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Preface

ICALP 2010, the 37th edition of the International Colloquium on Automata,
Languages and Programming was held July 6-10, 2010 in Bordeaux, France.
ICALP is a series of annual conference of the European Association for Theo-
retical Computer Science (EATCS) which first took place in 1972, organized by
Maurice Nivat and his colleagues in Paris. This year, the program consisted of the
established track A, focusing on Algorithms, Complexity and Games, chaired by
Paul G. Spirakis; Track B, focusing on Logic, Semantics, Automata and Theory
of Programming, chaired by Samson Abramsky; Track C focusing this year on
Foundations of Networked Computation: Models, Algorithms and Information
Management, chaired by Friedhelm Meyer auf der Heide.

The three Program Committees received a total of 389 submissions: 222 for
Track A, 114 for Track B and 53 for Track C, written by authors from 45 different
countries. Of these, 60, 30 and 16, respectively, were selected for inclusion in the
scientific program. Each paper got on average 3.5 referee reports.

The Program also included six invited talks by Pierre Fraigniaud (CNRS and
Univ. Paris Diderot), Jean Goubault-Larrecq (ENS Cachan and LSV), Burkhard
Monien (Univ. Paderborn), Joel Ouaknine (Oxford Univ. Computing Lab.),
Roger Wattenhofer (ETH Zurich), and Emo Welzl (ETH Zurich).

These 112 contributed and invited papers are presented in two proceedings
volumes. The first contains the contributed papers of Track A and the invited
talks of Burkhard Monien and Emo Welzl. The second volume contains the
contributed papers of Tracks B and C as well as the invited talks of Pierre
Fraigniaud, Jean Goubault-Larrecq, Joel Ouaknine and Roger Wattenhofer.

The day before the main conference, five satellite workshops were held:
- AlgoGT : Workshop on Algorithmic Game Theory: Dynamics and Convergence
in Distributed Systems
- DYNAS 2010: International Workshop on DYnamic Networks: Algorithms and
Security
- ALGOSENSORS 2010: International Workshop on Algorithmic Aspects of
Wireless Sensor Networks
- SDKB 2010: Semantics in Data and Knowledge Bases
- TERA-NET: Towards Evolutive Routing Algorithms for Scale-Free/Internet-
Like Networks.

We wish to thank all the authors of submitted papers, all the members of
the three Program Committees for their scholarly effort and all 737 referees who
assisted the Program Committees in the evaluation process.

We are very pleased to thank INRIA for organizing the conference, LaBRI for
their collaboration, and the sponsors (Conseil Rgional d’Aquitaine, Communauté
Urbaine de Bordeaux, CEA, CNRS via the GDR IM, Total) for their strong
support. We are also very grateful to Ralf Klasing for chairing the workshop
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organization and to all the members of the Organizing Committee: Laëtitia
Grimaldi, Alice Rivière, Nicolas Bonichon, Pierre Casteran, Lionel Eyraud-Dubois
and Frédéric Mazoit.

It is also our great pleasure to acknowledge the use of the EasyChair confer-
ence management system, which was of tremendous help in handling the submis-
sion and refereeing processes as well as in intelligently assisting us in the design
of the final proceedings.

May 2010 Samson Abramsky
Cyril Gavoille

Claude Kirchner
Friedhelm Meyer auf der Heide

Paul G. Spirakis
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Hans L. Bodlaender
Tom Bohman
Beate Bollig

Vincenzo Bonifaci
Endre Boros
Prosenjit Bose
Xavier Boyen
Andreas Brandstadt
Mark Braverman
Patrick Briest
Yves Brise
Joshua Brody
Tian-Ming Bu
Niv Buchbinder
Harry Buhrman
Andrei Bulatov
Costas Busch
Jaroslaw Byrka



X Organization

Sergio Cabello
Christian Cachin
Jin-Yi Cai
Yang Cai
Ioannis Caragiannis
Benjamin Carle
Marco Cesati
Timothy M. Chan
Harish Chandran
Arkadev Chattopadhyay
Ioannis Chatzigiannakis
Chandra Chekuri
Hong-Bin Chen
Ning Chen
Xi Chen
Xujin Chen
Hong-Bin Chen
Andrew Childs
Tobias Christ
Giorgos Christodoulou
Vincent Conitzer
Stephen Cook
Colin Cooper
Jose Correa
Peter Damaschke
Samir Datta
Matei David
Ronald de Wolf
Erik D. Demaine
Camil Demetrescu
Luc Devroye
Gabriele Di Stefano
Ilias Diakonikolas
Martin Dietzfelbinger
Shlomi Dolev
Frederic Dorn
Laurent Doyen
Dominic Dumrauf
Martin Dyer
Alon Efrat
Charilaos Efthymiou
Omer Egecioglu
Friedrich Eisenbrand
Mourad El Ouali
Robert Elsaesser

Ioannis Z. Emiris
Matthias Englert
Leah Epstein
Jeff Erickson
Thomas Erlebach
Alex Fabrikant
Jittat Fakcharoenphol
Angelo Fanelli
Qizhi Fang
Michael Fellows
Stefan Felsner
Amos Fiat
Irene Finocchi
Matthias Fischer
Holger Flier
Luca Forlizzi
Dimitris Fotakis
Paolo Giulio Franciosa
Andrea Francke
Daniele Frigioni
Hiroshi Fujiwara
Martin Gairing
David Gamarnik
Bernd Gärtner
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Abstract. In this paper, we survey the research on the complexity of
computing locally optimal solutions. We revisit well-known and success-
ful local search heuristics and present results on the complexity of the
frequently used standard local search algorithm for various problems.
Here, our focus in on worst case, average case, and smoothed complexity
along with the existence of sequences of improving steps of exponential
length. For a more theoretical investigation, we revisit the framework
of PLS and mostly concentrate on the research on CongestionGames,
which sparked the interconnection between local search and game theory.
We conclude by stating various open problems.

1 Introduction

Optimization problems occur in many areas of everyday life. If we are at point A
and want to reach point B, we try to minimize the length of the path connecting
A and B. If we decide between several leisure time options – a football game,
visiting the theater or going to the casino – we try to maximize our personal
utility. When encountered by an optimization problem, we are mostly interested
in two measures: the quality of a solution and the time needed to find it. If the
utility that we expect by finding a (better) solution is greater than the expected
cost due to the time required to find it, then it is beneficial to search for a
(better) solution. In this respect, the estimation of the required time plays a
crucial role in the process of optimization.

For many optimization problems, it is known to be NP-complete to find a
global optimum. Since no polynomial time algorithm is known that computes
global optima for such problems, several approaches were developed to find at
least good solutions. For instance, approximation algorithms compute solutions
that have an objective function value which is not more than a predetermined
factor away from an optimum. Unfortunately, some problems in NP even resist
polynomial time approximation in the sense that the existence of a polynomial
time algorithm that computes an approximate solution would directly imply P
= NP . A popular approach to tackle those problems are (meta-)heuristics.
� This work is partially supported by German Research Foundation (DFG) Priority

Program 1307 Algorithm Engineering.
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Nearly all metaheuristics – local search, simulated annealing, evolutionary
algorithms, to name a few popular ones – compute from a given (population
of) solution(s) a new (population of) solution(s) and continue the computation
with the new one(s), whereby solutions with a higher quality with respect to
the objective function are preferred. In case of the local search approach the
preference is strict, i.e. the computation is only continued with strictly better
solutions. For convex optimization problems, this approach is most suitable since
local optima coincide with global optima in convex optimization problems. The
advantage of metaheuristics with non-strict preference for new solutions is that
the computation can escape local optima. This is mostly of use if local optima
are frequent in the solution space but of rather different quality with respect
to the objective function. However, the focus of this survey is the local search
approach and in particular the complexity of computing a local optimum.

Local search is one of the most frequently used approach to solve hard combi-
natorial optimization problems. Famous examples of successful application of lo-
cal search algorithms are the simplex method for solving linear programs, [9,64],
the k-opt heuristic for finding solutions of the Traveling Salesman Prob-

lem, [2], and the k-means algorithm for clustering objects, [18,30]. For further
information on local search, its complexity, and related problems we refer the
reader to [62,71,72].

Roadmap. The paper is organized as follows: Section 2 considers three combina-
torial optimization problems in which local search was most successfully applied
and discusses their complexity. Section 3 presents the class PLS, the concept of
tight reductions and its implications. We focus on PLS-complete problems in
Section 4, where we first survey the early works on fundamental combinatorial
optimization problems such as Satisfiability and the Traveling Salesman

Problem and then proceed by presenting an overview of recent results on Con-

gestionGames in the area of game theory. We conclude the paper by outlining
open problems.

2 Successful Applications of Local Search

In this section we consider three combinatorial optimization problems in which
local search celebrated its greatest practical successes, namely linear programs,
the traveling salesman problem, and the problem of clustering objects.

LinearPrograms. In a linear program the input is a matrix A and vectors
b, c and the task is to find a vector x maximizing cTx such that Ax ≤ b. Due to
the convexity of linear programs, local optima coincide with global optima which
emphasizes the use of local search in a natural way. In 1947, George Danzig, [16],
introduced the famous Simplex Algorithm which finds an optimum by starting
at a vertex of the polytope formed by the constraints Ax ≤ b and iteratively
hopping to better vertices with respect to cTx until an optimum is reached. Since
that time, the Simplex Algorithm was successfully applied to linear programs
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originating from a wide range of applications including scheduling problems,
production planning, routing problems, and game theory. Although the running
time of the simplex algorithm was already observed to be polynomial on “real-
world” instances, significant progress in speeding up the algorithm was achieved
since the end of the 1980s, [9].

In contrast to the low running time observed for practical instances the exis-
tence of exponentially long improving sequences raised interest in the early years
of the simplex method. For the steepest descent pivoting rule, linear programs
were constructed for which the simplex method takes an exponential number of
pivoting steps, [67]. For other pivot rules similar results were shown, [65,64]. On
the other hand, Kalai and Kleitman, [33], showed that for every initial solution
of a linear program with n inequalities and d variables the simplex algorithm is
at most nlog d+2 pivot steps away from a local optimum. This raises the ques-
tion whether it is possible to find this path efficiently. However, computing an
optimum point of a linear program is known to be in P since Khachiyan, [35], in-
troduced his Ellipsoid method which uses an approach different from local search.
Karmarker, [34], subsequently introduced the interior point method which also
needs polynomial time and even outperforms the simplex algorithm in some
practical applications.

Traveling Salesman Problem. In the TSP the input is an undirected
weighted complete graph and the output is a cycle of minimum weight that visits
all nodes of the graph. The probably most frequently used local search heuristic
for this problem is 2-OPT. It starts with an initial tour and iteratively improves
it by exchanging two edges of the tour by two different ones as long as such an
improving step is possible. For random and “real-world” Euclidean instances this
heuristic is known to compute very good tours within a sub-quadratic number
of improving steps, [31,55].

On the other hand, it was shown that there are instances and initial solutions
of TSP for which the k-opt heuristic for k ≥ 2 can take exponentially many
improving steps, [12,43]. However, these instances did not fulfill the triangle
inequality and the question whether such instances can be constructed for the
metric TSP remained open for a long time. Finally, Englert et al. [21] found
Euclidean instances for which the 2-opt heuristic can take exponentially many
improving steps.

Clustering. The problem of clustering asks for a partition of a set of data into
subsets (the clusters) such that some given measure for the similarity within
the clusters is maximized. The problem of clustering occurs in many applica-
tions including pattern recognition, data compression, and load balancing and
depending on the application in different forms. A well studied algorithm for
clustering points in the Euclidean space is the k-means algorithm. It starts with
an initial set of k centers for the clusters, whereby each data points is assigned
to the closest center. Then, it improves the solution by repeatedly performing
the following two steps. At first, for each cluster a new center is defined as
the average of all points of the cluster, i.e. the “mean”, and then all points are
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assigned to the cluster represented by the closest of the new center points. Note
that in each improving step the sum of the distances of the data points to
their corresponding closest center, which can be treated as a potential function,
decreases. We remark that in the Euclidean space such an improving step of the
k-means algorithm is uniquely determined.

For the k-means algorithm the number of steps was observed to be linear
in the number of data points on practical instances, [18]. And similarly as for
the two previously mentioned famous problems there are instances and initial
solutions of the clustering problem for which the k-means algorithm takes an
exponential number of improving steps to converge, [66].

2.1 Randomized Instances and Smoothed Complexity

For many years, it was observed that the running time of local search algorithms,
and in particular the simplex method, on most instances occurring in practical
applications was very low. Inspired by this observation, the complexity of the
simplex algorithm was considered for many distributions of random inputs and
shown to be in expected polynomial time, [5,10,61]. The same observation was
made for the 2-opt heuristic for computing solutions of the TSP on random
instances in the unit hypercube, [12]. However, as for the constructed inputs for
which an exponential number of improving steps are possible, it can be argued
that the random instances may have certain properties that do not reflect the
properties of real-world instances.

To understand why the running time is polynomial on so many real-world
instances, Spielmann and Teng, [63], introduced the notion of smoothed com-
plexity which measures the expected running time of an algorithm under small
random perturbations of the input. They showed that the simplex algorithm for
linear programs has polynomial smoothed complexity. Subsequently, the notion
of smoothed complexity was adapted for algorithms of various other problems
including other local search algorithms. The smoothed complexity of the 2-opt
heuristic for Euclidean instances was shown to be polynomial, [21]. And in a re-
cent paper the k-means algorithm was also shown to have polynomial smoothed
complexity, [7].

3 PLS, Tight Reductions, and Completeness

The fundamental definitions of a PLS-problem, the class PLS, and tight PLS-
reductions were introduced by Johnson, Papadimitriou, Schäffer, and Yannakakis,
[32,49,57]. In the following definitions, we assume that all elements of all occur-
ring sets are encoded as binary strings of finite length.

A local search problem Π consists of a set of instances I, a set of feasi-
ble solutions FΠ(I) for every instance I ∈ I, where the length of every solu-
tion is bounded by a polynomial in the length of I, and an objective function
f : FΠ(I) → �. In addition, every solution s ∈ FΠ(I) has a neighborhood
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NΠ(s, I) ⊆ FΠ(I). For an instance I ∈ I, the problem is to find a solution
s ∈ FΠ(I) such that for all s′ ∈ NΠ(s, I) solution s′ does not have a greater
value than s with respect to f in case of maximization and not a lower value in
case of minimization.

A local search problem Π is in the class PLS, [32], if the following three poly-
nomial time algorithms exist: algorithm InitΠ(I) computes for every instance
I ∈ I a feasible solution s ∈ FΠ(I), algorithm CostΠ(I, s) computes for every
I ∈ I and s ∈ FΠ(I) the value f(s), and algorithm ImproveΠ(s, I) returns for
every I ∈ I and s ∈ FΠ(I) a better neighbor solution s′ ∈ NΠ(s, I) if there is
one and “locally optimal” otherwise.

Locally optimal solutions can be found non-deterministically in polynomial
time by first guessing a feasible solution and subsequently verifying local opti-
mality. It is known that if a PLS-problem L is NP-hard, then NP is closed
under complement, [32].

Consider the following simple minimization PLS-problem Exp: Instances are
natural numbers n ∈ �, encoded as a binary string. The set of feasible solutions
consists of all binary strings {0, 1}n. The cost of a solution is the natural number
the binary string represents and the single neighbor is the natural number the
binary string represents minus one; the neighborhood of the all-zero vector is
empty. Starting with the all-one vector, it is obvious to see that every sequence
of improving steps requires exponentially many steps to reach the locally optimal
all-zero vector.

Definition 1. We say that a PLS-problem has the all-exp property if there
exists an instance I and an initial feasible solution for I that is exponentially
many improving steps away from any local optimum. A sequence has exponential
length if its number of improving steps is at least 2

k
√
|I| for some k ∈ �. A

PLS-problem has the is-exp property if there exist instances such that there is
a sequence of improving steps of exponential length.

Note that by definition, the class all-exp is closed under polynomial reductions.
Furthermore, problems for which each solution has at most one better neighbor
solution the is-exp property directly implies the all-exp property, in particular
this is the case for the problem Exp and the clustering problem with neighbor-
hood superimposed by the k-means algorithm. Remarkably, for the combinatorial
optimization problems where local search was applied in practice as outlined in
Section 2 the is-exp property was shown but not the all-exp property.

The standard algorithm problem is, for given instance I of PLS-problem L and
some feasible solution s ∈ FL(I), to compute a local optimum s� ∈ FL(I) which
is reachable from s by successive improvements. There exists a PLS-problem
whose standard algorithm problem is PSPACE-complete, [49,70].

A problem Π ∈ PLS is PLS-reducible to another problem Π ′ ∈ PLS (writ-
ten Π ≤pls Π ′) if the following polynomial time computable functions Φ and Ψ
exist. The function Φ maps instances I of Π to instances of Π ′ and Ψ maps pairs
(s, I), where s is a solution of Φ(I), to solutions of I, such that for all instances
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I of Π and local optima s� of Φ(I) the solution Ψ(s�, I) is a local optimum of
I. Finally, a problem Π ∈ PLS is PLS-complete if every problem in PLS is
PLS-reducible to Π . In a nutshell, a PLS-reduction is tight if all sequences of
improving steps in the reduced instance correspond to sequences of improving
steps in the original problem whose length may only be increased by introducing
intermediate solutions. For a formal definition, confer Papadimitriou et al., [49].

The concept of PLS-completeness is in line with the general use of com-
pleteness in complexity theory. In this case, the concept entails that if some
PLS-complete problem is polynomial-time solvable, then all problems in the
class PLS are polynomial-time solvable. Tight reductions are of special interest,
since they preserve the PSPACE-completeness of the standard algorithm prob-
lem, [49,70], as well as the all-exp property, [32]. Note that tight reductions are
transitive. This allows to define the tight PLS-completess of PLS-problems re-
cursively: PLS-problem Circuit/Flip is tight PLS-complete—we will justify
this in Section 4.1. A PLS-problem B is tight PLS-complete if there exists a
tight PLS-reduction A ≤pls B for some tight PLS-complete problem A. Let us
remark that linear programming with the simplex neighborhood does not have
the all-exp property, [33], and is therefore not tight PLS-complete.

4 PLS-Complete Problems

In this section, we first focus on results for the fundamental problem Cir-

cuit/Flip. We continue by presenting results for the Traveling Salesman

Problem, MaxCut, and Satisfiability. Most of these pioneering results are
from Johnson, Papadimitriou, and Yannakakis, [32,49], or from Schäffer and
Yannakakis, [57,70]. We close by surveying recent results from game theory con-
sidering the complexity of computing pure Nash equilibria. For further known
PLS-complete problems, we refer the reader to [6,11,36,37,49,53,59,69]. For a
general overview, confer the books of Aarts et al., [1], and Aarts and Lenstra, [2],
of which the first one contains a list of PLS-complete problems known so far.
Unless otherwise mentioned, for the remainder of this section, we assume that
all numbers are integers.

4.1 Early Results

The early results in the field of PLS were motivated by developing a theoreti-
cal framework to investigate the successful local search algorithms presented in
Section 2. The main focus was on the complexity of computing a locally optimal
solution for well-known hard combinatorial optimization problems.

Circuit/Flip. The first and generic PLS-problem which was proven to be
PLS-complete is Circuit/Flip, [32]. In the Circuit/Flip problem, the task
is to find a binary input vector for a given feedback-free boolean circuit S such
that the output vector, treated as a binary number, cannot be increased by
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flipping a single input bit. The hardness proof given by Johnson, Papadimitriou,
and Yannakakis, [32], involves three intermediate reductions: First, they reduce
an arbitrary given problem L ∈ PLS to an intermediate problem L′ which only
differs from L by each solution s ∈ FL(I) (a binary string of length p(|I|)) in
each instance I ∈ L having at most one neighbor. For this, the single neighbor
of s is defined to be the output of ImproveL(s, I); call the resulting instance
I ′ and the problem L′. Secondly, they reduce to a PLS-problem L′′ which has
the set of solutions of L′, but every bit string of length p(|I|) is now a feasible
solution and two solutions are mutual neighbors if they differ in a single bit.
Note that this exactly matches the neighborhood structure of Circuit/Flip.
The cost function is defined such that every minimum length sequence of bitflips
between two solutions s, t ∈ FL′(I ′) yields an improving path s� t if and only if
t = NL′(s, I ′). The crucial idea here is to assign each intermediate solution u on
each such minimum length sequence s� t the cost of t scaled by some factor plus
the Hamming distance between u and t. The final reduction to Circuit/Flip

simply involves constructing a feedback-free boolean circuit which computes the
cost function of I ′′. For all technical details, we refer the reader to the original
paper, [32].

Notably, this reduction is tight, [49]. Hence, exponentially long sequences of
improving steps from initial feasible solutions in PLS-problem Exp are preserved
by the reduction and subsequently Circuit/Flip possesses the all-exp property.
Furthermore, the tightness of the reduction implies that the standard algorithm
problem for Circuit/Flip is PSPACE-complete, since the PLS-problem whose
standard algorithm problem is PSPACE-complete can be directly simulated us-
ing Circuit/Flip. By definition, Circuit/Flip is tight PLS-complete. Hence,
problems shown to be tight PLS-complete via a sequence of tight reductions
from Circuit/Flip are again tight PLS-complete, implying these problems
possess the all-exp property and their standard algorithm problem is PSPACE-
complete.

Traveling Salesman Problem. As outlined in Section 2, local search algo-
rithms have been applied with huge success to compute approximate solutions
for the Traveling Salesman Problem on random Euclidean instances, [31].
On the negative side, computing a locally optimal solution with respect to the
Lin-Kernighan heuristic (confer Johnson and McGeoch, [31], for an exact defi-
nition), [42], is PLS-complete, [49,50], such as finding a locally optimal solution
for the Traveling Salesman Problem where the neighborhood structure is
superimposed by the well-known k-OPT heuristic, [41], for some k � 1, 000, [38].
In the k-OPT neighborhood, two solutions are mutual neighbors if they differ in
at most k edges.

MaxCut. For an undirected graph G = (V,E) with weighted edges w : E → �,
a cut is a partition of V into two sets V1, V2. The weight of the cut is the sum
of the weights of the edges connecting nodes between V1 and V2. The MaxCut-
problem asks for a cut of maximum weight and the problem is known to be tight
PLS-complete, [57]. Let us remark that in the reduction, the maximum degree
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of the nodes in the graph is required to be unbounded. If the maximum degree
in the input graph is at most three, then there are at most quadratically many
improving steps, [52]. Hence, local optima can be computed in polynomial time
via successive improvements. This does no longer hold for graphs with maximum
degree four, as it was recently shown that MaxCut has the all-exp property,
even on graphs with maximum degree four, [47].

Satisfiability. In their seminal paper, Johnson, Papadimitriou, and Yan-
nakakis conjecture that for a problem to be PLS-complete, the problem of veri-
fying local optimality is required to be P-complete. Krentel, [39], disproves this
conjecture by showing that a weighted natural local search version of Satisfi-

ability (confer problem [L01] in Garey and Johnson, [27], for a formal defini-
tion) is PLS-complete, though the problem of verifying local optimality can be
solved in Logspace. For problems similar to Satisfiability, stronger results
can be shown. The Maximum Constraint Assignment-problem is a natu-
ral local search version of weighted, GeneralizedSatisfiability (confer [L06]
in Garey and Johnson, [27] for a formal definition), extended to higher valued
variables in constraints. Here, constraints map assignments for variables to inte-
gers. Additional parameters in (p, q, r)-MCA simultaneously limit the maximum
number of variables p each constraint depends upon, the maximum appearance
q of each variable and its valuedness r. The problem (4,3,3)-MCA is known
to be PLS-complete and this result can be extended to Satisfiability over
binary variables for some fixed maximum clause length p and maximum appear-
ance q of a variable, [38]. Furthermore, Positive-Not-All-Equal-2-Flip, a
reformulation of MaxCut, is known to be PLS-complete along with Maxi-

mum 2-Satisfiability, [57]. For any generalized Satisfiability local search
problem, a dichotomy theorem states that the problem is either in P or PLS-
complete, [13].

4.2 Recent Results and the Connection to Game Theory

Recently, the field of local search has attracted additional attention from game
theory considering the complexity of computing a pure Nash equilibrium. In this
chapter, we only consider pure Nash equilibria; thus, we omit pure for sake of
readability. In a Nash equilibrium, no player can unilaterally deviate and strictly
decrease his private cost. This gives rise to a simple dynamics to compute Nash
equilibria, known as Nash dynamics : In each round, a single player is allowed
to perform a selfish step, i.e., unilaterally change his strategy and strictly im-
prove his private cost; the dynamics terminates once no such player exists. In the
special dynamics known as best-response dynamics, each player selects a strat-
egy which maximizes the decrease of his private cost. Proving the existence of
Nash equilibria for classes of games is usually done using some potential func-
tion argument. A potential function maps every state of the game to a positive
integer such that every selfish step of each player decreases the potential func-
tion. Local optima of potential functions then coincide with Nash equilibria. In
case of polynomial time computable potential functions, the problem of finding
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a Nash equilibrium can be formulated as a PLS-problem, where the neighbor-
hood structure is superimposed by the Nash dynamics. In this subsection, we
survey results considering the complexity of computing a Nash equilibrium in
CongestionGames. For PLS-completeness results in other games, we refer the
reader to [3,20,28].

The Class of Congestion Games. Inspired by road traffic and more recently the
internet, the class of CongestionGames has been under severe scrutiny for the
last years. CongestionGames are games where n weighted users myopically
select strategies si from their set of strategies Si (subsets of the set of shared
resources R) such that their individual delay on all resources in the current
strategy profile s = (s1, . . . , sn) is minimized. Here, the individual delay of a
player is the sum of the delays on each resource the player is using. The delay on
resource r ∈ R is the value of the delay function dr : � 	→ � for the sum of the
weights of the players using the resource. A congestion game is unweighted, if the
weights of all players are equal. In this case, nr(s) denotes the number of players
using resource r ∈ R in strategy profile s. In network congestion games, the set of
strategies for each player corresponds to all his source-sink paths. A congestion
game is symmetric if all players have the same set of strategies and asymmetric
otherwise. Unweighted congestion games are known to possess an exact potential
function Φ(s) =

∑
r∈R

∑nr(s)
i=1 dr(i), [56], hence, computing a Nash equilibrium

can be formulated as finding a minimum of the potential function. Note that if
all delay functions are polynomials, then the Nash dynamics converges after at
most a polynomial number of iterations.

Unweighted Congestion Games. First, we consider unweighted congestion games.
In their seminal paper, Fabrikant et al., [22], settle the complexity of computing
a Nash equilibrium. Finding a Nash equilibrium in symmetric network conges-
tion games is polynomial time solvable by reduction to the min-cost-flow prob-
lem, [22]. Computing a Nash equilibrium in symmetric congestion games and
in asymmetric network congestion games is tight PLS-complete; hence, these
games possess the all-exp property, [22]. Notably, neither the numbers of players
nor the number of resources is bounded in both reductions. Despite the poly-
nomial time computability of Nash equilibria in symmetric network congestion
games, an asymmetric network congestion game having the all-exp property can
be embedded; hence, the class of symmetric network congestion games possess
the all-exp property, [3]. The PLS-completeness result for asymmetric network
congestion games was refined to hold for undirected networks even if all latency
functions are linear, including an elegant proof for the PLS-completeness of di-
rected asymmetric network congestion games, [3]. If the strategy space of each
player consists of the bases of a matroid over the set of resources, then Nash
equilibria can be efficiently computed using a the best-response Nash dynamics.
The matroid property is a sufficient and necessary condition on the combina-
torial structure of the players’ strategy spaces to guarantee fast convergence to
Nash equilibria, [3]. On the other hand, if the strategies of a congestion game



10 B. Monien, D. Dumrauf, and T. Tscheuschner

fulfill a so called (1,2)-exchange property, then the problem of finding a Nash
Equilibrium has the is-exp property, [3].

Approximate Nash Equilibria in Congestion Games. Since in many cases, the
computation of Nash equilibria is as hard as finding a local optimum for any
problem in PLS, one might hope that the computation of approximate Nash
equilibria yields a significant performance improvement. A δ-approximate Nash
equilibrium is a strategy profile in which no player can unilaterally improve his
delay by a factor of at least δ. The existence of a δ-approximate Nash equi-
librium is guaranteed by Rosenthal’s potential function and may be computed
by adapting the Nash dynamics to now incorporate unilateral deviations which
improve the delay of the deviating player by a factor of at least δ. The hope for
an efficient computation of δ-approximate Nash equilibria might be additionally
fueled by the existence of an FPTAS for finding approximate local optima for
all linear combinatorial optimization problem in PLS, [48]. In particular, the
authors provided a rule of choosing improving steps that lead to an approximate
solution within a polynomial number of steps. Unfortunately this notion of ap-
proximation is not sufficient for approximate Nash equilibria, since each selfish
player is ignorant of the potential function. There might be solutions which are
up to a factor of δ close to a local optimum considering the potential function,
but a single player might still have an incentive of δ or more to unilaterally
deviate.

As outlined above, if all delay functions are polynomials, then Nash equilibria
can be efficiently computed. The question arises to which extent the delay func-
tions can be generalized such that polynomial time convergence to approximate
Nash equilibria is still guaranteed. A congestion game satisfies the α-bounded
jump condition, if for every resource with at least one player, the addition of
a single player increases the delay by at most a factor of α. Note that delay
functions satisfying the α-bounded jump condition are more general than poly-
nomial delay functions, but not exponential. This condition does not trim the
inherent complexity of congestion games, as finding a Nash equilibrium in sym-
metric congestion games satisfying the α-bounded jump condition with α = 2 is
PLS-complete, [15]. On the other hand, computing a δ-approximate Nash equi-
librium in symmetric congestion games, where each edge satisfies the α-bounded
jump condition, is polynomial time computable, since the sequence of slightly
restricted δ-selfish steps converges within a number of steps that is polynomial in
the number of players, α, and δ−1. The problem of computing a Nash equilibria
in an asymmetric congestion games satisfying the α-bounded jump condition via
δ-best improvement steps possess the all-exp property, [60]. Hence, the positive
result is restricted to symmetric congestion games. Computing a δ-approximate
Nash equilibrium in arbitrary congestion games is PLS-complete, for every poly-
nomial time computable approximation factor δ, [60]. As this reduction is tight,
the problem of computing a δ-approximate Nash equilibrium in arbitrary con-
gestion games has the all-exp property.

Player-Specific (Singleton) Congestion Games. Now, we turn our attention to
a variation of congestion games known as congestion games with player-specific
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latency functions, originally introduced by Milchtaich, [45]. While in congestion
games, all players share the same delay function for a resource, player-specific
delay functions rather emphasize the players’ personal preferences for certain
resources. Note that this setting also allows to model that each player may only
use a certain subset of the resources. In the model of singleton games, every
strategy of each player consists of a single resource. These games are a subclass
of network congestion games, where players route their demand through a simple
network of parallel edges between two nodes s and t.

First, we consider singleton congestion games with player-specific latency
functions. In general, unweighted singleton congestion games with player-specific
delay functions possess Nash equilibria, but may not necessarily have a poten-
tial function, even in the case of three players, [45]. Moreover, this result is tight
since in the case of two players, the Nash dynamics converges, [45]. In the case
of weighted players and player-specific non-decreasing latency functions, Nash
equilibria might not exist for games with three players, [45]. Unweighted sin-
gleton congestion games with player-specific linear delay functions without a
constant term possess a potential function and hence Nash equilibria, [26]. This
result does not extend to player-specific linear delay functions. Concatenations of
two unweighted singleton congestion possess Nash equilibria, [46], but may not
necessarily have a potential function, [26]. The special class of unweighted sin-
gleton congestion games with player-specific constants, where all player-specific
delay functions are composed of a common resource-specific delay function, but
each player may have a player-specific constant for the particular resource, pos-
sesses a potential function, [44]. Computing a Nash equilibrium in a symmetric
network congestion game with player-specific constants is PLS-hard, [44]. Re-
stricted congestion games are congestion games with player-specific constants
zero or infinity. For restricted network congestion games with three players,
finding a Nash equilibrium is PLS-complete, [4]. On the other hand, computing
Nash equilibria in restricted singleton congestion games can be efficiently done
if all delay function are the identity function, [25]. Notably, all delay functions
are required to be the identity function; for arbitrary linear delay functions, the
complexity is unknown.

Singleton Congestion Games. Here, we only consider games where for each re-
source, all players share the same latency function. In case all latency func-
tions are non-decreasing, Nash equilibria are guaranteed to exist, [56]. If all
latency functions are linear, then Nash equilibria can be efficiently computed
using Graham’s LPT algorithm, [24,29]. Notably, these games also possess the
is-exp property, even for the best-response Nash dynamics, [23]. The simplicity
of the network seems in most cases to allow for efficient algorithms to compute
Nash equilibria, but the situation somewhat changes, once weighted players may
form arbitrary non-fixed coalitions. If players may form such coalitions of size
at most 8 and in each improving step of a coalition, the maximum cost of its
members decreases, then computing a Nash equilibrium is PLS-complete, [19].

Related: Equilibrium search and PPAD. In the previous sections we have seen
that the search for Nash Equilibria in CongestionGames can be treated as a
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local search problem because Rosenthal’s potential function provides a measure
by which Selfish Steps become improving steps with respect to the potential.
However, there are famous problems which ask for a Nash Equilibrium of a
strategic game for which no such potential function is known. Among them is
Bimatrix, i.e. the problem of computing a Nash Equilibrium of a 2-player game
with rational utilities for the players.

An algorithm that computes a Nash Equilibrium for 2-player games was al-
ready developed in 1964 by Lemke and Howson, [40], which works similarly to the
simplex algorithm and is comparably successful in practical application. How-
ever, it was shown that there are 2-player games, for which the Lemke-Howson
algorithm even in the best case takes an exponential number of steps before
reaching a Nash Equilibrium, [54]. Motivated by proofs that show the existence
of solutions via the lemma that “every graph has an even number of odd degree
nodes” Papadimitriou invented the complexity class PPAD, [51]. The problems
in this class are defined via implicitly given, exponentially large directed graphs
consisting of directed paths, cycles, and single nodes, where one artificial source
is known. The problems asks for an endpoint of a path, i.e. a source or a sink,
that is different from the artificial source. Already in [58] it was shown that the
possible steps of the Lemke-Howson algorithm induce a graph with the above
properties and therefore Bimatrix ∈ PPAD, [68].

Significant progress in the classification of the complexity of computing a
Nash Equilibrium for games with a finite number of players was achieved by
Daskalakis, Goldberg, and Papadimitriou, [17], who showed that computing a
Nash Equilibrium for four-player games is PPAD-hard. Using their construction
Chen, Deng, and Teng, [14], even showed that Bimatrix is PPAD-complete.
However, as for congestion games, the approximation of Nash Equilibria of 2-
player games appears no easier than the computation of a Nash Equilibrium
itself since the existence of an FPTAS would imply that PPAD is in P , [14].
For further readings on results related to PPAD, we refer the reader to the
survey by Yannakakis, [72].

5 Open Problems

In this section, we present an excerpt of additional open problems, besides the
ones we presented in the course of this paper. We categorize them as problems
from combinatorial optimization, game theory, and smoothed complexity.

Combinatorial Optimization. As outlined in Section 4.1, several hardness results
have been established for PLS-problems arising from classical combinatorial op-
timization. While these results show that the problems are PLS-complete for
general instances, the exact bounds on the PLS-complexity of the problems
are still unknown. For MaxCut, we outlined in Section 4.1 that the problem
is PLS-complete for unbounded degree and polynomial time solvable for max-
imum degree three. While the result of Krentel, [38], implies that MaxCut is
PLS-complete for some fixed maximum degree, the minimum degree required for
the problem to be PLS-compete is still unknown. Similarly, for the Traveling
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Salesman Problem where the neighborhood structure is superimposed by the
well-known k-OPT algorithm, [41], the only published results imply the PLS-
completeness for k � 1, 000. The exact complexity for 2 ≤ k 
 1, 000 is still
unsettled. For the fundamental Maximum Constraint Assignment-problem,
there remains a gap between known PLS-completeness results for (4, 3, 3)-MCA

and (2, 2, ·)-MCA, which can be solved in polynomial time. Considering the sim-
plex algorithm, the question arises, if there exists a pivot rule which guarantees
a polynomially upper bounded number of steps of the simplex algorithm.

Game Theory. Section 4.1 outlines that except for special cases, general Con-

gestionGames are PLS-complete. For a thorough understanding, determin-
ing the source of the inherent complexity would be beneficial. To this extent,
the impact of the players, the resources, and their mutual interaction on the
hardness are yet to be determined. For example, the exact complexity of Con-

gestionGames with a finite number of players is still unknown. As outlined in
Section 4.2, results only exist for the case of restricted network congestion games.
In the simplest model of restricted singleton congestion games and arbitrary non-
decreasing latency functions, no results are known, considering the complexity
of computing a Nash equilibrium. Turning to approximation, the complexity of
computing δ-approximate Nash equilibria for symmetric CongestionGames,
which do not satisfy some smoothness condition is still unsettled. Turning to
coalitions in the symmetric singleton congestion game model, there remains a
gap on the complexity of computing a Nash equilibrium. For coalitions of size
one, the problem is known to be computable in polynomial time, while if users
may form arbitrary non-fixed coalitions of size at least eight, the problem be-
comes PLS-complete.

Smoothed Complexity. PLS-completeness implies that computing locally op-
timal solutions for PLS-complete problem is as hard as computing a locally
optimal solution for any problem in the class PLS. While loosely speaking, this
states that there exist instances on which local search algorithms take expo-
nential time, what is the smoothed complexity of PLS-complete problems? Let
us remark that smoothed complexity results only exist for problems from Sec-
tion 2; for all other problems outlined in this survey, especially MaxCut and
CongestionGames we are not aware of any results considering their smoothed
complexity.

What’s There to Take Home? Local search is a standard approach to approxi-
mate solutions of hard combinatorial optimization which has proven to be suc-
cessful in a wide range of areas over the last decades. The framework of PLS
was introduced to theoretically investigate the complexity of local search prob-
lems and drew additional attention from game theory in recent years. In gen-
eral, our knowledge about the class PLS is currently rather limited and by far
not comparable with the rich knowledge which we have about the class NP .
As we have outlined in the course of this paper, the complexity of a handful of
PLS-problems has been settled; for numerous other problems, determining their
complexity remains tantalizingly open.
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Abstract. We consider the question: “What is the smallest degree that
can be achieved for a plane spanner of a Euclidean graph E?” The best
known bound on the degree is 14. We show that E always contains a
plane spanner of maximum degree 6 and stretch factor 6. This spanner
can be constructed efficiently in linear time given the Triangular Distance
Delaunay triangulation introduced by Chew.

1 Introduction

In this paper we focus on the following question:

“What is the smallest maximum degree that can be achieved for plane
spanners of the complete, two-dimensional Euclidean graph E?”

This question happens to be Open Problem 14 in a very recent survey of plane
geometric spanners [BS]. It is an interesting, fundamental question that has
curiously not been studied much. (Unbounded degree) plane spanners have been
studied extensively: obtaining a tight bound on the stretch factor of the Delaunay
graph is one of the big open problems in the field. Dobkin et al. [ADDJ90]
were the first to prove that Delaunay graphs are (plane) spanners. The stretch
factor they obtained was subsequently improved by Keil & Gutwin [KG92] as
shown in Table 1. The plane spanner with the best known upper bound on the
stretch factor is not the Delaunay graph however, but the TD-Delaunay graph
introduced by Chew [Che89] whose stretch factor is 2 (see Table 1). We note
that the Delaunay and the TD-Delaunay graphs may have unbounded degree.

Just as (unbounded degree) plane spanners, bounded degree (but not nec-
essarily planar) spanners of E have been well studied and are, to some extent,
well understood: it is known that spanners of maximum degree 2 do not exist
in general and that spanners of maximum degree 3 can always be constructed
(Das & Heffernan [DH96]). In recent years, bounded degree plane spanners have
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Table 1. Results on plane spanners with maximum degree bounded by Δ

paper Δ stretch factor

Dobkin et al. [ADDJ90] ∞ π(1+
√

5)
2

≈ 5.08
Keil & Gutwin [KG92] ∞ C0 = 4π

√
3

9
≈ 2.42

Chew [Che89] ∞ 2
Bose et al. [BGS05] 27 (π + 1)C0 ≈ 10.016
Li & Wang [LW04] 23 (1 + π sin π

4
)C0 ≈ 7.79

Bose et al. [BSX09] 17 (2 + 2
√

3 + 3π
2

+ 2π sin( π
12

))C0 ≈ 28.54
Kanj & Perković [KP08] 14 (1 + 2π

14 cos( π
14 )

)C0 ≈ 3.53

This paper: Section 3 9 6
This paper: Section 4 6 6

been used as the building block of wireless network communication topologies.
Emerging wireless distributed system technologies such as wireless ad-hoc and
sensor networks are often modeled as proximity graphs in the Euclidean plane.
Spanners of proximity graphs represent topologies that can be used for efficient
unicasting, multicasting, and/or broadcasting. For these applications, spanners
are typically required to be planar and have bounded degree: the planarity re-
quirement is for efficient routing, while the bounded degree requirement is due
to the physical limitations of wireless devices.

Bose et al. [BGS05] were the first to show how to extract a spanning subgraph
of the Delaunay graph that is a bounded-degree, plane spanner of E . The maxi-
mum degree and stretch factor they obtained was subsequently improved by Li
& Wang [LW04], Bose et al. [BSX09], and by Kanj & Perković [KP08] (see all
bounds in Table 1). The approach used in all of these results was to extract a
bounded degree spanning subgraph of the classical Delaunay triangulation. The
main goal in this line of research was to obtain a bounded-degree plane spanner
of E with the smallest possible stretch factor.

In this paper we propose a new goal and a new approach. Our goal is to
obtain a plane spanner with the smallest possible maximum degree. We believe
this question is fundamental. The best known bound on the degree of a plane
spanner is 14 [KP08]. In some wireless network applications, such a bound is
too high. Bluetooth scatternets, for example, can be modeled as spanners of E
where master nodes must have at most 7 slave nodes [LSW04].

Our approach consists of two steps. We first extract a maximum degree 9 span-
ning subgraph H2 from Chew’s TD-Delaunay graph instead of the classical Delau-
nay graph. Graph H2 is a spanner of the TD-Delaunay graph of stretch factor 3,
and thus a spanner of E of stretch factor 6. With this fact, combined with a recent
result of [BGHI10], we derive en passant the following: Every Θ6-graph contains
a spanner of maximum degree 6 that has stretch factor 3. Secondly, by the use of
local modifications of H2, we show how to decrease the maximum degree from 9
to 6 without increasing the maximum stretch while preserving planarity.

Our approach leads to a significant improvement in the maximum degree of
the plane spanner, from 14 down to 6 (see Table 1). Just as the Delaunay graph,
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the TD-Delaunay graph of a set of n points in the plane can be computed in time
O(n log n) [Che89]. Given this graph, our final spanner H4 can be constructed
in O(n) time. We note that our analysis of the stretch factor of the spanner is
tight: we can place points in the plane so that the resulting degree 6 spanner
has stretch factor arbitrarily close to 6.

2 Preliminaries

Given points in the two-dimensional Euclidean plane, the complete Euclidean
graph E is the complete weighted graph embedded in the plane whose nodes are
identified with the points. In the following, given a graph G, V (G) and E(G)
stand for the set of nodes and edges of G. For every pair of nodes u and w,
we identify with edge uw the segment [uw] and associate an edge length equal
to the Euclidean distance |uw|. We say that a subgraph H of a graph G is a
t-spanner of G if for any pair of vertices u, v of G, the distance between u and
v in H is at most t times the distance between u and v in G; the constant t is
referred to as the stretch factor of H (with respect to G). We will say that H is
a spanner if it is a t-spanner of E for some constant t.

A cone C is the region in the plane between two rays that emanate from the
same point. Let us consider the rays obtained by a rotation of the positive x-
axis by angles of iπ/3 with i = 0, 1, . . . , 5. Each pair of successive rays defines a
cone whose apex is the origin. Let C6 = (C2, C1, C3, C2, C1, C3) be the sequence
of cones obtained, in counter-clockwise order, starting from the positive x-axis.
The cones C1, C2, C3 are said to be positive and the cones C1, C2, C3 are said to
be negative. We assume a cyclic structure on the labels so that i+1 and i−1 are
always defined. For a positive cone Ci, the clockwise next cone is the negative
cone Ci+1 and the counter-clockwise next cone is the negative cone Ci−1.

For each cone C ∈ C6, let 	C be the bisector ray of C (in Figure 1, for example,
the bisector rays of the positive cones are shown). For each cone C and each point
u, we define Cu := {x+ u : x ∈ C}, the translation of cone C from the origin to
point u. We set Cu

6 := {C + u : C ∈ C6}, the set of all six cones at u. Observe
that w ∈ Cu

i if and only if u ∈ C
w

i .
Let v be a point in a cone Cu. The projection distance from u to v, denoted

dP (u, v), is the Euclidean distance between u and the projection of v onto 	Cu .

C1

C1

�C1

C3

�C3

C2
C3

�C2

C2

Fig. 1. Illustration of notations used for describing cones. Positive cones are white and
negative cones are grey. Bisector rays of the three positive cones are shown.



22 N. Bonichon et al.

For any two points v and w in Cu, v is closer to u than w if and only if dP (u, v) <
dP (u,w). We denote by parenti(u) the closest point from u belonging to cone Cu

i .
We say that a given set of points S are in general position if no two points of

S form a line parallel to one of the rays that define the cones of C6. For the sake
of simplicity, in the rest of the paper we only consider sets of points that are in
general position. This will imply that it is impossible that two points v and w
have equal projective distance from another point u. Note that, in any case, ties
can be broken arbitrarily when ordering points that have the same distance (for
instance, using a counter-clockwise ordering around u).

Our starting point is a geometric graph proposed in [BGHI10]. It represents
the first step of our construction.

Step 1. Every node u of E chooses parenti(u) in each non-empty cone Cu
i . We

denote by H1 the resulting subgraph.

While we consider H1 to be undirected, we will refer to an edge in H1 as outgoing
with respect to u when chosen by u and incoming with respect to v = parenti(u),
and we color it i if it belongs to Cu

i . Note that edge uv is in the negative cone
C

v

i of v.

Theorem 1 ([BGHI10]). The subgraph H1 of E:

– is a plane graph such that every face (except the outerface) is a triangle,
– is a 2-spanner of E, and
– has at most one (outgoing) edge in every positive cone of every node.

Note that the number of incoming edges at a particular node of H1 is not
bounded.

In our construction of the subsequent subgraph H2 of H1, for every node u
some neighbors of u will play an important role. Given i, let childreni(u) be
the set of points v such that u = parenti(v). Note that childreni(u) ⊆ C

u

i . In
childreni(u), three special points are named:

– closesti(u) is the closest point of childreni(u);
– firsti(u) is the first point of childreni(u) in counter-clockwise order starting

from x axis;
– lasti(u) is the last point of childreni(u) in counter-clockwise order starting

from x axis.

Note that some of these nodes can be undefined if the cone C
u

i is empty. Let
(u, v) be an edge such that v = parenti(u). A node w is i-relevant with respect

to (wrt) u if w ∈ C
v

i = C
parenti(u)
i , and either w = firsti−1(u) �= closesti−1(u),

or w = lasti+1(u) �= closesti+1(u). When node w is defined as firsti−1(u) or
lasti+1(u), we will omit specifying “with respect to u”. For instance, in Figure 2
(a), the vertices vl and vr are i-relevant with respect to w. In Figure 2 (b) the
vertex vr = lasti+1(w) is not i-relevant since it is not in C

u

i and vl = firsti−1(w)
is not i-relevant since it is also closesti−1(w).
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3 A Simple Planar 6-Spanner of Maximum Degree 9

In this section we describe the construction of H2, a plane 6-spanner of E of
maximum degree 9. The construction of H2 is very simple and can be easily
distributed:

Step 2. Let H2 be the graph obtained by choosing edges of H1 as follows: for
each node u and each negative cone C

u

i :

– add edge (u, closesti(u)) if closesti(u) exists,
– add edge (u, firsti(u)) if firsti(u) exists and is (i + 1)-relevant and
– add edge (u, lasti(u)) if lasti(u) exists and is (i− 1)-relevant.

Note that H2 is a subgraph of H1 that is easily seen to have maximum degree
no greater than 12 (there are at most 3 incident edges per negative cone and 1
incident edge per positive cone). Surprisingly, we shall prove that:

Theorem 2. The graph H2

– has maximum degree 9,
– is a 3-spanner of H1, and thus a 6-spanner of E.

The remainder of this section is devoted to proving this theorem.

The charge of a cone. In order to bound the degree of a node in H2, we devise
a counting scheme. Each edge incident to a node is charged to some cone of that
node as follows:

– each negative cone C
u

i is charged by the edge (u, closesti(u)) if closesti(u)
exists.

– each positive cone Cu
i is charged by (u, parenti(u)) if this edge is in H2,

by edge (u, firsti−1(u)) if firsti−1(u) is i-relevant, and by (u, lasti+1(u)) if
lasti+1(u) is i-relevant.

For instance, in Figure 2 (a), the cone Cw
i is charged to twice: once by vlw and

once by vrw; the cone C
w

i−1 is charged to once by its smallest edge. In (b), the
cone Cw

i is not charged to at all: vlw is the shortest edge in C
w

i−1. In (c) the
cone Cw

i is charged to once by vlw and once by the edge wu.
We will denote by charge(C) the charge to cone C. With the counting scheme in

place, we can prove the following lemma, which implies the first part of Theorem 2,
since the sum of charges to cones of a vertex is equal to its degree in H2.

Lemma 1. Each negative cone of every node has at most 1 edge charged to it
and each positive cone of every node has at most 2 edges charged to it.

Proof. Since a negative cone never has more than one edge charged to it, all we
need to do is to argue that no positive cone has 3 edges charged to it. Let Cw

i

be a positive cone at some node w.
Let u = parenti(w). If the edge (w, u) is not in H2 then clearly charge(Cw

i ) ≤
2. Otherwise, we consider three cases:
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w
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Fig. 2. In all three cases, edge wu is in H1 but w �= closesti(u). Solid edges are edges
that are in H2. (a) The edges wvl and wvr are, respectively, the clockwise last in Cw

i−1

and clockwise first in Cw
i+1 and are i-relevant with respect to w. (b) The edge wvr is

not i-relevant because wvr is not in C
u
i . The edge wvl is in H2 but is not i-relevant

because it is the shortest edge in C
w
i−1. (c) Edge wvl is i-relevant. Note that edge wu

is in H2 because it is (i− 1)-relevant with respect to u.

Case 1: w = closesti(u). Any point of R = C
u

i ∩{C
w

i−1∪C
w

i+1} is closer to u than
w. Since w is the closest neighbor of u in C

u

i the region R is empty. Hence the
nodes firsti−1(w) and lasti+1(w) are not i-relevant. Hence charge(Cw

i ) = 1.
Case 2: w = lasti(u) and w is (i − 1)-relevant (with respect to u, see Fig-

ure 2 (c)). In this case, w, u and parenti−1(w) = parenti−1(u) form an
empty triangle in H1. Therefore, C

u

i ∩ C
w

i+1 is empty. Hence lasti+1(w) is
not i-relevant. Hence charge(Cw

i ) ≤ 2.
Case 3: w = firsti(u) and w is (i + 1)-relevant. Using an argument symmetric

to the one in Case 2, C
u

i ∩C
w

i−1 is empty. Hence firsti−1(w) is not i-relevant.
Hence charge(Cw

i ) ≤ 2. ��

The above proof gives additional structural information that we will use in the
next section:

Corollary 1. Let u = parenti(w). If charge(Cw
i ) = 2 then either:

1. (w, u) is not in H2, and firsti−1(w) and lasti+1(w) are i-relevant (and are
therefore neighbors of w in H2), or

2. w = lasti(u) is (i− 1)-relevant and firsti−1(w) is i-relevant (and thus (w, u)
and (firsti−1(w), w) are in H2), or

3. w = firsti(u) is (i + 1)-relevant and lasti+1(w) is i-relevant (and thus (w, u)
and (lasti+1(w), w) are in H2).

In case 1 above, note that nodes firsti−1(w), w, and lasti+1(w) are both in C
u

i

and that u is closer from both firsti−1(w) and lasti+1(w) than from w. When
the case 1 condition holds, we say that w is i-distant.

In order to prove that H2 is a 3-spanner of H1, we need to show that for
every edge wu in H1 but not in H2 there is a path from u to w in H2 whose
length is at most 3|uw|. Let wu be an incoming edge of H1 with respect to u.
Since wu �∈ H2, the shortest incoming edge of H1 in the cone C of u containing
wu must be in H2: we call it vu. Without loss of generality, we assume vu is
clockwise from wu with respect to u.
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Fig. 3. Canonical path

We consider all the edges of H1 incident to u that are contained in the cone
C

u

i and lying in-between vu and wu, and we denote them, in counter-clockwise
order, vu = v0u, v1u, ..., vku = wu. Because H1 is a triangulation, the path
v0v1, v1v2, ..., vk−1vk is in H1. We call this path the canonical path with respect
to u and w (see Figure 3). Note that the order – u first, w second – matters.

Lemma 2. Let (w, u = parenti(w)) be an edge of H1 and v = closesti(u). If
w �= v then:

1. H2 contains the edge vu and the canonical path with respect to u and w
2. |uv|+

∑k
i=1 |vi−1vi| ≤ 3|uw|.

The second part of Theorem 2 follows because Lemma 2 shows that for every wu
in H1 but not in H2, if wu is incoming with respect to u then the path consisting
of uv and the canonical path with respect to u and w will exist in H2 and the
length of this path is at most 3|uw|.

Proof (of Lemma 2). Let e = (vj , vj+1) be an edge of the canonical path with
respect to u and w. First assume that e is incoming at vj . Observe that vj+1
is the neighbor of vj that is just before u in the counter-clockwise ordering of
neighbors around vj in the triangulation H1. Hence vj+1 = lasti+1(vj). Since
vj+1 is in C

u

i , vj+1 is i-relevant (with respect to vj) or vj+1 = closesti+1(vj).
In both cases, e is in H2. Now assume that the edge e is incoming at vj+1. We
similarly prove that vj = firsti−1(vj+1) and that vj is i-relevant (with respect
to vj+1) or vj = closesti−1(vj+1). In both cases, e is in H2. This proves the first
part of the lemma.

In order to prove the second part of Lemma 2, we denote by Cvi

i the cone
containing u of canonical path node vi, for i = 0, 1, ..., k. We denote by ri and
li the rays defining the clockwise and counter-clockwise boundaries of cone Cvi

i .
Let r and l be the rays defining the clockwise and counter-clockwise boundaries
of cone C

u

i . We define the point mo as the intersection of half-lines r and l0,
points mi as the intersections of half-lines ri−1 and li for every 1 ≤ i ≤ k. Let
w′ be the intersection of the half-line r and the line orthogonal to 	C (C = Cw

i )
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passing through w, and let w′′ be the intersection of half-lines lk and r (see
Figure 3).

We note that |uv| = |uv0| ≤ |um0|+ |m0v0|, and

|vi−1vi| ≤ |vi−1mi|+ |mivi|

for every 1 ≤ i ≤ k. Also |uv0| ≥ |um0|. Then

|uv0|+
k∑

i=1

|vi−1vi| ≤ |um0|+
k∑

i=0

|mivi|+
k−1∑
i=0

|vimi+1|

≤ |um0|+ |ww′′|+ |w′′m0|
≤ |uw′|+ |ww′|+ |w′′w′|
≤ |uw′|+ 2|ww′|

Observe that |uw|=
√

(|uw′| cosπ/6)2 + (|ww′| − |uw′|/2)2. Let α= |ww′|/|uw′|;
note that 0 ≤ α ≤ 1. Then

|uw′|+ 2|ww′|
|uw| ≤ (1 + 2α)|uw′|√

(|uw′| cosπ/6)2 + ((α− 1/2)|uw′|)2

≤ 1 + 2α√
1− α + α2

≤ max
α∈[0..1]

{
1 + 2α√

1− α + α2

}
≤ 3

��

4 A Planar 6-Spanner of Maximum Degree 6

We now carefully delete edges from and add other edges to H2, in order to
decrease the maximum degree of the graph to 6 while maintaining the stretch
factor. We do that by attempting to decrease the number of edges charged to
a positive cone down to 1. We will not be able to do so for some cones. We
will show that we can amortize the positive charge of 2 for such cones over a
neighboring negative cone with charge 0. By Corollary 1, we only need to take
care of two cases (the third case is symmetric to the second).

Before presenting our final construction, we start with a structural property
of some positive cones in H3 with a charge of 2. Recall that a node is i-distant if
it has two i-relevant neighbors in H2 (this corresponds to case 1 of Corollary 1).
For instance, in Figure 3, the node v2 is i-distant.

Lemma 3 (Forbidden charge sequence). If, in H2, charge(Cw
i ) = 2 and w

is not a i-distant node:
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– either firsti−1(w) is i-relevant, charge(Cw
i−1) ≤ 1 and charge(C

w

i+1) = 0 or
– lasti+1(w) is i-relevant, charge(Cw

i+1) ≤ 1 and charge(C
w

i−1) = 0.

Proof. By Corollary 1, ifw is not an i-distant node, either firsti−1(w) or lasti+1(w)
is i-relevant. We assume the second case, and the first will follow by symmetry.

We first prove the existence of a cone of charge 0. If u = parenti(w), then by
Corollary 1, w = lasti(u) and w is (i−1)-relevant (with respect to u). This means
that nodes w, u, and v = parenti−1(u) = parenti−1(w) form an empty triangle in
H1 and therefore there is no edge that ends up in C

w

i+1. Hence charge(C
w

i+1) = 0.
Let us prove now by contradiction that charge(Cw

i−1) ≤ 1. Assume that
charge(Cw

i−1) = 2. By Corollary 1 there can be three cases. We have just shown
that there are no edges in C

w

i+1, so there cannot be a node firsti+1(w) and the
first two cases cannot apply. Case 3 of Corollary 1 implies that w = firsti−1(v)
which is not possible because edge (u, v) is before (w, u) in the counter-clockwise
ordering of edges in Ci−1(v). ��

Step 3. We construct H3 from H2 as follows: for every integer 1 ≤ i ≤ 3 and
for every i-distant node w:

– add the edge (firsti−1(w), lasti+1(w)) to H3;
– let w′ be the node among {firsti−1(w), lasti+1(w)} which is greater in the

canonical path order. Remove the edge (w,w′) from H3.

New charge assignments. Since a new edge e is added between nodes firsti−1(w)

and lasti+1(w) in Step 3, we assign the charge of e to C
firsti−1(w)
i+1 and to

C
lasti+1(w)
i−1 . For the sake of convenience, we denote by ˜charge(C) the total charge,

after Step 3, of cone C in H3 and the next graph we will construct, H4. The
following lemma shows that the application of Step 3 does not create a cone of
charge 2 and decreases the charge of cone Cw

i of i-distant node w from 2 to 1.

Lemma 4 (Distant nodes). If w is an i-distant node then:

– ˜charge(Cw
i ) = charge(Cw

i )− 1 = 1;

– ˜charge(C
firsti−1(w)
i+1 ) = charge(C

lasti+1(w)
i−1 ) = 1.

v
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u2

u3

H1

u4

H2
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u5

u2

u3

u4

u1
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u2

u3

u4

H3

v v v
u1

u5

u2

u3

u4

H4

Fig. 4. From H1 (plain arrows are the closest edges) to H4. Light blue and pink positive
cones have a charge equal to 2. The node v is i-distant and the node u4 is i+1-distant.
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Fig. 5. (a) Step 3 applied on the configuration of Figure 2 (a): the edge wvr is removed
because the canonical path of w with respect to u doesn’t use it. The edge is then
replaced by the edge vrvl. (b) Step 4 applied on the configuration of Figure 2 (c): the
edge wvl is removed. (c) the edge vlw is the shortest in Cw

i−1; the cone Cw
i is thus

charged to only once, by wu, and the edge vlw is not removed during step 4.

Step 4. We construct H4 from H3 as follows: for every integer 1 ≤ i ≤ 3 and for
every node w such that ˜charge(Cw

i ) = 2 and ˜charge(C
w

i−1) = ˜charge(C
w

i+1) = 1,
if w = lasti(parenti(w)) then remove the edge (w, firsti−1(w)) from H3 and
otherwise remove (w, lasti+1(w)).

Lemma 5. There is a 1-1 mapping between each positive cone Cw
i that has

charge 2 after step 4 and a negative cone at w that has charge 0.

Proof. Corollary 1 gives the properties of two types of cones with charge 2 in
H2. If cone Cw

i is one in which w is an i-distant node in H2, then Cw
i will have a

charge of 1 after Step 3, by Lemma 4. If w is not i-distant, there can be two cases
according to Lemma 3. We assume the first (the second follows by symmetry);
so we assume that C

w

i+1 has charge 0 in H2. If that charge is increased to 1 in
step 3, then step 4 will decrease the charge of Cw

i down to 1. So, if Cw
i still has

a charge of 2 after step 4, then C
w

i+1 will still has charge 0 and we map Cw
i to

this adjacent negative cone. The only positive cone that could possibly map to
C

w

i+1 would be the other positive cone adjacent to C
w

i+1, C
w
i−1, but that cone has

charge at most 1 by Lemma 3. ��

Theorem 3. H4 is a plane 6-spanner of E of maximum degree 6.

Proof. By Corollary 1, Lemma 4, and Lemma 5, it is clear that H4 has maximum
degree 6.

Let us show H4 is a 6-spanner of E . By Lemma 2, for every edge wu in H1 but
not in H2, the canonical path with respect to u and w in H2 has total length at
most 3|wu|. We argue that the removal, in step 3, of edges on the canonical path
from u is compensated by the addition of other edges in step 3. Observe first
that while some edges of the canonical path may have been removed from H2
in step 3, in every case a shortcut has been added. Some edges have also been
removed in step 4. The removed edge is always the last edge on the canonical
path from u to w, where uw is the first or last edge, in counterclockwise order,
in some negative cone at u and uw ∈ H2. This means that the canonical path
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edge is only needed to reach w from u, and no other nodes. Therefore it can be
removed since wu ∈ H2. In summary, no “intermediate” canonical path edge is
dropped without a shortcut, and “final” canonical path edges will be dropped
only when no longer needed. Therefore any canonical path (of length at most
3|wu|) in H2 is replaced by a new path (with shortcuts) of length at most 3|wu|.
By Lemma 2, the above argument can also be directly applied for every edge
xy ∈ H2 removed in H3.

It remains to show that H4 is planar. More precisely we have to show that
edges introduced during step 3 do not create crossings in H3. Let vlvr be an edge
created during step 3. Observe that in H1 there are two adjacent triangular faces
f1 = uvlw and f2 = uwvr. Since the edge wvl is in Cw

i−1 and vr is in Cw
i+1 the

angle vluvr is less than π. Hence the edge vlvr is inside the two faces f1 and f2.
The only edge of H1 that crosses the edge vlvr is the edge wu. Since the edge wu
is not present in H4 there is no crossing between an edge of H1∩H3 and an edge
added during step 3. What now remains to be done is to show that two edges
added during step 3 cannot cross each other. Let v′lv

′
r be an edge created during

step 3 and let f ′1 = u′v′lw
′ and f ′2 = u′w′v′r the two faces of H1 containing this

edge. If the edges vlvr and v′lv
′
r cross each other, then they are supported by at

least one common face of H1, i.e. {f1, f2}∩ {f ′1, f ′2} �= ∅. Observe that the edges
vlu,wu and vru are colored i, the edge wvl is colored i− 1 and the edge wvr is
colored i+1. Similarly the edges v′lu

′, w′u′ and v′ru
′ are colored i′, the edge w′v′l

is colored i′ − 1 and the edge w′v′r is colored i′ + 1. Each face f1, f2, f
′
1 and f ′2

has two edges of the same color, hence i = i′. Because of the color of the third
edge of each face, this implies that f1 = f ′1 and f2 = f ′2, and so vlvr = v′lv

′
r. This

shows that H4 has no crossing. ��

5 Conclusion

Our construction can be used to obtain a spanner of the unit-hexagonal graph,
a generalization of the complete Euclidean graph. More precisely, every unit-
hexagonal graph G has a spanner of maximum degree 6 and stretch factor 6.
This can be done by observing that, in our construction, the canonical path
associated with each edge e ∈ G \H2 is composed of edges of “length” at most
the “length” of e, where the “length” of e is the hexagonal-distance1 between its
end-points.
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Aij xi · xj , where x1, . . . , xm ∈ Sn−1.
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)2
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1 Introduction

Given a positive integer n and a positive semidefinite matrix A = (Aij) ∈
Rm×m, the positive semidefinite Grothendieck problem with rank-n-constraint
is defined as

SDPn(A) = max
{ m∑

i=1

m∑
j=1

Aij xi · xj : x1, . . . , xm ∈ Sn−1
}
,

where Sn−1 = {x ∈ Rn : x · x = 1} is the unit sphere; the inner product
matrix of the vectors x1, . . . , xm has rank n. This problem was introduced by
Briët, Buhrman, and Toner [5] in the context of quantum nonlocality where
they applied it to nonlocal XOR games. The case n = 1 is the classical positive
semidefinite Grothendieck problem where x1, . . . , xm ∈ {−1,+1}. It was intro-
duced by Grothendieck [7] in the study of norms of tensor products of Banach
spaces. It is an NP-hard problem: If A is the Laplacian matrix of a graph then
SDP1(A) coincides with the value of a maximum cut of the graph. The maxi-
mum cut problem (MAX CUT) is one of Karp’s 21 NP-complete problems. Over
the last years, there has been a lot of work on algorithmic applications, inter-
pretations and generalizations of the Grothendieck problem and the companion
Grothendieck inequalities. For instance, Nesterov [18] showed that it has appli-
cations to finding and analyzing semidefinite relaxations of nonconvex quadratic
optimization problems. Ben-Tal and Nemirovski [4] showed that it has applica-
tions to quadratic Lyapunov stability synthesis in system and control theory.
Alon and Naor [3] showed that it has applications to constructing Szemerédi
partitions of graphs and to estimating the cut norms of matrices. Linial and
Shraibman [15] showed that it has applications to find lower bounds in commu-
nication complexity. Khot and Naor [12], [13] showed that it has applications
to kernel clustering. See also Alon, Makarychev, Makarychev, and Naor [2], and
Raghavendra and Steurer [20].

