reachable from Sk. Since +-reachability is transitive this completes the
proof of the blowing lemma. ��
Next lemma shows that in a +-stable and +-acyclic automata, once a computation
has flooded the whole state space, it cannot shrink back.

Lemma 2 (Flooding lemma). Let A be a probabilistic automaton with states
Q. Suppose that A is +-acyclic and +-stable. Then Q is the only set of states
limit-reachable from Q in A.

Now, we turn our attention to leaves of the acyclic support graph.

Definition 8. Let A be a probabilistic automaton with states Q. A non-empty
subset R ⊆ Q is called a leaf if for every letter a ∈ A, R · a = R and R · a� = R.

In a stable +-acyclic automaton, there is a unique leaf:

Lemma 3 (Leaf lemma). Let A be a probabilistic automaton with states Q.
Suppose that A is +-acyclic .Then there exists a unique leaf +-accessible from Q.
Every set limit-reachable from Q contains this leaf.

To prove that limit-reachability implies +-reachability, we proceed by induction
on the depth in the support graph. The inductive step is:

Lemma 4 (Inductive step). Let A be a probabilistic automaton with states
Q and S0, T ⊆ Q. Suppose that A is +-acyclic and T is limit-reachable from S0.
Then either S0 = T or there exists S1 
= S0 such that S1 is +-reachable from S0

in A and T is limit-reachable from S1 in A.

Repeated use of Lemma 4 gives:

Proposition 7. Let A be a probabilistic automaton with states Q and S0, T ⊆
Q. Suppose that A is +-acyclic. If T is limit-reachable from S0 in A, then T is
+-reachable from S0 as well.

Thus, limit-reachability and +-reachability coincide in +-acyclic automata and
Theorem 5 holds.

Is the maximal distance between two +-reachable sets in the support graph
bounded by a polynomial function of |A| and |Q|? The answer to this question
could lead to a simpler proof and/or algorithm.
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Conclusion. Whether the emptiness problem is decidable for probabilistic au-
tomata with a unique probabilistic transition is an open question.

The class of +-acyclic automata can be probably extended to a larger class of
automata for which the value 1 problem is still decidable.
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Abstract. We study the problem of scheduling tasks for execution by a proces-
sor when the tasks can stochastically generate new tasks. Tasks can be of different
types, and each type has a fixed, known probability of generating other tasks. We
present results on the random variable Sσ modeling the maximal space needed
by the processor to store the currently active tasks when acting under the sched-
uler σ. We obtain tail bounds for the distribution of Sσ for both offline and online
schedulers, and investigate the expected value E[Sσ].

1 Introduction

We study the problem of scheduling tasks that can stochastically generate new tasks.
We assume that the execution of a task τ can generate a set of subtasks. Tasks can
be of different types, and each type has a fixed, known probability of generating new
subtasks. Systems of tasks can be described using a notation similar to that of stochastic
grammars. For instance

X
0.2
↪−−→ 〈X,X〉 X

0.3
↪−−→ 〈X,Y 〉 X

0.5
↪−−→ ∅ Y

0.7
↪−−→ 〈X〉 Y

0.3
↪−−→ 〈Y 〉

describes a system with two types of tasks. Tasks of type X can generate 2 tasks of
type X , one task of each type, or zero tasks with probabilities 0.2, 0.3, and 0.5, respec-
tively (angular brackets denote multisets). Tasks of type Y can generate one task, of
type X or Y , with probability 0.7 and 0.3. Tasks are executed by one processor. The
processor repeatedly selects a task from a pool of unprocessed tasks, processes it, and
puts the generated subtasks (if any) back into the pool. The pool initially contains one
task of type X0, and the next task to be processed is selected by a scheduler.

We study random variables modeling the time and space needed to completely ex-
ecute a task τ , i.e., to empty the pool of unprocessed tasks assuming that initially the
pool only contains task τ . We assume that processing a task takes one time unit, and
storing it in the pool takes a unit of memory. So the completion time is given by the total
number of tasks processed, and the completion space by the maximum size reached by
the pool during the computation. The completion time has been studied in [13], and so
the bulk of the paper is devoted to studying the distribution of the completion space for
different classes of schedulers.
� Supported by Czech Science Foundation, grant No. P202/10/1469.
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Our computational model is abstract, but relevant for different scenarios. In the con-
text of search problems, a task is a problem instance, and the scheduler is part of
a branch-and-bound algorithm (see e.g. [18]). In the more general context of multi-
threaded computations, a task models a thread, which may generate new threads. The
problem of scheduling multithreaded computations space-efficiently on multiprocessor
machines has been extensively studied (see e.g. [21,6,2,1]). These papers assume that
schedulers know nothing about the program, while we consider the case in which
stochastic information on the program behaviour is available (obtained from sampling).

We study the performance of online schedulers that know only the past of the com-
putation, and compare them with the optimal offline scheduler, which has complete in-
formation about the future. Intuitively, this scheduler has access to an oracle that knows
how the stochastic choices will be resolved. The oracle can be replaced by a machine
that inspects the code of a task and determines which subtasks it will generate (if any).

We consider task systems with completion probability 1, which can be further di-
vided into those with finite and infinite expected completion time, often called subcrit-
ical and critical. Many of our results are related to the probability generating func-
tions (pgfs) associated to a task system. The functions for the example above are
fX(x, y) = 0.2x2 + 0.3xy + 0.5 and fY (x, y) = 0.7x + 0.3y, and the reader can
easily guess the formal definition. The completion probability is the least fixed point of
the system of pgfs [17].

Our first results (Section 3) concern the distribution of the completion space Sop

of the optimal offline scheduler op on a fixed but arbitrary task system with f(x) as
pgfs (in vector form). We exhibit a very surprising connection between the probabil-
ities Pr[Sop = k] and the Newton approximants to the least fixed point of f (x) (the
approximations to the least fixed point obtained by applying Newton’s method for ap-
proximating a zero of a differentiable function to f (x) − x = 0 with seed 0). This
connection allows us to apply recent results on the convergence speed of Newton’s
method [19,12], leading to tail bounds of Sop , i.e., bounds on Pr[Sop ≥ k]. We then
study (Section 4) the distribution of Sσ for an online scheduler σ, and obtain upper and
lower bounds for the performance of any online scheduler in subcritical systems. These
bounds suggest a way of assigning weights to task types reflecting how likely they are
to require large space. We study light-first schedulers, in which “light” tasks are chosen
before “heavy” tasks with larger components, and obtain an improved tail bound.

So far we have assumed that there are no dependencies between tasks, requiring a
task to be executed before another. We study in Section 4.3 the case in which a task can
only terminate after all the tasks it has (recursively) spawned have terminated. These
are the strict computations studied in [6]. The optimal scheduler in this case is the
depth-first scheduler, i.e., the one that completely executes the child task before its par-
ent, resulting in the familiar stack-based execution. Under this scheduler our tasks are
equivalent to special classes of recursive state machines [15] and probabilistic push-
down automata [14]. We determine the exact asymptotic performance of depth-first
schedulers, hereby making use of recent results [8].

We restrict ourselves to the case in which a task has at most two children, i.e., all
rules X

p
↪−→ 〈X1, . . . , Xn〉 satisfy n ≤ 2. This case already allows to model the forking-

mechanism underlying many multithreaded operating systems, e.g. Unix-like systems.
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Related work. Space-efficient scheduling for search problems or multithreaded compu-
tations has been studied in [18,21,6,2,1]. These papers assume that nothing is known
about the program generating the computations. We study the case in which statistical
information is available on the probability that computations split or die. The the-
ory of branching processes studies stochastic processes modeling populations whose
members can reproduce or die [17,4]. In computer science terminology, all existing
work on branching processes assumes that the number of processors is unbounded
[3,7,20,22,24,26]. To our knowledge, we are the first to study the 1-processor case.

Structure of the paper. The rest of the paper is structured as follows. The preliminaries in
Section 2 formalize the notions from the introduction and summarize known results on
which we build. In Section 3 we study optimal offline schedulers. Section 4 is dedicated
to online schedulers. First we prove performance bounds that hold uniformly for all
online schedulers, then we prove improved bounds for light-first schedulers, and finally
we determine the exact asymptotic behaviour of depth-first schedulers. In Section 5 we
obtain several results on the expected space consumption under different schedulers.
Section 6 contains some conclusions. Full proofs can be found in [9].

2 Preliminaries

Let A be a finite set. We regard elements of NA and RA as vectors and use boldface (like
u,v) to denote vectors. The vector whose components are all 0 (resp. 1) is denoted by 0
(resp. 1). We use angular brackets to denote multisets and often identify multisets over
A and vectors indexed by A. For instance, if A = {X,Y } and v ∈ N

A with vX = 1
and vY = 2, then v = 〈X,Y, Y 〉. We often shorten 〈a〉 to a. M≤2

A denotes the multisets
over A containing at most 2 elements.

Definition 2.1. A task system is a tuple Δ = (Γ, ↪−→,Prob, X0) where Γ is a finite
set of task types, ↪−→ ⊆ Γ ×M≤2

Γ is a set of transition rules, Prob is a function as-
signing positive probabilities to transition rules so that for every X ∈ Γ we have∑

X↪−→α Prob((X,α)) = 1, and X0 ∈ Γ is the initial type.

We write X
p
↪−→ α whenever X ↪−→ α and Prob((X,α)) = p. Executions of a task

system are modeled as family trees, defined as follows. Fix an arbitrary total order �
on Γ . A family tree t is a pair (N,L) where N ⊆ {0, 1}∗ is a finite binary tree (i.e. a
prefix-closed finite set of words over {0, 1}) and L : N ↪−→ Γ is a labelling such that
every node w ∈ N satisfies one of the following conditions: w is a leaf and L(w) ↪−→ ε,
or w has a unique child w0, and L(w) satisfies L(w) ↪−→ L(w0), or w has two children
w0 and w1, and L(w0), L(w1) satisfy L(w) ↪−→ 〈L(w0), L(w1)〉 and L(w0) � L(w1).
Given a node w ∈ N , the subtree of t rooted at w, denoted by tw, is the family tree
(N ′, L′) such that w′ ∈ N ′ iff ww′ ∈ N and L′(w′) = L(ww′) for every w′ ∈ N ′. If
a tree t has a subtree t0 or t1, we call this subtree a child of t. (So, the term child can
refer to a node or a tree, but there will be no confusion.)

We define a function Pr which, loosely speaking, assigns to a family tree t = (N,L)
its probability (see the assumption below). Assume that the root of t is labeled by X . If t

consists only of the root, and X
p
↪−→ ε, then Pr[t] = p; if the root has only one child (the
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(a)

X
0.25

↪−−→ 〈Y, Z〉 Y
0.1

↪−−→ 〈X, Z〉 Z
0.4

↪−−→ 〈Y 〉
X

0.75
↪−−→ ∅ Y

0.9
↪−−→ ∅ Z

0.6
↪−−→ ∅

(b)

ε,X

0, Y 1, Z

00, X 01, Z 10, Y

Fig. 1. (a) A task system. (b) A family tree.

node 0) labeled by Y , and X
p
↪−→ Y , then Pr[t] = p ·Pr[t0]; if the root has two children

(the nodes 0 and 1) labeled by Y and Z , and X
p
↪−→ 〈Y, Z〉, then Pr[t] = p·Pr[t0]·Pr[t1].

We denote by TX the set of all family trees whose root is labeled by X , and by PrX the
restriction of Pr to TX . We drop the subscript of PrX if X is understood.

Example 2.2. Figure 1 shows (a) a task system with Γ = {X,Y, Z}; and (b) a family
tree t of the system with probability Pr[t] = 0.25 · 0.1 · 0.75 · 0.6 · 0.4 · 0.9. The name
and label of a node are written close to it.

Assumptions. Throughout the paper we assume that a task system
Δ = (Γ, ↪−→,Prob, X0) satisfies the following two conditions for every type X ∈ Γ :
(1) X is reachable from X0, meaning that some tree in TX0 contains a node labeled
by X , and (2) Pr[TX ] =

∑
t∈TX

Pr[t] = 1. So we assume that (TX ,PrX) is a
discrete probability space with TX as set of elementary events and PrX as probability
function. This is the formal counterpart to assuming that every task is completed with
probability 1.

Proposition 2.3. It can be decided in polynomial time whether assumptions (1) and (2)
are satisfied.

Proof. (1) is trivial. For (2) let the probability generating function (pgf) of the task
system be defined as the function f : RΓ → RΓ of Δ where for every X ∈ Γ

fX(v) =
∑

X
p

↪−→〈Y,Z〉

p · vY · vZ +
∑

X
p

↪−→〈Y 〉

p · vY +
∑

X
p

↪−→∅

p .

It is well known (see e.g. [17]) that (2) holds iff the least nonnegative fixed point of f
equals 1, which is decidable in polynomial time [15]. ��

Derivations and schedulers. Let t = (N,L) be a family tree. A state of t is a maximal
subset of N in which no node is a proper prefix of another node (graphically, no node
is a proper descendant of another node). The elements of a state are called tasks. If
s is a state and w ∈ s, then the w-successor of s is the uniquely determined state s′

defined as follows: if w is a leaf of N , then s′ = s \ {w}; if w has one child w0, then
s′ = (s\{w})∪{w0}; if w has two children w0 and w1, then s′ = (s\{w})∪{w0, w1}.
We write s⇒ s′ if s′ is the w-successor of s for some w. A derivation of t is a sequence
s1 ⇒ . . . ⇒ sk of states such that s1 = {ε} and sk = ∅. A scheduler is a mapping σ
that assigns to a family tree t a derivation σ(t) of t. If σ(t) = (s1 ⇒ . . .⇒ sk), then for
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every 1 ≤ i < k we denote by σ(t)[i] a task of si such that si+1 is the σ(t)[i]-successor
of si. Intuitively, σ(t)[i] is the task of si scheduled by σ. This definition allows for
schedulers that know the tree, and so how future tasks will behave. In Section 4 we
define and study online schedulers which only know the past of the computation. Notice
that schedulers are deterministic (non-randomized).

Example 2.4. A scheduler σ1 may schedule the tree t in Figure 1 as follows: {ε} ⇒
{0, 1} ⇒ {0, 10} ⇒ {0} ⇒ {00, 01} ⇒ {01} ⇒ {}. Let σ2 be the sched-
uler which always picks the least unprocessed task w.r.t. the lexicographical order
on {0, 1}∗. (This is an example of an online scheduler.) It schedules t as follows:
{ε} ⇒ {0, 1} ⇒ {00, 01, 1} ⇒ {01, 1} ⇒ {1} ⇒ {10} ⇒ {}.

Time and space. Given X ∈ Γ , we define a random variable TX , the completion time of
X , that assigns to a tree t ∈ TX its number of nodes. Assuming that tasks are executed
for one time unit before its generated subtasks are returned to the pool, TX corresponds
to the time required to completely execute X . Our assumption (2) guarantees that TX

is finite with probability 1, but its expectation E[TX ] may or may not be finite. A task
system Δ is called subcritical if E[TX ] is finite for every X ∈ Γ . Otherwise it is called
critical. If Δ is subcritical, then E[TX ] can be easily computed by solving a system
of linear equations [13]. The notion of criticality comes from the theory of branching
processes, see e.g. [17,4]. Here we only recall the following results:

Proposition 2.5 ([17,15]). Let Δ be a task system with pgf f . Denote by f ′(1) the
Jacobian matrix of partial derivatives of f evaluated at 1. If Δ is critical, then the
spectral radius of f ′(1) is equal to 1; otherwise it is strictly less than 1. It can be
decided in polynomial time whether Δ is critical.

A state models a pool of tasks awaiting to be scheduled. We are interested in the
maximal size of the pool during the execution of a derivation. So we define the ran-
dom completion space Sσ

X as follows. If σ(t) = (s1 ⇒ . . .⇒ sk), then Sσ
X(t) :=

max{|s1|, . . . , |sk|}, where |si| is the cardinality of si. Sometimes we write Sσ(t),
meaning Sσ

X(t) for the type X labelling the root of t. If we write Sσ without specifying
the application to any tree, then we mean Sσ

X0
.

Example 2.6. For the schedulers of Example 2.4 we have Sσ1(t) = 2 and Sσ2(t) = 3.

3 Optimal (Offline) Schedulers

Let Sop be the random variable that assigns to a family tree the minimal completion
space of its derivations. We call Sop(t) the optimal completion space of t. The opti-
mal scheduler assigns to each tree a derivation with optimal completion space. In the
multithreading scenario, it corresponds to a scheduler that can inspect the code of a
thread and decide whether it will spawn a new thread or not. Note that, although the
optimal scheduler “knows” how the stochastic choices are resolved, the optimal com-
pletion space Sop(t) is still a random variable, because it depends on a random tree.
The following proposition characterizes the optimal completion space of a tree in terms
of the optimal completion space of its children.
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Proposition 3.1. Let t be a family tree. Then

Sop(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

{
max{Sop(t0) + 1, Sop(t1)},
max{Sop(t0), Sop(t1) + 1}

}
if t has two children t0, t1

Sop(t0) if t has exactly one child t0

1 if t has no children.

Proof sketch. The only nontrivial case is when t has two children t0 and t1. Consider
the following schedulings for t, where i ∈ {0, 1}: Execute first all tasks of ti and
then all tasks of t1−i; within both ti and t1−i, execute tasks in optimal order. While
executing ti, the root task of t1−i remains in the pool, and so the completion space is
s(i) = max{Sop(ti)+1, Sop(t1−i)}. The optimal scheduler chooses the value of i that
minimizes s(i). ��
Given a type X , we are interested in the probabilities Pr[Sop

X ≤ k] for k ≥ 1. Proposi-
tion 3.1 yields a recurrence relation which at first sight seems difficult to handle. How-
ever, using results of [11,10] we can exhibit a surprising connection between these
probabilities and the pgf f .

Let μ denote the least fixed point of f and recall from the proof of Proposition 2.3
that μ = 1. Clearly, 1 is a zero of f(x) − x. It has recently been shown that μ can
be computed by applying to f(x)− x Newton’s method for approximating a zero of a
differentiable function [15,19]. More precisely, μ = limk→∞ ν(k) where

ν(0) = 0 and ν(k+1) = ν(k) + (I − f ′(ν(k)))−1
(
f(ν(k))− ν(k)

)
and f ′(ν(k)) denotes the Jacobian matrix of partial derivatives of f evaluated at ν(k)

and I the identity matrix. Computing μ, however, is in our case uninteresting, because
we already know that μ = 1. So, why do we need Newton’s method? Because the
sequence of Newton approximants provides exactly the information we are looking for:

Theorem 3.2. Pr[Sop
X ≤ k] = ν

(k)
X for every type X and every k ≥ 0.

Proof sketch. We illustrate the proof idea on the one-type task system with pgf
f(x) = px2 + q, where q = 1 − p. Let T≤k and T=k denote the sets of trees t with
Sop(t) ≤ k and Sop(t) = k, respectively. We show Pr[T≤k] = ν(k) for all k by
induction on k. The case k = 0 is trivial. Assume that ν(k) = Pr[T≤k] holds for
some k ≥ 0. We prove Pr[T≤k+1] = ν(k+1). Notice that

ν(k+1) := ν(k) + f(ν(k))−ν(k)

1−f ′(ν(k))
= ν(k) + (f(ν(k))− ν(k)) ·

∑∞
i=0 f

′(ν(k))i.

Let B(0)
k+1 be the set of trees that have two children both of which belong to T=k, and,

for every i ≥ 0, let B(i+1)
k+1 be the set of trees with two children, one belonging to T≤k,

the other one to B(i)
k+1. By Proposition 3.1 we have T≤k+1 =

⋃
i≥0 B

(i)
k+1. We prove

Pr
[
B(i)

k+1

]
= f ′(ν(k))i (f(ν(k) − ν(k)) by an (inner) induction on i, which completes

the proof. For the base i = 0, let A≤k be the set of trees with two children in T≤k; by
induction hypothesis we have Pr[A≤k] = pν(k)ν(k). In a tree of A≤k either (a) both
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children belong to T=k, and so t ∈ B(0)
k+1, or (b) at most one child belongs to T=k. By

Proposition 3.1, the trees satisfying (b) belong to T≤k. In fact, a stronger property holds:
a tree of T≤k either satisfies (b) or it has one single node. Since the probability of the tree

with one node is q, we get Pr[A≤k] = Pr
[
B(0)

k+1

]
+Pr[T≤k]−q. Applying the induction

hypothesis again we obtain Pr
[
B(0)

k+1

]
= pν(k)ν(k) + q − ν(k) = f(ν(k)) − ν(k).

For the induction step, let i > 0. Divide B(i)
k+1 into two sets, one containing the trees

whose left (right) child belongs to B(i)
k+1 (to T≤k), and the other the trees whose left

(right) child belongs to T≤k (to B(i)
k+1). Using both induction hypotheses, we get that the

probability of each set is pν(k)f ′(ν(k))i(f(ν(k)) − ν(k)). So Pr
[
B(i+1)

k+1

]
= (2pν(k)) ·

f ′(ν(k))i(f(ν(k)) − ν(k)). Since f(x) = px2 + q we have f ′(ν(k)) = 2pν(k), and so

Pr
[
B(i+1)

k+1

]
= f ′(ν(k))i+1(f(ν(k) − ν(k)) as desired. ��

Example 3.3. Consider the task system X
p
↪−→ 〈X,X〉, X

q
↪−→ ∅ with pgf f(x) =

px2 + q, where p is a parameter and q = 1 − p. The least fixed point of f is 1 if
p ≤ 1/2 and q/p otherwise. So we consider only the case p ≤ 1/2. The system is
critical for p = 1/2 and subcritical for p < 1/2. Using Newton approximants we obtain
the following recurrence relation for the distribution of the optimal scheduler, where
pk := Pr[Sop ≥ k] = 1 − ν(k−1): pk+1 = (pp2

k)/(1 − 2p + 2ppk). In particular, for
the critical value p = 1/2 we get pk = 21−k and E[Sop ] =

∑
k≥1 Pr[Sop ≥ k] = 2.

Theorem 3.2 allows to compute the probability mass function of Sop . As a Newton
iteration requires O(|Γ |3) arithmetical operations, we obtain the following corollary,
where by the unit cost model we refer to the cost in the Blum-Shub-Smale model, in
which arithmetic operations have cost 1 independently of the size of the operands [5].

Corollary 3.4. Pr[Sop
X = k] can be computed in timeO(k·|Γ |3) in the unit cost model.

It is easy to see that Newton’s method converges quadratically for subcritical systems
(see e.g. [23]). For critical systems, it has recently been proved that Newton’s method
still converges linearly [19,12]. These results lead to tail bounds for Sop

X :

Corollary 3.5. For any task system Δ there are real numbers c > 0 and 0 < d < 1
such that Pr[Sop

X ≥ k] ≤ c · dk for all k ∈ N. If Δ is subcritical, then there are real

numbers c > 0 and 0 < d < 1 such that Pr[Sop
X ≥ k] ≤ c · d2k

for all k ∈ N.

4 Online Schedulers

From this section on we concentrate on online schedulers that only know the past of the
computation. Formally, a scheduler σ is online if for every tree t with σ(t) = (s1 ⇒
. . . ⇒ sk) and for every 1 ≤ i < k, the task σ(t)[i] depends only on s1 ⇒ . . . ⇒ si

and on the restriction of the labelling function L to
⋃i

j=1 sj .

Compact Task Systems. Any task system can be transformed into a so-called compact
task system such that for every scheduler of the compact task system we can construct a
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scheduler of the original system with nearly the same properties. A type W is compact
if there is a rule X ↪−→ 〈Y, Z〉 such that X is reachable from W . A task system is
compact if all its types are compact. From now on we assume that task systems are
compact. This assumption is essentially without loss of generality, as we argue in [9].

4.1 Tail Bounds for Online Schedulers

The following main theorem gives computable lower and upper bounds which hold
uniformly for all online schedulers σ.

Theorem 4.1. Let Δ be subcritical.

– Let v,w ∈ (1,∞)Γ be vectors with f(v) ≤ v and f(w) ≥ w. Denote by vmin

and wmax the least component of v and the greatest component of w, respectively.
Then

wX0 − 1
wk+2

max − 1
≤ Pr[Sσ ≥ k] ≤ vX0 − 1

vk
min − 1

for all online schedulers σ.

– Vectors v,w ∈ (1,∞)Γ with f (v) ≤ v and f (w) ≥ w exist and can be computed
in polynomial time.

Proof sketch. Choose h > 1 and u ∈ (0,∞)Γ such that huX = vX for all X ∈ Γ .
Define for all i ≥ 1 the variable m(i) = z(i) u where “ ” denotes the scalar product,
i.e., m(i) measures the number of tasks at time i weighted by types according to u. One
can show that hm(1)

, hm(2)
, . . . is a supermartingale for any online scheduler σ, and,

using the Optional Stopping Theorem [27], that Pr
[
supi m

(i) ≥ x
]
≤ (vX0−1)/(hx−

1) for all x (see [9] for the details and [16,25] for a similar argument on random walks).
As each type has at least weight umin, we have that Sσ ≥ k implies supi m

(i) ≥
kumin. Hence Pr[Sσ ≥ k] ≤ Pr

[
supi m

(i) ≥ kumin

]
≤ (vX0 − 1)/(vk

min − 1). The
lower bound is shown similarly. ��
All online schedulers perform within the bounds of Theorem 4.1. For an application of
the upper bound, assume one wants to provide as much space as is necessary to guarantee
that, say, 99.9% of the executions of a task system can run without needing additional
memory. This can be accomplished, regardless of the scheduler, by providing k space
units, where k is chosen such that the upper bound of Theorem 4.1 is at most 0.001.

A comparison of the lower bound with Corollary 3.5 proves for subcritical task sys-
tems that the asymptotic performance of any online scheduler σ is far away from that
of the optimal offline scheduler: the ratio Pr[Sσ ≥ k] /Pr[Sop ≥ k] is unbounded.

Example 4.2. Consider again the task system with pgf f(x) = px2+q. For p < 1/2 the
pgf has two fixed points, 1 and q/p. In particular, q/p > 1, so q/p can be used to obtain
both an upper and a lower bound for online schedulers. Since there is only one type
of tasks, vectors have only one component, and the maximal and minimal components
coincide; moreover, in this case the exponent k+2 of the lower bound can be improved
to k. So the upper and lower bounds coincide, and we get Pr[Sσ ≥ k] = q/p−1

(q/p)k−1
for

every online scheduler σ. In particular, as one intuitively expects, all online schedulers
are equivalent.1

1 For this example Pr[Sσ ≥ k] can also be computed by elementary means.
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4.2 Tail Bounds for Light-First Schedulers

We present a class of online schedulers for which a sharper upper bound than the one
given by Theorem 4.1 can be proved. It may be intuitive that a good heuristic is to pick
the task with the smallest expected completion time. If we compute a vector v with
f(v) ≤ v in polynomial time according to the proof of Theorem 4.1, then the type
Xmin for which vXmin = vmin holds turns out to be the type with smallest expected
completion time. This suggests choosing the active type X with smallest component
in v. So we look at v as a vector of weights, and always choose the lightest active type.
In fact, for this (intuitively good) scheduler we obtain two different upper bounds.

Given a vector v with f (v) ≤ v we denote by � a total order on Γ such that
whenever X � Y then vX ≤ vY . If X � Y , then we say that X is lighter than Y . The
v-light-first scheduler is an online scheduler that, in each step, picks a task of the lightest
type available in the pool according to v. Theorem 4.3 below strengthens the upper
bound of Theorem 4.1 for light-first schedulers. For the second part of Theorem 4.3 we
use the notion of v-accumulating types. A type X ∈ Γ is v-accumulating if for every
k ≥ 0 the v-light-first scheduler has a nonzero probability of reaching a state with at
least k tasks of type X in the pool.

Theorem 4.3. Let Δ be subcritical and v ∈ (1,∞)Γ with f (v) ≤ v. Let σ be a
v-light-first scheduler. Let vminmax := minX↪−→〈Y,Z〉 max{vY ,vZ} (here the mini-
mum is taken over all transition rules with two types on the right hand side). Then
vminmax ≥ vmin and for all k ≥ 1

Pr[Sσ ≥ k] ≤ vX0 − 1
vminvk−1

minmax − 1
.

Moreover, let vminacc := min{vX | X ∈ Γ, X is v-accumulating}. Then vminacc ≥
vminmax, vminacc can be computed in polynomial time, and there is an integer � such
that for all k ≥ �

Pr[Sσ ≥ k] ≤ vX0 − 1
v�

minvk−�
minacc − 1

.

Proof sketch. Recall the proof sketch of Theorem 4.1 where we used that Sσ ≥ k
implies supi m

(i) ≥ kumin, as each type has at least weight umin. Let � be such that
no more than � tasks of non-accumulating type can be in the pool at the same time.
Then Sσ ≥ k implies supi m

(i) ≥ �umin + (k − �)uminacc which leads to the final
inequality of Theorem 4.3 in a way analogous to the proof sketch of Theorem 4.1. ��
Intuitively, a light-first scheduler “works against” light tasks by picking them as soon
as possible. In this way it may be able to avoid the accumulation of some light types, so
it may achieve vminacc > vmin. This is illustrated in the following example.

Example 4.4. Consider the task system with 2 task types and pgfs x = a2xy+a1y+a0

and y = b2xy + b1y + b0, where a2 + a1 + a0 = 1 = b2 + b1 + b0 = 1. The system
is subcritical if a1b2 < a2b1 − a2 + b0. The pgfs have a greatest fixed point v with
vX = (1−a2−b1−a1b2+a2b1)/b2 and vY = (1−b1−b2)/(a2+a1b2−a2b1). We have
vX ≤ vY iff a2−b2 ≤ a2b1−a1b2, and so the light-first scheduler chooses X before Y
if this condition holds, and Y before X otherwise. We show that the light-first scheduler
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is asymptotically optimal. Assume w.l.o.g. vX ≤ vY . Then X is not accumulating
(because X-tasks are picked as soon as they are created), and so vminacc = vY . So the
upper bound for the light-weight scheduler yields a constant c2 such that Pr[Sσ ≥ k] ≤
c2/v

k
Y . But the general lower bound for arbitrary online schedulers states that there is

a constant c1 such that Pr[Sσ ≥ k] ≥ c1/v
k
Y , so we are done.

4.3 Tail Bounds for Depth-First Schedulers

Space-efficient scheduling of multithreaded computations has received considerable at-
tention [21,6,2,1]. The setting of these papers is slightly different from ours, because
they assume data dependencies among the threads, which may cause a thread to wait for
a result from another thread. In this sense our setting is similar to that of [18], where, in
thread terminology, the threads can execute independently.

These papers focus on depth-first computations, in which if thread A has to wait for
thread B, then B was spawned by A or by a descendant of A. The optimal scheduler
is the one that, when A spawns B, interrupts the execution of A and continues with B;
this online scheduler produces the familiar stack-based execution [6,21].

We study the performance of this depth-first scheduler. Formally, a depth-first sched-
uler σλ is determined by a function λ that assigns to each rule r = X ↪−→ 〈Y, Z〉 either
Y Z or Z Y . If λ(r) = Y Z , then Z models the continuation of the thread X , while
Y models a new thread for whose termination Z waits. The depth-first scheduler σλ

keeps as an internal data structure a word w ∈ Γ ∗, a “stack”, such that the Parikh image
of w is the multiset of the task types in the pool. If w = Xw′ for some w′ ∈ Γ ∗, then
σ picks X . If a transition rule X ↪−→ α “fires”, then σλ replaces Xw′ by βw′ where
β = λ(X ↪−→ α).

Using techniques of [8] for probabilistic pushdown systems, we obtain the following:

Theorem 4.5. Let Δ be subcritical and σ be any depth-first scheduler. Then
Pr[Sσ = k] can be computed in time O(k · |Γ |3) in the unit-cost model. Moreover,
there is 0 < ρ < 1 such that Pr[Sσ ≥ k] ∈ Θ(ρk), i.e, there are c, C > 0 such
that cρk ≤ Pr[Sσ ≥ k] ≤ Cρk for all k. Furthermore, ρ is the spectral radius of a
nonnegative matrix B ∈ RΓ×Γ , where B can be computed in polynomial time.

While the proof of Theorem 4.5 does not conceptually require much more than the
results of [8], the technical details are delicate. The proof can be found in [9].

5 Expectations

In this section we study the expected completion space, i.e., the expectation E[Sσ] for
both offline and online schedulers. Fix a task system Δ = (Γ, ↪−→,Prob, X0).

Optimal (Offline) Schedulers. The results of Section 3 allow to efficiently approximate
the expectation E[Sop ]. Recall that for any random variable R with values in the natural
numbers we have E[R] =

∑∞
i=1 Pr[R ≥ i]. So we can (under-) approximate E[R] by∑k

i=1 Pr[R ≥ i] for finite k. We say that k terms compute b bits of E[Sop ] if E[Sop ]−∑k−1
i=0 (1 − ν

(i)
X0

) ≤ 2−b.
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Theorem 5.1. The expectation E[Sop ] is finite (no matter whether Δ is critical or sub-
critical). Moreover, O(b) terms compute b bits of E[Sop ]. If the task system Δ is sub-
critical, then log2 b+O(1) terms compute b bits of E[Sop ]. Finally, computing k terms
takes time O(k · |Γ |3) in the unit cost model.

Online Schedulers. The main result for online schedulers states that the finiteness of
E[Sσ] does not depend on the choice of the online scheduler σ.

Theorem 5.2. If Δ is subcritical, then E[Sσ] is finite for every online scheduler σ. If
Δ is critical, then E[Sσ] is infinite for every online scheduler σ.

Proof sketch. The first assertion follows from Theorem 4.1. Let Δ be critical. For this
sketch we focus on the case where X0 is reachable from every type. By Proposition 2.5
the spectral radius of f ′(1) equals 1. Then Perron-Frobenius theory guarantees the
existence of a vector u with f ′(1)u = u and uX > 0 for all X . Using a martin-
gale argument, similar to the one of Theorem 4.1, one can show that the sequence
m(1),m(2), . . . with m(i) := z(i) u is a martingale for every scheduler σ, and, us-
ing the Optional-Stopping Theorem, that Pr[Sσ ≥ k] ≥ uX0/(k + 2). So we have
E[Sσ] =

∑∞
k=1 Pr[Sσ ≥ k] ≥

∑∞
k=1 uX0/(k + 2) =∞. ��

Since we can decide in polynomial time whether a system is subcritical or critical, we
can do the same to decide on the finiteness of the expected completion time.

Depth-first Schedulers. To approximate E[Sσ] for a given depth-first scheduler σ, we
can employ the same technique as for optimal offline schedulers, i.e., we approximate
E[Sσ] by

∑k
i=1 Pr[Sσ ≥ i] for finite k. We say that k terms compute b bits of E[Sσ] if

E[Sσ]−
∑k

i=1 Pr[Sσ ≥ i] ≤ 2−b.

Theorem 5.3 (see Theorem 19 of [8]). Let Δ be subcritical, and let σ be a depth-first
scheduler. Then O(b) terms compute b bits of E[Sσ], and computing k terms takes time
O(k · |Γ |3) in the unit cost model.

6 Conclusions

We have initiated the study of scheduling tasks that can stochastically generate other
tasks. We have provided strong results on the performance of both online and offline
schedulers for the case of one processor and task systems with completion probabil-
ity 1. It is an open problem how to compute and analyze online schedulers which are
optimal in a sense. While we profited from the theory of branching processes, the theory
considers (in computer science terms) systems with an unbounded number of proces-
sors, and therefore many questions had not been addressed before or even posed.

Acknowledgement. We thank the referees for their helpful comments.
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Abstract. We study policy iteration for infinite-horizon Markov deci-
sion processes. It has recently been shown policy iteration style algo-
rithms have exponential lower bounds in a two player game setting. We
extend these lower bounds to Markov decision processes with the total
reward and average-reward optimality criteria.

1 Introduction

The problem of finding an optimal policy for infinite-horizon Markov decision
process has been widely studied [8]. Policy iteration is one method that has been
developed for this task [5]. This algorithm begins by choosing an arbitrary policy,
and then iteratively improves that policy by modifying the policy so that it uses
different actions. For each policy, the algorithm computes a set of actions that
are switchable, and it then chooses some subset of these actions to be switched.
The resulting policy is guaranteed to be an improvement.

The choice of which subset of switchable actions to switch in each iteration is
left up to the user: different variants of policy iteration can be created by giving
different rules that pick the subset. Traditionally, policy iteration algorithms use
a greedy rule that switches every state with a switchable action. Greedy policy
iteration will be the focus of this paper.

Policy iteration has been found to work well in practice, where it is used as
an alternative to linear programming. Linear programming is known to solve
the problem in polynomial time. However, relatively little is known about the
complexity of policy iteration. Since each iteration yields a strictly improved
policy, the algorithm can never consider the same policy twice. This leads to
a natural exponential bound on the number of iterations before the algorithm
arrives at the optimal policy. The best upper bounds have been provided by
Mansour and Singh [6], who showed that greedy policy iteration will terminate
in O(kn/n) iterations, where k is the maximum number of outgoing actions from
a state.

Melekopoglou and Condon have shown exponential lower bounds for some
simple variants of policy iteration [7]. The policy iteration algorithms that they
consider switch only a single action in each iteration. They give a family of
examples upon which these policy iteration algorithms take 2n − 1 steps. It has
been a long standing open problem as to whether exponential lower bounds could
be shown for greedy policy iteration. The best lower bound that has been shown
so far is n + 6 iterations [2].

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 551–562, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Policy iteration is closely related to the technique of strategy improvement
for two player games. Friedmann [4] has recently found a family of parity games
upon which the strategy improvement algorithm of Vöge and Jurdziński [9] takes
an exponential number of steps. It has been shown that these examples can
be generalized to obtain exponential lower bounds for strategy improvement
algorithms on other prominent types of two player game [1].

Our contribution. Friedmann’s example relies on the fact that there are two
players in a parity game. We show how Friedmann’s example can be adapted
to provide exponential lower bounds for policy iteration on Markov decision
processes. We present an example that provides an exponential lower bound for
the total reward criterion, and we also argue that the same example provides an
exponential lower bound for the average-reward criterion.

2 Preliminaries

A Markov decision process consists of a set of states S, where each state s ∈ S
has an associated set of actions As. For a given state s ∈ S and action a ∈ As

the function r(s, a) gives an integer reward for when the action a in chosen at the
state s. Given two states s and s′, and an action a ∈ As, the function p(s′|s, a)
gives the probability of moving to state s′ when the action a is chosen in state s.
This is a probability distribution, so

∑
s′∈S p(s′|s, a) = 1 for all s and a ∈ As.

A deterministic memoryless policy π : S → As is a function that selects one
action at each state. It has been shown that there is always a policy with this
form that maximizes the optimality criteria that we are interested in. Therefore,
we restrict ourselves to policies of this form for the rest of the paper. For a given
starting state s0, a run that is consistent with a policy π is an infinite sequence
of states 〈s0, s1, . . . 〉 such that p(si+1|si, π(si)) > 0 for all i. The set Ωπ

s0
contains

every consistent run from s0 when π is used. A probability space can be defined
over these runs using the σ-algebra that is generated by the cylinder sets of finite
paths starting at s0. The cylinder set of a finite path contains every infinite path
that has the finite path as a prefix. If we fix the probability of the cylinder
set of a finite path 〈s0, s1, s2, . . . sk〉 to be

∏k−1
i=0 (si+1|si, π(si)), then standard

techniques from probability theory imply that there is a unique extension to a
probability measure Pπ

s0
(·) on the σ-algebra [3]. Given a function that assigns a

value to each consistent run f : Ω → R, we define Eπ
s0
{f} to be the expectation

of this function in the probability space.
The value of a state s when a policy π is used varies according to the choice

of optimality criterion. In the total reward criterion the value is Valπ(s) =
Eπ

s {
∑∞

i=0 r(si, si+1)}, and for the average-reward criterion the value is ValπA(s) =
Eπ

s {lim infN→∞
1
N

∑N
i=0 r(si, si+1)}. It should be noted that the value of some

policies may not exist under the total reward criterion. Our examples will be
carefully constructed to ensure that the value does exist. The computational
objective is to find the optimal policy π∗, which is the policy that maximizes
the value function for every starting state. We define the value of a state to be
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the value of that state when an optimal policy is being used. That is, we define
Val(s) = Valπ∗(s) and ValA(s) = Valπ∗A (s) for every state s.

For each optimality criterion, it has been shown that the value of each state
can be characterised by the solution of a system of optimality equations [8]. For
the total reward criterion these optimality equations are, for every state s:

V (s) = max
a∈As

(
r(s, a) +

∑
s′∈S

p(s′|s, a) · V (s′)

)
(1)

For the average-reward criterion we have two types of optimality equation, which
must be solved simultaneously. The first of these are called the gain equations:

G(s) = max
a∈As

(∑
s′∈S

p(s′|s, a) ·G(s′)

)
(2)

Secondly we have the bias equations. If Ms = {a ∈ As : G(s) =
∑

s′∈S p(s′|s, a)·
G(s′)} is the set of actions that satisfy the gain equation at the state s, then the
bias equations are defined as:

B(s) = max
a∈Ms

(
r(s, a)−G(s) +

∑
s′∈S

p(s′|s, a) ·B(s′)

)
(3)

It has been shown that the solution to these optimality equations is unique,
and that this solution characterises the value of each state. That is, we have
Val(s) = V (s) and ValA(s) = G(s), for every state s. We can also obtain an
optimal policy by setting π∗(s) = a, where a is an action that achieves the
maximum in the optimality equation.

3 Policy Iteration

Policy iteration is a method for solving the optimality equations presented in
Section 2. We begin by describing policy iteration for the total reward criterion.
For every policy π that the algorithm considers, it computes the value Valπ(s) of
the policy at every state s, and checks whether this is a solution of the optimality
equation (1). The value of the policy can be obtained by solving:

Valπ(s) = r(s, π(s)) +
∑
s′∈S

p(s′|s, π(s)) ·Valπ(s′) (4)

If the value of π satisfies the optimality equation (1) at every state, then a
solution has been found and the algorithm terminates. Otherwise, we define the
appeal for each action a ∈ As in the policy π to be: Appealπ(s, a) = r(s, a) +∑

s′∈S p(s′|s, a)·Valπ(s′). If the policy π does not satisfy the optimality equation
there must be at least one action a at a state s such that Appealπ(s, a) > Valπ(s).
We say that an action with this property is switchable in π. Switching an action
a ∈ At in a policy π creates a new policy π′ where π′(s) = a if s = t, and
π′(s) = π(s) for all other states s. It can be shown that switching any subset of
switchable actions will create an improved policy.
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Theorem 1 ([8]). If π is a policy and π′ is a policy that is obtain by switching
some subset of switchable actions in π then Valπ

′
(s) ≥ Valπ(s) for every state s,

and there is some state in which the inequality is strict.

Policy iteration begins at an arbitrary policy. In each iteration it computes the
set of switchable actions, and picks some subset of these actions to switch. This
creates a new policy to be considered in the next iteration. Since policy iteration
only switches switchable actions, Theorem 1 implies that it cannot visit the same
policy twice. This is because repeating a policy would require the value of some
state to decrease. Since there are a finite number of policies, the algorithm must
eventually arrive at a policy with no switchable actions. This policy satisfies the
optimality equation (1), and policy iteration terminates.

Note that any subset of switchable actions can be chosen in each iteration of
the algorithm, and the choice of subset affects the behaviour of the algorithm. In
this paper we study the greedy policy iteration algorithm, which selects the most
appealing switchable action at every state. For every state s where equation (1)
is not satisfied, the algorithm will switch the action: argmaxa∈As

(Appealπ(s, a)).
Policy iteration for the average-reward criterion follows the same pattern, but

it uses optimality equations (2) and (3) to decide which actions are switchable
in a given policy. For each policy it computes a solution to:

Gπ(s) =
∑
s′∈S

p(s′|s, π(s)) ·Gπ(s)

Bπ(s) = r(s, π(s))−Gπ(s) +
∑
s′∈S

p(s′|s, π(s)) · Bπ(s′)

An action a ∈ As is switchable if either
∑

s′∈S p(s′|s, a) · Gπ(s′) > Gπ(s) or if∑
s′∈S p(s′|s, a) ·Gπ(s′) = Gπ(s) and: r(s, a)−Gπ(s)+

∑
s′∈S p(s′|s, a) > Bπ(s).

4 Exponential Lower Bounds for the Total Reward
Criterion

In this section we will describe a family of examples that force greedy policy
iteration for the total reward criterion to take an exponential number of steps.
Due to the size and complexity of our examples, we will break them down into
several component parts, which will be presented separately.

Our examples will actually contain very few actions that are probabilistic. An
action a ∈ As is deterministic if there is some state s′ such that p(s′|s, a) = 1.
For the sake of convenience, we will denote actions of this form as (s, s′). We also
overload our previous notations: the notation π(s) = s′ indicates that π chooses
the deterministic action from s to s′, the function r(s, s′) gives the reward of this
action, and Appealπ(s, s′) gives the appeal of this action under the policy π.

Since we are working with the total reward criterion, care must be taken to
ensure that the value of a policy remains well defined. For this purpose, our
examples will contain a sink state cn+1 that has a single action (cn+1, cn+1)
with reward 0. This will be an absorbing state, in the sense that every run of the
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MDP from every starting state will eventually arrive at the state cn+1, for every
policy that is considered by policy iteration. This will ensure that the value of
each state remains finite throughout the execution of the algorithm.

We will give diagrams for parts our examples, such as the one given in Figure 1.
States are drawn as boxes, and the name of a state is printed on the box. Actions
are drawn as arrows: deterministic actions are drawn as an arrow between states,
and probabilistic actions are drawn as arrows that split, and end at multiple
states. The probability distribution is marked after the arrow has split, and the
reward of the action is marked before the arrow has split.

Our goal is to construct a set of examples that force policy iteration to mimic
the behaviour of a binary counter. Each policy will be associated with some
configuration of this counter, and the exponential lower bound will be established
by forcing policy iteration to consider one policy for every configuration of the
counter. In the rest of this section, we construct an example that forces policy
iteration to mimic the behaviour of a binary counter with n bits.

If the bits of our counter are indexed 1 through n, then there are two condi-
tions that are sufficient enforce this behaviour. Firstly, a bit with index i should
become 1 only after all bits with index j < i are 1. Secondly, when the bit with
index i becomes 1, every bit with index j < i must be set to 0. Our exposition will
follow this structure: in section 4.1 we describe how each policy corresponds to a
configuration of a binary counter, in section 4.2 we show how the first condition
is enforced, and in section 4.3 we show how the second condition is enforced.