One can reformulate the positive semidefinite Grothendieck problem with
rank-n-constraint as a semidefinite program with an additional rank constraint:

maximize
m∑

i=1

m∑
j=1

AijXij

subject to X = (Xij) ∈ Rm×m is positive semidefinite,
Xii = 1, for i = 1, . . . ,m,
X has rank at most n.

When n is a constant that does not depend on the matrix size m there is no
polynomial-time algorithm known which solves SDPn. It is also not known if
the problem SDPn is NP-hard when n ≥ 2. On the other hand the semidefinite
relaxation of SDPn(A) defined by

SDP∞(A) = max
{ m∑

i=1

m∑
j=1

Aij ui · uj : u1, . . . , um ∈ S∞
}
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can be computed in polynomial time using semidefinite programming. Here S∞

denotes the unit sphere of the Hilbert space l2(R) of square summable sequences,
which contains Rn as the subspace of the first n components. Clearly, it would
suffice to use unit vectors in Rm for solving SDP∞(A) when A ∈ Rm×m, but us-
ing S∞ will simplify many formulations in this paper. Rietz [21] (in the context
of the Grothendieck inequality) and Nesterov [18] (in the context of approxi-
mation algorithms for NP-hard problems) showed that SDP1 and SDP∞ are
always within a factor of at most 2/π from each other. That is, for all positive
semidefinite matrices A ∈ Rm×m we have

1 ≥ SDP1(A)
SDP∞(A)

≥ 2
π

. (1)

By exhibiting an explicit series of positive semidefinite matrices, Grothendieck [7]
(see also Alon and Naor [3, Section 5.2]) showed that one cannot improve the
constant 2/π to 2/π+ε for any positive ε which is independent of m. Nesterov [18]
gave a randomized polynomial-time approximation algorithm for SDP1 with ap-
proximation ratio 2/π which can be derandomized using the techniques presented
by Mahajan and Ramesh [16]. This algorithm is optimal in the following sense:
Khot and Naor [12] showed that under the assumption of the unique games con-
jecture (UGC) there is no polynomial-time algorithm which approximates SDP1
by a constant 2/π + ε for any positive ε independent of m. The unique games
conjecture was introduced by Khot [10] and by now many tight UGC hard-
ness results are known, see e.g. Khot, Kindler, Mossel, and O’Donnell [11] for
the maximum cut problem, Khot and Regev [14] for the minimum vertex cover
problem, and Raghavendra [19] for general constrained satisfaction problems.
The aim of this paper is to provide a corresponding analysis for SDPn.

Our Results

In Section 2 we start by reviewing our methodological contributions: Our main
contribution is the analysis of a rounding scheme which can deal with rank-n-
constraints in semidefinite programs. For this we use the Wishart distribution
from multivariate statistics (see e.g. Muirhead [17]). We believe this analysis is of
independent interest and will turn out to be useful in different contexts, e.g. for
approximating low dimensional geometric embeddings. Our second contribution
is that we improve the constant in inequality (1) slightly by considering functions
of positive type for the unit sphere Sm−1 and applying a characterization of
Schoenberg [22]. This slight improvement is the key for our UGC hardness result
of approximating SDPn given in Theorem 3. We analyze our rounding scheme
in Section 3.

Theorem 1. For all positive semidefinite matrices A ∈ Rm×m we have

1 ≥ SDPn(A)
SDP∞(A)

≥ γ(n) =
2
n

(
Γ ((n + 1)/2)

Γ (n/2)

)2

= 1−Θ(1/n),

and there is a randomized polynomial-time approximation algorithm for SDPn

achieving this ratio.
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The first three values of γ(n) are:

γ(1) = 2/π = 0.63661 . . .

γ(2) = π/4 = 0.78539 . . .

γ(3) = 8/(3π) = 0.84882 . . .

In Section 4 we show that one can improve inequality (1) slightly:

Theorem 2. For all positive semidefinite matrices A ∈ Rm×m we have

1 ≥ SDP1(A)
SDP∞(A)

≥ 2
πγ(m)

=
m

π

(
Γ (m/2)

Γ ((m + 1)/2)

)2

=
2
π

+ Θ

(
1
m

)
,

and there is a polynomial-time approximation algorithm for SDP1 achieving this
ratio.

With this, the current complexity status of the problem SDP1 is similar to the
one of the minimum vertex cover problem. Karakostas [9] showed that one can
approximate the minimum vertex cover problem for a graph having vertex set
V with an approximation ratio of 2−Θ(1/

√
log |V |) in polynomial time. On the

other hand, Khot and Regev [14] showed, assuming the unique games conjecture,
that there is no polynomial-time algorithm which approximates the minimum
vertex cover problem with an approximation factor of 2 − ε for any positive ε
which is independent of |V |. In Section 5 we show that the approximation ratio
γ(n) given in Theorem 1 is optimal for SDPn under the assumption of the unique
games conjecture. By using the arguments of the proof of Theorem 2 and by the
UGC hardness of approximating SDP1 due to Khot and Naor [12] we get the
following tight UGC hardness result for approximating SDPn.

Theorem 3. Under the assumption of the unique games conjecture there is no
polynomial-time algorithm which approximates SDPn with an approximation ra-
tio greater than γ(n) + ε for any positive ε which is independent of the matrix
size m.

In Section 6 we show that a better approximation ratio can be achieved when
the matrix A is the Laplacian matrix of a graph with nonnegative edge weights.

2 Rounding Schemes and Functions of Positive Type

In this section we discuss our rounding scheme which rounds an optimal solution
of SDP∞ to a feasible solution of SDPn. In the case n = 1 our rounding scheme
is equivalent to the classical scheme of Goemans and Williamson [6]. To analyze
the rounding scheme we use functions of positive type for unit spheres. The
randomized polynomial-time approximation algorithm which we use in the proofs
of the theorems is the following three-step process. The last two steps are our
rounding scheme.
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1. Solve SDP∞(A), obtaining vectors u1, . . . , um ∈ Sm−1.
2. Choose X = (Xij) ∈ Rn×m so that every matrix entry Xij is distributed

independently according to the standard normal distribution with mean 0
and variance 1: Xij ∼ N(0, 1).

3. Set xi = Xui/‖Xui‖ ∈ Sn−1 with i = 1, . . . ,m.

The quality of the feasible solution x1, . . . , xm for SDPn is measured by the
expectation

E

[ m∑
i=1

m∑
j=1

Aij xi · xj

]
=

m∑
i=1

m∑
j=1

AijE

[
Xui

‖Xui‖
· Xuj

‖Xuj‖

]
,

which we analyze in more detail.
For vectors u, v ∈ S∞ we define

En(u, v) = E

[
Xu

‖Xu‖ ·
Xv

‖Xv‖

]
, (2)

where X = (Xij) is a matrix with n rows and infinitely many columns whose
entries are distributed independently according to the the standard normal dis-
tribution. Of course, if u, v ∈ Sm−1, then it suffices to work with finite matrices
X ∈ Rn×m.

The first important property of the expectation En is that it is invariant
under O(∞), i.e. for every m it is invariant under the orthogonal group O(m) =
{T ∈ Rm×m : TTT = Im}, where Im denotes the identity matrix, i.e. for every
m and every pair of vectors u, v ∈ Sm−1 we have

En(Tu, T v) = En(u, v) for all T ∈ O(m).

If n = 1, then
E1(u, v) = E[sign(ξ · u) sign(ξ · v)],

where ξ ∈ Rm is chosen at random from the m-dimensional standard normal
distribution. By Grothendieck’s identity (see e.g. [8, Lemma 10.2])

E[sign(ξ · u) sign(ξ · v)] =
2
π

arcsinu · v.

Hence, the expectation E1 only depends on the inner product t = u · v. For
general n, the O(∞) invariance implies that this is true also for En.

The second important property of the expectation En (now interpreted as a
function of the inner product) is that it is a function of positive type for S∞, i.e. it
is of positive type for any unit sphere Sm−1, independent of the dimension m. In
general, a continuous function f : [−1, 1] → R is called a function of positive type
for Sm−1 if the matrix (f(vi·vj))1≤i,j≤N is positive semidefinite for every positive
integer N and every choice of vectors v1, . . . , vN ∈ Sm−1. The expectation En is
of positive type for S∞ because one can write it as a sum of squares. Schoenberg
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[22] characterized the continuous functions f : [−1, 1] → R which are of positive
type for S∞: They are of the form

f(t) =
∞∑

i=0

fit
i,

with nonnegative fi and
∑∞

i=0 fi < ∞. In the case n = 1 we have the series
expansion

E1(t) =
2
π

arcsin t =
2
π

∞∑
i=0

(2i)!
22i(i!)2(2i + 1)

t2i+1.

In Section 3 we treat the cases n ≥ 2.
Suppose we develop the expectation En(t) into the series En(t) =

∑∞
i=0 fit

i.
Then because of Schoenberg’s characterization the function t 	→ En(t)−f1t is of
positive type for S∞ as well. This together with the inequality

∑
i,j XijYij ≥ 0,

which holds for all positive semidefinite matrices X,Y ∈ Rm×m, implies

SDPn(A) ≥
m∑

i=1

m∑
j=1

AijEn(ui, uj) ≥ f1

m∑
i=1

m∑
j=1

Aij ui · uj = f1 SDP∞(A). (3)

When n = 1 the series expansion of E1 gives f1 = 2/π and the above argument
is essentially the one of Nesterov [18]. To improve on this (and in this way to
improve the constant 2/π in inequality (1)) one can refine the analysis by working
with functions of positive type which depend on the dimension m. In Section 4
we show that t 	→ 2/π(arcsin t− t/γ(m)) is a function of positive type for Sm−1.
For the cases n ≥ 2 we show in Section 3 that f1 = γ(n)

3 Analysis of the Approximation Algorithm

In this section we show that the expectation En defined in (2) is a function of
positive type for S∞ and that in the series expansion En(t) =

∑∞
i=0 fit

i one
has f1 = γ(n). These two facts combined with the discussion in Section 2 imply
Theorem 1. Let u, v ∈ Sm−1 be unit vectors and let X = (Xij) ∈ Rn×m be
a random matrix whose entries are independently sampled from the standard
normal distribution. Because of the invariance under the orthogonal group, for
computing En(u, v) we may assume that u and v are of the form

u = (cos θ, sin θ, 0, . . . , 0)T

v = (cos θ,− sin θ, 0, . . . , 0)T.

Then by the double-angle formula cos 2θ = t with t = u · v.
We have

Xu =

⎛⎜⎝X11 X12
...

...
Xn1 Xn2

⎞⎟⎠(
cos θ
sin θ

)
, Xv =

⎛⎜⎝X11 X12
...

...
Xn1 Xn2

⎞⎟⎠(
cos θ
− sin θ

)
.
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Hence,
Xu

‖Xu‖ ·
Xv

‖Xv‖ =
xTY y√

(xTY x)(yTY y)
,

where x = (cos θ, sin θ)T, y = (cos θ,− sin θ)T, and Y ∈ R2×2 is the Gram matrix
of the two vectors (X11, . . . , Xn1)T, (X12, . . . , Xn2)T ∈ Rn. By definition, Y is
distributed according to the Wishart distribution from multivariate statistics.
This distribution is defined as follows (see e.g. Muirhead [17]). Let p and q be
positive integers so that p ≥ q. The (standard) Wishart distribution Wq(p) is the
probability distribution of random matrices Y = XTX ∈ Rq×q, where the entries
of the matrix X = (Xij) ∈ Rp×q are independently chosen from the standard
normal distribution Xij ∼ N(0, 1). The density function of Y ∼Wq(p) is

1
2pq/2Γq(p/2)

e−Tr(Y )/2(det Y )(p−q−1)/2,

where Γq is the multivariate gamma function, defined as

Γq(x) = πq(q−1)/4
q∏

i=1

Γ
(
x− i− 1

2

)
.

We denote the cone of positive semidefinite matrices of size q × q by Sq
≥0. In

our case p = n and q = 2. We can write En(t) as

En(t) =
1

2nΓ2(n/2)

∫
S2
≥0

xTY y√
(xTY x)(yTY y)

e−Tr(Y )/2(detY )(n−3)/2dY,

where t = cos 2θ, and x as well as y depend on θ. The parameterization of the
cone S2

≥0 given by

S2
≥0 =

{
Y =

(
a
2 + α cosφ α sinφ
α sinφ a

2 − α cosφ

)
: φ ∈ [0, 2π], α ∈ [0, a/2], a ∈ R≥0

}
allows us to write the integral in a more explicit form. With this parametrization
we have

Tr(Y ) = a, det(Y ) =
a2

4
− α2, dY = α dφdαda,

and

xTY y =
at

2
+ α cosφ,

xTY x =
a

2
+ α(t cosφ + 2 sin θ cos θ sinφ),

yTY y =
a

2
+ α(t cosφ− 2 sin θ cos θ sinφ).

So,

En(t) =
1

2nΓ2(n/2)

∫ ∞

0

∫ a/2

0

∫ 2π

0

at
2 + α cosφ√

(a
2 + αt cosφ)2 − α2(1− t2)(sinφ)2

· e−a/2
(
a2

4
− α2

)(n−3)/2

α dφdαda.



38 J. Briët, F.M. de Oliveira Filho, and F. Vallentin

Substituting α = (a/2)r and integrating over a yields

En(t) =
Γ (n)

2n−1Γ2(n/2)

∫ 1

0

∫ 2π

0

(t + r cosφ)r(1 − r2)(n−3)/2√
(1 + rt cosφ)2 − r2(1− t2)(sinφ)2

dφdr.

Using Legendre’s duplication formula (see [1, Theorem 1.5.1]) Γ (2x)Γ (1/2) =
22x−1Γ (x)Γ (x + 1/2) one can simplify

Γ (n)
2n−1Γ2(n/2)

=
n− 1
2π

.

Recall from (3) that the approximation ratio is given by the coefficient f1 in the
series expansion En(t) =

∑∞
i=0 fit

i. Now we compute f1:

f1 =
∂En

∂t
(0)

=
n− 1
2π

∫ 1

0

∫ 2π

0

r(1 − r2)(n−1)/2

(1− r2(sinφ)2)3/2 dφdr.

Using Euler’s integral representation of the hypergeometric function [1, Theorem
2.2.1] and by substitution we get

f1 =
n− 1
2π

∫ 2π

0

Γ (1)Γ ((n + 1)/2)
2Γ ((n + 3)/2) 2F1

(
3/2, 1

(n + 3)/2 ; sin2 φ

)
dφ

=
n− 1
4π

Γ ((n + 1)/2)
Γ ((n + 3)/2)

4
∫ 1

0
2F1

(
3/2, 1

(n + 3)/2 ; t2
)

(1 − t2)−1/2dt

=
n− 1
π

Γ ((n + 1)/2)
Γ ((n + 3)/2)

1
2

∫ 1

0
2F1

(
3/2, 1

(n + 3)/2 ; t
)

(1− t)−1/2t−1/2dt.

This simplies futher by Euler’s generalized integral [1, (2.2.2)], and Gauss’s sum-
mation formula [1, Theorem 2.2.2]

f1 =
n− 1
2π

Γ ((n + 1)/2)
Γ ((n + 3)/2)

Γ (1/2)Γ (1/2)
Γ (1) 3F2

(
3/2, 1, 1/2

(n + 3)/2, 1 ; 1
)

=
n− 1

2
Γ ((n + 1)/2)
Γ ((n + 3)/2)2F1

(
3/2, 1/2
(n + 3)/2 ; 1

)
=

n− 1
2

Γ ((n + 1)/2)
Γ ((n + 3)/2)

Γ ((n + 3)/2)Γ ((n− 1)/2)
Γ (n/2)Γ ((n + 2)/2)

=
2
n

(
Γ ((n + 1)/2)

Γ (n/2)

)2

.

4 Improved Analysis

Nesterov’s proof of inequality (1) relies on the fact that the function t 	→
2/π(arcsin t − t) is of positive type for S∞. Now we determine the largest
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value c(m) so that the function t 	→ 2/π(arcsin t − c(m)t) is of positive type
for Sm−1 with dimension m fixed. By this we improve the approximation ra-
tio of the algorithm given in Section 2 for SDP1 from 2/π to (2/π)c(m). The
following lemma showing c(m) = 1/γ(m) implies Theorem 2.

Lemma 1. The function

t 	→ 2
π

(
arcsin t− t

γ(m)

)
is of positive type for Sm−1.

Proof. We equip the space of all continuous functions f : [−1, 1] → R with the
inner product

(f, g)α =
∫ 1

−1
f(t)g(t)(1 − t2)αdt,

where α = (m − 3)/2. With this inner product the Jacobi polynomials satisfy
the orthogonality relation

(P (α,α)
i , P

(α,α)
j )α = 0, if i �= j,

where P
(α,α)
i is the Jacobi polynomial of degree i with parameters (α, α), see e.g.

Andrews, Askey, and Roy [1]. Schoenberg [22] showed that a continuous function
f : [−1, 1] → R is of positive type for Sm−1 if and only if it is of the form

f(t) =
∞∑

i=0

fiP
(α,α)
i (t),

with nonnegative coefficients fi and
∑∞

i=0 fi < ∞.
Now we interpret arc sine as a function of positive type for Sm−1 where m

is fixed. By the orthogonality relation and because of Schoenberg’s result the
function arcsin t− c(m)t is of positive type for Sm−1 if and only if

(arcsin t− c(m)t, P (α,α)
i )α ≥ 0, for all i = 0, 1, 2, . . .

We have P
(α,α)
1 (t) = (α+1)t. By the orthogonality relation and because the arc

sine function is of positive type we get, for i �= 1,

(arcsin t− c(m)t, P (α,α)
i )α = (arcsin t, P

(α,α)
i )α ≥ 0.

This implies that the maximum c(m) such that arcsin t − c(m)t is of positive
type for Sm−1 is given by c(m) = (arcsin t, t)α/(t, t)α.

The numerator of c(m) equals

(arcsin t, t)α =
∫ 1

−1
arcsin(t)t(1 − t2)αdt

=
∫ π/2

−π/2
θ sin θ(cos θ)2α+1dθ

=
Γ (1/2)Γ (a + 3/2)
(2α + 2)Γ (α + 2)

.
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The denominator of c(m) equals

(t, t)α =
∫ 1

−1
t2(1− t2)αdt =

Γ (3/2)Γ (α + 1)
Γ (α + 5/2)

,

where we used the beta integral (see e.g. Andrews, Askey, and Roy [1, (1.1.21)])∫ 1

0
t2x−1(1− t2)y−1dr =

∫ π/2

0
(sin θ)2x−1(cos θ)2y−1dθ =

Γ (x)Γ (y)
2Γ (x + y)

,

Now, by using the functional equation xΓ (x) = Γ (x + 1), the desired equality
c(m) = 1/γ(m) follows. ��

5 Hardness of Approximation

Proof (of Theorem 3). Suppose that ρ is the largest approximation ratio a poly-
nomial-time algorithm can achieve for SDPn. Let u1, . . . , um ∈ Sn−1 be an ap-
proximate solution to SDPn(A) coming from such a polynomial-time algorithm.
Then,

m∑
i=1

m∑
j=1

Aij ui · uj ≥ ρ SDPn(A).

Applying the rounding scheme to u1, . . . , um ∈ Sn−1 gives x1, . . . , xm ∈ {−1,+1}
with

E

[ m∑
i=1

m∑
j=1

Aij xixj

]
=

2
π

m∑
i=1

m∑
j=1

Aij arcsinui · uj

≥ 2ρ
πγ(n)

SDPn(A),

where we used that the matrix A and the matrix(
2
π

(
arcsinui · uj −

ui · uj

γ(n)

))
1≤i,j≤m

are both positive semidefinite. The last statement follows from Lemma 1 applied
to the vectors u1, . . . , um lying in Sn−1. Since SDPn(A) ≥ SDP1(A), this is a
polynomial-time approximation algorithm for SDP1 with approximation ratio
at least (2ρ)/(πγ(n)). The UGC hardness result of Khot and Naor now implies
that ρ ≤ γ(n). ��

6 The Case of Laplacian Matrices

In this section we show that one can improve the approximation ratio of the al-
gorithm if the positive semidefinite matrix A = (Aij) ∈ Rm×m has the following
special structure:
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Aij ≤ 0, if i �= j,
n∑

i=1

Aij = 0, for every j = 1, . . . , n.

This happens for instance when A is the Laplacian matrix of a weighted graph
with nonnegative edge weights. A by now standard argument due to Goemans
and Williamson [6] shows that the algorithm has the approximation ratio

v(n) = min
{

1− En(t)
1− t

: t ∈ [−1, 1]
}

.

To see this, we write out the expected value of the approximation and use the
properties of A:

E
[ n∑

i,j=1

Aijxi · xj

]
=

n∑
i,j=1

AijEn(ui · uj)

=
∑
i�=j

(−Aij)
(

1− Ek(ui · uj)
1− ui · uj

)
(1− ui · uj)

≥ v(n)
n∑

i,j=1

Aijui · uj

= v(n) SDP∞(A).

The case n = 1 corresponds to the MAX CUT approximation algorithm of
Goemans and Williamson [6]. For this we have

v(1) = 0.8785 . . . , minimum attained at t0 = −0.689 . . . .

We computed the values v(2) and v(3) numerically and got

v(2) = 0.9349 . . . , minimum attained at t0 = −0.617 . . . ,
v(3) = 0.9563 . . . , minimum attained at t0 = −0.584 . . . .
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Abstract. Assume that a natural cyclic phenomenon has been mea-
sured, but the data is corrupted by errors. The type of corruption is
application-dependent and may be caused by measurements errors, or
natural features of the phenomenon. This paper studies the problem of
recovering the correct cycle from data corrupted by various error models,
formally defined as the period recovery problem. Specifically, we define a
metric property which we call pseudo-locality and study the period recov-
ery problem under pseudo-local metrics. Examples of pseudo-local met-
rics are the Hamming distance, the swap distance, and the interchange
(or Cayley) distance. We show that for pseudo-local metrics, periodicity
is a powerful property allowing detecting the original cycle and correct-
ing the data, under suitable conditions. Some surprising features of our
algorithm are that we can efficiently identify the period in the corrupted
data, up to a number of possibilities logarithmic in the length of the data
string, even for metrics whose calculation is NP-hard. For the Hamming
metric we can reconstruct the corrupted data in near linear time even for
unbounded alphabets. This result is achieved using the property of sepa-
ration in the self-convolution vector and Reed-Solomon codes. Finally, we
employ our techniques beyond the scope of pseudo-local metrics and give
a recovery algorithm for the non pseudo-local Levenshtein edit metric.

1 Introduction

Cyclic phenomena are ubiquitous in nature, from Astronomy, Geology, Earth
Science, Oceanography, and Meteorology, to Biological Systems, the Genome,
Economics, and more. Part of the scientific process is understanding and ex-
plaining these phenomena. The first step is identifying these cyclic occurrences.

Assume, then, that an instrument is making measurements at fixed intervals.
When the stream of measurements is analyzed, it is necessary to decide whether
these measurements represent a cyclic phenomenon. The “cleanest” version of
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this question is whether the string of measurements is periodic. Periodicity is
one of the most important properties of a string and plays a key role in data
analysis. As such, it has been extensively studied over the years [16] and linear
time algorithms for exploring the periodic nature of a string were suggested (e.g.
[12]). Multidimensional periodicity [4,14,18] and periodicity in parameterized
strings [6] was also explored.

However, realistic data may contain errors. Such errors may be caused by the
process of gathering the data which might be prone to transient errors. Moreover,
errors can also be an inherent part of the data because the periodic nature of the
data represented by the string may be inexact. Nevertheless, it is still valuable
to detect and utilize the underlying cycle. Assume, then, that, in reality, there is
an underlying periodic string, which had been corrupted. Our task is to discover
the original uncorrupted string.

This seems like an impossible task. To our knowledge, reconstruction or cor-
rection of data is generally not possible from raw natural data. The field of Error
Correcting Codes is based on the premise that the original data is not the trans-
mitted data. Rather, it is converted to another type of data with features that
allow correction under the appropriate assumptions. Without this conversion,
errors on the raw data may render it totally uncorrectable. A simple example is
the following: consider the string aaaaa aaaaa aaaaa aaaab. This may be the
string aaaaa aaaaa aaaaa aaaaa with one error at the end (an a was replaced by
a b), or the string aaaaa aaaab aaaaa aaaab with one error at the 10th symbol
(a b was replaced by an a). How can one tell which error it was?

In this paper we show that, surprisingly, data periodicity acts as a feature to
aid the data correction under various error models. The simplest natural error
model is substitution errors. It generally models the case where the errors may
be transient errors due to transmission noise or equipment insensitivity.

Of course, too many errors can completely change the data, making it impos-
sible to identify the original data and reconstruct the original cycle. On the other
hand, it is intuitive that few errors should still preserve the periodic nature of the
original string. The scientific process assumes a great amount of confidence in
the measurements of natural phenomena, otherwise most advances in the natural
sciences are meaningless. Thus, it is natural to assume that the measurements
we receive are, by and large, accurate. Therefore, it is reasonable to assume that
we are presented with data that is faithful to the original without too many
corruptions. Formally, the problem is defined as follows:

The Period Recovery Problem. Let S be n-long string with period P . Given S′,
which is S possibly corrupted by at most k errors under a metric d, return P .

The term “recovering” is, in a sense, approximating the original period, be-
cause it may be impossible to distinguish the original period from other false
candidates. The “approximation” of the original period means identifying a small
set of candidates that is guaranteed to include the original period. We are able
to provide such a set of size O(log n).
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We quantify the number of errors k that still guarantees the possibility of such
a recovery. It turns out that this number is dependent on the size of the original
cycle. For example, if the cycle is of size 2, up to 12% substitution errors in
any distribution can be tolerated to enable almost linear time recovery. The
number of errors that still allow correction of the data is quantified as a function
of the period length in the worst case.

We take a further step and consider more general error models. Such metrics
may model specific types of natural corruptions that are application dependent.
Examples of such are reversals [9], transpositions [8], block-interchanges [11],
interchanges [10,2], or swaps [3]. We study the problem of recovering the cyclic
phenomenon for a general set of metrics that satisfy a condition, which we call
pseudo-locality. Intuitively, pseudo-locality means that a single corruption has,
in some sense, a local effect on the number of mismatches. The set of pseudo-
local metrics is quite extensive and includes such well-studied metrics as the
Hamming Distance, Swap Distance, and Interchange (or Cayley) Distance.

Results. We give a bound on the number of errors that still allow detection of
O(log n) candidates for the original period, where n is the length of the measured
raw data under any pseudo-local metric. The original underlying cycle is
guaranteed to be one of these candidates. To our surprise, this recovery can
be done efficiently even for metrics whose computation is NP-hard. We
also give faster (near linear time) recovery algorithm for the Hamming distance.
Finally, we show that our techniques can be employed even beyond the scope of
pseudo-local metrics and give a recovery algorithm for the edit distance, which
is not a pseudo-local metric. Let S be n-long string with period P of length p.
We prove the following:
• Let d be a c-pseudo-local-metric and let fd(n) be the complexity of computing
the distance between two n-long strings under the metric d. Let ε > 0 be a
constant. Then, if S is corrupted by at most n

(2c+ε)·p errors under the metric d,
then, a set of log1+ ε

c
n candidates which includes P can be constructed in time

O(n log2 n + fd(n) · n logn) (Theorem 1).
As a corollary we get that if S is corrupted by at most n

(4+ε)·p swap errors,
then, a set of log1+ ε

2
n candidates which includes P can be constructed in time

O(n2 log4 n) (Corollary 3).
• Let d be a c-pseudo-local metric that admits a polynomial time γ-approximation
algorithm with complexity fapp

d (n), where γ > 1 is a constant. Let ε > (γ −
1) · 2c be a constant. Then, if S is corrupted by at most n

(2c+ε)·p errors under the
metric d, then, a set of log1+ ε′

c
n candidates which includes P can be constructed

in time O(n log2 n + fapp
d (n) · n logn), where ε′ = ε

γ −
2c(1−γ)

γ > 0 is a constant.
(Theorem 2)
As a corollary we get that for every ε > 8

9 , if S is corrupted by at most n
(4+ε)·p

interchange errors, then, a set of log1+ ε′
2
n candidates which includes P can

be constructed in time O(n2 log2 n), where ε′ = 3ε
2 − 4

3 > 0 is a constant.
(Corollary 4)
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Note that the period can be approximated in polynomial time, even though
computing the interchange distance is NP-hard [5].
• If S is corrupted by less than n

4p substitution errors then a set of O(log n)
candidates that includes P can be constructed in time O(n log n) for bounded
alphabets (Theorem 3),
and O(n log2 n) for unbounded alphabets (Theorem 4).
• Let ε > 0 be a constant. Then, if S is corrupted by at most n

(4+ε)·p Levenshtein
edit operations, then, a set of log1+ ε

2
n candidates such that their cyclic rotations

include P , can be constructed in time O(n3 log n). (Theorem 5)

Techniques. New concepts were defined, studied and used in this paper in order
to achieve the results. The first important concept is the pseudo-locality property.
Identifying and defining this property enabled a unified study of cycle recovery
under a rich set of metrics that includes well-known metrics as the Hamming
Distance, Swap Distance, and Interchange Distance. Properties of pseudo-local
metrics were proved to support a non-trivial use of the Minimum Augmented
Suffix Tree data structure in order to achieve our general results.

Another useful concept defined in this paper is separation in the self-convolution
vector. This property is used as a basic tool to aid in faster discovery of the orig-
inal period under the Hamming distance. Separation is a seemingly very strong
property. However, we prove sufficient conditions under which separation can be
achieved. We extend our results to unbounded alphabets using Reed-Solomon
codes, achieving the same results with a degradation of a logn multiplicative fac-
tor. It is somewhat surprising that a tool of Error Correction is brought to bear on
achieving correction in raw natural data. The key to this success is the periodicity
property. We stress that in Error-Correcting-Codes the pre-designed structure of
the code is known to the decoder. In our situation, however, we attempt to find a
cyclic phenomenon where nothing is known a-priori, not even if it really exists.

2 Preliminaries

In this section we give basic definitions of periodicity and approximate period-
icity, string metrics and pseudo-local metrics. We also give some basic lemmas.

Definition 1. Let S be a string of length n. S is called periodic if S = P ipref(P ),
where i ∈ N, i ≥ 2, P is a substring of S such that |P | ≤ n/2, P i is the concatena-
tion of P to itself i times, and pref(P ) is a prefix of P . The smallest such substring
P is called the period of S. If S is not periodic it is called aperiodic.1

Remark. Throughout the paper we use p to denote a period length and P the
period string, i.e., p = |P |.

Definition 2. Let S be n-long string over alphabet Σ. Let d be a metric defined
on strings. S is called periodic with k errors if there exists a string P over Σ,
1 Denote by |S| the length of a string S.
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p ∈ N, p ≤ n/2, such that d(P 	n/p
pref(P ), S) = k, where pref(P ) is a prefix of
P of length n mod p. The string P is called a k-error period of S or approximate
period of S with k errors.

Consider a set Σ and let x and y be two n-long strings over Σ. We wish to
formally define the process of converting x to y through a sequence of operations.
An operator ψ is a function ψ : Σn → Σn′

, with the intuitive meaning being
that ψ converts n-long string x to n′-long string y with a cost associated to ψ.
That cost is the distance between x and y. Formally,

Definition 3 [string metric]. Let s = (ψ1, ψ2, . . . , ψk) be a sequence of oper-
ators, and let ψs = ψ1 ◦ψ2 ◦ · · · ◦ψk be the composition of the ψj’s. We say that
s converts x into y if y = ψs(x).
Let Ψ be a set of rearrangement operators, we say that Ψ can convert x to y,
if there exists a sequence s of operators from Ψ that converts x to y. Given a
set Ψ of operators, we associate a non-negative cost with each sequence from Ψ ,
cost : Ψ∗ → R+. We call the pair (Ψ, cost) an edit system. Given two strings
x, y ∈ Σ∗ and an edit system R = (Ψ, cost), we define the distance from x to y
under R to be: dR(x, y) = min{cost(s)|s from R converts x to y}. If there is no
sequence that converts x to y then the distance is ∞.

It is easy to verify that dR(x, y) is a metric. Definition 4 gives examples of string
metrics.

Definition 4. • Hamming distance: Ψ = {ρn
i,σ|i, n ∈ N, i ≤ n, σ ∈ Σ},

where ρn
i,σ(α) substitutes the ith element of n-tuple α by symbol σ. We denote

the Hamming distance by H.
• Edit distance: In addition to the substitution operators of the Hamming

distance, Ψ also has insertion and deletion operators. The insertion operators
are: {ιni,σ|i, n ∈ N, i ≤ n, σ ∈ Σ}, where ιni,σ(α) adds the symbol σ following
the ith element of n-tuple α, creating an n + 1-tuple α′.
The deletion operators are {δn

i |i, n ∈ N, i ≤ n}, where δn
i (α) deletes the symbol

at location i of n-tuple α, creating an n− 1-tuple α′.
• Swap distance: Ψ = {ζn

i |i, n ∈ N, i < n}, where ζn
i (α) swaps the ith and

i+1st elements of n-tuple α, creating an n-tuple α′. A valid sequence of operators
in the Swap metric has the additional condition that if ζn

i and ζm
j are operators

in a sequence then i �= j, i �= j + 1, i �= j − 1, and n = m.
• Interchange distance: Ψ = {πn

i,j |i, n ∈ N, i ≤ j ≤ n}, where πn
i,j(α)

interchanges the ith and jth elements of n-tuple α, creating an n-tuple α′.

Definition 5 [pseudo-local metric]. Let d be a string metric. d is called a
pseudo-local metric if there exists a constant c ≥ 1 such that, for every two
strings S1, S2, if d(S1, S2) = 1 then 1 ≤ H(S1, S2) ≤ c.
A metric that is pseudo-local with constant c is called a c-pseudo-local metric.

Note that pseudo-locality allows the resulted number of mismatches to be un-
boundedly far from each other (as may happen in an interchange) and therefore,
a pseudo-local metric is not necessarily also local in the intuitive sense. Lemma 1
follows immediately from Definitions 4 and 5.
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Lemma 1. The following metrics are c-pseudo-local metrics: Hamming distance
(with c = 1), Swap distance (with c = 2), Interchange distance (with c = 2).

On the other hand, the Edit distance is not a pseudo-local metric, because a
single deletion or insertion may cause an unbounded number of mismatches.
Lemma 2 states a basic property of pseudo-local metrics exploited in this paper.

Lemma 2. Let d be a c-pseudo-local metric. Then, for every n ∈ N and n-long
periodic strings S1, S2 with P1 and P2 the periods of S1 and S2 respectively,
p1 ≥ p2 and P1 �= P2 (i.e., there exists at least one mismatch between P1 and
P2) it holds that d(S1, S2) ≥ n

c·p1
.

3 Approximating the Period under Pseudo-Local Metrics

The term approximation here refer to the ability to give a relatively small size
set of candidates that includes the exact original period of the string. We first,
show the bounds on the number of errors that still guarantees a small-size set of
candidates. We then show how this set can be identified, and thus the original
uncorrupted string can be approximately recovered.

Lemma 3. Let d be a c-pseudo-local metric. Let ε > 0 be a constant, S an n-
long string and P1, P2, P1 �= P2, approximate periods of S with at most n

(2c+ε)·p1
,

n
(2c+ε)·p2

errors respectively (w.l.o.g. assume that p1 ≥ p2). Then, p1 ≥ (1+ ε
c )·p2.

Corollary 1. Let d be a c-pseudo-local-metric. Let S be a n-long string. Then,
there are at most log1+ ε

c
n different approximate periods P of S with at most

n
(2c+ε)·p errors.

The General Period Recovery Algorithm. We now describe an algorithm
for recovering the original period up to O(log n) candidates under any pseudo-
local metric defining the string corruption process. The algorithm has two stages:
candidates extraction stage and validation stage. The algorithm starts by ex-
tracting from the string S a set of candidates for the original period. Due to
pseudo-locality of the metric and the number of errors assumed, there are copies
of the original period that are left uncorrupted . A trivial O(n2)-size set would,
therefore, be the set of all substrings of S.

We, however, do better than that. Our algorithm extracts a set of only
O(n log n) candidates. These candidates are then verified to find those that com-
ply with the given error bound. By Corollary 1, we know that only O(log n)
candidates can survive the validation stage.

The algorithm extraction stage uses the MAST (Minimal Augmented Suffix
Tree) data structure presented by [7]. This data structure is a suffix-tree with
additional nodes and information in each node. The additional information in
a node is the number of non-overlapping occurrences of the string represented
by the path from the root to that node. The number of nodes in the MAST
is proven in [7] to be O(n log n), and this is also its space bound. The MAST
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construction time is O(n log2 n) time. As we show in Lemma 4, from the MAST
nodes, a set of candidates that includes all possible approximate periods can be
extracted. To do that, the algorithm performs an Extended Depth First Search
on MAST (S), denoted EDFS, which also keeps track of the string representing
the path from the root to the current node. We use the following notations for the
EDFS on MAST (S). S(v) is the string associated with the path from the root
of MAST (S) to node v. It is important to note that the strings associated with
paths in MAST (S) are only implicitly kept, as references to the corresponding
locations in S (as it is in a Suffix Tree). This enables the MAST data structure
to consume only near linear space. In the validation stage, for each candidate P
the distance between SP and S is checked if it is at most n

(2c+ε)·p .

Lemma 4. Let d be a c-pseudo-local metric. Let ε > 0 be a constant, S n-long
string with P an approximate period of S with at most n

(2c+ε)·p errors. Then, if
p > c

ε , there exists a node v in MAST (S) such that S(v) = P or S(v) is the
prefix of P of length p− 1.

Theorem 1. Let d be a c-pseudo-local-metric and let fd(n) be the complexity
of computing the distance between two n-long strings under the metric d. Let S
be n-long string with period P . Let ε > 0 be a constant. Then, if S is corrupted
by at most n

(2c+ε)·p errors under the metric d, then, a set of log1+ ε
c
n candidates

which includes P can be constructed in time O(n log2 n + fd(n) · n logn).

Proof. Let S′ be the given corruption of S. It is enough to show that the general
period recovering algorithm on input S′ has the requested property and its time
is bounded by O(n log2 n+fd(n) ·n log n). We first show that every approximate
period P ′ of S′ with at most n

(2c+ε)·p′ errors is put in C in the extraction stage
of the algorithm (and thus P is put in this set). By Lemma 4, P ′ falls into
one of the following three cases: (1) p′ ≤ c

ε , (2) P ′ = S(v) for some node v in
MAST (S′), and (3) P ′ = se for some edge e in MAST (S′). In each of these
cases, P ′ is extracted by the algorithm in the extraction phase. Since, P ′ is
an approximate period of S′ with at most n

(2c+ε)·p′ errors, it also survives the
algorithm’s validation stage. Therefore, the set of candidates returned by the
algorithm includes P . By Corollary 1 we have that the size of the set returned
by the algorithm is log1+ ε

c
n, as required.

We now prove the time bound of the algorithm. [7] assure that building
MAST (S′) can be done in time O(n log2 n). Since c

ε is constant, extraction of
substrings within case (1) can be done in O(n) time. The space of the MAST (S′)
constructed is O(n log n) and its nodes number is also O(n logn) [7]. Therefore,
the EDFS performed takes time linear in the MAST (S′) size, i.e., O(n log2 n)
time. Also, the size of the extracted candidates set before the validation is
O(n log n), as explained above. Only for these O(n log n) candidates the vali-
dation stage is done. The theorem then follows. ��

From Theorem 1 we get a simple cycle recovery under the Hamming distance
(Corollary 2), recovery under the swap distance (Corollary 3) and recovery
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under any pseudo-local metric that admits efficient constant approximation
(Theorem 2), specifically, under the interchange distance (Corollary 4).

Corollary 2. Let S be n-long string with period P . Let ε > 0 be a constant.
Then, if S is corrupted by at most n

(2+ε)·p substitution errors, then, a set of
log1+ε n candidates which includes P can be constructed in time O(n2 logn).

Corollary 3. Let S be n-long string with period P . Let ε > 0 be a constant.
Then, if S is corrupted by at most n

(4+ε)·p swap errors, then, a set of log1+ ε
2
n

candidates which includes P can be constructed in time O(n2 log4 n).

Theorem 2. Let S be n-long string with period P . Let d be a c-pseudo-local
metric that admits a polynomial time γ-approximation algorithm with complexity
fapp

d (n), where γ > 1 is a constant. Let ε > (γ − 1) · 2c be a constant. Then,
if S is corrupted by at most n

(2c+ε)·p errors under the metric d, then, a set of
log1+ ε′

c
n candidates which includes P can be constructed in time O(n log2 n +

fapp
d (n) · n logn), where ε′ = ε

γ −
2c(1−γ)

γ > 0 is a constant.

Corollary 4. Let S n-long string with period P . Let ε > 8
9 be a constant. Then,

if S is corrupted by at most n
(4+ε)·p interchange errors, then, a set of log1+ ε′

2
n

candidates which includes P can be constructed in time O(n2 log2 n), where ε′ =
3ε
2 − 4

3 > 0 is a constant.

4 Faster Period Recovery under the Hamming Distance

By Corollary 2, the general algorithm describes in Sect. 3 gives a O(n2 logn)
time bound for the Hamming metric. In this section we use stronger tools to
achieve cycle recovery under the Hamming metric in near linear time. We need
some metric-specific definitions and tools.

Definition 6. Let S be n-long string over alphabet Σ, and let p ∈ N, p ≤ n/2.
For every i, 0 ≤ i ≤ p − 1, the i-th frequent element with regard to p, denoted
F p

i , is the symbol σ ∈ Σ which appears the largest number of times in locations
i + c · p in S, where c ∈ [0..�n/p�], and2 i + c · p ≤ n.

The Self-Convolution Vector. The main tool we exploit in this paper to give
faster recovery for the Hamming metric is the self-convolution vector defined
below. Using standard FFT techniques gives Lemma 5.

2 For simplicity of exposition, positive integers of the form i + c · p, c ∈ [0..�n/p�]
for some p ≤ n/2 are referred to as locations in S without mentioning explicitly
the condition i + c · p ≤ n. It is always assumed that only valid positions in S are
referred to.
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Definition 7. Let S be n-long string over alphabet Σ, and let S̄ be the string
S concatenated with n $’s (where $ /∈ Σ). The self-convolution vector of S, v,
is defined for every i, 0 ≤ i ≤ n/2 − 1, v[i] =

∑n−1
j=0 f(S̄[i + j], S[j]), where

f(S̄[i + j], S[j]) =
{

1, if S̄[i + j] �= S[j] and S̄[i + j] �= $;
0, otherwise. .

Lemma 5. [13] The self-convolution vector of a length n string S over alphabet
Σ can be computed in time O(|Σ|n log n).

The self-convolution vector of a periodic string (without corruptions) is a highly
structured vector. Lemma 6 describes this structure.

Lemma 6. Let S be n-long string with period P , then the self-convolution vector
of S is 0, in every location i, i ≡ 0 mod p, and at least �n

p �, in all other locations.

The Separation Property. The structure of the self-convolution vector in an
uncorrupted string S is described by Lemma 6. By this structure the locations
that are multiplicities of the period can be easily identified, and therefore also
the length of the period can be easily found. The separation property of the self-
convolution vector of a given possibly corrupted string S′ relaxes the demand
for 0 at the 0 mod p locations and at least �n

p � elsewhere, but insists on a fixed
separation nevertheless.

Definition 8. Let S′ be n-long string with period P , and let v be the self-
convolution vector of S′. We say that v is (α, β)-separable if 0 ≤ α < β, and v
has values:
< αn

p , in every location i, i ≡ 0 mod p, and
> β n

p , in all other locations.

Separation is a seemingly very strong property. Does it ever occur in reality?
Lemma 7 shows that if there are less substitution errors than n

4p , separation is
guaranteed.

Lemma 7. Let S be n-long string with period P . Let S′ be the string S corrupted
with at most �δ n

p � substitution errors, where 0 ≤ δ < 1
4 , then the self-convolution

vector of S′ is (2δ, 1− 2δ)-separable.

The Period H-Recovery Algorithm. The period recovery algorithm under
Hamming metric first gathers information on the corrupted string S′ by com-
puting the self-convolution vector v. Then, (α, β)-separation is used in order to
reconstruct the original period. By Lemma 7, if there are not too many sub-
stitution errors, separation is guaranteed. The algorithm sorts all values of the
self-convolution vector in ascending order vi1 , ..., vin and considers all locations
where

vi�+1
vi�

≥ β
α . Such an i
 is called a separating location, and vi�

, a separating
value. Clearly there are no more that O(log n) separating locations. Each one
needs to be verified if it indeed defines a period. The algorithm uses the fact that
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all the multiplicities of the original period have values at most the separating
value, in order to find the period length, which is the common difference between
the sorted list of multiplicities. Given the period length, the period can be easily
reconstructed by a linear scan and the majority criterion.

We now give the worst-case analysis of Algorithm PeriodH-Recovery. Lemma 8
proves the algorithm’s correctness. The complexity guarantee of the algorithm is
given by Lemma 9. Theorem 3 follows.

Lemma 8. Let S be n-long string with period P , and let S′ be S corrupted
by substitution errors. Assume that the self-convolution vector of S′ is (α, β)-
separable. Then algorithm Period H-Recovery returns a non empty set Ĉ, |Ĉ| =
O(log n), such that P ∈ Ĉ.

Lemma 9. Algorithm Period H-Recovery runs in O(|Σ|n log n) steps.

Theorem 3. Let S be n-long string with period P . Then, if S is corrupted but
preserves a (α, β) separation, a set of O(log n) candidates which includes P can
be constructed in time O(|Σ|n log n).

Unbounded Alphabets. Theorem 3 assures that we can give a set of O(log n)
candidates which includes P , for a corrupted n-length string S with period P
that preserves a (α, β) separation, in time O(|Σ|n logn). For small alphabets this
result is fine, but for unbounded alphabets, e.g. of size p + n/p, it is inefficient.
Of course, one can immediately lower the time complexity to O(n

√
p logn) by

using Abrahamson’s result [1]. But we can do even better by using Reed-Solomon
codes [17] to encode the alphabet {1, ..., n}.

Theorem 4. Let S be n-long string with period P over alphabet Σ. Then, if S
is corrupted but preserves a (α, β) separation, a set of O(log n) candidates which
includes P can be constructed in time O(n log2 n).

5 Period Recovery under the Edit Distance

As mentioned previously, the edit distance is not pseudo-local. In fact, it is also
clear that Corollary 1 does not hold. As an example consider a period P of length
n1/4. The allotted number of corruptions is n

(2+ε)n1/4 = n3/4

(2+ε) . Nevertheless, every

one of the n1/4 cyclic rotations of P generates a string whose edit distance from
P 3/4 is at most n1/4, by an appropriate number of leading deletions. This number
of errors is well within the bounds tolerated by Corollary 1, yet the number of
possible approximate periods is quite large. Fortunately, Lemma 10 assures that
even for edit distance, there are O(log n) candidates up to cyclic rotations.

Lemma 10. Let ε > 0 be a constant. Let S an n-long string and let P1, P2,
P1 �= P2, be approximate periods of S with at most n

(4+ε)·p1
, n

(4+ε)·p2
edit errors

respectively (w.l.o.g. assume that p1 ≥ p2), such that P1 is not a cyclic rotation
of P2. Then, p1 ≥ (1 + ε

2 ) · p2.
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Corollary 5. Let S be a n-long string. Then, there are at most log1+ ε
2
n dif-

ferent approximate periods P of S with at most n
(4+ε)·p edit errors, that are not

cyclic rotations of any other approximate period.

The naive construction of the approximate period candidates is done as follows.
For each of the O(n logn) candidates output by the extraction stage of the
general Period Recovery Algorithm, and each of its rotations (for a total of
O(n2 logn) candidates), compute the edit distance with the input string. The
edit distance is computable in time O(n2) [15] by dynamic programming. Thus,
the total time is O(n4 log n). But we can do better by using different methods for
handling small/large candidates (of length at most/ exceeds

√
n, respectively)

and combining with recent results in computation of ED [19].

Theorem 5. Let S be n-long string with period P . Let ε > 0 be a constant.
Then, if S is corrupted by at most n

(4+ε)·p Levenshtein edit operations, then,
a set of log1+ ε

2
n candidates such that their cyclic rotations include P , can be

constructed in time O(n3 logn).
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Abstract. Hliněný [J. Combin. Theory Ser. B 96 (2006), 325–351] sho-
wed that every matroid property expressible in the monadic second order
logic can be decided in linear time for matroids with bounded branch-
width that are represented over finite fields. To be able to extend these
algorithmic results to matroids not representable over finite fields, we
introduce a new matroid width parameter, the decomposition width,
and show that every matroid property expressible in the monadic sec-
ond order logic can be computed in linear time for matroids given by
a decomposition with bounded width. We also relate the decomposition
width to matroid branch-width and discuss implications of our results
with respect to other known algorithms.

1 Introduction

Algorithmic aspects of graph tree-width form an important part of algorithmic
graph theory. Efficient algorithms for computing tree-decompositions of graphs
have been designed [1, 4] and a lot of NP-complete problems become tractable
for classes of graphs with bounded tree-width [2,3]. Most of results of the latter
kind are implied by a general result of Courcelle [5,6] that every graph property
expressible in the monadic second-order logic can be decided in linear time for
graphs with bounded tree-width.

As matroids are combinatorial structures that generalize graphs, it is natural
to ask which of these results translate to matroids. Similarly, as in the case of
graphs, some hard problems (that cannot be solved in polynomial time for gen-
eral matroids) can be efficiently solved for (represented) matroids with bounded
width. Though the notion of tree-width generalizes to matroids [18, 19], a more
natural width parameter for matroids is the notion of branch-width. Let us post-
pone its formal definition to Section 2 and just mention at this point that the
branch-width of matroids is linearly related with their tree-width, in particular,
the branch-width of a graphic matroid is bounded by twice the tree-width of the
corresponding graph.

There are two main algorithmic aspects which one needs to address with re-
spect to algorithmic properties of a width parameter of combinatorial structures:
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– the efficiency of computing decompositions with bounded width (if they
exist), and

– tractability of hard problems for input structures with bounded width.

The first issue has been successfully settled with respect to matroid branch-
width: for every k, there exists a polynomial-time algorithm that either computes
a branch-decomposition of an input matroid with width at most k or outputs
that there is no such branch-decomposition. The first such algorithm has been
found by Oum and Seymour [22] (an approximation algorithm has been known
earlier [21], also see [13] for the case of matroids represented over a finite field)
and a fixed parameter algorithm for matroids represented over a finite field was
later designed by Hliněný and Oum [17].

The tractability results, which include deciding monadic second-order logic
properties [11, 12, 14], computing and evaluating the Tutte polynomial [16] and
computing and counting representations over finite fields [20], usually require
restricting to matroids represented over finite fields (see Section 2 for the defi-
nition). This is consistent with the facts that no subexponential algorithm can
decide whether a given matroid is binary [24], i.e., representable over GF(2),
even for matroids with branch-width three and that it is NP-hard to decide rep-
resentability over GF(q) for every prime power q ≥ 4 even for matroids with
bounded branch-width represented over Q [15], as well as with structural results
on matroids [7,8, 9, 10] that also suggest that matroids representable over finite
fields are close to graphic matroids (and thus graphs) but general matroids can
be quite different.

The aim of this paper is to introduce another width parameter for matroids
which will allow to extend the known tractability results to matroids not nec-
essarily representable over finite fields. The cost that needs to be paid for this
is that this new width parameter cannot be bounded by any function of the
branch-width (as we already mentioned there is no subexponential algorithm to
decide whether a matroid with branch-width three is representable over a finite
field). On the positive side, the new width parameter is bounded by a function
of the branch-width for matroids representable over a fixed finite field and de-
compositions with bounded width can be computed efficiently (see Section 3).
Hence, we are able to unify the already known structural results for matroids.
Our new notion captures the “structural finiteness” on cuts represented in the
branch decomposition essential for the tractability results and is closely related
to rooted configurations as introduced in [7] and indistinguishable sets from [20].
A more logic based approach in this direction has been given in [25].

Our results. In Section 2, we introduce a K-decomposition of a matroid (where
K is an integer) and define the decomposition width of a matroid M to be the
smallest integer K such that M has a K-decomposition. In Section 3, we show
that there exists a function F (k, q), the decomposition width of a matroid with
branch-width at most k that is representable over GF(q) is at most F (k, q)
and that an F (k, q)-decomposition of any such matroid can be computed in
polynomial time. In Sections 4, 5 and 6, we show that for every K, there ex-
ist polynomial-time algorithms (with the degree of the polynomial independent
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of K) for computing and evaluating the Tutte polynomial, deciding monadic
second-order logic properties, deciding representability and constructing and
counting representations over finite fields when the input matroid is given by
its K-decomposition. In particular, our results imply all the tractability results
known for matroids represented over finite field (we here claim only the poly-
nomiality, not matching the running times which we did not try to optimize
throughout the paper).

A K-decomposition of a matroid actually captures the whole structure of a
matroid, i.e., the matroid is fully described by its K-decomposition, and thus
it can be understood as an alternative way of providing the input matroid. In
fact, for a fixed K, the size of a K-decomposition is linear in the number of
matroid elements and thus this representation of matroids is very suitable for
this purpose. Let us state (without a proof) that K-decompositions of matroids
support contraction and deletion of matroid elements without increasing the de-
composition width as well as some other matroid operations with increasing
the decomposition width by a constant, e.g., relaxing a circuit-hyperplane in-
creases the decomposition width by at most one. By supporting we mean that
a K-decomposition of the new matroid can be efficiently computed from the
K-decomposition of the original one. Hence, the definition of the decomposition
width does not only yield a framework extending tractability results for ma-
troids represented over finite fields with bounded branch-width but it also yields
a compact data structure for representing input matroids.

2 Matroid Notation

In this section, we formally introduce the notions which are used in this paper.
We start with basic notions and we then introduce matroid representations,
branch-decompositions and the new width parameter. We also refer the reader
to the monographs [23,26] for further exposition on matroids.

A matroid M is a pair (E, I) where I ⊆ 2E . The elements of E are called
elements of M, E is the ground set of M and the sets contained in I are called
independent sets. The set I is required to contain the empty set, to be hereditary,
i.e., for every F ∈ I, I must contain all subsets of F , and to satisfy the exchange
axiom: if F and F ′ are two sets of I such that |F | < |F ′|, then there exists
x ∈ F ′ \ F such that F ∪ {x} ∈ I. The rank of a set F , denoted by r(F ), is the
size of a largest independent subset of F (it can be inferred from the exchange
axiom that all inclusion-wise maximal independent subsets of F have the same
size). An important class of matroids form graphic matroids: the ground set of
the matroid associated with a graph G are the edges of G and the set of edges is
independent if they are acyclic in G. Another example of matroids is formed by
uniform matroids Ur,n with n elements and independent sets being all subsets
with at most r vertices. In the rest, we often understand matroids as sets of
elements equipped with a property of “being independent”. We use r(M) for
the rank of the ground set of M.
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If F is a set of elements of M, then M\F is the matroid obtained from M by
deleting the elements of F , i.e., the elements of M\ F are those not contained
in F and a subset F ′ of such elements is independent in the matroid M\ F if
and only if F ′ is independent in M. The matroid M/F which is obtained by
contraction of F is the following matroid: the elements of M/F are those not
contained in F and a subset F ′ of such elements is independent in M/F if and
only if r(F ∪ F ′) = r(F ) + |F ′| in M. A loop of M is an element e of M such
that r({e}) = 0 and a co-loop is an element such that r(M\{e}) = r(M)−1. A
separation (A,B) is a partition of the elements ofM into two disjoint non-empty
sets and a separation is called a k-separation if r(A) + r(B) − r(M) ≤ k − 1.

2.1 Matroid Representations

Matroids do not generalize only the notion of graphs (recall graphic matroids
mentioned earlier) but they also generalize the notion of linear independence
of vectors. If F is a (finite or infinite) field, a mapping ϕ : E → Fd from the
ground set E of M to a d-dimensional vector space over F is a representation
of M if a set {e1, . . . , ek} of elements of M is independent in M if and only if
ϕ(e1), . . . , ϕ(ek) are linearly independent vectors in Fd. For a subset F of the
elements of M, ϕ(F ) denotes the linear subspace of Fd generated by the images
of the elements of F . In particular, dimϕ(F ) = r(F ). Two representations ϕ1
and ϕ2 of M are isomorphic if there exists an isomorphism ψ of vector spaces
ϕ1(E) and ϕ2(E) such that ψ(ϕ1(e)) is a non-zero multiple of ϕ2(e) for every
element e of M.

We next introduce additional notation for vector spaces over a field F. If U1
and U2 are two linear subspaces of a vector space over F, U1 ∩ U2 is the linear
space formed by all the vectors lying in both U1 and U2, and U1 + U2 is the
linear space formed by all the linear combinations of the vectors of U1 and U2,
i.e., the linear hull of U1 ∪ U2. Formally, U1 + U2 = {u1 + u2|u1 ∈ U1, u2 ∈ U2}.

2.2 Branch-Decompositions

A branch-decomposition of a matroid M with ground set E is a tree T such that

– all inner nodes of T have degree three, and
– the leaves of T one-to-one correspond to the elements of M.

An edge e of T splits T into two subtrees and the elements corresponding to the
leaves of the two subtrees form a partition (E1, E2) of the ground set E. The
width of an edge e is equal to r(E1)+r(E2)−r(E), i.e., to the smallest k such that
(E1, E2) is a (k+1)-separation ofM. The width of the branch-decomposition T is
the maximum width of an edge e of T . Finally, the branch-width of a matroid is
the minimum width of a branch-decomposition of M and is denoted by bw(M).

2.3 Decomposition Width

We now formally define our new width parameter. A K-decomposition, K ≥ 1,
of a matroid M with ground set E is a rooted tree T such that
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– the leaves of T one-to-one correspond to the elements of E,
– some leaves of T are special (we refer to them as “special leaves”), and
– each inner node v of T has exactly two children and is associated with two

functions ϕv and ϕr
v such that ϕv : {0, . . . ,K}×{0, . . . ,K} → {0, . . . ,K} and

ϕr
v : {0, . . . ,K} × {0, . . . ,K} → N such that ϕv(0, 0) = 0 and ϕr

v(0, 0) = 0.

We now define a function rT : 2E → N based on the K-decomposition T .
The value rT (F ) for F ⊆ E is determined as follows. Each vertex of T is

assigned a color (an integer between 0 and K) and a label (a non-negative
integer). A non-special leaf of T corresponding to an element in F is colored
and labelled with 1 and other leaves are colored and labelled with 0. If v is an
inner node of T and its two children are labeled with λ1 and λ2 and colored with
γ1 and γ2, the node v is colored with ϕv(γ1, γ2) and labeled with the number
λ1 +λ2 −ϕr

v(γ1, γ2). Note that if F = ∅, then all the nodes have color 0 and are
labelled with 0. The value rT (F ) is defined to be the label of the root of T . Since
the values of ϕr

v for the root v of T do not influence rT , ϕr
v can be assumed to

be identically equal to 0 for the the root v.
If rT (F ) = r(F ) for every F ⊆ E where r is the rank function of M, then

T represents the matroid M. The decomposition width of a matroid M is the
smallest K such that there is a K-decomposition representing M. An example
of a K-decomposition is given in Figure 1.

ϕv 0 1
0 0 0
1 0 0

ϕr
v 0 1

0 0 0
1 0 1

ϕv 0 1
0 0 0
1 0 1

ϕr
v 0 1

0 0 0
1 0 0

ϕv 0 1
0 0 0
1 0 1

ϕr
v 0 1

0 0 0
1 0 0

e1 e2 e3 e4

C4

e1

e2

e3

e4

Fig. 1. A 1-decomposition representing a graphic matroid corresponding to the cycle
C4 of length four. None of the leaves is special.

We now give intuitive explanation behind K-decompositions. The colors rep-
resent types of different subsets of elements of M, i.e., if Ev is the set of elements
assigned to leaves of a subtree rooted at an inner vertex v, then those subsets of
Ev that get the same color at v are of the same type. The labels represent the
ranks of subsets. Subsets of the same type can have different labels (and thus
ranks) but they behave in the same way in the following sense: if E1 and E2
are elements assigned to leaves of two subtrees rooted at children of v, then the
rank of the union of two subsets of E1 with the same color and two subsets of
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E2 with the same color is equal to the sum of their ranks decreased by the same
amount. Finally, special leaves allows to recognize loop elements of M.

3 Constructing and Verifying Decompositions

We now relate the decomposition width of matroids representable over finite
fields to their branch-width. Recall that there is no function of branch-width
bounding the decomposition width for general matroids as we have explained in
Introduction. The proof is omitted due to space limits.

Theorem 1. Let M be a matroid representable over a finite field F of order q.
If the branch-width of M is at most k ≥ 1, then the decomposition width of M
is at most K = qk+1−q(k+1)+k

(q−1)2 . Moreover, if a branch-decomposition of M with
width k and its representation over F are given, then a K-decomposition of M
can be constructed in time O(n1+α) where n is the number of elements of M
and α is the exponent from the matrix multiplication algorithm.

Combining Theorem 1 and the cubic-time algorithm of Hliněný and Oum [17]
for computing branch-decompositions of matroids with bounded branch-width,
we obtain the following:

Corollary 1. Let M be a matroid represented over a finite field F of order q. For
every k ≥ 1, there exists an algorithm running in time O(n1+α), where n is the
number of elements of M and α is the exponent from the matrix multiplication
algorithm, that either outputs that the branch-width of M is bigger than k or
constructs a K-decomposition representing M for K ≤ qk+1−q(k+1)+k

(q−1)2 .

A K-decomposition fully describes the matroid it represents through functions
ϕv and ϕr

v. However, not all possible choices of ϕv and ϕr
v give rise to a de-

composition representing a matroid and it is natural to ask whether we can
efficiently test that a K-decomposition represents a matroid. We answer this
equation in the affirmative way in the next theorem; the proof is omitted due to
space constraints.

Theorem 2. For every K-decomposition T with n leaves, it can be tested in
time O(K8n) whether T corresponds to a matroid.

4 Computing the Tutte Polynomial

One of the classical polynomials associated to matroids (and graphs) is the Tutte
polynomial. There are several equivalent definitions of this polynomial, but we
provide here only the one we use. the Tutte polynomial TM(x, y) is equal to

TM(x, y) =
∑
F⊆E

(x− 1)r(E)−r(F )(y − 1)|F |−r(F ) (1)
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The Tutte polynomial is an important algebraic object associated to a matroid.
Some of the values of TM(x, y) have a combinatorial interpretation; as a simple
example, the value TM(1, 1) is equal to the number of bases of a matroid M.
We show that the Tutte polynomial can be computed, i.e., its coefficients can be
listed, and evaluated, i.e., its value for given x and y can be determined, in time
O(K2n3r2) for n-element matroids of rank r given by the K-decomposition. The
proof for computing the Tutte polynomial reflects the main motivation behind
the definition of our width parameter.

Theorem 3. Let K be a fixed integer. The Tutte polynomial of an n-element
matroid M given by its K-decomposition can be computed in time O(K2n3r2)
and evaluated in time O(K2n) where r is the rank of M (under the assumption
that summing and multiplying O(n)-bit numbers can be done in constant time).