4.1 A Bit

The example will contain n instances of structure shown in Figure 1, which will
represent the bits. We will represent the configuration of a binary counter as a
set B ⊆ {1, 2, . . . n} that contains the indices of the bits that are 1. A policy π
represents a configuration B if π(bi) = ai for every index i ∈ B, and π(bi) 
= ai

for every every index i /∈ B. For a set of natural numbers B we define B>i to be
the set B \ {k ∈ N : k ≤ i}. We define analogous notations for <, ≥, and ≤.

bi

gi

ai

1
(10n+4)2n

1− 1
(10n+4)2n

0

Fig. 1. The structure for the bit with index i
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The actions ai are the only probabilistic actions in the example. When the
action ai is chosen at bi the effect, under the total reward criterion, is identical to
a deterministic action (bi, gi) with reward 0. The fact that it takes an expected
(10n + 4)2n steps to move from bi to the gi using the action ai is irrelevant
because the reward of ai is 0, and these steps have no effect on the total reward.

Proposition 2. For every policy π, if π(bi) = ai then Valπ(bi) = Valπ(gi).

The reason why the given probabilities have been chosen for the action ai is that
the value of the state gi will never exceed (10n + 4)2n. Therefore, we make the
following assumption, which we will later show to be true.

Assumption 3. For every policy π we have Valπ(bi) > 0 and Valπ(gi) ≤ (10n+
4)2n.

Although the action ai behaves like a deterministic action when it is chosen at bi,
it behaves differently when it is not chosen. A deterministic action (bi, gi) would
have Appealπ(bi, gi) = Valπ(gi) in every policy. By contrast, when ai is not
chosen by a policy π, we can show that the appeal of ai is at most Valπ(bi) + 1.

Proposition 4. Suppose that Assumption 3 holds. If π is a policy such that
π(bi) 
= ai then Appealπ(bi, ai) < Valπ(bi) + 1.

This is the key property that will allow us to implement a binary counter. The
value of the state gi could be much larger than the value of bi. However, we are
able to prevent policy iteration from switching the action ai by ensuring that
there is always some other action x such that Appeal(bi, x) ≥ Valπ(bi) + 1.

4.2 Switching the Smallest Bit

In this section we fully describe the example, and we show how policy iteration
can only switch ai at bi after it has switched aj at every state bj with j < i.

Figure 2 shows a key structure, which is called a deceleration lane. Previously
we argued that an action (bi, x) with Appealπ(bi, x) ≥ Valπ(bi) + 1 is required
in every policy π with π(bi) 
= ai to prevent policy iteration from switching the
action ai. The deceleration is the structure that ensures these actions will exist.

The states x and y both have outgoing actions that will be specified later. For
now, we can reason about the behaviour of the deceleration lane by assuming
that the value of y is larger than the value of x.

Assumption 5. For every policy π we have Valπ(y) > Valπ(x).

The initial policy for the deceleration lane is the one in which every state dk

chooses (dk, y). It is not difficult to see that the only switchable action in this pol-
icy is (d1, d0). This is a general trend: the action (dj , dj−1) can only be switched
after every action (dk, dk−1) with 1 ≤ k < j has been switched. Therefore, policy
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−1−1−1−1
. . .

4n + 1

4n + 1

0 0

0 0

0 0
0 0

yx

d0d1d2d3d2n
−1

Fig. 2. The deceleration lane

iteration will take 2n steps to arrive at the optimal policy for the deceleration
lane. Formally, for every j in the range 0 ≤ j ≤ 2n we define a partial policy:

πj(s) =

{
dk−1 if s = dk and 1 ≤ k ≤ j,
y otherwise.

(5)

Proposition 6. Suppose that Assumption 5 holds. Applying policy iteration to
π0 produces the sequence of policies 〈π0, π1, . . . , π2n〉.

Figure 3 shows how each state bi is connected to the deceleration lane. Of course,
since we have not yet specified the outgoing actions from the states fi, we can-
not reason about their appeal. These actions will be used later to force the
state bi to switch away from the action ai as the binary counter moves between
configurations. For now, we can assume that these actions are not switchable.

Assumption 7. We have Appealπ(bi, fj) < Valπ(bi) for every policy π and
every action (bi, fj).

We now describe the behaviour of policy iteration for every index i /∈ B. The
initial policy for the state bi will choose the action (bi, y). In the first iteration the
action (bi, d2i) will be switched, but after this the action chosen at bi follows the

−1−1−1−1−1
. . .

yx

d0d1d2d2id2n

bi

. . .
−1

244i

1

0

. . . fi+1fn
4n + 1

4n + 1

Fig. 3. The outgoing actions from the state bi



558 J. Fearnley

deceleration lane: policy iteration will switch the action (bi, dk) in the iteration
immediately after it switches the action (dk, dk−1). Since r(bi, dk)+r(dk, dk−1) =
r(bi, dk−1) + 1, this satisfies the condition that prevents the action ai being
switched at bi. Formally, for every j in the range 0 ≤ j ≤ 2i + 1 we define a
partial policy:

πo
j (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πj(s) if s = dk for some k,
y if j = 0 and s = bi

d2i if j = 1 and s = bi

dj−1 if 2 ≤ j ≤ 2i + 1 and s = bi.

Proposition 8. Suppose that Assumptions 3, 5, and 7 hold. When policy iter-
ation is applied to πo

0 it will produce 〈πo
0 , π

o
1 , . . . π

o
2i+1〉.

We can now see why a bit with index i can only be set to 1 after all bits with
index j such that j < i have been set to 1. Since each state bi has 2i outgoing
actions to the deceleration lane, policy iteration is prevented from switching the
action ai for 2i + 2 iterations. Therefore, policy iteration can switch ai at the
state bi at least two iterations before it can switch aj at a state bj with j > i.

The second important property of the deceleration lane is that it can be
reset. If at any point policy iteration arrives at a policy πo

j in which Valπ
o
j (x) >

Valπ
o
j (y) + 6n + 1 then policy iteration will switch the actions (dk, x) for all k

and the action (bi, x) for every i ∈ B, to create a policy π′. The reason why
these actions must be switched is that the largest value that a state dk or bi

can obtain in a policy πo
j is Valπ

o
j (y) + 6n + 1. Now suppose that Valπ

′
(y) >

Valπ
′
(x) + 4n. If this is true, then policy iteration will switch the actions (dk, y)

and the action (bi, y), and it therefore arrives at the policy πo
0 . The ability to

force the deceleration lane to reset by manipulating the difference between the
values of y and x will be used in the next section.

We now turn our attention to the states bi where i ∈ B. Policy iteration should
never switch away from the action ai at these states irrespective of the state of
the deceleration lane. Since we have not yet specified the outgoing actions of gi,
we need to assume that the value of bi is large enough to prevent the actions
(bi, dk) being switchable.

Assumption 9. For every policy π, if i ∈ B then Valπ(bi) > Valπ(y) + 6n + 1.

When this assumption holds, the state bi will not be switched away from the
action ai. Formally, for j in the range 2 ≤ j ≤ 2i we define a partial policy:

πc
j(s) =

{
πj(s) if s = dk for some k,
ai if s = bi.

Proposition 10. Suppose that Assumptions 5, 7, and 9 hold. When policy it-
eration is applied to πc

0 it will produce the sequence 〈πc
0, π

c
1, . . . π

c
2i〉.
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bi

gi

ai

1
(10n+4)2n

1− 1
(10n+4)2n

0

ci

fi

ri

(10n + 4)2i 0

−(10n + 4)2i−1 − 4n

. . .cn+1 ci+1

−1

−1

4n + 1

0

Fig. 4. The structure associated with the state bi

Figure 4 shows the structure that is associated with each state bi. We complete
the example by specifying the outgoing actions from x and y: there is an action
(y, ci) with reward 0 for every i in the range 1 ≤ i ≤ n + 1, there is an action
(x, fi) with reward 0 for every i in the range 1 ≤ i ≤ n, and there is an action
(x, cn+1) with reward −1.

The idea is that the state ci should use the action (ci, fi) only when the index
i is a member of B. Moreover, the state ri should use the action (ri, cj) where
j ∈ B is the smallest bit that is both larger than i and a member of B. The
state x should use the action (x, fj) and the state y should use the action (y, cj)
where j is the smallest index that is a member of B.

Formally, for each configuration B we define a partial policy πB for these
states. We define πB(ci) = (ci, fi) if i ∈ B and πB(ci) = (ci, ri) if i /∈ B. We
define πB(ri) = (ri, cj) where j = min(B>i∪{n+1}). We define πB(y) = (y, cj)
where j = min(B ∪ {n + 1}). We define πB(x) = (x, fj) where j = min(B) if
B 
= ∅, and we define πB(x) = (x, cn+1) if B = ∅.

We can now define the sequence of policies that policy iteration will pass
through for each configuration B. This definition combines the partial policies
πj , πo

j , πc
j , and πB to give a complete policy πB

j . If i = min({i /∈ B : 1 ≤ i ≤ n})
then we define Sequence(B) = 〈πB

1 , πB
2 , . . . πB

2i+1〉, where:

πB
j (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πj(s) if s = dk for some k,
πc

j(s) if s = bi where i ∈ B,
πo

j (s) if s = bi where i /∈ B.
πB(s) otherwise.

We can now see why the assumptions that we have made are true in the full
example. For example, in Assumption 3 we asserted that Valπ(gi) ≤ (10n+4)2n.
This holds for every policy πB

j because by following this policy from the state gi
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we pass through ri followed by cj , fj, bj , gj, and rj for every index j ∈ B>i, before
arriving at the sink state cn+1. Therefore, the value of the state gi under the
policy πB

j can be at most
∑n

l=i+1(10n+4)(2l−2l−1)+(10n+4)2i = (10n+4)2n.
The other assumptions that we have made can be also be shown to be true for
every policy πB

j .

Proposition 11. For every configuration B we have that Assumptions 3, 5, 7,
and 9 hold for every policy π in Sequence(B).

Our previous propositions have done most of the work in showing that if policy
iteration is applied πB

0 , then it will pass through Sequence(B). To complete the
proof it is sufficient to note that policy iteration never switches away from the
policy πB at the states ci, ri, x, and y.

Proposition 12. When policy iteration is applied to πB
0 policy iteration will

pass through the sequence of policies given by Sequence(B).

4.3 Moving between Configurations

In this section we will describe the behaviour of policy iteration after the fi-
nal policy in Sequence(B) has been reached. Throughout this section we define
i = min({j /∈ B : 1 ≤ j ≤ n}) to be the smallest index that is not in the
configuration B, and we define B′ = B∪{i}\{1, 2, . . . i−1}. Our goal is to show
that policy iteration moves from the policy πB

2i+1 to the policy πB′
0 .

The first policy that policy iteration will move to is identical to the policy
πB

2i+2, with the exception that the state bi is switched to the action ai. We define:

πB
R1(s) =

{
ai if s = bi,
πB

2i+2(s) otherwise.

This occurs because the state bi only has 2i actions of the form (bi, dk). Therefore,
once the policy πB

2i+1 is reached there will be no action of the form (bi, dk) to
distract policy iteration from switching the action ai. Since every other state bj

with j /∈ B has at least two actions (bj , dk) with k > 2i, they move to the policy
πB

2i+2.

Proposition 13. Policy iteration moves from the policy πB
2i+1 to the policy πB

R1.

Since the action ai has been switched the value of the state fi is raised to
Valπ

B
R1(ri) + (10n + 4)(2i − 2i−1)− 4n. The reward of (10n + 4)2i is sufficiently

large to cause policy iteration to switch the actions (ci, fi) and (x, fi). It will
also switch the actions (bj , fi) where for every index j < i. Since every index
j /∈ B other than i has at least one action (bj, dk), these states can be switched
to the policy πB

2i+3(s). Therefore, we define:

πB
R2(s) =

⎧⎪⎨⎪⎩
πB

0 (s) if s = bi or s = ri or s ∈ {cj , bj, rj : j > i},
fi if s = x or s = ci or s = bj with j < i,
πB

2i+3(s) otherwise.
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The most important thing in this iteration is that every state bj with index
j < i is switched away from the action aj . This provides the critical property of
reseting every bit that has a smaller index than i. Another important property is
that, while the action (x, fi) can be switched in this iteration, the action (y, ci)
cannot be switched until after the action (ci, fi) has been switched. This will
provide a single iteration in which the value of x will exceed the value of y,
which is the first of the two conditions necessary to reset the deceleration lane.

Proposition 14. Policy iteration moves from the policy πB
R1 to the policy πB

R2.

In the next iteration the deceleration lane begins to reset as policy iteration
switches (dk, x) for all k and (bj , x) where j > i and j /∈ B. Policy iteration also
switches (y, ci) and (rj , ci) with j < i. We define:

πB
R3(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πB

0 (s) if s ∈ {cj, bj , rj : j ≥ i} ∪ {x},
ci s = y or s = rj with j < i,

x s = dk for some k or s = bj with j /∈ B \ {x},
πB

2i+3(s) if s = cj with j < i.

The switching of (y, ci) provides the second condition for the reset of the deceler-
ation lane. After the action is switched the value of y will be Valπ

B
R2(fi)+ 4n+1

whereas the value of x will be Valπ
B
R2(fi). Therefore, policy iteration will reset

the deceleration lane in the next iteration. It is also important that the action
(bj , x) for j /∈ B is switchable in this iteration, since if i + 1 /∈ B then bi+1 will
have run out of actions (bi+1, dk) to distract it from switching ai+1. The is the
reason why each state bi must have 2i actions to the deceleration lane.

Proposition 15. Policy iteration moves from the policy πB
R2 to the policy πB

R3.

Finally, once policy iteration has reached the policy πB
R3 it will move to the policy

πB′
0 . This involves completing the reset of the deceleration lane by switching

(dk, y) for all k, and switching the actions (bj , y) for every state bj with index
j /∈ B′. It also makes the final step in transforming the policy πB to the policy
πB′

by switching the actions (cj , rj) at every state cj with j < i.

Proposition 16. Policy iteration moves from the policy πB
R3 to the policy πB′

0 .

When combined with Proposition 12, the propositions in this section imply that
policy iteration will move from the policy πB

0 to the policy πB′
0 . The optimal

policy for the example is πB
2n+1 where B = {1, 2, . . . n}. This is the policy that

selects ai at bi for all i, and in which the deceleration lane has reached its
optimal policy. Our results so far indicate that if we begin policy iteration at
the policy π∅

0 , then policy iteration must pass through a policy πB
0 for every

B ⊆ {1, 2, . . . n}. Therefore, it will take at least 2n iterations to terminate.

Theorem 17. When policy iteration for the total reward criterion is applied to
the policy π∅

0 it will take at least 2n iterations to find the optimal policy.
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Finally, we can also argue that the example also provides an exponential lower
bound for policy iteration for the average-reward criterion. The first thing to
note that Gπ(s) = 0 for every policy that we have specified. This is because
all runs eventually reach the sink state cn+1. Since the reward of the action
(cn+1, cn+1) is 0, the long term average-reward of every policy will be 0. Note
that when Gπ(s) = 0, the bias optimality equation (3) becomes identical to
the total reward optimality equation (1). This causes policy iteration for the
average-reward criterion to behave identically to policy iteration for the total
reward criterion on this example.

Theorem 18. When policy iteration for the average-reward criterion is applied
to the policy π∅

0 it will take at least 2n iterations to find the optimal policy.
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Abstract. Regular cost functions have been introduced recently as an
extension to the notion of regular languages with counting capabilities.
The specificity of cost functions is that exact values are not considered,
but only estimated.

In this paper, we study the strict subclass of regular temporal cost
functions. In such cost functions, it is only allowed to count the number
of occurrences of consecutive events. For this reason, this model intends
to measure the length of intervals, i.e., a discrete notion of time. We
provide various equivalent representations for functions in this class, us-
ing automata, and ‘clock based’ reduction to regular languages. We show
that the conversions are much simpler to obtain, and much more efficient
than in the general case of regular cost functions.

Our second aim in this paper is to use temporal cost function as
a test-case for exploring the algebraic nature of regular cost functions.
Following the seminal ideas of Schützenberger, this results in a decidable
algebraic characterization of regular temporal cost functions inside the
class of regular cost functions.

1 Introduction

Since the seminal works of Kleene and Rabin and Scott, regularity languages ap-
pear as major concept in computer science thanks to their closure properties, their
various equivalent characterizations, and the decidability results concerning them.

Recently, the notion of regular cost function for words has been presented as a
candidate for being a quantitative extension to the notion of regular languages [7].
A cost function is an equivalence class of the functions from the domain (words in
our case) to N∞, modulo an equivalence relation ≈ which allows some distortion,
but preserves the boundedness property over each subset of the domain.

1.1 Related Works and Motivating Examples

Regular cost functions are the continuation of a sequence of works that have in-
tended to solve difficult questions in language theory. The prominent example is
the star-height problem raised by Eggan in 1963 [8], but solved only 25 years later
by Hashigushi using a very intricate proof [10]. An improved and self-contained
proof has been more recently proposed by Kirsten [12]. The two proofs work along
the same lines: show that the original problem can be reduced to the existence of a
bound over some function from words to integers. This function can be represented
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using an automaton that have counting features. The proof is concluded by show-
ing that such boundedness problems are decidable. Other decision problems can be
reduced to boundedness questions over words: in language theory the finite power
property [14,9] and the finite substitution problem [2,11], and in model theory the
boundedness problem of monadic formulas over words [3]. Distance automata are
also used in the context of databases and image compression. Automata similar
to the ones of Kirsten have also been introduced independently in the context of
verification [1].

Finally, using also ideas inspired from [4], the theory of those automata over
words has been unified in [7], in which cost functions are introduced, and suitable
models of automata, algebra, and logic for defining them are presented and shown
equivalent. Corresponding decidability results are provided. The resulting theory
is a neat extension of the standard theory of regular languages to a quantitative
setting.All the limitedness problems from the literature appear as special instances
of those results, as well as all the central results known for regular languages.

1.2 Contributions

We introduce the subclass of regular temporal cost functions. Regular temporal
cost functions are regular cost functions in which one can only count consecutive
events: for instance, over the alphabet {a, b}, the maximal length of a sequence
of consecutive letter a’s is temporal, while the number of occurrences of letter a
is not. This corresponds to the model of desert automata introduced by Kirsten
[11]. We believe that the notion of regular temporal cost function is of interest
in the context of modelization of time.

We show that regular temporal cost functions admit various equivalent pre-
sentations. The first such representation is obtained in Section 3 as a syntactic
restriction of B-automata and S-automata (the automata used for describing
regular cost functions [7]). Second, in Section 4, we provide an equivalent clock-
based presentation, in which the regular temporal cost functions is represented as
a regular language over words labeled with the ticks of a clock as an extra infor-
mation. We show all the closure results for regular temporal cost functions (e.g.,
min, max, etc...) using this presentation.This results in constructions of better
complexity, both in terms of number of states of automata, and in terms of tech-
nicality of the constructions themselves. Last but not least, while in the general
theory of regular cost functions the error committed during the construction is
bounded by a polynomial, it is linear for regular temporal cost functions.

Our second contribution, in Section 5, is an algebraic characterization of this
class. It is known from [7] that regular cost functions are the one recognizable by
stabilization monoids. This model of monoids extends the standard approach for
languages. One of our objectives in studying regular temporal cost function was
to validate the interest of this algebraic approach, and show that results similar
to the famous Schützenberger theorem on star-free languages [13] were possible.
We believe that we succeeded in this direction, since we are able to algebraically
characterize the class of regular temporal cost functions, and furthermore that
this characterization is effective.
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2 Notations

We will note N the set of non-negative integers and N∞ the set N∪{∞}, ordered
by 0 < 1 < · · · <∞. If E is a set, EN is the set of infinite sequences of elements
of E (we will not use here the notion of infinite words). Such sequences will
be denoted by bold letters (a, b,...). We will work with a fixed finite alphabet
A. The set of words over A is A∗. The empty word is ε, and A+ = A∗ \ {ε}.
The concatenation of words u and v is uv.The length of u is |u|. The number
of occurrences of letter a in u is |u|a. If L ⊆ A∗ is a language, L is its comple-
ment A

∗ \ L. We will note inf E and supE the lower and upper bounds of a set
E ⊆ N∞, in particular inf ∅ =∞ and sup ∅ = 0.

3 Regular Cost Functions

The theory of regular cost functions has been proposed in [7]. In this section, we
review some of the definitions useful for the present paper.

3.1 Basics on Cost Functions

The principle of cost functions is to consider functions modulo an equivalence re-
lation ≈ allowing some distortions of the values. This distortion is controlled us-
ing a parameter (α, α′, α1 . . . ) which is a mapping from N to N such that α(n) ≥
n for all n, called the correction function. For x, y ∈ N∞, x �α y means that
either x and y are in N and x ≤ α(y), or y = ∞. It is equivalent to write
that x ≤ α(y) in which we implicitly extend α to N∞ by α(∞) = ∞. For
all sets E, �α is naturally extended to mappings from E to N∞ by f�αg if
f(x) �α g(x) for all x ∈ E, or equivalently if f ≤ α ◦ g (using the same implicit
extension of α). The intuition here is to consider that g dominates f up to a
‘stretching factor’ α. We note f ≈α g if f �α g and g �α f . Finally, we note
f�g (resp. f≈g) if f �α g (resp. f ≈α g) for some α. A cost function (over a
set E) is an equivalence class of ≈ among the set of functions from E to N∞.

Proposition 1. For all functions f, g : E → N∞, f � g if and only if for all
X ⊆ E, g bounded over X implies f bounded over X.

To each subset X ⊆ E, one associates its characteristic mapping χX from E
to N∞ which to x associates 0 if x ∈ X , and ∞ otherwise. It is easy to see
that X ⊆ Y iff χX � χY . In this way, the notion of cost functions can be seen
as an extension to the notion of language.

3.2 Cost-Automata

A cost automaton is a tuple 〈Q,A, In,Fin , Γ,Δ〉 where Q is a finite set of states, A

is a finite alphabet, In and Fin are the set of initial and final states respectively,
Γ is a finite set of counters, and Δ ⊆ Q × A × ({i, r, c}∗)Γ × Q is the set of
transitions.
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The value of each counter ranges over N, and evolves according to atomic
actions in {i, r, c}: i increments the value by 1, r resets the value to 0, and c
checks the value (but does not change it). Each action in ({i, r, c}∗)Γ tells for each
counter which sequence of atomic actions has to be performed. When a transition
is taken, each counter evolves according to the action of the transition.

A run σ of a cost automaton over a word u = a1 . . . an is a sequence in Δ∗

of the form (q0, a1, t1, q1)(q1, a2, t2, q2) . . . (qn−1, an, tn, qn) such that q0 is initial,
qn is final (the run ε is also valid iff there exists q0, both initial and final). At the
begining of the run, all counters share the value 0. The set C(σ)= C(t1 . . . tn)
collects the checked values of all counters during the run; there is no distinction
concerning the counter the value originates from, or the moment of the check.

At this point, cost automata are instantiated in two versions, namely B-
automata and S-automata that differ by their dual semantics, [[·]]B and [[·]]S
respectively. These semantics are defined for all u ∈ A

∗ by:

[[A]]B(u) = inf{supC(σ) : σ run over u} ,
and [[A]]S(u) = sup{inf C(σ) : σ run over u} .

(Recall that sup ∅ = 0 and inf ∅ = ∞) One says that a B-automaton (resp. an
S-automaton) accepts [[A]]B (resp. [[A]]S).

Example 1. We describe the one counter cost automata A and A′ by drawings:
a : ic

b : r

a, b : ε

b : ε

a : i
a, b : cr

a, b : ε

Circles represent states, and a transition (p, a, t, q) is denoted by an edge from p
to q labeled a : t (the notation a, b : t abbreviates multiple transitions). Initial
states are identified by unlabeled ingoing arrows, while final states use unlabeled
outgoing arrows. One checks that [[A]]B ≈ [[A′]]S ≈ fa where fa(u) = max{n ∈
N / u = vanw}.