Proof. First, we give an algorithm for computing the Tutte polynomial, i.e.,
an algorithm that computes the coefficients in the polynomial. Let T be a K-
decomposition of M and let Ev be the elements of M corresponding to leaves
of the subtree rooted at a vertex v. For every node v of M and every triple
[γ, n′, r′], 0 ≤ γ ≤ K, 0 ≤ n′ ≤ n and 0 ≤ r′ ≤ r, we compute the number of
subsets F of Ev such that the color assigned to v for F is γ, |F | = n′ and the
rank of F is r′. These numbers will be denoted by μv(γ, n′, r′).

The numbers μv(γ, n′, r′) are computed from the leaves towards the root of
T . If v is a leaf of T , then μv(0, 0, 0) is equal to 1. The value of μv(1, 1, 1) is also
equal to 1 unless v is special; if v is special, then μv(0, 1, 0) = 1. All the other
values of μv are set to 0.

Let v be a node with children v1 and v2. If Fi is a subset of Evi with color
γi such that ni = |Fi| and ri = r(Fi), then F1 ∪ F2 is a subset of Ev with color
ϕv(γ1, γ2), with n1 + n2 elements and the rank r1 + r2 − ϕr

v(γ1, γ2). In other
words, it holds that

μv(γ, n′, r′) =
∑

γ1,n1,r1,γ2,n2,r2

μv1(γ1, n1, r1)μv2(γ2, n2, r2) (2)

where the sum is taken over six-tuples (γ1, n1, r1, γ2, n2, r2) such that γ =
ϕv(γ1, γ2), n′ = n1 + n2 and r′ = r1 + r2 − ϕr

v(γ1, γ2). Computing μv from
the values of μv1 and μv2 base on (2) requires time O(K2n2r2) and thus the
total running time of the algorithm is O(K2n3r2). The Tutte polynomial of M
can be read from μr where r is the root of T since the value μr(0, α, β) is the
coefficient at (x− 1)r(E)−β(y − 1)α−β in (1).

Let us turn our attention to evaluating the Tutte polynomial for given values
of x and y. This time, we recursively compute the following quantity for every
node v of T :

μv(γ) =
∑

F⊆Ev

(x − 1)r(E)−r(F )(y − 1)|F |−r(F ) (3)

where the sum is taken over the subsets F with color γ. The value of μv(0) is
equal to (x−1)r(E)y for special leaves v and to (x−1)r(E) for non-special leaves
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v. For non-special leaves, μv(1) is equal to (x− 1)r(E)−1. All the other values of
μv are equal to 0.

For a node v of T with two children v1 and v2, the equation (3) and the
definition of a K-decomposition implies that

μv(γ) =
∑

0≤γ1,γ2≤K

μv1(γ1)μv2(γ2)
(x− 1)r(E)−ϕr

v(γ1,γ2)(y − 1)−ϕr
v(γ1,γ2)

where the sum is taken over values γ1 and γ2 such that γ = ϕv(γ1, γ2). Under
the assumption that arithmetic operations require constant time, determining
the values of μv needs time O(K2). Since the number of nodes of T is O(n), the
total running time of the algorithm is O(K2n) as claimed in the statement of
the theorem.

As a corollary, we obtain Hliněný’s result on computing the Tutte polynomial
and its values for matroids represented over finite fields of bounded branch-
width [16].

Corollary 2. Let F be a fixed finite field and k a fixed integer. There is a
polynomial-time algorithm for computing and evaluating the Tutte polynomial
for the class of matroids of branch-width at most k representable over F that are
given by their representation over the field F.

5 Deciding MSOL-Properties

In this section, we show that there is a linear-time algorithm for deciding monadic
second order logic formulas for matroids of bounded decomposition width when
the decomposition is given as part of input.

First, letusbepreciseon the typeof formulas thatwe are interested in.Amonadic
second order logic formula ψ, an MSOL formula, for a matroid contains basic logic
operators (the negation, the disjunction and the conjunction), quantifications over
elements and sets of elements of a matroid (we refer to these variables as to element
and set variables), the equality predicate, the predicate of containment of an ele-
ment in a set and the independence predicate which determines whether a set of
elements of a matroid is independent. The independence predicate depends on and
encodes an input matroidM. Properties expressible in the monadic second order
logic include many well-known NP-complete problems, e.g., it can be expressed
whether a graphic matroid corresponds to a hamiltonian graph.

In order to present the algorithm, we introduce auxiliary notions of a K-half
and K-halved matroids which we extend to interpreted K-halves. A K-half is
a matroid M with ground-set E and equipped with a function ϕM : 2E →
{0, . . . ,K}. A K-halved matroid is a matroid M with ground-set E = E1 ∪ E2
composed of a K-halfM1 with ground set E1 and a matroidM2 with ground set
E2 such that each subset of F ⊆ E2 is assigned a vector wF of K+1 non-negative
integers. Both M1 and M2 are matroids. The rank of a subset F ⊆ E1 ∪ E2 is
given by the following formula:

rM(F ) = rM1(F ∩E1) + wF∩E2
ϕM1(F∩E1)

,
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where wF∩E2
ϕM1 (F∩E1)

is the coordinate of the vector wF∩E2 corresponding to the
value of ϕM1(F ∩E1). We will write M = M1⊕KM2 to represent the fact that
the matroid M is a K-halved matroid obtained from M1 and M2 in the way
we have just described.

The next lemma justifies the definition of K-halved matroids: it asserts that
every matroid M represented by a K-decomposition can be viewed as a com-
posed of two K-halves, one of which is M restricted to the elements correspond-
ing to leaves of a subtree of its K-decomposition. The proof is omitted due to
space constraints.

Lemma 1. Let T be a K-decomposition of a matroid M, K ≥ 1, and let v be
a node of T . Further, let Ev be the set of elements of M assigned to the leaves
of the subtree of T rooted at v, and Ev the set of the remaining elements of M.
If F1 and F2 are two subsets of Ev such that the color of v with respect to the
decomposition is the same for F1 and F2, then

r(F ) + r(F1)− r(F ∪ F1) = r(F ) + r(F2)− r(F ∪ F2), i.e.,

r(F ∪ F1)− r(F1) = r(F ∪ F2)− r(F2),

for every subset F of Ev.

For an MSOL formula ψ with no free variables, two K-halvesM1 and M′
1 are ψ-

equivalent if the formula ψ is satisfied for M1⊕K M2 if and only if ψ is satisfied
for M′

1 ⊕K M2. It can be shown that the number of ψ-equivalence classes of
K-halves is finite.

Lemma 2. Let ψ be a fixed MSOL formula and K a fixed integer. The number
of ψ-equivalence classes of K-halves is finite.

For a K-decomposition T of a matroid M, we can obtain a K-half by restricting
M to the elements corresponding to the leaves of a subtree of T (note that the
subsets of the elements not corresponding to the leaves of T can be assigned
non-negative integers as in the definition of a K-halved matroid by Lemma 1).
The K-half obtained from M by restricting it to the elements corresponding to
the leaves of a subtree rooted at a vertex v of T is further denoted by Mv. The
next lemma is the core of the linear-time algorithm for deciding the satisfiability
of the formula ψ.

Lemma 3. Let ψ be a monadic second order logic formula, let T be a K-
decomposition of a matroid M and let v be a node of T with children v1 and
v2. The ψ-equivalence class of Mv is uniquely determined by the ψ-equivalence
classes of Mv1 and Mv2 , and the functions ϕv and ϕr

v.

We are now ready to present the main result of this section.

Theorem 4. Let ψ be a fixed monadic second order logic and K a fixed integer.
There exists an O(n)-time algorithm that given an n-element matroid M with
its K-decomposition decides whether M satisfies ψ.
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Proof. The core of our algorithm is Lemma 3. Since ψ and K are fixed and the
number of ψ-equivalence classes of K-halves is finite by Lemma 2, we can wire
in the algorithm the transition table from the equivalence classes of Mv1 and
Mv2 , ϕv and ϕr

v to the equivalence class of Mv where v is a node of T and v1
and v2 its two children. At the beginning, we determine the equivalence classes
of Mv for the leaves v of T ; this is easy since the equivalence class of Mv for
a leaf v depends only on the fact whether the element corresponding to v is a
loop or not.

Then, using the wired in transition table, we determine in constant time the
equivalence class of Mv for each node v based on ϕv, ϕr

v and the equivalence
classes of Mv1 and Mv2 for children v1 and v2 of v. Observe that the definition
of ψ-equivalence implies that the equivalence classes of Mv1 and Mv2 where v1
and v2 are the two children of the root determine whether ψ is satisfied for M.
Hence, once the equivalence classes of Mv1 and Mv2 are found, it is easy to
determine whether M satisfies ψ using another wired-in table.

As K and ψ are fixed, the running time of our algorithm is clearly linear in the
number of nodes of T which is linear in the number of elements of the matroidM.

Corollary 1 and Theorem 4 yield the following result originally proved by
Hliněný [14]:

Corollary 3. Let F be a fixed finite field, k a fixed integer and ψ a fixed monadic
second order logic formula. There is a polynomial-time algorithm for deciding
whether a matroid of branch-width at most k given by its representation over the
field F satisfies ψ.

6 Deciding Representability

We adopt the algorithm presented in [20]. Let us start with recalling some defini-
tions from [20]. A rooted branch-decomposition of M is obtained from a branch-
decomposition of M by subdividing an edge and rooting the decomposition tree
at a new vertex. If M is a matroid and (A,B) is a partition of its ground set,
then two subsets A1 and A2 are B-indistinguishable if the following identity
holds for every subset B′ of B:

r(A1 ∪B′)− r(A1) = r(A2 ∪B′)− r(A2) .

Clearly, the relation of being B-indistinguishable is an equivalence relation on
subsets of A. Finally, the transition matrix for an inner node v of a rooted branch-
decomposition M is the matrix whose rows correspond to E1-indistinguishable
subsets of E1 and columns to E2-indistinguishable subsets of E2 where E1 and
E2 are the elements corresponding to the leaves of the two subtrees rooted at
the children of v and E1 and E2 are their complements. The entry of M in
the row corresponding to the equivalence class of F1 ⊆ E1 and in the column
corresponding to the equivalence class of F2 ⊆ E2 is equal to r(F1) + r(F2) −
r(F1 ∪ F2). By the definition of indistinguishability, the value of the entry is
independent of the choice of F1 and F2 in their equivalence classes.

The main algorithmic result of [20] can be reformulated as follows:
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Theorem 5. Let k be a fixed integer and q a fixed prime power. There is a
polynomial-time algorithm that for a matroid M given by its rooted branch-
decomposition with transition matrices whose number of rows and columns is at
most k and a (oracle-given) mapping of subsets to equivalence classes correspond-
ing to rows and columns of its matrices decides whether M can be represented
over GF(q) and if so, it computes one of its representations over GF(q). More-
over, the algorithm can be modified to count all non-isomorphic representations
of M over GF(q) and to list them (in time linearly dependent on the number of
non-isomorphic representations).

Let T be a K-decomposition of a matroid M, v an inner node of T and Ev

the subset of the ground set of M containing the elements corresponding to the
leaves of subtree of T rooted at v. View T as a rooted branch-decomposition
of M. Observe that any two subsets of Ev assigned the same color at v are
Ev-indistinguishable where Ev is the complement of Ev. In addition, the values
of the function ϕr

v are entries of the transition matrix at v as defined in the
beginning of this section. Hence, Theorem 5 yields the following.

Corollary 4. For every integer K and every prime power q, there is a polyno-
mial-time algorithm that for a matroid M given by its K-decomposition, decides
whether M can be represented over GF(q) and if so, it computes one of its
representations over GF(q). Moreover, the algorithm can be modified to count
all non-isomorphic representations of M over GF(q) and to list them (in time
linearly dependent on the number of non-isomorphic representations).
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1 Introduction

Common wisdom has it that the whole is more than the sum of the parts. In more
economic terms, this proverb is a translation of the fact that two cooperative agents are
often capable of generating a surplus that neither could achieve alone. For example, the
owner of a music studio, together with a music band, can record and sell an album;
a publishing house, together with an author, can print and sell a book. The proceeds
from the album or the book are the surplus generated by the cooperation of the agents.
Bargaining theory asks how agents divide this jointly generated surplus.

In the 1950s, John Nash proposed a solution to this problem for the special case
of two agents [32]. His solution, known as the Nash bargaining solution, is based on
the intuition that, all else being equal, agents will tend to divide the surplus equally.
If things are not equal, i.e., if some agents have better outside options than others,
then the net surplus will be divided equally. Since Nash’s result, various economists
and computer scientists have extended this solution concept to a networked setting and
defined new equilibrium concepts as well [6,28]. In these settings, each agent has a set
of potential contracts, represented by the network. The “outside options” of the Nash
bargaining solution are now endogenous to the model and generated by the network
structure itself.

We propose looking at the network bargaining game through the lens of cooperative
game theory. In a cooperative game, sets of agents are mapped to values representing
the surplus they alone can generate. A solution then assigns a payoff to each agent.
The literature has a rich history exploring various solution concepts, their axiomatic
properties, and their computability. By interpreting the network bargaining game in this
context, we are able to leverage the valuable tools and concepts of cooperative game
theory when studying network bargaining. Not only does this enable us to reproduce
previous results (with arguably little effort) and derive these previous results for more
general models, but more importantly perhaps, we are introduced to new refined so-
lution concepts such as nucleolus and lexicographic kernel. These concepts are often
arguably more predictive than those previously studied.

Our Results. In most prior work on networked bargaining, researchers assume each
agent can enter at most one contract, i.e., the set of contracts form a matching. Addi-
tionally, contracts are often assumed to be of equal worth. In this paper, we generalize
these models by assigning each agent a capacity constraint and allowing him or her to
participate in a number of contracts limited by this capacity. We also allow contracts
to generate varying amounts of surplus. We mainly focus our efforts on the important
special case of bipartite networks, or networks like the music and literature examples
above, in which each agent can be divided into one of two types depending on which
type of agent he or she contracts with.

The most basic question in these models is to develop predictions regarding which
contracts will form and how much each agent will earn as a result. A successful predic-
tion should be intuitive, computationally tractable, and unique. To this end, Kleinberg
and Tardos [28] proposed a solution concept for the matching case called stable and
a refinement called balanced that are natural generalizations of the Nash bargaining
solution for the two-player case [32].
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We first show how to characterize all stable solutions in our general setting using a
linear-programming formulation which is a generalization of one developed by Shapley
and Shubik [36] for the matching case. We then introduce a special case of our prob-
lem in which one side of the market is severely capacity-constrained. In particular, we
assume agents on one side of the market can enter into at most one contract each while
the other side has general constraints. In this constrained setting, we draw connections
between balanced and stable outcomes and the cooperative game-theoretic notions of
core and prekernel. These notions look for solutions that are stable with respect to de-
viating coalitions of any size. Unlike the general setting, in this setting we prove that
the set of stable solutions and the core coincide, as does the set of balanced solutions
and the prekernel. This result is of particular interest as the core and prekernel are ax-
iomatic solution concepts of exponential description size (essentially they require that
certain conditions hold for every subset of agents), whereas the notions of stable and
balanced solutions have inherently polynomial descriptions. These connections allow
us to leverage existing results in the cooperative game theory literature (such as those
for computation of core, prekernel, nucleolus, and lexicographic kernel) to motivate and
derive solutions in our setting.

As for leveraging tools from cooperative game theory, the connections we draw im-
ply that the techniques of Faigle, Kern, and Kuipers [19] for finding a point in the prek-
ernel of a game can be adapted to find a balanced solution for our constrained bargaining
game. Indeed, the resulting algorithm as well as its analysis is essentially the same as
the local dynamics given in Azar et al. [1]. These connections also have implications
for the model of Kleinberg and Tardos [28]. In their model, the set of possible contracts
is not necessarily bipartite, but instead each agent is restricted to participate in at most
one contract. Our aforementioned results regarding stable and balanced solutions can
be adapted to this setting. Since the set of stable solutions and core coincide, we are
able to characterize all graphs which have at least one stable outcome. Namely, a graph
has a stable outcome if and only if the simple maximum-weight matching LP relaxation
has integrality gap one. Since the set of balanced solutions and the prekernel coincide,
we can obtain the Kleinberg-Tardos result for constructing a balanced outcome in poly-
nomial time using simple and well-known results from the economics literature rather
than combinatorial constructs like posets and Edmonds-Gallai decompositions.

Perhaps more importantly, this connection to cooperative game theory guides us in
our search for solution concepts for our game. The set of stable/balanced and core/kernel
solutions previously proposed may be quite large and hence not terribly predictive. With
the goal of computing a unique and predictive outcome for our game, we propose and
motivate the cooperative game-theoretic notion of nucleolus as the “right” outcome. The
nucleolus is unique and symmetric in that agents with similar opportunities have similar
earnings. It is also supported by economic experiments, as discussed in Section 2.2. Ad-
ditionally, for the above model, we show that the nucleolus is computationally tractable.
We prove this by following an iterative linear-programming based approach used previ-
ously by economists [23,17,40,19] and computer scientists [15] in unrelated contexts. In
order to adopt this approach to our setting, we show how to prune the linear programs,
creating programs of polynomial size. The main technical difficulty is to prove that this
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pruning maintains the essential relationships between the iterated linear programs and
thus still computes the nucleolus.

Related work. The most closely related work to ours is that of Kleinberg and Tar-
dos [28]. That paper defines stable and balanced solutions for the matching case men-
tioned above. They then give an efficient characterization of stable/balanced solutions
based on posets and the Edmonds-Gallai decomposition. Our work re-derives and gen-
eralizes some of their results using simple and well-known results from the economics
literature. Very recently, Azar et al. [1] show that local dynamics does in fact converge
to a stable and balanced solution. Incidentally, the connection that we establish between
the solution concepts of prekernel and balanced would immediately imply the same lo-
cal algorithm via a former result of Stearns [41]. We also learned of two other very
recent results: Kanoria et al. [26] addresses the problem of finding a “natural” local dy-
namics for this game, and Azar, Devanur, Jain, and Rabani [2] also study a special case
of our problem through cooperative game theory and propose nucleolus as a plausible
outcome of the networked bargaining game. The work of Chakraborty et al. [7] as well
as that of Chakraborty and Kearns [6] considers a related problem, in which there is no
capacity constraints on the vertices but agents have non-linear utilities. They explore the
existence and computability of the Nash bargaining solution as well as the proportional
bargaining solution in their setting.

Much recent literature has focused on the computability of various solution concepts
in the economics literature. In the non-cooperative game theoretic setting, the complexity
of Nash and approximate Nash equilibria has a rich recent history [42,29,12,9,10,5,13].
In cooperative game-theoretic settings, the core of a game defined by a combinatorial
optimization problem is fundamentally related to the integrality gap of a natural linear
program, as observed in numerous prior work [4,37,25,30,24]. The computability of the
nucleolus has also been studied for some special games [15,27,40,19,20,18,23].

2 Preliminaries

In the network bargaining game, there is a set N of n agents. For bipartite graphs, the
set N is partitioned into two disjoint sets V1 and V2 (i.e., N = V1∪V2 and V1∩V2 = ∅)
and all edges of the network pair one vertex of V1 with one vertex of V2. Each agent
i ∈ N is assigned a capacity ci limiting the number of contracts in which agent i may
participate. For each pair of agents i, j ∈ N , we are given a weight wij representing
the surplus of a contract between i and j (a weight of wij = 0 means i and j are unable
to contract with each other). The capacities together with the weights jointly define a
node-and-edge-weighted graph G = (N,E) where E = {(i, j) : wij > 0}, the weight
of edge (i, j) is wij , and the weight of node i is ci. Our game is fully defined by this
construct.

The (bipartite) bargaining game is a (bipartite) graph G = (N,E) together with a
set of node capacities {ci} and edge weights {wij}. There are two special cases of the
above game that we consider separately. The first is the matching game in which ci = 1
for all i ∈ N (note the graph need not be bipartite in the matching game). The matching
game was studied by Kleinberg and Tardos [28] in the context of bargaining, as well
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as many economists in the context of cooperative game theory [27,17,40]. The second
special case is the constrained bipartite game in which the graph G = (V1 ∪ V2, E) is
bipartite and the capacities of all agents on one side of the market are one (ci = 1 for
all i ∈ V2).

2.1 Solution Concepts

Our main task is to predict the set of contracts M ⊆ E and the division of surplus
{zij} that result from bargaining among agents. We call a set of contracts M feasible
if each node i is in at most ci contracts: i.e., for each i ∈ N , |{j : (i, j) ∈ M}| ≤ ci.
A solution ({zij},M) of a bargaining game is a division of surplus {zij} together with
a set of feasible contracts M such that the total surplus generated is divided among the
agents involved: i.e., for all (i, j) ∈ M , zij +zji = wij , and for all (i, j) �∈M , zij = 0.
We interpret zij as the amount of money i earns from contracting with j. We also define
the aggregate earnings of node i by xi =

∑
j∈N zij and sometimes refer to the set of

earnings {xi} as the outcome of our game.
The set of solutions of our game is quite large, and so it is desirable to define a subset

of solutions that are likely to arise as a result of the bargaining process. There are two
approaches one might take in this endeavor. The first is to generalize the bargaining
notions introduced by Nash [32] and later extended to networked settings [28]. The
second is to study our game from the perspective of cooperative game theory.

In keeping with the bargaining line of work, we define the outside option of an agent
i to be the best deal he or she could make with someone outside the contracting set M .
For a fixed agent k with (i, k) ∈ E \M , the best deal i can make with k is to match k’s
current worst offer. If k is under-capacitated in M , i can offer k essentially 0 and so i’s
outside option with k would be wik . If k is utilized to capacity, then so long as i offers
k at least the minimum of zkj over all j such that (j, k) ∈ M , then k will accept the
offer. Generalizing this, we get the following definition.

Definition 1. The outside option αi of agent i in solution ({zij},M) is
maxk:(i,k)∈E\M maxj:(j,k)∈M (wik − Ikzkj), where Ik is a zero-one indicator variable
for whether k is utilized to capacity. If the set {k : (i, k) ∈ E \M} is empty, we define
the outside option of i to be zero. The inner maximization is defined to be wik if its
support set is empty.

Intuitively, if an agent has a deal in which he or she earns less than the outside option,
then he or she will switch to the other contract. Hence, we call a solution stable if each
agent earns at least the outside option.

Definition 2. A solution is stable if for all (i, k) ∈ M , zik ≥ αi, and αi = 0 if i has
residual capacity.

Nash [32] additionally argued that agents tend to split surplus equally. If agents are
heterogeneous in that they have different outside options, then they will split the net
surplus equally. Using the terminology of Kleinberg and Tardos [28], we define a so-
lution to be balanced if it satisfies Nash’s conditions where outside options are defined
according to the network structure.



72 M. Bateni et al.

Definition 3. A solution is balanced if for all (i, k) ∈ M , zik − αi = zki − αk or
equivalently zik = αi + wik−(αi+αk)

2 .

Another approach to refining the set of solutions for our game is to study it from the
cooperative game theory perspective. A cooperative game is defined by a set of agents
N and a value function ν : 2N → �+ ∪ {0} mapping subsets of agents to the non-
negative real numbers. Intuitively, the value of a set of agents represents the maximum
surplus they alone can achieve. Cooperative game theory suggests that the total earnings
of agents in a cooperative game is fundamentally related to the values of the sets in
which they are contained. To cast our game in the cooperative game theory terminology,
we must first define the value of a subset of agents. We will define this to be the best set
of contracts they alone can achieve.

Definition 4. The value ν(S) of a subsetS ⊆ N of agents is the maximum
∑

(i,j)∈M wij

over all feasible sets of contracts M such that i, j ∈ S for all (i, j) ∈ M .

In graph-theoretic terminology, this is simply the maximum weighted f -factor1 of the
subgraph restricted to S and can be computed in polynomial time.

Cooperative game theory suggests that each set of agents should earn in total at least
as much as they alone can achieve. In mathematical terms, we require that the sum of the
earnings of a set of agents should be at least the value of that same set. We additionally
require that the total surplus of all agents is exactly divided among the agents. These
requirements together yield the cooperative game-theoretic notion of the core [22,33].

Definition 5. An outcome {xi} is in the core if for all subsets S ⊆ N ,
∑

i∈S xi ≥
ν(S), and for the grand coalition N ,

∑
i∈N xi = ν(N).

The core may be empty even for very simple classes of games, and it may be hard to test
whether it is empty or not [11]. However, for our games, we are able to characterize the
set of matching games having a non-empty core and show that all bipartite bargaining
games have a non-empty core.

Other solution concepts proposed in the cooperative game theory literature are that
of kernel and prekernel [14]. Unlike the core, the kernel and prekernel always exist. As
these concepts are closely related and we only work with the prekernel, we only define
the prekernel in this paper.2 The prekernel is defined by characterizing the power of
agent i over agent j, and requiring that these powers are in some sense equalized. Intu-
itively, the power of i over j is the maximum amount i can earn without the cooperation
of j.

1 Given a graph G(V, E) and a function f : V 
→ Z≥0, an f -factor is a subset F ⊆ E
of edges such that each vertex v has exactly f(v) edges incident on it in F . See West [43]
for a discussion and for a polynomial-time algorithm to find an f -factor. The approach can be
extended to the case where f(v) values are upper bounds on the degrees, and we are interested
in finding the maximum-weight solution.

2 In fact, kernel and prekernel coincide in our game because ν({i}) = 0 for any i ∈ N—indeed,
the two closely-related solution concepts coincide for any zero-monotonic TU-game [31], and
our game is one of this class.
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Definition 6. The power of agent i with respect to agent j in the outcome {xi} is

sij(x) = max

{
ν(S)−

∑
k∈S

xk : S ⊆ N,S � i, S �� j

}
.

The prekernel is the set of outcomes x that satisfy sij(x) = sji(x) for every i and j.

Although the definition of the prekernel is not completely intuitive, it turns out to be
similar to the notion of balanced solutions in certain networked settings. A further re-
finement of this definition is that of lexicographic kernel which is, roughly speaking, a
subset of the prekernel that lexicographically maximizes the vector of all sij values. In
some sense, this definition tries to be as impartial as possible to different players. As
the nucleolus defined below is a more widely accepted solution concept and achieves
complete impartiality, we do not give detailed information about the lexicographic ker-
nel. We simply note that it has been studied in [21,44], and the result of [21] allows
us to compute the lexicographic kernel for any general bipartite (or even non-bipartite)
bargaining game.

2.2 A Unique Outcome

None of the solution concepts proposed above are unique. For any given game instance,
and any of the solution concepts above, there may be many outcomes which satisfy it.
For example, consider a bipartite bargaining game with two vertices on each side. Each
of the four possible edges has value one, and the capacities of the vertices are also one.
It can be easily verified that any solution assigning value x to the vertices of one side
and 1 − x to the other side for 0 ≤ x ≤ 1, is a stable, balanced solution, and hence
(as we will show later) also in the core and kernel. However, the solution corresponding
to x = 0 seems, in some sense unfair. After all, all agents appear symmetric, as can
be formalized by the fact that there exists an automorphism of the game mapping any
agent into any other agent. Hence, we expect the agents to have similar earnings after
the bargaining procedure. Among all the plausible solution concepts, the one we expect
to see is that for which x = 1/2, i.e., each agent earns 1/2. This intuition was tested and
verified in the laboratory experiments of Charness et al. [8]. The solution x = 1/2 turns
out to be the nucleolus of the example game. In general, the nucleolus is that outcome
which maximizes, lexicographically, the excess earnings of any given set.

Definition 7. Given an outcome {xi}, the excess ε(S) of a set S is the extra earnings of
S in {xi}: ε(S) =

∑
i∈S xi − ν(S). Let ε = (εS1 , . . . , εS2N

) be the vector of excesses
sorted in non-decreasing order. The nucleolus of a bargaining game is the outcome
which maximizes, lexicographically, this vector ε.

The nucleolus was first introduced by Schmeidler [35]. It is a point in the kernel [35],
and also part of the core if it is non-empty. We will show later that any point in the core
intersect kernel must be stable and balanced (at least for the matching and constrained
games), and hence the nucleolus inherits all the nice properties of stable and balanced
solutions. In addition, the nucleolus is unique [16], and is in fact characterized by a set
of simple, reasonable axioms [34,38,39] including our intuitive notion of symmetry
mentioned above.
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2.3 Results

In this paper, we are primarily interested in developing natural solution concepts for
our bargaining game. We posit that such a solution concept should be intuitive, com-
putationally tractable, and unique. Building on prior work, we offer the set of stable
solutions as an intuitive solution concept and provide a complete characterization of
this set based on a linear-programming interpretation of the bargaining game. All miss-
ing proofs are in the full version of this extended abstract [3].

Theorem 1. The set of all stable solutions to the network bargaining game can be
constructed in polynomial time.

The set of stable solutions in our game might be quite large, and so, following prior
work, we propose balanced solutions as a refinement. We first study the relationship
between the stable/balanced concepts and the core/kernel concepts from cooperative
game theory. We find that, while these solutions may differ in general, for the con-
strained bargaining game they exactly coincide. This provides additional motivation
for these solution concepts and additionally gives us computational insights from the
cooperative game theory literature.

Theorem 2. An outcome {xi} of the constrained bipartite bargaining game is in the
core if and only if it corresponds to a stable solution ({zij},M). That is, {xi} is in the
core if and only if there exists a stable solution ({zij},M) such that xi =

∑
j zij for

all agents i.

Theorem 3. An outcome {xi} of the constrained bipartite bargaining game is in the
core intersect prekernel if and only if it corresponds to a balanced solution ({zij},M).
That is, {xi} is in the core intersect prekernel if and only if there exists a balanced
solution ({zij},M) such that xi =

∑
j zij for all agents i.

Our proofs of theorems 1, 2 and 3 can also be adapted to the matching game studied
by Kleinberg and Tardos [28], enabling us to recover some of their results using simple
and well-known cooperative game-theoretic constructs.

Using the work of Faigle, Kern, and Kuipers [19], Theorem 3 implies an algorithm
for computing some balanced solution in constrained bipartite bargaining games (as
well as the matching game studied by Kleinberg and Tardos [28]).

Theorem 4. There is a local dynamics 3 that converges to an intersection of prekernel
and core, which is a stable, balanced solution of the KT game.

However, the set of balanced solutions can be quite large, and not all balanced solutions
are intuitive. A unique and intuitive balanced solution is the nucleolus, motivated by
its symmetry properties. Our final result is an algorithm for computing the nucleolus in
constrained bipartite bargaining games.

Theorem 5. The nucleolus of the constrained bipartite bargaining game can be com-
puted efficiently.

3 In fact, the resulting algorithm is similar to the local dynamics proposed in Azar et al. [1].
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3 Characterizing Solution Concepts

In this section, we study the solution concepts posed in Section 2 for bipartite graphs
with arbitrary capacity constraints. We first define a polytope characterizing all stable
solutions (even for non-bipartite graphs). This demonstrates that stable solutions can
be computed efficiently and hence helps us understand likely outcomes of our game.
We also use our characterization to illustrate the connection between the sets of sta-
ble/balanced solutions and the core/kernel of the corresponding cooperative game. This
allows us to compute a balanced solution by leveraging existing algorithms for finding
a point in the kernel of a cooperative game.

3.1 Characterizing Stable Solutions

We begin by characterizing all stable solutions in the general network bargaining game.
In order to do this, a natural approach would be to make “ghost” copies of each node,
thereby transforming the general case to the matching case. We demonstrate in the full
version that this approach does not work even in the constrained bipartite case. Thus, we
are unable to use the existing poset-based characterization of Kleinberg and Tardos [28]
for the matching case to solve the general case. Instead, we define a linear program
describing the set of optimal contracts and its dual, and use these to characterize the
stable solutions, thereby proving Theorem 1. Our linear program is a generalization of
the one used by Shapley and Shubik [36] to describe the core for the simpler matching
version of the network bargaining game. The optimal contracts can be described by the
following linear program:

maximize
∑

ij wijxij

subject to
∑

j xij ≤ ci ∀i ∈ N

0 ≤ xij ≤ 1 ∀(i, j) ∈ E(G),
(LP1)

where there is a variable xij for every edge (i, j) ∈ E. The dual of LP1 is:

minimize
∑

i uici +
∑

ij yij

subject to ui + uj + yij ≥ wij ∀(i, j) ∈ E(G)
0 ≤ yij ≤ 1 ∀(i, j) ∈ E(G)
0 ≤ ui ≤ 1 ∀i ∈ N.

(LP2)

Given an optimal pair of solutions to these LPs, we show how to construct a stable
solution. The primal variables indicate the set of optimal contracts M . We use the dual
solution to divide the surplus wij of the contracts in M . For each contract (i, j) ∈ M ,
we give ui to i, uj to j, and then divide arbitrarily the remaining yij . Thus zij =
ui + αijyij and zji = uj + (1 − αij)yij for an arbitrary αij ∈ [0, 1] (different αij

yield different stable solutions). Conversely, to convert any stable solution to a pair of
optimal solutions, we set the primal variables based on the contract M . We define the
dual variables as follows: (1) for every unsaturated vertex i, set ui = 0; (2) for every
saturated vertex i, set ui = minj∈Ni zij ; (3) for every xij = 0, set yij = 0; (4) for
every xij = 1, set yij = wij − ui − uj . To prove that these constructions work, we use
the complementary slackness conditions.
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3.2 Relating Bargaining Solutions to Cooperative Game Theory Solutions

Whereas the notions of stable and balanced solutions have been only recently intro-
duced, the cooperative game theoretic notions of core and kernel are well-studied.
Hence it is interesting to relate these two seemingly different notions. There is no gen-
eral reason why we would expect these notions to coincide, and in fact, as we demon-
strate via an example, they do not for the general bipartite bargaining case. Nonetheless,
for the constrained bipartite bargaining game, we are able to prove that stable/balanced
and core/kernel do coincide. In the below discussions, we say outcome {xi} has been
produced by solution ({zij},M), if xi is equal to total amount of money which person
i earns in solution ({zij},M).

Stable = Core. First we prove that an outcome {xi} produced by any stable solution
({zij},M) is in the core. Based on the discussion in Section 3.1, it is enough to prove
that for every integer optimum solution of LP1 and every real optimum solution of LP2,
all outcomes produced by these solutions are in the core.

Second we prove that for every {xi}, there is a stable solution ({zij},M) which
produces it. In the constrained bipartite graph cj = 1 for every j ∈ V2, and thus given
the set of contracts M , the {zij} are uniquely determined by the core outcome {xi}
(for every (i, j) ∈ M with j ∈ V2 we set zji = xj and zij = wij − xj ). The crux of
the problem is therefore in choosing M and using the core inequalities to prove that the
resulting solution is stable.

Balanced = Kernel. Next, we prove that Stable ∩ Balanced is equivalent to Core ∩Ker-
nel. From the discussion above, we can assume we are provided with a stable solution
({zij},M) and associated core outcome {xi}. The goal is to show that the solution is
balanced if and only if the outcome is in the kernel.

Recall that the outcome {xi} is in kernel if and only if sij = sji for all pairs of
players i, j. On the other hand, a solution is balanced if and only if for any (i, j) ∈ M ,
zij − αi = zji − αj . We define the net gain of player i after losing the contract with j
as s̃ij := αi − zij and prove that s̃ij = sij for all edges (i, j) ∈ M . This finishes the
proof.

4 Finding the Nucleolus

In this section we propose an algorithm to find the nucleolus for our constrained bi-
partite bargaining game in polynomial time. Previous works [27,40,19] show how to
compute the nucleolus via an iterated LP-based algorithm, and we also adopt this ap-
proach. The main complication in applying this algorithm is that the natural LP does not
have polynomial size, and hence we must prune it without sacrificing the correctness of
the algorithm.

We describe this general approach as it applies to our setting. As the core is not
empty in our constrained bipartite bargaining game (see Section 3), the nucleolus will
be in the core. Hence, our task is to search for a core outcome {xi} which maximizes
the lexicographically-sorted sequence of set excesses ε = (εS1 , . . . , εS2N

); see Defini-
tion 7. We proceed iteratively. In each iteration, we search for the “next” element εSi



The Cooperative Game Theory Foundations of Network Bargaining Games 77

of ε by solving a linear program whose objective defines εSi . In doing so, we must be
careful to constrain certain variables appropriately such that the computations of pre-
vious iterations carry through. As there are exponentially many elements of the vector
ε, we cannot simply introduce an equality for each element that we wish to fix. Rather,
we show how to construct a polynomially-sized set of “representatives” and argue that
these suffice to describe the excesses of sets fixed in all previous iterations.
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Abstract. We study the existence of pure Nash equilibria in weighted congestion
games. Let C denote a set of cost functions. We say that C is consistent if every
weighted congestion game with cost functions in C possesses a pure Nash equi-
librium. We say that C is FIP-consistent if every weighted congestion game with
cost functions in C has the Finite Improvement Property. Our main results are
structural characterizations of consistency for twice continuously differentiable
cost functions. More specifically, we show that C is consistent for two-player
games if and only if C contains only monotonic functions and for all c1,c2 ∈ C,
there are constants a,b ∈R such that c1 = ac2+b. For games with at least 3 players
we show that C is consistent if and only if exactly one of the following cases hold:
(i) C contains only affine functions; (ii) C contains only exponential functions
such that c(�) = ac eφ� + bc for some ac,bc,φ ∈ R, where ac and bc may depend
on c, while φ must be equal for every c ∈ C. This characterization is even valid
for 3-player games, thus, closing the gap to 2-player games considered above.
Finally, we derive various results regarding consistency and FIP-consistency for
weighted network congestion games.

1 Introduction

In many situations, the state of a system is determined by a finite number of independent
players, each optimizing an individual objective function. A natural framework for an-
alyzing such decentralized systems are noncooperative games. While it is well known
that for finite noncooperative games an equilibrium point in mixed strategies always
exists, this need not be true for Nash equilibria in pure strategies (PNE for short). One
of the fundamental goals in algorithmic game theory is to characterize conditions under
which a Nash equilibrium in pure strategies exists. In this paper, we study this question
for weighted congestion games.

Congestion games, as introduced by Rosenthal [18], model the interaction of a finite
set of strategic agents that compete over a finite set of facilities. A pure strategy of each
player is a set of facilities. The cost of facility f is given by a real-valued cost function
c f that depends on the number of players using f and the private cost of every player
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equals the sum of the costs of the facilities in the strategy that she chooses. Rosen-
thal [18] proved in a seminal paper that such congestion games always admit a PNE
by showing these games posses a potential function1. In a weighted congestion game,
every player has a demand di ∈R>0 that she places on the chosen facilities. The cost of a
facility is a function of the total load on the facility. An important subclass of weighted
congestion games are weighted network congestion games. Every player is associated
with a positive demand that she wants to route from her origin to her destination on
a path of minimum cost. In contrast to unweighted congestion games, weighted con-
gestion games do not always admit a PNE. Fotakis et al. [8] and Libman and Orda [15]
constructed a single-commodity network instance with two players having demands one
and two, respectively. Their instances use different non-decreasing cost values per edge
that are defined at the three possible loads 1,2,3. Goemans et al. [11] constructed a two-
player single-commodity instance without a PNE that uses different polynomial cost
functions with nonnegative coefficients and degree of at most two. On the positive side,
Fotakis et al. [8,9] proved that every weighted congestion game with affine cost func-
tions possesses a PNE. While the negative results of [8,11,15] suggest that only affine
functions guarantee the existence of PNE, a result of Panagopoulou and Spirakis [17]
came as a surprise: PNE always exist for instances with exponential cost functions. It
is worth noting that the positive results of [8,9,17] are particularly important as they
establish existence of PNE for the respective sets of cost functions independent of the
underlying game structure, that is, independent of the underlying strategy set, the de-
mand vector and the number of players, respectively.

In this paper, we further explore the equilibrium existence problem. Our goal is to
precisely characterize, which type of cost functions actually guarantees the existence
of PNE. To formally capture this issue, we introduce the notion of PNE-consistency
or simply consistency of a set of cost functions. Let C be a set of cost functions and
let G(C) be the set of all weighted congestion games with cost functions in C. We say
that C is consistent if every game in G(C) possesses a PNE. Using this terminology, the
results of [8,9,17] yield that C is consistent if C contains either affine or exponential
functions.

A natural open question is to decide whether there are further consistent functions,
that is, functions guaranteeing the existence of a PNE. We thus investigate the following
question: How large is the set C of consistent cost functions?

1.1 Our Results

We give an almost complete characterization of consistency of cost functions in weighted
congestion games. Specifically, we show the following: Let C be a nonempty set of con-
tinuous functions.

1. If C is consistent, then C may only contain monotonic functions. We further show
that monotonicity of cost functions is necessary for consistency even in singleton
games, two-player games, two facility games, games with identical cost functions
and games with symmetric strategies.

1 A real-valued function P on the set of strategies having the property that every improving
move by one defecting player strictly reduces the value of P.
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2. Let C be a nonempty set of twice continuously differentiable functions. Then, C
is consistent for two-player games if and only if C only contains only monotonic
functions and for all c1,c2 ∈ C, there are constants a,b ∈R such that c1 = ac2+b. To
the best of our knowledge, it was not known before that two-player games possess
PNE for the above class of cost functions.

3. Let C be a nonempty set of twice continuously differentiable functions. We prove
that C is consistent for games with at least 3 players if and only if exactly one of
the following cases hold: (i) C contains only affine functions; (ii) C contains only
exponential functions such that c(�)= ac eφ�+bc for some ac,bc,φ ∈R, where ac and
bc may depend on c, while φmust be equal for every c ∈ C. This characterization is
even valid for 3-player games, thus, closing the gap to 2-player games considered
above. We note that the ”if” direction follows from [8,9,17].

4. Finally, we study weighted network congestion games. Let C be a non-empty set
of strictly increasing, positive and twice continuously differentiable functions. For
multi-commodity networks with at least three players, C is consistent if and only if
C contains only affine functions or certain exponential functions as specified above.
For two-player network games (single or two-commodity networks), we show that
C is consistent if and only if for all c1,c2 ∈ C, there are constants a,b ∈ R such that
c1 = ac2+b. This characterization gives a structural insight, why the instances used
in [8,11,15] do not possess a PNE.

For single-commodity network games with at least three players, we prove that C is
FIP-consistent if and only if C contains only affine functions or certain exponential
functions.

All proofs missing in the extended abstract are presented in the full version [12].

1.2 Significance and Techniques

Weighted congestion games are one of the core topics in the algorithmic game the-
ory, operations research, and economics literature. In particular, there is a large body
of work quantifying the price of anarchy of PNE for different sets of cost functions,
see Awerbuch et al. [4], Christodoulou and Koutsoupias [5], and Aland et al. [2]. There
are, however, drawbacks in the use of Nash equilibria. While mixed Nash equilibria
are guaranteed to exist, their use is unrealistic in many games. On the other hand, pure
Nash equilibria as the stronger solution concept may fail to exist in weighted conges-
tion games. Thus, we believe that our work constitutes an important step towards fully
characterizing the PNE-existence problem in weighted congestion games.

Our characterizations essentially rely on two ingredients. First, we derive in Sec-
tion 3 for continuous and consistent cost functions two necessary conditions (Mono-
tonicity Lemma and Extended Monotonicity Lemma). The Monotonicity Lemma states
that any continuous and consistent cost function must be monotonic. The Lemma is
proved by constructing a sequence of two-player weighted congestion games in which
we identify a unique 4-cycle of deviations of two players. Then, we show that for any
non-monotonic cost function, there is a weighted congestion game with a unique im-
provement cycle. By adding additional players and carefully choosing player-weights
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and strategy spaces, we then derive the Extended Monotonicity Lemma, which ensures
that the set of cost functions contained in a certain finite integer linear hull of the consid-
ered cost functions must be monotone. The proof of the Extended Monotonicity Lemma
provides a template for constructing an instance without a PNE, for any non-affine and
non-exponential cost function; we illustrate this template by constructing an instance
without PNE using identical cubic cost functions.

In Section 4, we give a characterization of the set of functions that arise from affine
transformations of a monotonic function and show that the Extended Monotonicity
Lemma for two-player games implies that consistent cost functions must be of this
form. In Section 5, we characterize the set of affine and exponential functions, and
show that the Extended Monotonicity Lemma for games with at least three players im-
plies that consistent cost functions must be either affine or exponential. In Section 6, we
discuss implications of the Extended Monotonicity Lemma when applied to weighted
network congestion games.

1.3 Related Work

Milchtaich [16] showed that singleton weighted congestion games with player-specific
cost functions do not always have a PNE. Milchtaich further characterized topologi-
cal properties of networks that guarantee the existence of PNE in network congestion
games if players control different amounts of flow or cost functions are player spe-
cific. This was further elaborated by Gairing et al. [10], who considered different cost
functions, slight modifications in the network topology, and both the weighted and the
unweighted cases. Harks et al. [13] proved that every weighted congestion game with
two-players and uniform (up to affine translations) and strictly monotonic cost functions
possesses a PNE.

Ieong et al. [14] proved that in singleton congestion games with non-decreasing cost
functions, best response dynamics converge in polynomial time to a PNE. Ackermann
et al. [1] extended this result to weighted congestion games with a so called matroid
property, that is, the strategy of every player forms a basis of a matroid. In the same pa-
per, they also characterized the existence of PNE in weighted congestion games with the
same matroid property by proving that for any strategy space not satisfying the matroid
property, there is an instance of a weighted congestion game not having a PNE. Fanelli
and Moscardelli [7] studied convergence properties of certain improvement dynamics in
weighted congestion games with polynomial cost functions of bounded degree. Dunkel
and Schulz [6] proved that it is strongly NP-hard to decide whether or not a weighted
congestion game with nonlinear cost functions possesses a PNE.

2 Preliminaries

We consider finite strategic games G = (N,X,π), where N = {1, . . . ,n} is the non-empty
and finite set of players, X =

�
i∈N Xi is the non-empty strategy space, and π : X→ Rn

is the combined private cost function that assigns a private cost vector π(x) to each
strategy profile x ∈ X. These games are cost minimization games. Unless specified
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otherwise, we allow private cost functions to be negative or positive. A strategic game
is called finite if X is finite.

We use standard game theory notation; for a player i ∈ N we denote the set N \ {i} by
−i. A strategy profile x is a pure Nash equilibrium if there is no player i ∈ N having an
alternative strategy profile yi ∈ Xi such that πi(yi, x−i)−πi(x) < 0.

A tupleM = (N,F,X =
�

i∈N Xi, (c f ) f∈F) is called a congestion model, where F is a
non-empty, finite set of facilities, for each player i ∈ N, her collection of pure strategies
Xi is a non-empty, finite set of subsets of F and (c f ) f∈F is a set of cost functions. In the
following, we will define weighted congestion games similar to Goemans et al. [11]. Let
M = (N,F,X, (c f ) f∈F) be a congestion model and (di)i∈N be a vector of demands with
di ∈ R>0. The corresponding weighted congestion game is the game G(M) = (N,X,π),
where π is defined as πi(x) =

∑
f∈xi

di c f
(
� f (x)

)
and � f (x) =

∑
j∈N: f∈x j

d j is called the
load on facility f in strategy x. We will write G as shorthand for G(M). Now, we
will define the notion of consistency of cost functions. Let C be a set of cost functions
and let G(C) be the set of all weighted congestion games with cost functions in C.
Then, C is consistent if every G ∈ G(C) possesses a PNE. If the set G(C) is restricted,
e.g., two player games etc., we say that C is consistent w.r.t. G(C) if every G ∈ G(C)
possesses a PNE. A pair

(
x, (yi, x−i)

) ∈ X × X is called an improving move of player
i if πi(xi, x−i)− πi(yi, x−i) > 0. We denote by I the set of improving moves in G. We
call a sequence γ = (x0, x1, . . . ) an improvement path if (xk, xk+1) ∈ I for all k. If every
improvement path is finite, G has the Finite Improvement Property (FIP). We say that
C is FIP-consistent, if every G ∈ G(C) has the FIP.

3 Necessary Conditions on the Existence of a PNE

Throughout this work, we will assume that C is a set of continuous functions. As a first
result, we prove that if C is consistent, then every function c ∈ C is monotonic. We will
first need a (nontrivial) technical lemma, which will be used many times.

Lemma 1. Let c : R≥0 → R be a continuous function. Then, the following two state-
ments are equivalent:

1. c is monotonic on R≥0.
2. The following two conditions hold:

(a) For all x ∈ R>0 with c(x) < c(0) there is ε > 0 such that c(y) ≤ c(x) for all
y ∈ (x, x+ ε),

(b) For all x ∈ R>0 with c(x) > c(0) there is ε > 0 such that c(y) ≥ c(x) for all
y ∈ (x, x+ ε).

We proceed by presenting a necessary condition for consistency.

Lemma 2 (Monotonicity Lemma). Let C be a set of continuous functions. If C is
consistent, then every c ∈C is monotonic on R>0.

Besides the continuity of the functions in C, the proof of Lemma 2 relies on rather mild
assumptions and, thus, this result can be strengthened in the following way.
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Corollary 1. Let C be a set of continuous functions. Let G(C) be the set of weighted
congestion games with cost functions in C satisfying one or more of the following prop-
erties: (i) Each game G ∈ G(C) has two players; (ii) Each game G ∈ G(C) has two
facilities; (iii) For each game G ∈ G(C) and each player i ∈ N, the set of her strategies
Xi contains a single facility only; (iv) Each game G ∈ G(C) has symmetric strategies;
(v) Cost functions are identical, that is, c f = cg for all f ,g ∈ F. If C is consistent w.r.t.
G(C), then, each c ∈ C must be monotonic.

In particular, if there is a non-monotonic function c̃ ∈ C, then, there is a symmetric
singleton weighted congestion game with identical cost functions, two facilities, two
players that does not admit a PNE. However, it is well known that singleton games
posses a PNE if cost functions are non-decreasing.

We now extend the Monotonicity Lemma to obtain a stronger necessary condition
by regarding more players and more complex strategies. To this end, we consider for
finite K those functions that can be written as the sum of K functions in C, possibly
with an offset. Formally, we define the finite integer linear hull of C as

LZ(C) = {c : R≥0→ R : c(x) =
K∑

k=1

akck(x+bk),K ∈N,ak ∈Z,bk ≥ 0,ck ∈C}, (1)

and show that consistency of C implies that LZ(C) contains only monotonic functions.

Lemma 3 (Extended Monotonicity Lemma). Let C be a set of continuous functions.
If C is consistent, then LZ(C) contains only monotonic functions.

Proof. Let c̃ ∈ LZ(C) be arbitrary. By allowing ck = cl for k � l, we can omit the integer
coefficients ak and rewrite c̃ as c̃(x) =

∑m+
k=1 ck(x+bk)−∑m−

k=1 c̄k(x+ b̄k) for some ck, c̄k ∈
C,m+,m− ∈ N.

We define a congestion modelM = (N,F,X, (c f ) f∈F), with N = Np ∪ N+ ∪N− and
F = F1∪F2∪F3∪F4. The set of players N+ contains for each ck, 1 ≤ k ≤m+, a player
with demand bk and the set of players N− contains for each c̄k, 1≤ k ≤m−, a player with
demand b̄k. We call the players in N− ∪N+ offset players. The set Np = {1,2} contains
two additional (non-trivial) players.

We now explain the strategy spaces and the sets F1,F2,F3,F4. For each function ck,
1≤ k ≤m+, we introduce two facilities f 2

k , f
3
k with cost function ck. For each function c̄k,

1≤ k ≤m−, we introduce two facilities f 1
k , f

4
k with cost function c̄k. To model the offsets

bk in (1), for each offset player k ∈ N+, we define Xk = {{ f 2
k , f

3
k }}. Similarly, for each

offset player k ∈ N−, we set Xk = {{ f 1
k , f

4
k }}. The non-trivial players in Np have strategies

X1 = {F1 ∪ F2,F3 ∪ F4} and X2 = {F1 ∪ F3,F2 ∪ F4}, where F1 = { f 1
1 , . . . , f

1
m− },F2 =

{ f 2
1 , . . . , f

2
m+ },

F3 = { f 3
1 , . . . , f

3
m+ }, and F4 = { f 4

1 , . . . , f
4
m− }.We consider a family of weighted congestion

games Gx
δ(M) parameterized by d1 = δ and d2 = x for 1,2 ∈ Np. For the 4-cycle

γ =
((

F1∪F2,F1∪F3, . . .
)
,
(
F3∪F4,F1∪F3, . . .

)
,
(
F3∪F4,F2∪F4, . . .

)
,

(
F1∪F2,F2∪F4, . . .

)
,
(
F1∪F2,F1∪F3, . . .

))
,
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we calculate

π1(F3∪F4,F1∪F3, . . . )−π1(F1∪F2,F1∪F3, . . . )

= d1

m+∑

k=1

ck(d1+d2+bk)−d1

m−∑

k=1

c̄k(d1+d2+b̄k)+d1

m−∑

k=1

c̄k(d1+b̄k)−d1

m+∑

k=1

ck(d1+bk)

= d1(c̃(x+ δ)− c̃(δ)). (2)

Similarly, we obtain

π2(F3∪F4,F2∪F4, . . . )−π2(F3∪F4,F1∪F3, . . . ) = d2(c̃(x)− c̃(x+ δ))

π1(F1∪F2,F2∪F4, . . . )−π1(F3∪F4,F2∪F4, . . . ) = d1(c̃(x+ δ))− c̃(δ) (3)

π2(F1∪F2,F1∪F3, . . . )−π2(F1∪F2,F2∪F4, . . . ) = d2(c̃(x)− c̃(x+ δ)).

If c̃(x) > c̃(0), we can find ε > 0 such that c̃(x+δ)> c̃(δ) for all 0 < δ < ε. For such δ, the
values in (2) and (3) are negative and we may conclude that there is an improvement
cycle in the game G if c̃(x+ δ)− c̃(x) < 0. Hence, we have c̃(y)− c̃(x) ≥ 0 for all y ∈
(x, x+ε). If c̃(0) > c̃(x), considering the 4-cycle in the other direction yields the claimed
result by the same argumentation. Using that every strategy combination is contained
in γ and applying Lemma 1 delivers the claimed result. �	

4 A Characterization for Two-Player Games

We will analyze implications of the Extended Monotonicity Lemma (Lemma 3) for
two-player weighted congestion games. First, we remark that if all offsets bk and b̄k

in (1) are equal to zero, the construction in Lemma 3 only involves two players. For
ease of exposition, we additionally restrict ourselves to the case K = 2, that is, we only
regard those functions that can be written as the difference of two functions in Cwithout
offset. Formally, define

L2
N

(C) = {c : R≥0→ R : c(x) = a1 c1(x)−a2 c2(x),a1,a2 ∈ N,c1,c2 ∈ C}.
Then, we obtain the following immediate corollary of the Extended Monotonicity
Lemma.

Corollary 2. Let C be a set of continuous functions. If C is consistent w.r.t. two-player
games, then, L2

N
(C) contains only monotonic functions.

Thus, we will proceed investigating sets of functions C that guarantee that L2
N

(C) con-
tains only monotonic functions. For this purpose, we first need the following technical
lemma.

Lemma 4. Let C be a set of functions that are twice continuously differentiable. Then,
the following are equivalent:

1. L2
N

(C) contains only monotonic functions.
2. For all c1,c2 ∈ C there are a,b ∈ R such that c2(x) = ac1(x)+b for all x ≥ 0.
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Using Lemma 4, we are now ready to state our first main result.

Theorem 1. Let C be a set of twice continuously differentiable functions. Let G2(C) be
the set of two-player games such that cost functions are in C. Then, the following two
conditions are equivalent.

1. C is consistent w.r.t. G2(C)
2. C contains only monotonic functions and for all c1,c2 ∈ C, there are constants a,b ∈
R such that c1 = ac2+b.

5 A Characterization for the General Case

We now consider the case n ≥ 3, that is, we consider weighted congestion games with
at least three players. We will show that a set of twice continuously differentiable cost
functions is consistent if and only if this set contains either linear or certain exponential
functions. Our main tool for proving this result is to analyze implications of the Ex-
tended Monotonicity Lemma (Lemma 3) for three-player weighted congestion games.
Formally, define

L3
N

(C) = {c : R≥0→ R : c(x) = a1c1(x)−a2c2(x+b),a1,a2∈Z,c1,c2∈C,b∈R>0} .

Then, we obtain the following immediate corollary of the Extended Monotonicity
Lemma.

Corollary 3. Let C be a set of continuous functions. If C is consistent w.r.t three-player
games, then L3

N
(C) contains only monotonic functions.

Note that L3
N

(C) involves a single offset b, which requires only three players in the
construction of the proof of the Extended Monotonicity Lemma.

In order to characterize the sets of functions C such that L3
N

(C) contains only mono-
tonic functions, we need the following technical lemma.

Lemma 5. Let c be a twice continuously differentiable function. Then, the following
two are equivalent:

1. Either c(�) = aeφ�+b for some a,b,φ ∈ R, or c(�) = a x+b for some a,b ∈ R.

2. det

(
c′(x) c′(y)
c′′(x) c′′(y)

)

= 0 for all x,y ∈ R>0.

We are now ready to state our second main theorem.

Theorem 2. Let C be a set of twice continuously differentiable functions. Then, C is
consistent if and only if one of the following cases holds

1. C contains only affine functions
2. C contains only functions of type c(�) = ac eφ� +bc where ac,bc ∈ R may depend on

c while φ ∈ R is independent of c.
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We conclude this section by giving an example that captures the main ideas presented
so far. Theorem 2 establishes that for each non-affine and non-exponential cost function
c̃, there is a weighted congestion game G with uniform cost function c̃ on all facilities
that does not admit a PNE. In the following example, we show how such a game for
c(�) = �3 is constructed.

Example 1. As c(�) = �3 is neither affine nor exponential, there are a1,a2 ∈ N and
x ∈R>0 such that c̃(�)= a1 c(�)−a2 c(�+ x) has a strict extremum. In fact, we can choose
a1 = 2,a2 = 2 and x = 1, that is, the function c̃(�) = 2c(�)− c(�+1)= 2�3− (�+1)3 has a
strict local minimum at � = 1+

√
2. In particular, we can choose d1 = 1 and d2 = 2 such

that c̃(d1) = −6 > c̃(d2) = −11 < c̃(d1+d2) = −10. The weighted congestion game with-
out PNE is now constructed as follows: We introduce 2(a1+a2) facilities f1, . . . , f6 and
the following strategies xa

1 = { f1, f2, f3}, xb
1 = { f4, f5, f6}, xa

2 = { f1, f2, f4}, xb
2 = { f3, f5. f6},

and x3 = { f3, f4}. We then set X1 = {xa
1, x

b
1}, X2 = {xa

2, x
b
2}, and X3 = {x3}. The so defined

game has four strategy profiles, namely (xa
1, x

a
2, x3), (xa

1, x
b
2, x3), (xb

1, x
a
2, x3), (xb

1, x
b
2, x3).

As Player 3 is an offset player, she has a single strategy only, thus, the players’ private
costs depend only on the choice of Players 1 and 2 as indicated in the table in Fig. 1.
We derive that the 4-cycle γ depicted in Fig. 1 is a best-reply cycle in G. As there are
no strategy profiles outside γ, G has no PNE.

f1

f2

f3

f4

f5

f6

x3

xb
2

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

xa
2

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

︸������︷︷������︸
xa

1

︸������︷︷������︸
xb

1

xa
1 xb

1
xa

2 (62,108,62) (66,80,17)
xb

2 (66,80,65) (62,81,27)

(xa
1, x

a
2, x3) (xb

1, x
a
2, x3)

(xa
1, x

b
2, x3) (xb

1, x
b
2, x3)

γ

Fig. 1. Construction of Example 1

6 Weighted Network Congestion Games

We discuss the implications of our characterizations to the important subclass of
weighted network congestion games. We start with multi-commodity networks.

Multi-commodity Networks. Our characterization of consistent cost functions given
in Theorem 2 crucially relies on the construction used in the Extended Monotonicity
Lemma. By assuming that cost functions are strictly increasing and positive, we can
transform this construction to a weighted network congestion game, see the full ver-
sion [12] for details.

Theorem 3. Let C be a set of strictly increasing, positive and twice continuously dif-
ferentiable functions. Then, C is consistent for multi-commodity network games with
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at least three players if and only if one of the following cases holds: (i) C contains
only affine functions; (ii) C contains only exponential functions c(�) = ac eφ�+bc where
ac,bc,φ ∈ R and φ is independent of c.

For multi-commodity weighted network games with two players, we obtain the
following.

Theorem 4. Let C be a set of strictly increasing, positive and twice continuously dif-
ferentiable functions. Let G2(C) be the set of two-player (single or two)-commodity net-
work games such that cost functions are in C. Then, C is consistent w.r.t. G2(C) if and
only if C contains monotonic functions such that for all c1,c2 ∈ C, there are constants
a,b ∈ R with c1 = ac2+b.

Single-commodity Networks. Considering weighted single-commodity network con-
gestion games we conclude with a result concerning the FIP.

Theorem 5. Let C be a set of strictly increasing, positive and twice continuously dif-
ferentiable functions. Then, C is FIP-consistent for single-commodity network games
with at least three players if and only if one of the following cases holds: (i) C contains
only affine functions; (ii) C contains only exponential functions c(�) = ac eφ�+bc where
ac,bc,φ ∈ R and φ is independent of c.

7 Conclusions

We obtained an almost complete characterization of consistency of cost functions in
weighted congestion games. The following issues are open. We required that cost func-
tions are twice-continuously differentiable. Although almost all practically relevant
functions satisfy this condition, it would be interesting to weaken this assumption.

For single-commodity games with at least three players, we were only able to char-
acterize the FIP, not consistency. The single-commodity case, however, behaves com-
pletely different as, for instance, Anshelevich et al. [3] have shown that for positive and
strictly decreasing cost functions, there is always a PNE.

Acknowledgment

We thank Hans-Christian Kreusler for contributing to Lemma 1.

References
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13. Harks, T., Klimm, M., Möhring, R.H.: Characterizing the existence of potential functions in
weighted congestion games. In: Proc. of SAGT, pp. 97–108 (2009)

14. Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A simple
class of congestion games. In: Proc. of AAAI, pp. 489–494 (2005)

15. Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Telecommuni-
cation Systems 17(4), 385–409 (2001)

16. Milchtaich, I.: The equilibrium existence problem in finite network congestion games. In:
Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286,
pp. 87–98. Springer, Heidelberg (2006)

17. Panagopoulou, P.N., Spirakis, P.G.: Algorithms for pure Nash equilibria in weighted conges-
tion games. ACM Journal of Experimental Algorithmics 11(2.7), 1–19 (2006)

18. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International
Journal of Game Theory 2(1), 65–67 (1973)



On the Limitations of Greedy Mechanism
Design for Truthful Combinatorial Auctions

Allan Borodin and Brendan Lucier

Dept of Computer Science, University of Toronto
{bor,blucier}@cs.toronto.edu

Abstract. We study the combinatorial auction (CA) problem, in which
m objects are sold to rational agents and the goal is to maximize so-
cial welfare. Of particular interest is the special case in which agents are
interested in sets of size at most s (s-CAs), where a simple greedy algo-
rithm obtains an s+1 approximation but no truthful algorithm is known
to perform better than O(m/

√
log m). As partial work towards resolving

this gap, we ask: what is the power of truthful greedy algorithms for
CA problems? The notion of greediness is associated with a broad class
of algorithms, known as priority algorithms, which encapsulates many
natural auction methods. We show that no truthful greedy priority algo-
rithm can obtain an approximation to the CA problem that is sublinear
in m, even for s-CAs with s ≥ 2.

1 Introduction

The field of algorithmic mechanism design attempts to bridge the competing de-
mands of agent selfishness and computational constraints. The difficulty in such
a setting is that agents may lie about their inputs in order to obtain a more desir-
able outcome. It is often possible to circumvent this obstacle by using payments
to elicit truthful responses. Indeed, if the goal of the algorithm is to maximize
the total welfare of all agents, the well-known VCG mechanism does precisely
that: each agent maximizes his utility by reporting truthfully. However, the VCG
mechanism requires that the underlying optimization problem be solved exactly,
and is therefore ill-suited for computationally intractable problems. Determining
the power of truthful approximation mechanisms is a fundamental problem in
algorithmic mechanism design.

The combinatorial auction (CA) problem holds a position at the center of
this conflict between truthfulness and approximability. Without strategic con-
siderations, one can obtain an O(min{n,

√
m}) approximation for CAs with n

bidders and m objects with a conceptually simple (albeit not obvious) greedy
algorithm [25], and this is the best possible under standard complexity assump-
tions [16,31]. However, no deterministic truthful mechanism for multi-minded
auctions is known to obtain an approximation ratio better than O( m√

log m
) [17].

This is true even for the special case where each bidder is interested only in sets
of size at most some constant s (the s-CA problem), where the obvious greedy
algorithm obtains an s + 1 approximation. Whether these gaps are essential for

S. Abramsky et al. (Eds.): ICALP 2010, Part I, LNCS 6198, pp. 90–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the CA problem, or whether there is some universal process by which approxi-
mation algorithms can be made truthful without heavy loss in performance, is a
central open question that has received significant attention over the past decade
[14,21,25,28,30].