The following theorem is central in the theory:

Theorem 2 (duality [7,5]). It is equivalent for a cost function (i.e. always up
to ≈), to be accepted by a B-automaton or to be accepted by a S-automaton.

Such cost functions are called regular. This comes with a decision procedure:

Theorem 3 ([7,5]). The relations � and ≈ are decidable for regular cost func-
tions. (i.e. these relations are computed by algorithms taking f and g as input
and deciding if f � g or f ≈ g)

3.3 Regular Temporal Cost Functions

The subject of the paper is to study the regular temporal cost functions, a
subclass of regular cost functions. We give here a first definition of this class.
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A B-automaton (resp. S-automaton) is temporal if it uses only actions in
{ic, r}Γ (resp. {i, cr}Γ ). Hence temporal automata are restricted form of au-
tomata in which it is disallowed in an action to leave counters unchanged. In-
tuitively, such automata can only measure consecutive events. We define tempB

(resp. tempS) to map sequences in {ic, r}∗ to N (resp. {i, cr}∗ to N∞ ) which
to u associates (supC(u)) (resp. (inf C(u))). Those functions are extended to
sets of counters and runs as in the general case of cost automata. We say that
a cost function is B-temporal (resp. S-temporal) if it is accepted by a temporal
B-automaton (resp. a temporal S-automaton). We will see below that these two
notions coincide, up to ≈ (Theorem 7).

Example 2. Over the alphabet {a, b}, the cost function fa from Example 1 is
B-temporal (as witnessed by the example automaton).

However, the function u �→ |u|a is not B-temporal, even modulo ≈. It can be
proved by considering words of the form (bNa)K .

4 Clock-Form of Temporal Cost Functions

In this section, we give another characterization to B-temporal and S-temporal
regular cost functions. This presentation makes use of clocks (the notion of clock
should not be confused with the notion of clock used for timed automata).

A clock c is a word over the alphabet {␣, ↓}. It should be seen as describing
the ticks of a clock: the letter is ␣ if there is no tick at this moment, and it is
↓ when there is a tick. A clock naturally determines a factorization of time into
intervals (we say segments). Here, one factorizes c as:

c = (␣n1−1 ↓)(␣n2−1 ↓) . . . (␣nk−1 ↓)␣m−1 .

Let max−seg(c) = max{n1, . . . , nk,m} ∈ N and min−seg = inf{n1, . . . , nk} ∈
N∞ (remark the asymmetry). A clock c has period P∈ N if n1 = · · · = nk = P ,
and m ≤ P . This is equivalent to stating max−seg(c) ≤ P ≤ min−seg(c).
Remark that given n and P , there exists one and only one clock of length n and
period P . Moreover, max−seg(c) = tempB(hB(c)) + 1 in which hB maps ␣ to ic
and ↓ to r. Similarly, min−seg(c) = tempS(hS(c)) + 1 in which hS maps ␣ to i
and ↓ to cr.

A clock on u ∈ A∗ is a clock c of length |u|. One denotes by 〈u, c〉 the word
over A× {␣, ↓} obtained by pairing the letters in u and in c of same index. For
L a language in (A×{␣, ↓})∗, we define the following functions from A∗ to N∞:

〈〈L〉〉B : u �→ inf{max−seg(c) : c clock on u, 〈u, c〉 ∈ L}
〈〈L〉〉S : u �→ sup{min−seg(c) : c clock on u, 〈u, c〉 /∈ L}+ 1

Lemma 1. For all languages L ⊆ (A× {␣, ↓})∗, 〈〈L〉〉B ≤ 〈〈L〉〉S .

Proof. Fix u. First case, there is no P such that the clock c over u of period P
verifies 〈u, c〉 ∈ L. In this case, 〈u, ␣|u|〉 /∈ L, and 〈〈L〉〉S(u) =∞, so the lemma is
verified. Otherwise, we consider the minimal P such that the clock c over u of
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period P is such that 〈u, c〉 ∈ L. We clearly have 〈〈L〉〉B(u) ≤ P . On the other
hand, 〈u, c′〉 
∈ L, where c′ is the clock over u of period P −1. Hence 〈〈L〉〉B(u) ≤
P ≤ 〈〈L〉〉S(u). ��

The notations 〈〈·〉〉B and 〈〈·〉〉S are easily convertible into temporal cost automata
as shown by Fact 4.

Fact 4. If L is regular and L (resp. L) is accepted by a non-deterministic
automaton with n states, then 〈〈L〉〉B − 1 (resp. 〈〈L〉〉S − 1) is accepted by a
temporal B-automaton (resp. a temporal S-automaton) with n states and one
counter.

Proof. In the automaton for L, each transition of the form (p, (a, c), q) is replaced
by a transition (p, a, hB(c), q); it gives immediately the desired temporal B-
automaton. The construction for temporal S-automata is identical, starting from
the complement automaton, and using hS . ��

Definition 5. An α-clock-language (or simply a clock-language if there exists
such an α) is a language L ⊆ (A × {␣, ↓})∗ such that 〈〈L〉〉B ≈α 〈〈L〉〉S . A
function f has an α-clock-form if there exists an α-clock-language L such that
〈〈L〉〉S ≤ f �α 〈〈L〉〉B . A cost function has a clock-form if it contains a function
that has an α-clock-form for some α. We denote by CF the set of cost functions
that have a clock-form.

One can remark that it is sufficient to prove 〈〈L〉〉S �α 〈〈L〉〉B for proving that L
is an α-clock-language: Lemma 1 provides indeed the other direction.

Example 3. For L ⊆ A∗, K = (L × {␣, ↓}∗) ∩ (A × {␣, ↓})∗ is a clock-language,
which witnesses that χL + 1 has an identity-clock-form.

Example 4. Consider the function fa of Example 1, computing the maximal
number of consecutive a’s. M = ((a, ␣) + (b, ↓))∗ verifies 〈〈M〉〉B ≈ fa (in fact
〈〈M〉〉B = fa) , but it is not a clock-language: for instance the word bam is such
that fa(bam) = m, but 〈〈M〉〉S(bam) = 0. This contradicts 〈〈M〉〉S ≈ fa according
to Proposition 1. Actually, the important intuition behind being in clock-form
is that the clock can be chosen independently from the word.

However, we can construct a rational clock-language L for fa. It checks that
each segment of consecutive a’s contains at most one tick of the clock, i.e.:

L = K[((b, ␣) + (b, ↓))K]∗ in which K = (a, ␣)∗ + (a, ␣)∗(a, ↓)(a, ␣)∗ .

Let u be a word, and c be a clock such that min−seg(c) = n and 〈u, c〉 
∈
L. Since 〈u, c〉 
∈ L, there exists a factor of u of the form ak in which there
are two ticks of the clock. Hence, k ≥ n + 1. From which we obtain 〈〈L〉〉S ≤
fa. Conversely, let u be a word, and c be a clock such that max−seg(c) = n
and 〈u, c〉 ∈ L. Let k = fa(u). This means that there is a factor of the form ak

in u. Since 〈u, c〉 ∈ L, there is at most one tick of the clock in this factor ak.
Hence, k ≤ 2n−1. We obtain that fa < 2〈〈L〉〉B . Hence, L is an α-clock-language
for fa, with α : n �→ 2n.
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Let us turn ourselves to closure properties for languages in clock-form. Consider
a mapping f from A∗ to N∞ and a mapping h from A to B (B being another
alphabet) that we extend into a monoid morphism from A∗ to B∗, the inf-
projection of f (resp. sup-projection ) with respect to h is the mapping finf,h

(resp. fsup,h) from B∗ to N∞ defined for all v ∈ B∗ by:

finf,h(v) = inf {f(u) : h(u) = v} (resp. fsup,h(v) = sup {f(u) : h(u) = v} )

The following theorem shows closure properties of cost functions in clock-form
that are obtained by translation to a direct counterpart in language theory:

Theorem 6. Given L,M α-clock-languages over A, h from A to B and g from B

to A, we have:
– L ∪M is an α-clock-language and 〈〈L ∪M〉〉B = min(〈〈L〉〉B , 〈〈M〉〉B)
– L ∩M is an α-clock-language and 〈〈L ∩M〉〉S = max(〈〈L〉〉S , 〈〈M〉〉S)
– L◦g = {〈u, c〉 : 〈g(u), c〉 ∈ L} is an α-clock-language and 〈〈L◦g〉〉B = 〈〈L〉〉B ◦ g
– Linf,h = {〈h(u), c〉 : 〈u, c〉 ∈ L} is an α-clock-language and
〈〈Linf,h〉〉B = (〈〈L〉〉B)inf,h

– Lsup,h =  {〈h(u), c〉 : 〈u, c〉 /∈ L} is an α-clock-language and
〈〈Lsup,h〉〉S = (〈〈L〉〉S)sup,h

Proof. Each item follows the same proof principle. For instance,

(〈〈Linf,h〉〉B)(v) = inf{max−seg(c) : 〈v, c〉 ∈ Linf,h} = inf{max−seg(c) : 〈u, c〉 ∈ L, h(u) = v}

= inf{inf{max−seg(c) : 〈u, c〉 ∈ L} : h(u) = v} = (〈〈L〉〉B)inf,h(v)

Assume L is an α-clock-language, and let v be a word and c be the clock wit-
nessing 〈〈L〉〉B(v) = n, i.e., such that 〈v, c〉 ∈ Linf,h and max−seg(c) = n. Let c′

be a clock over v such that min−seg(c′) > α(n), we have to show 〈v, c′〉 ∈ Linf,h.
Since 〈v, c〉 ∈ Linf,h, there exists u such that v = h(u) and 〈u, c〉 ∈ L. Hence,
since L is an α-clock-language, 〈u, c′〉 ∈ L. It follows that 〈v, c′〉 ∈ Linf,h. ��

Lemma 2. tempB and tempS have ×2-clock-forms with ×2(n) = 2n.

Proof. The proof for tempB is the same as in Example 4, in which one replaces
the letter a by ic and the letter b by r. The tempS side is similar. ��

Theorem 7. If f is a regular cost function, the following assertions are equiv-
alent :
1. f has a clock-form,
2. f is B-temporal,
3. f is computed by a temporal B-automaton with only one counter,
4. f is S-temporal,
5. f is computed by a temporal S-automaton with only one counter.

Proof. (1)⇒(3) follows from Fact 4. (3)⇒(2) is trivial.

(2)⇒(1): Consider a temporal B-automaton A = 〈Q,A, In,Fin , Γ,Δ〉 using
counters Γ = {γ1, . . . , γk}. A run of A is a word on the alphabet B = Q ×
A× {ic, r}Γ ×Q. It follows from the definition of [[·]]B that for all u ∈ A

∗:
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[[A]]B(u) = inf
σ∈B∗

{max(χR(σ), tempB ◦ π1(σ), · · · , tempB ◦ πk(σ)) : πA(σ) = u}

in which R ⊆ Δ∗ is the (regular) set of valid runs; for all i ∈ [[1, k]], πi projects
each transition (p, a, t, q) to the its γth

i component of t (and is extended to words).
Finally πA projects each transition (p, a, t, q) to a (and is also extended to words).
By Example 3, χR ∈ CF . By Lemma 2, tempB ∈ CF , and by Theorem 6, CF is
stable under composition, max and inf-projection. Hence [[A]]B ∈ CF .

The equivalences (2)⇔(4)⇔(5) are proved in a similar way. ��
Actually, Theorem 6 and Lemma 2 allow to state that if a function f is given
by one of the five descriptions of Theorem 7, then for any other among these
descriptions, there exists a function g which is ≈×2-equivalent to f .

In the following, we will simply say that f is a temporal cost function instead
of B-temporal or S-temporal.

4.1 Conclusion on Clock-Forms, and Perspectives

Independently from the second part of the paper, we believe that some extra
comments on the clock-form approach are interesting.

First of all, let us stress the remarkable property of the clock-form presentation
of temporal cost functions: those can be seen either as defining a function as an
infimum (〈〈·〉〉B) or as a supremum (〈〈·〉〉S). Hence, regular cost function in clock-
forms can be seen either as B-automata or as S-automata. This presentation is in
some sense ‘self-dual’. Nothing similar is known for general regular cost functions.

Another difference with the general case is that all constructions are in fact
reduction to constructions for languages, and any suitable representation can be
used to optimize them. However, since two different languages L,L′ can be such
that 〈〈L〉〉B ≈ 〈〈L′〉〉B (even 〈〈L〉〉B = 〈〈L′〉〉B), one must keep aware that optimal
operations performed at the level of languages – such as minimization – will
not be optimal anymore when used for describing temporal cost functions. It is
a perspective of research to develop dedicated algorithmic for regular temporal
cost functions.

A third difference is that the error committed, which is measured by the
stretching factor α, is linear. This is much better than the general case of cost
functions, in which, e.g., the equivalence between B-automata and S-automata
requires a polynomial stretching factor. There are also researches to be conducted
to take full advantage of this.

In fact, the argument underlying temporal cost functions in clock-forms is
interesting per se: it consists in approximating some quantitative notion, here
the notion of length of intervals, using some extra unary information, here the
ticks of the clock. Since unary information can be handled by automata, the ap-
proximation of the quantitative notion becomes also available to the automaton.
This is a very robust principle that clearly can be reused in several other ways:
infinite word or trees – finite or infinite. Keeping on the same track, a clock is
even not required to count the time, it could count some events already written
on the input, such as the number of a’s, etc. These examples show the versatility
of the approach.
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5 Algebraic Approach

We first recall the definitions of stabilization semigroups and use them in a
decidable algebraic characterization of temporal cost functions.

5.1 Standard Semigroups

Definition. An ordered semigroup S = 〈S, ·,≤〉 is a set S endowed with an
associative product and a partial order ≤ over S compatible with the product.

An idempotent element of S is an element e ∈ S such that e · e = e. We note
E(S) the set of idempotent elements of S.

Recognizing languages. In the standard theory, the recognition of a language
by a finite semigroup is made through a morphism from words into the semigroup
which can be decomposed into two steps: first, a length-preserving morphism
h : A+ → S+, where S+ is the set of words whose letters are in S, and second
the function π: S+ → S which maps every word on S onto the product of its
letters. A word u is in the language recognized by the triple (S, h, P ), where P
is a subset of S, if and only if π(h(u)) ∈ P .

It is standard that languages recognized by finite semigroups are exactly the
regular languages. It is also by now well known that families of regular languages
can be characterized by restrictions on the semigroups which recognize them.

5.2 Stabilization Semigroup

The notion of stabilization monoid has been introduced in [7] as a quantita-
tive extension of standard monoids, for the recognition of cost functions. For
simplicity, we consider from now regular cost functions over non-empty words
and stabilization semigroups instead of stabilization monoids. The relationship
between these objects is made explicit in [6].

Definition 8. A stabilization semigroup 〈S, ·,≤, +〉 is an ordered semigroup en-
dowed with an operator +: E(S)→ E(S) (called stabilization) such that:

∀a, b ∈ S, a · b ∈ E(S) and b · a ∈ E(S) =⇒ (a · b)� = a · (b · a)� · b;
∀e ∈ E(S), (e�)� = e� ≤ e; ∀e, f ∈ E(S), e ≤ f =⇒ e� ≤ f �.

The intuition of the + operator is that e� represents the value that gets e ‘when
repeated many times’. This may be different from e if one is interested in counting
the number of occurrences of e.

5.3 Recognizing Cost Functions

The first step for recognizing cost function is to provide a ‘quantitative semantic’
to the stabilization semigroup S = 〈S, ·,≤, +〉. This is done by a mapping ρ
named a compatible mapping, which maps every word of S+ to an infinite non-
decreasing sequence of SN (see e.g., [7]). The principle is that the ith position in
the sequence ρ(u) tells the value of the word u for a threshold i separating what
is considered as few and as lot. This is better seen on an example.
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Example 5. Consider the following stabilization semigroup:

b a 0 +
b b a 0 b
a a a 0 0
0 0 0 0 0

b a 0

b

a

0

a, b

0

0, a, b

It is given both by its table of product augmented by a column for the stabiliza-
tion and by its Cayley graph. In the Cayley graph there is an edge labelled by y
linking element x to element x · y. There is furthermore a double arrow going
from each idempotent to its stabilized version.

The intention is to count the number of a’s. Words with no a’s correspond
to element b. Words with a few a’s correspond to element a. Finally, words that
contain a lot of a’s should have value 0: for instance, a� = 0 witnesses that
iterating a lot of time a word with at least one a yields a word with a lot of a’s.

A possible compatible mapping ρ for this stabilization semigroup attaches to
each word over {b, a, 0}+ an infinite sequence of values in {b, a, 0} as follows:
every word in b+ is mapped to the constant sequence b; every word containing 0
is mapped to the constant sequence 0; every word u ∈ b∗(ab∗)+ is mapped to 0
for indices up to |u|a − 1 and a for indice |u|a and beyond. The idea is that for
a threshold i < |u|a, the word is considered as having a lot of a’s in front of i
(hence value 0), while it has few a’s in front of i for i ≥ |u|a (hence the value a).
One can see that this sequence ‘codes’ the number of a’s in the position in which
it switches from value 0 to value a.

A formal definition of a compatible mapping requires to state the properties it
has to satisfy, and which relate it to the stabilization monoid. This would require
much more material, and we have to stay at this informal level in this short
abstract. The important result here is that given a finite stabilization monoid,
there exists a mapping compatible with it, and furthermore that it is unique up
to an equivalence ∼ (which essentially corresponds to ≈) [7,6].

The quantitative recognition consists in considering the infinite sequence ob-
tained by the compatible mapping and observing the first moment it leaves a
fixed ideal I of the semigroup (an ideal is a downward ≤-closed subset). For-
mally, the cost function f over A+ recognized by (S, h, I) is f : u �→ inf{n ∈
N, ρ(h(u))(n) /∈ I}, where h : A+ → S+ is a length-preserving morphism, and ρ
is a mapping compatible with S.

Typically, on the above example, the ideal is {0}, and h maps each letter
in {a, b} to the element of same name. For all words u ∈ {a + b}+, the value
computed is exactly |u|a.

Theorem 9. [7] A cost function is regular iff it is recognized by a stabilization
semigroup.

Like for regular languages, this algebraic presentation can be minimized.

Theorem 10. If f is a regular cost function, there exists effectively a (quotient-
wise) minimal stabilization semigroup recognizing f .
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This minimal stabilization semigroup can be obtained from (S, h, I) by a kind
of Moore algorithm. This procedure is polynomial in the size of S.

5.4 Temporal Stabilization Semigroups

Let us now characterize the regular temporal cost functions.
An idempotent e is stable if e� = e. Otherwise it is unstable: stable idempotents

are not counted by the stabilization semigroup (b in the example), while the
iteration of unstable idempotents matters (a in the example).

Definition 11. Let S = 〈S, ·,≤, +〉 be a stabilization semigroup. S is temporal
if for all idempotent s and e, if s is stable and there exists x, y ∈ S ∪ {1} such
that e = x · s · y, then e is also stable.

For instance, the example stabilization semigroup is not temporal since b is stable
but a = a · b ·a is unstable. This is related to temporal cost functions as follows:

Theorem 12. Let f be a regular cost function, the following assertions are
equivalent:
– f is temporal
– f is recognized by a temporal stabilization semigroup
– the minimal stabilization semigroup recognizing f is temporal

We will briefly give an idea on how the definition of temporal semigroups is
related to the intuition of consecutive events. Indeed, an unstable idempotent
must be seen as an event we want to ‘measure’, whereas we are not interested
in the number of occurrences of a stable idempotent. But if we have e = x · s · y
with e unstable and s stable, it means that we want to ‘count’ the number of
occurrences of e without counting the number of s within e. In other words, we
want to increment a counter when e is seen, but s can be repeated a lot inside
a single occurrence of e. To accomplish this, we have no other choice but doing
action ε on the counter measuring e while reading all the s’s, however, this kind
of behaviour is disallowed for temporal automata.

The two last assertions are equivalent, since temporality is preserved by quo-
tient of stabilization semigroups. On our example, the stabilization semigroup
is already the minimal one recognizing the number of occurrences of a, and
hence, this cost function is not temporal. We gave a direct proof for this fact in
Example 2.

Corollary 1. The class of temporal cost functions is decidable.

The corollary is obvious since the property can be decided on the minimal sta-
bilization semigroup, which can be computed either from a cost automaton or a
stabilization semigroup defining the cost function.

6 Conclusion

We defined a subclass of regular cost functions called the temporal class. Our
first definition used cost automata. We then characterized these cost functions



574 T. Colcombet, D. Kuperberg, and S. Lombardy

as the ones describable by clock-languages. This presentation allows to reuse all
standard constructions from classic language theory. We then characterized the
class in the algebraic framework of stabilization semigroups. This together with
the construction of minimal stabilization semigroups gave a decision procedure
for the temporal class, and hopefully for more classes in future works.

The later decidable characterization result calls for continuations. Temporal
cost functions correspond to desert automata of Kirsten [11], but other subclasses
of automata are present in the literature such as distance automata (which cor-
respond to one-counter no-reset B-automata) or distance desert automata (a
special case of two counters B-automata). Is there decidable characterizations
for the regular cost functions described by those automata? More generally, what
is the nature of the hierarchy of counters?
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Abstract. We investigate the decidability and complexity of various model
checking problems over one-counter automata. More specifically, we consider
succinct one-counter automata, in which additive updates are encoded in binary,
as well as parametric one-counter automata, in which additive updates may be
given as unspecified parameters. We fully determine the complexity of model
checking these automata against CTL, LTL, and modal μ-calculus specifications.

1 Introduction

Counter automata, which comprise a finite-state controller together with a number of
counter variables, are a fundamental and widely-studied computational model. One of
the earliest results about counter automata, which appeared in a seminal paper of Min-
sky’s five decades ago, is the fact that two counters suffice to achieve Turing complete-
ness [19].

Following Minsky’s work, much research has been directed towards studying re-
stricted classes of counter automata and related formalisms. Among others, we note the
use of restrictions to a single counter, on the kinds of allowable tests on the counters, on
the underlying topology of the finite controller (such as flatness [8,18]), and on the types
of computations considered (such as reversal-boundedness [16]). Counter automata are
also closely related to Petri nets and pushdown automata.

In Minsky’s original formulation, counters were represented as integer variables that
could be incremented, decremented, or tested for equality with zero by the finite-state
controller. More recently, driven by complexity-theoretic considerations on the one
hand, and potential applications on the other, researchers have investigated additional
primitive operations on counters, such as additive updates encoded in binary [2,18]
or even in parametric form, i.e., whose precise values depend on parameters [3,15].
We refer to such counter automata as succinct and parametric resp., the former being
viewed as a subclass of the latter. Natural applications of such counter machines in-
clude the modelling of resource-bounded processes, programs with lists, recursive or
multi-threaded programs, and XML query evaluation; see, e.g., [2,6,16].

In most cases, investigations have centered around the decidability and complexity
of the reachability problem, i.e., whether a given control state can be reached starting
from the initial configuration of the counter automaton. Various instances of the reacha-
bility problem for succinct and parametric counter automata are examined, for example,
in [9,13,15].
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Table 1. The complexity of CTL, the modal μ-calculus, and LTL on SOCA and POCA

SOCA POCA

CTL, μ-calculus data

combined
EXPSPACE-complete Π0

1 -complete

LTL
data coNP-complete

combined PSPACE-complete coNEXP-complete

The aim of the present paper is to study the decidability and complexity of model
checking for succinct and parametric one-counter automata. In view of Minsky’s re-
sult, we restrict our attention to succinct one-counter automata (SOCA) and parametric
one-counter automata (POCA). On the specification side, we focus on the three most
prominent formalisms in the literature, namely the temporal logics CTL and LTL, as
well as the modal μ-calculus. For a counter automaton A and a specification ϕ, we
therefore consider the question of deciding whether A |= ϕ, in case of POCA for all
values of the parameters, and investigate both the data complexity (in which the for-
mula ϕ is fixed) as well as the combined complexity of this problem. Our main results
are summarized in Table 1.