A lower bound for the related combinatorial public project problem [30] shows
that there is a large asymptotic gap separating approximation by deterministic
algorithms and by deterministic truthful mechanisms in general allocation prob-
lems. Currently, the only such lower bounds known for the CA problem are
limited to max-in-range (MIR) algorithms [9]. While many known truthful CA al-
gorithms are MIR, the possibility yet remains that non-MIR algorithms could be
used to bridge the gap between truthful and non-truthful CA design. We consider
lower bounds for truthful CAs by focusing on an alternative class of algorithms.
We ask: can any truthful greedy algorithm obtain an approximation ratio better
than O( m√

log(m)
)? Our interest in greedy algorithms is motivated threefold. First,

most known examples of truthful, non-MIR algorithms for combinatorial auction
problems apply greedy methods [1,4,8,10,20,24,25,28]; indeed, greedy algorithms
embody the conceptual monotonicity properties generally associated with truth-
fulness, and are thus natural candidates for truthful mechanism construction. Sec-
ond, simple greedy auctions are often used in practice, despite the fact that they
are not incentive compatible; this leads us to suspect that they are good candidates
for auctions due to other considerations, such as ease of public understanding. Fi-
nally, greedy algorithms are known to obtain asymptotically tight approximation
bounds for many CA problems despite their simplicity.

We use the term “greedy algorithm” to refer to any of a large class of algo-
rithms known as priority algorithms [7]. The class of priority algorithms captures
a general notion of greedy algorithm behaviour. Priority algorithms include, for
example, many well-known primal-dual algorithms, as well as other greedy al-
gorithms with adaptive and non-trivial selection rules. Moreover, this class is
independent of computational constraints and also independent of the manner
in which valuation functions are accessed. In particular, our results apply to al-
gorithms in the demand query model and the general query model, as well as to
auctions in which bids are explicitly represented. Roughly speaking, a priority
algorithm has some notion of what consistutes the “best” bid in any given auc-
tion instance; the auction finds this bid, satisfies it, then iteratively resolves the
reduced auction problem with fewer objects (possibly with an adaptive notion
of the “best” bid). For example, the truthful algorithm for multi-unit auctions
due to Bartal et al. [4] that updates a price vector while iteratively satisfying
agent demands falls into this framework. Our main result demonstrates that if a
truthful auction for an s-CA proceeds in this way, then it cannot perform much
better than the trivial algorithm that allocates all objects to a single bidder.

Theorem: No deterministic truthful priority algorithm (defined formally in the
text) for the CA problem obtains an o(min{m,n}) approximation to the optimal
social welfare (even for s-CAs with s ≥ 2).
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The gap described in our result is extreme: for s = 2, the standard (but non-
truthful) greedy algorithm is a 3-approximation for the s-CA problem, but no
truthful greedy algorithm can obtain a sublinear approximation bound.

We also consider the combinatorial auction problem for submodular bidders
(SMCA), which has been the focus of much study [13,12,19,24]. We study a class
of greedy algorithms that is especially well-suited to the SMCA problem. Such
algorithms consider the objects of the auction one at a time and greedily assign
them to bidders to maximize marginal utilities. It was shown in [24] that any
such algorithm1 attains a 2-approximation to the SMCA problem, but that not
all are incentive compatible. We show that, in fact, no such algorithm can be
incentive compatible.

Theorem: Any deterministic algorithm for submodular combinatorial auctions
that considers objects and assigns them in order to maximize marginal utility
cannot obtain a bounded approximation to the optimal social welfare.

1.1 Related Work

Many truthful approximation mechanisms are known for CAs with single-minded
bidders. Following the Lehmann et al. [25] truthful greedy mechanism for single-
minded CAs, Mu’alem and Nisan [28] showed that any monotone greedy al-
gorithm for single-minded bidders is truthful, and outlined various techniques
for combining approximation algorithms while retaining truthfulness. This led
to the development of many other truthful algorithms in single-minded settings
[2,8] and additional construction techniques, such as the iterative greedy packing
of loser-independent algorithms due to Chekuri and Gamzu [10].

Less is known in the setting of general bidder valuations. Bartal et al. [4]
give a greedy algorithm for multi-unit CAs that obtains an O(Bm

1
B−2 ) approx-

imation when there are B copies of each object. Lavi and Swamy [23] give a
general method for constructing randomized mechanisms that are truthful in
expectation, meaning that agents maximize their expected utility by declaring
truthfully. Their construction generates a k-approximate mechanism from an LP
for which there is an algorithm that verifies a k-integrality gap. In the applica-
tions they discuss, these verifiers take the form of greedy algorithms, which play
a prominant role in the final mechanisms.

A significant line of research aims to give lower bounds on the approximat-
ing power of deterministic truthful algorithms for CAs. Lehmann, Mu’alem, and
Nisan [21] show that any truthful CA mechanism that uses a suitable bidding
language, is unanimity-respecting, and satisfies the independence of irrelevant
alternatives property (IIA) cannot attain a polynomial approximation ratio. It
has also been shown that, roughly speaking, no truthful polytime subadditive
combinatorial auction mechanism that is stable2 can obtain an approximation

1 The degree of freedom in this class of algorithms is the order in which the objects
are considered.

2 In a stable mechanism, no player can alter the outcome (i.e. by changing his decla-
ration) without causing his own allocated set to change.
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ratio better than 2 [14]. Also, no max-in-range algorithm can obtain an approxi-
mation ratio better than Ω(

√
m) when agents have budget-constrained additive

valuations [9]. These lower bounds are incomparable to our own, as priority
algorithms need not be MIR, stable, unanimity-respecting, or satisfy IIA3.

Another line of work gives lower bounds for greedy algorithms without truth-
fulness restrictions. Gonen and Lehmann [15] showed that no algorithm that
greedily accepts bids for sets can guarantee an approximation better than

√
m.

Similarly, Krysta [20] showed that no oblivious greedy algorithm (in our termi-
nology: fixed order greedy priority algorithm) obtains approximation ratio better
than

√
m. ( In fact, Krysta derives this bound for a more general class of prob-

lems that includes multi-unit CAs.) In contrast, we consider the more general
class of priority algorithms but restrict them to be incentive-compatible.

The class of priority algorithms is loosely related to the notion of online algo-
rithms. Mechanism design has been studied in a number of online settings, and
lower bounds are known for the performance of truthful algorithms in these set-
tings [22,27]. The critical difference between these results and our lower bounds
is that a priority algorithm has control over the order in which input items are
considered, whereas in an online setting this order is chosen adversarily.

In contrast to the negative results of this paper, greedy algorithms can provide
good approximations when rational agents are assumed to bid at Bayes-Nash
equilibria. In particular, there is a greedy combinatorial auction for submodular
agents that obtains a 2-approximation at equilibrium [11], and the greedy GSP
auction for internet advertising can be shown to obtain a 1.6-approximation at
equilibrium [26]. Recently, we have shown [6] that, in a wide variety of contexts,
c-approximate monotone greedy allocations can be made into mechanisms whose
Bayes-Nash equilibria yield c(1 + o(1)) approximations.

2 Definitions and Preliminary Results

Combinatorial Auctions. A combinatorial auction consists of n bidders and
a set M of m objects. Each bidder i has a value for each subset of objects
S ⊆ M , described by a valuation function vi : 2M → R which we call the type
of agent i. We assume each vi is monotone and normalized so that vi(∅) = 0.
We denote by Vi the space of all possible valuation functions for agent i, and
V = V1 × V2 × · · · × Vn. We write v for a profile of n valuation functions, one
per agent, and v−i = (v1, . . . , vi−1, vi+1, . . . , vn), so that v = (vi, v−i).

A valuation function v is single-minded if there exists a set S ⊆ M and a
value x ≥ 0 such that, for all T ⊆ M , v(T ) = x if S ⊆ T and 0 otherwise.
A valuation function v is k-minded if it is the maximum of k single-minded
functions. That is, there exist k sets S1, . . . , Sk such that for all subsets T ⊆M
we have v(T ) = max{v(Si)|Si ⊆ T }. An additive valuation function v is specified

3 The notion of IIA has been associated with priority algorithms, but in a different
context than in [21]. In mechanism design IIA is a property of the mapping between
input valuations and output allocations, whereas for priority algorithms the term
IIA describes restrictions on the order in which input items can be considered.
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by m values x1, . . . , xm ∈ R≥0 so that v(T ) =
∑

ai∈T xi. A valuation function v
is submodular if it satisfies v(T ) + v(S) ≥ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ M .

A direct revelation mechanism (or just mechanism) M = (G,P ) consists of
an allocation algorithm G and a payment algorithm P . Given valuation profile d,
G(d) returns an allocation of objects to bidders, and P (d) returns the payment
extracted from each agent. For each agent i we write Gi(d) and Pi(d) for the set
given to and payment extracted from i. We think of d as a profile of declared
valuations made by the agents to the mechanism. The social welfare obtained
by G on declaration d is SW (d) =

∑
i∈N di(Gi(d)). The optimal social welfare,

SWopt, is the maximum of
∑

i∈N ti(Si) over all valid allocations (S1, . . . , Sn).
Algorithm G is a c-approximation if SW (t) ≥ 1

cSWopt for all type profiles t.
Fixing mechanism M and type profile t, the utility of bidder i given dec-

laration d is ui(d) = ti(Gi(d)) − Pi(d). Mechanism M is truthful (or incen-
tive compatible) if for every type profile t, agent i, and declaration profile d,
ui(ti,d−i) ≥ ui(d). That is, agent i maximizes his utility by declaring his type,
regardless of the declarations of the other agents. We say that G is truthful if
there exists a payment function P such that the mechanism (G,P ) is truthful.
Critical Prices. From Bartal, Gonen and Nisan [4], we have the following
characterization of truthful CA mechanisms.

Theorem 1. A mechanism is truthful if and only if, for every i, S, and d−i,
there is a price pi(S,d−i) such that whenever bidder i is allocated S his payment
is pi(S,d−i), and agent i is allocated a set Si that maximizes di(Si)−pi(Si,d−i).

We refer to pi(S,d−i) as the critical price of S for agent i. Note that pi(S,d−i)
need not be finite: if pi(S,d−i) = ∞ then the mechanism will not allocate S to
bidder i for any reported valuation di. In addition, one can assume without loss
of generality that critical prices are monotone.
Priority Algorithms. We view an input instance to an algorithm as a selection
of input items from a known input space I. Note that I depends on the problem
being considered, and is the set of all possible input items: an input instance is a
finite subset of I. The problem definition may place restrictions on the input: an
input instance I ⊆ I is valid if it satisfies all such restrictions. The output of the
algorithm is a decision made for each input item. For example, these decisions
may be of the form “accept/reject”, allocate set S to agent i, etc. The problem
may place restrictions on the nature of the decisions made by the algorithm; we
say that the output of the algorithm is valid if it satisfies all such restrictions.
A priority algorithm is then any algorithm of the following form:

Adaptive Priority

Input: A set I of items, I ⊆ I
while not empty(I)

Ordering: Choose, without looking at I, a total ordering T over I
next ← first item in I according to ordering T
Decision: make an irrevocable decision for item next
remove next from I; remove from I any items preceding next in T

end while
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We emphasize the importance of the ordering step in this framework: an adap-
tive priority algorithm is free to choose any ordering over the space of possible
input items, and can change this ordering adaptively after each input item is
considered. Once an item is processed, the algorithm is not permitted to modify
its decision. On each iteration a priority algorithm learns what (higher-priority)
items are not in the input. A special case of (adaptive) priority algorithms are
fixed order priority algorithms in which one fixed ordering is chosen before the
while loop (i.e. the “ordering” and “while” statements are interchanged). Our
inapproximation results for truthful CAs will hold for the more general class of
adaptive priority algorithms.

The term “greedy” implies a more opportunistic aspect than is apparent in
the definition of priority algorithms and indeed we view priority algorithms as
“greedy-like”. A greedy priority algorithm satisfies an additional property: the
choice made for each input item must optimize the objective of the algorithm as
though that item were the last item in the input.

3 Truthful Priority Algorithms

We wish to show that no truthful priority algorithm can provide a non-trivial
approximation to social welfare. In order to apply the concept of priority al-
gorithms we must define the set I of possible input items and the nature of
decisions to be made. We consider two natural input formulations: sets as items,
and bidders as items. We assume that n, the number of bidders, and m, the
number of objects, are known to the mechanism and let k = min{m,n}.

3.1 Sets as Items

In our primary model, we view an input instance to the combinatorial auction
problem as a list of set-value pairs for each bidder. An item is a tuple (i, S, t),
i ∈ N , S ⊆ M , and t ∈ R≥0. A valid input instance I ⊂ I contains at most
one tuple (i, S, vi(S)) for each i ∈ N and S ⊆ M and for every pair of tuples
(i, S, v) and (i′, S′, v′) in I such that i = i′ and S ⊆ S′, it must be that v ≤ v′.
We note that since a valid input instance may contain an exponential number of
items, this model applies most directly to algorithms that use oracles to query
input valuations, such as demand oracles4, but it can also apply to succinctly
represented valuation functions.5

The decision to be made for item (i, S, t) is whether or not the objects in S
should be added to any objects already allocated to bidder i. For example, an

4 It is tempting to assume that this model is equivalent to a value query model,
where the mechanism queries bidders for their values for given sets. The priority
algorithm model is actually more general, as the mechanism is free to choose an
arbitrary ordering over the space of possible set/value combinations. In particular,
the mechanism could order the set/value pairs by the utility they would generate
under a given set of additive prices, simulating a demand query oracle.

5 That is, by assigning priority only to those tuples appearing in a given representation.
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algorithm may consider item (i, S1, t1) and decide to allocate S1 to bidder i,
then later consider another item (i, S2, t2) (where S2 and S1 are not necessarily
disjoint) and, if feasible, decide to change bidder i’s allocation to S1 ∪ S2.

A greedy algorithm in the sets as items model must accept any feasible, prof-
itable item (i, S, t) it considers6. Our main result is a lower bound on the ap-
proximation ratio achievable by a truthful greedy algorithm in the sets as items
model.

Theorem 2. Suppose A is an incentive compatible greedy priority algorithm
that uses sets as items. Then A cannot approximate the optimal social welfare
by a factor of (1−δ)k

2 for any δ > 0. This result also applies to the special case
of (3-minded bidders for) the 2-CA problem, in which each desired set has size
at most 2.

Theorem 2 implies a severe separation between the power of greedy algorithms
and the power of truthful greedy algorithms. A simple greedy algorithm obtains
a 3-approximation for the 2-CA problem, yet no truthful greedy priority algo-
rithm (indeed, any algorithm that irrevocably satisfies bids based on a notion of
priority) can obtain even a sublinear approximation.

Proof. Choose δ > 0 and suppose A obtains a bounded approximation ratio. For
each i ∈ N , let V +

−i be the set of valuations with the property that v
(S) > 0 for
all 	 �= i and all non-empty S ⊆M . The heart of our proof is the following claim,
which shows that the relationship between critical prices for singletons for one
bidder is independent of the valuations of other bidders. Recall that pi(S,d−i)
is the critical price for set S for bidder i, given d−i.

Lemma 1. For all i ∈ N , and for all a, b ∈ M , either pi({a},d−i) ≥ pi({b},d−i)
for all d−i ∈ V +

−i, or pi({a},d−i) ≤ pi({b},d−i) for all d−i ∈ V +
−i. This is true

even when agents desire sets of size at most 2.

We can think of Lemma 1 as defining, for each i ∈ N , an ordering over the
elements of M . For each i ∈ N and a, b ∈M , write a �i b to mean pi(a,d−i) ≤
pi(b,d−i) for all d−i ∈ V +

−1. For all i ∈ N and a ∈ M , define Ti(a) = {aj : a �i

aj}. That is, Ti(a) is the set of objects that have higher price than a for agent
i. Our next claim shows a strong relationship between whether a is allocated to
bidder i and whether any object in Ti(a) is allocated to bidder i.

Lemma 2. Choose a ∈ M , i ∈ N , and S ⊆ M , and suppose S ∩ Ti(a) �= ∅.
Choose some vi ∈ Vi and suppose that vi(a) > vi(S). Then if v−i ∈ V +

−i, bidder
i cannot be allocated set S by algorithm A given input v.

Lemma 2 is strongest when Ti(a) is large; that is, when a is “small” in the
ordering �i. We therefore wish to find an object of M that is small according to
many of these orderings, simultaneously. Let R(a) = {i ∈ N : |Ti(a)| ≥ k/2}, so
R(a) is the set of players for which there are at least k/2 objects greater than a.
The next claim follows by a straightforward counting argument.
6 That is, any item (i, S, t) such that no objects in S have already been allocated to

another bidder and t > 0.
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Lemma 3. There exists a∗ ∈ M such that |R(a∗)| ≥ k/2.

We are now ready to proceed with the proof of Theorem 2. Let a∗ ∈ M be the
object from Lemma 3. Let ε > 0 be a sufficiently small value to be defined later.
We now define a particular input instance to algorithm A. For each i ∈ R(a∗),
bidder i will declare the following valuation function, vi:

vi(S) =

⎧⎪⎨⎪⎩
1 if a∗ ∈ S

1− δ/2 if a∗ �∈ S and S ∩ (Ti(a∗)) �= ∅
ε otherwise.

Each bidder i �∈ R(a∗) will declare a value of ε for every set.
For each i ∈ R(a∗), vi(aj) ≥ 1−δ/2 for every aj ∈ Ti(a∗). Since |R(a∗)| ≥ k/2

and |Ti(a∗)| ≥ k/2, it is possible to obtain a social welfare of at least (1−δ/2)k
2

by allocating singletons to bidders in R(a∗).
Consider the social welfare obtained by algorithm A. The algorithm can al-

locate object a∗ to at most one bidder, say bidder i, who will obtain a social
welfare of at most 1. For any bidder 	 ∈ R(a∗), 	 �= i, v
(S) = 1 − δ/2 < 1 for
any S containing elements of T
(a∗) but not a∗. Thus, by Lemma 2, no bidder
in R(a∗) can be allocated any set S that contains an element of Ti(a∗) but not
a∗. Therefore every bidder other than bidder i can obtain a value of at most ε,
for a total social welfare of at most 1 + kε.

We conclude that algorithm A has an approximation factor no better than
k(1−δ/2)
2(1+kε) . Choosing ε < δ

2(1−δ)k yields an approximation ratio greater than k(1−δ)
2 ,

completing the proof of Theorem 2.

We believe that the greediness assumption of Theorem 2 can be removed, but
we leave this as an open problem. As partial progress we show that this is true
for the following (more restricted) model of priority algorithms, in which an
algorithm can only consider and allocate sets whose values are not implied by
the values of other sets.
Elementary bids as items. Consider an auction setting in which agents do
not provide entire valuation functions, but rather each agent specifies a list of
desired sets S1, . . . , Sk and a value for each one. Moreover, each agent receives
either a desired set or the empty set. This can be thought of as an auction with a
succinct representation for valuation functions, in the spirit of the XOR bidding
language [29]. We model such an auction as a priority algorithm by considering
items to be the bids for desired sets. In such a setting, the specified set-value
pairs are called elementary bids. We say that the priority model uses elementary
bids as items when only elementary bids (i, S, v(S)) can be considered by the
algorithm. For each item (i, S, v(S)), the decision to be made is whether or not
S will be the final set allocated to agent i; that is, whether or not the elementary
bid for S will be “satisfied.” In particular, unlike in the sets as items model, we
do not permit the algorithm to build up an allocation incrementally by accepting
many elementary bids from a single agent.

We now show that the greediness assumption from Theorem 2 can be removed
when we consider priority algorithms in the elementary bids as items model.
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Theorem 3. Suppose A is an incentive compatible priority algorithm for the
CA problem that uses elementary bids as items. Then A cannot approximate the
optimal social welfare by a factor of (1− δ)k for any δ > 0.

3.2 Bidders as Items

Roughly speaking, the lower bounds in Theorems 2 and 3 follow from a priority
algorithm’s inability to determine which of many different mutually-exclusive
desires of an agent to consider first when constructing an allocation. One might
guess that such difficulties can be overcome by presenting an algorithm with
more information about an agent’s valuation function at each step. To this end,
we consider an alternative model of priority algorithms in which the agents
themselves are the items, and the algorithm is given complete access to an agent’s
declared valuation function each round.

Under this model, I consists of all pairs (i, vi), where i ∈ N and vi ∈ Vi.
A valid input instance contains one item for each bidder. The decision to be
made for item (i, vi) is a set S ⊆ M to assign to bidder i. The truthful greedy
CA mechanism for single-minded bidders falls within this model, as does its
(non-truthful) generalization to complex bidders [25], the primal-dual algorithm
of [8], and the (first) algorithm of [4] for multi-unit CAs. We now establish an
inapproximation bound for truthful priority allocations that use bidders as items.

Theorem 4. Suppose A is an incentive compatible priority algorithm for the
(2-minded) CA problem that uses bidders as items. Than A cannot approximate
the optimal social welfare by a factor of (1−δ)k

2 for any δ > 0.

4 Truthful Submodular Priority Auctions

Lehmann, Lehmann, and Nisan [24] proposed a class of greedy algorithms that is
well-suited to auctions with submodular bidders; namely, objects are considered
in any order and incrementally assigned to greedily maximize marginal utility.
They showed that any ordering of the objects leads to a 2-approximation of social
welfare, but not every ordering of objects leads to an incentive compatible algo-
rithm. However, this does not preclude the possibility of obtaining truthfulness
using some adaptive method of ordering the objects.

We consider a model of priority algorithms which uses the m objects as input
items. In this model, an item will be represented by an object x, plus the value
vi(x|S) for all i ∈ N and S ⊆ M (where vi(x|S) := vi(S ∪ {x}) − vi(S) is the
marginal utility of bidder i for item x, given set S). We note that the online
greedy algorithm described above falls into this model. We show that no greedy
priority algorithm in this model is incentive compatible.

Theorem 5. Any greedy priority algorithm for the combinatorial auction prob-
lem that uses objects as items is not incentive compatible. This holds even if the
bidders are assumed to be submodular.
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5 Future Work

The goal of algorithmic mechanism design is the construction of algorithms in
situations where inputs are controlled by selfish agents. We considered this fun-
damental issue in the context of conceptually simple methods (independent of
time bounds) rather than in the context of time constrained algorithms. Our
results concerning priority algorithms (as a model for greedy mechanisms) is a
natural beginning to a more general study of the power and limitations of con-
ceptually simple mechanisms. Even though the priority framework represents a
restricted (albeit natural) algorithmic approach, there are still many unresolved
questions even for the most basic mechanism design questions. In particular, we
believe that the results of Section 3 can be unified to show that the linear inap-
proximation bound holds for all priority algorithms (without restrictions). The
power of greedy algorithms for unit-demand auctions (s-CAs with s = 1) is also
not understood; it is not difficult to show that optimality cannot be achieved by
priority algorithms, but is it possible to obtain a sublinear approximation bound
with greedy methods? Even though an optimal polytime algorithm exists for this
case, greedy algorithms for the problem are still of interest, evidenced by the use
of greedy algorithms in practice to resolve unit-demand AdWord auctions.

An obvious direction of future work is to widen the scope of a systematic search
for truthful approximation algorithms; priority algorithms can be extended in
many ways. One might consider priority algorithms with a more esoteric input
model, such as a hybrid of the sets as items and bidders as items models. Pri-
ority algorithms can be extended to allow revocable acceptances [18] whereby
a priority algorithm may “de-allocate” sets or objects that had been previously
allocated to make a subsequent allocation feasible. Somewhat related is the pri-
ority stack model [5] (as a formalization of local ratio/primal dual algorithms
[3]) where items (e.g. bidders or bids) initially accepted are placed in a stack and
then the stack is popped to ensure feasibility. This is similar to algorithms that
allow a priority allocation algorithm to be followed by some simple “cleanup”
stage [20]. Another possibility is to consider allocations that are comprised of
taking the best of two (or more) priority algorithms. A special case that has
been used in the design of efficient truthful combinatorial auction mechanisms
[4,8,28] is to optimize between a priority allocation and the näıve allocation
that gives all objects to one bidder. Another obvious extension is to consider
randomized priority algorithms, potentially in a Bayesian setting. Finally, one
could study more general models for algorithms that implement integrality gaps
in LP formulations of packing problems; it would be of particular interest if
a deterministic truthful k-approximate mechanism could be constructed from
an arbitrary packing LP with integrality gap k, essentially derandomizing the
construction of Lavi and Swamy [23].

The results in this paper have thus far been restricted to combinatorial auc-
tions but the basic question being asked applies to all mechanism design prob-
lems. Namely, when can a conceptually simple approximation to the underlying
combinatorial optimization problem be converted into an incentive compatible
mechanism that achieves (nearly) the same approximation? For example, one
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might consider the power of truthful priority mechanisms for approximating un-
related machines scheduling, or for more general integer packing problems.
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Abstract. We associate a CNF-formula to every instance of the mean-
payoff game problem in such a way that if the value of the game is non-
negative the formula is satisfiable, and if the value of the game is negative
the formula has a polynomial-size refutation in Σ2-Frege (a.k.a. DNF-
resolution). This reduces the problem of solving mean-payoff games to the
weak automatizability of Σ2-Frege, and to the interpolation problem for
Σ2,2-Frege. Since the interpolation problem for Σ1-Frege (i.e. resolution)
is solvable in polynomial time, our result is close to optimal up to the
computational complexity of solving mean-payoff games. The proof of
the main result requires building low-depth formulas that compute the
bits of the sum of a constant number of integers in binary notation, and
low-complexity proofs of their relevant arithmetic properties.

1 Introduction

A mean-payoff game is played on a weighted directed graph G = (V,E) with an
integer weight w(e) on every arc e ∈ E. Starting at an arbitrary vertex u0, players
0 and 1 alternate in rounds, each extending the path u0, u1, . . . , un built up to
that point, by adding one more arc (un, un+1) ∈ E that leaves the current vertex
un. The goal of player 0 is to maximize ν0 = lim infn→∞ 1

n

∑n
i=1 w(ui−1, ui),

while the goal of player 1 is to minimize ν1 = lim supn→∞
1
n

∑n
i=1 w(ui−1, ui).

These games were studied by Ehrenfeucht and Mycielsky [12] who showed
that every such game G has a value ν = νG such that player 0 has a positional
strategy that secures ν0 ≥ ν, and player 1 has a positional strategy that secures
ν1 ≤ ν. Here, a positional strategy is one whose moves depend only on the
current vertex and not on the history of the play. We say that the game satisfies
positional determinacy.

Positional determinacy is a property of interest in complexity theory. On one
hand it implies that the problem of deciding if a given game has non-negative
value (MPG) belongs to NP ∩ co-NP. This follows from the fact that every
positional strategy has a short description, and that given a positional strategy
for one player, it is possible to determine the best response strategy for the other
in polynomial time. The latter was observed by Zwick and Paterson [27] as an
application of Karp’s algorithm for finding the minimum cycle mean in a digraph
� First author supported by CICYT TIN2007-68005-C04-03 (LOGFAC-2). Second au-
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(FORMALISM). This work was done while visiting CRM, Bellaterra, Barcelona.

S. Abramsky et al. (Eds.): ICALP 2010, Part I, LNCS 6198, pp. 102–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Mean-Payoff Games and Propositional Proofs 103

[16]. See [27] also for a direct link with Shapley’s simple stochastic games. On the
other hand, at the time of writing there is no known polynomial-time algorithm
for solving mean-payoff games, not even for a special case called parity games
that is of prime importance in applications of automata theory, and the body of
literature on the topic keeps growing [15,14,8].

For a problem in NP ∩ co-NP for which a polynomial-time algorithm is not
known or obvious, it is compulsory to ask for the nature of the certificates
(short proofs of membership) and of the disqualifications (short proofs of non-
membership). Celebrated examples where this was insightful are too many to be
cited here (see [19,21]). In the case that concerns us, that of mean-payoff games,
a new and useful understanding of its membership in NP ∩ co-NP emerges from
the combination of two recent results.

The starting point is the observation that the problem MPG reduces to the
satisfiability problem for sets of max-atoms. A max-atom is an inequality of the
form x0 ≤ max {x1 +a1, . . . , xr +ar} where x0, . . . , xr are integer variables, and
a1, . . . , ar are integer constants. This was first seen in [20] in the special context
of scheduling and precedence constraints (with slightly different notation and
definitions). The second result is from [7], where the satisfiability problem for
max-atoms was re-discovered and given its name, and the problem was studied
from the perspective of logic. The authors of [7] introduced an inference system,
called chaining, that derives new max-atoms that follow from previous ones by
simple rules. They showed that this system is both complete and, interestingly,
polynomially bounded: if the collection of max-atom inequalities is unsatisfiable,
then it has a refutation whose total size is polynomial in the size of the input.

Given these two results, the situation is that for a given mean-payoff game G,
a satisfying assignment to the corresponding instance of the max-atom problem
is a certificate that νG ≥ 0, and a refutation of this instance in the chaining
inference system is a certificate that νG < 0. Therefore MPG reduces to the
proof-search problem for this inference system. We address the question whether
it also reduces to the proof-search problem for some standard proof-system for
propositional logic. In brief, our main result is that a Boolean encoding of the
instance expressing νG ≥ 0 is either satisfiable, or has polynomial-size refutations
in Σ2-Frege, the standard inference system for propositional logic restricted to
manipulating DNF-formulas. To be placed in context, in our terminology Σ1-
Frege manipulates clauses and is thus equivalent to propositional resolution.

Related work and consequences. The proof-search problem for a proof system P
asks, for a given unsatisfiable Boolean formula A, to find a P -refutation of A. We
say that P is automatizable if the proof-search problem for P is solvable in time
polynomial in the size of the smallest P -proof of A. The weak automatizability
problem for P asks, for a given formula A and an integer r given in unary, to
distinguish the case when A is satisfiable from the case when A has a P -refutation
of size at most r. It is known that this problem is solvable in polynomial time if
and only if there is an automatizable proof system that simulates P .

The question whether some standard proof system is automatizable was
introduced in [11], following the work in [18]. These works showed that
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extended-Frege and its weaker version TC0-Frege are not automatizable unless
there is a polynomial-time algorithm for factoring. Extended-Frege and TC0-Frege
are the standard inference systems for propositional logic restricted to manipulat-
ing Boolean circuits and threshold formulas of bounded depth, respectively. In-
deed, their result is stronger since in both cases it shows that there is a reduction
from factoring to the weak automatizability problem. To date, the weakest proof
system that seems not weakly automatizable is AC0-Frege, the standard system
restricted to Boolean formulas of bounded alternation-depth. But here the hard-
ness result is much weaker since the reduction from factoring is only subexponen-
tial and degrades with the target depth of the AC0-formulas [10].

All these hardness results proceed by exhibiting short refutations of an un-
satisfiable Boolean formula that comes from a cryptography-inspired problem
based on the hardness of factoring. Since the usual cryptographic primitives
require either complex computations or complex proofs of correctness, going be-
low polynomial-size TC0-Frege or subexponential-size AC0-Frege is difficult. In
particular, there is no clear evidence in favour or against whether Σd-Frege, for
fixed d ≥ 1, is weakly automatizable, where Σd-formulas are AC0-formulas of
alternation-depth d−1 and a disjunction at the root. Not even for Σ1-Frege (i.e.
resolution) there is clear consensus in favour or against it, despite the partial
positive results in [6,5] and the partial negative results in [1].

The first consequence of our result is that the problem of solving mean-payoff
games reduces to the weak-automatizability of Σ2-Frege. Our initial goal was to
reduce it to the weak-automatizability of resolution, or cutting planes, but these
remain open. Note that cutting planes is a natural candidate in the context of
max-atoms as it works with linear inequalities over the integers. The difficulty
seems to be in simulating disjunctions of inequalities.

A second consequence of our result concerns the problem of interpolation for
a proof system P . This is the problem that asks, for a given P -refutation of an
unsatisfiable formula of the form A0(x, y0) ∧A1(x, y1) and a given truth assign-
ment a for x, to return an i ∈ {0, 1} such that Ai(a, yi) is itself unsatisfiable. If
the feasible interpolation problem for P is solvable in polynomial time we say
that P enjoys feasible interpolation. It is known that feasible interpolation is
closely related to weak automatizability in the sense that if a system is weakly
automatizable, then it enjoys feasible interpolation [11,25]. Proof systems enjoy-
ing feasible interpolation include resolution [17], cutting planes [23,9], Lovász-
Schrijver [24], and Hilbert’s nullstellensatz [26]. On the negative side, it turns
out that all known negative results for weak automatizability mentioned above
were shown by reducing factoring to the interpolation problem. Thus, extended-
Frege, TC0-Frege and AC0-Frege probably do not enjoy feasible interpolation.
For Σd-Frege for fixed d ≥ 2 there is no evidence in favour or against.

In this front our result implies that the problem of solving mean-payoff games
reduces to the interpolation problem for Σ2,2-Frege, where Σ2,2-formulas are
Σ3-formulas of bottom fan-in two. Note that Σ1-Frege does enjoy feasible inter-
polation since it is equivalent to resolution. Thus our result is close to optimal
up to the computational complexity of solving mean-payoff games.
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Overview of the proof. Given a mean-payoff game G, we want to find an efficient
translation of its associated instance of the max-atom problem into a collection
of Boolean clauses. Once this is done, and assuming νG < 0, we provide a
polynomial-size Σ2-Frege refutation that simulates the polynomial-size chaining-
refutation guaranteed to exist by the results in [7].

Executing this plan requires technical work and is the main contribution of
this paper. As part of its solution we need efficient depth-two formulas that
compute the bits of the sum of a constant number of non-negative integers
represented in binary. This was long known for two summands but the extension
to more than two summands is not obvious and appears to be new. This turned
out to be specially delicate because we need formulas explicit enough to allow
polynomial-size depth-two Frege proofs of their basic properties. For example:

x ≤ y + a y ≤ z + b

x ≤ z + a + b
.

We hope these will be useful in independent contexts. One key fact in our argu-
ment is that we use the above with constants a and b, which makes the bottom
formula equivalent to x ≤ z + (a + b). The point is that if a and b were not
constants, the number of summands would grow unbounded, and such sums are
known to be not definable by polynomial-size formulas of constant depth [13].

Structure of the paper. In Section 2 we discuss the transformation from mean-
payoff games to the max-atom problem, and the chaining inference system. In
Section 3 we introduce the notation about Boolean formulas and the definition of
Σd-Frege. In Section 4 we define the formula CARRY(x1, . . . , xr) that computes
the carry-bit of the sum of r integers given in binary. In Section 5 we simulate the
rules of chaining using formal proofs for the arithmetic properties of CARRY. In
Section 6 we put everything together and get consequences for proof complexity.

2 Max-atom Refutations

From mean-payoff games to max-atom inequalities. Let G = (V,E, V0, V1, w)
be a mean-payoff game, which means that (V,E) is a directed graph with out-
degree at least one, V = V0 ∪ V1 is a partition of the vertices, and w : E →
{−W, . . . , 0, . . . ,W} is an integer weight-assignment to the arcs of the graph.
This specifies an instance of the mean-payoff game problem which asks whether
ν ≥ 0. Here, ν = minu∈V ν(u) and ν(u) is the value of the game started at u.
This is defined as ν(u) = sups0

infs1 ν(u, s0, s1), where s0 and s1 are strategies for
player 0 and player 1, and ν(u, s0, s1) = lim infn→∞ 1

n

∑n
i=1 w(ui−1, ui) where

u0 = u and ui+1 = sj(u0, . . . , ui) if ui ∈ Vj for j ∈ {0, 1}.
To every mean-payoff game G we associate a collection of max-atom inequal-

ities I(G) that is satisfiable if and only if ν ≥ 0. This was done for the first time
in [20, Lemma 7.5]. Here we give a similar construction discussed in [4].

For every u ∈ V , we introduce one integer variable xu. For u ∈ V0, we add
xu ≤ max {xv + w(u, v) : v ∈ N(u)}, where N(u) is the set of out-neighbors of
u in G. For u ∈ V1, we want to impose that xu ≤ min {xv +w(u, v) : v ∈ N(u)}.
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If N(u) = {v1, . . . , vh} this is simply xu ≤ max {xvi +w(u, vi)} as i ranges over
[h]. Note that I(G) consists of at most |E| max-atoms involving |V | variables and
integer constants in the range [−W,W ]. Its size is thus polynomial in the size of
G. At this point we transformed the question whether ν ≥ 0 to the satisfiability
of a system of max-atom inequalities. The correctness of the transformation is
stated in Lemma 1 below.

Chaining refutations. An offset is a term of the form x+ c, where x is an integer
variable and c is an integer constant. In the following, the letters R and S refer
to collections of offsets. Also, if a is an integer constant, S + a refers to the
collection of offsets of the form x + (c + a) as x + c ranges over all offsets in
S. The inference system introduced in [7] called chaining works with max-atom
inequalities and has three rules: chaining, simplification and contraction.

1. x ≤ max(R, y + a) and y ≤ max(S) yield x ≤ max(R, T ), if T = S + a,
2. x ≤ max(R, x + a) yields x ≤ max(R), if a < 0,
3. x ≤ max(R, y + a, y + b) yields x ≤ max(R, y + c), if a ≤ c and b ≤ c.

A chaining refutation is a proof of x ≤ max(), which is clearly unsatisfiable.
This inference system is sound and complete for refuting unsatisfiable col-

lections of max-atom inequalities [7, Theorem 2]. Even more, it is polynomially
bounded, which means that if I is an unsatisfiable collection of max-atoms, then
there is a chaining refutation of length polynomial in the size of I, and with
numbers of bit-length polynomial in the size of I. This follows from two facts:
that if I is unsatisfiable then it contains an unsatisfiable subcollection where
every variable appears at most once on the left-hand side (Lemma 5 in [7]), and
that for such subcollections the refutation produced by the completeness proof
is polynomial (see the proof of Theorem 4 in [7]).

Putting it all together we get:

Lemma 1 ([20,7,4]). Let G be a mean-payoff game with n vertices, m edges,
and weights in [−W,W ]. Let I = I(G). The following are equivalent:

1. νG < 0,
2. I is unsatisfiable,
3. I is not satisfied by any assignment with values in [0,Wm],
4. I has a chaining refutation,
5. I has a chaining refutation of length n2 with constants in [−Wm,Wm].

3 Preliminaries in Propositional Logic

Boolean formulas. Let x1, x2, . . . be Boolean variables. A literal is either a vari-
able xi, or its negation xi, or the constant 0 or 1. We use literals to build Boolean
formulas with the usual connectives. We think of conjunctions and disjunctions
as symmetric connectives of unbounded arity.

If A is a set of formulas, we write ∧A for the conjunction of all formulas in A.
Similarly, for ∨A. We think of ¬∧A and ¬∨A as the same formulas as ∨¬A and
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∧¬A, where ¬A denotes the set of negations of formulas in A. If F is a literal,
its size s(F ) is 1. If F is a conjunction ∧A or a disjunction ∨A, its size s(F ) is
1 +

∑
G∈A s(G). If F (1), . . . , F (r) are formulas, we use the notation

(∀i : 1 ≤ i ≤ r)(F (i)) ≡ F (1) ∧ · · · ∧ F (r),
(∃i : 1 ≤ i ≤ r)(F (i)) ≡ F (1) ∨ · · · ∨ F (r).

A clause is a disjunction of literals and a term is a conjunction of literals. A
CNF-formula is a conjunction of clauses and a DNF-formula is a disjunction of
terms. We define a hierarchy of formulas: let Σ0 = Π0 be the set of all literals,
and for d ≥ 1, let Σd be the set of all formulas of the form ∨A, where A is a
set of Πd−1-formulas, and let Πd-formula be the set of all formulas of the form
∧A, where A is a set of Σd−1-formulas. We write Σd,k and Πd,k for the set of
all Σd+1- and Πd+1-formulas with bottom fan-in at most k. For example, Σ1,k-
formulas are k-DNF-formulas, i.e. composed of terms with at most k literals. We
use the notation Σd,c to denote Σd,k for some unspecified constant k ≥ 1.

Propositional proofs. We define four rules of inference. The four rules are axiom
(AXM), weakening (WKG), introduction of conjunction (IOC), and cut (CUT):

F ∨ ¬F
Δ

Δ ∨G

Δ ∨ F Δ′ ∨G

Δ ∨Δ′ ∨ (F ∧G)
Δ ∨ F Δ′ ∨ ¬F

Δ ∨Δ′
,

where F and G denote formulas, and Δ and Δ′ denote either formulas or the
special empty formula �. The CUT-rule is also known as the resolution rule.

Let F1, . . . , Fr and G be formulas. The assertion F1, . . . , Fr yield G is denoted
by F1, . . . , Fr " G. A proof of this assertion is a finite sequence of formulas
H1, H2, . . . , Hm such that Hm = G and for every i ∈ [m], either Hi = Fj for
some j ∈ [r], or Hi is the conclusion of an inference rule with hypothesis Hj and
Hk for some j and k such that 1 ≤ j ≤ k ≤ i− 1. The length of the proof is m.
The size of the proof is the sum of the sizes of all involved formulas. A refutation
of F1, . . . , Fr is a proof of the assertion F1, . . . , Fr " �. If C is a collection of
formulas, a C-Frege proof is one where all formulas belong to C.

The expression “the assertion F1, . . . , Fr " G has a polynomial-size C-Frege
proof” means that there exists some universal but unspecified polynomial p(n)
such that F1, . . . , Fr " G has a C-Frege proof of size at most p(s(F1) + · · · +
s(Fr) + s(G)). Similarly, we use poly(n) to denote a universal but unspecified
polynomial function of n, and c to denote a universal but unspecified constant.

A resolution proof is one where all formulas are clauses and the only allowed
rule is CUT. Note that if the only allowed formulas are clauses then IOC is
automatically forbidden. Also it is not hard to see that if there is a Σ1-Frege
refutation of F1, . . . , Fr of length m, then there is a resolution refutation of
F1, . . . , Fr of length at most m as well. Therefore resolution and Σ1-Frege are
essentially the same thing. Let us mention that Σ1,k-Frege is also known as
Res(k), or as k-DNF-resolution. Along these lines, Σ2-Frege could be called
DNF-resolution.
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4 Bitwise Linear Arithmetic

The basic Σ2,c-formula with which we work expresses an inequality. More specif-
ically, it asserts that an addition results in “overflow”, or equivalently that there
is a carry-bit generated at the left-most position. As a simple example, sup-
pose we want to express that the sum of two B-bit numbers x = x1 . . .xB and
y = y1 . . . yB is at least 2B. It is not hard to see that the following formula is
equivalent to the desired inequality:

(∃p : 1 ≤ p ≤ B)(xp = 1 ∧ yp = 1 ∧ (∀q : 1 ≤ q ≤ p− 1)(xq + yq = 1)).

By writing xq + yq = 1 as a CNF, this is a Σ2,2-formula. In this section we
generalize this formula to an arbitrary number of B-bit numbers.

Let r, k, 	 and B be positive integers such that r ≤ k ≤ 2
 − 1 < 2B. Let
x = (x1, . . . , xr), where each xi is a string xi,1 . . .xi,B of B Boolean variables.
We think of x as a matrix with r rows and B columns. For each column p ∈
{1, . . . , B}, let xp = x1,p + · · ·+xr,p. We interpret xp as a symbol in the alphabet
{0, . . . , r} ⊆ {0, . . . , k}, and thus the sum of x as a word in {0, . . . , k}B.

We describe an automaton M that decides whether there is overflow in the
addition of r B-bit numbers. It is defined to work on the alphabet {0, 1, . . . , k},
i.e. its input is x1,x2, . . . ,xB . In general, M has k + 1 states each indicat-
ing a range for the value of the number read so far, which at step p we will
denote by x[p] = x12p−1 + x22p−2 + · · · + xp−121 + xp20. The k + 1 states
correspond to the ranges [0, 2p − k], the following k − 1 single integer inter-
vals 2p − (k − 1), . . . , 2p − 1, and [2p, k(2p − 1)]. We denote these states by −k,
−(k−1), . . . ,−1, and 0, respectively. The two extreme states are absorbing, and
correspond respectively to the absence and presence of overflow: if x[p] ≥ 2p then
x ≥ 2p2B−p = 2B, hence there is overflow; on the other hand, if x[p] ≤ 2p−k then
x ≤ (2p−k)2B−p +k(2B−p−1) = 2B −1, and there is no overflow. The starting
state is −1, because x[0] = 0 = 20 − 1. The state machine for k = 5 is given in
Figure 1.
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Fig. 1. A state machine deciding if there is overflow in the addition of 5 Boolean strings

The key fact that allows us to design the propositional formula is that if at
some stage the machine has not yet reached one of the absorbing states, then
we can identify in which intermediate state it is only based on the last 	 values
read, because it suffices to know x[p] modulo 2
 > k − 1.



Mean-Payoff Games and Propositional Proofs 109

We define notation for the number in the last 	 positions, and the state:

– A
(x; p) = x12p−1 + x22p−2 + · · ·+ xp−121 + xp20 if 0 ≤ p ≤ 	− 1,
– A
(x; p) = xp−
+12
−1 + xp−
+22
−2 + · · ·+ xp−121 + xp20 if 	 ≤ p ≤ B,
– S
(x; p) = (A
(x; p) mod 2p)− 2p if 0 ≤ p ≤ 	− 1,
– S
(x; p) = (A
(x; p) mod 2
)− 2
 if 	 ≤ p ≤ B,
– N
(x; p) = 2S
(x; p− 1) + xp if 1 ≤ p ≤ B.

Intuitively, S
(x; p) is the state of the computation of M at time p as long as it
did not reach an absorbing state before, and N
(x; p) stands for “next state”.

For every p ∈ {1, . . . , B}, we define the predicates

F+(x; p) ≡ F+
k,
(x; p) ≡ N
(x; p) ≥ 0,

F−(x; p) ≡ F−k,
(x; p) ≡ −k < N
(x; p) < 0.

When the parameters k and 	 are clear from the context we use the lighter
notation on the left. Assuming that S
(x; p−1) is the correct state of M at time
p− 1, the predicate F+(x; p) asserts that at time p the automaton accepts, and
F−(x; p) asserts that at time p the automaton is not at an absorbing state.

Since F+(x; p) and F−(x; p) depend on no more than k	 variables of x, those
appearing in the definitions of xp−
+1, . . . ,xp, both F+(x; p) and F−(x; p) are
expressible as Σ1,k
-formulas and as Π1,k
-formulas of size at most k	 ·2k
. Using
these we define the following formula:

CARRYk,
(x) ≡ (∃p : 1 ≤ p ≤ B)(F+(x; p) ∧ (∀q : 1 ≤ q ≤ p− 1)(F−(x; q)))

Intuitively, this formula reads “M eventually accepts”. Note that this is a Σ2,k
-
formula of size proportional to B2 · k	 · 2k
.

From now on we think of k and 	 as small and bounded by some universal
constant, and of B as unbounded. For concreteness, the uncomfortable reader
should fix k = 11 and 	 = 4 as we will do in later applications.

The letters a, b and c denote B-bit strings a1 . . . aB, b1 . . . bB and c1 . . . cB,
respectively. Abusing notation, we identify a with the number in [0, 2B) that it
represents in binary. This includes the constant 1 = 0B−11. The letter z denotes
a string of B Boolean variables z1 . . . zB. We write z for z1 . . . zB. The letters x
and y denote non-empty sequences (x1, . . . , xrx) and (y1, . . . , yry), where each
xi is a string of B Boolean variables xi,1 . . .xi,B and each yi is a string of B
Boolean variables yi,1 . . . yi,B. Moreover rx + ry + 1 ≤ k and rx + 3 ≤ k.

Lemma 2. The following assertions have polynomial-size Σ2,c-Frege proofs:

1. CARRYk,
(x, z, 1) and CARRYk,
(y, z, 1) yield CARRYk,
(x,y, 1),
2. CARRYk,
(x, a, b) yields CARRYk,
(x, c), if c = a + b,
3. CARRYk,
(x, a) yields CARRYk,
(x, b), if a ≤ b,
4. CARRYk,
(z, z) yields �.

Proof (hint). We sketch 1, the key proof of the paper. Let M0, M1 and M2
denote the automata on inputs (x, z, 1), (y, z, 1) and (x,y, 1). Let so, s1 and s2
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be their states. We give Σ2,c-proofs that while M0 and M1 have not yet accepted,
s2 = s0 + s1 + 1, and if only Mi has accepted, s2 ≥ s1−i + 1. These invariants
guarantee that whenever both M0 and M1 accept, M2 accepts as well since its
state is always ahead. We build these proofs by induction on the time-step. The
key for staying in Σ2,c is that the invariants are constant-size formulas.

5 Simulating Chaining Refutations

In this section we use the CARRY formula with parameters k = 11, 	 = 4 and
B = M +2, where M is a large integer, that we think of as unbounded. As k and
	 stay fixed everywhere in the section, for convenience we write CARRY instead
of CARRY11,4. Note that CARRY is a Σ2,44-formula.

The letters x, y and z denote integer variables ranging over [0, 2M ), and X , Y
and Z denote strings of M Boolean variables for the binary representations of x, y
and z. The letters a, b and c denote integer constants in the range (−2M , 2M ), and
A, B and C denote bit-strings of length M for the binary representations of their
absolute values |a|, |b| and |c|. For an integer d in [0, 2M), we use the notation
d = dM to denote the integer 2M − 1− d. Note that the M -bit representation of
d is the bit-wise complement of the M -bit representation of d.

Representing max-atoms. An atom is an expression of the form x ≤ y + a. We
define its Σ2,c-representation R(x, y, a) according to cases a ≥ 0 and a < 0.

Since x+x = 2M−1, an atom x ≤ y+a with a ≥ 0 is equivalent to 2M ≤ x+y+
a+1, or adding 3·2M to both sides, to 2M+2 ≤ x+y+a+3·2M +1. As a Boolean
formula, we write this as R(x, y, a) ≡ CARRY(00X, 00Y, 00A, 110M−11). Note
how we padded the strings so that each has length M + 2. This padding is
necessary to represent arithmetic with negative numbers. Similarly for atoms
with a < 0 we define R(x, y, a) ≡ CARRY(00X, 00Y, 00A, 10M−110).

For technical reasons in the proofs we need to view expressions of the form
x ≤ y+a+b as different from x ≤ y+c where c = a+b. We represent these as well
distinguishing by cases. For example, if a < 0 and b < 0, the Σ2,c-representation
is R(x, y, a, b) ≡ CARRY(00X, 00Y, 00A, 00B, 010M−211).

Let I be the max-atom x ≤ max{x1 + a1, . . . , xr + ar}, where all constants
are in the range (−2M , 2M ). We represent I by the formula

(∃i : 1 ≤ i ≤ r)(R(x, xi, ai)).

Note that this is again a Σ2,44-formula. We write FM (I) for this formula and we
extend it to sets of max-atoms I in the obvious way.

Simulating the chaining inference rules. Just as we represent max-atoms by
Σ2,c-formulas, we can represent the chaining rules by assertions and state:

Theorem 1. The assertions representing the chaining, simplification and con-
traction inference rules have polynomial-size Σ2,c-Frege proofs.

Proof (sketch). We use the next lemma which is proved using Lemma 2.
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Lemma 3. The following assertions have polynomial-size Σ2,c-Frege proofs:

1. R(x, z, a) and R(z, y, b) yield R(x, y, a, b),
2. R(x, y, a, b) yields R(x, y, c), if c = a + b,
3. R(x, y, a) yields R(x, y, b), if a ≤ b.

Using this we sketch the proof of the chaining rule. If for every atom A in
x ≤ max(R, y + a) and every atom B in y ≤ max(S) we can prove A,B "
x ≤ max(R,S + a), the rest will follow from standard manipulation. The only
interesting case is when A is x ≤ y + a. Let B be y ≤ zj + bj. Part 1 of the
lemma gives x ≤ zj + bj + a, part 2 gives x ≤ zj + (bj + a), and weakening gives
the conclusion. The proof of the simplification rule is similar using case analysis,
part 3, and also Lemma 2.4. For the contraction rule use part 3 again.

6 Main Result and Consequences

Converting to 3-CNF. For a Boolean formula F , let T = T3(F ) denote the
standard translation of F into an equi-satisfiable 3-CNF-formula. If s(F ) = s,
then the number of additional variables in T is at most 2s, and the number of
clauses in T is at most 4s. Also, if F is a Σd,k-formula, then the assertion T " F
has a polynomial-size Σd,k-Frege proof.

Effectively simulating bottom fan-in. Next we discuss the relationship between
Σd,k-Frege and Σd-Frege. The trick was used in [2] for d = 1 and was called
effective simulation in [22].

In general, it is not true that Σd-Frege polynomially simulates Σd,k-Frege. For
example, it is known that Σ1-Frege does not polynomially simulate Σ1,2-Frege
[3]. However, it effectively simulates it. The idea is that if C is a set of clauses
on the variables x1, . . . , xn, we can add additional variables zT and zC for every
possible term T and clause C of at most k literals on the variables x1, . . . , xn,
and axioms that fix the truth value of the new variables accordingly:

(1) zC1∨C2 ↔ zC1 ∨ zC2 (3) zxi ↔ xi

(2) zT1∧T2 ↔ zT1 ∧ zT2 (4) zxi ↔ xi

Let Ek(C) be the extension of C with these axioms converted to clauses. Note
that if C is satisfiable, then Ek(C) stays satisfiable: set zC and zT to the truth-
value of C and T under the truth-assignment satisfying C. On the other hand,
if C is unsatisfiable, the size of the smallest refutation of C in Σd,k-Frege is
polynomially related to the size of the smallest refutation of Ek(C) in Σd-Frege.

Main result. In the statement of the theorem, the unspecified universal constant
in Ec is the one from Theorem 1. The proof is a direct consequence of Lemma 1,
Theorem 1, and the tricks above.

Theorem 2. Let G be a mean-payoff game with m edges and weights in [−W,W ].
Let M be an integer such that 2M > Wm. Let C = Ec(T3(FM (I(G)))). Then:



112 A. Atserias and E. Maneva

1. if νG ≥ 0, then C is satisfiable,
2. if νG < 0, then C has a polynomial-size Σ2-Frege refutation.

It is perhaps worth noting that the refutation in this theorem is actually a
Res(B)-refutation, where B = M + 2 and M = $log2(mW )%+ 1. The reason is
that each max-atom is a disjunction of CARRY-formulas with parameter B, and
each CARRY-formula with parameter B is a disjunction of conjunctions of fan-
in B, with constant fan-in disjunctions at the bottom that end-up wiped away
by the Ec-trick. Since the size of C is polynomial in m log2(W ), this is slightly
better than a plain polynomial-size Σ2-refutation as stated in the theorem.

Consequences for automatizability and interpolation. One direct consequence
of Theorem 2 is that if Σ2-Frege were weakly automatizable, there would be
a polynomial-time algorithm for solving mean-payoff games. Indeed, the state-
ment itself of Theorem 2 is a polynomial-time reduction from MPG to the weak
automatizability problem for Σ2-Frege.

On the other hand, there is a tight connection between weak automatizabil-
ity, interpolation, and the provability of the reflection principle (see [25]). We
discuss this briefly. Let SATn,m(x, y) be a CNF-formula saying that y is an
assignment satisfying the CNF-formula encoded by x. Here n and m are the
number of variables and the number of clauses of the formula encoded by x.
Let REFn,m,r,d(x, z) be a CNF-formula saying that z is the encoding of a Σd-
refutation of the CNF-formula encoded by x. Here r is the size of the proof
encoded by z. Formalizing this requires some standard encoding of formulas
and proofs. Obviously, the formula SATn,m(x, y) ∧REFn,m,r,d(x, z) is unsatisfi-
able. This is called the reflection principle for Σd-Frege, which happens to have
polynomial-size refutations in Σd,2-Frege. This was observed in [2] for d = 1 and
the proof can be extended to bigger d in a natural way.

It follows that if Σ2,2-Frege enjoyed feasible interpolation, there would be an
algorithm for solving mean-payoff games in polynomial time: given a game G,
run the interpolation algorithm fed with a refutation of the reflection principle
formula SAT ∧ REF and x set to the encoding of C from Theorem 2. Of course
we let n and m be the number of variables and clauses of C, and r and d to be
the size of the Σ2-Frege proof of C and 2. By Theorem 2 exactly one of SAT(C, y)
or REF(C, z) is satisfiable, which means that the interpolation algorithm returns
the other. This tells us whether νG ≥ 0 or νG < 0.

Corollary 1. There is a polynomial-time reduction from MPG to the weak au-
tomatizability of Σ2-Frege, and to the interpolation problem of Σ2,2-Frege.

Acknowledgments. We thank Manuel Bodirsky for bringing [20] to our attention.
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Abstract. In a classical online network design problem, traffic requirements are
gradually revealed to an algorithm. Each time a new request arrives, the algorithm
has to satisfy it by augmenting the network under construction in a proper way
(with no possibility of recovery). In this paper we study a natural generalization
of the problems above, where a fraction of the requests (the outliers) can be dis-
regarded. Now, each time a request arrives, the algorithm first decides whether to
satisfy it or not, and only in the first case it acts accordingly; in the end at least k
out of t requests must be selected. We cast three classical network design prob-
lems into this framework, the Online Steiner Tree with Outliers, the Online TSP
with Outliers, and the Online Facility Location with Outliers.

We focus on the known distribution model, where terminals are independently
sampled from a given distribution. For all the above problems, we present bicrite-
ria online algorithms that, for any constant ε > 0, select at least (1−ε)k terminals
with high probability and pay in expectation O(log2 n) times more than the ex-
pected cost of the optimal offline solution (selecting k terminals). These upper
bounds are complemented by inapproximability results.

1 Introduction

In a classical online network design problem, traffic requirements are revealed gradually
to an algorithm. Each time a new request arrives, the algorithm has to satisfy it by
augmenting the network under construction in a proper way. An online algorithm is
α-competitive (or α-approximate) if the ratio between the solution computed by the
algorithm and the optimal (offline) solution is at most α.

For example, in the Online Steiner Tree problem (OST), we are given an n-node
graph G = (V,E), with edge weights c : E → R+, and a root node r. Then t terminal
nodes (where t is known to the algorithm) arrive one at a time. Each time a new ter-
minal arrives, we need to connect it to the Steiner tree S under construction (initially
containing the root only), by adding a proper set of edges to the tree. The goal is min-
imizing the final cost of the tree. The input for the Online TSP problem (OTSP) is the
same as in OST. The difference is that here the solution is a permutation φ of the input

S. Abramsky et al. (Eds.): ICALP 2010, Part I, LNCS 6198, pp. 114–126, 2010.
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terminals. (Initially, φ = (r)). Each time a new terminal arrives, we can insert it into
φ at an arbitrary point. The goal is to minimize the length of shortest cycle visiting the
nodes in φ according to their order of appearance in φ. In the Online Facility Location
problem (OFL), we are also given a set of facility nodes F , with associated opening
costs o : V → R+. Now, each time a new terminal v arrives, it must be connected
to some facility fv: fv is opened if not already the case. The goal is to minimize the
facility location cost given as

∑
e∈F f(e) +

∑
v∈K distG(v, ev), where F = ∪v∈Kfv

is the set of open facilities1.
When the input sequence is chosen by an adversary, O(log n)-approximation algo-

rithms are known for the problems above, and this approximation is tight [16,26,28].
Recently, the authors of [13] studied the case where the sequence of terminals is sam-
pled from a given distribution. For these relevant special cases, they provided online
algorithms with O(1) expected competitive ratio2. This shows a logarithmic approx-
imability gap between worst-case and stochastic variants of online problems.

Stochastic Online Network Design with Outliers. In this paper we study a natural
generalization of online network design problems, where a fraction of the requests (the
outliers) can be disregarded. Now, each time a request arrives, the algorithm first de-
cides whether to satisfy it or not, and only in the first case updates the network under
construction accordingly. Problems with outliers have a natural motivation in the ap-
plications. For example, mobile phone companies often declare the percentage of the
population which is covered by their network of antennas. In order to declare a large
percentage (and attract new clients), they sometimes place antennas also in areas where
costs exceed profits. However, covering everybody would be too expensive. One option
is choosing some percentage of the population (say, 90%), and covering it in the cheap-
est possible way. This type of problems is well-studied in the offline setting, but it was
never addressed before in the online case (to the best of our knowledge).

We restrict our attention to the outlier version of the three classical online network
design problems mentioned before: Online Steiner Tree with Outliers (outOST), Online
TSP with Outliers (outOTSP), and Online Facility Location with Outliers (outOFL).
For each such problem, we assume that only 0 < k < t terminals need to be connected
in the final solution.

It is easy to show that, for k ≤ t/2, the problems above are not approximable in
the adversarial model. The idea is providing k terminals with connection cost M �
k. If the online algorithm selects at least an element among them, the next elements
have connection cost 0. Otherwise, the next elements have connection cost M2 and the
online algorithm is forced to pay a cost of kM2. Essentially the same example works
also if we allow the online algorithm to select only (1 − ε)k ≥ 1 elements. For this
reason and following [13], from now on we focus our attention on the stochastic setting,

1 For a weighted graph G, distG(u, v) denotes the distance between nodes u and v in the graph.
For the sake of simplicity, we next associate an infinite opening cost to nodes which are not
facilities, and let F = V .

2 Throughout this paper the expected competitive ratio, also called ratio of expectations (RoE),
is the ratio between the expected cost of the solution computed by the online algorithm con-
sidered and the expected cost of the optimal offline solution. Sometimes in the literature the
expectation of ratios EoR is considered instead (which is typically more involving).
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where terminals are sampled from a given probability distribution3. As we will see,
these stochastic online problems have strong relations with classical secretary problems.

There are two models for the stochastic setting: the known-distribution and the
unknown-distribution models. In the former the algorithm knows the distribution from
which terminals are sampled. In the latter the algorithm does not have any information
about the distribution apart from the incoming online requests.

Our Results and Techniques. First, we give inaproximability results and lower bounds.
For the known-distribution model we show that the considered problems are inapprox-
imable if we insist on selecting exactly k elements, for k = 1 and for k = t − 1. To
prove these results we need to carefully select input distributions that force the online
algorithm to make mistakes: if it decides to select a terminal then with sufficiently high
probability there will be cheap subsequent requests, inducing a large competitive ratio,
while if it has not selected enough terminals it will be forced to select the final terminals,
which with significant probability will be costly.

Furthermore, we prove an Ω(log n/ log logn) lower bound on the expected compet-
itive ratio even when the online algorithm is allowed to select αk terminals only, for a
constant α ∈ (0, 1). To prove it we use results from urn models.

Finally, for the unknown-distribution model we show a lower bound of Ω(logn) for
k = Θ(t) if the online algorithm is required to select k−O(kα) requests for 0 ≤ α < 1.

Given the inapproximability results for the case that the online algorithm has to select
exactly k terminals, we study bicriteria algorithms, which select, for any given ε > 0,
at least (1 − ε)k terminals with high probability4, and pay in expectation O(log2 n)
times more than the expected cost of the optimal offline solution (selecting at least k
terminals).

To obtain these results, we are first able to show that very simple algorithms provide
a O(k) expected competitive ratio. Henceforth, the main body of the paper is focused on
the case k = Ω(logn). Our algorithms crucially exploit the probabilistic embeddings of
graph metrics into tree metrics developed by Bartal et al. [4,9]. A Bartal tree of the input
graph is used to partition the nodes into a collection of groups of size Θ(n

t log n). Note
that Θ(log n) terminals are sampled in each group with high probability. Next, in the
case of the outOST problem, we compute an anticipatory solution formed by a Steiner
tree on k out of t terminals sampled beforehand from the known distribution. The an-
ticipatory solution is deployed by the algorithm. When the actual terminals arrive, the
algorithm selects all terminals that belong to a group (which we mark) that contains at
least one terminal selected in the anticipatory solution, and connects the selected termi-
nals to the anticipatory solution itself. Roughly speaking, there are Θ(k/ logn) marked
groups and each such group collects Θ(log n) actual terminals: altogether, the number
of connected terminals is Θ(k). A careful charging argument shows that the connection
cost to the anticipatory solution is in expectation O(log n) times the cost of the embed-
ding of the anticipatory solution in the Bartal tree. In expectation, this tree embedding
costs at most O(log n) times more than the anticipatory solution itself, which in turn

3 For the sake of shortness, we will drop the term stochastic from problem names.
4 Throughout this paper we use the term with high probability (abbreviated whp.) to refer to

probability that approaches 1 as k, the number of selected terminals, grows. In particular, the
probability of failure is polynomially small for k = Ω(log n) in the cases considered.
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costs O(1) times more than the optimal solution. Altogether, this gives a O(log2 n)
competitive ratio.