One of the motivations for our work was the recent discovery that reachability is
decidable and in fact NP-complete for both SOCA and POCA [13]. We were also in-
fluenced by the work of Demri and Gascon on model checking extensions of LTL over
non-succinct, non-parametric one-counter automata [9], as well as the recent result of
Göller and Lohrey establishing that model checking CTL on such counter automata is
PSPACE-complete [12].

On a technical level, the most intricate result is the EXPSPACE-hardness of CTL
model checking for SOCA, which requires several steps. We first show that EXPSPACE
is ‘exponentially LOGSPACE-serializable’, adapting the known proof that PSPACE is
LOGSPACE-serializable. Unfortunately, and in contrast to [12], this does not immedi-
ately provide an EXPSPACE lower bound. In a subsequent delicate stage of the proof,
we show how to partition the counter in order simultaneously to perform PSPACE com-
putations in the counter and manipulate numbers of exponential size in a SOCA of
polynomial size.

For reasons of space, we have had to abbreviate or omit a number of proofs; full
details can however be found in the technical report [10].

2 Preliminaries

By Z we denote the integers and by N = {0, 1, 2, . . .} the naturals. For each i, j ∈
Z we define [i, j] = {k ∈ Z | i ≤ k ≤ j} and [j] = [1, j]. For each i, n ∈ N,
let biti(n) denote the ith least significant bit of the binary representation of n. Hence
n =
∑

i∈N
2i · biti(n). By binm(n) = bit0(n) · · · bitm−1(n) we denote the first m least

significant bits written from left to right. Let pi denote the ith prime number for each
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i ≥ 1. We define log(n) = min{i ≥ 1 | 2i > n}, i.e. log(n) denotes the number of
bits that are needed to represent n in binary. For each word v = a1 · · · an ∈ Σn over
some finite alphabet Σ and each i, j ∈ [n] define v[i, j] = ai · · · aj and v(i) = v[i, i].
For the rest of the paper, we fix a countable set of atomic propositions P . A transition
system is a tuple T = (S, {Sρ | ρ ∈ P},→), where S is a set of states, Sρ ⊆ S for
each ρ ∈ P and Sρ is non-empty for finitely many ρ ∈ P , and finally→⊆ S × S is a
set of transitions. We prefer to use the infix notation s1 → s2 instead of (s1, s2) ∈→.
An infinite path is an infinite sequence π = s0 → s1 → · · · . For each infinite path
π = s0 → s1 → · · · and each i ∈ N, we denote by πi the suffix si → si+1 → · · ·
and by π(i) the state si. A SOCA is a tuple S = (Q, {Qρ | ρ ∈ P}, E, λ), where Q is
a finite set of control states, Qρ ⊆ Q for each ρ ∈ P and Qρ is non-empty for finitely
many ρ ∈ P , E ⊆ Q×Q is a finite set of transitions, and λ : E → Z∪{zero}. We call
a SOCA S with λ : E → {−1, 0, 1} ∪ {zero} a unary one-counter automaton (OCA).
A POCA is a tuple P(X) = (Q, {Qρ | ρ ∈ P}, E, λ), where the first three components
are same as for a SOCA, X is a finite set of parameters over the naturals, and λ : E →
(Z ∪ {zero} ∪ {−x, +x | x ∈ X}). For each assignment σ : X → N the induced
SOCA is defined as P

σ = (Q, E, λ′) where λ′(e) = σ(x) if λ(e) = x, λ′(e) = −σ(x)
if λ(e) = −x, and λ′(e) = λ(e) otherwise. If X = {x} we also write P(x) instead
of P(X). The size of a POCA is defined as |P| = |Q| + |X | + |E| · max{log(|a|) |
a ∈ λ(E) ∩ Z}. Hence, we represent each appearing integer in binary. The size of a
SOCA is defined analogously. A SOCA S = (Q, {Qρ | ρ ∈ P}, E, λ) describes a
transition system T (S) = (Q× N, {Qρ × N | ρ ∈ P},→), where for each q1, q2 ∈ Q
and each n1, n2 ∈ N we have q1(n1)→ q2(n2) iff either λ(q1, q2) = n2 − n1, or both
n1 = n2 = 0 and λ(q1, q2) = zero.

3 CTL Model Checking

Formulas ϕ of CTL are given by the following grammar, where ρ ranges over P :

ϕ ::= ρ | ¬ϕ | ϕ ∧ ϕ | EXϕ | E(ϕUϕ) | E(ϕWUϕ)

Given a transition system T = (S, {Sρ | ρ ∈ P},→), a state s ∈ S, and some CTL
formula ϕ, define (T, s) |= ϕ by induction on the structure of ϕ as follows:

(T, s) |= ρ ⇐⇒ s ∈ Sρ for each ρ ∈ P
(T, s) |= ϕ1 ∧ ϕ2 ⇐⇒ (T, s) |= ϕ1 and (T, s) |= ϕ2

(T, s) |= ¬ϕ ⇐⇒ (T, s) �|= ϕ

(T, s) |= EXϕ ⇐⇒ (T, t) |= ϕ for some t ∈ S with s→ t

(T, s) |= E(ϕ1Uϕ2) ⇐⇒ ∃s0, . . . , sn ∈ S, n ≥ 0 : s0 = s, (T, sn) |= ϕ2,

∀i ∈ [0, n− 1] : (T, si) |= ϕ1 and si → si+1

(T, s) |= E(ϕ1WUϕ2) ⇐⇒ (T, s) |= E(ϕ1Uϕ2) or ∃s0, s1, . . . ∈ S.∀i ≥ 0 :
s = s0, (T, si) |= ϕ1 and si → si+1

Subsequently we use the standard abbreviations for disjunction, and implication. More-
over, we define tt = ρ ∨ ¬ρ for some ρ ∈ P and EFϕ = E (tt Uϕ). Let us define the
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CTL model checking problem on SOCA and POCA resp.

CTL MODEL CHECKING ON SOCA

INPUT: SOCA S = (Q, E, λ), q ∈ Q, n ∈ N in binary, a CTL formula ϕ.
QUESTION: Does (T (S), q(n)) |= ϕ?

CTL MODEL CHECKING ON POCA

INPUT: POCA P(X) = (Q, E, λ), q ∈ Q, n ∈ N in binary, a CTL formula ϕ.
QUESTION: Does (T (Pσ), q(n)) |= ϕ for every σ : X → N?

3.1 Upper Bounds

Due to space restrictions we do not formally introduce the modal μ-calculus and refer
to [1] for more details instead. In [21] Serre showed that the combined complexity of
the modal μ-calculus on OCA is in PSPACE. Since every SOCA can be transformed
into an OCA of exponential size, and since each CTL formula can be translated into
an alternation-free μ-calculus formula with a linear blowup, the following proposition
is immediate by adjusting the resulting μ-calculus formula appropriately. Moreover,
this immediately implies the containment in the arithmetic hierarchy of the combined
complexity of the modal μ-calculus and CTL on POCA.

Proposition 1. For the modal μ-calculus and CTL the combined complexity on SOCA
is in EXPSPACE, whereas it is in Π0

1 on POCA.

3.2 Hardness of the Data Complexity of CTL on SOCA

Before we prove EXPSPACE-hardness of the data complexity of CTL on SOCA, we in-
troduce some notions and results from complexity theory. Given a language L ⊆ Σ∗, let
χL : Σ∗ → {0, 1} denote the characteristic function of L. We define the lexicographic
order on n-bit strings by x �n y if and only if binn(x) ≤ binn(y), e.g. 011 �3 101.
We say a language L is exponentially C-serializable via some language R ⊆ {0, 1}∗ if
there is some polynomial p(n) and some language U ∈ C s.t. for all x ∈ {0, 1}n

x ∈ L ⇐⇒ χU

(
x · 02p(n)

)
· · · χU

(
x · 12p(n)

)
∈ R,

where the bit strings on the right-hand side of the concatenation symbol are enumerated
in lexicographic order. This definition is a padded variant of the serializability notion
used in [11], which in turn is a variant of the serializability notion from [5,14,22].
Some subtle technical padding arguments are required to lift AC0-serializability of
PSPACE, proven in Theorem 22 in [11], to exponential LOGSPACE-serializability of
EXPSPACE.

Theorem 2. For every language L in EXPSPACE there is some regular language R
such that L is exponentially LOGSPACE-serializable via R.

A further concept we use is the Chinese remainder representation of a natural number.
For every m, M ∈ N we denote by CRRm(M) the Chinese remainder representation
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of M as the Boolean tuple (bi,c)i∈[m],0≤c<pi
, where bi,c = 1 if Mmod pi = c and

bi,c = 0 otherwise. The following theorem tells us that in logarithmic space we can
compute the binary representation of a natural number from its Chinese remainder rep-
resentation. This result is a consequence of [7], where it is shown that division is in
logspace-uniform NC1.

Theorem 3 ([7] Theorem 3.3). The following problem is in LOGSPACE:
INPUT: CRRm(M), j ∈ [m], b ∈ {0, 1}.
QUESTION: Is bitj(M mod 2m) = b?

In the rest of this section, we sketch the proof of EXPSPACE-hardness of the data com-
plexity of CTL on SOCA. Let L ⊆ {0, 1}∗ be an arbitrary language in EXPSPACE.
Then by Theorem 2, there is some regular language R ⊆ {0, 1}∗ s.t. L is exponentially
LOGSPACE-serializable via R. Hence there is some language U ∈ LOGSPACE s.t. for
all x ∈ {0, 1}n we have

x ∈ L ⇐⇒ χU

(
x · 02p(n)

)
· · · χU

(
x · 12p(n)

)
∈ R, (1)

where the bit strings on the right-hand side of the concatenation symbol are enumerated
in lexicographic order. For the rest of this section, let us fix an input x0 ∈ {0, 1}n.
Let N = p(n) and A = (Q, {0, 1}, q0, δ, F ) be some deterministic finite automaton
with L(A) = R. Let us describe equivalence (1) differently: We have x0 ∈ L iff the
program in Fig. 1 returns true. We are going to mimic the execution of the program by
a fixed CTL formula and a SOCA that can be computed from x0 in logarithmic space.
Before we start with the reduction, let us discuss the obstacles that arise:

q ∈ Q; q := q0;
d ∈ N; d := 0;
b ∈ {0, 1};
while d �= 22N

loop
b := χU (x0 ·bin2N (d));
q := δ(q, b);
d := d + 1;

endloop
return q ∈ F ;

Fig. 1. A program that re-
turns true iff x0 ∈ L

(A) We need some way of storing d on the counter.
Of course there are a lot of ways to do this, but since
we want to access all bits of d in the assignment b :=
χU (x0 ·bin2N (d)), the most natural way is probably to rep-
resent d in binary. However, for this 2N bits are required.
More problematically, we need to be able to check if d is
equal to 22N

. This cannot be achieved by a transition in a
SOCA that subtracts 22N

, since the representation of this
number requires exponentially many bits in n. (B) As in
[12], a solution to obstacle (A) is to store d in Chinese re-
mainder representation with the first 2N prime numbers. A
polynomial number of bits (in n) suffice to represent each
of the occurring prime numbers, but we need exponentially
many of them. Thus, we cannot equip a polynomial size
SOCA with transitions for each prime number, simply because there are too many of
them. (C) The assignment b := χU (x0 · bin2N (d)) implies that we need to simulate
on the counter a logarithmically space bounded DTM for the language U on an expo-
nentially large input (in n). Speaking in terms of the input size n, this means that we
need to provide polynomially many bits on the counter that can be used to describe the
working tape for this DTM. However, we need to provide some on-the-fly mechanism
for reading the input.
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Let us give a high-level description of the EXPSPACE-hardness proof. In the first step,
we carefully design a data structure on the counter and explain the intuition behind it.
In the second step, we list five queries which we aim at implementing via fixed CTL
formulas and by SOCA that can be computed from the input x0 in logarithmic space.

The data structure and how to access it: Let K = n + 2N + 1 denote the number
of bits that are required to store an input for U . Let α = log K denote the number of
bits that we require for storing a pointer to an input for U and let β be the number of
bits that suffice for storing the K th prime. Hence α = O(N) and by the Prime Number
Theorem, it follows that β = O(log(K log(K))) = O(N). The number α and such a
sufficiently large number β can be computed from x0 in logarithmic space.

τ1 τ2
qbit,i •

−2i+1

−2i

ϕbit,1 = τ1 ∧ EF(τ1 ∧ ¬EXτ1 ∧ EXτ2)

ϕbit,0 = τ1 ∧ EF(τ1 ∧ ¬EXτ1 ∧ ¬EXτ2)

Fig. 2. SOCA Sbit,i and CTL formulas
ϕbit,b for checking if biti(v) = b

Let us describe the data structure on the
counter in our reduction. Assume that the
counter value is v ∈ N. We are inter-
ested only in the l least significant bits of
the binary representation of v, where l is
some number that is exponentially bounded in
n; the value of l will be made clear be-
low. Assume V = bit0(v) · · · bitl−1(v). We
imagine V to be factorized into blocks of
bits

V = I M C J X Y Z B (∗)
where I ∈ {0, 1}α is a prime number index; M ∈ {0, 1}β is intended to represent
the I th prime number pI ; C ∈ {0, 1}β is some residue class modulo M ; J ∈ {0, 1}α
represents a pointer to some bit of B; X, Y and Z consist of polynomially many bits
(in n) and are intended to represent the working tape of three space-bounded DTMs
that we will comment on later in more detail; and B ∈ {0, 1}n+2N

with B = x0B
′

for some B′ ∈ {0, 1}2N

. Our intention is that B represents the current input for U , and
in particular B′ represents the counting variable d from Fig. 1. Throughout the rest of
this section, v will denote an arbitrary natural number. Moreover I, M, C, J, X, Y, Z
and B will implicitly be coupled with v via the factorization (∗). Note that all of the
bit strings have polynomial length in n except for B. Subsequently, we identify each of
the blocks with the natural number they represent. A simple but powerful gadget, which
will subsequently be used to check for each b ∈ {0, 1} if the ith bit of the counter is b, is
shown in Fig. 2. We have that qbit,i(v) satisfies ϕbit,b iff biti(v) = b, for each b ∈ {0, 1}.
Queries that we need to implement: Next, we list five queries that we aim at answer-
ing by instances of the model checking problem. Each query is based on its preceding
queries.

(Q1) Assuming C < M , does C ≡ B mod M hold?
(Q2) Is M the I th prime number, i.e. M = pI?
(Q3) What is bitJ (B)?
(Q4) Does (B[1, n] ·B[n + 1, n + 2N ]) ∈ U hold?
(Q5) Does x0 ∈ L hold?

EXPSPACE-hardness of data complexity of CTL on SOCA will hence follow from the
implementation of query Q5. Let γ = O(N) denote the absolute value of the leftmost
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bit position of B in V . Hence, when the γ th bit of V is set to 1 and we subtract 2γ from
the counter, then the leftmost bit of B is set to 0. Similarly, let μ denote the leftmost bit
position of M in V . Q1 can now be realized as follows.

Lemma 4. There is a CTL formula ϕmod s.t. we can compute from x0 in logarithmic
space a SOCA Smod and a control state qmod s.t. (T (Smod ), qmod (v)) |= ϕmod iff C ≡
B mod M .

Proof. For brevity, we illustrate the special case C = 0, i.e. (T (Smod ), qmod (v)) |=
ϕmod iff B ≡ 0 mod M . The SOCA Smod contains four atomic propositions ρ0, ρ1, y, z
and is depicted below. The CTL formula ϕmod expresses that we traverse the sequence
of diamonds and thereby repeatedly subtract M from B. The number of diamonds
equals β, the number of bits of M . One diamond corresponds to one bit of M . In
case bit β of M is 1, which we can verify by a transition to the initial control state of
the SOCA Sbit,μ+β (see Fig. 2), we subtract 2γ+β from B, otherwise we do not modify
the counter value. This process is repeated until we reach the last diamond in which
we consider the first bit of M . Finally, the transition from qmod to the control state
satisfying z serves for checking if B = 0 by trying to subtract 2γ .

Sbit,μ+β Sbit,μ+β−1 Sbit,μ

qmod
y

•z

−2γ

•

•

ρ1

ρ0

qbit,μ+β qbit,μ+β−1qbit,μ+β−1 qbit,μ

•
•

ρ1

ρ0
•

• •
•

ρ1

ρ0
•

•· · ·
0

0

−2γ+β

0

0 0 0 0 0 0

0

0

−2γ+β−1

0
0

0

−2γ

0

0

We put ϕmod = E
(∧

b∈{0,1} ρb → EXϕbit,b

)
U(y ∧ ¬EXz). ��

Let us give some informal ideas on how to implement the queries Q2 to Q5. We strongly
recommend the reader to consult the technical report [10] to understand the technical
subtleties.

For implementing Q2 we simulate with a SOCA Sprime some polynomially space-
bounded DTM that decides, on the input 〈I, M〉, whether M = pI . We use the bit
string X from (∗) for storing the working tape of this DTM on the counter. The current
input and working tape symbol and the position of the input and working tape in the
counter can directly be hard-wired into the control states of Sprime. We can construct a
fixed CTL formula that simulates the computation of this DTM.

Implementing Q3, i.e. deciding the J th bit of B, is more involved. Recall that B
consists of n+2N bits and J consists of α = O(N) bits. Hence checking if bitJ (B) = 1
cannot be done in a similar fashion as in Fig. 2, since J is too big. The solution is
the following: By making use of Sprime, one can initialize M with pI and after that
decide if C ≡ B mod pI by making use of Smod and ϕmod from Lemma 4. Hence,
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we can access bits of the Chinese remainder representation of B. Let us assume that
R = CRRK(B) = (bi,c)1≤i≤K,0≤c<pi is the Chinese remainder representation of
B. Observe that |R| is exponential in n and R is not stored anywhere on the counter.
However we can use the bit strings I and C as pointers to access the bit bI,C of R. By
Theorem 3, given R (in our case on-the-fly by the pointers I and C), the bit string J
and b ∈ {0, 1}, we can decide if bitJ(B) = b by simulating a logarithmically space-
bounded DTM on the input 〈R, J, b〉 of exponential size. In the block Y of (∗) we
reserve the space that this DTM requires. Q4 can be implemented similarly as Q3 by
simulating a logarithmically space-bounded DTM that decides U on input B[1, n] ·
B[n + 1, n + 2N ] of exponential size. We use Z for simulating the working tape and
the bit sequence J as a pointer to access the bits of B.

For implementing Q5 we simulate the program from in Fig. 1. Recall that our bit
sequence B is of length n + 2N . We initialize the first n bits of B with x0. The re-
maining bit sequence B′ stores the variable d of the program, initialized with 0 and
being repeatedly incremented by adding 2γ+n. Thus, checking when d becomes 22N

for the first time boils down to checking when B′ overflows for the first time. This can
be checked by initializing J appropriately and being able to access the J th bit via query
Q3. The states of the automaton A can directly be handled by the control states of the
SOCA. To obtain χU (x0, bin2N (d)), we invoke the query Q4 and store this bit in the
control state of the SOCA. This concludes our EXPSPACE-hardness proof.

Theorem 5. The data complexity and the combined complexity of CTL and the modal
μ-calculus on SOCA is EXPSPACE-complete.

3.3 Hardness of the Data Complexity of CTL on POCA

We now show that there exists a fixed CTL formula for which model checking of POCA
is Π0

1 -hard by a reduction from the emptiness problem for two-counter automata, which
is Π0

1 -complete [19]. Similar to a SOCA, a two-counter automaton A consists of a finite
set of control states and transitions between them. However, each transition of A acts
on two counters, which it can in- and decrement and test for zero.

The idea of our reduction is as follows: Given a two-counter automaton A, we con-
struct a POCA P(x) with one parameter in such a way that the two counters from A are
encoded into the single counter from P(x). Given a counter value n of P(x), n mod x
encodes the value of the first, and n div x encodes the value of the second counter of A.
Hence, testing whether the first equals 0 corresponds to checking whether n ≡ 0 mod x,
while testing whether the second counter equals 0 corresponds to checking whether
n ≥ x. Incrementing (resp. decrementing) the first counter of A can be mimicked by
adding (resp. subtracting) 1, whereas on counter two this corresponds to adding (resp.
subtracting) x. Of course, we need CTL formulas to ensure that we do not overflow when
simulating an increment of the first counter of A. For instance, if n ≡ −1 mod x and we
want to simulate an increment of the first counter of A in that way, we would actually
set the first counter to 0 and simultaneously increment the second counter. However, if
A is not empty, then x can be instantiated with a large enough value such that such an
overflow does not occur. Conversely, if A is empty then there is no such instantiation.

Theorem 6. The data and combined complexity of CTL on POCA is Π0
1 -complete.
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4 LTL Model Checking

Formulas of LTL are given by the following grammar, where ρ ranges over P :

ϕ ::= ρ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

The semantics of LTL is given in terms of infinite paths in a transition system. Let
T = (S, {Sρ | ρ ∈ P},→) be a transition system, π = s0 → s1 → · · · an infinite path
in T and ϕ an LTL formula, we define (T, π) |= ϕ by induction on the structure ϕ.

(T, π) |= ρ ⇐⇒ π(0) ∈ Sρ, ρ ∈ P (T, π) |= ¬ϕ ⇐⇒ π �|= ϕ

(T, π) |= ϕ1 ∧ ϕ2 ⇐⇒ ∀i ∈ {1, 2} : (T, π) |= ϕi (T, π) |= Xϕ ⇐⇒ (T, π1) |= ϕ

(T, π) |= ϕ1Uϕ2 ⇐⇒ ∃j ≥ 0 : (T, πj) |= ϕ2 and ∀0 ≤ i < j : (T, πi) |= ϕ1

LTL MODEL CHECKING ON SOCA

INPUT: SOCA S = (Q, E, λ), q ∈ Q, n ∈ N in binary, an LTL formula ϕ.
QUESTION: Does (T (S), π) |= ϕ for all infinite paths π with π(0) = q(n)?

LTL MODEL CHECKING ON POCA

INPUT: POCA P(X) = (Q, E, λ), q ∈ Q, n ∈ N in binary, an LTL formula ϕ.
QUESTION: Does (T (Pσ), π) |= ϕ for all σ : X → N and for all infinite paths π with

π(0) = q(n)?

4.1 Upper Bounds

A standard approach to LTL model checking is the automata-based approach, in which
behaviours of systems are modelled as non-deterministic Büchi automata (NBA). Given
an NBA A modelling a system and an LTL formula ϕ, the idea is to translate ϕ into an
NBA A¬ϕ of size 2O(|ϕ|) such that the language of A×A¬ϕ is empty iff ϕ holds on all
infinite traces of A. The concept of Büchi automata can easily be adopted to the setting
of counter automata. Then a Büchi-SOCA is not empty if there is an infinite path on
which some designated control states occurs infinitely often. The latter boils down to
just checking for recurrent reachability. Moreover, the Büchi-SOCA obtained from the
product of a SOCA and an NBA can be defined and constructed in a straightforward
way. We omit details for brevity.

It was shown in [13] that checking emptiness is coNP-complete for both Büchi-
SOCA and Büchi-POCA, and in [9] that it is NL-complete for Büchi-OCA. We use
these results for establishing upper bounds for the LTL model checking problems.

For every fixed LTL formula ϕ, and every POCA P, the size of P× A¬ϕ is O(|P|),
hence the data complexity of LTL on SOCA and POCA is in coNP. Hardness for coNP
follows from NP-hardness of reachability using a fixed formula ttUρ for some ρ ∈ P .

If both P and ϕ are part of the input then |P× A¬ϕ| = |P| · 2O(|ϕ|), and hence [13]
gives a coNEXP upper bound for the combined complexity of LTL model checking on
both SOCA and POCA. This upper bound can however be improved for SOCA. Given
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a SOCA S, let m be the absolute value of the maximum increment or decrement on
the transitions in S. Let S′ be the Büchi-SOCA obtained from the product S× A¬ϕ by
replacing every transition labeled with z with a sequence of fresh transitions and control
states of length z, where, depending on the sign of z, each transition is labeled with +1
resp.−1. We have |S′| = m · |S| · 2O(|ϕ|), and hence the NL upper bound for emptiness
of Büchi-OCA from [9] yields a PSPACE upper bound.

Proposition 7. The data complexity of LTL model checking on SOCA and POCA is
coNP-complete, the combined complexity of LTL model checking on SOCA is PSPACE-
complete, and the combined complexity of LTL model checking on POCA is in coNEXP.

4.2 Hardness of the Combined Complexity of LTL on POCA

We are now going to sketch a proof of coNEXP-hardness of LTL model checking on
POCA via a reduction from the complement of the NEXP-complete Succinct 3-SAT
problem [20]. An input of Succinct 3-SAT is given by a Boolean circuit C that encodes
a Boolean formula ψ in 3-CNF, i.e. ψ =

∧
0≤j<M (�j

1 ∨ �j
2 ∨ �j

3). Let j ∈ [M ] be the
index of a clause encoded in binary and k ∈ {1, 2, 3}. Assume that ψ uses N different
variables y1, . . . , yN . On input (j · k), the output of C is (i · b), where i ∈ [N ] is the
index of the Boolean variable that appears in literal �j

k, and where b = 0 when �j
k is

negative and b = 1 when �j
k is positive. Succinct 3-SAT is to decide whether ψ is

satisfiable. Fig. 3 depicts on a high-level the POCA P(x) derived from C that we are
using in our reduction.

As a first step, let us provide a suitable encoding of truth assignments by natural num-
bers. The encoding we use has also been employed for establishing lower bounds for
model checking OCA [17]. Recall that pi denotes the ith prime number. Every natural
number n defines a truth assignment νn : {y1, . . . , yN} → {0, 1} such that νn(yi) = 1
iff pi divides n. By the Prime Number Theorem, pN = O(N log N) and hence O(|C|)
bits are sufficient to represent pN . Of course, since we need exponentially many prime
numbers they cannot be hard-wired into P(x).

Let us now take a look at P(x). It uses one parameter x and employs several gadgets.
Only the gadgets Sdivides and Snot divides manipulate the counter. All gadgets are designed
so that they communicate via designated propositional variables, and not as in Section
3.2 with the help of the counter. Starting in qstart, P(x) first loads the value of the
parameter x on the counter. Think of x encoding a truth assignment of ψ. Next, P(x)
traverses through Sinc, which initially chooses an arbitrary index j identifying a clause
of ψ. Every time Sinc is traversed afterwards, it increments j modulo N and hereby
moves on to the next clause. Now P(x) branches non-deterministically into a gadget SC

in order to compute (i · b) from C on input (j · 1), (j · 2), resp. (j · 3). The index i is
then used as input to a gadget Sprime, which computes pi. Then if b = 0, it is checked
that pi does not divide x, and likewise that pi divides x if b = 1. Those checks need
to modify the counter. After they have finished, we restore the value x on the counter
and the process continues with clause j + 1 mod N . We can construct an LTL formula
ϕ that ensures that all gadgets work and communicate correctly, and prove that ψ is
satisfiable iff there is an assignment σ and an infinite path π = qstart(0) → · · · such
that (T (Pσ), π) �|= ϕ. The gadgets Sinc, Scircuit and Sinc can be realized by simulating
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Sinc(j) SC(j · 2)
= (i · b)

SC(j · 1)
= (i · b)

SC(j · 3)
= (i · b)

Sprime(i)
= pi

Sdivides(pi, x)

b = 0?

Snot divides(pi, x)

b = 1?

•qstart

+x

0

0

0

0

0

0
0

0
0

0

zero

Fig. 3. High-level description of the POCA P(x) used for the reduction from Succinct 3-SAT

space-bounded Turing machines with SOCA and some appropriate LTL formulas. Here
it is important that our LTL formula ϕ is not fixed. Divisibility resp. non-divisibility is
checked similar as in the CTL case, cf. Lemma 4. We refer the reader to the technical
report for further details [10].

Theorem 8. The combined complexity of LTL model checking on POCA is coNEXP-
complete.

5 Conclusion

In this paper, we have settled the computational complexity of model checking CTL,
the modal μ-calculus and LTL on SOCA and POCA with respect to data and combined
complexity. Our proofs for providing lower bounds have introduced some non-trivial
concepts and techniques, which we believe may be of independent interest for providing
lower bounds for decision problems in the verification of infinite state systems.

An interesting aspect of future work could be to consider synthesis problems for
POCA. Given a POCA P(X) and a formula ϕ, a natural question to ask is whether there
exists an assignment σ such that (T (Pσ), π) |= ϕ on all infinite paths π starting in some
state of T (Pσ). For CTL resp. the modal μ-calculus, such a problem is undecidable by
Theorem 6. However for LTL it seems conceivable that this problem can be translated
into a sentence of a decidable fragment of Presburger arithmetic with divisibility, similar
to those studied in [4].
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11. Göller, S., Lohrey, M.: Branchning-time model checking of one-counter processes. Technical
report, arXiv.org (2009), http://arxiv.org/abs/0909.1102
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Abstract. We introduce new classes of weighted automata on words.
Equipped with pebbles and a two-way mechanism, they go beyond the
class of recognizable formal power series, but capture a weighted version
of first-order logic with bounded transitive closure. In contrast to previ-
ous work, this logic allows for unrestricted use of universal quantification.
Our main result states that pebble weighted automata, nested weighted
automata, and this weighted logic are expressively equivalent. We also
give new logical characterizations of the recognizable series.

1 Introduction

Connections between logical and state-based formalisms have always been a
fascinating research area in theoretical computer science, which produced some
fundamental theorems. The line of classical results started with the equivalence
of MSO logic and finite automata [5,8,18].

Some extensions of finite automata are of quantitative nature and include
timed automata, probabilistic systems, and transducers, which all come with
more or less natural, specialized logical characterizations. A generic concept of
adding weights to qualitative systems is provided by the theory of weighted au-
tomata [7], first introduced by Schützenberger [15]. The output of a weighted
automaton running on a word is no longer a Boolean value discriminating be-
tween accepted and rejected behaviors. A word is rather mapped to a weight
from a semiring, summing over all possible run weights, each calculated as the
product of its transition outcomes. Indeed, probabilistic automata and word
transducers appear as instances of that framework (see [7, Part IV]).

A logical characterization of weighted automata, however, was established
only recently [6], in terms of a (restricted) weighted MSO logic capturing the
recognizable formal power series (i.e., the behaviors of finite weighted automata).
The key idea is to interpret existential and universal quantification as sum and
product from a semiring. To make this definition work, however, one has to
restrict the universal first-order quantification, which, otherwise, appears to be
too powerful and goes beyond the class of recognizable series. In this paper, we
follow a different approach. Instead of restricting the logic, we define an extended
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automata model that naturally reflects it. Indeed, it turns out that universal
quantification is essentially captured by a pebble (two-way) mechanism in the
automata-theoretic counterpart. Inspired by the theory of two-way and pebble
automata on words and trees [12,9,2], we actually define weighted generalizations
that preserve their natural connections with logic.

More precisely, we introduce pebble weighted automata on words and estab-
lish expressive equivalence to weighted first-order logic with bounded transitive
closure and unrestricted use of quantification, extending the classical Boolean
case for words [10]. Our equivalence proof makes a detour via another natural
concept, named nested weighted automata, which resembles the nested tree-
walking automata of [16]. The transitive closure logic also yields alternative
characterizations of the recognizable formal power series.

Proofs omitted due to lack of space are available in [4].

2 Notation and Background

In this section we set up the notation and we recall some basic results on weighted
automata and weighted logics. We refer the reader to [6,7] for details.

Throughout the paper, Σ denotes a finite alphabet and Σ+ is the free semi-
group over Σ, i.e., the set of nonempty words. The length of u ∈ Σ+ is de-
noted |u|. If |u| = n ≥ 1, we usually write u = u1 · · ·un with ui ∈ Σ and we
let Pos(u) = {1, . . . , n}. For 1 ≤ i ≤ j ≤ n, we denote by u[i..j] the factor
uiui+1 · · ·uj of u. Finally, we let Σ≤k =

⋃
1≤i≤k Σi.

Formal power series. A semiring is a structure K = (K, +, ·,0,1) where
(K, +,0) is a commutative monoid, (K, ·,1) is a monoid, · distributes over +,
and 0 is absorbing for ·. We say that K is commutative if so is (K, ·,1). We
shall refer in the examples to the usual Boolean semiring B = ({0,1},∨,∧,0,1)
and to the semiring (N, +, · , 0, 1) of natural numbers, denoted N. A formal power
series (or series, for short) is a mapping f : Σ+ → K. The set of series is denoted
K〈〈Σ+〉〉. We denote again by + and · the pointwise addition and multiplication
(called the Hadamard product) on K〈〈Σ+〉〉, and by 0 and 1 the constant series
with values 0 and 1, respectively. Then (K〈〈Σ+〉〉, +, ·,0,1) is itself a semiring.

Weighted automata. All automata we consider are finite. A weighted automa-
ton (wA) over K = (K, +, ·,0,1) and Σ is a tuple A = (Q, μ, λ, γ), where Q is the
set of states, μ : Σ → KQ×Q is the transition weight function and λ, γ : Q→ K
are weight functions for entering and leaving a state. The function μ gives, for
each a ∈ Σ and p, q ∈ Q, the weight μ(a)p,q of the transition p

a−→ q. It ex-
tends uniquely to a homomorphism μ : Σ+ → KQ×Q. Viewing μ as a mapping
μ : Q×Σ+×Q→ K, we sometimes write μ(p, u, q) instead of μ(u)p,q. A run on
a word u = u1 · · ·un is a sequence of transitions ρ = p0

u1−→ p1
u2−→ · · · un−−→ pn.

The weight of the run ρ is weight(ρ) def= λ(p0) · [
∏n

i=1 μ(pi−1, ui, pi)] · γ(pn), and
the weight �A�(u) of u is the sum of all weights of runs on u, which can also be
computed as �A�(u) = λ · μ(u) · γ, viewing λ, μ(u), γ as matrices of dimension
1× |Q|, |Q| × |Q| and |Q| × 1, respectively. We call �A� ∈ K〈〈Σ+〉〉 the behavior,
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or semantics of A. A series f ∈ K〈〈Σ+〉〉 is recognizable if it is the behavior of
some wA. We let Krec〈〈Σ+〉〉 be the collection of all recognizable series.

Example 1. Consider (N, +, · , 0, 1) and let A be the automaton with a single
state, μ(a) = 2 for all a ∈ Σ, and λ = γ = 1. Then, �A�(u) = 2|u| for all u ∈ Σ+.

It is well-known that Krec〈〈Σ+〉〉 is stable under + and, if K is commutative, also
under ·, making (Krec〈〈Σ+〉〉, +, ·,0,1) a subsemiring of (K〈〈Σ+〉〉, +, ·,0,1).

Weighted logics. We fix infinite supplies Var = {x, y, z, t, . . .} of first-order
variables, and VAR = {X, Y, . . .} of second-order variables. The class of weighted
monadic second-order formulas over K and Σ, denoted MSO(K, Σ) (shortly
MSO), is given by the following grammar, with k ∈ K, a ∈ Σ, x, y ∈ Var and
X ∈ VAR:

ϕ ::= k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃Xϕ | ∀Xϕ .

For ϕ ∈MSO(K, Σ), let Free(ϕ) denote the set of free variables of ϕ. If Free(ϕ) =
∅, then ϕ is called a sentence. For a finite set V ⊆ Var∪VAR and a word u ∈ Σ+,
a (V , u)-assignment is a function σ that maps a first-order variable in V to an
element of Pos(u) and a second-order variable in V to a subset of Pos(u). For
x ∈ Var and i ∈ Pos(u), σ[x �→ i] denotes the (V ∪{x}, u)-assignment that maps
x to i and, otherwise, coincides with σ. For X ∈ VAR and I ⊆ Pos(u), the
(V ∪ {X}, u)-assignment σ[X �→ I] is defined similarly.

A pair (u, σ), where σ is a (V , u)-assignment, can be encoded as a word over the
extended alphabet ΣV

def= Σ×{0, 1}V. We write a word (u1, σ1) · · · (un, σn) ∈ Σ+
V

as (u, σ) where u = u1 · · ·un and σ = σ1 · · ·σn. We call (u, σ) valid if, for each
first-order variable x ∈ V , the x-row of σ contains exactly one 1. If (u, σ) is
valid, then σ can be considered as the (V , u)-assignment that maps a first-order
variable x ∈ V to the unique position carrying 1 in the x-row, and a second-order
variable X ∈ V to the set of positions carrying 1 in the X-row.

Fix a finite set V of variables such that Free(ϕ) ⊆ V . The semantics �ϕ�V ∈
K〈〈Σ+

V 〉〉 of ϕ wrt. V is given as follows: if (u, σ) is not valid, we set �ϕ�V (u, σ) = 0,
otherwise �ϕ�V is given by Figure 1. Hereby, the product follows the natural order
on Pos(u) and some fixed order on the power set of Pos(u). We simply write �ϕ�
for �ϕ�Free(ϕ) and say that ϕ is recognizable if so is �ϕ�. We note K

MSO〈〈Σ+〉〉
the class of all series definable by a sentence of MSO(K, Σ).

Example 2. For K = B, recognizable and MSO(K, Σ)-definable languages coin-
cide. In contrast, for K = (N, +, · , 0, 1), the very definition yields �∀x∀y 2�(u) =
2|u|

2
, which is not recognizable [6]. Indeed, the function computed by a wA A

satisfies �A�(u) = 2O(|u|). Also observe that the behavior of the automaton of
Example 1 is �∀y 2�. Therefore, recognizable series are not stable under universal
first-order quantification.

Let bMSO(K, Σ) be the syntactic Boolean fragment of MSO(K, Σ) given by

ϕ ::= 0 | 1 | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀Xϕ ,
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�ϕ1 ∨ ϕ2�V(u, σ) = �ϕ1�V(u, σ) + �ϕ2�V(u, σ)

�k�V(u, σ) = k, for k ∈ K �ϕ1 ∧ ϕ2�V(u, σ) = �ϕ1�V(u, σ) · �ϕ2�V(u, σ)

�Pa(x)�V(u, σ) =
{

1 if uσ(x) = a
0 otherwise �∃xϕ�V(u, σ) =

∑
i∈Pos(u)

�ϕ�V∪{x}(u, σ[x �→ i])

�x ∈ X�V(u, σ) =
{

1 if σ(x) ∈ σ(X)
0 otherwise �∃Xϕ�V(u, σ) =

∑
I⊆Pos(u)

�ϕ�V∪{X}(u, σ[X �→ I ])

�x ≤ y�V(u, σ) =
{

1 if σ(x) ≤ σ(y)
0 otherwise �∀xϕ�V(u, σ) =

∏
i∈Pos(u)

�ϕ�V∪{x}(u, σ[x �→ i])

�¬ϕ�V(u, σ) =
{

1 if �ϕ�V(u, σ) = 0
0 otherwise �∀Xϕ�V(u, σ) =

∏
I⊆Pos(u)

�ϕ�V∪{X}(u, σ[X �→ I ])

Fig. 1. Semantics of weighted MSO

where a ∈ Σ, x, y ∈ Var and X ∈ VAR. One can check, by induction, that the
semantics of any bMSO formula over an arbitrary semiring K assumes values in
{0,1} and coincides with the classical semantics in B.

We use macros for Boolean disjunction ϕ ∨ ψ
def= ¬(¬ϕ ∧ ¬ψ) and Boolean

existential quantifications ∃xϕ
def= ¬∀x¬ϕ, and ∃Xϕ

def= ¬∀X¬ϕ. The semantics
of ∨ and ∃ coincide with the classical semantics of disjunction and existential
quantification in the Boolean semiring B. Finally, we define ϕ

+→ ψ
def= ¬ϕ∨(ϕ∧ψ)

so that, if ϕ is a Boolean formula (i.e., �ϕ�(Σ+) ⊆ {0,1}), �ϕ
+→ ψ�(u, σ) =

�ψ�(u, σ) if �ϕ�(u, σ) = 1, and �ϕ
+→ ψ�(u, σ) = 1 if �ϕ�(u, σ) = 0.

A common fragment of MSO(K, Σ) is the weighted first-order logic FO(K, Σ),
where no second-order quantifier appears (note that second order variables may
still appear free): ϕ ::= k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ∨ϕ | ϕ∧ϕ | ∃xϕ | ∀xϕ.

We define similarly bFO(K, Σ) as the fragment of bMSO(K, Σ) with no second-
order quantifiers. We also let bFO+mod be the fragment of bMSO consisting of
bFO augmented with modulo constraints x ≡	 m for constants 1 ≤ m ≤ � (since
the positions of words start with 1, it is more convenient to compute modulo
as a value between 1 and �). The semantics is given by �x ≡	 m�(u, σ) = 1 if
σ(x) ≡ m mod � and 0 otherwise: it can be defined in bMSO by

x ≡	 m
def= ∀X

([
(x ∈ X) ∧

(
∀y(y ∈ X ∧ y > �) +→ y − � ∈ X

)] +→ m ∈ X
)

.

For L ⊆ bMSO closed under ∨, ∧ and ¬, an L-step formula is a formula obtained
from the grammar ϕ ::= k | α | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ, with k ∈ K and α ∈ L.
In particular, quantifications are only allowed in formulas α ∈ L. The following
lemma shows in particular that an L-step formula assumes a finite number of
values, each of which corresponds to an L-definable language.

Lemma 3. For every L-step formula ϕ, one can construct an equivalent formula
ψ =
∨

i(ϕi ∧ ki) with ϕi ∈ L and ki ∈ K, with the same set of free variables.
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From now on, we freely use Lemma 3, using the special form it provides for L-
step formulas. All bMSO-step formulas are clearly recognizable. By [6], ∀xϕ is
recognizable for any bMSO-step formula ϕ. The fragment RMSO(K, Σ) of MSO
is defined by restricting universal second-order quantification to bMSO formulas
and universal first-order quantification to bMSO-step formulas.

Theorem 4 ([6]). A series is recognizable iff it is definable in RMSO(K, Σ).

3 Transitive Closure Logic and Weighted Automata

To ease notation, we write �ϕ(x, y)�(u, i, j) instead of �ϕ(x, y)�(u, [x �→ i, y �→ j]).
We allow constants, modulo constraints and comparisons, like e.g. x ≤ y+2. We
use first and last as abbreviations for the first and last positions of a word. All
of these shortcuts can be replaced by suitable bFO-formulas, except “x ≡	 m”
with 1 ≤ m ≤ �, which is bMSO-definable.

Bounded transitive closure. For a formula ϕ(x, y) with at least two free
variables x and y, and an integer N > 0, we let ϕ1,N (x, y) def= (x ≤ y ≤ x + N)∧
ϕ(x, y) and for n ≥ 2, we define the formula ϕn,N (x, y) as

∃z0 · · · ∃zn

[
x = z0 ∧ y = zn ∧

∧
1≤	≤n

(z	−1 < z	 ≤ z	−1 + N) ∧ ϕ(z	−1, z	)
]
. (1)

We define for each N > 0 the N -TC<
xy operator by N -TC<

xyϕ =
∨

n≥1 ϕn,N . This
infinite disjunction is well-defined: �ϕn,N (x, y)�(u, σ) = 0 if n ≥ max(2, |u|), i.e.,
on each pair (u, σ), only finitely many disjuncts assume a nonzero value. Intu-
itively, the N -TC<

xy operator generalizes the forward transitive closure operator
from the Boolean case, but limiting it to intermediate forward steps of length
≤ N . The fragment FO+BTC<(K, Σ) is then defined by the grammar

ϕ ::= k | Pa(x) | x ≤ y | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | N -TC<
xyϕ ,

with N ≥ 1 and the restriction that one can apply negation only over bFO-
formulas. We denote by KFO+BTC<〈〈Σ+〉〉 the class of all FO+BTC<(K, Σ)-
definable series.

Example 5. Let ϕ(x, y) def= (y = x+1)∧∀z 2∧(x = 1 +→ ∀z 2) over K = N. Let u =
u1 · · ·un. For any N ≥ 1, we have �N -TC<

xyϕ�(u, first, last) =
∏n−1

i=1 �ϕ�(u, i, i+1)
due to the constraint y = x+1 in ϕ. Now, �ϕ�(u, 1, 2) = 22|u| and �ϕ�(u, i, i+1) =
2|u| if i > 1, so �N -TC<

xyϕ�(u, first, last) = 2|u|
2
. This example shows in particular

that the class of recognizable series is not closed under BTC<.

Example 6. It is well-known that modulo can be expressed in bFO+BTC< by

x ≡	 m
def= (x = m) ∨ [�-TC<

yz(z = y + �)](m, x) .
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We now consider syntactical restrictions of FO+BTC<, inspired by normal form
formulas of [13] where only one “external” transitive closure is allowed.

For L ⊆ bMSO, BTC<
step(L) consists of formulas of the form N -TC<

xyϕ, where
ϕ(x, y) is an L-step formula with two free variables x, y. We say that f ∈ K〈〈Σ+〉〉
is BTC<

step(L)-definable if there exists an L-step formula ϕ(x, y) such that, for
all u ∈ Σ+, f(u) = �N -TC<

xyϕ�(u, first, last).
For L ⊆ bMSO, let ∃∀step(L) consists of all MSO-formulas of the form

∃X∀xϕ(x, X) with ϕ an L-step formula: this defines a fragment of the logic
RMSO(K, Σ) introduced in [6]. The following result characterizes the expressive
power of weighted automata.

Theorem 7. Let K be a (possibly noncommutative) semiring and f ∈ K〈〈Σ+〉〉.
The following assertions are equivalent over K and Σ:

(1) f is recognizable.
(2) f is BTC<

step(bFO+mod)-definable.
(3) f is BTC<

step(bMSO)-definable.
(4) f is ∃∀step(bFO)-definable.
(5) f is ∃∀step(bMSO)-definable.

Proof. Fix a weighted automaton A = (Q, μ, λ, γ) with Q = {1, . . . , n}. For
d ≥ 1 and p, q ∈ Q, we use a formula ψd

p,q(x, y) to compute the weight of the
factor of length d located between positions x and y, when A goes from p to q:

ψd
p,q(x, y) def= (y = x + d− 1) ∧

∨
v=v1···vd

(
μ(v)p,q ∧

∧
1≤i≤d

Pvi(x + i− 1)
)

.