The results on outOST immediately generalize to the case of outOTSP, modulo con-
stant factors: for this reason we will describe the results for outOST only. The basic idea
is to construct a Steiner tree using an online algorithm for outOST, and to duplicate its
edges. This defines a multi-graph containing an Euler tour spanning Θ(k) terminals. By
shortcutting the Euler tour we obtain the desired permutation φ of selected terminals. In
each step the Euler tour can be updated preserving the the relative order of the terminals
in the permutation. The cost of the optimal Steiner tree is a lower bound on the cost of
the optimal TSP tour. Edge duplication introduces only a factor 2 in the approximation.
Summarizing the discussion above.

Lemma 1. Given an online α-approximation algorithm for outOST, there is an online
2α-approximation algorithm for outOTSP.

The situation for outOFL is more involved, as in addition to the connection cost we
need to take care of the facilities’ cost. In this case, as well, we deploy an anticipatory
solution on k out of t terminals sampled beforehand from the known distribution. In
order to be able to apply some charging arguments we create a new virtual metric space,
which can also capture the cost of opening the facilities: we connect every vertex of the
graph to a virtual root in the tree metric with an edge of cost equal to the corresponding
facility opening cost. An additional complication is to decide when to open facilities
that are not opened in the anticipatory solution. We open a new facility if a selected
vertex is connected to the closest facility in the anticipatory solution through a path that
traverses the root in the tree embedding.

To summarize our results:

– We give inapproximability results and lower bounds for the known-distribution
model.

– We give O(log2 n) approximation algorithms for the outOST (Section 3), the out-
OTSP, and the outOFL (Section 4) problems for the known distribution model. In
the case that k = Θ(t) we give O(log n log logn) approximations (details will
appear in the full version of the paper).

– We extend the upper and lower bounds to the unknown-distribution model (details
will appear in the full version).

The problems that we consider in this paper include as a special case minimization ver-
sions of the secretary problem. In the classical secretary problem a set of t elements (the
secretaries), each one with an associated non-negative numerical value, are presented
one by one to the algorithm (the employer). The algorithm has to decide when to stop
and select the current element with the goal of maximizing the value of the selected
element. A well-known extension of the problem above is the multiple-choice secretary
problem, where the algorithm has to select k < t elements of the sequence with the
goal of maximizing the sum of the k selected values (or, alternatively, the ranks of the
selected elements). While this problem dates back to the fifties, it has recently attracted
a growing interest given its connections to selecting winners in online auctions [2,15].

In the classical secretary problem, it is easy to achieve a constant approximation to
the optimal expected value; for example, waiting until seeing half the elements and
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then selecting the first element that has value higher than the maximum of the first half
achieves in expectation a value that is at least 1/4 of the optimal offline value. Here
we show that the minimization version is strictly harder, the reason being that a wrong
choice might be very costly. The hardness arises from the fact that at least k secretaries
must be hired: Intuitively, if k − x secretaries have been hired after t − x secretaries
have been sampled, the last x secretaries must be hired irrespectively of their values.
So, in Theorem 2 we show that even in the simple case that k = 1 the cost of the online
algorithm can be exponentially larger than the optimal offline cost.

For the same reason (that a wrong choice can be very costly) the online network
design problems with outliers are in general strictly harder than the versions without
outliers. For example, in [13] the authors show that for the known distribution model
the expected ratio of the online Steiner tree problem (without outliers, corresponding
to the case that k = t) is constant. Instead, in Theorem 1 we show that even if we let
k = t− 1 the approximation ratio can be arbitrarily large.

Throughout this paper we use OPT to denote the optimal offline solution, and opt to
denote its expected cost. For a set of elements A and a cost function c defined on such
elements, c(A) :=

∑
a∈A c(a). For a graph A, we use c(A) as a shortcut for c(E(A)).

Related work. Competitive analysis of online algorithms has a long history
(e.g., [5,10,29] and the many references therein). Steiner tree, TSP, and facility loca-
tion can be approximated up to a worst-case Θ(log n) competitive factor in the online
case [16,26,28]. There have been many attempts to relax the notion of competitive anal-
ysis for classical list-update, paging and k-server problems (see [5,10,17,18,24,27,30]).

In many of the online problems studied in the literature, and in particular the versions
of the online problems we study here without outliers (k = t), the case of known
distribution was easy. As we mentioned, in this case outOST, outOTSP and outOFL
reduce to the online stochastic version of Steiner tree, TSP, and facility location, for
which the ratio between the the expected online cost and the expected optimal cost
are constant for the known distribution model [13]. In the random permutation model,
Meyerson [26] shows for facility location an algorithm with O(1) ratio between the
expected online cost and the expected optimal cost. In the Steiner tree problem the
Ω(log n) lower bound is still retained in the random permutation model [13].

The offline versions of the problems considered here are known as the Steiner Tree
problem with Outliers (outST), the TSP problem with Outliers (outTSP) and the Facility
Location problem with Outliers (outFL). For these problems, worst-case constant ap-
proximation algorithms are known [7,12]5. We will exploit such (offline) approximation
algorithms as part of our online algorithms.

As we mentioned, the problems that we study in this paper have strong relations
with the secretary problem. Secretary problems have been studied under several models.
There is a rich body of research on secretary problems and the determination of optimal
stopping rules in the random permutation model since the early sixties [8,11,14,25]. In
this classical model a set of t arbitrary numerical values is presented to the algorithm
in random order. A strategy is known that selects the best secretary with probability

5 The k-MST problem studied in [12] and the Steiner tree problem with outliers are equivalent
approximation-wise, modulo constant factors. The same holds for TSP with outliers.
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1/e [25]. For the multiple-choice secretary problem it has recently proposed [21] a
strategy that achieves a 1 − O(

√
1/k) fraction of the sum of the k largest elements in

the sequence, i.e., a competitive ratio [5] that approaches 1 for k →∞.
In the known-distribution model, the numerical values are identical independent

samples from a known distribution (e.g., [14,20]). These problems are also known as
house-selling problems (e.g., [19]), and generalizations have appeared under the name
of dynamic and stochastic knapsack problems [1,22]. In this model an online algorithm
that maximizes the expected revenue is obtained through dynamic programming even
for the multiple-choice version of the problem [14].

Secretary problems with an underlying graph structure have been recently studied
in the context of online matching problems and their generalizations [3,23]. One can
define a minimization version of all the problems above, as we do here. Minimization
secretary problems are much less studied in the literature, and most studies cover some
basic cases. In particular, researchers have studied the problems where the goal is to
minimize the expected rank of the selected secretary (as opposed to the actual expected
cost) or to minimize the expected cost if the input distribution is uniform in [0, 1] (look,
for example, the work of Bruce and Ferguson [6] and the references therein). However,
to our knowledge, there has not been any comparison of the online and offline solutions
for arbitrary input distributions. In particular, nothing to our knowledge was known on
the gap between their costs.

2 Lower Bounds

Let us start by proving inapproximability results for outOST in the known distribution
model, when we insist on selecting exactly k terminals. Similar lower bounds hold for
outOTSP and outOFL. The proof of the following theorem will appear in the full version
of the paper.

Theorem 1. In the known distribution model, the expected competitive ratio for out-
OST can be arbitrarily large for k = t− 1.

The next theorem considers the somehow opposite case that k is very small (proof
omitted). Note that the construction in the proof shows that the minimization version of
the secretary problem has an exponential competitive ratio.

Theorem 2. In the known distribution model, the expected competitive ratio for out-
OST can be exponentially large in the number n of nodes for t = 3n/4 and k = 1.

Next we present an O( log n
log log n ) lower bound for outOST, outOTSP and outOFL, which

applies also to the case that the online algorithm is allowed to connect only αk termi-
nals, for a sufficiently large constant α ∈ (0, 1).

Theorem 3. Assume that an online algorithm for outOST (resp., outOTSP or outOFL)
is allowed to connect αk terminals, for a sufficiently large constant α ∈ (0, 1). Then

the expected competitive ratio is Ω
(

log n
log log n

)
.

Proof. We give the proof for outOST. The proof for the other two problems is analo-
gous. Consider the star graph with the root r as center, and uniform edge weights 1.
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(Preprocessing Phase)

Step 1. Compute a Bartal tree B for the input graph. Partition the leaves of B from left to right in
groups V1, . . . , Vn/σ of size σ.

Step 2. Sample t nodes T̃ from the input probability distribution. Compute a ρoutST -approximate
solution S̃ to the (offline) outST problem induced by T̃ . Let K̃ be the resulting set of k terminals,
and K be the nodes of groups with at least one node in K̃ , excluding the leftmost and rightmost
such groups. Set S = S̃.

(Online Phase)

Step 3. For each input node v∈T , if v∈K, add v to K and augment S with a shortest path to v.

Fig. 1. Algorithm outost-large for outOST

Suppose that each leaf is sampled with uniform probability 1/(n − 1). Let t = n − 1
and k = ln n

c ln ln n , for a sufficiently large constant c. When a leaf is sampled at least k
times, the optimum solution cost is 1, and in any case it is not larger than n − 1. By
standard balls-and-bins results, the probability that no leaf is sampled at least k times is
polynomially small in n. Hence opt = O(1).

Take now any online algorithm. Suppose that at some point this algorithm connects
a terminal v for the first time. After this choice, the same terminal v will be sampled
O(1) times in expectation. Hence, the expected total number of connected terminals is
proportional to the number of distinct leaves which are connected. This implies that the
online algorithm is forced to connect Ω(k) distinct nodes in expectation, with a cost of

Ω(k). Therefore, the competitive ratio is Ω(k) = Ω
(

log n
log log n

)
. ��

We observe that the proof above applies to the case of small values of k. Extending the
proof to large values of k (or finding a better algorithm in that case) is an interesting
open problem. The next theorem (proof omitted) moves along these lines.

Theorem 4. In the unknown distribution model, the expected competitive ratio for out-
OST is Ω(logn) if the online algorithm is required to connect (1 − ε)k terminals for
ε < log n√

n
, t = n and k = t

2 .

3 Online Steiner Tree with Outliers

In this section we consider the Online Steiner Tree problem with Outliers (outOST).
We consider the case that the input distribution is the uniform distribution, while the
generalization for any distribution will appear in the full version of the paper.

First, let us assume k ≥ c logn for a large enough constant c > 0. We next describe
an algorithm outost-large with O(log2 n) competitive ratio, which connects at
least (1− ε)k terminals with high probability, for any given constant parameter ε > 0.

A crucial step is constructing a Bartal tree B over the input graph G using the algo-
rithm in [9]. We recall that B = (W,F ) is a rooted tree, with edge costs cB : F → R+,
whose leaves are the nodes V , and such that the following two properties hold:
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1. Edges at the same level in the tree have the same cost and given edges e and f at
level i and i + 1, respectively (the root is at level zero), cB(e) = 2cB(f).

2. For any two leaves u, v ∈ B, 1
O(log n)E[distB(u, v)] ≤ distG(u, v) ≤ distB(u, v).

Algorithm outost-large is described in Figure 1. The algorithm starts with two
preprocessing steps. Initially it computes a Bartal tree B for G, and partitions its leaves
from left to right into groups V1, V2, . . . , Vn/σ of size σ = αn

t logn each, for a constant
α to be fixed later6. Then the algorithm samples t nodes T̃ , and constructs a Steiner tree
S̃ (anticipatory solution) on k such nodes K̃, using a ρoutST = O(1) approximation
algorithm for (offline) outST [12]7. We call azure and blue the nodes in T̃ and K̃, re-
spectively. We also call blue the groups containing at least one blue node, and boundary
the leftmost and rightmost blue groups. The Steiner tree S under construction is initially
set to S̃ .

In the online part of the algorithm, each time a new terminal v ∈ T arrives, v is
added to the set K of selected terminals if and only if v belongs to a non-boundary blue
group. In that case, the algorithm also adds to S a shortest path from v to S. We call
orange and red the nodes in T and K , respectively. It turns out that the connection of
orange nodes in blue groups can be conveniently charged to the cost of the anticipatory
solution (boundary blue groups are excluded for technical reasons).

Let us initially bound the number of red nodes, that is, the number of terminals
connected by the algorithm.

Lemma 2. For any ε > 0 and σ = αn
t logn, there is a choice of α > 0 such that the

number of red nodes is at least (1 − ε)k with high probability.

Proof. The number Ni of azure (resp., orange) nodes in a given group Vi, counting
repetitions, satisfies E[Ni] = t

n
n
t α logn = α logn. Let δ ∈ (0, 1) be a sufficiently

small constant. By Chernoff’s bounds, we know that there is a value of α > 0 such
that the probability of the event {Ni /∈ [(1− δ)α logn, (1 + δ)α logn]} is smaller than
any given inverse polynomial in n. Hence, from the union bound, with high probability
all the groups contain between (1 − δ)α logn and (1 + δ)α logn azure (resp., orange)
nodes. Let us assume from now on that this event happens. Recall that by assumption
k ≥ c logn for a sufficiently large constant c > 0.

Each blue group contains at most (1+δ)α logn azure (and hence blue) nodes. There-
fore, there are at least k

(1+δ)α log n blue groups, and so the number of orange nodes in
non-boundary blue groups (i.e. the number of red nodes) is at least

(1 − δ)α logn

(
k

(1 + δ)α logn
− 2

)
≥ 1− δ

1 + δ
k − 2

(1− δ)α
c

k.

The latter quantity is at least (1− ε)k for proper constants c and δ. ��

We continue by proving the following basic tool lemma that will be reused for outOFL
later on. Refer to Figure 2. Let rv (resp., 	v) be the first blue node to the right (resp.,

6 To avoid inessential technicalities, we will always assume that n is a multiple of σ.
7 Since the cost of an MST spanning a set of vertices W is at most twice the corresponding cost

of the best Steiner tree connecting those vertices, we can obtain a constant approximation for
the outST problem if we have a constant approximation for the k-MST problem.
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blue

red

av

a′
v

ev

e′v

v�v rv

Fig. 2. Charging scheme in the analysis of outost-large. Bold edges indicate the subtree B̃.
Groups are enclosed into ellipses. Dashed arcs reflect the charging of red nodes connections to
the edges of B̃.

left) of node v ∈ K (with respect to the given ordering of leaves from left to right).
Note that rv and 	v are well defined, since the boundary blue groups are not used to
define K .

Lemma 3. Let B̃ be any subtree in B spanning nodes in K̃ . Then

E
[∑

v∈K distB(v, rv)
]
≤ 8σ t

n E[cB(B̃)].

Proof. The idea of the proof it to charge the distances distB(v, rv) to a proper subset of
edges Ẽ ⊆ E(B̃), so that each such edge is charged O(σ t

n ) times in expectation. Let
av (resp., a′v) be the lowest common ancestor of 	v (resp., v) and rv . Let moreover ev

(resp., e′v) be the first edge along the path from av (resp., a′v) to rv . (See also Figure 2).
Since v lies between 	v and rv , the level of a′v is not higher than the level of av . We can
conclude by Property 1 of Bartal trees that cB(e′v) ≤ cB(ev). Property 1 also implies
that distB(v, rv) = distB(v, a′v) + distB(a′v, rv) ≤ 4cB(e′v). Altogether, we obtain

distB(v, rv) ≤ 4cB(ev). (1)

Let Ẽ := ∪v∈Kev ⊆ E(B̃). Consider any edge e = ew ∈ Ẽ. Any red node u to the left
of 	w or to the right of rw satisfies eu �= ew. We conclude that the set Ṽe := {v ∈ K :
ev = e} is a subset of the red nodes contained in the groups of rw and 	w. Then

E

[∑
v∈K

cB(ev)

]
= E

⎡⎣∑
e∈Ẽ

|Ṽe| · cB(e)

⎤⎦≤ 2σ
t

n
E

⎡⎣∑
e∈Ẽ

cB(e)

⎤⎦≤ 2σ
t

n
E
[
cB(B̃)

]
. (2)

The lemma follows by summing up over v the expectation of (1) and combining it
with (2). ��
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We are now ready to bound the competitive ratio of the algorithm.

Lemma 4. The expected cost of the solution computed by algorithm outost-large
is O(σ t

n logn) times the expected cost of the optimum offline solution.

Proof. The anticipatory problem instance is sampled from the same distribution as the
real problem instance, so E[c(S̃)] ≤ ρoutST · opt = O(opt).

Let us bound the cost Con paid by the algorithm during the online phase. Consider
the minimal subtree B̃ of B spanning K̃ ∪ {r}. Of course, B̃ is an optimal Steiner tree
over K̃ ∪ {r} with respect to graph B. It follows from Property 2 and the fact that the
cost of a minimum spanning tree is twice the cost of a Steiner tree that connects the
same vertices that

E[cB(B̃)] ≤ E[2O(logn)c(S̃)] = O(log n) · opt. (3)

We have

Con ≤
∑

v∈K distG(v, K̃)
Prop. 2
≤

∑
v∈K distB(v, K̃) ≤

∑
v∈K distB(v, rv). (4)

B̃ satisfies the conditions of Lemma 3, hence by putting everything together we obtain

E[Con]
(4)
≤ E

[∑
v∈K

distB(v, rv)

]
Lem. 3
≤ 8σ

t

n
E[cB(B̃)] (3)= O

(
σ
t

n
logn

)
· opt. ��

Note that up to now we have assumed that k = Ω(logn). The following simple al-
gorithm, outost-small, has competitive ratio O(k) (proof omitted), so it can be
applied in the case that k = O(log n).

Let W be the set of the (1− δ)n k
t nodes which are closest to the root (breaking ties

arbitrarily). Here δ ∈ (0, 1) is a proper constant. Whenever a new node v ∈ T arrives,
outost-small adds it to the set K of selected nodes iff v ∈ W . In that case, the
algorithm connects v to the current tree S via a shortest path.

Let outost be the (polynomial-time) algorithm for outOST which either runs
outost-small for k < c logn, or outost-large with σ = αn

t logn otherwise.
T he following theorem easily follows from Lemmas 2 and 4.

Theorem 5. For any given ε > 0 and for σ = αn
t logn, Algorithm outost connects

at least (1 − ε)k terminals with high probability. The expected cost of the solution is
O
(
σ t

n logn
)

= O(log2 n) times the expected cost of the optimum offline solution.

4 Online Facility Location with Outliers

In this section we consider the Online Facility Location problem with Outliers (out-
OFL). Like in the case of outOST, let us assume that k ≥ c logn for a sufficiently large
constant c > 0, while again a simple algorithm can handle the case that k ≤ c logn.

Our algorithm outofl-large is described in Figure 3. Let Gr = (V ∪ r, E′) be
a graph obtained from G by adding a new vertex r and connecting it to all other ver-
tices v with edges of cost o(v). We denote by cGr the edge weights of Gr. Note that
every facility location solution F = (F,K) in G can be mapped to a Steiner tree TF in
Gr spanning K∪{r}with the same cost: it is sufficient to augment the connection paths



124 A. Anagnostopoulos et al.

(Preprocessing Phase)

Step 1. Construct the graph Gr and compute a Bartal tree B for Gr . Partition the leaves of B
from left to right in groups V1, . . . , Vn/σ of size σ.

Step 2. Sample t nodes T̃ from the input probability distribution. Compute a ρoutF L-approximate
solution F̃ = (F̃ , K̃) to the (offline) facility location problem with outliers induced by T̃ , where
F̃ and K̃ are the open facilities and the selected set of k terminals, respectively. Let K be the
nodes of groups with at least one node in K̃, excluding the leftmost and rightmost such groups.
Open the facilities in F̃ .

(Online Phase)

Step 3. For each input node v ∈ T , if v ∈ K, add v to K. Let rv be the first node from K̃ to the
right of v. Consider the shortest path π from v to rv in Gr:

• Step 3.1. If π goes through r, then let (fv, u) be the first edge on π such that u = r. Open
facility fv , if not already open, and connect v to fv .

• Step 3.2. Otherwise connect v to the facility fv to which node rv is connected in F̃ .

Fig. 3. Algorithm outofl-large for outOFL

(a)

f

o(f)

r

rv v

(b)

fv

rv v

(c)

fv

Fig. 4. An example of graph Gr is given in (a). For clarity of illustration, we distinguished
between terminals (circles) and facilities (squares). The oval node is the root. Terminals K̃ and
the open facilities in the corresponding anticipatory solution are drawn in bold, as well as the
associated Steiner tree TF . Examples of Steps 3.1 and 3.2 are given in (b) and (c), respectively
(bold edges indicate one possible shortest path from v to rv).

in F with the edges between open facilities and r. Unfortunately, solving a outOST
problem on Gr is not sufficient to solve the original outOFL problem. This is because
not every tree in Gr corresponds to a valid facility location solution. Nevertheless, the
graph Gr is very useful in our case as it allows to introduce a convenient metric into the
facility location problem. (See Figure 4 for an example of graph Gr, and a correspond-
ing implementation of Steps 3.1 and 3.2).

First of all note that the set of nodes that are selected by the algorithm are defined in
the same way as in Algorithm outost-large, that is, by a constant approximation
to the (offline) outFL problem on a set of sampled terminals T̃ , using, for example, the
algorithm of Charikar et al. [7]. Hence, Lemma 2 holds here as well. Therefore, we only
need to show that the cost of the online solution is small. The proof of the following
theorem will appear in the full version of the paper.
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Theorem 6. For any given ε > 0, Algorithm outofl connects at least (1 − ε)k
terminals with high probability. The expected cost of the solution is O(σ t

n logn) =
O(log2 n) times the expected cost of the optimum offline solution.
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Abstract. Non-malleable encryption schemes make it infeasible for ad-
versaries provided with an encryption of some plaintext m to compute
another ciphertext encrypting a plaintext m′ that is related to m. At
ICALP’05, Fischlin suggested a stronger notion, called complete non-
malleability, where non-malleability should be preserved against adver-
saries attempting to compute encryptions of related plaintexts under
newly generated public keys. This new notion applies to systems where
on-line certificate authorities are available and users can issue keys on-
the-fly. It was originally motivated by the design of non-malleable com-
mitments from public key encryption (i.e., extractable commitments), for
which the usual flavor of non-malleability does not suffice. Completely
non-malleable encryption schemes are known not to exist w.r.t. black-box
simulation in the standard model (although constructions are possible in
the random oracle model). One of the original motivations of Fischlin’s
work was to have non-malleable commitments without preconditions.

At PKC’08, Ventre and Visconti investigated complete non malleabil-
ity as a general notion suitable for protocol design, and departed from
only considering it as a tool for commitment schemes without precondi-
tions. Indeed, if one allows members of a community to generate public
keys “on the fly”, then considering the notion is justified: For example, if
a bidder in an auction scheme can, in the middle of the auction process,
register a public key which is malleable with respect to a scheme used in
an already submitted bid, he may produce a slightly higher bid without
even knowing the already submitted bid. Only when the latter is opened
he may be able to open its bid. In this more general context, Ventre
and Visconti showed that completely non malleable schemes do exist in
the standard model; in fact in the shared random string model as well
as in the interactive setting. Their non-interactive scheme is, however,
inefficient as it relies on the generic NIZK approach. They left the exis-
tence of efficient schemes in the common reference string model open. In
this work we describe the first efficient constructions that are completely
non-malleable in this standard model.
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1 Introduction

Introduced by Dolev, Dwork and Naor [13], the notion of non-malleable public
key encryption captures the intuition that, given a public key pk and an en-
cryption c of some message m sampled from a distribution M of her choice, a
man-in-the-middle adversary A is not able to come up with a relation R and a ci-
phertext c′ for which the underlying plaintext m′ is related to m via the relation
R. Further, this task should be beyond the reach of any polynomial-time adver-
sary having access to a decryption oracle even after having seen the challenge
ciphertext. This strongest notion is usually called adaptive chosen-ciphertext
non-malleability (NM-CCA2) as opposed to the non-adaptive one (NM-CCA1),
where decryption queries are only permitted before the challenge phase.

Designing non-malleable schemes in the NM-CCA2 sense has proved to be
hard. The initial construction of Dolev, Dwork and Naor [13] was mostly feasibil-
ity proof of concept. It was only in 1998 that a practical scheme was put forth by
Cramer and Shoup [11] whose construction was later shown to fit within a general
framework [12]. At the same time, the strongest notion of non-malleability (NM-
CCA2) was proved equivalent [1] to that of indistinguishability against chosen-
ciphertext attacks (IND-CCA2) [23]. The latter result was established using
a different definition of non-malleability (sometimes called “comparison-based”
definition as opposed to the “simulation-based” definition used in [13]) but the
two definitions were proved equivalent [4]. Subsequently, Sahai [25] showed how
to turn any semantically secure [17] encryption scheme into a NM-CCA2 (and
thus IND-CCA2) one using the Naor-Yung paradigm [24] and non-malleable
non-interactive zero-knowledge (NIZK) techniques. Later on, Canetti, Halevi
and Katz [9] highlighted a new paradigm to derive NM-CCA2 schemes from
weakly secure identity-based encryption [27,7].

More recently, Pass, shelat and Vaikuntanathan [21] put forth a new definition
of non-malleability that avoids concerns arising with earlier ones when the ad-
versary outputs invalid ciphertexts. In the setting where decryption queries are
not permitted (usually referred to as the NM-CPA scenario), they also showed
how to construct a NM-CPA encryption scheme from any semantically secure
one without making further assumptions (in these regards, Sahai’s construction
additionally required the existence of tradpoor permutations because of its use
of NIZK proofs). Yet, the construction of [21] is non-black-box in that it uses
designated verifier NIZK proofs which in turn depend on the circuit implement-
ing the underlying semantically secure cryptosystem. Finally, Choi et al. [10]
showed how to bypass the use of non-black-box techniques in the construction
of NM-CPA secure systems from semantically secure ones.
Complete Non-Malleability. In 2005, Fischlin defined [15] a stronger flavor
of non-malleability termed complete non-malleability. This notion strengthens
earlier definitions by additionally allowing the adversary to choose a new public
key (possibly as a function of the original one and without necessarily knowing
the matching private key). Her goal is now to produce an encryption (under the
new public key) of a plaintext that is related to the original one according to a
more general relation also taking public keys into account.
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The motivation behind this enhanced notion lies in that asymmetric encryp-
tion schemes are frequently used as building blocks within higher level protocols
where previous forms of non-malleability may not suffice (e.g., protocols that al-
low users to issue asymmetric keys on-the-fly). Also, complete non-malleability
was argued in [15] to be necessary if one desires to build non-malleable commit-
ments on top of public key encryption schemes.

Completely non-malleable public key cryptosystems unfortunately turn out
to be particularly hard to construct. It was shown in [15] that, although NM-
CCA2 in the usual sense, the Cramer-Shoup encryption scheme [11] (along with
several other well-known ones, even under the random oracle idealization, like
RSA-OAEP [3]) is not completely non-malleable even when the adversary is
disallowed to make decryption queries. Moreover, Fischlin’s work also ruled out
the existence of provably completely non-malleable non-interactive encryption
schemes w.r.t. simulation-based black-box security in the standard model. On
the other hand, such efficient constructions were described [15] in the random
oracle idealization [2]: for instance, RSA-OAEP can be made completely non-
malleable by simply including the public key in the inputs to the random oracles.
The latter result can actually be interpreted as yet another separation (on quite a
natural primitive) between the random oracle methodology and the “real world”
(the first such example being [8]). Fischlin’s schemes can be used to implement
non-malleable commitment schemes without preprocessing or a common random
string, but they suffer from being limited to the idealized setting.

Recently, Ventre and Visconti [26] revisited the problem of designing and
further understanding completely non-malleable encryption schemes as general
tools in protocols where public keys are generated during the protocol. They first
gave a game-based definition and showed how it implies Fischlin’s simulation-
based one in the chosen-plaintext setting (denoted NM-CPA∗ to distinguish it
from the usual notion dubbed NM-CPA). A similar implication was also estab-
lished in the CCA1 and CCA2 scenarios for a wide class of relations. While also
impossible to meet in the standard model for black-box adversaries, the game-
based definition turns out to be somehow more convenient to use. Assuming that
a shared random string (i.e., a set of parameters that remains out of the adver-
sary’s control) is available to all parties, [26] first showed how non-malleable
NIZK techniques allow constructing completely non-malleable CCA2 schemes
(or NM-CCA2∗ for short) in the standard model from any semantically secure
one. This was not in contradiction with Fischlin’s impossibility result that holds
in the plain model (without a reference string). As another workaround to the
impossibility result of [15], Ventre and Visconti also used non-black box tech-
niques to design an interactive completely non-malleable cryptosystem.

Although Fischlin’s complete non-malleability notion was initially motivated
by the design of non-malleable commitments in the plain model (i.e., with-
out setup assumptions), we believe this notion to remain of interest even in
the trusted parameters setting. It indeed guarantees a strong form of plaintext
extractability under adversarially-generated keys, which can come handy in sce-
narios – such as the computational model of Dolev and Yao [14] – where new
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public keys can be dynamically chosen by adversaries, or when adversaries that
at some point of time try to have a correlated key with a key generated by a
honest party. For example, in [18], Herzog et al. showed how a certain flavor of
plaintext-awareness [3] (the definition of which requires senders to go through
a public key registration step) allows enforcing the conditions of the Dolev-Yao
model, which places restrictions on what messages an adversary is able to form.
In the same spirit, complete non-malleability could serve as a first step toward
a notion related to plaintext extractability under dynamically generated keys,
which could provide a way to enforce Dolev-Yao-style conditions assuming cer-
tain attack scenarios and using a common reference string instead of requiring
ciphertext senders to hold and register a public key.

Our Contribution. Ventre and Visconti left open the problem of efficiently
implementing general purpose non-interactive NM-CCA2∗ schemes in the stan-
dard model using a reference string. Due to the use of NIZK techniques, their
first construction is more of a feasibility result than a practical solution.

Using their game-based definition, we tackle their challenge and describe the
first efficient systems in the common reference string model. The first one uses
the Canetti-Halevi-Katz [9] paradigm and the bilinear Diffie-Hellman assump-
tion. The second one builds on the lossy trapdoor function primitive coined by
Peikert and Waters [22]. The first proposal allows very compact ciphertexts. The
second scheme yields longer ciphertexts but gives evidence that, using a com-
mon reference string, complete non-malleability is efficiently achievable even un-
der elementary number-theoretic assumptions like Decision Diffie-Hellman, the
Composite Residuosity assumption or, alternatively, using worst-case lattice as-
sumptions. The schemes are obtained via simple yet, we believe, insightful mod-
ifications of existing NM-CCA2 schemes. Simplicity in our setting is a blessing
since it first ensures efficiency (which was Ventre and Visconti’s challenge) and
it also helps in clearly revealing the basic ingredients needed for NM scheme to
become completely-NM when transposed in the trusted common string setting.

2 Background and Definitions

Throughout the paper, when S is a set, x
$← S denotes the action of choosing

x uniformly at random in S. By a ∈ poly(λ), we mean that a is a polynomial
in λ while b ∈ negl(λ) says that b is a negligible function of λ (i.e., a function
that decreases faster than the inverse of any a ∈ poly(λ)). When A is a possibly
probabilistic algorithm, A(x) ⇒ b denotes the event that A outputs the value b
when fed with the input x. For a value v, |v| is the bitlength of v. The symbol
⊕ finally stands for the bitwise exclusive OR of two equal-length strings.

2.1 Game-Based Complete Non-Malleability

A public key cryptosystem is a triple (G, E ,D) where G is a probabilistic algo-
rithm outputting a key pair (sk, pk) on input of a security parameter λ ∈ N,
E is a probabilistic algorithm that computes a ciphertext c = Epk(m, r) from a
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plaintext m and a random string r while D is a deterministic algorithm such
that m = Dsk(Epk(m, r)) for any (m, r) and any pair (sk, pk) produced by G. In
the common reference string model, these algorithms additionally use a set of
public parameters produced by an algorithm CRS-G run by a trusted party.

The definitions of complete non-malleability given in [15,26] consider complete
relations. A complete relation R is an efficient algorithm that takes as input a
public key pk, a plaintext m, another public key pk∗, a vector of ciphertexts c∗

(that are encrypted under pk∗) and the vector m∗ of underlying plaintexts. The
output of R is a boolean value 0 or 1. In the common reference string model, the
complete relation takes the reference string as additional input.

In [15], Fischlin gave a simulation-based definition that extends the original
definition of non-malleability [13]. Ventre and Visconti introduced the following
game-based definition which is inspired by the comparison-based one [1].

Definition 1 ([26]). Let (G, E ,D) be a public key encryption scheme and let
A = (A1,A2) denote an adversary. For atk ∈ {cpa, cca1, cca2} and λ ∈ N, let

Advnm-atk∗
A (λ) =

∣∣∣ Pr[Exptnm-atk∗-0
A (λ) ⇒ 1]− Pr[Exptnm-atk∗-1

A (λ) ⇒ 1]
∣∣∣

where the experiments Exptnm-atk∗-0
A (λ) and Exptnm-atk∗-1

A (λ) are defined here-
after. In these notations,

Exptnm-atk∗-0
A (λ) Exptnm-atk∗-1

A (λ)
(pk, sk) ← G(λ) (pk, sk) ← G(λ)
(M, s) ← AO1

1 (pk) (M, s) ← AO1
1 (pk)

x
$← M x, x̃

$← M

c = Epk(x, r) where r
$← {0, 1}poly(λ) c = Epk(x, r) where r

$← {0, 1}poly(λ)

(R, pk∗, c∗) ← AO2
2 (M, pk, s, c) (R, pk∗, c∗) ← AO2

2 (M, pk, s, c)
return 1 iff ∃ (m∗, r∗) such that return 1 iff ∃ (m∗, r∗) such that

(c∗ = Epk∗(m∗, r∗)) ∧ (c∗ = Epk∗(m∗, r∗)) ∧
(c �∈ c∗ ∨ pk �= pk∗) ∧ (c �∈ c∗ ∨ pk �= pk∗) ∧
(m∗ �= ⊥) ∧ (m∗ �= ⊥) ∧
(R(x,m∗, pk, pk∗, c∗) = 1) (R(x̃,m∗, pk, pk∗, c∗) = 1)

if atk = cpa then O1(·) = ε and O2(·) = ε,
if atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε,
if atk = cca2 then O1(·) = Dsk(·) and O2(·) = D(c)

sk (·),
where D(c)

sk (·) stands for a restricted oracle that decrypts any ciphertext but c.
One mandates that the distribution M be valid in that |x| = |x′| for any x, x′

that have non-zero probability of being sampled. The condition m∗ �= ⊥ means
that at least one of the components of the vector c∗ must be a valid ciphertext.

The encryption scheme is said NM-ATK∗ secure if for any polynomial-time
adversary A, we have Advnm-atk∗

A (λ) ∈ negl(λ).
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As stressed in [15], specific schemes can support invalid public keys (for which no
matching private key exists) that look like valid ones. In the above experiments,
the adversary might output such an invalid key pk� and, in this case, more than
one pair (m, r) may correspond to an element of the ciphertext vector c�. When
such an ambiguity arises, both experiments return 1 whenever at least one pair
of candidate vectors (m�, r�) happens to satisfy the relation.

In the context of regular non-malleability, simulation and comparison-based
definitions were proved equivalent in [4]. In the complete non-malleability setting,
the above game-based definition was shown in [26] to imply the simulation-
based one in the chosen-plaintext (CPA) scenario. For a fairly wide class of
relations (i.e., relations that ignore the input of the challenge public key), a
similar implication was established in the CCA1 and CCA2 cases.

2.2 Ingredients and Assumptions

Bilinear Maps. We use groups (G,GT ) of prime order p and endowed with
an efficiently computable map e : G × G → GT such that e(ga, hb) = e(g, h)ab

for any (g, h) ∈ G × G, a, b ∈ Z and e(g, h) �= 1GT whenever g, h �= 1G. In this
setting, we assume the hardness of this (now classical) problem.

Definition 2. Let (G,GT ) be bilinear groups and g ∈ G. The Decision Bi-
linear Diffie-Hellman Problem (DBDH) is to distinguish the distributions
{(ga, gb, gc, e(g, g)abc)|a, b, c $← Z∗p} and {(ga, gb, gc, e(g, g)z)|a, b, c, z $← Z∗p}.
The advantage of a distinguisher B is measured by

AdvDBDH
G,GT

(λ) =
∣∣Pr[a, b, c $← Z∗p : B(ga, gb, gc, e(g, g)abc) = 1]

− Pr[a, b, c, z $← Z∗p : B(ga, gb, gc, e(g, g)z) = 1]
∣∣.

The Decision Bilinear Diffie-Hellman assumption states that, for any prob-
abilistic polynomial time (PPT) algorithm B, AdvDBDH

G,GT
(λ) ∈ negl(λ) .

Lossy and All-But-One Trapdoor Functions. Lossy trapdoor functions
are collections of functions where injective functions are indistinguishable from
many-to-one functions, termed lossy functions, that statistically lose all informa-
tion on the pre-image: each image element has so many equally likely pre-images
that even an unbounded adversary cannot determine the right one.

Let λ ∈ N be a security parameter and let n, k ∈ poly(λ) be such that k ≤ n.
A collection of (n, k)-lossy trapdoor functions Πltdf = (Sltdf , Fltdf , F

−1
ltdf) consist

of (possibly randomized) efficient algorithms with the following properties.

1. Easy to sample an injective function with trapdoor: when Sltdf(λ, 1) outputs
(s, t) where s is a function index and t is the trapdoor, Fltdf(s, .) computes
a deterministic injective function over the domain {0, 1}n. Besides, F−1

ltdf(t, .)
inverts Fltdf in that F−1

ltdf(t, Fltdf(s, x)) = x for all x ∈ {0, 1}n.
2. Easy to sample a lossy function: when Sltdf(λ, 0) outputs (s,⊥), where s is

a function index, Fltdf(s, .) computes a deterministic function over {0, 1}n

and with image size 2n−k. The value r = n− k is called residual leakage.
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3. Hard to distinguish injective from lossy: the first outputs of Sltdf(λ, 1) and
Sltdf(λ, 0) are computationally indistinguishable. The advantage of a distin-
guisher is defined analogously to definition 2.

As stressed in [22], the third property implies the infeasibility of inverting an
injective function of the collection without knowing the trapdoor.

It was shown in [22] how to efficiently construct such collections in groups
where the Decision Diffie-Hellman problem is hard or under worst-case lattice
assumptions. Freeman et al. [16] gave a more efficient construction (indepen-
dently suggested in [5]) using the Composite Residuosity assumption [20].

All-but-one (ABO) trapdoor functions are a refinement of the lossy TDF no-
tion. In an ABO collection, each function has several branches, almost all of
which are injective and have the same trapdoor. For each function, exactly one
branch is lossy and thus has smaller range. The lossy branch is chosen when
sampling the function in the collection and remains computationally hidden.

More formally, let B = {Bλ}λ∈N be a collection of sets whose element represent
the branches. A collection of (n, k)-all-but-one trapdoor functions with branch
collections consists of a tuple Πabo = (Sabo, Gabo, G

−1
abo) of possibly randomized

algorithms with the following properties.

1. Easy to sample a trapdoor function with given lossy branch: for any b∗ ∈ Bλ,
Sabo(λ, b∗) outputs (s, t) where s is a function index and t is the trapdoor.
For any b ∈ Bλ such that b �= b∗, Gabo(s, b, .) computes a deterministic injec-
tive function over the domain {0, 1}n. Besides, G−1

abo(t, b, .) inverts it in that
G−1

abo(t, b, Gabo(s, b, x)) = x for all x ∈ {0, 1}n. Over {0, 1}n, Gabo(s, b∗, .)
computes a deterministic function whose range has size at most 2n−k.

2. Hidden lossy branch: for any b∗0, b
∗
1 ∈ Bλ, the first outputs of Sabo(λ, b∗0) and

Sabo(λ, b∗1) are computationally indistinguishable.

3 A Construction Based on the DBDH Assumption

The scheme stems from the Canetti-Halevi-Katz (CHK) methodology [9] that
constructs CCA2-secure cryptosystems from weakly secure identity-based en-
cryption schemes. With appropriate modifications, it can be seen as a variant of
the CCA2-secure public key encryption scheme derived from the first selective-
ID secure IBE system put forth by Boneh and Boyen [6]. The scheme can also
be viewed as a CCA2-variant of the escrowed Elgamal encryption scheme of
[7][Section 7], where the escrow key is hidden in the CRS and allows dealing
with ciphertexts encrypted under new keys in the security proof. For this rea-
son, it appears to be the only known CHK-like system to which the underlying
idea applies: the scheme of [19], for instance, is not known to support escrow.

To turn this construction into a NM-CCA2∗ scheme, we assume that all parties
have access to a common reference string comprising the description of bilinear
groups (G,GT ), random generators in g, u, v ∈ G and a strongly unforgeable
one-time signature (which are normally part of the public key in the original
scheme). Another difference is that the receiver’s public key must also be signed
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along with other ciphertext components when generating the one-time signature
that acts as a “checksum” binding pieces of ciphertexts together.

In the description, we interpret one-time verification keys VK as elements of
Z∗p. Since most such signatures have significantly longer public keys, these should
be first hashed onto Z∗p using a collision-resistant hash function, the description
of which can be included in the reference string.

CRS-G(λ): given a security parameter λ ∈ N, choose bilinear groups (G,GT )
of prime order p > 2λ with random generators g, u, v

$← G. Choose also a
strongly unforgeable one-time signature scheme Sig = (G,S,V) (see, e.g., [9]
for a definition) The common reference string is Σ = {λ,G,GT , p, g, u, v, Sig}.

K(Σ): given Σ, choose x
$← Z∗p and return the key pair (pk, sk) = (X = gx, x).

Epk,Σ(m, r): given pk = X and Σ, to encrypt m ∈ GT using r
$← Z∗p, generate a

one-time signature key pair (SK,VK) ← G(λ). Then, compute and return

C =
(
VK, C1, C2, C3, σ

)
=
(
VK, gr, (uVK · v)r, m · e(X,u)r, σ

)
where σ = S

(
SK, (C1, C2, C3, pk)

)
.

Dsk,Σ(C): given Σ, sk = x ∈ Z∗p and C =
(
VK, C1, C2, C3, σ

)
, return ⊥ if

V
(
σ,VK, (C1, C2, C3, pk)

)
�= 1 or e(C1, u

VK ·v) �= e(g, C2). Otherwise, output
the plaintext m = C3/e(C1, u)x.

Unlike [26], we do not need zero-knowledge proofs vouching for the validity of
public keys or ciphertexts: all elements of G are admissible public keys for which
a private key exists and well-formed ciphertexts are also publicly recognizable.

Security. In the event that the adversary does not change the original public
key (i.e., pk� = pk), the proof of NM-CCA2 security implied by [6,9] applies.
However, one has to handle ciphertexts encrypted under adversarially-generated
public keys. Its strategy to do so, as in the first scheme of [26], is to open such
ciphertexts thanks to a trapdoor concealed in the reference string.

Theorem 1. The scheme is NM-CCA2∗ assuming the hardness of the DBDH
problem and the strong unforgeability of the one-time signature. More precisely,
the advantage of any NM-CCA2∗ adversary A is bounded by

Advnm-cca2∗
A (λ) ≤ 2 ·

(
AdvOTS(λ) + AdvDBDH

G,GT
(λ)

)
. (1)

Proof. The proof consists of a sequence of games where g, u, v are always part
of the common reference string Σ. The first game Game0(d), where d ∈ {0, 1},
operates over the same probability space as the experiment Exptnm-cca2∗-d while
the last one is an experiment that should have the same outcome for either
value of d ∈ {0, 1}. Throughout the sequence, we call Si(d) the event that the
challenger finally outputs 1 in Gamei(d). We show that any noticeable difference
between Pr[S0(0)] and Pr[S0(1)] (and thus any difference between the outcome
of experiments Exptnm-cca2∗-d with d ∈ {0, 1}) can be translated into about the
same difference between Pr[S5(0)] and Pr[S5(1)], which is proved to be zero.
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Game0(d): is essentially the experiment Exptnm-cca2∗-d. The adversary is pro-
vided with a random public key pk′ = X ′ as well as a reference string comprising
u, v

$← G. Let us define a = logg(X ′) and b = logg(u). The adversary A starts is-
suing decryption queries. At some point, she makes a challenge query for a plain-
text distribution M of her choosing. Then, the challenger picks (m0,m1) from
M and returns a ciphertext C′ = (VK′, C′1, C

′
2, C

′
3, σ

′) where C′3 = md ·e(X ′, u)r′

for a random r′ = c ∈ Z∗p such that C′1 = gc and C′2 = (uVK′ · v)c and where
σ′ = S(SK′, (C′1, C′2, C′3, pk′)) for a fresh key pair (VK′, SK′) ← G(λ). Eventu-
ally, the adversary outputs a ciphertext-vector C� and a possibly new public
key pk� = X� together with the description of a relation R. At this point, the
challenger calls an all powerful oracle that computes x� ∈ Z∗p such that X� = gx�

(via presumably exponential-time calculation), which allows decrypting C�. The
resulting plaintexts are used to evaluate the relation R(m0,m�, Σ, pk′, pk�,C�).
The challenger returns 1 if the latter holds and 0 otherwise.

Game1(d): is as Game0(d) but the one-time key pair (VK′, SK′) is chosen at the
beginning of the game. This change is conceptual and Pr[S1(d)] = Pr[S0(d)].

Game2(d): we modify the treatment of decryption queries and introduce a re-
jection rule that also applies to the treatment of A’s output (C�, pk�) at the end
of the game. Namely, the challenger halts and returns 0 if A comes up with a
valid encryption C = (VK′, C1, C2, C3, σ) w.r.t. a public key pk such that either

- the query occurs before A receives the challenge ciphertext C′.
- C appears after the challenge C′ but (C1, C2, C3, pk, σ) �= (C′1, C

′
2, C

′
3, pk

′, σ′).

Game2(d) and Game1(d) proceed identically unless this event, that we call F2,
occurs. In the first case,A was necessarily able to forge a signature σ without see-
ing a single signature (or even the verification key VK′). The second case implies
a polynomial (strong) signature forger: indeed, even if pk is a new public key,
the challenger detects F2 and halts before having to invoke its super-polynomial
oracle. Therefore, |Pr[S2(d)] − Pr[S1(d)]| ≤ Pr[F2] ≤ AdvOTS(λ). In particu-
lar, the above implies that, if A’s output (C�, pk�) involves a new public key
pk� �= pk′, the signature verification key VK′ cannot appear within C� unless A
was able to defeat the one-time signature security.

Game3(d): we change the generation of the common reference string Σ. At the
outset of the game, the challenger chooses β

$← Z∗p and defines v = u−VK′ · gβ .
In the challenge phase, the triple (C′1, C′2, C′3) is generated as

C′1 = gr′
= gc, C′2 = (gr′

)β = (gc)β C′3 = md · e(ga, gb)c.

These modifications do not alter the adversary’s view. In particular, the distri-
butions of Σ and C′ remain the same and we have Pr[S3(d)] = Pr[S2(d)].

Game4(d): we change the treatment of all ciphertexts produced by A (those
queried for decryption as well as the elements of C�). For a public key pk (which



136 B. Libert and M. Yung

is either X ′ or a possibly new public key X� chosen by the adversary), such
a ciphertext C = (VK, C1, C2, C3, σ) is declared invalid if σ does not properly
verify under VK or if e(C1, u

VK ·v) �= e(g, C2). Now, let us assume that C is valid.
We necessarily have VK �= VK′ since the rejection rule of Game2(d) would apply
otherwise (recall that, even if pk� = pk′ in A’s final output, C� cannot contain
copies of the challenge ciphertext C′). Given that C1 = gr and C2 = (uVK · v)r

for some unknown r ∈ Z∗p, the challenger can compute ur = (C2/C
β
1 )1/(VK−VK′)

which in turn reveals e(X�, ur) and the plaintext m = C3/e(X�, u)r.
The decryption oracle is perfectly simulated and the treatment of (C�, pk�)

is the same as if it were made by decrypting C� using the private key associated
with pk� = X�. Therefore, we have Pr[S4(d)] = Pr[S3(d)]. In this game, expo-
nents a, b, c ∈ Z∗p are not explicitly handled any longer by the challenger that
only manipulates them via ga, gb, gc and e(g, g)abc.

Game5(d): we let Game5(d) be as Game4(d) except that the pairing value
e(X ′, u)r′

= e(g, g)abc, that was used to compute C′3 = md · e(X ′, u)r′
, is now

replaced by a random element γ
$← GT . We have a transition based on indistin-

guishability and can thus write |Pr[S5(d)]− Pr[S4(d)]| ≤ AdvDBDH
G,GT

(λ).
When gathering probabilities, we find the inequality

|Pr[S0(d)]− Pr[S5(d)]| ≤ AdvOTS(λ) + AdvDBDH
G,GT

(λ)

for d ∈ {0, 1}. Now, we claim that Pr[S5(1)] = Pr[S5(0)]. In Game5(d), C′3 is a
random element of GT that perfectly hides md. Even an unbounded adversary’s
view is identically distributed for either value of d ∈ {0, 1}. Given that

Advnm-cca2∗
A (λ) = |Pr[S0(1)]− Pr[S0(0)]| ≤ |Pr[S0(1)]− Pr[S5(1)]|

+ |Pr[S5(1)]− Pr[S5(0)]|+ |Pr[S5(0)]− Pr[S0(0)]|,

when combining the above, we find the claimed upper bound (1). ��

4 A Construction Based on Lossy Trapdoor Functions

This construction makes use of lossy and all-but-one (ABO) functions and is
a natural modification of a cryptosystem described in [22]. The latter has the
important property of being witness recovering (which is a unique feature for a
standard model public key encryption scheme). The fact that receivers retrieve
senders’ random coins upon decryption is precisely what allows proving complete
non-malleability when positioning oneself in the CRS model.

The main difference w.r.t. [22] is that, instead of being chosen by the user
upon key generation, the family of all-but-one functions is defined as part of the
reference string and thus cannot be changed by the adversary. As in section 3,
in order to prevent malleability attempts on the public key, the latter is part of
the “message” that is one-time-signed in the ciphertext generation.

CRS-G(λ): given a security parameter λ ∈ N,
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1. Define the message space as {0, 1}
 for some 	 ∈ N.
2. Generate a collection Πabo = (Sabo, Gabo, G

−1
abo) of (n, k′)-ABO trapdoor

functions having branches Bλ = {0, 1}v, for some v ∈ poly(λ).
3. Choose a collection Πltdf = (Sltdf , Fltdf , F

−1
ltdf) of (n, k)-lossy TDFs. It is

required that k + k′ ≥ n + κ, where κ = κ(n) = ω(logn) 1 is such that
κ > 	 + log(1/ε) for some ε ∈ negl(λ).

4. Select an ABO function with random lossy branch: set b0
$← {0, 1}v,

(s0, t0) ← Sabo(λ, b0) and discard the trapdoor t0 as well as b0.
5. Choose a strong one-time signature scheme Sig = (G,S,V) and a pairwise

independent (see, e.g., [22]) hash function h : {0, 1}n → {0, 1}
.
6. Output Σ = {λ, 	,Πabo, Πltdf , s0, Sig, h}.

K(Σ): given Σ, generate an injective trapdoor function (s, t) ← Sltdf(λ, 1) from
the lossy TDF family and set (pk, sk) = (s, t).

Epk,Σ(m, r): to encrypt m under pk = s using the randomness r ∈ {0, 1}n, gen-
erate a one-time signature key pair (SK,VK) ← G(λ) and compute

C = (VK, C1, C2, C3, σ) =
(
VK, Fltdf(s, r), Gabo(s0,VK, r), m⊕ h(r), σ

)
where σ = S

(
SK, (C1, C2, C3, pk)

)
.

Dsk,Σ(C): given C = (VK, C1, C2, C3, σ), return⊥ if V
(
σ,VK, (C1, C2, C3, pk)

)
�=

1. Otherwise, compute r = F−1
ltdf(t, C1) and return m = C3 ⊕ h(r) if C2 =

Gabo(s0,VK, r) and C1 = Fltdf(s, r). Otherwise, return ⊥.

The security proof is naturally based on [22] and is detailed in the full paper.
In comparison with the first scheme, this one has less compact ciphertexts with

currently known instantiations of lossy TDFs. The DDH-based one [22] provides
ciphertexts comprising O(n) elements (or O(n/ log(n)) with space optimizations)
of the DDH-hard group and the size of ciphertexts is thus super-linear in the
security parameter λ. The instantiation based on the Composite Residuosity
assumption [16] yields ciphertexts and public keys that have linear size in the
security parameter but remain significantly larger than in section 3.

On the other hand, the lossy-TDF-based construction gives instantiations
based on long-lived (non-pairing-related) assumptions.

5 Conclusion

We described the first efficient completely non-malleable public key encryption
schemes in the common reference string model. Both schemes are proved to meet
the game-based definition of Ventre and Visconti. The basic idea employed was
to move to a common parameter string rather than employing the inefficient
NIZK. In this scenario, we identified schemes that implement the notion, the
simplicity of the transformation of the basic schemes to our systems assures
they are quite practical. One related open question is the exact connection of
the game-based definition and Fischlin’s simulation-based one.
1 That is, κ(n) grows faster than c · log n for any constant c > 0.
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Abstract. In two-prover one-round interactive proof systems, no-
signaling provers are those who are allowed to use arbitrary strategies,
not limited to local operations, as long as their strategies cannot be used
for communication between them. The study of multi-prover interac-
tive proof systems with no-signaling provers has been motivated by the
study of those with provers sharing quantum states. The relation between
them is that no-signaling strategies include all the strategies realizable
by provers sharing arbitrary entangled quantum states, and more. It
was known that PSPACE ⊆ MIPns(2, 1) ⊆ EXP, where MIPns(2, 1) is
the class of languages having a two-prover one-round interactive proof
system with no-signaling provers.

This paper shows MIPns(2, 1) = PSPACE. This is proved by con-
structing a fast parallel algorithm which approximates within an addi-
tive error the maximum winning probability of no-signaling players in
a given cooperative two-player one-round game. The algorithm uses the
fast parallel algorithm for the mixed packing and covering problem by
Young (FOCS 2001).

1 Introduction

1.1 Background

Nonlocality [3] is a peculiar property of quantum mechanics and has applica-
tions to quantum information processing. Following Cleve, Høyer, Toner and
Watrous [7], quantum nonlocality can be naturally expressed in terms of a coop-
erative two-player one-round game with imperfect information, which is a game
played by two players and a referee as follows. The players are kept in separate
rooms so that they cannot communicate with each other. The referee chooses
a pair of questions according to some probability distribution, and sends one
question to each player. Each player replies with an answer to the referee, and
the referee declares whether the two players jointly win or jointly lose according
to the questions and the answers. The players know the protocol used by the
referee including the probability distribution of the pair of questions and how
the referee determines the final outcome of the game, but none of the players
knows the question sent to the other player. The aim of the players is to win
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the game with as high probability as possible, and the maximum winning prob-
ability is called the value of the game. In this framework, a Bell inequality is
an inequality stating an upper bound on the value of a game of this kind when
provers are not allowed to perform any quantum operations, and the violation of
a Bell inequality means that the game value increases when provers are allowed
to share a quantum state before the game starts.

The complexity of finding or approximating the value of a game has been
one of the most fundamental problems in computational complexity theory. The
computational model based on cooperative multi-player games is called multi-
prover interactive proof systems and was introduced by Ben-Or, Goldwasser,
Kilian and Wigderson [4] for a cryptographic purpose.1 It turned out that this
computational model is extremely powerful: multi-prover interactive proof sys-
tems exactly characterize NEXP [1,11], even in the most restricted settings with
two provers, one round and an exponentially small one-sided error [10]. Scal-
ing down this result implies that, given the description of a cooperative game,
approximating the best strategy even in a very weak sense is NP-hard.

Cleve, Høyer, Toner and Watrous [7] connected computational complexity
theory and quantum nonlocality and raised the question on the complexity of
approximating the value of a cooperative game with imperfect information in
the case where the players are allowed to share quantum states or, in terms of
interactive proof systems, the computational power of multi-prover interactive
proof systems with entangled provers. Kobayashi and Matsumoto [23] considered
another quantum variation of multi-prover interactive proof systems where the
verifier can also use quantum information and can exchange quantum messages
with provers, which is a multi-prover analogue of quantum interactive proof
systems [29]. In Ref. [23], it was shown that allowing the provers to share at most
polynomially many qubits does not increase the power of multi-prover interactive
proof systems beyond NEXP (even if the verifier is quantum). Although studied
intensively, the power of multi-prover interactive proof systems with provers
allowed to share arbitrary quantum states has been still largely unknown.

The notion of no-signaling strategies was first studied in physics in the context
of Bell inequalities by Khalfin and Tsirelson [22] and Rastall [27], and it has
gained much attention after being reintroduced by Popescu and Rohrlich [25].
The acceptance probability of the optimal no-signaling provers is often useful
as an upper bound on the acceptance probability of entangled provers because
no-signaling strategies have a simple mathematical characterization.

Kempe, Kobayashi, Matsumoto, Toner and Vidick [21] prove, among other
results, that every language in PSPACE has a two-prover one-round interactive
proof system which has one-sided error 1−1/poly even if honest provers are unen-
tangled and dishonest provers are allowed to have prior entanglement of any size
(the proof is in Ref. [20]). Ito, Kobayashi and Matsumoto [15] improve their re-
sult to an exponentially small one-sided error by considering no-signaling provers;
more specifically, they prove that the soundness of the protocol in Ref. [21] actu-
ally holds against arbitrary no-signaling provers, then use the parallel repetition

1 Because of this connection, we use “player” and “prover” synonymously in this paper.
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theorem for no-signaling provers [14]. We note that the soundness analysis of
Ref. [15] is somewhat simpler than that of Ref. [21].

Repeating the protocol of Ref. [21] in parallel as is done in Ref. [15] results in
the protocol identical to the one used by Cai, Condon and Lipton [6] to prove that
every language in PSPACE has a two-prover one-round interactive proof system
with an exponentially small one-sided error in the classical world. Therefore,
an implication of Ref. [15] is that the protocol in Ref. [6] has an unexpected
strong soundness property: the protocol remains to have an exponentially small
error even if we allow the two provers to behave arbitrarily as long as they are
no-signaling.

Given that the soundness of protocols can be perhaps analyzed easier against
no-signaling provers than against entangled provers, it is natural to ask whether
the result of Ref. [15] can be extended to a class larger than PSPACE. This raises a
question to characterize the classMIPns(2, 1) of languages having a two-prover one-
round interactive proof system with no-signaling provers with bounded two-sided
error. The abovementioned result in Ref. [15] implies MIPns(2, 1) ⊇ PSPACE. On
the other hand, Preda [26] pointed out MIPns(2, 1) ⊆ EXP.

1.2 Our Results

Our main result is:

Theorem 1. MIPns(2, 1) ⊆ PSPACE.

An immediate corollary obtained by combining Theorem 1 with the abovemen-
tioned result in Ref. [15] is the following exact characterization of the class
MIPns(2, 1):

Corollary 1. MIPns(2, 1) = PSPACE, and this is achievable with exponentially
small one-sided error, even if honest provers are restricted to be unentangled.

This puts the proof system of Ref. [6] in a rather special position: while other
two-prover one-round interactive proof systems [1,9,10] work with the whole
NEXP, the one in Ref. [6] attains the best achievable by two-prover one-round
interactive proof systems with bounded two-sided error that are sound against
no-signaling provers, and at the same time, it achieves an exponentially small
one-sided error.

At a lower level, our result is actually a parallel algorithm to approximately
decide2 the value of a two-player one-round game for no-signaling players as
follows. For a two-player one-round game G, wns(G) is the value of G for no-
signaling provers and |G| is the size of G, both of which will be defined in
Section 2.1.

Theorem 2. There exists a parallel algorithm which, given a two-player one-
round game G and numbers 0 ≤ s < c ≤ 1 such that either wns(G) ≤ s or
2 The algorithm stated in Theorem 2 can be converted to an algorithm to approximate

wns(G) within an additive error in a standard way. See Remark 2 in Section 3.
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wns(G) ≥ c, decides which is the case. The algorithm runs in parallel time poly-
nomial in log|G| and 1/(c− s) and total work polynomial in |G| and 1/(c− s).

Theorem 1 follows in a standard manner from the polynomial equivalence be-
tween parallel time and sequential space complexity [5] by applying the algorithm
of Theorem 2 to the exponential-size game naturally arising from a two-prover
one-round interactive proof system. This approach is similar to that of the recent
striking result on the PSPACE upper bound on QIP [17] as well as other com-
plexity classes related to quantum interactive proof systems, i.e. QRG(1) [19]
and QIP(2) [18].3 The detail of the derivation of Theorem 1 from Theorem 2 is
omitted due to space limitation.

The construction of the parallel algorithm in Theorem 2 is much simpler than
those used in Refs. [17,18,19] because our task can be formulated as solving a
linear program of a certain special form approximately instead of a semidefinite
program. This allows us to use the fast parallel algorithm for the mixed packing
and covering problem by Young [32].4

1.3 Organization of the Paper

The rest of this paper is organized as follows. Section 2 gives the definitions
used later and states the result by Young [32] about a fast parallel approxima-
tion algorithm for the mixed packing and covering problem. Section 3 states a
technical lemma (Lemma 1) which represents the no-signaling value of a game by
the optimal value of a linear program closely related to the mixed packing and
covering problem, and proves Theorem 2 assuming this lemma by using Young’s
fast parallel algorithm. Section 4 proves Lemma 1. Section 5 concludes the paper
by discussing some natural open problems and their difficulties.

2 Preliminaries

We assume the familiarity with the notion of multi-prover interactive proof sys-
tems. Readers are referred to the textbook by Goldreich [12].

2.1 Games

A protocol of a two-prover one-round interactive proof system defines a game of
exponential size for each instance. Here we give a formal definition of games.
3 Do not be confused by an unfortunate inconsistency as for whether the number in

the parenthesis represents the number of rounds or turns, where one round consists
of two turns. The “1” in QRG(1) and the “2” in QIP(2) represent the number of
turns whereas the “1” in MIPns(2, 1) represents the number of rounds just in the
same way as the “1” in MIP(2, 1).

4 Alternatively, it is possible to prove Theorem 2 by using the multiplicative weights
update method, a common key technique used in Refs. [17,18,19]. See Remark 1 in
Section 3 for a brief explanation.
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A two-prover one-round game, or simply a game in this paper, is played by
two cooperative provers called prover 1 and prover 2 with help of a verifier who
enforces the rule of the game. A game is formulated as G = (Q1, Q2, A1, A2, π, R)
by nonempty finite sets Q1, Q2, A1 and A2, a probability distribution π over
Q1 × Q2, and a function R : Q1 × Q2 × A1 × A2 → [0, 1]. As is customary, we
write R(q1, q2, a1, a2) as R(a1, a2 | q1, q2).

In this game, the verifier generates a pair of questions (q1, q2) ∈ Q1 × Q2
according to the probability distribution π, and sends q1 to the prover 1 and
q2 to the prover 2. Each prover i (i ∈ {1, 2}) sends an answer ai ∈ Ai to
the verifier without knowing the question sent to the other prover. Finally, the
verifier accepts with probability R(a1, a2 | q1, q2) and rejects with probabil-
ity 1−R(a1, a2 | q1, q2). The provers try to make the verifier accept with as high
probability as possible.

The size |G| of the game G is defined as |G| = |Q1||Q2||A1||A2|.
A strategy in a two-prover one-round game G is a family p = (pq1q2) of prob-

ability distributions on A1×A2 indexed by (q1, q2) ∈ Q1×Q2. As is customary,
the probability pq1q2(a1, a2) is written as p(a1, a2 | q1, q2). A strategy p is said
to be no-signaling if it satisfies the following no-signaling conditions:

– The marginal probability p1(a1 | q1) =
∑

a2
p(a1, a2 | q1, q2) does not depend

on q2.
– Similarly, p2(a2 | q2) =

∑
a1

p(a1, a2 | q1, q2) does not depend on q1.

The acceptance probability of a strategy p is given by∑
q1∈Q1,q2∈Q2

π(q1, q2)
∑

a1∈A1,a2∈A2

R(a1, a2 | q1, q2)p(a1, a2 | q1, q2).

The no-signaling value wns(G) of G is the maximum acceptance probability over
all no-signaling strategies.

2.2 Interactive Proof Systems

In a two-prover one-round interactive proof system, a verifier is a randomized
polynomial-time process. He is given an input string x, produces questions to
the two provers, and decides whether he accepts or rejects the answers from the
provers. A two-prover one-round interactive proof system defines a game G(x)

in a natural way for each input string x.
Let c, s : Z≥0 → [0, 1] be functions such that c(n) > s(n) for every n. The

two-prover one-round interactive proof system is said to recognize a language5 L
with completeness acceptance probability at least c(n) and soundness error at
most s(n) with no-signaling provers when the following conditions are satisfied.
5 Although we define MIPns(2, 1) as a class of languages in this paper to keep the

notations simple, we could alternatively define MIPns(2, 1) as the class of promise
problems [8] (see also Section 2.4.1 of Ref. [12]) recognized by a two-prover one-round
interactive proof system with no-signaling provers. A generalization of Theorem 1
to the case of promise problems is straightforward.
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Completeness x ∈ L =⇒ wns(G(x)) ≥ c(|x|).
Soundness x /∈ L =⇒ wns(G(x)) ≤ s(|x|).

In particular, the proof system is said to recognize L with bounded error with
no-signaling provers if 1/(c(n) − s(n)) is bounded by a polynomial in n and
the binary representations of c(n) and s(n) are computable in time polynomial
in n. We denote by MIPns(2, 1) the class of languages L which are recognized
by a two-prover one-round interactive proof system with bounded error with
no-signaling provers.

2.3 Mixed Packing and Covering Problem

The mixed packing and covering problem is the linear feasibility problem to find
a vector x ∈ RN satisfying Ax ≤ b, Cx ≥ d and x ≥ 0, where matrices A,C
and vectors b, d are given and the entries of A, b, C, d are all nonnegative. The
constraints of the form Ax ≤ b are called packing constraints, and the constraints
of the form Cx ≥ d are covering constraints. For r ≥ 1, an r-approximate solution
is a vector x ≥ 0 such that Ax ≤ rb and Cx ≥ d.

Theorem 3 (Young [32]). There exists a parallel algorithm which, given an
instance (A, b, C, d) of the mixed packing and covering problem and a number ε >
0, either claims that the given instance does not have a feasible solution, or finds
a (1 + ε)-approximate solution. If the size of A and C are M1 × N and M2 ×
N , respectively, then the algorithm runs in parallel time polynomial in logM1,
logM2, logN and 1/ε and total work polynomial in M1, M2, N and 1/ε.

3 Proof of Theorem 2

This section states a technical lemma and gives a proof of Theorem 2 assuming
this lemma.

Let G = (Q1, Q2, A1, A2, π, R) be a game. Let π1(q1) =
∑

q2∈Q2
π(q1, q2) and

π2(q2) =
∑

q1∈Q1
π(q1, q2) be the marginal distributions.

Lemma 1. The no-signaling value wns(G) is equal to the optimal value of the
following linear program (1). Here x1(q1) for q1 ∈ Q1, x2(q2) for q2 ∈ Q2,
y1(q1, q2, a1) for (q1, q2, a1) ∈ Q1 × Q2 × A1 and y2(q1, q2, a2) for (q1, q2, a2) ∈
Q1 ×Q2 ×A2 are variables.

Minimize
∑
q1

x1(q1) +
∑
q2

x2(q2), (1a)

Subject to y1(q1, q2, a1) + y2(q1, q2, a2) ≤ π(q1, q2)
(
2−R(a1, a2 | q1, q2)

)
,

∀q1, q2, a1, a2, (1b)

x1(q1) +
∑
q2

y1(q1, q2, a1) ≥ π1(q1), ∀q1, a1, (1c)

x2(q2) +
∑
q1

y2(q1, q2, a2) ≥ π2(q2), ∀q2, a2, (1d)
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y1(q1, q2, a1) ≤ π(q1, q2), ∀q1, q2, a1, (1e)
y2(q1, q2, a2) ≤ π(q1, q2), ∀q1, q2, a2, (1f)
x1(q1) ≥ 0, ∀q1, (1g)
x2(q2) ≥ 0, ∀q2, (1h)
y1(q1, q2, a1) ≥ 0, ∀q1, q2, a1, (1i)
y2(q1, q2, a2) ≥ 0, ∀q1, q2, a2. (1j)

Note that in the the linear program (1), each variable is constrained to be nonneg-
ative, each constraint is either a packing constraint or a covering constraint, and
the objective function is monotone. We defer a proof of Lemma 1 to Section 4.

Lemma 2. Let G = (Q1, Q2, A1, A2, π, R) be a game and 0 ≤ s < c ≤ 1.
Consider the instance of the mixed packing and covering problem consisting of
a constraint

∑
q1

x1(q1) +
∑

q2
x2(q2) ≤ s and the constraints (1b)–(1j). Let

ε = (c− s)/4. Then,

(i) If wns(G) ≤ s, this instance has a feasible solution.
(ii) If wns(G) ≥ c, this instance does not have a (1 + ε)-approximate solution.

Proof. (i) Clear from Lemma 1.
(ii) We prove the contrapositive. Assume that (x̃1, x̃2, ỹ1, ỹ2) is a (1 + ε)-

approximate solution of this mixed packing and covering problem, and
let x1(q1) = x̃1(q1) + επ1(q1), x2(q2) = x̃2(q2) + επ2(q2), y1(q1, q2, a1) =
ỹ1(q1, q2, a1)/(1 + ε) and y2(q1, q2, a2) = ỹ2(q1, q2, a2)/(1 + ε). It is easy to
verify that (x1, x2, y1, y2) is a feasible solution of the linear program (1),
and the objective value of this solution is

∑
q1

x1(q1) +
∑

q2
x2(q2) =∑

q1
x̃1(q1) + ε

∑
q1

π1(q1) +
∑

q2
x̃2(q2) + ε

∑
q2

π2(q2) ≤ (1 + ε)s + 2ε <
s + 3ε < c. Therefore, the optimal value of the linear program (1) is less
than c, which implies wns(G) < c by Lemma 1. ��

Proof (of Theorem 2). Apply Theorem 3 to the instance of the mixed packing
and covering problem in Lemma 2. ��
Remark 1. It is easy to see that adding the constraints x1(q1) ≤ π1(q1) for q1 ∈
Q1 and x2(q2) ≤ π2(q2) for q2 ∈ Q2 to the instance of the mixed packing and
covering problem in Lemma 2 does not change the feasibility or approximate
feasibility. The resulting linear program has a constant “width” in the sense
stated in Theorem 2.12 of Plotkin, Shmoys and Tardos [24] with a suitable
tolerance vector. See Ref. [24] for relevant definitions. This gives an alternative
proof of Theorem 2 which uses the algorithm of Ref. [24] instead of the algorithm
of Ref. [32]. With this modification, it is also possible to use the multiplicative
weights update method instead of the algorithm of Ref. [24], which explains the
similarity to the method used in Refs. [17,18,19].

Remark 2. Given Theorem 2, it is easy to approximate wns(G) within additive
error ε (rather than deciding whether wns(G) ≤ s or wns(G) ≥ c) in parallel
time polynomial in log|G| and 1/ε and total work polynomial in |G| and 1/ε.
This can be done by trying all the possibilities of s = kε and c = (k + 1)ε for
integers k in the range 0 ≤ k ≤ 1/ε in parallel, or by using the binary search.



Polynomial-Space Approximation of No-Signaling Provers 147

4 Formulating No-Signaling Value by a Linear Program
with Packing and Covering Constraints

This section proves Lemma 1.
Our starting point is the following linear program (2), whose optimal value is

equal to the no-signaling value wns(G) of G by definition:

Maximize
∑
q1,q2

π(q1, q2)
∑
a1,a2

R(a1, a2 | q1, q2)p(a1, a2 | q1, q2), (2a)

Subject to
∑
a2

p(a1, a2 | q1, q2) = p1(a1 | q1), ∀q1, q2, a1, (2b)

∑
a1

p(a1, a2 | q1, q2) = p2(a2 | q2), ∀q1, q2, a2, (2c)∑
a1,a2

p(a1, a2 | q1, q2) = 1, ∀q1, q2, (2d)

p(a1, a2 | q1, q2) ≥ 0, ∀q1, q2, a1, a2. (2e)

We transform this linear program (2) as follows. First, we replace the con-
straint (2d) by two constraints

∑
a1

p1(a1 | q1) = 1 for all q1 and
∑

a2
p2(a2 |

q2) = 1 for all q2. Next, we add redundant constraints p1(a1 | q1) ≥ 0 for all q1
and a1 and p2(a2 | q2) ≥ 0 for all q2 and a2. Next, we relax the constraints (2b)
and (2c) to inequalities. This results in the following linear program (3):

Maximize
∑
q1,q2

π(q1, q2)
∑
a1,a2

R(a1, a2 | q1, q2)p(a1, a2 | q1, q2), (3a)

Subject to
∑
a2

p(a1, a2 | q1, q2) ≤ p1(a1 | q1), ∀q1, q2, a1, (3b)∑
a1

p(a1, a2 | q1, q2) ≤ p2(a2 | q2), ∀q1, q2, a2, (3c)

∑
a1

p1(a1 | q1) = 1, ∀q1, (3d)∑
a2

p2(a2 | q2) = 1, ∀q2, (3e)

p(a1, a2 | q1, q2) ≥ 0, ∀q1, q2, a1, a2, (3f)
p1(a1 | q1) ≥ 0, ∀q1, a1, (3g)
p2(a2 | q2) ≥ 0, ∀q2, a2. (3h)

Claim 1. The optimal values of the linear programs (2) and (3) are equal.

Proof. Let w and w′ be the optimal values of the linear programs (2) and (3),
respectively. Since we only added redundant constraints and relaxed some of the
constraints, w ≤ w′ is obvious. To prove w ≥ w′, let (p̃, p1, p2) be a feasible
solution of (3). We will construct p such that (p, p1, p2) is a feasible solution
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of the linear program (2) and p(a1, a2 | q1, q2) ≥ p̃(a1, a2 | q1, q2) for every
q1, q2, a1, a2.

Fix any q1 ∈ Q1 and q2 ∈ Q2. Let sq1q2(a1) = p1(a1 | q1)−
∑

a2∈A2
p̃(a1, a2 |

q1, q2) for each a1, tq1q2(a2) = p2(a2 | q2) −
∑

a1∈A1
p̃(a1, a2 | q1, q2) for each a2

and uq1q2 = 1 −
∑

a1∈A1,a2∈A2
p̃(a1, a2 | q1, q2). Since (p̃, p1, p2) satisfies the

constraints (3b) and (3c), we have sq1q2(a1) ≥ 0 and tq1q2(a2) ≥ 0. Eqs. (3d)
and (3e) implies that

∑
a1∈A1

sq1q2(a1) =
∑

a2∈A2
tq1q2(a2) = uq1q2 .

We define p(a1, a2 | q1, q2) by

p(a1, a2 | q1, q2) =

⎧⎨⎩p̃(a1, a2 | q1, q2) +
sq1q2(a1)tq1q2(a2)

uq1q2

, if uq1q2 > 0,

p̃(a1, a2 | q1, q2), if uq1q2 = 0.

Then p(a1, a2 | q1, q2) ≥ p̃(a1, a2 | q1, q2) for every q1, q2, a1, a2. The con-
straints (2b)–(2e) are easy to verify. ��
By the duality theorem of linear programming (see e.g. Section 7.4 of Ref. [28]), the
linear program (3) has the same optimal value as the following linear program (4):

Minimize
∑
q1

x1(q1) +
∑
q2

x2(q2), (4a)

Subject to z1(q1, q2, a1) + z2(q1, q2, a2) ≥ π(q1, q2)R(a1, a2 | q1, q2),
∀q1, q2, a1, a2, (4b)

x1(q1) ≥
∑
q2

z1(q1, q2, a1), ∀q1, a1, (4c)

x2(q2) ≥
∑
q1

z2(q1, q2, a2), ∀q2, a2, (4d)

z1(q1, q2, a1) ≥ 0, ∀q1, q2, a1, (4e)
z2(q1, q2, a2) ≥ 0, ∀q1, q2, a2. (4f)

Note that the constraints (4c)–(4f) imply x1(q1) ≥ 0 and x2(q2) ≥ 0, and there-
fore adding these redundant nonnegativity constraints to the linear program (4)
does not change its optimal value.

Let (x1, x2, z1, z2) be a feasible solution of the linear program (4). If
z1(q1, q2, a1) > π(q1, q2) for some q1, q2, a1, we can replace z1(q1, q2, a1) by
π(q1, q2) without violating any constraints or increasing the objective value. The
same holds for z2(q1, q2, a2). Therefore, adding the constraints z1(q1, q2, a1) ≤
π(q1, q2) for all q1, q2, a1 and z2(q1, q2, a2) ≤ π(q1, q2) for all q1, q2, a2 does not
change the optimal value.

Replacing thevariables z1(q1, q2, a1)byπ(q1, q2)−y1(q1, q2, a1)and z2(q1, q2, a2)
by π(q1, q2)− y2(q1, q2, a2), we obtain Lemma 1.

5 Concluding Remarks

This paper gave the exact characterization of the simplest case of multi-prover in-
teractive proof systems with no-signaling provers: MIPns(2, 1) = PSPACE.
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A natural direction seems to be to extend this result to show a PSPACE upper
bound on a class containingMIPns(2, 1).Belowwe discuss somehurdles indoing so.

More than two provers. In the completely classical case, a many-prover one-
round interactive proof system can be transformed to a two-prover one-round
interactive proof system by using the oracularization technique, and therefore
MIP(poly, 1) ⊆ MIP(2, 1). The same transformation is not known to preserve
soundness in the case of no-signaling provers even when the original proof system
uses three provers.6 As a result, whether or not MIPns(3, 1) ⊆ MIPns(2, 1) is
unknown, and our result does not imply MIPns(3, 1) ⊆ PSPACE.

To extend the current proof to MIPns(3, 1), the main obstacle is to extend
Claim 1, which replaces equations by inequalities. Somewhat surprisingly, it
does not seem that an analogous claim can be proved for three provers by a
straightforward extension of the current proof of Claim 1.

More than one round. The proof of Claim 1 seems to work in the case of two-
prover systems with polynomially many rounds. However, in a linear program
corresponding to (4), an upper bound on the variables z1 and z2 becomes expo-
nentially large and the current proof does not work even in the case of two-prover
two-round systems with adaptive questions or two-prover ω(logn)-round systems
with non-adaptive questions.

Quantum verifier and quantum messages. The notion of no-signaling strate-
gies can be extended to the case of quantum messages [2,13] (Ref. [2] uses
the term “causal” instead of “no-signaling”). This allows us to define e.g. the
class QMIPns(2, 2) of languages having a quantum two-prover one-round (two-
turn) interactive proof system with no-signaling provers. The class QMIPns(2, 2)
contains both MIPns(2, 1) and QIP(2), and it would be nice if the method of
Ref. [18] and ours can be unified to give QMIPns(2, 2) = PSPACE. One obvious
obstacle is how to extend the fast parallel algorithm in Ref. [18] for the special
case of semidefinite programming to the case of QMIPns(2, 2). Another obsta-
cle is again Claim 1; the current proof of Claim 1 essentially constructs a joint
probability distribution over (q1, q2, a1, a2) from its marginal distributions over
(q1, q2, a1) and (q1, q2, a2), and this kind of state extension is not always possible
in the quantum case [30,31].

Acknowledgments. The author thanks Rahul Jain, Julia Kempe, Hirotada
Kobayashi, Sarvagya Upadhyay and John Watrous for helpful discussions. He
also thanks an anonymous reviewer of the QIP 2010 workshop for helpful com-
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version of this paper, and an anonymous reviewer of the ICALP 2010 conference
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6 The Magic Square game in Ref. [7] is a counterexample which shows that this trans-

formation cannot be used alone to reduce the number of provers from three to two in
the case of entangled provers because it sometimes transforms a three-prover game
whose entangled value is less than 1 to a two-prover game whose entangled value is
equal to 1 [16]. The situation might be different in the case of no-signaling provers.
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Abstract. We study the problem of verifiable computation (VC) in
which a computationally weak client wishes to delegate the computation
of a function f on an input x to a computationally strong but untrusted
server. We present new general approaches for constructing VC proto-
cols, as well as solving the related problems of program checking and
self-correcting. The new approaches reduce the task of verifiable com-
putation to suitable variants of secure multiparty computation (MPC)
protocols. In particular, we show how to efficiently convert the secrecy
property of MPC protocols into soundness of a VC protocol via the use
of a message authentication code (MAC). The new connections allow us
to apply results from the area of MPC towards simplifying, unifying, and
improving over previous results on VC and related problems.

In particular, we obtain the following concrete applications: (1) The
first VC protocols for arithmetic computations which only make a
black-box use of the underlying field or ring; (2) a non-interactive VC
protocol for boolean circuits in the preprocessing model, conceptually
simplifying and improving the online complexity of a recent protocol
of Gennaro et al. (Cryptology ePrint Archive: Report 2009/547); (3)
NC0 self-correctors for complete languages in the complexity class NC1

and various log-space classes, strengthening previous AC0 correctors of
Goldwasser et al. (STOC 2008).

1 Introduction

In the verifiable computation (VC) problem, we have a computationally weak
device (client) who wishes to compute a complex function f on an input x. The
client is too weak to compute f on its own and so it delegates the computation
to a computationally strong server. However, the client does not trust the server
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and therefore would like to be able to verify the correctness of the computation
without investing too much resources. One may also consider a stronger variant
of the problem in which, in addition to the ability to detect arbitrary errors,
the client should be able to correct the errors as long as the server is somewhat
correct with respect to some predefined distribution over the inputs. This cor-
responds to the scenario where the server, or alternatively a program locally
run by the client, makes “unintentional” errors on some fraction of the inputs
(e.g., due to implementation bugs). Still, a malicious server should not be able
to fool the client to accept an erroneous answer. We refer to this variant as the
correctable verifiable computation (CVC) problem.

VC and CVC are fundamental problems which were extensively studied in
various settings, originating from the early works on interactive proofs [4,21]
and program checking [7,9,28]. Recent advances in technology further motivate
these problems. On the one hand, computationally weak peripheral devices such
as smart phones and netbooks are becoming increasingly common; on the other
hand, the increasing use of distributed computing over the internet also makes
strong servers more commonly available. Indeed, the growing volume of out-
sourcable computation in the form of “cloud computing” or in projects like
SETI@Home has attracted a renewed interest in the VC problem, and a con-
siderable amount of research was devoted to these problems in the last few
years [22,18,19,20,15,11]. See [20,15] for further discussion of applications as well
as a survey of related work.

In this work, we present new general approaches for solving the VC and CVC
problems, as well as the related problems of program checking and self-correcting.
Our approaches employ variants of secure multi-party computation (MPC), con-
verting their secrecy features into soundness by making additional use of basic
cryptographic primitives such as message authentication codes (MACs) and sym-
metric encryption. By instantiating these general approaches we obtain several
improvements over previous results in this area. We stress that the idea of em-
ploying secrecy in the context of verification is not unique to our work. This idea
can be traced back to the first works on interactive proofs and program check-
ing [4,21,7,28] and is also implicit in more recent works in the area [18,19,15,11].
Our work provides new approaches for converting secrecy into soundness that
have advantages of generality, efficiency, and simplicity over previous approaches.

1.1 Background

Before introducing our new approaches to VC, we review some of the relevant
notions and previous approaches.

MPC and related primitives. A protocol for secure two-party computation [32,17]
allows two parties, each holding a private input xi, to compute a function on
their joint input without revealing any additional information to each other. That
is, the first (resp., second) party learns the output of some predefined function
f1(x1, x2) (resp., f2(x1, x2)) without learning any additional information about



154 B. Applebaum, Y. Ishai, and E. Kushilevitz

x2 (resp., x1). Unless otherwise mentioned, we only require computational secu-
rity against semi-honest parties who operate as instructed by the protocol (but
may try to learn additional information from the messages they observe), and
make no secrecy or correctness requirements in the presence of malicious parties.

We will be interested in secure protocols in which one of the parties is re-
stricted in its computational resources in a way that prevents it from computing
the output on its own, even when given the entire input. Such restrictions may
include bounds on sequential or parallel time (either with or without preprocess-
ing), on space complexity, on arithmetic circuit complexity, etc. We will refer to
the weak party as the client and to the strong party as the server. In contrast
to the typical study of feasibility questions in the area of secure computation,
in the context of restricted clients it makes sense to consider even functions for
which only the client holds an input, as well as protocols for such functions
with perfect or statistical rather than computational security. (The existence of
statistically secure two-party protocols can be ruled out for almost all natural
functions which depend on both inputs.)

A client-server protocol in which only the client has an input and gets an
output is called an instance-hiding (IH) protocol [1,5]. For simplicity, we will
mainly restrict the attention to one-round (or two-message) IH protocols which
consist of a single “query” from the client to the server followed by a single
“answer” from the server to the client. A natural extension to multi-round IH
protocols is deferred to the full version.

Central to this work is a different (and in some sense more stringent) variant
of client-server protocols, in which only the client has an input x but both parties
learn the same output f(x). One-round protocols of this type coincide with the
notion of randomized encoding from [23,3]. A randomized encoding (RE) of f

is a function f̂(x; r) whose output on a uniformly random and secret r can
be used to decode f(x) but reveals no additional information about x. In the
corresponding client-server protocol, the client picks r at random and sends the
encoded output f̂(x; r) as a query to the server; the server decodes the output
f(x) and sends it back as an answer to the client. In the full version, we discuss
applications of an interactive variant of this primitive, referred to as interactive
randomized encoding (IRE).1 RE and IRE protocols can be easily converted into
IH protocols with the same number of rounds by modifying the function f to
compute an encryption of the output under a secret key selected by the client.
A similar transformation in the other direction seems unlikely. As a notable
example, the existence of a fully homomorphic encryption scheme [16] implies
a one-round IH protocol for any polynomial-time computable f in which the
client’s time complexity grows only linearly with the input length, whereas the
existence of similar RE protocols is an open problem.

Note that for all of theabove typesof client-serverprotocols,wearenot concerned
withprotecting theprivacyof the server, since the serverhasno input.We can there-
fore assume, without loss of generality, that an honest server is deterministic.

1 This generalization is somewhat subtle in that it involves a nontrivial security re-
quirement against a malicious server; see full version for details.
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The traditional approach for VC. The literature on program checking and in-
teractive proofs already makes an implicit use of a general transformation from
IH to VC.2 For simplicity, we restrict the attention to one-round IH protocols.
The basic idea is roughly as follows. The client uses the IH protocol to compute
f(x) while hiding the input x from the server, except that it randomly mixes the
“real” IH query with an appropriately-distributed random query whose correct
answer is somehow known (more on this below). The client accepts the output
obtained from the real IH instance only if the server’s answer on the dummy
query is identical to the precomputed answer. By the hiding property, the server
cannot distinguish the real query from the dummy one, and so a cheating server
will be caught with probability 1

2 . (The soundness can be amplified via repeti-
tion.) More formally, this approach requires two building blocks: (1) a one-round
IH protocol, in which the client efficiently maps x to a query x̂ such that, given
the server’s answer g(x̂) (together with the client’s randomness), it is possible
to efficiently recover f(x); and (2) a solved instance generator (SIG): an efficient
way for generating a random instance r for g (under the distribution defined by
the client’s query in the IH scheme) together with its solution g(r).

We summarize the advantages and disadvantages of the SIG+IH approach.
On the positive side, IH is a relatively liberal notion which is implied by secure
computation in the semi-honest model, and SIG is easy in many cases, e.g.,
it is given “for free” if polynomial-time preprocessing is allowed before each
real query. (See [11] for a the usefulness of this approach when applied with
IH based on fully homomorphic encryption, and [15,11] for the further use of
fully homomorphic encryption towards reusable preprocessing.) On the negative
side, SIGs are not always easy to construct (for instance, the absence of parallel
SIGs significantly complicated the parallel checkers of [19] and prevented [19]
from achieving highly parallel correctors for, say, log-space complexity classes).
Another disadvantage of the SIG+IH approach has to do with the overhead
of soundness amplification: in order to achieve soundness error of 2−τ , the VC
protocol needs to invoke the IH and SIG protocols Ω(τ) times.

1.2 Our Solutions

Motivated by the above disadvantages of the traditional approach, we present
two new approaches for transforming variants of MPC into VC or CVC.

Construction 1: VC from RE+MAC. Our first approach is based on a novel com-
bination of an RE (or IRE protocol) with a private-key signature scheme (also
known as message authentication code or MAC). Unlike previous approaches,
we employ secrecy in order to hide the MAC’s secret key, rather than the inputs
of the computation. The idea is as follows: Given an input x, the client asks the
server to compute y = f(x) and, in addition, to generate a signature on f(x)
under a private key k which is chosen randomly by the client. The latter request
is computed via an RE protocol that hides the private key from the server. More
2 The following formulation is similar to the one from Section 1.2 of [18];

see [9,14,19,11] for other variants and applications of this approach.
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precisely, the client who holds both x and k, invokes an RE such that both par-
ties learn the function g(x, k) = MACk(f(x)). The client then accepts the answer
y if and only if the result of the protocol is a valid signature on y under the
key k. The soundness of the protocol follows by showing that a cheating server,
which fools the client to accept an erroneous y∗ �= f(x), can be used to either
break the privacy of the RE or to forge a valid signature on a new message.
For this argument to hold, it is crucial for the RE to be secure in the follow-
ing sense: a malicious server should not be able to force an erroneous output
which violates privacy; that is, one should be able to simulate erroneous outputs
solely based on the correct outputs. In the case of RE (where there are only
two messages), this requirement follows automatically from the basic secrecy re-
quirement against a semi-honest server. In the interactive setting, we show that
such useful IRE protocols can be extracted from various MPC protocols that
appear in the literature.

Note that the above approach eliminates both of the disadvantages of the
SIG+IH approach mentioned above, at the expense of replacing IH with the
stronger RE primitive and (slightly) increasing the complexity of the function f
by applying a MAC computation to its output.

Construction 2: CVC from RE + One-time pad. The previous construction does
not seem to apply to the case of CVC. Our second construction yields a CVC
protocol and, as can be expected, is somewhat less efficient. The starting point is
the well-known CVC version of the SIG+IH approach [9]. In this version, dummy
IH queries obtained via SIG are mixed with (randomized) IH queries for the real
instance. The client first verifies that most of the dummy queries were answered
correctly, and then outputs the majority vote of the outputs obtained from the
real answers. Our main goal here is to eliminate the need for SIG primitive.
The idea is to generate the dummy queries by applying the IH to some default
input x0 whose image y0 = f(x0) is known, and compare the outputs obtained
from these dummy queries to the known output y0. (The fixed value of y0 can be
“wired” into the description of the client and used in all subsequent invocations.)
By the hiding property the messages of the client are distributed according to
some fixed universal probability distribution D which does not depend on the
actual input. By using standard concentration bounds, one can show that the
client will correct the errors of a “buggy” (rather than malicious) server which
doesn’t err too much over messages drawn from D. Intuitively, the privacy of
the IH protocol also prevents a malicious server from cheating, as such a server
cannot distinguish between a “dummy” query to a “real” one, and therefore a
cheating behavior will be be detected (whp). However, this intuition is inaccurate
as, in general, even if the server cannot distinguish dummy queries from real ones,
it might be able to apply the same strategy to all the queries such that errors will
be generated only in the real queries.3 Fortunately, this can be fixed by requiring

3 Consider, for example, an IH in which a client whose input equals to the all zero
string, ignores the server’s answers and outputs f(0). A CVC protocol which makes
use of such an IH together with x0 = 0 can be trivially broken by a malicious server
which sends erroneous answers.
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an additional sensitivity property: any erroneous message of the server should
lead to an erroneous answer of the client. To achieve this property, we combine
an RE protocol with a one-time pad encryption scheme. That is, we employ an
RE for the function g(x, k) = k ⊕ f(x) where k is used as a one-time pad. The
use of one-time pad transforms the RE to a “sensitive” IH.

Compared to the traditional approach, the above approach eliminates the
need for SIG at the expense of strengthening the IH primitive.

2 Applications

By instantiating our generic approaches, we derive new constructions of VC and
CVC protocols in several settings.

2.1 Online/Offline Non-Interactive VC

In the online/offline setting [20,15], the client can afford to invest a lot of com-
putational resources in a preprocessing phase before seeing the actual input x,
but only a small amount of computational resources after x is known. (Imagine
a smart card which is initialized in a secure environment and later operates in
a hostile environment with an untrusted server.) Since communication may also
be limited, especially for weak devices, we would like the protocol to be non-
interactive. That is, in the offline phase the client should perform some (possibly
expensive) computation and send the result (the “public-key”) to the server or
publish it somewhere.4 In the online phase, when the client obtains its input x,
it should send a single computationally-cheap message to the server. The server
then computes the result without any intermediate interaction with the client,
which in the meantime can be disconnected from the network. At the end of the
computation, the server publishes an answer. Based on this answer, the client
recovers the result y = f(x) or announces an error in the case of a cheating
server.

We would like to minimize the client’s online time complexity ideally to be
only linear in the input and output length of f . We also require the complexity
of the server to be polynomial in the time complexity of f . There are only
few known solutions that yield almost optimal non-interactive VCs (NIVCs)
for general Boolean functions. These include the constructions of Micali [30]
in the random oracle model, the construction of Goldwasser et al. and Kalai
and Raz [20,26] for low-depth circuits, and the recent construction by Gennaro
et al. [15] for polynomial-size Boolean circuits which relies on the existence of
one-way functions.

4 In a concurrent and independent work, Chung, Kalai, and Vadhan [11] obtain a
qualitatively stronger type of non-interactive VC protocols, where the offline pre-
processing phase can only involve a local computation performed by the client with
no additional interaction. The applications we present only apply to the weaker
model of non-interactive VC, but obtain better online efficiency in this model.
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While these constructions provide good solutions for binary computations,
they suffer from large overhead in the case of arithmetic computations. Indeed,
a client who wishes to delegate a computational task which should be performed
over non-binary domains such as the integers, finite-precision reals, matrices, or
elements of a big finite ring, has no choice but to translate the computation
into a binary circuit and then apply one of the above solutions. This results in
large computational and communication overhead which heavily depends on the
exact structure of the underlying ring.5 A much more satisfactory solution would
be to describe the computation in an arithmetic model in which computational
operations are performed over some ringR and then employ an arithmetic NIVC.
More formally, we would like to have a protocol in which both the server and the
client only have a black-box access to R. This black-box access enables the client
and server to perform ring operations and sample random ring elements, but the
correspondence between ring elements and their identifiers (or even the exact
size of the ring) will be unknown to the algorithms. The black-box ring model
allows to abstract away the exact structure of the underlying ring, and thus to
obtain protocols in which the number of ring operations does not depend on the
actual algebraic structure of R. Unfortunately, all the above constructions do
not seem to achieve such a result. The reason is that the main tools employed
by these constructions (i.e., PCP machinery in the case of [30,20], and Yao’s
garbled circuit [32] in the case of [15]) do not seem to work in the arithmetic
black-box model, even for the special case of black-box fields.

Our results. We obtain NIVCs in the black-box ring model for arithmetic branch-
ing programs [6] (ABPs) which are the arithmetic analog of log-space counting
classes.6

Theorem 1 (informal). Assuming the existence of one-way functions, there
exists a NIVC in the BBR model with perfect completeness and computational
soundness error neg(τ) where τ is the security parameter. The complexity of the
offline phase and the server’s complexity are poly(s, τ), the time complexity of
the online phase is O(nτ) at the query step and O(τ) at the verification step,
where n is the input length, and s is the size of the ABP.

To the best of our knowledge, this is the first construction of VC in the black-
box arithmetic model, even for the case of black-vox fields and even if many
rounds of interaction are allowed. The main ingredient is a new construction of
arithmetic REs with low online complexity (which is based on [24,12]). The NIVC
is obtained by plugging this RE (together with black-box arithmetic MAC) into
our RE+MAC approach.

Optimized and simplified NIVC for Boolean circuits. As an additional applica-
tion, we simplify the recent online/offline NIVC of Gennaro, Genty and Parno [15]
5 For example, even in the case of finite fields with n-bit elements, the size of the best

known Boolean multiplication circuits is ω(n log n); the situation is significantly
worse for other useful rings, such as matrix rings.

6 Such programs are quite expressive and are capable of emulating arithmetic formu-
las.
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as well as improve its online efficiency. Specifically, GGP constructed a NIVC for
every polynomial-size circuit f : {0, 1}n → {0, 1}m with low online complexity
as well as low amortized offline complexity. This is achieved in two steps. First,
a basic NIVC with low online complexity is constructed by relying on special
properties of Yao’s garbled circuit (GC) construction and, then, a fully homo-
morphic encryption scheme is used to reduce the amortized complexity of the
offline phase. Our version of the basic protocol follows immediately by instanti-
ating the RE+MAC approach with computationally-sound RE based on GC [2].
This leads to the following theorem:

Theorem 2 (informal). Assuming the existence of one-way functions, every
function f : {0, 1}n → {0, 1}m of circuit size s, can be realized by a NIVC with
perfect completeness, computational soundness error of neg(τ) + 2−σ (where τ
and σ are computational and statistical security parameters, respectively), and
complexity as follows. Client: Offline complexity O(s · τ + σ), and online com-
plexity of O(n · τ) at the query step, and O(m + σ) at the verification step.
Server: complexity of O(s · τ + σ).

This theorem simplifies and slightly improves the efficiency of the basic GGP
scheme. Simplification comes from the fact that we do not need to rely on any
specific properties of Yao’s encoding other than its standard security and the
well known ability to break the computation of the GC into an offline phase
and a cheap online phase. Moreover, we also get an efficiency advantage: in the
online phase of the GGP protocol the client needs to get an encryption key for
each bit of the output. Hence, both the communication and computation com-
plexity at the verification stage are O(mτ) where τ is a computational security
parameter. In our case, the client needs to get (in addition to the output) only
a short certification string of size σ, where σ is a statistical security parameter,
and so the complexity is O(m + σ). This difference can be significant for com-
putations in which the output is much longer than the input (and shorter than
the circuit size). For instance, think of image processing algorithms which return
“enhanced” versions of low-quality pictures or movies.7 Finally, we observe that
the second step of the [15] construction in which the offline complexity is be-
ing amortized forms a general transformation and so it can be used to amortize
the offline stage of our construction as well. (A similar observation was made
independently and concurrently by [11].)

Program checking and correcting. In the setting of program checking [7,9],
one would like to have a VC protocol for a function f in which the power of the
honest server is limited: it can only compute the function f itself. That is, the
honest server always responds to a message q by the message f(q). Such a VC

7 One thing to note, though, is that if the client already knows a candidate y for f(x)
(obtained either from the server or from some other source) then the GGP approach
can be applied for the boolean function g(x, y) which verifies that y = f(x). In such
a case, the communication to the client will only be m + O(τ ), but the online
communication to the server grows asymptotically when y is longer than x.
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protocol is called program self-checker.8 Indeed, a checker can be used to check
the correctness of a possibly faulty program for f on a given input, by letting
the program play the role of the server. Similarly, a CVC in which the server
can be implemented by f is called a self-tester/corrector pair, as it allows to test
whether a given program is not too faulty, and if so to correct it.

Minimizing the parallel complexity. Rubinfeld [31] initiated the study of the par-
allel complexity (circuit depth) of program checkers and correctors, and showed
that some non-trivial functions can be checked by AC0 checkers (i.e., con-
stant depth circuits with AND and OR gates of unbounded fan-in). Goldwasser
et al. [19] proved several surprising results about the parallel complexity of pro-
gram checking and correcting. Among other things, they showed that a rich
family of combinatorial and algebraic languages, namely, all the complete lan-
guages in the complexity classes NC1,⊕L/poly,ModkL/poly, can be checked
in NC0 (i.e., by constant depth circuits with bounded-fan in gates) and cor-
rected in AC0.9 We improve this result by showing that all these languages can
be also corrected in NC0:

Theorem 3 (informal). Every language which is complete for one of the com-
plexity classes NC1,⊕L/poly,ModkL/poly under NC0 Karp reductions can be
checked, tested and corrected by an NC0 client with perfect completeness and
(arbitrarily small) constant statistical soundness error. Correction succeeds with
arbitrary large constant probability (say 2/3) as long as the server’s error prob-
ability is bounded away from 1/2 (e.g., 1/3).

Furthermore, our corrector (and checker) only makes a constant number of calls
to the program in a non-adaptive way. This is contrasted with the constructions
of [19] which make an adaptive use of the program even in the case of checkers.
(This difference seems to be inherent to the “composition approach” of [19] which
breaks the computation to subroutines and checks them by sub-checkers.) As a
concrete example of our improvement, consider the function Det which computes
the determinant of an n×n matrix over a field Fp of fixed prime order. Since Det
is complete for the class ModpL/poly [29], we can get an NC0 tester/correcter
for the determinant over any fixed finite field which makes a constant number
of calls to the program. Previous correctors either had polynomial depth [9], or
were implemented in AC0 and made large (non-constant) number of calls to the
program [19]. (See [19, Table 1]). Our constructions are obtained by instantiating
the RE+OTP approach with the NC0 REs of [3].

Additional properties. We mention that most of our protocols satisfy additional
useful properties. For example, we can add input-privacy and allow the client
(or checker) employ the program without revealing its input. In some cases, we

8 In fact, the notion defined here is slightly stronger than the original definition of [7],
and corresponds to adaptive checkers as in [8].

9 Recall that there is a considerable gap between these two classes, as in NC0 circuits
each bit of the output depends only on a constant number of input bits; thus, an
NC0 circuit cannot compute even an n-bit AND gate.
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can also add a form of zero-knowledge property: the client learns only the value
f(x) and no other additional information that she cannot compute by herself
using her own weak resources. This may be useful when the server is getting paid
for his work and does not want to be abused and supply additional computation
services for free during the VC protocol. These extensions are deferred to the
full version.

3 Verifiable computation from RE and MAC

3.1 Definitions

Message Authentication Codes. A one-time message authentication code (MAC)
is an efficiently computable function MAC : M×K → C which maps a message
x ∈ M and a random secret key k ∈ K to a signature σ = MACk(x) ∈ C. A MAC
is statistically secure with error ε if for every x ∈ M and every computationally
unbounded adversary A, Prk[A(x, MACk(x)) = (y, MACk(y)) ∧ (y �= x)] ≤ ε.

Verifiable Computation. A verifiable computation protocol (VC) for a function
f with soundness error 0 ≤ ε ≤ 1 is an interactive protocol between a client C
and a server P such that (1) perfect completeness10: for every input x the client
outputs f(x) at the interaction (C,P )(x) with probability 1; and (2) soundness:
for every input x of the client and every cheating P ∗, we have Pr[(C,P ∗)(x) /∈
{f(x),⊥}] ≤ ε, where ⊥ is a special “rejection” symbol and the probability is
taken over the coin tosses of the client C. If P ∗ is restricted to be a polynomial-
size circuit then the protocol is computationally sound.

Randomized Encoding [23,3]. A randomized encoding (RE) for a function f is a
non-interactive protocol in which the client uses its randomness r and its input
x to compute a message ŷ = f̂(x; r) and sends it to the server, who responds
by applying a decoder algorithm B to ŷ, recovers f(x) and sends it back to
the client. The protocol should satisfy: (1) perfect completeness (as in VC); and
(2) ε-privacy: There exists a simulator S∗ such that for every x the distribution
S∗(1|x|, f(x)) is at most ε-far (in statistical distance) from the distribution of the
client’s message f̂(x; r). Computational privacy is defined by restricting S∗ to be
a polynomial-size circuit and replacing statistical distance with ε-computational
indistinguishability.

3.2 Our Reduction

Our protocol is described in Figure 1.
The following lemma (whose proof is deferred to the full version) holds both

in the statistical and computational setting:
10 Due to space limitations, we always assume that protocols have perfect completeness.

Our results hold in the more general setting where protocols have some completeness
error δ.
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– Primitives: MAC MAC, and RE ĝ for g(k, x) = MACk(f(x)).
– Client’s input: x ∈ {0, 1}n.

1. Client: Client chooses a random key k for MAC, and random coins r and sends
x together with the encoding ĝ((k, x); r).

2. Server: Applies the decoder of ĝ((k, x); r) and sends the result z together
with y = f(x).

3. Client: Accepts y if MACk(y) equals to z.

Fig. 1. A verifiable computation protocol for f based on a RE for g(k, x) = MACk(f(x))

Lemma 1. Suppose that the RE and MAC have privacy errors of ε and ε′,
respectively. Then, the above protocol is a VC for f with soundness error ε+ ε′.

Proof (sketch). Fix a cheating server P ∗ and an input x∗. Let α be the proba-
bility that the client accepts some y �= f(x∗). We show that α ≤ ε+ ε′. Consider
the following attack on the MAC. Given x∗ we compute f(x∗) and ask for a sig-
nature MACk(f(x∗)), where k is an unknown uniformly chosen MAC key. Then,
we will use the RE simulator to simulate the encoding of MACk(f(x)) up to dis-
tance ε and send the result together with x to P ∗. Finally, output the pair (y, z)
generated by P ∗. Since the view of the adversary is ε-close to the view of P ∗ in
a real interaction, the attack succeeds with probability at least α− ε, which by
the security of the MAC should be at most ε′. It follows that α ≤ ε + ε′.

Acknowledgements. We thank Guy Rothblum for useful discussions, and Yael
Tauman Kalai for sharing with us a copy of [11].
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Abstract. A data structure is presented for the Mergeable Dictionary
abstract data type, which supports the operations Predecessor-Search,
Split, and Merge on a collection of disjoint sets of totally ordered data.
While in a typical mergeable dictionary (e.g. 2-4 Trees), the Merge op-
eration can only be performed on sets that span disjoint intervals in
keyspace, the structure here has no such limitation. A data structure
which can handle arbitrary Merge operations in O(log n) amortized time
in the absence of Split operations was presented by Brown and Tarjan [2].
A data structure which can handle both Split and Merge operations in
O(log2 n) amortized time was presented by Farach and Thorup [4]. In
contrast, our data structure supports all operations, including Split and
Merge, in O(log n) amortized time, thus showing that interleaved Merge
operations can be supported at no additional cost vis-à-vis disjoint Merge
operations.

Keywords: data structures, amortized analysis.

1 Introduction

Consider the following operations on a data structure which maintains a dynamic
collection S of disjoint sets {S1, S2, . . .} which partition some totally ordered
universal set U :

– p ← Search(S, x): Returns the largest element in S that is at most x.
– (A,B) ← Split(S, x): Splits S into two sets A = {y ∈ S | y ≤ x} and

B = {y ∈ S | y > x}. S is removed from S while A and B are inserted.
– C ← Merge(A,B): Creates C = A ∪ B. C is inserted into S while A and

B are removed.

We call a data structure that supports these operations a Mergeable Dictionary.
In this paper we present a data structure, which implements these operations
in amortized time O(logn), where n is the total number of items in U . What
makes the concept of a Mergeable Dictionary interesting is that the Merge
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operation does not require that the two sets being merged occupy disjoint in-
tervals in keyspace. A data structure for merging arbitrarily interleaved sets has
been presented by Brown and Tarjan [2]. While their structure has an amor-
tized time complexity of O(logn) when the Split operation is excluded, in the
presence of the Split operation, the amortized time complexity of the structure
becomes Ω(n). A data structure also supporting the Split operation has ap-
peared independently in the context of Union-Split-Find, Mergeable Trees, and
string matching in Lempel-Ziv compressed text. In all three cases, a o(log2 n)
bound on mergeable dictionary operations could not be achieved. We present a
data structure that is able to break through this bound with the use of a novel
weighting scheme applied to an extended version of the Biased Skip List data
structure [1]. We first present a high-level description of the core data structure
of the previous work.

1.1 High-Level Description

The basic idea of the structure is simple. Store each set using an existing dictio-
nary that supports Search, Split, and Join

1 in O(log n) time (e.g. 2-4 trees).
Thus, the only operation that requires a non-wrapper implementation is Merge.
One first idea would be to implement Merge in linear time as in Merge-Sort,
but this performs poorly, as one would expect. A more intelligent idea is to use
a sequence of searches to determine how to partition the two sets into sets of
segments that span maximal disjoint intervals. Then, use a sequence of Splits
to split each set into the segments and a sequence Join operations to piece to-
gether the segments in sorted order. As the number of segments between two sets
being merged could be Θ(n), the worst-case runtime of such an implementation
is O(n log n), even worse than the O(n) of a brute-force merge. However, it is
impossible to perform many Merges with a high number of segments, and an
amortized analysis bears this out; there are only O(log n) amortized segments
per Merge. Thus, since each segment can be processed in O(log n) time, the
total amortized cost per Merge operation is O(log2 n).

In [8], it was shown that there are sequences of operations that have Θ(log n)
amortized segments per Merge. This, combined with the worst-case lower bound
of Ω(log n) for the operations needed to process each segment seemingly gives
a strong argument for a Ω(log2 n) lower bound, which was formally conjectured
by Lai [8]. It would appear that any effort to circumvent this impediment would
require abandoning storing each set in sorted order. We show this is not nec-
essary, as a weighting scheme allows us finesse the balance between the cost of
processing each segment, and the number of segments to be processed; we, in
essence, prevent the worst-case of these two needed events from happening simul-
taneously. Our scheme, combined with an extended version of Biased Skip Lists,
allows us to speed up the processing of each segment to O(1) when there are
many of them, yet gracefully degrades to the information-theoretically mandated
Θ(log n) worst-case time when there are only a constant number of segments.

1
Join merges two sets but requires that the sets span disjoint intervals in keyspace.
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The details, however, are numerous. In Section 3 we discuss Biased Skip Lists
how we extend them. Given this, in Section 4 a full description of our structure
is presented, and in Section 5 the runtime is analyzed. Due to space constraints,
some of the technical details are deferred to the full version of the paper [7].

1.2 Relationship to Existing Work

The underlying problem addressed here has come up independently three times
in the past, in the context of Union-Split-Find [8], Mergeable Trees [6, 5], and
string matching in Lempel-Ziv compressed text [4]. All three of these results,
which were initially done independently of each other, bump up against the
same O(log2 n) issue with merging, and all have some variant of the O(log2 n)
structure outlined above at their core. While the intricacy of the latter two
precludes us claiming here to reduce the squared logarithmic terms in their
runtimes, we believe that we have overcome the fundamental obstacle towards
this improvement.

2 The Heuristic Yielding the O(log2 n) Amortized Bound

We will describe a heuristic for the Merge operation presented in [3] and used
in previous work [6,5,8], and show that the use of this heuristic yields O(log2 n)
amortized bounds as a warm up.

2.1 The Segment Merging Heuristic

Define a segment of the Merge(A,B) operation to be a maximal subset S of
either set A or set B such that no element in (A ∪ B) \ S lies in the inter-
val [min(S),max(S)]. Each set in the collection is stored as a balanced search
tree (i.e. 2-4 tree) with level links. The Find, Search, and Split operations
are implemented2 in a standard way to run in O(log n) worst-case time. The
Merge(A,B) operation is performed as follows: first locate the minimum and
maximum element of each segment of the Merge(A,B) operation using the
Search operation and the level links, then extract all these segments using the
Split operation, and finally we merge all the segments in the obvious way us-
ing the standard Join operation. Therefore since each operation takes O(log n)
worst-case time, the total running time is O(T · logn) where T is the number
of segments. We now analyze all the operations using the potential method [10],
with respect to two parameters: n = |U|, and m, the total number of all oper-
ations. Let Di represent the data structure after operation i, where D0 is the
initial data structure. Operation i has a cost of ci and transforms Di−1 into
Di. We will define a potential function Φ : {Di} → R such that Φ(D0) = 0 and
Φ(Di) ≥ 0 for all i. The amortized cost of operation i, ĉi, with respect to Φ is de-
fined as ĉi = ci +Φ(Di)−Φ(Di−1). The total amortized cost of m operations will

2 See [8] for a detailed description of this implementation.
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be
∑m

i=1 ĉi =
∑m

i=1(ci+Φ(Di)−Φ(Di−1)) =
∑m

i=1 ci+Φ(Dn)−Φ(D0) ≥
∑m

i=1 ci

since Φ(Dn) ≥ 0 and Φ(D0) = 0. Thus, the amortized cost will give us an upper
bound on the worst-case cost.

Next, we describe a potential function which yields an amortized bound of
O(log2 n) on the running time. This potential function was essentially used in
[6, 5,4] which are the only instances where a o(n) solution has been presented.

2.2 The Potential Function

We need to define some terminology before describing the potential function. Let
posS(x) be the position of x in set S, or more formally posS(x) = |{y ∈ S | y ≤
x}|. Then gS(k), the size of the kth gap of set S, is the difference of positions
between the element of position k and k + 1 of set S in universe U . In other
words, gS(k) = posU (x)− posU (y) where posS(x) = k and posS(y) = k + 1. For
the boundary cases, let gS(0) = gS(|S|) = 1. Recall that Di is the data structure
containing our dynamic collection of disjoint sets, S(i) = {S(i)

1 , S
(i)
2 , . . .} after the

ith operation. Then let ϕ(S) =
∑|S|−1

j=1 log gS(j). Finally, we define the potential
after the ith operation as follows: Φ(Di) = κa ·

∑
S∈S(i) ϕ (S) logn where κa

is a positive constant to be determined later. Note that since the collection of
sets initially consists of the n singleton sets, the data structure initially has 0
potential (Φ(D0) = 0). Furthermore, because any gap has size at least 1, the
data structure always has non-negative potential (Φ(Di) ≥ 0, ∀i ≥ 0).

2.3 The Amortized O(log2 n) Bound

The Search, and Split operations have worst-case O(log n) running times.
The Search operation does not change the structure and therefore does not
affect the potential. Observe that the Split operation can only decrease the po-
tential. Thus, the amortized cost of these operations is O(log n). Now, suppose
the ith operation is Merge(A,B) where A and B are sets in Di−1. Assume
w.l.o.g. that the minimum element in A ∪ B is an element of A. Let I(A,B) =
{A1, B1, A2, B2, . . .} be the set of segments of operation Merge(A,B), where
max(Ai) < min(Aj) and max(Bi) < min(Bj) for i < j, and max(Ai) < min(Bi)
< max(Bi) < min(Ai+1) for all i. As previously noted, the worst-case cost of
the Merge operation is O(|I(A,B)| · logn). Let ai be the size of the gap be-
tween the maximum element of Ai and the minimum element of Ai+1, or more
formally let ai = gAi∪Ai+1(|Ai|). Define bi similarly. Now, let a′i = gAi∪Bi(|Ai|)
a′′i = gBi∪Ai+1(|Bi|) and b′i = gBi∪Ai+1(|Bi|) b′′i = gAi+1∪Bi+1(|Ai+1|) Note that
a′′i = b′i and a′i = b′′i−1. During the analysis we will take into account whether
|I(A,B)| is odd or even. Let σ = |I(A,B)| mod 2 and R = �(|I(A,B)| − 2)/2�.
We have ĉi = ci+Φ(Di)−Φ(Di−1) where Φ(Di−1) =

∑
S∈S\{A,B} ϕ(S)κa logn+

(
∑

i ϕ(Ai) +
∑

i ϕ(Bi))κa logn +
(∑R

i=1(log ai + log bi) + σ log aR+1

)
κa logn,

and Φ(Di)=
∑

S∈S\{A,B} ϕ(S)κa logn+(
∑

i ϕ(Ai) +
∑

i ϕ(Bi) + log a′1)κa logn

+ 1
2

(∑R
i=1

(
log a′′i +log b′i + log b′′i + log a′i+1

)
+ σ

(
log a′′R+1 + log b′R+1

))
κa logn.



168 J. Iacono and Ö. Özkan

This gives us Φ(Di) − Φ(Di−1) ≤ 1
2

(∑R
i=1 log a′′i b

′
ib
′′
i a
′
i − 2 log aibi

)
k logn +

O(log2 n) ≤ −k′ · I(A,B)k logn+O(log2 n). This combined with the actual cost
of the Merge operation yields the O(log2 n) amortized cost for Merge. Thus,
the amortized cost of the Merge operation is O(log2 n). Combined with the
arguments before, this gives us the following theorem:
Theorem 1. The Mergeable Dictionary problem can be solved such that a se-
quence of m Search, Split, and Merge operations can be executed in
O(m log2 n) worst-case time.

3 Biased Skip Lists with Extended Operations

Biased skip lists [1] are a variant of skip lists [9] which we assume the reader is
familiar with. In order to be able to design a highly tuned Merge operation,
we will extend biased skip lists to support finger split, finger join, and finger
reweight operations. First, we describe the essential details of biased skip lists3.

3.1 Biased Skip Lists

We will first cover basic definitions followed by the three key invariants of the
structure.

Definitions. A biased skip list (BSL) S stores an ordered set X where each
element x ∈ X corresponds to a node4 x ∈ S with weight w(x), which is user-
defined, and integral height h(x), which is initially computed from the weight of
the node. For our purposes, we will assume that the weights are bounded from
below by 1 and bounded from above by a polynomial in n. Each node x ∈ S is
represented by an array of length h(x)+1 called the tower of node x. The level-j
predecessor, Lj(x), of x is the largest node k in S such that k < x and h(k) ≥ j.
The level-j successor, Rj(x), is defined symmetrically. The jth element of the
tower of node x, contains pointers to the jth elements of towers of node Lj(x)
and node Rj(x) with the exception of towers of adjacent nodes where pointers
between any pair of adjacent nodes x and y on level min(h(x), h(y)) − 1 are
nil and the pointers below this level are undefined. Node levels progress from
top to bottom. Two distinct elements x and y are called consecutive if and only
if they linked together in S; or equivalently if and only if for all x < z < y,
h(z) < min(h(x), h(y)). A plateau is a maximal set of consecutive nodes of the
same height. The rank of a node x is defined as r(x) = �loga w(x)� where a is a
constant. For our purposes, we will set a = 2. Additionally, let predX(x) be the
predecessor of x in set X , and let succX(x) be the successor of x in set X . Let
H(X) = maxx∈X h(x). Let S[←�j] = {x ∈ S |x ≤ j} and S[j�] = {x ∈ S |x > j}.
Let W (S) =

∑
x∈S w(x). Also let W[i,j](S) =

∑
x∈S;i≤x≤j w(x). For convenience,

we imagine sentinel nodes −∞ and +∞ of height H(S) at the beginning and
end of biased skip list S. These sentinels are not actually stored or maintained.
3 The reader is referred to [1] for further details on biased skip lists.
4 We will use the terms “element”, “node”, “key”, and “item” interchangeably; the

context clarifies any ambiguity.
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Invariants. The three invariants of biased skip lists are listed below. Note that
a and b can be suitable constants satisfying the definition of (a, b)-biased skip
lists. For our purposes it is sufficient to set a = 2, b = 6.

Definition 1. For any a and b such that 1 < a ≤ � b
3�, an (a, b)-biased skip list

is a biased skip list with the following properties:

(I0) Each item x has height h(x) ≥ r(x).
(I1) There are never more than b consecutive items of any height.
(I2) For each node x and for all i such that r(x) < i ≤ h(x), there are at least a

nodes of height i− 1 between x and any consecutive node of height at least i.

In the remainder of the paper, we will refer to (2, 6)-biased skip lists simply as
biased skip lists.

3.2 Operations

We now describe the original biased skip list operations we will be using in our
data structure.

– p ← BslSrc(S, i): Performs a standard search in biased skip list S using
search key i. This operation runs in worst-case O(logn) time.

– p ← BslFSrc(i,j): Starting from a given finger to a node i in some biased
skip list S performs a predecessor search in S using j as the search key in
O
(
1 + log

W[i,succS(j)](S)
min(w(i),w(predS(j)),w(succS(j)))

)
worst-case time.

– (A,B) ← BslSplit(S, i): Splits the biased skip list S at i into two biased
skip lists A and B storing sets {x ∈ S |x ≤ i} and {x ∈ S |x > i} respec-
tively. This operation runs in worst-case O(logn) time.

– BslRew(S, i, w): Changes the weight of node i ∈ S to w. This operation
runs in worst-case O(log n) time.

3.3 Extended Operations

We now describe the extended biased skip list operations we will be using in our
data structure. Due to limited space, we defer the full treatment of the extended
operations, which have straightforward implementations, to the full version of
the paper [7], and only list the operations here along with their running times.

– (A,B) ← BslFSplit(f): Given a pointer to node f ∈ S, BslFSplit(f)

splits biased skip list S into two biased skip lists, A and B, storing sets
{x ∈ S |x ≤ f} and {x ∈ S |x > f} respectively, and returns an ordered
pair of handles to A and B.

– S ← BslFJoin(	,r): Given pointers to 	 and r, the maximum and minimum
nodes of two distinct biased skip lists A and B respectively, BslFJoin(	,r)
returns a new biased skip list C containing all elements of A and B assuming
	 < r. A and B are destroyed in the process.

– BslFRew(f ,w): Given a pointer to a node f ∈ S, changes its weight to
w while preserving invariants (I0), (I1), and (I2) of the biased skip list
containing f .
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3.4 The Analysis of Extended Operations

We now give upper bounds on the worst-case running times of the extended
operations we described above. The proofs are omitted.

Lemma 1. The (A,B) ← BslFSplit(f) operation, where f ∈ S, has an amor-
tized time complexity of O(min(H(A′), H(B′)) − min(r(max(A′)), r(min(B′)))
+ 1) where A′ = S[←�f] and B′ = S[f�].

Lemma 2. Given a set L0 = {Λ1, Λ2, . . . , Λm} of biased skip lists, a sequence
of (Sk, Tk) ← BslFSplit(fk) operations for 1 ≤ k ≤ t where fk ∈ Uk, Uk ∈
Lk−1, S′k = Uk[←�fk], and T ′k = Uk[fk�] can be executed in worst-case time
O(

∑m
i=1(H(Λi)−min(h(min(Λi)), h(max(Λi)))+1)+

∑t
k=1(min(H(S′k), H(T ′k))

−min(r(max(S′k)), r(min(T ′k))) + 1)).

Lemma 3. The S←BslFJoin(	,r) operation, where 	 ∈ A, r ∈B, has an amor-
tized time complexity of O(min(H(A), H(B))−min(h(max(A)), h(min(B)))+1).

Lemma 4. Given a set L0 = {Λ1, Λ2, . . . , Λm} of biased skip lists, a sequence
of Uk ← BslFJoin(	k,rk) operations for 1 ≤ k ≤ t where 	k ∈ Sk, rk ∈
Tk and Sk, Tk ∈ Lk−1 can be executed in worst-case time O(

∑m
i=1(H(Λi) −

min(h(min(Λi)), h(max(Λi)))+1)+
∑t

k=1(min(H(Sk), H(Tk))−min(h(max(Sk)),
h(min(Tk))) + 1)).

Lemma 5. The BslFRew(f ,w) operation, where f ∈ S, has a worst-case and
amortized time complexity of O(max(H(S), r′(f))−min(h(f), r′(f)) + 1).

Lemma 6. The BslFSrc, BslFSplit, BslFJoin, and BslFRew operations
all have a worst-case time complexity of O(log n).

4 Our Data Structure: The Mergeable Dictionary

The Mergeable Dictionary stores each set in the collection S as a biased skip
list. The weight of each node in each biased skip list is determined by S. When
the collection of sets is modified, for instance via a Merge operation, in order
to reflect this change in the data structure, besides splitting and joining biased
skip lists, we need to ensure the weights of the affected nodes are properly
updated and biased skip list invariants (I0), (I1), and (I2) are preserved. For
simplicity we assume that D0 is the collection of singleton sets. This lets us
precompute, for each node x, posU(x), the global position of x. For the Merge

algorithm, we will use the same basic approach outlined in Section 2, the segment
merging heuristic, which works by extracting the segments from each set and
then gluing them together to form the union of the two sets. Before we discuss
the implementation of each operation in detail, we need to describe the weighting
scheme.
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4.1 Weighting Scheme

Let the weight of a node x, w(x), be the sum of the sizes of its adjacent gaps.
In other words, if posS(x) = k for some node x ∈ S, then we have w(x) =
gS(k− 1)+ gS(k). Recall that gS(0) = gS(|S|) = 1. Observe that this implies for
any set S, W (S) ≤ 2n.

4.2 The Search and Split Operations

The Search(X, i) operation can be performed by simply invoking BslSrc(X, i).
The Split(X, i) operation can be performed by simply invoking BslSplit(X, i)
and running BslFRew on one node in each of the resulting biased skip lists to
restore the weights.

4.3 The Merge Operation

The Merge(A,B) operation can be viewed as having four essential phases:
finding the segments, extracting the segments, updating the weights, and gluing
the segments. A more detailed description follows.

Phase I: Finding the segments. Assume min(A) < min(B) w.l.o.g. Let z =
$|I(A,B)|/2% and v = �|I(A,B)|/2�. Recall that I(A,B) = {A1, B1, A2, B2, . . .}
is the set of segments associated with the Merge(A,B) operation where Ai and
Bi are the ith segment of A and B respectively. We have min(A1) = min(A)
and min(B1) = min(B). Given min(Ai) and min(Bi), we find max(Ai) by in-
voking BslFSrc(min(Ai),min(Bi)). Similarly, given min(Bi) and min(Ai+1) we
find max(Bi) by invoking BslFSrc(min(Bi),min(Ai+1)). Lastly, given max(Ai)
and max(Bi), observe that min(Ai+1) = succA(max(Ai)) and min(Bi+1) =
succB(max(Bi)). Note that the succ() operation is performed in constant time
in a biased skip list using the lowest successor link of a node. At the end of this
phase, all the segments are found. Specifically, we have computed for all i and j
(min(Ai), max(Ai)) and (min(Bj), max(Bj)).

Phase II: Extracting the segments. Since we know where the minimum and
maximum node of each segment is from the previous phase, we can extract all
the segments easily in order by invoking BslFSplit(max(Ai)) for 1 ≤ i < z,
and BslFSplit(max(Bj)) for 1 ≤ j < v.

Phase III: Updating Weights. Next, we need to update the weights of the af-
fected nodes. Let the new weight of item x be w′(x). Then for 2 ≤ i ≤ z, let
w′(min(Ai)) = w(min(Ai)) + posU (max(Ai−1))− posU (max(Bi−1)), for 2 ≤ i ≤
v, let w′(min(Bi)) = w(min(Bi)) + posU (max(Bi−1))− posU (max(Ai)), for 1 ≤
i < z, let w′(max(Ai)) = w(max(Ai)) + posU (min(Bi)) − posU (min(Ai+1)), for
1 ≤ i < v, let w′(max(Bi)) = w(max(Bi))+posU (min(Ai+1))−posU (min(Bi+1)).
We also have w′(min(B1)) = w(min(B1))−1+posU(min(B1))−posU (max(A1)).
If |I(A,B)| is even, we have w′(max(Az)) = w(max(Az))−1+posU (min(Bz))−
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posU (max(Az)). If |I(A,B)| is odd, we have w′(max(Bv)) = w(max(Bv))− 1 +
posU (min(Az))− posU (max(Bv)).

We can perform these updates by invoking BslFRew(min(Ai),w′(min(Ai)))
for 2 ≤ i ≤ z, invoking BslFRew(max(Ai),w′(max(Ai))) for 1 ≤ i ≤ v, in-
voking BslFRew(min(Bj),w′(min(Bj))) for 1 ≤ j ≤ v, and lastly invoking
BslFRew(max(Bj),w′(max(Bj))) for 1 ≤ j < z.

Phase IV: Gluing the segments. Since we assumed w.l.o.g. that min(A) < min(B),
the correct order of the segments is (A1, B1, A2, B2, . . .) by construction. We can
glue all the segments by invoking BslFJoin(max(Ai),min(Bi)) for 1 ≤ i ≤ v
and BslFJoin(max(Bi),min(Ai+1)) for 1 ≤ i < z.

5 Analysis of the Mergeable Dictionary

Before we can analyze the amortized time complexity of the Mergeable Dictio-
nary operations, we need a new potential function.

5.1 The New Potential Function

Let Di be the data structure containing our dynamic collection of disjoint sets,
S(i) = {S(i)

1 , S
(i)
2 , . . .} after the ith operation. Let ϕ(S) =

∑
x∈S(log gS(posS(x)−

1) + log gS(posS(x))). Then we define the potential after the ith operation as
Φ(Di) = κd ·

∑
j ϕ(S(i)

j ) where κd is a constant to be determined later. Note
that the main difference between this function and the one in Section 2.2 is the
elimination of the logn term.

5.2 The Analysis of the Search and Split Operations

We now show that all the operations except Merge have a worst-case time
complexity of O(log n), and they do not cause a substantial increase in the
potential which yields that their amortized time complexity is also O(logn).

Theorem 2. The worst-case and amortized time complexity of the Search(S, x)
operation and the Split(S, x) operation is O(log n).

Proof. The worst-case time complexity of the operations BslFSrc, BslSplit,
and BslRew invoked by the Search and Split operations is O(log n) by
Lemma 6. Recall that since Search does not change the structure, the po-
tential remains the same; and Split can only decrease the potential. Therefore,
worst-case and amortized time complexity of Search and Split is O(log n).

5.3 The Analysis of the Merge Operation

All we have left to do is show that the amortized time complexity of the Merge

operation is O(log n). We define F (Ai) and F (Bj) next.
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Definition 2. Consider the Merge(A,B) operation. Recall that w′(x) is the
new weight of node x after the Merge(A,B) operation. Then, for 1 < i < z,

let F (Ai) = log
w(max(Ai−1))+w(min(Ai+1))+

∑
x∈Ai

w(x)
min(w′(max(Bi−1)),w′(min(Ai)),w′(max(Ai)),w′(min(Bi)))

and for 1 <

j < v, let F (Bj) = log
w(max(Bj−1))+w(min(Bj+1))+

∑
x∈Bj

w(x)

min(w′(max(Aj)),w′(min(Bj)),w′(max(Bj)),w′(min(Aj+1))) . For
the boundary cases, let F (A1) = F (B1) = F (Az) = F (Bv) = logn.