We construct a formula ϕ(x, y) of bFO+mod allowing to define the semantics of
A using a BTC<: �A�(u) = �2n-TC<

xyϕ�(u, first, last). The idea, inspired by [17],
consists in making the transitive closure pick positions z	 = �n + q	, with 1 ≤
q	 ≤ n, for successive values of �, to encode runs of A going through state q	 just
before reading the letter at position �n+1. To make this still work for � = 0, one
can assume wlog. that λ(1) = 1 and λ(q) = 0 for q �= 1, i.e., the only initial state
yielding a nonzero value is q0 = 1. Consider slices [�n + 1, (� + 1)n] of positions
in the word where we evaluate the formula (the last slice might be incomplete).
Each position y is located in exactly one such slice. We write 〈y〉 = �n+1 for the
first position of that slice, as well as [y] def= y + 1−〈y〉 ∈ Q for the corresponding
“offset”. Notice that, for q ∈ Q, [y] = q can be expressed in bFO+mod simply
by y ≡n q. Hence, we will freely use [y] as well as 〈y〉 = y + 1 − [y] as macros
in formulas. Our BTC<-formula picks positions x and y marked • in Figure 2,
and computes the weight of the factor of length n between the positions 〈x〉 and
〈y〉 − 1, assuming states [x] and [y] just before and after these positions.

The formula ϕ distinguishes the cases where x is far or near from the last
position:

ϕ(x, y) =
(
(〈x〉+ 2n ≤ last) ∧ (〈y〉 = 〈x〉+ n) ∧ ψn

[x],[y](〈x〉, 〈y〉 − 1)
)

∨
(
(〈x〉 + 2n > last) ∧ (y = last) ∧

∨
q∈Q

ψ
y−〈x〉+1
[x],q (〈x〉, y) ∧ γ(q)

)
.
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(�− 1)n+ 1 �n �n+ 1 (�+ 1)n

〈x〉 〈y〉
•
x

•
y

[x] [y]

ψn
[x],[y]

Fig. 2. Positions picked by the BTC<-formula

4 Weighted Nested Automata

Example 2 shows that weighted automata lack closure properties to capture
FO+BTC<. We introduce a notion of nested automata making up for this gap.

For r ≥ 0, the class r-nwA(Σ) (r-nwA if Σ is understood) of r-nested weighted
automata over Σ (and K) consists of all tuples (Q, μ, λ, γ) where Q is the set of
states, λ, γ : Q → K, and μ : Q×Σ × Q → (r − 1)-nwA(Σ × {0, 1}). Here, we
agree that (−1)-nwA = K. In particular, a 0-nwA(Σ) is a weighted automaton
over Σ. Intuitively, the weight of a transition is computed by an automaton
of the preceding level running on the whole word, where the additional {0, 1}
component marks the letter of the transition whose weight is to be computed.

Let us formally define the behavior �A� ∈ K〈〈Σ+〉〉 of A = (Q, μ, λ, γ) ∈
r-nwA(Σ). If r = 0, then �A� is the behavior of A considered as wA over Σ. For
r ≥ 1, the weight of a run ρ = q0

u1−→ q1
u2−→ · · · un−−→ qn of A on u = u1 · · ·un is

weight(ρ) def= λ(q0) ·
[ n∏

i=1

�μ(qi−1, ui, qi)�(u, i)
]
· γ(qn) ,

where (u, i) ∈ (Σ × {0, 1})+ is the word v = v1 · · · vn with vi = (ui, 1) and
vj = (uj , 0) if j �= i. As usual, �A�(u) is the sum of the weights of all runs of A
on u. Note that, unlike the nested automata of [16], the values given by lower
automata do not explicitly influence the possible transitions.

A series f ∈ K〈〈Σ+〉〉 is r-nwA-recognizable if f = �A� for some r-nwA A. It
is nwA-recognizable if it is r-nwA-recognizable for some r. We let Kr-nwA〈〈Σ+〉〉
(resp., K

nwA〈〈Σ+〉〉) be the class of r-nwA-recognizable (resp., nwA-recognizable)
series over K and Σ.

Example 8. A 1-nwA recognizing the series u �→ 2|u|
2

over N is A = ({p}, μ,1,1)
where, for every a ∈ Σ, μ(p, a, p) is the weighted automaton of Example 1.

We can generalize the proof of (1) ⇒ (2) in Theorem 7 in order to get the
following result. The converse will be obtained in Section 5.

Proposition 9. Every nwA-recognizable series is FO+BTC<-definable.

5 Pebble Weighted Automata

We now consider pebble weighted automata (pwA). A pwA has a read-only tape.
At each step, it can move its head one position to the left or to the right (within
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the boundaries of the input tape), or either drop or lift a pebble at the current
head position. Applicable transitions and weights depend on the current letter,
current state, and the pebbles carried by the current position. Pebbles are han-
dled using a stack policy: if the automaton has r pebbles and pebbles �, . . . , r
have already been dropped, it can either lift pebble � (if � ≤ r), drop pebble
�− 1 (if � ≥ 2), or move. As these automata can go in either direction, we add
two fresh symbols � and � to mark the beginning and the end of an input word.
Let Σ̃ = Σ � {�, �}. To compute the value of w = w1 · · ·wn ∈ Σ+, a pwA will
work on a tape holding w̃ = �w�. For convenience, we number the letters of w̃
from 0, setting w̃0 = �, w̃n+1 = �, and w̃i = wi for 1 ≤ i ≤ n.

Let r ≥ 0. Formally, an r-pebble weighted automaton (r-pwA) over K and Σ is
a pair A = (Q, μ) where Q is a finite set of states and μ : Q×Σ̃×2r×D×Q→ K
is the transition weight function, with D = {←,→, drop, lift}.

A configuration of a r-pwA A on a word w ∈ Σ+ of length n is a triple
(p, i, ζ) ∈ Q×{0, . . . , n+2}×{1, . . . , n}≤r. The word w itself will be understood.
Informally, p denotes the current state of A and i is the head position in w̃, i.e
positions 0 and n+1 point to � and �, respectively, position 1 ≤ i ≤ n points to
w̃i ∈ Σ, and position n + 2 is outside w̃. Finally, ζ = ζ	 · · · ζr with 1 ≤ � ≤ r + 1
encodes the locations of pebbles �, . . . , r (ζm ∈ {1, . . . , n} is the position of pebble
m) while pebbles 1, . . . , �−1 are currently not on the tape. For i ∈ {0, . . . , n+1},
we set ζ−1(i) =

{
m ∈ {�, . . . , r} | ζm = i

}
(viewing ζ as a partial function from

{1, . . . , r} to {0, . . . , n + 1}). Note that ζ−1(0) = ζ−1(n + 1) = ∅.
There is a step of weight k from configuration (p, i, ζ) to configuration (q, j, η)

if i ≤ n + 1, k = μ(p, w̃i, ζ
−1(i), d, q), and⎧⎪⎨⎪⎩

j = i− 1 if d =←
j = i + 1 if d =→
j = i otherwise

and

⎧⎪⎨⎪⎩
η = iζ if d = drop
ζ = iη if d = lift
η = ζ otherwise.

A run ρ of A is a sequence of steps from a configuration (p, 0, ε) to a config-
uration (q, n + 2, ε) (at the end, no pebble is left on the tape). We denote by
weight(ρ) the product of weights of the steps of run ρ (from left to right, but
we will mainly work with a commutative semiring in this section). The run ρ is
simple if whenever two configurations α and β appear in ρ, we have α �= β.

The series �A� ∈ K〈〈Σ+〉〉 is defined by �A�(w) =
∑

ρ simple run on w weight(ρ).
We denote by Kr-pwA〈〈Σ+〉〉 the collection of formal power series definable by a
r-pwA, and we let KpwA〈〈Σ+〉〉 =

⋃
r≥0 Kr-pwA〈〈Σ+〉〉. Note that a 0-pwA is in

fact a 2-way weighted automaton. It follows from Theorem 11 that 2-way wA
have the same expressive power as classical (1-way) wA.

Example 10. Let us sketch a 1-pwA A recognizing the series u �→ 2|u|
2

over N.
The idea is that A drops its pebble successively on every position of the input
word. Transitions for reallocating the pebble have weight 1. When a pebble is
dropped, A scans the whole word from left to right where every transition has
weight 2. As this scan happens |u| times, we obtain �A�(u) = 2|u|

2
.
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Theorem 11. For every commutative semiring K, and every r ≥ 0, we have
(1) Kr-pwA〈〈Σ+〉〉 ⊆ Kr-nwA〈〈Σ+〉〉
(2) KFO+BTC<〈〈Σ+〉〉 = KpwA〈〈Σ+〉〉 = KnwA〈〈Σ+〉〉.
(3) KFO+BTC<〈〈Σ+〉〉 ⊆ KpwA〈〈Σ+〉〉 holds even for noncommutative semirings.

Proof. (1) We provide a translation of a generalized version of r-pwA to r-
nwA. That generalized notion equips an r-pwA A = (P, μ) with an equivalence
relation ∼ ⊆ P × P , which is canonically extended to configurations of A: we
write (p, i, u) ∼ (p′, i′, u′) if p ∼ p′, i = i′, and u = u′.

The semantics �A�∼ is then defined
� . . . a b . . . �

p0

→ p1

p2

←p3

p4

drop

p5

p̂5

lift
p6

p7

drop

p8

p̂8

lift
p9

→p10

p11

q q′

(a)

� . . . (a, 1) . . . �

(p5, 1)

(p̂5, 1)

(p8, 2)

(p̂8, 2)

final

(b)

Fig. 3. (a) Runs of r-pwA A and r-nwA 〈A〉∼; (b)
run of (r − 1)-pwA Aq

by replacing equality of configura-
tions with ∼ in the definition of sim-
ple run. To stress this fact, we hence-
forth say that a run is ∼-simple. So
let r ≥ 0, A = (P, μ) be an r-pwA
over K and Σ, and ∼ ⊆ P × P be
an equivalence relation. We assume
wlog. that all runs in which a pebble
is dropped and immediately lifted
have weight 0. We build an r-nwA
〈A〉∼ = (Q, ν, λ, γ) over Σ such that
�〈A〉∼� = �A�∼.

The construction of 〈A〉∼ pro-
ceeds inductively on the number of
pebbles r. It involves two alternat-
ing transformations, as illustrated
in Figure 3. The left-hand side de-
picts a ∼-simple run of A on some
word w with factor ab. To simulate
such a run, 〈A〉∼ scans w from left
to right and guesses, at each posi-
tion i, the sequence of those states
and directions that are encountered at i while pebble r has not, or just,
been dropped. The state of 〈A〉∼ taken before reading the a at position i is
q = p0→ p3← p4 drop p5 p̂5 lift p6← p7 drop p8 p̂8 lift p9→ (which is enriched by
the input letter a, as will be explained below). As the micro-states p0, p3, . . .
form a segment of a ∼-simple run, p0, p3, p4, p6, p7, p9 are pairwise distinct (wrt.
∼) and so are p5, p̂5, p8, p̂8. Segments when pebble r is dropped on position i are
defered to a (r − 1)-nwA Bq, which is called at position i and computes the run
segments from p5 to p̂5 and from p8 to p̂8 that both start in i. To this aim, Bq

works on an extension of w where position i is marked, indicating that pebble r
is considered to be at i.

We define the r-nwA 〈A〉∼. Let Π = (P{→,←}∪ P{drop}PP{lift})∗P{→}.
Sequences from Π keep track of states and directions that are taken at one
given position. As aforementioned, they must meet the requirements of ∼-simple



596 B. Bollig et al.

runs so that only some of them can be considered as states. Formally, given
π ∈ Π , we define projections pr1(π) ∈ P+ and pr2(π) ∈ (PP )∗ inductively by
pr1(ε) = pr2(ε) = ε and

pr1(p→π) = pr1(p←π) = p pr1(π) pr1(p drop p1 p̂1 lift π) = p pr1(π)
pr2(p→π) = pr2(p←π) = pr2(π) pr2(p drop p1 p̂1 lift π) = p1 p̂1 pr2(π).

Let Π∼ denote the set of sequences π ∈ Π such that pr1(π) consists of pairwise
distinct states wrt. ∼ and so does pr2(π) (there might be states that occur in
both pr1(π) and pr2(π)). With this, we set Q = (Σ̃ � {�}) × Π∼. The letter
a ∈ Σ̃ �{�} of a state (a, π) ∈ Q will denote the symbol that is to be read next.
Symbol � means that there is no letter left so that the automaton is beyond the
scope of �w� when w is the input word.

Next, we explain how the weight of the run segments of A with lifted pebble
r is computed in 〈A〉∼. Two neighboring states of 〈A〉∼ need to match each
other, which can be checked locally by means of transitions. To determine a
corresponding weight, we first count weights of those transitions that move from
the current position i to i + 1 or from i + 1 to i. This is the reason why a state
of 〈A〉∼ also maintains the letter that is to be read next. In Figure 3(a), the
7 micro-transitions that we count in the step from q to q′ are highlighted in
gray. Assuming q = (a, π0) and q′ = (b, π1), we obtain a value weighta,b(π0 |π1)
as the product μ(p0, a, ∅,→, p1) · μ(p2, b, ∅,←, p3) · · · · · μ(p̂8, a, {r}, lift, p9) ·
μ(p9, a, ∅,→, p10). The formal definition of weighta,b(π0 |π1) ∈ K is omitted.

We are now prepared to define the components ν, λ, γ of 〈A〉∼. For q0 =
(a0, π0) and q1 = (a1, π1) states in Q, we set

λ(q0) =
∑

(�,π)∈Q weight�,a0
(π |π0)

γ(q0) =
∑

(�,π)∈Q weight�,�(π0 |π) if a0 = �
ν(a0)q0,q1 = weighta0,a1

(π0 |π1) · Bq0 .

Here, Bq is the constant 1 if r = 0. Otherwise, Bq = 〈Aq〉∼q is an (r − 1)-nwA
over Δ = Σ × {0, 1} obtained inductively from the (r − 1)-pwA Aq which is
defined below together with its equivalence relation ∼q. Notice that k · Bq is
obtained from Bq by multiplying its input weights by k.

Let us define the (r − 1)-pwA Aq = (P ′, μ′) over Δ as well as ∼q ⊆ P ′ × P ′.
Suppose q = (a, π) and pr2(π) = p1 p̂1 · · · pN p̂N . The behavior of Aq is split into
N + 2 phases. In phase 0, it scans the input word from left to right until it finds
the (unique) letter of the form (a, 1) with a ∈ Σ. At that position, call it i, Aq

enters state (p1, 1) (the second component indicating the current phase). All these
transitions are performedwith weight1. Then,Aq starts simulatingA, considering
pebble r at position i. Back at position i in state (p̂1, 1), weight-1 transitions will
allow Aq to enter the next phase, starting in (p2, 2) and again considering pebble
r at position i. The simulation ofA ends when (p̂N , N) is reached in position i. In
the final phase (N +1) weight-1 transitions guidesAq to the end of the tape where
it stops. The relation ∼q will consider states (p, j) and (p′, j′) equivalent iff p ∼
p′, i.e., it ignores the phase number. This explains the purpose of the equivalence
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relation: in order for the automaton Aq to simulate the dashed part of the run of
A, we use phase numbers, so that, during the simulation two different states (p, j)
and (p, j′) ofAq may correspond to the same original state p ofA. Now, only simple
runs are considered to compute �A�. Therefore, for the simulation to be faithful,
we want to rule out runs of Aq containing two configurations which only differ by
the phase number, that is, containing two ∼q-equivalent configurations, which is
done by keeping only∼q-simple runs. A run ofAq is illustrated in Figure 3(b) (with
N = 2). Note that, if N = 0, then Aq simply scans the word from left to right,
outputting weight 1. Finally, we sketch the proof of (3).

We proceed by induction on the structure of the formula and suppose that a
valuation of free variables is given in terms of pebbles that are already placed on
the word and cannot be lifted. Disjunction, conjunction, and first-order quan-
tifications are easy to simulate. To evaluate [N -TC<

xyϕ](z, t) for some formula
ϕ(x, y), we either evaluate ϕ(x, y), with pebbles being placed on z and t such
that z ≤ t ≤ z + N , or choose non-deterministically (and with weight 1) po-
sitions z = z0 < z1 < · · · < zn−1 < zn = t with n ≥ 2, using two additional
pebbles, 2 and 1. We drop pebble 2 on position z0 and pebble 1 on some guessed
position z1 with z0 < z1 ≤ min(t, z0 + N). We then run the subroutine to eval-
uate ϕ(z0, z1). Next we move to position z1 and lift pebble 1. We move left to
position z0 remembering the distance z1 − z0. We lift pebble 2 and move right
to z1 using the stored distance z1 − z0. We drop pebble 2 on z1 and iterate this
procedure until t is reached. ��

6 Conclusion and Perspectives

We have introduced pebble weighted automata and characterized their expressive
power in terms of first-order logic with a bounded transitive closure operator. It
follows that satisfiability is decidable over commutative positive semirings. Here,
a sentence ϕ ∈ FO+BTC< is said satisfiable if there is a word w ∈ Σ+ such
that �ϕ�(w) �= 0. From Theorem 11, satisfiability reduces to non-emptiness of
the support of a series recognized by a pwA. For positive semirings, the latter
problem, in turn, can be reduced to the decidable emptiness problem for classical
pebble automata over the Boolean semiring. We leave it as an open problem to
determine for which semirings the satisfiability problem is decidable.

Unbounded transitive closure. We do not know if allowing unbounded steps
in the transitive closure leads beyond the power of (weak) pebble automata.
We already know that allowing unbounded steps is harmless for bMSO-step
formulas. It is also easy to show that such an unbounded transitive closure can
be captured with strong pebble automata, i.e., that can lift the last dropped
pebble even when not scanning its position. Therefore, we aim at studying the
expressive power of strong pebble automata and unbounded transitive closure.

Tree-walking automata. Our results are not only of theoretical interest. They
also lay the basis for quantitative extensions of database query languages such as
XPath, and may provide tracks to evaluate quantitative aspects of the structure
of XML documents. The framework of weighted tree (walking) automata [1,11]
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is natural for answering questions such as “How many nodes are selected by a
request?”, or “How difficult is it to answer a query?”. The navigational mechanism
of pebble tree-walking automata [3,14,2] is also well-suited in this context. For
these reasons, we would like to adapt our results to tree languages.

We thank the anonymous referees for their valuable comments.
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Abstract. Energy parity games are infinite two-player turn-based
games played on weighted graphs. The objective of the game combines
a (qualitative) parity condition with the (quantitative) requirement that
the sum of the weights (i.e., the level of energy in the game) must re-
main positive. Beside their own interest in the design and synthesis of
resource-constrained omega-regular specifications, energy parity games
provide one of the simplest model of games with combined qualitative
and quantitative objective. Our main results are as follows: (a) exponen-
tial memory is sufficient and may be necessary for winning strategies in
energy parity games; (b) the problem of deciding the winner in energy
parity games can be solved in NP ∩ coNP; and (c) we give an algorithm to
solve energy parity by reduction to energy games. We also show that the
problem of deciding the winner in energy parity games is polynomially
equivalent to the problem of deciding the winner in mean-payoff parity
games, which can thus be solved in NP ∩ coNP. As a consequence we
also obtain a conceptually simple algorithm to solve mean-payoff parity
games.

1 Introduction

Two-player games on graphs are central in many applications of computer sci-
ence. For example, in the synthesis problem implementations are obtained from
winning strategies in games with a qualitative objective such as ω-regular spec-
ifications [17,16,1]. Games also provide a theoretical instrument to deal with
logics and automata [5,14,12,13]. In all these applications, the games have a
qualitative (boolean) objective that determines which player wins. On the other
hand, games with quantitative objective which are natural models in economics
(where players have to optimize a real-valued payoff) have also been studied
in the context of automated design and synthesis [18,9,21]. In the recent past,
there has been considerable interest in the design of reactive systems that work
in resource-constrained environments (such as embedded systems). The specifi-
cations for such reactive systems have both a quantitative component (specifying
the resource constraint such as power consumption) and a qualitative compo-
nent (specifying the functional requirement). The desired reactive system must
respect both the qualitative and quantitative specifications. Only recently ob-
jectives combining both qualitative and quantitative specifications have been
considered [6,8,3].
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In this paper, we consider two-player turn-based games played for infinitely
many rounds on a weighted graph where a priority is associated to each state
and a weight is associated to each edge. In each round, the player owning the
current state chooses an outgoing edge to a successor state, thus the game results
in an infinite play. The qualitative specification is a parity condition, a canonical
way to express the ω-regular objectives [19]: a play satisfies the parity condition
if the least priority occurring infinitely often in the play is even; the quantitative
specification requires that the sum of the weights along the play (that we inter-
pret as the level of energy, or resource usage) remains always positive. The main
algorithmic question about such energy parity games is to decide if there exists
an initial credit (or initial energy level) such that one player has a strategy to
maintain the level of energy positive while satisfying the parity condition, and
if the answer is yes, to compute the minimum such initial credit.

Energy parity games generalize both parity games and energy games. It is
known that memoryless strategies are sufficient to win parity games [11] and
energy games [6,4], and therefore the problem of deciding the winner of a parity
game, and the problem of deciding the existence of an initial credit sufficient to
win an energy game are both in NP ∩ coNP. It is a long standing open ques-
tion to know if these problems can be solved in polynomial time. In this paper,
we present the following results about energy parity games: (a) we study the
complexity of winning strategies and we give bounds on the amount of memory
needed to win; (b) establish the computational complexity of the problem of
deciding the winner; (c) present an algorithmic solution to compute the mini-
mum initial credit; and (d) show polynomial equivalence with mean-payoff parity
games. The details of our contributions are as follows, some proofs are omitted
by lack of space.

Strategy complexity. First, we show that finite-memory strategies are sufficient
to win energy parity games, but memory of exponential may be required even in
the special case of one-player games. We present an exponential memory upper
bound for the winning strategies, and we show that the spoiling strategies of the
opponent need no memory at all (memoryless spoiling strategies exist).

Computational complexity. Second, we show that the decision problem for energy
parity games lie in NP ∩ coNP, matching the bounds known for the simpler case
of parity and energy games. The classical NP ∩ coNP result for parity and
energy games crucially relies on the existence of memoryless winning strategies.
In the case of energy parity games, the existence of memoryless spoiling strategies
gives the coNP upper bound. However, and in contrast with parity games and
energy games, winning strategies may require exponential memory in energy
parity games. Therefore, more subtle arguments are needed to obtain the NP
upper bound: we show that the winning strategies (that require exponential
memory) can be characterized with certain special structures and decomposed
into two memoryless strategies (roughly, one to ensure the parity condition, and
the other to maintain the energy level positive). This insight allows us to derive a
nondeterministic polynomial-time algorithm to solve energy parity games. Thus
the problem of deciding the existence of an initial credit which is sufficient to
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win an energy parity game is (perhaps surprisingly) in NP ∩ coNP. Finding a
deterministic polynomial algorithm for this problem is obviously open.
Algorithm. Third, we present an algorithm to solve energy parity games with
complexity exponential in the number of states (as for parity games), and lin-
ear in the largest weight (as for energy games). This algorithm relies on our
analysis of the structure of winning strategies, and reduces to iteratively solving
reachability games and energy games.
Equivalence with mean-payoff parity games. Finally, we show that energy parity
games are polynomially equivalent to mean-payoff parity games [8], where the
parity condition is combined with the quantitative requirement that the limit-
average (or mean-payoff) of the weights remains positive. Again, this result is
surprising because in mean-payoff parity games, optimal strategies (that realize
the largest possible mean-payoff value while satisfying the parity condition) may
require infinite memory. Moreover, we get as a corollary of our results that
that the problem of deciding the winner in mean-payoff parity games is also in
NP ∩ coNP. Our algorithm for energy parity games also solves mean-payoff parity
games with essentially the same complexity as in [8], but with a conceptually
simpler approach.