The Worst-Case Time Complexity. We need to bound the worst-case time
complexity of each phase of the Merge(A,B) operation. We will need the fol-
lowing lemma to bound the worst-case time complexity of Phases II-IV.

Lemma 7. Given a biased skip list S and any node f ∈ S, recall that S[←�f] =
{x ∈ S |x ≤ f}. Then, H(S[←�f]) ≤ logW (S[←�f]).

Proof. Let R = maxx∈S[← �f] r(x) and Nr(t) = {x ∈ S[←�f] | r(x) = t}. Also,
let Nh(t) = {x ∈ S[←�f] |h(x) ≥ t, r(x) ≤ t}. Then we have W (S[←�f]) ≥∑R

i=2 2iNr(i) +
∑

x∈S[← �f],
r(x)=1

w(x) ≥
∑R

i=2 2iNr(i) + 2Nh(1). Due to (I2), we have

Nh(i) ≥ 2(Nh(i + 1)−Nr(i + 1)) ≥ 2R−1Nh(R)−
R∑

i=2

2i−1Nr(i)

≥ 2H(S[← �f])−1Nh(H(S[←�f ]))−
R∑

i=2

2i−1Nr(i) (Nr(t) = 0 for t > R)

≥ 2H(S[← �f])−1 −
R∑

i=2

2i−1Nr(i)

which yields

W (S[←�f]) ≥
R∑

i=2

2iNr(i) + 2Nh(1)

≥
R∑

i=2

2iNr(i) + 2

(
2H(S[← �f])−1 −

R∑
i=2

2i−1Nr(i)

)
≥ 2H(S[← �f])

logW (S[←�f]) ≥ H(S[←�f]).

Theorem 3. The Merge(A,B) operation has a worst-case time complexity of
O
(
logn +

∑z−1
i=2 F (Ai) +

∑v−1
j=2 F (Bj)

)
.

Proof. Note that w′(min(Bi)) < w(min(Ai+1)) and w′(min(Bi)) < w(max(Ai)).
The worst-case time complexity of the Merge(A,B) operation is determined
by the time it spends on each of the four phases. Therefore, the theorem follows
by the definitions of F (Ai) and F (Bj), and Lemmas, 2, 4, 5, 6, and 7.
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Amortized Time Complexity. Before we can show that the amortized time
complexity of the Merge(A,B) operation is O(log n), we will need to prove
three lemmas. Let us first define the potential loss associated with a gap. Recall
the definitions of gaps ai, a

′
i, a

′′
i and similarly bj, b

′
j , b

′′
j first defined in Section 2.3.

Definition 3. We define pl(ai) and pl(bj), the potential loss associated with gap
ai and the potential loss associated with gap bi respectively, for 1 ≤ i < z and
1 ≤ j < v, as follows: pl(ai) = 2 log ai − log a′i − log a′′i and pl(bj) = 2 log bj −
log b′j − log b′′j . Assume w.l.o.g. that min(A) < min(B). Then let pl(a0) = 0 and
pl(b0) = − log a′1. If max(A) > max(B), then pl(az) = 0 and pl(bv) = − log a′′z−1.
Otherwise, if max(A) < max(B), then pl(bv) = 0 and pl(az) = − log b′′v−1. Note
that the potential loss associated with operation Merge(A,B) is κd times the
sum of all pl(ai) and pl(bj), where κd is the constant in the potential function.

Lemma 8. Consider gap ai for any 1 ≤ i < z. Let a+
i = max(a′i, a

′′
i ) and

a−i = min(a′i, a
′′
i ). Then, 2−pl(ai) ≤ ai/a

+
i ≤ ai/a

−
i ≤ 2pl(ai) and 2−pl(ai) ≤

a+
i /a−i ≤ 2pl(ai). Similarly, for gap bj for any 1 ≤ j < v, where b+j = max(b′j , b

′′
j )

and b−j = min(b′j , b
′′
j ), we have 2−pl(bj) ≤ bj/b

+
j ≤ bj/b

−
j ≤ 2pl(bj) and 2−pl(bj) ≤

b+j /b−j ≤ 2pl(bj).

Proof. Follows directly from Definition 3.

Lemma 9. Let I(A,B) = {A1, B1, A2, B2, . . .} be the set of segments with re-
spect to operation Merge(A,B). For any i and j, where 1 < i < z and 1 < j <
v, let αi = max

(
2pl(ai−2), 2pl(bi−2), 2pl(ai−1), 2pl(bi−1), 2pl(ai), 2pl(bi), 2pl(ai+1)

)
and

βj = max
(
2pl(bj−2), 2pl(aj−1), 2pl(bj−1), 2pl(aj), 2pl(bj), 2pl(aj+1), 2pl(bj+1)

)
. Then, it

holds that F (Ai) = O(logαi) and F (Bj) = O(log βj).

Proof. We will present the proof of the first equality. The proof of the second
one is analogous. Let a′′i−1 = b′i−1 = x. Then, by Lemma 8 we have x

αi
≤

a′i−1, a
′
i, b
′′
i−2, b

′′
i−1 ≤ xαi, x

α2
i
≤ a′′i−2, a

′′
i , b

′
i−2, b

′
i ≤ xα2

i ,
x
α3

i
≤ a′i−2, a

′
i+1, b

′′
i ≤

xα3
i , and x

α4
i
≤ a′′i+1 ≤ xα4

i Similarly, by Lemma 8, we have x
αi
≤ ai−1, bi−1 ≤

xαi, x
α2

i
≤ ai, bi−2 ≤ xα2

i ,
x
α3

i
≤ ai−2, bi ≤ xα3

i , and x
α4

i
≤ ai+1 ≤ xα4

i . We
proceed as follows. For 1 < i < z, using the inequalities above, we have

F (Ai) = log
w(max(Ai−1)) + w(min(Ai+1)) +

∑
x∈Ai

w(x)
min(w′(max(Bi−1)), w′(min(Ai)), w′(max(Ai)), w′(min(Bi)))

≤ log
ai−2 + bi−2 + ai−1 + ai + bi + ai+1 + 2bi−1

min(b′i−1, a
′′
i−1, a

′
i, b
′′
i−1)

= O
(

log
xα4

i

x/αi

)
= O(logαi).

The proof of the second equality, F (Bj) = O(log βj) for 1 < j < v, is analogous.

Lemma 10. For 1 < i < z and 1 < j < v, we have

7 ·
∑

i

log 2pl(ai) + 7 ·
∑

j

log 2pl(bj) >
∑

i

logαi +
∑

j

log βj .
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Proof. Observe that a gap ak can be mapped to at most seven times by unique
αi’s and βj ’s; namely only by αk−1, βk−1, αk, βk, αk+1, βk+1, αk+2. Similarly, a
gap bk can be mapped to at most seven times by unique αi’s and βj ’s; namely
only by βk−1, αk, βk, αk+1, βk+1, αk+2, βk+2. The lemma follows.

Theorem 4. The Merge(A,B) operation has an amortized time complexity of
O(log n).

Proof. We will analyze the Merge operation using the potential method [10].
Recall that Di represent the data structure after operation i, where D0 is the
initial data structure. The amortized cost of operation i is ĉi = ci + Φ(Di) −
Φ(Di−1). By Theorem 3, we have ci = κe

(
logn +

∑z−1
i=2 F (Ai) +

∑v−1
j=2 F (Bj)

)
,

and by the definitions of pl(ai) and pl(bj) we have Φ(Di) − Φ(Di−1) = κd ·(∑z
i=0 pl(ai) +

∑v
j=0 pl(bj)

)
. Then, applying Lemmas 9 and 10 and setting κd

appropriately yields that the amortized time complexity of the Merge(A,B)

operation is O(log n).

We can now state our main theorem.

Theorem 5. The Mergeable Dictionary executes a sequence ofmSearch, Split,
and Merge operations in worst-case O(m log n) time.

Proof. Follows directly from Theorem 2 and Theorem 4.
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Abstract. We consider the problem of finding semi-matching in bipar-
tite graphs which is also extensively studied under various names in the
scheduling literature. We give faster algorithms for both weighted and
unweighted case.

For the weighted case, we give an O(nm log n)-time algorithm, where
n is the number of vertices and m is the number of edges, by exploiting
the geometric structure of the problem. This improves the classical O(n3)
algorithms by Horn [Operations Research 1973] and Bruno, Coffman and
Sethi [Communications of the ACM 1974].

For the unweighted case, the bound could be improved even further. We
give a simple divide-and-conquer algorithm which runs in O(

√
nm log n)

time, improving two previous O(nm)-time algorithms by Abraham [MSc
thesis, University of Glasgow 2003] and Harvey, Ladner, Lovász and Tamir
[WADS 2003 and Journal of Algorithms 2006]. We also extend this algo-
rithm to solve the Balance Edge Cover problem in O(

√
nm log n) time,

improving the previous O(nm)-time algorithm by Harada, Ono, Sadakane
and Yamashita [ISAAC 2008].

1 Introduction

In this paper, we consider a relaxation of the maximum bipartite matching prob-
lem called semi-matching problem, in both weighted and unweighted case. This
problem has been previously studied in the scheduling literature under different
names, mostly known as (nonpreemptive) scheduling independent jobs on unre-
lated machines to minimize flow time, or R||

∑
Cj in the standard scheduling

notation [2,20].
Informally, the problem can be explained by the following off-line load balanc-

ing scenario: We are given a set of jobs and machines. Each machine can process

� Full version can be found in [9].
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one job at a time and it takes different amounts of time to process different
jobs. Each job also requires different processing times if processed by different
machines. One natural goal is to have all jobs processed with the minimum total
completion time, or total flow time, which is the summation of the duration each
job has to wait until it is finished. Observe that if the assignment is known, the
order each machine processes its assigned jobs is clear: It processes jobs in an
increasing order of the processing time.

To be precise, the semi-matching problem is as follows. Let G = (U ∪V,E) be
a weighted bipartite graph, where U is a set of jobs and V is a set of machines.
For any edge uv, let wuv be its weight. Each weight of an edge uv indicates time
it takes v to process u. Throughout this paper, let n = |U ∪ V |, m = |E|. A set
M ⊆ E is a semi-matching if each job u ∈ U is incident with exactly one edge in
M . For any semi-matching M , we define the cost of M , denoted by cost(M), as
follows. First, for any machine v ∈ V , its cost with respect to a semi-matching
M is

costM (v)=(w1)+(w1+w2)+. . .+(w1+. . .+wdegM (v))=
degM (v)∑

i=1

(degM (v)−i+1)·wi

where degM (v) is the degree of v in M and w1 ≤ w2 ≤ . . . ≤ wdegM (v) are
weights of the edges in M incident with v sorted increasingly. Intuitively, this is
the total completion time of the jobs assigned to v. Note that for the unweighted
case (i.e., when we = 1 for every edge e), the cost of a machine v is simply
degM (v) · (degM (v) + 1)/2. Now, the cost of the semi-matching M is simply the
summation of the cost over all machines:

cost(M) =
∑
v∈V

costM (v).

The goal is to find an optimal semi-matching, a semi-matching with minimum
cost.

Previous work: Although the name “semi-matching” was recently proposed by
Harvey, Ladner, Lovász, and Tamir [14], the problem was studied as early as
1970s when an O(n3) algorithm was independently developed by Horn [15] and
Bruno et al. [5]. No progress has been made on this problem except on its special
cases and variations. For the special case of inclusive set restriction where, for
each pair of jobs u1 and u2, either all neighbors of u1 are neighbors of u2 or vice
versa, a faster algorithm with O(n2) running time was given by Spyropoulos and
Evans [31]. Many variations of this problem were recently proved to be NP-hard,
including the preemtive version [30], the case when there are deadlines [32], and
the case of optimizing total weighted tardiness [23]. The variation where the
objective is to minimize maxv∈V costM (v) was also considered [26,19].

The unweighted case of the semi-matching problem also received considerably
attention in the past few years. Since it is shown by [14] that an optimal solution
of the semi-matching problem is also optimal for the makespan version of the
scheduling problem (where one wants to minimize the time the last machine
finishes), we mention the results of both problems. The problem was first studied
in a special case, called nested case where, for any two jobs, if their sets of
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neighbors are not disjoint, then one of these sets contains the other set. This
case is shown to be solvable in O(m + n logn) time [28, p.103]. For the general
unweighted semi-matching problem, Abraham [1, Section 4.3] and Harvey et
al. [14] independently develop two algorithms with O(nm) running time. Lin
and Li [22] also give an O(n3 logn)-time algorithm which is later generalized to
a more general cost function [21]. Recently, [18] show that the problem can be
solved in polynomial time even when there are release times.

The unweighted semi-matching problem is recently generalized to the quasi-
matching problem by Bokal et al. [3]. In this problem, a function g is provided and
each vertex u ∈ U is required to connect to at least g(u) vertices in v. Therefore,
the semi-matching problem is when g(u) = 1 for every u ∈ U . They also develop
an algorithm for this problem which is a generalization of the Hungarian method,
and used it to deal with a routing problem in CDMA-based wireless sensor
networks.

Motivated by the problem of assigning wireless stations (users) to access
points, the unweighted semi-matching problem is also generalized to the problem
of finding optimal semi-matching with minimum weight where an O(n2m) time
algorithm is given [11].

Approximation algorithms and online algorithms for this problem (both weigh-
ted and unweighted cases) and the makespan version have also gained a lot of
attention over the past few decades and have applications ranging from schedul-
ing in hospital to wireless communication network. (See [20,39] for the recent
surveys.)

Applications: As motivated by Harvey et al. [14], even in an online setting where
the jobs arrive and depart over time, they may be reassigned from one machine
to another cheaply if the algorithm’s runtime is significantly faster than the ar-
rival/departure rate. (One example of such case is the Microsoft Active Directory
system [10,14].) The problem also arose from the Video on Demand (VoD) sys-
tems where the load of video disks needs to be balanced while data blocks from
the disks are retrieved or while serving clients [25,36]. The problem, if solved in
the distributed setting, can be used to construct a load balanced data gather-
ing tree in sensor networks [29,27]. The same problem also arose in peer-to-peer
systems [33,17,34].

In this paper, we also consider an “edge cover” version of the problem. In
some applications such as sensor networks, there are no jobs and machines but
the sensor nodes have to be clustered and each cluster has to pick its own head
node to gather information from other nodes in the cluster. Motivated by this,
Harada et al. [12] introduced the balanced edge cover problem1 where the goal is
to find an edge cover (set of edges incident to every vertex) that minimizes the
total cost over all vertices. (The cost on each vertex is as previously defined.)
They gave an O(nm) algorithm for this problem and claimed that it could be
used to solve the semi-matching problem as well. We show that this problem can
be efficiently reduced to the semi-matching problem and thus our algorithm (on
unweighted case) gives a better bound on this problem as well.
1 This problem is also known as a constant jump system (see, e.g., [35,24]).



Faster Algorithms for Semi-matching Problems 179

Our Results and Techniques

We consider the semi-matching problem and give a faster algorithm for each
of the weighted and unweighted cases. We also extend the algorithm for the
unweighted case to solve the balanced edge cover problem.
• Weighted Semi-Matching: (Section 2) We present an O(nm logn) algo-

rithm, improving the previous O(n3) algorithm by Horn [15] and Bruno et
al. [5]. As in the previous results [15,4,13], we use the reduction of the prob-
lem to the weighted bipartite matching problem as a starting point. We,
however, only use the structural properties arising from the reduction and
do not actually perform the reduction.

• Unweighted Semi-Matching: (Section 3) We give an O(
√
nm logn) algo-

rithm, improving the previous O(nm) algorithms by Abraham [1] and Har-
vey et al. [14].2 Our algorithm uses the same reduction to the min-cost flow
problem as in [14]. However, instead of canceling one negative cycle in each
iteration, our algorithm exploits the structure of the graphs and the cost
functions to cancel many negative cycles in a single iteration. This technique
can also be generalized to other cost functions.

• Balanced Edge Cover: We also present a reduction from the balanced
edge cover problem to the unweighted semi-matching problem. This leads to
an O(

√
nm logn) algorithm for the problem, improving the previous O(nm)

algorithm by Harada et al. [12]. The main idea is to identify the “center”
vertices of all the clusters in the optimal solution. (Note that any balanced
edge cover (in fact, any minimal edge cover) clusters the vertices into stars.)
Then, we partition the vertices into two sides, center and non-center ones,
and apply the semi-matching algorithm on this graph. This result can be
found in the full version ([9]).

Due to space limitation, most proofs are omitted and can be found in the full
version [9].

2 Weighted Semi-matching

In this section, we present an algorithm that finds optimal weighted semi-matching
in O(nm log n) time.

Overview: Our improvement follows fromstudying the reduction fromtheweighted
semi-matching problem to the weighted bipartite matching problem considered in
the previous works [15,5,13] and the Edmonds-Karp-Tomizawa (EKT) algorithm
for finding the weighted bipartite matching [8,38] . We first review these briefly.

Reduction: As in [15,5,13], we consider the reduction from the semi-matching
problem on bipartite graph G = (U ∪ V,E) to the minimum-weight bipartite

2 We also observe an O(n5/2 log n) algorithm that arises directly from the reduction
by applying [16].
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ĜG

Vv1

^

Vv2

^

1

2

1

2

3

(a) Reduction

u1

u2

v1

v2

7
14
5
10

Ĝ
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matching on a graph Ĝ. (See Figure 1(a).) The reduction is done by exploding
the vertices in V , i.e, from a vertex v we create deg(v) vertices, v1, v2, . . . , vdeg(v).
For each edge incident to vi in Ĝ, we set its weight to i times its original weight
in G. Denote the set of these vertices by V̂v. The correctness of this reduction
can be seen by replacing the edges incident to v in the semi-matching by the
edges incident to v1, v2, . . . with weights in an decreasing order. For example, in
Figure 1(a), edge u1v1 and edge u2v1 in the semi-matching in G correspond to
u1v

1
1 and u2v

2
1 in the matching in Ĝ.

EKT algorithm: Our improvement comes from studying the behavior of the
EKT algorithm for finding the bipartite matching in Ĝ. The EKT algorithm
iteratively increases the cardinality of the matching by one by finding a shortest
augmenting path. Such path can be found by applying Dijkstra’s algorithm on
the residual graph DM (corresponding to a matching M) with a reduced cost,
denoted by w̃ as an edge length.

Figure 1(b) shows examples of residual graph DM . Direction of an edge de-
pends on whether it is in the matching or not. The weight of each edge depends
on its weight in the original graph and the costs on its end vertices. We draw an
edge of length 0 from s to all vertices in UM and from all vertices in V̂M to t,
where UM and V̂M are the sets of unmatched vertices in U and V̂ , respectively.
We want to find the shortest path from s to t or, equivalently, from UM to V̂M .

The reduced cost is computed from the potentials on the vertices, which can
be found as in Algorithm 1.3

Applying EKT algorithm directly leads to an O(n(n′ logn′ + m′)) where n =
|U |, n′ = |U ∪ V | and m′ is the number of edges in Ĝ. Since n′ = |V̂ | = Θ(m)
and m′ = Θ(n2), the running time is O(nm log n+n3). (We note that this could
be brought down to O(n3) using Kao et al.’s trick [16] of reducing the number
of participating edges.) The bottleneck here is the Dijkstra’s algorithm which
needs O(n′ logn′ + m′) time. We now review this algorithm and pinpoint the
part that will be sped up.
3 We note that we set the potentials in an unusual way: We keep potentials of the

unmatched vertices in V̂ to 0. The reason is roughly that we can speed up the process
of finding the distances of all vertices but vertices in V̂M . Notice that this type of
potentials is valid too (i.e., w̃ is non-negative) since for any edge uv such that v ∈ V̂M

is unmatched, w̃(uv) = wuv + p(u)− p(v) = wuv + p(u) ≥ 0.
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Algorithm 1. EKT Algorithm (Ĝ, w)
1. Let M = ∅.
2. For every node v, let p(v) = 0. (p(v) is a potential on v.)
3. repeat
4. Let w̃uv = wuv + p(u)− p(v) for every edge uv. (w̃uv is a reduced cost of an edge

uv.)
5. For every node v, compute the distance d(v) which is the distance from UM (the

set of unmatched vertices in U) to v in DM . (Recall that the length of edges in
DM is w̃.)

6. Let P be the shortest UM -V̂M path in DM .
7. Update the potential p(u) to d(u) for every vertex u ∈ U ∪ (V̂ \ V̂M ).
8. Augment M along P , i.e., M = P�M (where� denotes the symmetric difference

operator).
9. until all vertices in U are matched

10. return M

Dijkstra’s algorithm: Recall that the Dijkstra’s algorithm starts from a source
vertex and keeps adding to its shortest path tree a vertex with minimum tentative
distance. When a new vertex v is added, the algorithm updates the tentative
distance of all vertices outside the tree by relaxing all edges incident to v. On an
n′-vertex m′-edge graph, it takes O(log n′) time (using priority queue) to find a
new vertex to add to the tree and hence O(n′ logn′) in total. Further, relaxing
all edges takes O(m′) time in total. Recall that in our case, m′ = Θ(n2) which
is too large. Thus, we wish to reduce the number of edge relaxations to improve
the overall running time.

Our approach: We reduce the number of edge relaxation as follows. Suppose
that a vertex u ∈ U is added to the shortest path tree. For every v ∈ V , a
neighbor of u in G, we relax all edges uv1, uv2, . . ., uvi in Ĝ at the same time.
In other words, instead of relaxing Θ(nm) edges in Ĝ separately, we group the
edges to m groups (according to the edges in G) and relax all edges in each
group together. We develop a relaxation method that takes O(log n) time per
group. In particular, we design a data structure Hv, for each vertex v ∈ V , that
supports the following operations.
• Relax(uv, Hv): This operation works as if it relaxes edges uv1, uv2, . . .

• AccessMin(Hv): This operation returns a vertex vi (exploded from v) with
minimum tentative distance among vertices that are not deleted (by the next
operation).

• DeleteMin(Hv):This operation finds vi from AccessMin then returns and
deletes vi.

Our main result is that, by exploiting the structure of the problem, one can
design Hv that supports Relax, AccessMin and DeleteMin in O(log n), O(1)
and O(log n), respectively. Before showing such result, we note that speeding up
Dijkstra’s algorithm and hence EKT algorithm is quite straightforward once we
have Hv: We simply build a binary heap H whose nodes correspond to vertices
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in an original graph G. For each vertex u ∈ U , H keeps track of its tentative
distance. For each vertex v ∈ V , H keeps track of its minimum tentative distance
returned from Hv.

Main idea: Before going into details, we sketch the main idea here. The data
structure Hv that allows fast “group relaxation” operation can be built because
of the following nice structure of the reduction: For each edge uv of weight
wuv in G, the weights wuv1 , wuv2 , . . . of the corresponding edges in Ĝ increase
linearly (i.e., wuv, 2wuv, 3wuv, . . .). This enables us to know the order of vertices,
among v1, v2, . . ., that will be added to the shortest path tree. For example, in
Figure 1(b), when M = ∅, we know that, among v1 and v2, v1 will be added to
the shortest path tree first as it always has a smaller tentative distance.

However, since the length of edges in DM does not solely depend on the
weights of the edges in Ĝ (in particular, it also depends on a potentials on both
end vertices), it is possible (after some iterations of the EKT algorithm) that v1

is added to the shortest path tree after v2.
Fortunately, due to the way the potential is defined by the EKT algorithm,

a similar nice property still holds: Among v1, v2, . . . in DM corresponding to v
in G, if a vertex vk, for some k, is added to the shortest path tree first, then
the vertices on each side of vk have a nice order: Among v1, v2, . . . , vk−1, the
order of vertices added to the shortest path tree is vk−1, vk−2, . . . , v2, v1. Further,
among vk+1, vk+2, . . ., the order of vertices added to the shortest path tree is
vk+1, vk+2, . . ..

This main property, along with a few other observations, allow us to construct
the data structure Hv. We now show the properties we need.

Properties of the Tentative Distance

Consider any iteration of the EKT algorithm (with a potential function p and a
matching M). We study the following functions f∗v and g∗v.

Definition 1. For any edge uv from U to V and any integer 1 ≤ i ≤ deg(v),
let

guv(i)=d(u)+p(u)+i·wuv and fuv(i)=guv(i)−p(vi)=d(u)+p(u)−p(vi)+i·wuv.

For any v ∈ V and i ∈ [1, deg(v)], define the lower envelope of fuv and guv over
all u ∈ U as

f∗v(i) = min
u:(u,v)∈E

fuv(i) and g∗v(i) = min
u:(u,v)∈E

guv(i).

Our goal is to understand the structure of the function f∗v which is the tentative
distance of v1, v2, . . .. The function g∗v is simply f∗v with the potential of v
ignored. We define g∗v as it is easier to keep track of (since it is piecewise linear,
as in Proposition 1). Now we state the key properties that enable us to keep
track of f∗v efficiently. Recall that v1, v2, . . . are the exploded vertices of v (from
the reduction).
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Proposition 1. Consider a matching M and a potential p at any iteration of
the EKT algorithm.
(1) For any vertex v ∈ V , there exists αv such that v1, . . . , vαv are all matched

and vαv+1, . . . , vdeg(v) are all unmatched.
(2) For any vertex v ∈ V , g∗v is a piecewise linear function.
(3) For any edge uv ∈ E where u ∈ U and v ∈ V , and any i, fuv(i) = f∗v(i) if

and only if guv(i) = g∗v(i).
(4) For any edge uv ∈ E where u ∈ U and v ∈ V , let αv be as in (1). There exists

an integer 1 ≤ γuv ≤ k such that for i = 1, 2, . . . , γuv − 1, fuv(i) > fuv(i+ 1)
and for i = γuv, γuv + 1, . . . , αv − 1, fuv(i) ≤ fuv(i + 1). In other words,
fuv(1), fuv(2), . . . , fuv(αv) is a unimodal sequence.

Figure 2(a) and 2(b) show the structure of g∗v and f∗v according to statement
(2) and (4) in the above proposition. By statement (3), the two pictures can
be combined as in Figure 2(c): g∗v indicates u that makes both g∗v and f∗v
minimum in each interval and one can find i that minimizes f∗v in each interval
by looking at αv (or near αv in some case).

(a) g∗v and potential func-
tion. Note that wu1v >
wu2v > wu3v.

fuv (i)

 1 2 3 q (uv )
q(uv )-1 q(uv )+1

(b) f∗v is unimodal. (c) f∗v together with g∗v.

Fig. 2.

The key idea in constructing the data structure is that, for each edge uv ∈ E,
one can maintain the minimum tentative distance from u to v1, v2, . . . , vα by
simply keeping two pointers (starting from αv and moving left and right). This
is because fuv(1), fuv(2), . . . , fuv(αv) is unimodal, as previously shown. Thus,
we only need to find vi from edges e ∈ E incident to v. Details can be found in
the full version.

3 Unweighted Semi-matching

In this section, we present an algorithm that finds the optimal semi-matching in
unweighted graph in O(m

√
n logn) time.

Overview: Our algorithm consists of the following three steps.
In the first step, we reduce the problem on graph G to the min-cost flow

problem on network N , using the same reduction from Harvey et al. [14]. (See
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Figure 3. Details are in the full version.) We note that the flow is optimal if and
only if there is no cost reducing path (to be defined later). We start with an
arbitrary semi-matching and use this reduction to get a corresponding flow. The
goal is to eliminate all the cost-reducing paths.

The second step is a divide-and-conquer algorithm used to eliminate all the
cost-reducing paths. We call this algorithm CancelAll (cf. Algorithm 2). The
main idea here is that the vertices can be divided into two sets so that eliminating
cost reducing paths “inside” each set does not introduce any new cost reducing
paths anywhere in the graph. This dividing step needs to be done carefully. We
treat this in Section 3.1.

Finally, in the last component of the algorithm we deal with eliminating cost-
reducing paths between two sets of vertices quickly. Naively, one can do this
using any unit-capacity max-flow algorithm. To get a faster algorithm, we ob-
serve that the structure of the graph is similar to a unit network, where every
vertex has in-degree or out-degree one. Thus, we get the same performance
guarantee as the Dinitz’s algorithm [6,7]. 4 Details of this part can be found in
Section 3.2.

Due to space limitation, details on running time and generalization are omit-
ted here and can be found in the full version.

u1

u2

u3

u4

v1

v2

s

u1

u2

u3

u4

v1

v2

c1

c2

c3

t

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

1,1

2,1
1,1

2,1

3,1

0,∞

0, ∞

0, ∞

Fig. 3. Reduction to the min-cost flow problem. Each edge is labeled with (cost,
capacity) constraint. Thick edges either are matching edges or contain the flow.

3.1 The Divide-and-Conquer Algorithm

Our algorithm takes a bipartite graph G = (U ∪ V,E′) and outputs the optimal
semi-matching. It starts by transforming G into a graph N as described in the
previous section. Since the source s and the sink t are always clear from the
context, the graph N can be seen as a tripartite graph with vertices U ∪ V ∪C;
later on we denote N = (U ∪ V ∪ C,E). The algorithm proceeds by finding an
arbitrary max-flow f from s to t in N which corresponds to a semi-matching
in G. This can be done in linear time since the flow is equivalent to any semi-
matching in G.

To find the min-cost flow in N , the algorithm uses a subroutine called Can-

celAll (cf. Algorithm 2) to cancel all cost-reducing paths in f .

4 The algorithm is also known as “Dinic’s algorithm”. See [7] for details.
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Algorithm 2. CancelAll(N = (U ∪ V ∪C,E))
1. if |C| = 1 then halt endif
2. Divide C into C1 and C2 of roughly equal size.
3. Cancel(N, C2, C1). {Cancel all cost-reducing paths from C2 to C1}.
4. Divide N into N1 and N2 where N2 is “reachable” from C2 and N1 is the rest.
5. Recursively solve CancelAll(N1) and CancelAll(N2).

CancelAll works by dividing C and solves the problem recursively. Given
a set of cost centers C, the algorithm divides C into roughly equal-size subsets
C1 and C2 such that, for any ci ∈ C1 and cj ∈ C2, i < j. This guarantees that
there is no cost reducing path from C1 to C2. Then it cancels all cost reducing
paths from C2 to C1 by calling Cancel algorithm (described in Section 3.2).

It is left to cancel the cost-reducing paths “inside” each of C1 and C2. This is
done by partitioning the vertices of N (except s and t) into two graphs N1 and
N2 and solve the problem separately on each of them. The partition is done by
letting N2 be a subgraph induced by vertices reachable from C2 in the residual
graph and N1 be the subgraph induced by the rest vertices. (Note that both
graphs have s and t.) For example, in Figure 3, v1 is reachable from c3 by the
path c3, v2, u2, v1 in the residual graph.

Lemma 1. CancelAll(N) (cf. Algortihm 2) cancels all cost-reducing paths
in N .

3.2 Canceling Paths from C2 to C1

We cancels all admissible paths from C2 to C1 in Rf by running Dinitz’s blocking
flow algorithm [6] from a super-source s connecting to vertices in C2 to a super-
sink t connecting to vertices in C1. We exploit the properties that N is unit-
capacity and every vertex of U has indegree 1 in Rf to show (by a proof similar to
that in [37, Theorem 8.8]) that this algorithm runs in O(|E|

√
|U |) time. Details

of this algorithm and the total running time can be found in the full version.
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33. Suri, S., Tóth, C.D., Zhou, Y.: Uncoordinated load balancing and congestion games
in p2p systems. In: IPTPS, pp. 123–130 (2004)
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Abstract. We consider the clustering with diversity problem: given a set of col-
ored points in a metric space, partition them into clusters such that each cluster
has at least � points, all of which have distinct colors. We give a 2-approximation
to this problem for any � when the objective is to minimize the maximum radius
of any cluster. We show that the approximation ratio is optimal unless P = NP,
by providing a matching lower bound. Several extensions to our algorithm have
also been developed for handling outliers. This problem is mainly motivated by
applications in privacy-preserving data publication.

Keywords: Approximation algorithm, k-center, k-anonymity, l-diversity.

1 Introduction

Clustering is a fundamental problem with a long history and a rick collection of results.
A general clustering problem can be formulated as follows. Given a set of points P in
a metric space, partition P into a set of disjoint clusters such that a certain objective
function is minimized, subject to some cluster-level and/or instance-level constraints.
Typically, cluster-level constraints impose restrictions on the number of clusters or on
the size of each cluster. The former corresponds to the classical k-center, k-median,
k-means problems, while the latter has recently received much attention from various
research communities [1, 15, 16]. On the other hand, instance-level constraints specify
whether particular items are similar or dissimilar, usually based on some background
knowledge [3, 26]. In this paper, we impose a natural instance-level constraint on a
clustering problem, that the points are colored and all points partitioned into one cluster
must have distinct colors. We call such a problem clustering with diversity. Note that
the traditional clustering problem is a special case of ours where all points have unique
colors.

As an illustrating example, consider the problem of choosing locations for a number
of factories in an area where different resources are scattered. Each factory needs at
least 	 different resources allocated to it and the resource in one location can be sent to
only one factory. This problem corresponds to our clustering problem where each kind
of resource has a distinct color, and we have a lower bound 	 on the the cluster size.

The main motivation to study clustering with diversity is privacy preservation for
data publication, which has drawn tremendous attention in recent years in both the
database community [7, 8, 21, 24, 28–30] and the theory community [1, 2, 11, 12, 22].
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The goal of all the studies in privacy preservation is to prevent linking attacks [25].
Consider the table of patient records in Figure 1(a), usually called the microdata. There
are three types of attributes in a microdata table. The sensitive attribute (SA), such as
“Disease”, is regarded as the individuals’ privacy, and is the target of protection. The
identifier, in this case “Name”, uniquely identifies a record, hence must be ripped off
before publishing the data. The rest of the attributes, such as “Age”, “Gender”, and
“Education”, should be published so that researchers can apply data mining techniques
to study the correlation between these attributes and “Disease”. However, since these
attributes are public knowledge, they can often uniquely identify individuals when com-
bined together. For example, if an attacker knows (i) the age (25), gender (M), and ed-
ucation level (Master) of Bob, and (ii) Bob has a record in the microdata, s/he easily
finds out that Tuple 2 is Bob’s record and hence, Bob contracted HIV. Therefore, these
attributes are often referred to as the quasi-identifiers (QI). The solution is thus to make
these QIs ambiguous before publishing the data so that it is difficult for an attacker to
link an individual from the QIs to his/her SA, but at the same time we want to minimize
the amount of information loss due to the ambiguity introduced to the QIs so that the
interesting correlations between the QIs and the SA are still preserved.
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Fig. 1. (a) The microdata; (b) A 2-anonymous table; (c) An 2-diverse table

The usual approach taken to prevent linking attacks is to partition the tuples into
a number of QI-groups, namely clusters, and within each cluster all the tuples share
the same (ambiguous) QIs. There are various ways to introduce ambiguity. A popular
approach, as taken by [1], is to treat each tuple as a high-dimensional point in the QI-
space, and then only publish the center, the radius, and the number of points of each
cluster. To ensure a certain level of privacy, each cluster is required to have at least k
points so that the attacker is not able to correctly identify an individual with confidence
larger than 1/k. This requirement is referred to as the k-ANONYMITY principle [1, 22].
The problem, translated to a clustering problem, can be phrased as follows: Cluster a
set of points in a metric space, such that each cluster has at least r points. When the
objective is to minimize the maximum radius of all clusters, the problem is called r-
GATHERING and a 2-approximation is known [1].

However, the k-ANONYMITY principle suffers from the homogeneity problem: A
cluster may have too many tuples with the same SA value. For example, in Figure 1(b),
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all tuples in QI-group 1, 3, and 4 respectively have the the same disease. Thus, the
attacker can infer what disease all the people within a QI-group have contracted with-
out identifying any individual record. The above problem has led to the development
of many SA-aware principles. Among them, 	-DIVERSITY [21] is the most widely de-
ployed [8, 13, 17, 21, 28, 29], due to its simplicity and good privacy guarantee. The
principle demands that, in each cluster, at most 1/	 of its tuples can have the same SA
value. Figure 1(c) shows a 2-diverse version of the microdata. In an 	-diverse table,
an attacker can figure out the real SA value of the individual with confidence no more
than 1/	. Treating the SA values as colors, this problem then exactly corresponds to
the clustering with diversity problem defined at the beginning, where we have a lower
bound 	 on the cluster size.

In contrast to the many theoretical results for r-GATHERING and k-ANONYMITY
[1, 2, 22], no approximation algorithm with performance guarantees is known for 	-
DIVERSITY, even though many heuristic solutions have been proposed [13, 19, 21].

Clustering with instance-level constraints and other related work. Clustering with
instance-level constraints is a developing area and begins to find many interesting ap-
plications in various areas such as bioinformatics [5], machine learning [26, 27], data
cleaning [4], etc. Wagstaff and Cardie in their seminal work [26] considered the follow-
ing two types of instance-level hard constraints: A must-link (ML) constraint dictates
that two particular points must be clustered together and a cannot-link (CL) constraint
requires they must be separated. Many heuristics and variants have been developed
subsequently, e.g. [27, 31], and some hardness results with respect to minimizing the
number of clusters were also obtained [10]. However, to the best of our knowledge, no
approximation algorithm with performance guarantee is known for any version of the
problem. We note that an 	-diverse clustering can be seen as a special case where nodes
with the same color must satisfy CL constraints.

As opposed to the hard constraints imposed on any clustering, the correlation clus-
tering problem [6] considers soft and possibly conflicting constraints and aims at mini-
mizing the violation of the given constraints. An instance of this problem can be repre-
sented by a complete graph with each edge labeled (+) or (-) for each pair of vertices,
indicating that two vertices should be in the same or different clusters, respectively. The
goal is to cluster the elements so as to minimize the number of disagreements, i.e., (-)
edges within clusters and (+) edges crossing clusters. The best known approximations
for various versions of the problem are due to Ailon et al. [3]. If the number of clus-
ters is stipulated to be a small constant k, there is a polynomial time approximation
scheme [14]. In the Dedupalog project, Arasu et al. [4] considered correlation cluster-
ing together with instance-level hard constraints, with the aim of de-duplicating entity
references .

Approximation algorithms for clustering with outliers were first considered by
Charikar et al. [9]. The best known approximation factor for r-GATHERING with out-
liers is 4 due to Aggrawal et al. [1].

Our results. In this paper, we give the first approximation algorithms to the clustering
with diversity problem. We formally define the problem as follows.
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Definition 1 (	-DIVERSITY). Given a set of n points in a metric space where each of
them has a color, cluster them into a set C of clusters, such that each cluster has at least
	 points, and all of its points have distinct colors. The goal is to minimize the maximum
radius of any cluster.

Our first result (Section 2) is a 2-approximation algorithm for 	-DIVERSITY. The algo-
rithm follows a similar framework as in [1], but it is substantially more complicated.
The difficulty is mainly due to the requirement to resolve the conflicting colors in each
cluster while maintaining its minimum size 	. To the best of our knowledge, this is first
approximation algorithm for a clustering problem with instance-level hard constraints.

Next, we show that this approximation ratio is the best possible by presenting a
matching lower bound (Section 3). A lower bound of 2 is also given in [1] for r-
GATHERING. But to carry that result over to 	-DIVERSITY, all the points need to have
unique colors. This severely limits to applicability of this hardness result. In Section 3
we give a construction showing that even with only 3 colors, the problem is NP-hard
to approximate within any factor strictly less than 2. In fact, if there are only 2 col-
ors, we show that the problem can be solved optimally in polynomial time via bipartite
matching.

Unlike r-GATHERING, an instance to the 	-DIVERSITY problem may not have a
feasible solution at all, depending on the color distribution. In particular, we can easily
see that no feasible clustering exists when there is one color that has more than �n/	�
points. One way to get around this problem is to have some points not clustered (which
corresponds to deleting a few records in the 	-DIVERSITY problem). Deleting records
causes information loss in the published data, hence should be minimized. Ideally, we
would like to delete points just enough such that the remaining points admit a feasible
	-diverse clustering. In Section 4, we consider the 	-DIVERSITY-OUTLIERS problem,
where we compute an 	-diverse clustering after removing the least possible number of
points. We give an O(1)-approximation algorithm to this problem.

Our techniques for dealing with diversity and cluster size constraints may be useful
in developing approximation algorithms for clustering with more general instance-level
constraints. Due to space constraints, we only provide complete details for our first
result. We refer interested readers to the full version of the paper for all missing details
and proofs [20].

2 A 2-Approximation for �-DIVERSITY

In this section we assume that a feasible solution on a given input always exists. We
first introduce a few notations. Given a set of n points in a metric space, we construct
a weighted graph G(V,E) where V is the set of points and each vertex v ∈ V has
a color c(v). For each pair of vertices u, v ∈ V with different colors, we have an
edge e = (u, v), and its weight w(e) is just their distance in the metric space. For any
u, v ∈ V , let distG(u, v) be the shortest path distance of u, v in graph G. For any set
A ⊆ V , let NG(A) be the set of neighbors of A in G. For a pair of sets A ⊆ V,B ⊆ V ,
let EG(A;B) = {(a, b) | a ∈ A, b ∈ B, (a, b) ∈ E(G)}. The diameter of a cluster
C of nodes is defined to be d(C) = maxu,v∈C(w(e(u, v))). Given a cluster C and
its center v, the radius r(C) of C is defined as maximum distance from any node of
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C to v, i.e., r(C) = maxu∈C w(u, v). By triangle inequality, it is obvious to see that
1
2d(C) ≤ r(C) ≤ d(C).

A star forest is a forest where each connected component is a star. A spanning star
forest is a star forest spanning all vertices. The cost of a spanning forest F is the length
of the longest edge inF . We call a star forest semi-valid if each star component contains
at least 	 colors and valid if it is semi-valid and each star is polychromatic, i.e., each
node in the star has a distinct color. Note that a spanning star forest with cost R naturally
defines a clustering with largest radius R. Denote the radius and the diameter of the
optimal clustering by r∗ and d∗, respectively.

We first briefly review the 2-approximation algorithm for the r-GATHERING prob-
lem [1], which is the special case of our problem when all the points have distinct colors.
Let e1, e2, . . . be the edges of G in a non-decreasing order of their weights. The general
idea of the r-GATHERING algorithm [1] is to first guess the optimal radius R by con-
sidering each graph Gi formed by the first i edges Ei = {e1, . . . , ei}, as i = 1, 2, . . . .
It is easy to see that the cost of a spanning star forest of Gi is at most w(ei). For each
Gi (1 ≤ i ≤ m), the following condition is tested (rephrased to fit into our context):

(I) There exists a maximal independent set I such that there is a spanning star forest
in Gi with the nodes in I being the star centers, and each star has at least r nodes.

It is proved [1] that the condition is met if the length of ei is d∗. The condition implies
the radius of our solution is at most d∗ which is at most 2r∗. Therefore, we get an 2-
approximation. In fact, the independent set I can be chosen greedily and finding the
spanning star forest can be done via a network flow computation.

Our 2-approximation for the 	-diversity problem follows the same framework, that
is, we check each Gi in order and test the following condition:

(II) There exists a maximal independent set I such that there is a valid spanning star
forest in Gi with the nodes in I being the star centers.

The additional challenge is of course that, while condition (I) only puts a constraint on
the size of each star, condition (II) requires both the size of each star to be at least 	 and
all the nodes in a star have distinct colors. Below we first give a constructive algorithm
that for a given Gi, tries to find an I such that condition (II) is met. Next we show that
when w(ei) = d∗, the algorithm is guaranteed to succeed. The approximation ratio of
2 then follows immediately.

To find an I to meet condition (II), the algorithm starts with an arbitrary maximal
independent set I , and iteratively augments it until the condition is met, or fails oth-
erwise. In each iteration, we maintain two tests. The first one, denoted by flow test
F-TEST(Gi, I), checks if there exists a semi-valid spanning star forest in Gi with nodes
in I being star centers. If I does not pass this test, the algorithm fails right away. Oth-
erwise we go on to the second test, denoted by matching test M-TEST(Gi, I), which
tries to find a valid spanning star forest. If this test succeeds, we are done; otherwise the
failure of this test yields a way to augment I and we proceed to the next iteration. The
algorithm is outlined in Algorithm 1.

We now elaborate on F-TEST and M-TEST. F-TEST(Gi, I) checks if there is a span-
ning star forest in Gi with I being the star centers such that each star contains at least
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Algorithm 1: Algorithm to find an I in Gi to meet condition (II)

Let I be an arbitrary maximal independent set in Gi;1

while F-TEST(Gi, I) is passed do2

(S, S′) ← M-TEST(Gi,I) /* S ⊂ V, S′ ⊆ I */;3

if S = ∅ then4

Succeed;5

else6

I ← I − S′ + S;7

Add nodes to I until it is a maximal independent set;8

Fail;9

	 colors. As the name suggests, we conduct the test using a network flow computation.
We first create a source s and a sink t. For each node v ∈ V , we add an edge (s, v)
with capacity 1, and for each node oj ∈ I(1 ≤ j ≤ |I|), we create a vertex oj and
add an outgoing edge (oj , t) with capacity lower bound 	. For each node oj ∈ I and
each color c, we create a vertex pj,c and an edge (pj,c, oj) with capacity upper bound
1. For any v ∈ V such that (v, oj) ∈ Ei or v = oj , and v has color c, we add an
edge from v to pj,c without capacity constraint. Finally, we add one new vertex o′j for
each oj ∈ I , connect all v ∈ V to o′j without capacity constraint if (v, oj) ∈ E or
v = oj , and connect o′j to t without capacity constraint. The capacity upper bound of
(pj,c, oj) forces at most one node with color c to be assigned to oj . Therefore, all nodes
assigned to oj have distinct colors. The capacity lower bounds of (oj , t)s require that
each cluster has at least 	 nodes. Nodes o′js are used to absorb other unassigned nodes.
It is not difficult to see that there exists a semi-valid spanning star forest with nodes in
I being star centers in Gi if an n-units flow can be found. In this case we say that the
F-TEST is passed. See Figure 2 for an example. Note that a network flow problem with
both capacity lower bounds and upper bounds is usually referred to as the circulation
problem, and is polynomially solvable [18].

v2 color 1

v1 v3

v4

color 1 color 2

color 2

v1

v2

v3

v4

p1,1

p1,2

p2,1

p2,2

o1(= v2)

o2(= v4)

s t

1

1

1

1

≤ 1

≤ 1

≤ 1

≤ 1

≥ 2

≥ 2

o′1

o′2

Fig. 2. The flow network construction. On the left is the original graph, I = {v2, v4}, � = 2. On
the right is the corresponding flow network. Thick edges denote a feasible flow of value |I |� = 4.

Once Gi and I pass F-TEST, we try to redistribute those vertices that cause color
conflicts. We do so by a bipartite matching test M-TEST(Gi, I) which returns two vertex
sets S and S′ that are useful later. Concretely, we test whether there exists a matching
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in the bipartite graph B(I − C,C − I;EGi(I − C;C − I)) for each color class C
such that all vertices in C − I are matched. If such matchings can be found for all
the colors, we say that the M-TEST is passed. Note that all these matchings together
give a spanning star forest such that each star is polychromatic. However, this does
not guarantee that the cardinality constraint is preserved. The crucial fact here is that
I passes both F-TEST and M-TEST. In Lemma 2 we formally prove that there exists
a valid spanning star forest with nodes in I as star centers if and only if Gi and I
pass both F-TEST and M-TEST. To actually find a valid spanning star forest, we can
again use the network flow construction in F-TEST but without the o′j nodes. If M-
TEST fails, we know that for some color class C, there exists a subset S ⊆ C − I such
that the size of its neighbor set |NB(S)| is less than |S| by Hall’s theorem [18]. In this
case, M-TEST returns (S,NB(S)); such a set S can be found by a maximum matching
algorithm. Then we update the independent set I ← I − NB(S) + S; we show that
I is still an independent set in Lemma 1. Finally, we add nodes to I arbitrarily until it
becomes a maximal independent set. Then, we start the next iteration with the new I .
Since |S| > |NB(S)|, we increase |I| by at least one in each iteration. So the algorithm
terminates in ≤ n iterations.

Before proving that Algorithm 1 is guaranteed to succeed when w(ei) = d∗, we
prove the two lemmas left in the description of our algorithm. The first lemma ensures
that I is always an independent set.

Lemma 1. The new set I ← I−S′+S obtained in each update is still an independent
set in Gi.

Proof. Since all vertices in S have the same color, there is no edge among them. There-
fore, we only need to prove that there is no edge between I − S′ and S, which is trivial
since S′ = NB(S). ��

The second lemma guarantees that we find a feasible solution if both tests are passed.

Lemma 2. Given Gi = G(V,Ei) and I , a maximal independent set of Gi, both F-
TEST(Gi,I) and M-TEST(Gi,I) are passed if and only if there exists a valid spanning
star forest in Gi with nodes in I being star centers.

Proof. The “if” part is trivial. We only prove the “only if” part. Suppose Gi and I pass
both F-TEST(Gi,I) and M-TEST(Gi,I). Consider a semi-valid spanning star forest ob-
tained in Gi after F-TEST. We delete a minimal set of leaves to make it a valid star (not
necessarily spanning) forest F . Consider the bipartite graph B(I −C;C − I, EGi(I −
C;C − I)) for each color class C. We can see F ∩ B is a matching in B. Since I
passes M-TEST, we know that there exists a maximum matching such that all nodes
in C − I can be matched. If we use the Hungarian algorithm to compute a maximum
matching with F ∩ B as the initial matching, the nodes in I − C which are originally
matched will still be matched in the maximum matching due to the property of the al-
ternating path augmentation1. Therefore, the following invariants are maintained: each

1 Recall that an augmenting path P (with respect to matching M ) is a path starting from un-
matched node, alternating between unmatched and matched edges and ending also at an un-
matched node (for example, see [23]). By taking the symmetric difference of P and M , which
we call augmenting on P , we can obtain a new matching with one more edge.
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star is polychromatic and has at least 	 colors. By applying the above maximum match-
ing computation for each color class, we obtain a valid spanning star forest in Gi. ��
Finally, we prove that Algorithm 1 is guaranteed to succeed on Gi∗ for the maximal
index i∗ such that w(ei∗) = d∗, where d∗ is the optimal cluster diameter of any valid
spanning star forest of G.

Lemma 3. Algorithm 1 will succeed on Gi∗ .

Proof. Suppose C∗ = {C∗1 , . . . , C∗k∗} is the set of clusters in the optimal clustering
with cluster diameter d∗. Since Gi∗ include all edges of weights no more than d∗, each
C∗j induces a clique in Gi∗ for all 1 ≤ j ≤ k∗, thus it contains at most one node
in any independent set. Therefore, any maximal independent set I in Gi∗ can pass F-
TEST(Gi∗ , I), and we only need to argue that I will also pass M-TEST(Gi∗, I). Each
update to the independent set I increases the size of I by at least 1 and the maximum
size of I is k∗. When |I| = k∗, each C∗j contains exactly one node in I and this I must
be able to pass M-TEST(Gi∗, I). So Algorithm 1 must succeed in some iteration. ��
By Lemma 3, the cost of the spanning star forest found by Algorithm 1is at mostd∗. Since
the cost of the optimal spanning forest is at least d∗/2, we obtain a 2-approximation.

Theorem 1. There is a polynomial-time 2-approximation for 	-DIVERSITY.

3 The Lower Bound

We show that 	-DIVERSITY is NP-hard to approximate within a factor less than 2 even
when there are only 3 colors. Note that if there are 2 colors, the problem can be solved
in polynomial time by computing perfect matchings in the threshold graphs.

Theorem 2. There is no polynomial-time approximation algorithm for 	-DIVERSITY
that achieves an approximation factor less than 2 unless P = NP .

4 Dealing with Unqualified Inputs

For the 	-DIVERSITY problem, a feasible solution may not exist depending on the input
color distribution. The following simple lemma gives a necessary and sufficient condi-
tion for the existence of a feasible solution.

Lemma 4. There exists a feasible solution for 	-DIVERSITY if and only if the number
of nodes with the same color c is at most �n


 � for each color c.

To cluster an instance without a feasible solution, we must exclude some nodes as out-
liers. The following lemma characterizes the minimum number of outliers.

Lemma 5. Let C1, C2, . . . , Ck be the color classes sorted in the non-increasing order
of their sizes.

1. Let p be the maximum integer satisfying
∑k

i=1 min (p, |Ci|) ≥ p	. The minimum

number of outliers is given by q =
∑k

i=1 max (0, |Ci| − p) and p is the number of
clusters when we exclude q outliers.

2. p	 ≤ n− q < p(	 + 1).
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With lemma 5 at hand, it is natural to consider the following optimization problem: find
an 	-DIVERSITY solution by clustering n − q points such that the maximum cluster
radius is minimized. We call this problem 	-DIVERSITY-OUTLIERS. From Lemma 5
we can see that p is independent on the metric and can be computed in advance. In
addition, implicit from Lemma 5 is that the number of outliers of each color is also
fixed, but we need to decide which points should be chosen as outliers.

In the fortunate case where we have a color class C with exactly p nodes, we know
that there is exactly one node of C in each cluster of any feasible solution. By using a
similar flow network construction used in F-TEST, we can easily get a 2-approximation
using C as the cluster centers. However, the problem becomes much more difficult
when the sizes of all color classes are different from p.

4.1 A Constant Approximation

We first define some notations. We call color classes of size larger than p popular colors
and nodes having such colors popular nodes. Other color classes have at most p nodes,
and these nodes are unpopular. We denote the set of popular nodes by P and the set
of unpopular nodes by N . Note that after removing the outliers, each popular color has
exactly p nodes and each cluster will contain the same number of popular nodes. Let
z be the number of popular nodes each cluster contains. We denote by Gd the power
graph of G in which two vertices u, v are adjacent if there is path connecting u and v
with at most d edges. The length of the edge (u, v) in Gd is set to be distG(u, v). Before
describing the algorithm, we need the following simple lemma.

Lemma 6. For any connected graph G, G3 contains a Hamiltonian cycle which can be
found in linear time.

The algorithm still adopts the thresholding method, that is, we add edges one by one
to get graphs Gi = (V,Ei = {e1, e2, . . . , ei}), for i = 1, 2, . . . , and in each Gi, we
try to find a valid star forest that spans Gi except q outliers. Let d∗ be the diameter of
the optimal solution that clusters n− q points, and i∗ be the maximum index such that
w(ei) = d∗. Let Gi[N ] be the subgraph of Gi induced by all unpopular nodes. We
define the ball of radius r around v to be B(v, r) = {u | u ∈ N ∧distG(v, u) ≤ r}. For
each Gi, we run the Algorithm: 	-DIVERSITY-OUTLIERS(Gi) (see below). We proceed
to Gi+1 when the algorithm claims failure.

The high level idea of the algorithm is as follows: Our goal is to show that the algo-
rithm can find a valid star forest spanning n− q nodes in G28

i∗ . It is not hard to see that
this gives us an approximation algorithm with factor 28× 2 = 56. First, we notice that
F-TEST can be easily modified to work for the outlier version by excluding all o′j nodes
and testing whether there is a flow of value n− q. However, the network flow construc-
tion needs to know in advance the set of candidates of cluster centers. For this purpose,
we attempt to attach p new nodes which we call virtual centers to Gi which serve as
the candidates of cluster centers in F-TEST. In the ideal case, if these virtual centers can
be distributed such that each of them is attached to a distinct optimal cluster, F-TEST
can easily produce a 2-approximation. Since the optimal clustering is not known, this is
very difficult in general. However, we show there is way to carefully distribute the vir-
tual centers such that there is a perfect matching between these virtual centers and the
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optimal cluster centers and the longest matching edge is at most 27d∗, which implies
that our algorithm can find a valid spanning star forest in G27+1

i∗ = G28
i∗

Algorithm: 	-DIVERSITY-OUTLIERS(Gi).

1. If Gi[N ] has a connected component with < 	− z nodes, we declare failure.
2. Pick an arbitrary unpopular node v such that |B(v, w(ei))| ≥ 	 − z and delete

all vertices in this ball; repeat until no such node exists. Then, pick an arbitrary
unpopular node v and delete all vertices in B(v, w(ei)); repeat until no unpopular
node is left. Let B1,B2, . . . ,Bk be the balls created during the process. If a ball
contains at least 	− z unpopular nodes, we call it big. Otherwise, we call it small.

3. In Gi[N ], shrink each Bj into a single node bj . A node bj is big if Bj is big and

small otherwise. We define the weight of bj to be μ(bj) = |Bj |

−z . Let the resulting

graph with vertex set {bj}k
j=1 be Di.

4. For each connected component C of Di, do

(a) Find a spanning tree TC of C3 such that all small nodes are leaves. If this is
not possible, we declare failure.

(b) Find (by Lemma 6) a Hamiltonian cycle P = {b1, b2, . . . , bh, bh+1 = b1} over
all non-leaf nodes of C such that distDi(bj , bj+1) ≤ 9w(ei).

5. We create a new color class U of p nodes which will serve as “virtual centers” of
the p clusters. These virtual centers are placed in Gi “evenly” as follows. Consider
each connected component C in Di and the corresponding spanning tree TC of
C3. For each non-leaf node bj in TC , let L(bj) be the set of leaves connected to
bj in TC , and let η(bj) = μ(bj) +

∑
bx∈L(bj) μ(bx) and δj =

∑j
x=1 η(bx). We

attach �δi� − �δi−1� virtual centers to the center of Bi by zero weight edges. If
the total number of virtual centers used is not equal to p, we declare failure. Let
Hi be the resulting graph (including all popular nodes, unpopular nodes and virtual
centers).

6. Find a valid star forest in H28
i using U as centers, which spans n − q nodes (not

including the nodes in U ) by using F-TEST. If succeeds, we return the star forest
found, otherwise we declare failure.

4.2 Analysis of the Algorithm

We show that the algorithm succeeds on Gi∗ . Since we perform F-TEST on H28
i∗ in

which each edge is of length ≤ 28d∗, the radius of each cluster is at most 28d∗. There-
fore, the approximation ratio is 56.

Let Hi∗ be the graph obtained by adding virtual centers to Gi∗ as described above.
Let C∗ = {C∗1 , . . . , C∗p} be the optimal clustering. Let I∗ = {ν∗1 , . . . , ν∗p} be the set of
cluster centers of C∗ where ν∗i is the center of C∗i . We denote the balls grown in step 2
by B1, . . . ,Bk. Let νi be the center of Bi.

The algorithm may possibly fail in step 1, step 4(a), step 5 and step 6. Obviously Gi∗

can pass step 1. Therefore, we only check the other three cases.

Step 4(a) : We prove that the subgraph induced by all big nodes are connected in C3.
Indeed, we claim that each small node is adjacent to at least one big node in C from
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which the proof follows easily. Now we prove the claim. Suppose bj is a small node and
all its neighbors are small. We know that in Gi∗ [N ], νj has at least 	− z − 1 neighbors
because νj is an unpopular node and thus belongs to some optimal cluster. So we could
form a big ball around νj , thus contradicting to the fact that νj is in a small ball. To find
a spanning tree with all small nodes as leaves, we first assign each small node to one of
its adjacent node arbitrarily and then compute a tree spanning all the big nodes.

Step 5 : We can see that in each connected component C (with big nodes b1, . . . , bh)

in Di∗ , the total number of virtual centers we have placed is
∑h

i=1(�δi� − �δi−1�) =

�δh� = �
∑h

x=1 η(bx)� = �
∑

bj∈C μ(bj)� =
⌊
|C|
l−z

⌋
where |C| =

∑
bj∈C |Bj |, the

number of nodes in the connected component of Gi∗ [N ] corresponding to C. This is
at least the number of clusters created for the component C in the optimal solution.
Therefore, we can see the total number of virtual centers created is at least p. On the
other hand, from Lemma 5(2), we can see that p(	−z) ≤ |N | < (p+1)(	−z). Hence,

p =
⌊
|N |

−z

⌋
=

⌊∑
C |C|

−z

⌋
≥

∑
C

⌊
|C|

−z

⌋
. where the summation is over all connect

components. So, we prove that exactly p virtual centers were placed in Gi∗ .

Step 6 : We only need to show that there is a perfect matching M between U and the set
of optimal centers I∗ in H27

i∗ . We consider the bipartite subgraphQ(U, I∗, EH27
i∗

(U, I∗)).
From Hall’s theorem, it suffices to show that |NQ(S)| ≥ |S| for any S ⊆ U , which can
be implied by the following lemma.

Lemma 7. For any S ⊆ U , the union of the balls of radius 27d∗ around the nodes of
S, i.e,

⋃
u∈S B(u, 27d∗), intersects at least |S| optimal clusters in C∗.

Theorem 3. There is a 56-approximation for 	-DIVERSITY-OUTLIERS.

5 Further Directions

This work results in several open questions. First, as in [1], we could also try to mini-
mize the sum of the radii of the clusters. However, this seems to be much more difficult,
and we leave it as an interesting open problem. Another open problem is to design con-
stant approximations for the problem with any fixed number of outliers, that is, for any
given number k, find an optimal clustering if at most k outliers can be removed.

As mentioned in the introduction, our work can be seen as a stab at the more gen-
eral problem of clustering under instance-level hard constraints. Although arbitrary CL
(cannot-link) constraints seems hard to approximate with respect to minimizing the
number of clusters due to the hardness of graph coloring [10], other objectives and
special classes of constraints, e.g. diversity constraints, may still admit good approxi-
mations. Besides the basic ML and CL constraints, we could consider more complex
constraints like the rules proposed in the Dedupalog project [4]. One example of such
rules says that whenever we cluster two points a and b together, we must also cluster c
and d. Much less is known for incorporating these types of constraints into traditional
clustering problems and we expect it to be an interesting and rich further direction.
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4. Arasu, A., Ré, C., Suciu, D.: Large-scale deduplication with constraints using Dedupalog.
In: ICDE, pp. 952–963 (2009)

5. Bairoch, A., Apweiler, R.: The SWISS-PROT protein sequence data bank and its supplement
TrEMBL. Nucleic acids research 25(1), 31 (1997)

6. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1), 89–113
(2004)

7. Beresford, A., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Com-
puting, 46–55 (2003)

8. Wong, R.C.-W., Li, J., Fu, A.-C., Wang, K.: (α, k)-anonymity: an enhanced k-anonymity
model for privacy preserving data publishing. In: SIGKDD, pp. 754–759 (2006)

9. Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Algorithms for facility location prob-
lems with outliers. In: SODA, pp. 642–651 (2001)

10. Davidson, I., Ravi, S.: Intractability and clustering with constraints. In: ICML, pp. 201–208
(2007)

11. Dwork, C., Naor, M., Reingold, O., Rothblum, G., Vadhan, S.: On the complexity of differen-
tially private data release: efficient algorithms and hardness results. In: STOC, pp. 381–390
(2009)

12. Feldman, D., Fiat, A., Kaplan, H., Nissim, K.: Private coresets. In: STOC, pp. 361–370
(2009)

13. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with low informa-
tion loss. In: VLDB, pp. 758–769 (2007)

14. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. In: SODA,
pp. 1176–1185 (2006)

15. Hoppner, F., Klawonn, F., Platz, R., Str, S.: Clustering with Size Constraints. Computational
Intelligence Paradigms: Innovative Applications (2008)

16. Ji, X.: Graph Partition Problems with Minimum Size Constraints. PhD thesis, Rensselaer
Polytechnic Institute (2004)

17. Kifer, D., Gehrke, J.: Injecting utility into anonymized datasets. In: SIGMOD, pp. 217–228
(2006)

18. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th edn. Springer,
Heidelberg (2007)

19. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In:
ICDE, p. 25 (2006)

20. Li, J., Yi, K., Zhang, Q.: Clustering with diversity (2010),
http://arxiv.org/abs/1004.2968

21. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy
beyond k-anonymity. In: ICDE, p. 24 (2006)

22. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: PODS, pp. 223–
228 (2004)

23. Alsuwaiyel, M.H.: Algorithms: Design Techniques and Analysis. World Scientific, Singa-
pore (1998)

http://arxiv.org/abs/1004.2968


200 J. Li, K. Yi, and Q. Zhang

24. Park, H., Shim, K.: Approximate algorithms for k-anonymity. In: SIGMOD (2007)
25. Samarati, P.: Protecting respondents’ identities in microdata release. TKDE 13(6), 1010–

1027 (2001)
26. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: ICML, pp. 1103–

1110 (2000)
27. Wagstaff, K., Cardie, C., Schroedl, S.: Constrained k-means clustering with background

knowledge. In: ICML, pp. 577–584 (2001)
28. Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: VLDB, pp. 139–

150 (2006)
29. Xiao, X., Tao, Y.: m-invariance: Towards privacy preserving re-publication of dynamic

datasets. In: SIGMOD, pp. 689–700 (2007)
30. Xiao, X., Yi, K., Tao, Y.: The hardness and approximation algorithms for l-diversity. In:

EDBT (2010)
31. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning, with application to clus-

tering with side-information. In: NIPS, pp. 505–512 (2003)



New Data Structures for Subgraph Connectivity

Ran Duan�

University of Michigan, Ann Arbor
duanran@umich.edu

Abstract. We study the “subgraph connectivity” problem for undi-
rected graphs with sublinear vertex update time. In this problem, we
can make vertices active or inactive in a graph G, and answer the con-
nectivity between two vertices in the subgraph of G induced by the active
vertices. Two open problems in subgraph connectivity are solved in this
paper. We give the first subgraph connectivity structure with worst-case
sublinear time bounds for both updates and queries. Our worst-case sub-
graph connectivity structure supports Õ(m4/5) update time, Õ(m1/5)
query time and occupies Õ(m) space, where m is the number of edges in
the whole graph G.