2 Definitions

Game graphs. A game graph G = 〈Q, E〉 consists of a finite set Q of states
partitioned into player-1 states Q1 and player-2 states Q2 (i.e., Q = Q1 ∪ Q2),
and a set E ⊆ Q×Q of edges such that for all q ∈ Q, there exists (at least one)
q′ ∈ Q such that (q, q′) ∈ E. A player-1 game is a game graph where Q1 = Q
and Q2 = ∅. The subgraph of G induced by S ⊆ Q is the graph 〈S, E ∩ (S×S)〉
(which is not a game graph in general); the subgraph induced by S is a game
graph if for all s ∈ S there exist s′ ∈ S such that (s, s′) ∈ E.

Plays and strategies. A game on G starting from a state q0 ∈ Q is played
in rounds as follows. If the game is in a player-1 state, then player 1 chooses
the successor state from the set of outgoing edges; otherwise the game is in a
player-2 state, and player 2 chooses the successor state. The game results in a
play from q0, i.e., an infinite path ρ = q0q1 . . . such that (qi, qi+1) ∈ E for all
i ≥ 0. The prefix of length n of ρ is denoted by ρ(n) = q0 . . . qn. A strategy for
player 1 is a function σ : Q∗Q1 → Q such that (q, σ(ρ ·q)) ∈ E for all ρ ∈ Q∗ and
q ∈ Q1. An outcome of σ from q0 is a play q0q1 . . . such that σ(q0 . . . qi) = qi+1

for all i ≥ 0 such that qi ∈ Q1. Strategy and outcome for player 2 are defined
analogously.
Finite-memory strategies. A strategy uses finite-memory if it can be encoded
by a deterministic transducer 〈M, m0, αu, αn〉 where M is a finite set (the mem-
ory of the strategy), m0 ∈ M is the initial memory value, αu : M × Q → M
is an update function, and αn : M × Q1 → Q is a next-move function. The
size of the strategy is the number |M | of memory values. If the game is in a
player-1 state q and m is the current memory value, then the strategy chooses
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q′ = αn(m, q) as the next state and the memory is updated to αu(m, q). Formally,
〈M, m0, αu, αn〉 defines the strategy α such that α(ρ · q) = αn(α̂u(m0, ρ), q) for
all ρ ∈ Q∗ and q ∈ Q1, where α̂u extends αu to sequences of states as expected.
A strategy is memoryless if |M | = 1. For a finite-memory strategy σ, let Gσ be
the graph obtained as the product of G with the transducer defining σ, where
(〈m, q〉, 〈m′, q′〉) is a transition in Gσ if m′ = αu(m, q) and either q ∈ Q1 and
q′ = αn(m, q), or q ∈ Q2 and (q, q′) ∈ E. In Gσ, the expression reachable from q
stands for reachable from 〈q, m0〉.
Objectives. An objective for G is a set φ ⊆ Qω. Let p : Q → N be a pri-
ority function and w : E → Z be a weight function1 where positive num-
bers represent rewards. We denote by W the largest weight (in absolute value)
according to w. The energy level of a prefix γ = q0q1 . . . qn of a play is
EL(w, γ) =

∑n−1
i=0 w(qi, qi+1), and the mean-payoff value of a play ρ = q0q1 . . . is

MP(w, ρ) = lim infn→∞
1
n · EL(w, ρ(n)). In the sequel, when the weight function

w is clear from context we will omit it and simply write EL(γ) and MP(ρ). We
denote by Inf(ρ) the set of states that occur infinitely often in ρ. We consider
the following objectives:

– Parity objectives. The parity objective ParityG(p) = {π ∈ Plays(G) |
min{p(q) | q ∈ Inf(π)} is even } requires that the minimum priority visited
infinitely often be even. The special cases of Büchi and coBüchi objectives
correspond to the case with two priorities, p : Q→ {0, 1} and p : Q→ {1, 2}
respectively.

– Energy objectives. Given an initial credit c0 ∈ N∪{∞}, the energy objective
PosEnergyG(c0) = {π ∈ Plays(G) | ∀n ≥ 0 : c0 + EL(π(n)) ≥ 0} requires that
the energy level be always positive.

– Mean-payoff objectives. Given a threshold ν ∈ Q, the mean-payoff objective
MeanPayoffG(ν) = {π ∈ Plays(G) | MP(π) ≥ ν} requires that the mean-
payoff value be at least ν.

– Combined objectives. The energy parity objective ParityG(p)∩PosEnergyG(c0)
and the mean-payoff parity objective ParityG(p) ∩MeanPayoffG(ν) combine
the requirements of parity and energy (resp., mean-payoff) objectives.

When the game G is clear form the context, we omit the subscript in objective
names.
Winning strategies. A player-1 strategy σ is winning2 in a state q for an
objective φ if ρ ∈ φ for all outcomes ρ of σ from q. For energy and energy parity
objectives with unspecified initial credit, we also say that a strategy is winning
if it is winning for some finite initial credit.
Finite and minimum initial credit problems. We are interested in the fol-
lowing decision problem. The finite initial credit problem (initial credit problem
for short) asks, given an energy parity game 〈G, p, w〉 and a state q, whether

1 In some proofs, we take the freedom to use rational weights (i.e., w : E → Q), while
we always assume that weights are integers encoded in binary for complexity results.

2 We also say that player-1 is winning, or that q is a winning state.
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Fig. 1. A family of 1-player energy parity games where Player 1 needs memory of size
2 · (n − 1) ·W and initial credit (n − 1) ·W . Edges are labeled by weights, states by
priorities.

there exists a finite initial credit c0 ∈ N and a winning strategy for player 1 from
q with initial credit c0. The minimum initial credit in a state q0 ∈ Q is the least
value of initial credit for which there exists a winning strategy for player 1 in q0.
A strategy for player 1 is optimal in a state q0 if it is winning from q0 with the
minimum initial credit.

It is known that the initial credit problem for simple energy games can be
solved in NP ∩ coNP because memoryless strategies are sufficient to win such
games [6,4]. For winning states of energy games, an initial credit of (|Q|− 1) ·W
is always sufficient to win. For parity games, memoryless strategies are also
sufficient to win and the associated decision problem also lies in NP ∩ coNP [11].
Moreover, energy games and parity games are determined, which implies that
from states that are not winning for player 1, there exists a (memoryless) spoiling
strategy for player 2 which is winning for the complementary objective (note that
the complement of a parity objective is again a parity objective). Moreover, for
energy games, the same spoiling strategy can be used against all initial credit
values.

3 Strategy Complexity of Energy Parity Games

In this section we show that in energy parity games with n states and d priorities,
memory of size 4 · n · d ·W is sufficient for a winning strategy of player 1 . This
amount of memory is exponential (because weights are encoded in binary) and
we show that exponential memory is already necessary in the special case of
player-1 games where memory of size 2 · (n− 1) ·W + 1 may be necessary (and
is always sufficient). For player 2, we show that memoryless winning strategies
exist. Moreover, if player 1 wins, then the minimum initial credit is at most
(n− 1) ·W .

Lemma 1. Let G be a player-1 energy parity game with n states. If player 1
wins in G from a state q0, then player 1 has a winning strategy from q0 with
memory of size 2 · (n− 1) ·W + 1 and initial credit (n− 1) ·W .

Example 1 (Memory requirement). We present a family of player-1 games where
memory of size 2 · (n − 1) ·W + 1 may be necessary. The example is shown in
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Fig. 1, and the example also shows that initial credit of (n − 1) · W may be
necessary. To satisfy the parity condition, the play has to visit the initial state
infinitely often, and to maintain the energy positive, the play has to visit the
state with the positive-weighted self-loop. Since the paths between these two
state have weight −(n− 1) ·W , it is easy to see that initial credit (n− 1) ·W is
necessary, and the self-loop has to be taken M = 2 · (n− 1) ·W times requiring
memory of size M + 1. ��

We state the next lemma because it is useful in several proofs, though its argu-
ment is fairly easy.

Lemma 2. Let G be an energy parity game, and for each winning state q let
v(q) ∈ N be the minimum initial credit in q. For all outcomes ρ of an optimal
strategy σ in G from a winning state q0, if the initial credit is v(q0) + Δ for
Δ ≥ 0, then the energy level at all positions of ρ where a state q occurs is at
least v(q) + Δ.

We show that player 2 needs no memory at all in energy parity games. This
result is useful to show that energy parity games are in coNP.

Lemma 3. For all energy parity games G, memoryless strategies are sufficient
for player 2 (i.e., the minimum initial credit for player 1 does not change if
player 2 is restricted to play memoryless).

Finally, we give upper bounds on the memory and initial credit necessary for
player 1 in energy parity games. The bounds are established using strategies of
a special form that alternate between good-for-energy strategies and attractor
strategies, defined as follows.
Good-for-energy strategy. A strategy σ for player 1 is good-for-energy in
state q if for all outcomes ρ = q0q1 . . . of σ such that q0 = q, for all cycles
γ = qi . . . qi+k in ρ (where k > 0 and qi = qi+k), either EL(γ) > 0, or EL(γ) = 0
and γ is even (i.e., min{p(q) | q ∈ γ} is even). A key result is to show the
existence of good-for-energy strategies that are memoryless.

Lemma 4. Let Win be the set of winning states for player 1 in an energy parity
game. Then, there exists a memoryless strategy for player 1 which is good-for-
energy in every state q ∈Win.

Proof. First, the definition of good-for-energy strategy in a state q can be viewed
as a winning strategy in a finite cycle-forming game from q where the game stops
when a cycle C is formed, and the winner is determined by the sequence of states
in C (and is independent of cyclic permutations). By the results of [2], both
players have memoryless optimal strategies in this finite cycle-forming game.

Now, assume that player 1 wins an energy parity game from a state q. Towards
contradiction, assume that player 1 has no good-for-energy strategy from q0.
Then, player 2 would have a memoryless winning strategy in the finite cycle-
forming game. Fix this strategy in the original energy parity game and then all
cycles have either negative weight, or weight is zero and the least priority is odd.
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It follows that player 1 looses the energy parity game from q (no matter the
value of the initial credit), a contradiction. Hence, player 1 has a memoryless
good-for-energy strategy σq from q. Finally, to obtain a uniform good-for-energy
strategy σgfe , fix a (total) order on the states: q1 < q2 < · · · < qn, and let R(qi)
be the set of all states occurring in the outcomes of σqi . Then σgfe(qi) = σqj (qi)
where j = min{k | qi ∈ R(qk)}. ��

Attractor. The player-1 attractor of a given set S ⊆ Q is the set of states from
which player 1 can force to reach a state in S. It is defined as the limit Attr1(S)
of the sequence A0 = S, Ai+1 = Ai∪{q ∈ Q1 | ∃(q, q′) ∈ E : q′ ∈ Ai}∪{q ∈ Q2 |
∀(q, q′) ∈ E : q′ ∈ Ai} for all i ≥ 0. The player-2 attractor Attr2(S) is defined
symmetrically. Note that for i = 1, 2, the subgraph of G induced by Q\Attri(S)
is again a game graph (i.e., every state has an outgoing edge). It is well known
that attractors can be computed in polynomial time.

Lemma 5. For all energy parity games G with n states and d priorities, if
player 1 wins from a state q0, then player 1 has a winning strategy from q0 with
memory of size 4 · n · d ·W and initial credit (n− 1) ·W .

The following theorem summarizes the upper bounds on memory requirement
in energy parity games. Note that player 1 may need exponential memory as
illustrated in Example 1.

Theorem 1 (Strategy Complexity). For all energy parity games, the follow-
ing assertions hold: (1) winning strategies with memory of size 4 · n · d ·W exist
for player 1; (2) memoryless winning strategies exist for player 2.

4 Computational Complexity of Energy Parity Games

We show that the initial credit problem for energy parity games is in NP ∩ coNP.
This may be surprising since exponential memory may be necessary for player 1
to win. However, winning strategies with a special structure (that alternate be-
tween good-for-energy strategies and attractor strategies) can be constructed
and this entails the NP upper bound.

Lemma 6. Let G be an energy parity game. The problem of deciding, given a
state q0 and a memoryless strategy σ, whether σ is good-for-energy in q0, can be
solved in polynomial time.

We first establish the NP membership of the initial credit problem for the case
of energy parity games with two priorities. For energy coBüchi games, the result
is obtained by showing that memoryless strategies are sufficient, and for energy
Büchi games, the proof gives a good flavor of the argument in the general case.

Lemma 7. Memoryless strategies are sufficient for player 1 to win energy
coBüchi games (i.e., the minimum initial credit for player 1 does not change
if player 1 is restricted to play memoryless).
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Lemma 8. The problem of deciding, given a state q in an energy Büchi (resp.
coBüchi) game G, if there exists a finite initial credit such that player 1 wins
in G from q is in NP.

Proof. By Lemma 7, an NP-algorithm for energy coBüchi games 〈G, p, w〉 guesses
a memoryless strategy σ and checks in polynomial time that σ is winning for
both the energy game 〈G, w〉 and the coBüchi game 〈G, p〉. This ensures that all
cycles in Gσ are positive (for energy) and visit only priority-2 states, and thus
σ is winning in the energy coBüchi game.

For energy Büchi games, let Win be the set of winning states for player 1
in 〈G, p, w〉, and let GWin be the subgraph of G induced by Win. Clearly there
exists a memoryless strategy σb in GWin that enforces a visit to a priority-0 state
from every state in Win, and there exists a memoryless good-for-energy strategy
σgfe in GWin (by Lemma 4). We show that the converse holds: if such strategies
σb and σgfe exist, then player 1 wins in the energy Büchi game 〈G, p, w〉. Let
n = |Q| be the number of states. To prove this, we give an informal description
of a winning strategy for player 1 (with initial credit (n− 1) ·W ) as follows: (1)
play strategy σgfe as long as the energy level is below 2 · (n − 1) ·W ; (2) if the
energy level gets higher than 2 · (n− 1) ·W , then play σb until a priority-0 state
is visited (thus σb is played during at most n− 1 steps), and proceed to step (1)
with energy level at least (n− 1) ·W .

Let ρ be an outcome of this strategy with initial credit (n− 1) ·W . First, we
show that the energy level is nonnegative in every position of ρ. By definition
of good-for-energy strategies, in every cycle of Gσgfe

the sum of the weights is
nonnegative. Therefore in the prefixes of ρ corresponding to part (1) of the strat-
egy, the energy level is always nonnegative. Whenever, part (2) of the strategy
is played, the energy level is at least 2 · (n − 1) ·W and thus after (at most)
n − 1 steps of playing σb, the energy level is still at least (n − 1) ·W , and the
argument can be repeated. Second, we show that priority-0 states are visited
infinitely often in ρ. This is obvious if part (2) of the strategy is played infinitely
often; otherwise, from some point in ρ, part (1) of the strategy is played forever
which implies that in the cycle decomposition3 of ρ, ultimately all cycles have
sum of weights equal to zero. By definition of good-for-energy strategies, every
such cycle is even, i.e., visits a priority-0 state.

Therefore, an NP-algorithm for energy Büchi games guesses the set Win ⊆ Q
and the memoryless strategies σb and σgfe on Win, and checks in polynomial time
using standard graph algorithms that σb enforces a visit to a priority-0 state in
Win, that σgfe is good-for-energy (see Lemma 6), and that q ∈ Win. ��

Lemma 9. The problem of deciding, given a state q in an energy parity game G,
if there exists a finite initial credit such that player 1 wins in G from q is in NP.

Theorem 2 (Computational Complexity). The problem of deciding the ex-
istence of a finite initial credit for energy parity games is in NP ∩ coNP.
3 To obtain the cycle decomposition of a path ρ, we push the states of ρ onto a stack.

Whenever we push a state already in the stack, a cycle is formed and we remove it
from the stack. We call C1, C2, . . . the sequence of cycles so obtained.
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5 Algorithm for Energy Parity Games

We present an algorithm to decide the winner in energy parity games with com-
plexity exponential in the number of states (as for parity games), but linear in
the largest weight (as for energy games). Our algorithm is based on a procedure
to construct memoryless good-for-energy strategies. To obtain a good-for-energy
strategy, we modify the weights in the game so that every simple cycle with (orig-
inal) sum of weight 0 gets a strictly positive weight if it is even, and a strictly
negative weight if it is odd. Formally, the new weight function w′ is defined by
w′(q, q′) = w(q, q′) + Δ(q) where Δ(q) = (−1)k ·

(
1

nk+1 − 1
nk+2

)
for all q, q′ ∈ Q

with k = p(q) is the priority of q, and n = |Q|. Winning strategies in the energy
game with modified weights w′ correspond to good-for-energy strategies in the
original game.

Lemma 10. The problem of deciding the existence of a memoryless good-for-
energy strategy in energy parity games can be solved in time O(|E| · |Q|d+2 ·W ).

We present a recursive fixpoint algorithm for solving energy parity games, us-
ing the result of Lemma 10. Our algorithm is a generalization of the classical
algorithm of McNaughton [15] and Zielonka [20] for solving parity games. The
formal description of the algorithm is shown as Algorithm 1.
Informal description and correctness of Algorithm 1. We assume without
loss of generality that the least priority in the input game graph is either 0 or 1; if
not, then we can reduce the priority in every state by 2. The algorithm considers
two cases: (a) when the minimum priority is 0, and (b) when the minimum
priority is 1. The details of the two cases are as follows:

(a) If the least priority in the game is 0, then we compute the winning states
of Player 1 as the limit of a decreasing sequence A0, A1, . . . of sets. Each
iteration removes from Ai some states that are winning for Player 2. The set
A′

i ⊆ Ai contains the states having a good-for-energy strategy (line 8) which
is a necessary condition to win, according to Lemma 4. We decompose A′

i

into Xi and A′
i \Xi, where Xi is the set of states from which Player 1 can

force a visit to priority-0 states, and A′
i \Xi has less priorities than A′

i. The
winning states Zi in A′

i\Xi for Player 2 are also winning in the original game
(as in A′

i\Xi Player 1 has no edge going out of A′
i\Xi). Therefore we remove

Zi and Player-2 attractor to Zi in Ai+1. The correctness argument for this
case is similar to the proof of Lemma 9, namely that when Ai = A′

i = Ai−1,
Player 1 wins by playing a winning strategy in A′

i \Xi (which exists by an
inductive argument on the number of recursive calls of the algorithm), and
whenever the game enters Xi, then Player 1 can survive while forcing a visit
to a priority-0 state, and then uses a good-for-energy strategy to recover
enough energy to proceed.

(b) The second part of the algorithm (when the least priority in the game is 1)
computes a decreasing sequence B0, B1, . . . of sets containing the winning
states of Player 2. The correctness is proven in a symmetric way using the
same argument as in the second part of the proof of Lemma 9.
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Algorithm 1. SolveEnergyParityGame

Input : An energy parity game 〈G, p,w〉 with state space Q.
Output : The set of winning states in 〈G, p,w〉 for player 1.
begin

1 if Q = ∅ then return ∅
2 Let k∗ be the minimal priority in G. Assume w.l.o.g. that k∗ ∈ {0, 1}
3 Let G0 be the game G
4 i← 0
5 if k∗ = 0 then

6 A0 ← Q /* over-approximation of Player-1 winning states */

7 repeat

8 A′
i ← SolveEnergyGame(Gi, w

′) (where w′ is defined in Lemma 10)
9 Xi ← Attr1(A′

i ∩ p−1(0))
10 Let G′

i be the subgraph of Gi induced by A′
i \Xi

11 Zi ← (A′
i \Xi) \ SolveEnergyParityGame(G′

i, p, w)
12 Ai+1 ← A′

i \ Attr2(Zi)
13 Let Gi+1 be the subgraph of Gi induced by Ai+1

14 i← i+ 1
until Ai = Ai−1

15 return Ai

16 if k∗ = 1 then

17 B0 ← Q /* over-approximation of Player-2 winning states */

18 repeat

19 Yi ← Attr2(Bi ∩ p−1(1))
20 Let Gi+1 be the subgraph of Gi induced by Bi \ Yi

21 Bi+1 ← Bi \ Attr1(SolveEnergyParityGame(Gi+1, p, w))
22 i← i+ 1

until Bi = Bi−1

23 return Q \ Bi

end

We obtain the following result, where d is the number of priorities in the game,
and W is the largest weight.

Theorem 3 (Algorithmic Complexity). The problem of deciding the exis-
tence of a finite initial credit for energy parity games can be solved in time
O(|E| · d · |Q|d+3 ·W ).

Energy Büchi and coBüchi games. In the special case of energy Büchi ob-
jectives, since d is constant (d = 2), the analysis in the proof of Theorem 3 gives
time complexity O(|E| · |Q|5 ·W ). In the case of energy coBüchi objectives, the
smallest priority is 1 and there is only one other priority. In this case, line 21 of
Algorithm 1 requires to solve an energy parity game with one priority which can
be solved as simple energy games in O(|E| · |Q| ·W ). Thus in the special case of
energy coBüchi objectives Algorithm 1 has O(|E| · |Q|2 ·W ) running time.
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Table 1. Strategy, computational and algorithmic complexity of energy parity games

Player 1 Player 2 Computational Algorithmic
Objective Strategy Strategy Complexity Complexity

Energy coBüchi Memoryless Memoryless NP ∩ coNP O(|E| · |Q|2 ·W )

Energy Büchi Optimal memory: Memoryless NP ∩ coNP O(|E| · |Q|5 ·W )

2·(|Q| − 1)·W + 1

Energy parity Memory at most: Memoryless NP ∩ coNP O(|E| · d · |Q|d+3 ·W )

4·|Q|·d·W

Computing the minimum initial credit. Note that if the procedure SolveEn-
ergyGame used in Algorithm 1 also computes the minimum initial credit v(q) in
each winning state q of the energy game 〈Gi, w

′〉 (and it is the case of the al-
gorithm in [7,10]), then we can also obtain the minimum initial credit in the
energy parity game 〈G, p, w〉 by rounding v(q) to an integer, either up or down.
Therefore, computing the minimum initial credit in energy parity games can be
done in time O(|E| · d · |Q|d+3 ·W ).

Our results about the memory requirement of strategies, and the computational
and algorithmic complexity of energy parity games are summarized in Table 1.

6 Relationship with Mean-Payoff Parity Games

We show that there is a tight relationship between energy parity games and
mean-payoff parity games. The work in [8] shows that optimal4 strategies in
mean-payoff parity games may require infinite memory, though they can be de-
composed into several memoryless strategies. We show that energy parity games
are polynomially equivalent to mean-payoff parity games, leading to NP ∩ coNP
membership of the problem of deciding the winner in mean-payoff parity games,
and leading to an algorithm for solving such games which is conceptually much
simpler than the algorithm of [8], with essentially the same complexity (linear
in the largest weight, and exponential in the number of states only).

Theorem 4. Let 〈G, p, w〉 be a game, and let ε = 1
|Q|+1 . Player 1 has a winning

strategy in the mean-payoff parity game 〈G, p, w〉 if and only if player 1 has a
winning strategy in the energy parity game 〈G, p, w + ε〉.

Corollary 1. Given a mean-payoff parity game, whether player 1 has a winning
strategy from a state q0 can be decided in NP ∩ coNP.

Corollary 2. The problem of deciding the winner in mean-payoff parity games
can be solved in time O(|E| · d · |Q|d+3 ·W · (|Q|+ 1)).

Acknowledgements. We thank Thomas A. Henzinger and Barbara Jobstmann
for inspiring discussions, and Patricia Bouyer, Nicolas Markey, Jörg Olschewski,
and Michael Ummels for helpful comments on a preliminary draft.
4 A strategy is optimal if it is winning for ParityG(p)∩MeanPayoffG(ν) with the largest

threshold ν. It is known that the largest threshold is rational [8].
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