In the second part of our paper, we describe another dynamic subgraph
connectivity structure with amortized Õ(m2/3) update time, Õ(m1/3)
query time and linear space, which improves the structure introduced by
[Chan, Pǎtraşcu, Roditty, FOCS’08] that takes Õ(m4/3) space.

1 Introduction

In this paper, we study the fully dynamic connectivity problem with vertex up-
dates on graphs, which is also known as “subgraph connectivity”. More precisely,
given an undirected graph G = (V,E), we can switch the status of every vertex
to be active or inactive, and the structure can answer the connectivity between
any two active vertices on the subgraph of G induced by the active vertices. We
define n = |V | and m = |E|. The dynamic subgraph model was introduced by
Frigioni and Italiano [11], in which a vertex and all edges associated with it can
be made active or inactive in one update without adding or removing those edges
one by one. They gave a dynamic subgraph connectivity structure having poly-
logarithmic vertex update time in planar graphs. Recently, Chan, Pǎtraşcu and
Roditty [2] gave a subgraph connectivity structure for general graphs support-
ing Õ(m2/3)1 vertex update time with Õ(m4/3) space, which improves the result
given by Chan [1] having Õ(m0.94) update time and linear space. However, the
update time bounds for both of these structures are amortized. In this paper,
we present the first structure having worst-case o(m) update and query time on
dynamic subgraph connectivity, and also improve the amortized structure in [2]
to linear space with the same update and query time bounds.
� This work is supported by NSF CAREER grant no. CCF-0746673 and a grant from

the US-Israel Binational Science Foundation.
1 In this paper, Õ(·) hides poly-logarithmic factors.
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Dynamic connectivity with edge updates is the most basic problem among
this kind of dynamic structures and is well studied. Thorup has introduced a
linear space structure supporting O(log2 n) amortized update time [22]. With
this structure, we can get a trivial dynamic subgraph connectivity structure
with amortized vertex update time Õ(n). Then two hard directions related to
this problem arise: dynamic subgraph connectivity with sublinear vertex update
time, and dynamic structures with worst-case edge/vertex update time bounds.

As mentioned above, for the subgraph connectivity in general graphs, Chan [1]
has given a linear space structure with Õ(m4ω/(3ω+3) ≈ m0.94) update time and
Õ(m1/3) query time. Here ω ≈ 2.376 is the exponent for the matrix multiplica-
tion time bound [3]. Chan, Pǎtraşcu and Roditty [2] have improved the update
time to Õ(m2/3) and gotten rid of the fast matrix multiplication operations.

However, the dynamic structures mentioned above all have amortized update
time. In general, worst-case dynamic structures have much worse time bounds
than amortized structures. Frederickson has given a dynamic minimum spanning
tree structure which supports edge updates in O(m1/2) time in the worst-case
scenario [10]. Eppstein, Galil, Italiano, and Nissenzweig [9] have improved the
time bound to O(n1/2) by a technique called “sparsification”. Improving this
time bound is still a major challenge in dynamic graph algorithms [16]. Using
those worst-case edge update structures, we give a natural generalization in this
paper– the first dynamic subgraph connectivity structure with sublinear vertex
update time in the worst-case scenario.

Our Results. In the first part of this paper, we will describe a worst-case
dynamic subgraph connectivity structure with Õ(m4/5) vertex update time and
Õ(m1/5) query time. We will utilize the worst-case edge update structure [9] as
a component and maintain a multi-level hierarchy instead of the two-level one
in [2]. In general, we will get faster update time for this structure if there are
faster worst-case edge update connectivity structures. In the second part of this
paper, we will describe a new linear space subgraph connectivity structure with
Õ(m2/3) amortized vertex update time and Õ(m1/3) query time.

Techniques. The best worst-case edge update connectivity structure [9] so far
has O(n1/2) update time, much larger than the polylogarithmic amortized edge
update structure [13,22]. Inspiring by [2], we will divide vertices into several levels
by their degrees. In “lower” levels having small degree bounds, we maintain
an edge update connectivity structure for the subgraph on active vertices at
these levels. In “higher” levels having large degree bounds and small numbers of
vertices, we only keep the subgraph at those levels and run a BFS to obtain all
the connected components after an update. To reflect the connectivity between
high-level vertices through low-level vertices, we will add two types of artificial
edges to the high-level vertices. (a). In the “path graph”, update on every vertex
will change the edge set, but the number of edges changed is only linear to the
degree of that vertex. (b). In the “complete graph”, only low-level vertex updates
will change the edge set, but the number of edges changed is not linear to the
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degree. In our structure, we only use the “complete graph” between top levels
and bottom levels to bound the update time.

Related Results. Data structures on dynamic graphs are widely applicable in
many areas. A huge amount of papers in algorithms and theory focused on many
basic properties on dynamic graphs, such as connectivity [9,11,1,2,13,21,22,10],
all-pair distances [4,18,23,14], minimum spanning trees [12,13,10], and reachabil-
ity in directed graphs [17,20,19,6,15]. Also there are researches on connectivity
and shortest path problem on failure prone graphs, in which queries are given
with a constant number of vertex/edge failures. [5,7,16,8]

2 Basic Structures

In this section, we will define several dynamic structures as elements of the main
structures. If we want to keep the connectivity of some vertex set V1 through a
disjoint set V0, some “artificial edges” may need to be added into V1. For every
spanning tree in V0, the vertices in V1 adjacent to this spanning tree need to be
connected. We will use the ET-tree ideas from Henzinger and King’s paper [12]
to make such artificial edges efficiently dynamic when the spanning forest of V0
changes. Here the artificial edges of V1 associated with a spanning tree in V0 will
form a path ordered by the Euler Tour of that tree.

2.1 Euler Tour List

For a tree T , let L(T ) be a list of its vertices encountered during an Euler tour
of T [12], where we only keep any one of the occurrences of each vertex. Note
that L(T ) can start at any vertex in T . Now we count the number of cut/link
operations on the Euler tour lists when we cut/link trees. One may easily verify
the following theorem:
Theorem 1. When we delete an edge from T , T will be split into two subtrees
T1 and T2. We need at most 2 “cut” operations to split L(T ) into 3 parts, and
at most 1 “link” operation to form L(T1) and L(T2).

When we add an edge to link two tree T1 and T2 into one tree T , then we need
to change the start or end vertices of L(T1) and L(T2) and link them together to
get L(T ), which will take at most 5 “cut/link” operations.

2.2 Adjacency Graph

In a graph G = (V,E), let V0, V1, V2, ..., Vk be disjoint subsets of V , and let F
be a forest spanning the connected components of the subgraph of G induced
by the active vertices of V0. We will construct a structure R(G,F, V1, V2, ..., Vk)
containing artificial edges on the active vertices of the sets V1, V2, ..., Vk which
can represent the connectivity of these vertices through V0.

Definition 1. For 1 ≤ i ≤ k, the active adjacency list AG(v, Vi) of a vertex
v ∈ V0 is the list of active vertices in Vi which are adjacent to v in G. The
active adjacency list AG(T, Vi) induced by a tree T ∈ F is the concatenation of
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the lists AG(v1, Vi), AG(v2, Vi), ..., AG(vk, Vi) where L(T ) = (v1, v2, ..., vk). Note
that a vertex of Vi can appear multiple times in AG(T, Vi).

Definition 2. Given a list l = (v1, v2, ..., vk) of vertices, define the edge set
P (l) = {(vi, vi+1)|1 ≤ i < k}.
Definition 3. In the structure R(G,F, V1, V2, ..., Vk), for a tree T ∈ F , we
maintain the list AG(T ) of active vertices which is the concatenation of the lists
AG(T, V1), AG(T, V2), ..., AG(T, Vk). Then the set of artificial edges in R(G,F, V1,
V2, ..., Vk) is the union

⋃
T∈F P (AG(T )). We call the edges connecting different

AG(T, Vi) (1 ≤ i ≤ k) “inter-level edges”. So the degree of a vertex v of Vi
(1 ≤ i ≤ k) in R(G,F, V1, V2, ..., Vk) is at most twice its degree in G, and the
space of this structure is linear to G.

We can see that deleting a vertex in l will result in deleting at most two edges
and inserting at most one edge in P (l), and inserting a vertex in l will result in
inserting at most two edges and deleting at most one edge in P (l). Also, one can
easily verify the following properties of the adjacency graph:

Note 1. For a spanning tree T ∈ F , the vertices in AG(T, Vi) are connected by
the subset of R(G,F, V1, V2, ..., Vk) induced only by Vi, for all 1 ≤ i ≤ k.

Lemma 1. For any two active vertices u, v in V1 ∪ V2 ∪ ... ∪ Vk, if there is a
path with more than one edge connecting them, whose intermediate vertices are
active and in V0, then they are connected by the edges R(G,F, V1, V2, ..., Vk).

Also if u, v are connected in R(G,F, V1, V2, ..., Vk), they are connected in the
subgraph of G induced by the active vertices.

Lemma 2. The cost needed to maintain this structure:

1. Making a vertex v active or inactive in V1∪V2∪...∪Vk will require inserting or
deleting at most O(min(degG(v), |V0|)) edges in R(G,F, V1, V2, ..., Vk). (Here
degG(v) denotes the degree of v in the graph G.)

2. Adding or removing an edge in F will require inserting or deleting O(k) edges
to this structure.

3. Making a vertex v ∈ V0 active or inactive will require inserting or deleting
O(k · degG(v)) edges.

4. Inserting or deleting an “inter-level” edge (u, v) in G where u ∈ V0, v ∈ V1∪
V2∪...∪Vk will require inserting or deleting at most 3 edges in R(G,F, V1, V2,
..., Vk). (G may be not the original graph, but another dynamic graph.)

2.3 ET-List for Adjacency

Here we describe another data structure for handling adjacency queries among a
dynamic spanning tree F and a disjoint vertex set V1. By this structure, when we
intend to obtain all the vertices in V1 adjacent to a tree T ∈ F , we do not need
to check all the edges connecting T to V1, but only check whether v is adjacent
to T for all v ∈ V1. This takes O(|V1|) time for finding all such vertices. Note
that since this structure keeps all the vertices in V1 no matter whether they are
active or not, so we do not need to update it when switching a vertex in V1.
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Theorem 2. Let G = (V,E) be a graph and V0, V1 be two disjoint subsets of V .
Let F be a spanning forest on the subgraph of G induced by the active vertices
of V0. There is a data structure ET (G,F, V1) with linear size that accepts edge
inserting/deleting updates in F . Given a vertex v ∈ V1 (active or inactive) and
a tree T ∈ F , we can answer whether they are adjacent in G in constant time.
The update time for a vertex v in V0 of this structure is O(degG(v)|V1|).

Proof. In ET (G,F, V1), for every vertex v ∈ V1 and every T ∈ F , we keep a list
of vertices in T adjacent to v ordered by L(T ). From Theorem 1, when we link
two trees or cut a tree into two subtrees in F , it takes O(V1) time to merge or
split the lists for all v ∈ V1. When a vertex in V0 is turned active or inactive, we
need to add/delete degG(v) edges in F and add/delete that vertex in the lists
for all v ∈ V1. The space will be O(m) since every edge will contribute at most
one appearance of vertex in the lists.

3 Dynamic Subgraph Connectivity with Sublinear
Worst-Case Update Time

In this section, we will describe our worst-case dynamic subgraph connectivity
structure with sublinear update time. We divide the vertices into several levels
by their degrees. The structure of adjacency graph in Section 2.2 will be used to
reflect the connectivity between high-level vertices through low-level vertices. We
will use the dynamic spanning tree structure of O(n1/2) worst-case edge update
time [9] to keep the connectivity of vertices in low-levels of lower degree bounds.
However, in high-levels with high degree bounds, we only store the active vertices
and edges and run a BFS after each update to obtain the new spanning trees.

Theorem 3. Given a graph G = (V,E), there exists a dynamic subgraph con-
nectivity structure occupying Õ(m) space and taking Õ(m6/5) preprocessing time.
We can switch every vertex to be “active” or “inactive” in this structure in
Õ(m4/5) time, and answer the connectivity between any pair of vertices in the
subgraph of G induced by the active vertices in Õ(m1/5) query time.

3.1 The Structure

First we divide all the vertices of G into several parts based on their degrees in
the whole graph G, so the sets are static.

– VA: The set of vertices of degrees less than m1/5

– VB : The set of vertices v satisfying m1/5 ≤ degG(v) < m3/5.
– VC : The set of vertices v satisfying m3/5 ≤ degG(v) < m4/5.
– VD: The set of vertices v satisfying degG(v) ≥ m4/5.

So we can see that |VB| ≤ 2m4/5, |VC | ≤ 2m2/5, |VD| ≤ 2m1/5.
In order to get more efficient update time, we continue to partition the set

VB into V0, V1, V2, ..., Vk where k = � 2
5 log2 m� and:

Vi = {v|v ∈ VB, 2im1/5 ≤ degG(v) < 2i+1m1/5}, ∀0 ≤ i ≤ k (1)
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Thus, |Vi| ≤ 21−im4/5. For all the disjoint vertex sets VA, V0, V1, ..., Vk, VC , VD
ordered by their degree bounds, we say that a vertex u is higher than a vertex
v if u is in the set of higher degree bound than v.

For the set VA, the following structure will be built to keep the connectivity
between vertices in other sets through vertices of VA:

– Maintain a dynamic spanning forest FA on the subgraph of G induced by
the active vertices of VA, which will support O(

√
n) edge update time. [9]

– Maintain the edge set (and the structure) EA = R(G,FA, V0, V1, ..., Vk, VC).
– Maintain the structures ET (G,FA, VC),ET (G,FA, VD) so that we can find

the vertices of VC and VD (including active and inactive) adjacent to a tree
T of FA in G in O(|VC |) time by Theorem 2. Denote the vertices of VC and
VD adjacent to T by VC(T ) and VD(T ), respectively.

– For every spanning tree T ∈ FA, arbitrarily choose an active vertex uT ∈ VB
which is adjacent to T in G (if there is one). Call it the “representative”
vertex of T . Define the edge set ĒT = {(u, v)|u ∈ VC(T ) ∪ VD(T ), v ∈
VD(T )} ∪ {(uT , v)|v ∈ VD(T )}.

– Define G0 = (V,E ∪ EA ∪
⋃

T∈FA
ĒT ). Note that EA only contains edges

connecting active vertices, but ĒT may contain edges associate with inactive
vertices. When considering the connectivity of G0, we only consider the sub-
graph of G0 induced by the active vertices and ignore the inactive vertices.

We have added artificial edges on the vertices of VB, VC , VD to G0 so that the
subgraph of G0 induced by the active vertices of these sets can represent the
connectivity in the dynamic graph G. Note that we do not store the set ĒT for
every T ∈ FA, but only store the final graph G0 to save space. We can get every
ĒT efficiently from the adjacency lists.

Then we will build structures for the connectivity on VB ∪ VC ∪ VD through
V0, ..., Vk. For i = 0 to k, perform the following two steps:

1. Maintain a dynamic spanning forest Fi on the subgraph of Gi induced by the
active vertices of Vi. The structure will support O(

√
|Vi|) = O(m2/5/2i/2)

edge update time. [9]
2. Maintain the edge set Ei+1 = R(Gi, Fi, Vi+1, ..., Vk, VC , VD), and define the

graph Gi+1 = (V,E(Gi) ∪ Ei+1), where E(Gi) is the set of edges in Gi.

We denote H = Gk+1 which contains all the artificial edge. Note that only the
edges connecting vertices higher than Vi will be added to Gi+1, so the spanning
forest Fi (FA) still spans the connected components of the subgraph of H induced
by the active vertices of Vi (VA), and also EA = R(H,FA, V0, V1, ..., Vk, VC),
Ei+1 = R(H,Fi, Vi+1, ..., Vk, VC , VD) for all 0 ≤ i ≤ k.

Discussion: Why we need ĒT but not simply construct EA = R(G,FA,
V0, ..., Vk, VC , VD)? Since there are no specific bounds for |VD| and the number
of spanning trees in FA, if EA = R(G,FA, V0, ..., Vk, VC , VD), from Lemma 2(1),
the update time may become linear when we switch a vertex in VD. Remind that
ĒT contains the edges connecting active and inactive vertices in VD, so we do
not need to change the edge sets ĒT when switching a vertex of VD.
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When we consider the connectivity of vertices of VC and VD in H after an
update, we just run a BFS on the subgraph of H induced by the active vertices
of VC and VD which takes O((|VC |+ |VD|)2) = O(m4/5) time and get a spanning
forest FCD. Due to page limit, some proofs of the following lemmas are omitted
and will be given in the full version.

Lemma 3. The space for storing H is Õ(m), and it takes Õ(m6/5) time to
initialize this structure.

Lemma 4. (Consistency of ĒT ) For any two active vertices u ∈ V \VA, v ∈ VD,
if there is a path longer than one connecting them whose intermediate vertices
are all active and in VA, then for some T ∈ FA, they are connected by the subset
of edges ĒT ∪ EA induced by the active vertices.

Proof. From the conditions, all the intermediate vertices on the path between
u and v will be in the same spanning tree T ∈ FA. So if u ∈ VC ∪ VD, there
is an edge connecting u and v in Ē(T ). If u ∈ VB and v ∈ VD, by Lemma 1, u
will be connected to the representative vertex uT in EA, and there is an edge
connecting uT and v directly in Ē(T ).

From Lemma 1 and 4, the artificial edges in higher level generated by a spanning
tree in a lower level can reflect the connectivity between active higher level
vertices through this spanning tree. The subgraph of H induced by a subset
will contain all the artificial edges and original edges of G, so it can reflect the
connectivity in this subset and lower sets between its active vertices. We have
the following lemma, whose proof is omitted due to page limit.

Lemma 5. For any two active vertices u, v in the set Vi (0 ≤ i ≤ k + 1) or
higher, u and v are connected in the subgraph of H induced by the active vertices
of Vi ∪ ... ∪ Vk ∪ VC ∪ VD if and only if they are connected in the subgraph of
G induced by the active vertices. Particularly for u, v in VC ∪ VD, u and v are
connected in the the subgraph of H induced by the active vertices of VC ∪ VD if
and only if they are connected in the subgraph of G induced by the active vertices.

3.2 Switching a Vertex

In this section we show how this structure is maintained in Õ(m4/5) time when
changing the status of a vertex v. From Lemma 2(4), deleting or inserting an
inter-level edge in H may cause changing at most 3 higher inter-level edges in
the adjacency graph. However, there are at most Θ(log n) vertex sets in this
structure, so we need other schemes to bound the number of edges updated
during a vertex update. Note that after any vertex update, we will run a BFS
on the active vertices of VC and VD in H = Gk+1.

When v is in VB.

Lemma 6. The degree of any vertex of Vi in H is at most (i + 1)2i+2m1/5.
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Lemma 7. Changing the status of a vertex v in Vi will not affect the lower-level
dynamic spanning forests FA, F0, F1, ..., Fi−1. It can update at most
O(2im1/5i log3 n) = Õ(2im1/5) edges in Fi, Fi+1, ..., Fk, FCD, respectively. Simi-
larly, changing the status of a vertex v in VA can update at most Õ(m1/5) edges
in FA, F0, F1, ..., Fk, FCD.

Proof. Changing the status of a vertex in Vi can only lead to inserting or deleting
edges in H associated with a vertex in Vi or higher levels. Thus it will not affect
the dynamic spanning forests F0, F1, ..., Fi−1. There are two types of updates:

– Updating v affects a tree T ∈ Fi, so we need to update the list for T in
R(H,Fi, Vi+1, ..., Vk, VC , VD). From Lemma 2(3) and 6, it results in insert-
ing/deletingO(i ·k2im1/5) edges in Fi+1, ..., Fk, FCD or inter-level edges inH .

– From Lemma 2(4), updating an inter-level edge e from a spanning tree
T ′ to a higher level vertex in the previous step will change other edges
in H . Here we bound the number of such edges. Let T ′ ∈ Fj , then in
R(H,Fj , Vj+1, ..., Vk, VC , VD), there are at most O(k) inter-level edges in-
duced by T ′, and from Note 1, there is only one spanning tree adjacent to T ′

in every higher level in H . So the number of inter-level edges changed by e is
O(k2). So we need to update O(2im1/5i log3 n) such inter-level edges. From
Lemma 2(4), the total number of edges updated in H is still Õ(2im1/5).

Thus, the time needed to update the graph H and the dynamic spanning forests
FA, F0, ..., Fk when switching a vertex in Vi is equal to Õ(2im1/5)|Vi|1/2 =
Õ(2(1+i)/2m3/5). When i = k = �2/5 logm�, the time bound reaches Õ(m4/5).

When v ∈ VB , if v is the representative vertex of a tree T ∈ FA and v is
turned inactive, we need to find another active vertex as the representative for
T . If v is turned active and there is no active vertices of VB associated with a
tree T ∈ FA adjacent to v, v is chosen as the representative vertex of T . In both
cases, we need to find all the vertices in VD adjacent to T and update ĒT , which
takes O(|VD |) = O(m1/5) time using ET (G,FA, VD) and Theorem 2. Since v is
adjacent to O(m3/5) spanning trees in FA, this procedure takes O(m4/5) time.

When v is in VA. We follow these steps, which also takes Õ(m4/5) time:

– From Lemma 7, changing the status of a vertex v in VA may update Õ(m1/5)
edges in H on VB ∪ VC , and it may update Õ(m1/5) edges in FA, F0, ..., Fk,
FCD, so the time needed for this step is Õ(

√
nm1/5) = Õ(m7/10).

– Maintain the structures ET (G,FA, VC) and ET (G,FA, VD) after updating
FA will take O(m3/5) time, because at most m1/5 edges will be changed in
FA, and from Theorem 2, every link/cut operation in FA will take O(|VC |+
|VD|) = O(m2/5) time.

– Consider the edges in ĒT for a tree T ∈ FA connecting VB and VD. For
all the old spanning trees T of FA, delete Ē(T ) from H . For ĒT ′ on every
new spanning tree T ′ in FA after cutting or linking, we find a new active
representative vertex in VB and then construct ĒT ′ . Since there can be at
most m1/5 link/cut operations in FA, this may change at most m1/5|VD| =
O(m2/5) edges in all the edge sets ĒT and H .
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– Consider all other edges in ĒT for T ∈ FA. The number of edges changed in
ĒT when performing a cut/link in FA is O((|VC | + |VD|)|VD|) = O(m3/5).
So in fact we need to update O(m4/5) such edges in H .

When v is in VC or VD. Note that the sets ĒT do not need to update. If
v ∈ VC , update the structures R(H,Fi, Vi+1, ..., Vk, VC , VD) (0 ≤ i ≤ k) and
R(G,FA, V0, V1, ..., Vk, VC) takes Õ(m4/5) time since the degree of v is bounded
by m4/5. If v ∈ VD, we still need to update R(H,Fi, Vi+1, ..., Vk, VC , VD) (0 ≤
i ≤ k), since the size of VB is bounded by 2m4/5, from Lemma 2(1), this will
also take Õ(m4/5) time.

Discussion: Why Õ(m4/5) in the worst-case update time? The O(n1/2)
worst-case edge update connectivity structure [9] is the main bottleneck for our
approach. The set of vertices of degrees in the range [p, q] will contain ≤ 2m/p
vertices, so the vertex update time will be Õ(q(m/p)1/2) ≥ Õ(p1/2m1/2), if we
use the edge update structure. However, when p is large enough, we can run a
BFS to get connected components after a update, which takes Õ(m2/p2) time.
When balancing these two, the update time will be Õ(m4/5). Also, we can get
Õ(m4/5+ε) update time and Õ(m1/5−ε) query time by simply changing the degree
bound between VC and VD to O(m1/5−ε).

3.3 Answering a Query

To answer a connectivity query between u and v in the subgraph of G in-
duced by the active vertices, first find the spanning trees T (u) and T (v) in
FA, F0, ..., Fk, FCD containing u and v, respectively. Then find all higher level
spanning trees connecting to T (u) or T (v) and check whether T (u) and T (v) are
connected to a common spanning tree in higher levels.

By symmetry, we only discuss finding such spanning trees for u. If u ∈ VA,
we first find T (u) ∈ FA which contains u, and then find the spanning trees in
F0, F1, ..., Fk, FCD which is adjacent to the spanning tree T (u) in H . By Note 1
and Lemma 4, there is only one tree in each forest satisfying this condition. Since
we maintain the full active adjacency lists AG(T, V0), ..., AG(T, Vk), AG(T, VC) in
R(G,FA, V0, V1, ..., Vk, VC), we can find the trees T0, ..., Tk, TC in F0, ..., Fk, FCD

adjacent to T (u) in G in O(k) = O(log n) time. Those trees are also the ones
adjacent to T in H . To find spanning trees in FCD adjacent to T that only
contain active vertices in VD, we need to check whether u′ is adjacent to T for
all active u′ ∈ VD by ET (G,FA, VD), which takes O(m1/5) time.

For any spanning tree Ti ∈ Fi we have found in VB or u itself is in a tree Ti of
VB, we recursively run this procedure and find all the trees in Fi+1, ..., Fk, FCD

connecting to Ti in H , this will take O(log n) time. Since u can only be connected
to one spanning tree in a higher level forest, the time for all Ti will be O(log2 n).
After this, we check whether there is a common tree in the set of trees connecting
to u and v that we found. The running time for the query algorithm is Õ(m1/5).

The correctness of this query algorithm is easy to see from Lemma 5. If we find
a common tree connecting to u and v, then u, v must be connected. If u, v are
connected in the dynamic G, let w be the highest vertex on the path connecting
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u, v, then u, v will be connected to the tree containing w in the subgraph without
higher vertices than w, so we have found such spanning tree in our procedure.
A complete proof of the correctness will be given in the full version.

4 Dynamic Subgraph Connectivity with Õ(m2/3)
Amortized Update Time and Linear Space

In this section, we briefly describe a dynamic subgraph connectivity structure of
Õ(m2/3) amortized update time and Õ(m1/3) query time, which improves the
structure by Chan, Pǎtraşcu and Roditty [2] from Õ(m4/3) space to linear space.

Theorem 4. There is a dynamic subgraph connectivity structure for a graph G
with Õ(m2/3) amortized vertex update time, Õ(m1/3) query time, O(m) space
and Õ(m4/3) preprocessing time.

As before, define the subsets of vertices in V by their degrees:

– VL: vertices of degrees at most m2/3.
– VH : vertices of degrees larger than m2/3. So |VH | < 2m1/3.

As in [2], we divide the updates into phases, each consisting of m2/3 updates.
The active vertices in VL will be divided into two sets P and Q, where P only
undergoes deletions and Q accepts both insertions and deletions. At the begin-
ning of each phase, P contains all the active vertices in VL and Q is empty. So
when a vertex of VL is turned active, we add it to Q. At the end of that phase,
we move all the vertices of Q to P and reinitialize the structure. So the size of
Q is bounded by m2/3. We also define the set Q̄ to be all the vertices that have
once been in Q within the current phase, so |Q| ≤ |Q̄| ≤ m2/3. Notice that P
and Q only contain active vertices but VH and Q̄ may contain both active and
inactive vertices. Then we maintain the following structures for each phase:

– Keep a dynamic spanning forest F in the subgraph of G induced by P which
supports edge deletions in polylogarithmic amortized time. [22]

– Maintain the active adjacency structure EQ = R(G,F,Q).
– Maintain the structure ET (G,F, VH).
– For every edge e = (u, v) where u ∈ P and v ∈ Q̄ ∪ VH within the current

phase, let T be the spanning tree of F containing u. Then for every vertex
w in VH adjacent to T , we add an edge (v, w) into the set EH . Since EH ∈
(Q̄ ∪ VH)× VH , we just need O(m) space to store EH .

– Construct a dynamic graph G′ containing all the active vertices of Q ∪ VH ,
and all the edges in E ∪ EQ ∪ EH connecting two such vertices. So the
number of vertices in G′ is O(m2/3). Maintain a dynamic spanning forest
F ′ of G′ which supports insertions and deletions of edges in polylogarithmic
amortized time. [22]

We can see both EQ and EH take linear space to store, and from Theorem 2
and the dynamic structure for edge updates [22], the total space is still linear.
It takes linear time to initialize F,EQ, ET (G,F, VH), G′ and Õ(m4/3) time to
initialize EH . To see the consistency of this structure, we have the following
lemma, whose proof will be given in the full version of this paper.
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Lemma 8. Two active vertices of Q ∪ VH are connected in G′ if and only if
they are connected in the subgraph of G induced by the active vertices.

When updating a vertex in VL, we analyze the update time by structures:

Maintaining F and EQ. When deleting a vertex from P , we may split a
spanning tree of F into at most m2/3 subtrees. So it takes Õ(m2/3) time to
maintain EQ. When updating a vertex in Q, we need to update O(m2/3) edges
of EQ from Lemma 2. So it takes Õ(m2/3) time to update F ′.

Maintaining EH . We need to update EH when a new vertex is inserted to Q̄
or when a vertex is deleted from P . When a new vertex is inserted to Q̄, we
check all the edges associated with it and find the spanning trees in F adjacent
to it, then update EH . When deleting a vertex of P , we find the vertices of VH
adjacent to T which contains that vertex and delete all the outdated edges of
EH . It is hard to bound the time for updating EH within one update, so we
consider the total time needed in one phase. For every edge e = (u, v) where
u ∈ P , when v appears in Q̄ or VH , we add O(m1/3) edges (v, w) to EH where
w is in VH and adjacent to the spanning tree in F containing u. As long as u
is still in P , the number of such w in VH can only decrease since P supports
deletion only. So only deletions will take place for the edges in EH induced by e.
Thus, updating EH and the corresponding F ′ will take Õ(m4/3) time per phase,
so we get Õ(m2/3) amortized time.

Maintaining ET (G,F, VH). By the same reasoning, maintaining the structure
ET (G,F, VH) for one vertex in VH within one phase will take Õ(m) time.

Updating a vertex in VH . We only need to maintain the graph G′ when
updating a vertex in VH , which will take Õ(m2/3) time.

Answering a query of connectivity between u and v. If both are in Q∪VH ,
by Lemma 8, we check whether they are connected in G′. Otherwise suppose
u ∈ P (or v), we need to find an active vertex u′ (or v′) in Q ∪ VH which is
adjacent to the spanning tree T ∈ F containing u (v). Similarly to the worst-
case structure, we need to check all the active vertices in VH whether they are
adjacent to T by ET (G,F, VH), which takes O(m1/3) time. Thus when only
u ∈ P , u, v are connected iff u′ and v are connected in G′ since the path must
go through a vertex in G′. When both of them are in P , they are connected in
G iff they are in the same tree of F or u′ and v′ are connected in G′.
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Abstract. We settle the question of tight thresholds for offline cuckoo
hashing. The problem can be stated as follows: we have n keys to be
hashed into m buckets each capable of holding a single key. Each key
has k ≥ 3 (distinct) associated buckets chosen uniformly at random
and independently of the choices of other keys. A hash table can be
constructed successfully if each key can be placed into one of its buckets.
We seek thresholds ck such that, as n goes to infinity, if n/m ≤ c for
some c < ck then a hash table can be constructed successfully with high
probability, and if n/m ≥ c for some c > ck a hash table cannot be
constructed successfully with high probability. Here we are considering
the offline version of the problem, where all keys and hash values are
given, so the problem is equivalent to previous models of multiple-choice
hashing. We find the thresholds for all values of k > 2 by showing that
they are in fact the same as the previously known thresholds for the
random k-XORSAT problem. We then extend these results to the setting
where keys can have differing number of choices, and make a conjecture
(based on experimental observations) that extends our result to cuckoo
hash tables storing multiple keys in a bucket.

1 Introduction

Consider a hashing scheme with n keys to be hashed into m buckets each capable
of holding a single key. Each key has k ≥ 3 (distinct) associated buckets chosen
uniformly at random and independently of the choices of other keys. A hash
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table can be constructed successfully if each key can be placed into one of its
buckets. This setting describes the offline load balancing problem corresponding
to multiple choice hashing [1] and cuckoo hashing [12,25] with k ≥ 3 choices.
An open question in the literature (see, for example, the discussion in [23]) is
to determine a tight threshold ck such that if n/m ≤ c for some c < ck then a
hash table can be constructed successfully with high probability (whp), and if
n/m ≥ c for some c > ck a hash table cannot be constructed successfully whp.
In this paper, we provide these thresholds.

We note that, in parallel with this work, other papers have similarly provided
means for determining the thresholds [14,13,15]. Our work differs from these
works in substantial ways. Perhaps the most substantial is our argument that,
somewhat surprisingly, the thresholds we seek were actually essentially already
known. We show that tight thresholds follow from known results in the liter-
ature, and in fact correspond exactly to the known thresholds for the random
k-XORSAT problem. We describe the k-XORSAT problem and the means for
computing its thresholds in more detail in the following sections. Our argument
is somewhat indirect, although all of the arguments appear to rely intrinsically
on the analysis of corresponding random hypergraphs, and hence the alterna-
tive arguments of [14,13,15] provide additional insight that may prove useful in
further explorations.

With this starting point, we extend our study of the cuckoo hashing problem
in two ways. First, we consider irregular cuckoo hashing, where the number of
choices corresponding to a key is not a fixed constant k but itself a random
variable depending on the key. Our motivations for studying this variant include
past work on irregular low-density parity-check codes [19] and recent work on
alternative hashing schemes that have been said to behave like cuckoo hashing
with “3.5 choices” [18]. Beyond finding thresholds, we show how to optimize
irregular cuckoo hashing schemes with a specified average number of choices per
key; for example, with an average of 3.5 choices per key, the optimal scheme is the
natural one where half of the keys obtain 3 choices, and the other half obtain 4.
Second, we consider the generalization to the setting where a bucket can hold
more than one key. We provide a conjecture regarding the appropriate threshold
behavior for this setting. The conjecture is backed by a simple algorithm adapted
from Sanders’ “selfless algorithm” [26,3] that can be found in the full version of
this paper [8, preliminary full version]. Experimentally, it appears to perform
remarkably close to the thresholds predicted by our conjecture. After this paper
was submitted, we learned that, for sufficiently large bucket sizes, the conjecture
was proved in the recent paper [16].

2 Technical Background on Cores

The key to our analysis will be the behavior of cores in random hypergraphs.
We therefore begin by providing a review of this subject. To be clear, the re-
sults of this section are not new. Readers familiar with the subject may want to
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skip this section; other readers are encouraged to see [22, Ch. 18], as well as
references [5,10,24] for more background.

We consider the set of all k-uniform hypergraphs with m nodes and n hyper-
edges Gk

m,n. More precisely, each hypergraph G from Gk
m,n consists of n (labeled)

hyperedges of a fixed size k ≥ 2, chosen independently at random, with repeti-
tion, from the

(
m
k

)
subsets of {1, . . . ,m} of size k. This model will be regarded

as a probability space. We always assume k is fixed, m is sufficiently large, and
n = cm for a constant c.

For � ≥ 2, the �-core of a hypergraph G is defined as the largest induced
sub-hypergraph that has minimum degree � or larger. It is well known that the
�-core can be obtained by the following iterative “peeling process”: While there
are nodes with degree smaller than �, delete them and their incident hyperedges.
By pursuing this process backwards one sees that the �-core, conditioned on the
number of nodes and hyperedges it contains, is a uniform random hypergraph
that satisfies the degree constraint.

The fate of a fixed node a after a fixed number of h iterations of the peeling
procedure is determined by the h-neighborhood of a, where the h-neighborhood
of a is the sub-hypergraph induced on the nodes at distance at most h from
a. For example, the 1-neighborhood contains all hyperedges containing a. In
our setting where n is linear in m the h-neighborhood of node a is a hypertree
of low degree (at most log logm) whp. We assume this in the discussion to
come.

We can see whether a node a is removed from the hypergraph in the course of
h iterations of the peeling process in the following way. Consider the hypertree
rooted from a (so the children are nodes that share a hyperedge with a, and
similarly the children of a node share a hyperedge with that node down the
tree). First, consider the nodes at distance h− 1 from a and delete them if they
have at most �−2 child hyperedges; that is, their degree is at most �−1. Second,
treat the nodes at distance h−2 in the same way, and so on, down to distance 1,
the children of a. Finally, a is deleted if its degree is at most �− 1.

The analysis of such random processes on trees has been well-studied in the
literature. We wish to determine the probability qh that node a is deleted after
h rounds of the peeling process. For j < h let pj be the probability that a node
at distance h − j from a is deleted after j rounds of the peeling process. The
discussion becomes easier for the binomial random hypergraph with an expected
number of cm hyperedges: Each hyperedge is present with probability k!·c/mk−1

independently. It is well known that Gk
m,n and the binomial hypergraph are

equivalent as far as asymptotic behavior of cores are concerned when c is a
constant.

Let Bin(N, p) denote a random variable with a binomial distribution, and
Po(β) a random variable with a Poisson distribution. Below we make use of the
Poisson approximation of the binomial distribution and the fact that the num-
ber of child hyperedges of a node in the hypertree asymptotically follows the
binomial distribution. This results in additive terms that tend to zero as m goes
to infinity. We have p0 = 0,
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p1 = Pr
[
Bin

((
m− 1
k − 1

)
, k! · c

mk−1

)
≤ �− 2

]
= Pr[Po(kc) ≤ �− 2]± o(1),

pj+1 = Pr
[
Bin

((
m− 1
k − 1

)
, k! · c

mk−1 · (1− pj)k−1
)
≤ �− 2

]
= Pr[Po(kc(1 − pj)k−1) ≤ �− 2]± o(1), for j = 1, . . . , h− 2.

The probability qh that a itself is deleted is then instead given by

qh = Pr[Po(kc(1 − ph−1)k−1) ≤ �− 1]± o(1). (1)

The pj are monotonically increasing and 0 ≤ pj ≤ 1, so p = lim pj is well-defined.
The probability that a is deleted approaches p from below as h grows. Continuity
implies that p is the smallest non-negative solution of

p = Pr[Po(kc(1− p)k−1) ≤ �− 2].

Observe that 1 is always a solution. Equivalently, applying the monotone function
t 	→ kc(1− t)k−1 to both sides of the equation, p is the smallest solution of

kc(1− p)k−1 = kc
(
1− Pr[Po(kc(1− p)k−1) ≤ �− 2]

)k−1
. (2)

Let β = kc(1−p)k−1. It is helpful to think of β with the following interpretation:
Given a node in the hypertree, the number of child hyperedges (before deletion)
follows the distribution Po(kc). Asymptotically, a given child hyperedge is not
deleted with probability (1 − p)k−1, independently for all children. Hence the
number of child hyperedges after deletion follows the distribution Po(kc(1 −
p)k−1). Hence β is the key parameter giving the expected number of hyperedges
containing a node that could contribute to keeping it in the core.

Note that (2) is equivalent to

c =
1
k
· β

(Pr[Po(β) ≥ �− 1])k−1 .

This motivates considering the function

gk,�(β) =
1
k
· β

(Pr[Po(β) ≥ �− 1])k−1 , (3)

which has the following properties in the range (0,∞): It tends to infinity for
β → 0, as well as for β → ∞. Since it is convex there is exactly one global
minimum. Let β∗k,� = arg minβ gk,�(β) and c∗k,� = min gk,�(β). For β > β∗k,� the
function gk,� is monotonically increasing. For each c > c∗k,� let β(c) = βk,�(c)
denote the unique β > β∗k,� such that gk,�(β) = c.
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Coming back to the fate of a under the peeling process, Equation (1) shows
that a is deleted with probability approaching Pr[Po(β(c)) ≤ �− 1]. This prob-
ability is smaller than 1 if and only if c > c∗k,�, which implies that the expected
number of nodes that are not deleted is linear in n. As the h-neighborhoods of
two nodes a and b are disjoint whp, by making use of the second moment we can
show that in this case a linear number of nodes survive whp. (The sophisticated
reader would use Azuma’s inequality to obtain concentration bounds.)

Following this line of reasoning, we obtain the following results, the full proof
of which is in [24]. (See also the related argument of [22, Ch. 18].) Note the
restriction to the case k + � > 4, which means that the result does not apply
to 2-cores in standard graphs; since the analysis of standard cuckoo hashing is
simple, using direct arguments, this case is ignored in the analysis henceforth.

Proposition 1. Let k + � > 4 and G be a random hypergraph from Gk
m,n. Then

c∗k,� is the threshold for the appearance of an �-core in G. That is, for constant
c and m→∞,
(a) if n/m = c < c∗k,�, then G has an empty �-core with probability 1− o(1).
(b) if n/m = c > c∗k,�, then G has an �-core of linear size with probability 1−o(1).

In the following we assume c > c∗k,�. Therefore β(c) > β∗k,� exists. Let m̂ be the
number of nodes in the �-core and n̂ be the number of hyperedges in the �-core.
We find it useful in what follows to consider the edge density of the �-core, which
is the ratio of the number of hyperedges to the number of nodes.

Proposition 2. Let c > c∗k,� and n/m = c (1± o(1)). Then whp in Gk
m,n

m̂ = Pr[Po(β(c)) ≥ �] ·m± o(m) and n̂ = (Pr[Po(β(c)) ≥ �− 1])k · n± o(m).

The bound for m̂ follows from the concentration of the expected number of nodes
surviving when we plug in the limit p for ph in equation (1). The result for n̂
follows similar lines: Consider a fixed hyperedge e that we assume is present
in the random hypergraph. For each node of this hyperedge we consider its h-
neighborhood modified in that e itself does not belong to this h-neighborhood.
We have k disjoint trees whp. Therefore each of the k nodes of e survives h
iterations of the peeling procedure independently with probability Pr[Po(β(c)) ≥
� − 1]. Note that we use � − 1 here (instead of �) because the nodes belong
to e. Then e itself survives with (Pr[Po(β(c)) ≥ � − 1])k. Concentration of the
number of surviving hyperedges again follows from second moment calculations
or Azuma’s inequality.

Proposition 3. If c > c∗k,� and n/m = c (1± o(1)) then whp the edge density of
the �-core of a random hypergraph from Gk

m,n is

β(c) · Pr[Po(β(c)) ≥ �− 1]
k · Pr[Po(β(c)) ≥ �]

± o(1).

This follows directly from Proposition 2, where we have also used equation (3)
to simplify the expression for n̂.
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We define ck,� as the unique c that satisfies

β(c) · Pr[Po(β(c)) ≥ �− 1]
k · Pr[Po(β(c)) ≥ �]

= �− 1. (4)

The values ck,� will prove important in the work to come; in particular, we next
show that ck,2 is the threshold for k-ary cuckoo hashing for k > 2. We also
conjecture that ck,�+1 is the threshold for k-ary cuckoo hashing when a bucket
can hold � keys instead of a single key.

The following table contains numerical values of ck,� for � = 2, . . . , 7 and
k = 2, . . . , 6 (rounded to 10 decimal places). Some of these numbers are found
or referred to in other works, such as [5, Sect. 5], [21, Sect. 4.4], [22, p. 423], [11],
and [3].

�\k 2 3 4 5 6
2 − 0.9179352767 0.9767701649 0.9924383913 0.9973795528
3 1.7940237365 1.9764028279 1.9964829679 1.9994487201 1.9999137473
4 2.8774628058 2.9918572178 2.9993854302 2.9999554360 2.9999969384
5 3.9214790971 3.9970126256 3.9998882644 3.9999962949 3.9999998884
6 4.9477568093 4.9988732941 4.9999793407 4.9999996871 4.9999999959
7 5.9644362395 5.9995688805 5.9999961417 5.9999999733 5.9999999998

3 Equality of Thresholds for Random k-XORSAT and
k-Ary Cuckoo Hashing

We now recall the random k-XORSAT problem and describe its relationship to
cores of random hypergraphs and cuckoo hashing. The k-XORSAT problem is
a variant of the satisfiability problem in which every clause has k literals and
the clause is satisfied if the XOR of values of the literals is 1. Equivalently,
since XORs correspond to addition modulo 2, and the negation of Xi is just
1 XOR Xi, an instance of the k-XORSAT problem corresponds to a system of
linear equations modulo 2, with each equation having k variables, and randomly
chosen right hand sides. (In what follows we simply use the addition operator
where it is understood we are working modulo 2 from context.)

For a random k-XORSAT problem, let Φk
m,n be the set of all sequences of n

linear equations over m variables x1, . . . , xm, where an equation is

xj1 + · · ·+ xjk
= bj,

where bj ∈ {0, 1} and {j1, . . . , jk} is a subset of {1, . . . ,m} with k elements. We
consider Φk

m,n as a probability space with the uniform distribution.
Given a k-XORSAT formula F , it is clear that F is satisfiable if and only if the

formula obtained from F by repeatedly deleting variables that occur only once
(and equations containing them) is satisfiable. Now consider the k-XORSAT
formula as a hypergraph, with nodes representing variables and hyperedges rep-
resenting equations. (The values bj of the equations are not represented.) The
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process of repeatedly deleting all variables that occur only once, and the corre-
sponding equations, is exactly equivalent to the peeling process on the hyper-
graph. After this peeling process, we obtain the 2-core of the hypergraph.

This motivates the following definition. Let Ψk
m,n be the set of all sequences

of n equations such that each variable appears at least twice. We consider Ψk
m,n

as a probability space with the uniform distribution.
From the corresponding fact for hypergraphs it follows that if we start with a

uniformly chosen random k-XORSAT formula and perform the peeling process,
then conditioned on the remaining number of equations and variables (n̂ and m̂),
we are in fact left with a uniform random formula from Ψk

m̂,n̂. Hence, the imper-
ative question is when a random formula from Ψk

m̂,n̂ will be satisfiable. In [10],
it was shown that this depends entirely on the edge density of the correspond-
ing hypergraph. If the edge density is smaller than 1, so that there are more
variables than equations, the formula is likely to be satisfiable, and naturally, if
there are more equations than variables, the formula is likely to be unsatisfiable.
Specifically, we have the following theorem from [10].

Theorem 1. Let k > 2 be fixed. For n/m = γ and m→∞,
(a) if γ > 1 then a random formula from Ψk

m,n is unsatisfiable whp.
(b) if γ < 1 then a random formula from Ψk

m,n is satisfiable whp.

The proof of Theorem 1 in Section 3 of [10] uses a first moment method argument
for the simple direction (part (a)). Part (b) is significantlymore complicated, and is
based on the second moment method. Essentially the same problem has also arisen
in coding theoretic settings; analysis and techniques can be found in for example
[20]. It has been suggested by various readers of earlier drafts of this paper that
previous proofs of Theorem 1 have been insufficiently complete, particularly for
k > 3. We therefore provide a detailed proof in [8] for completeness.

We have shown that the edge density is concentrated around a specific value
depending on the initial ratio c of hyperedges (equations) to nodes (variables).
Let ck,2 be the value of c such that the resulting edge density is concentrated
around 1. Then Proposition 3 and Theorem 1 together with the preceding con-
sideration implies:

Corollary 1. Let k > 2 and consider Φk
m,n. The satisfiability threshold with

respect to the edge density c = n/m is ck,2.

Again, up to this point, everything we have stated was known from previous
work. We now provide the connection to cuckoo hashing, to show that we obtain
the same threshold values for the success of cuckoo hashing. That is, we argue
the following:

Theorem 2. For k > 2, ck,2 is the threshold for k-ary cuckoo hashing to work.
That is, with n keys to be stored and m buckets, with c = n/m fixed and m→∞,
(a) if c > ck,2, then k-ary cuckoo hashing does not work whp.
(b) if c < ck,2, then k-ary cuckoo hashing works whp.
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Proof : Assume a set S of n keys is given, and for each x ∈ S a random set
Ax ⊆ {1, . . . ,m} of size k of possible buckets is chosen.

To prove part (a), note that the sets Ax for x ∈ S can be represented by
a random hypergraph from Gk

m,n. If n/m = c > ck,2 and m → ∞, then whp
the edge density in the 2-core is greater than 1. The hyperedges in the 2-core
correspond to a set of keys, and the nodes in the 2-core to the buckets available
for these keys. Obviously, then, cuckoo hashing does not work.

To prove part (b), consider the case where n/m = c < ck,2 and m → ∞.
Picking for each x ∈ S a random bx ∈ {0, 1}, the sets Ax, x ∈ S, induce a
random system of equations from Φk

m,n. Specifically, Ax = {j1, . . . , jk} induces
the equation xj1 + · · ·+ xjk

= bx.
By Corollary 1 a random system of equations from Φk

m,n is satisfiable whp.
This implies that the matrix M = (mi,j)i,j ∈ {0, 1}n×m made up from the left-
hand sides of these equations consists of linearly independent rows whp. This
is because a given set of left-hand sides with dependent rows is only satisfiable
with probability at most 1/2 when we pick the bx at random.

Therefore M contains an n × n-submatrix M ′ with nonzero determinant.
We consider the Leibniz expansion of det(M ′) over Z2 as a sum of n! (signed)
products of the form pσ =

∏n
i=1 mi,σ(i), where σ is a bijection between {1, . . . , n}

and the set of column indices of M ′. At least one of the pσ must be 1, which
implies that mi,σ(i) = 1 and hence σ(i) ∈ Axi , for 1 ≤ i ≤ n. Thus cuckoo
hashing works. �
We make some additional remarks. We note that the idea of using the rank of
the key-bucket matrix to obtain lower bounds on the cuckoo hashing threshold
is not new either; it appears in [9]. There the authors use a result bounding the
rank by Calkin [4] to obtain a lower bound on the threshold, but this bound is
not tight in this context. More details can be found by reviewing [4, Theorem
1.2] and [22, Exercise 18.6]. Also, Batu et al. [2] note that 2-core thresholds
provide an upper bound on the threshold for cuckoo hashing, but fail to note
the connection to work on the k-XORSAT problems.

4 Non-integer Choices

The analysis of k-cores in Section 3 and the correspondence to k-XORSAT prob-
lems extends nicely to the setting where the number of choices for a key is not
necessarily a fixed number k. This can be naturally accomplished in the follow-
ing way: when a key x is to be inserted in the cuckoo hash table, the number of
choices of location for the key is itself determined by some hash function; then
the appropriate number of choices for each key x can also be found when per-
forming a lookup. Hence, it is possible to ask about for example cuckoo hashing
with 3.5 choices, by which we would mean an average of 3.5 choices. Similarly,
even if we decide to have an average of k choices per key, for an integer k, it is
not immediately obvious whether the success probability in k-ary cuckoo hash-
ing could be improved if we do not fix the number of possible positions for a key
but rather choose it at random from a cleverly selected distribution.



Tight Thresholds for Cuckoo Hashing via XORSAT 221

Let us consider a more general setting where for each x ∈ U the set Ax is
chosen uniformly at random from the set of all kx-element subsets of [m], where
kx follows some probability mass function ρx on {2, . . . ,m}.1 Let κx = E(kx)
and κ∗ = 1

n

∑
x∈S κx. Note that κ∗ is the average (over all x ∈ S) worst case

lookup time for successful searches. We keep κ∗ fixed and study which sequence
(ρx)x∈S maximizes the probability that cuckoo hashing is successful.

We fix the sequence of the expected number of choices per key (κx)x∈S and
therefore κ∗. Furthermore we assume κx ≤ n − 2, for all x ∈ S; obviously this
does not exclude interesting cases. For compactness reasons, there is a system of
probability mass functions ρx that maximizes the success probability. The proof
of the following is given in [8].

Proposition 4. Let (ρx)x∈S be an optimal sequence. Then for all x ∈ S:

ρx(�κx�) = 1− (κx − �κx�), and ρx(�κx�+ 1) = κx − �κx�.

That is, the success probability is maximized if for each x ∈ S the number of
choices kx is concentrated on �κx� and �κx� + 1 (when the number of choices
is non-integral). Further, in the natural case where all keys x have the same
expected number κ∗ of choices, the optimal assignment is concentrated on �κ∗�
and �κ∗� + 1. Also, if κx is an integer, then a fixed degree kx = κx is optimal.
This is very different from other similar scenarios, such as erasure- and error-
correcting codes, where irregular distributions have proven beneficial [19].

We now describe how to extend our previous analysis to derive thresholds for
the case of a non-integral number of choices per key; equivalently, we are making
use of thresholds for XORSAT problems with an irregular number of literals per
clause.

Following notation that is frequently used in the coding literature, we let
Λk be the probability that a key obtains k choices, and define Λ(x) =

∑
k Λkx

k.
Clearly, then, Λ′(x) =

∑
k Λkkx

k−1, and Λ′(1) = κ∗. (We assume henceforth that
Λ0 = Λ1 = 0 and Λk = 0 for all k sufficiently large for technical convenience.)

We now follow our previous analysis from Section 2; to see if a node a is
deleted after h rounds of the peeling process, we let pj be the probability that a
node at distance h− j from a is deleted after j rounds. We must now account for
the differing degrees of hyperedges. Here, the appropriate asymptotics is given
by a mixture of binomial hypergraphs, with each hyperedge of degree k present
with probability k! · cΛk/m

k−1 independently.

1 We could in principle also consider the possibility of keys having only a single choice.
However, this is generally not very interesting since even a small number of keys with
a single choice would make an assignment impossible whp, by the birthday paradox.
Hence, we restrict our attention to at least two choices.
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The corresponding equations are then given by p0 = 0,

p1 = Pr
[∑

k

Bin
((

m− 1
k − 1

)
, k! · cΛk

mk−1

)
≤ �− 2

]
= Pr

[∑
k

Po(kcΛk) ≤ �− 2
]
± o(1)

= Pr[Po(cΛ′(1)) ≤ �− 2]± o(1),

pj+1 = Pr
[∑

k

Bin
((

m− 1
k − 1

)
, k! · cΛk

mk−1 · (1− pj)k−1
)
≤ �− 2

]

= Pr
[∑

k

Po(kcΛk(1 − pj)k−1) ≤ �− 2
]
± o(1), for j = 1, . . . , h− 2

= Pr[Po(cΛ′(1− pj)) ≤ �− 2]± o(1), for j = 1, . . . , h− 2.

Note that we have used the standard fact that the sum of Poisson random
variables is itself Poisson, which allows us to conveniently express everything
in terms of the generating function Λ(x) and its derivative. As before we find
p = lim pj , which is now given by the smallest non-negative solution of

p = Pr[Po(cΛ′(1− p)) ≤ �− 2].
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cκ∗,2 κ∗ cκ∗,2

2.25 0.6666666667
2.50 0.8103423635
2.75 0.8788457372
3.00 0.9179352767
3.25 0.9408047937
3.50 0.9570796377
3.75 0.9685811888
4.00 0.9767701649

κ∗ cκ∗,2

4.25 0.9825693463
4.50 0.9868637629
4.75 0.9900548807
5.00 0.9924383913
5.25 0.9942189481
5.50 0.9955692011
5.75 0.9965961383
6.00 0.9973795528

Fig. 1. Thresholds for non-integral κ∗-ary cuckoo hashing, with optimal degree distri-
bution. Values in the tables are rounded to the nearest multiple of 10−10.

When given a degree distribution (Λk)k, we can proceed as before to find the
threshold load that allows that the edge density of the 2-core remains greater
than 1; using a second moment argument, this can again be shown to be the
required property for the corresponding XORSAT problem to have a solution,
and hence for there to be a permutation successfully mapping keys to buckets.
Details can be found in [8]. Notice that this argument works for all degree dis-
tributions (subject to the restrictions given above), but in particular we have
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already shown that the optimal thresholds are to be found by the simple degree
distributions that have all weight on two values, �κ∗� and �κ∗� + 1. Abusing
notation slightly, let cκ∗,2 be the unique c such that the edge density of the
2-core of the corresponding mixture is equal to 1, following the same form as in
Proposition 3 and equation (4). The corresponding extension to Theorem 2 is
the following:

Theorem 3. For κ∗ > 2, cκ∗,2 is the threshold for cuckoo hashing with an
average of κ∗ choices per key to work. That is, with n keys to be stored and m
buckets, with c = n/m fixed and m→∞,
(a) if c > cκ∗,2, for any distribution on the number of choices per key with mean

κ∗, cuckoo hashing does not work whp.
(b) if c < cκ∗,2, then cuckoo hashing works whp when the distribution on the

number of choices per key is given by ρx(�κx�) = 1 − (κx − �κx�) and
ρx(�κx�+ 1) = κx − �κx�, for all x ∈ S.

We have determined the thresholds numerically for a range of values of κ∗.
The results are shown in Figure 1. One somewhat surprising finding is that
the threshold for κ∗ ≤ 2.25 appears to simply be given by c = 0.5/(3 − κ∗).
Consequently, in place of using two hash functions per key, simply by using a
mix of two or three hash functions for a key, we can increase the space utilization
by adding 33% more keys with the same (asymptotic) amount of memory.

5 A Conjecture and Placement Algorithm

There is as yet no rigorous analysis of the appropriate thresholds for cuckoo
hashing for the cases k > 2 and � > 1. However, our results of Section 2 suggest
a natural conjecture:

Conjecture 1. For k-ary cuckoo hashing with bucket size �, it is conjectured that
cuckoo hashing works whp if n/m = c > ck,�+1, and does not work if n/m =
c < ck,�+1, i. e., that the threshold is at the point where the (� + 1)-core of the
cuckoo hypergraph starts having edge density larger than �.

We have tested this conjecture with a novel algorithm for finding a placement
for the keys using k-ary cuckoo hashing when the set S of keys is given in
advance. The algorithm is an adaptation of the “selfless algorithm” proposed
by Sanders [26], for the case k = 2, and analyzed in [3], for orienting standard
undirected random graphs so that all edges are directed and the maximum inde-
gree of all nodes is at most �, for some fixed � ≥ 2. We generalize this algorithm
to hypergraphs, including hypergraphs where hyperedges can have varying de-
grees. As we learned after this paper was submitted the conjecture was proved,
for sufficiently large bucket sizes, in the recent paper [16].

Of course, maximum matching algorithms can solve this problem perfectly.
However, there are multiple motivations for considering our algorithms. First, it
seems in preliminary experiments that the running times of standard matching
algorithms like the Hopcroft-Karp algorithm [17] will tend to increase signifi-
cantly as the edge density approaches the threshold (the details of this effect are
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not yet understood), while our algorithm has linear running time which does not
change in the neighborhood of the threshold. This proves useful in our experi-
mental evaluation of thresholds. Second, we believe that algorithms of this form
may prove easier to analyze for some variations of the problem.

Due to space limitations, the description of the algorithm and the experimen-
tal results are not presented here, but are given in [8].

6 Conclusion

We have found tight thresholds for cuckoo hashing with 1 key per bucket, by
showing that the thresholds are in fact the same for the previously studied k-
XORSAT problem. We have generalized the result to irregular cuckoo hashing
where keys may have differing numbers of choices, and have conjectured thresh-
olds for the case where buckets have size larger than 1 based on an extrapolation
of our results.
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Abstract. We present a new deterministic sorting algorithm that in-
terleaves the partitioning of a sample sort with merging. Sequentially,
it sorts n elements in O(n log n) time cache-obliviously with an optimal
number of cache misses. The parallel complexity (or critical path length)
of the algorithm is O(log n log log n), which improves on previous bounds
for deterministic sample sort. Given a multicore computing environment
with a global shared memory and p cores, each having a cache of size M
organized in blocks of size B, our algorithm can be scheduled effectively
on these p cores in a cache-oblivious manner.

We improve on the above cache-oblivious processor-aware parallel im-
plementation by using the Priority Work Stealing Scheduler (PWS) that
we presented recently in a companion paper [12]. The PWS scheduler
is both processor- and cache-oblivious (i.e., resource oblivious), and it
tolerates asynchrony among the cores. Using PWS, we obtain a resource
oblivious scheduling of our sorting algorithm that matches the perfor-
mance of the processor-aware version. Our analysis includes the delay
incurred by false-sharing. We also establish good bounds for our algo-
rithm with the randomized work stealing scheduler.

1 Introduction

We present a new parallel sorting algorithm, which we call Sample, Partition,
and Merge Sort (SPMS). It has a critical path length of O(log n log logn) and
performs optimal O(n logn) operations with optimal sequential cache misses.
More importantly, using the PWS scheduler for multicores developed and ana-
lyzed in [12], and new algorithmic techniques given in this paper, we can sched-
ule it resource-obliviously on a multicore while maintaining these performance
bounds. We present background information on multicores, cache-efficiency and
resource-obliviousness in Section 2.

The core of the sorting algorithm is a recursive multi-way merging procedure.
A notable and novel aspect of this procedure is that it creates its recursive
subproblems using a sample sort methodology. We view the sorting algorithm
as interleaving a merge sort with a sample sort in a natural way.
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Previous Work. Sorting is a fundamental algorithmic problem, and has been
studied extensively. For our purposes, the most relevant results are sequential
cache-oblivious sorting, for which provably optimal algorithms are known [15],
optimal sorting algorithms addressing pure parallelism [3, 11], and recent work
on multicore sorting [5, 4, 6, 16].

The existing multicore algorithms take two main approaches. The first is
merge sort [4, 6, 5], either simple or the pipelined method from [11]. The second
is deterministic sampling [16]: this approach splits the input into subsets, sorts
the subsets, samples the sorted subsets, sort the sample, partitions about a sub-
sample, and recursively sorts the resulting sets. Our algorithm can be viewed as
applying this approach to the problem of merging a suitable number of sorted
sets, which eliminates the need for the first two steps, resulting in significant
speed-up.

More specifically, the algorithm in [6] is a simple multicore mergesort; it has
polylog parallel time, and good, though not optimal cache efficiency; it is cache-
oblivious for private caches (the model we consider in this paper). The algorithm
in [4] achieves the optimal caching bound on an input of length n, with O(log n)
parallel time (modulo dependence on cache parameters), but it is both cache-
aware and core-aware; this algorithm is based on [11]. The algorithm in [5] is cache
oblivious with O(log2 n) parallel time, but due to an additive term the cache per-
formance is not optimal on a multicore. The algorithm in [16] is designed for a
BSP-style version of a cache aware, multi-level multicore. It uses a different col-
lection of parameters, and so it is difficult to compare with it directly.

Roadmap. In Section 2 we present some background on multicores, and then
state our main sorting result. In Section 3 we give a high level description of our
parallel sorting algorithm, omitting the details needed to have a resource obliv-
ious implementation. In Section 4, we review the computation model, the work
stealing scheduler PWS, and the class of BP algorithms, as developed in [12]. In
Section 5, we return to the sorting algorithm, describing the details needed for
a resource oblivious implementation, and this is followed by its analysis. Due to
space constraints, our matching lower bound for cache optimality (adapted from
[2]), along with most of the proofs, are deferred to the full paper [13].

2 Statement of Our Results

Before stating our main result, we give some background, as developed in [12].

Multicore with Private Caches. We model a multicore as consisting of p
cores (or processors) with an arbitrarily large main memory, which serves as a
shared memory. Additionally, each core has a private cache of size M . Data in
the main memory is organized in blocks of size B, and the initial input of size n
is in main memory, in n/B blocks. When a core C needs a data item x that is not
in its private cache, it reads in the block β that contains x from main memory.
This new block replaces an existing block in the private cache, which is evicted
using an optimal cache replacement policy (LRU suffices for our algorithms, but
we do not elaborate further). If another core C′ modifies an entry in β, then β is
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invalidated in C’s cache, and the next time core C needs to access data in block
β, an updated copy of β is brought into C’s cache.

Cache and Block Misses. We distinguish between two types of cache-related
costs incurred in a parallel execution.

The term cache miss denotes a read of a block from shared-memory into core
C’s cache, when a needed data item is not currently in the cache, either because
the block was never read by core C, or because it was evicted from C’s cache to
make room for new data. This is the standard type of cache miss that occurs,
and is accounted for, in sequential cache complexity analysis.

The term block miss denotes an update by a core C′ �= C to an entry in a
block β that is in core C’s cache; this entails core C′ acquiring block β; if C has
a subsequent write, it needs to reacquire the block. This type of ‘cache miss’
does not occur in a sequential computation, and is a problematic situation that
can occur quite often, especially in the resource oblivious setting that we seek.

Resource Obliviousness. We have claimed that our multicore algorithms are
resource oblivious: we mean that the algorithm is specified without any mention
of the multicore parameters (p, M and B) and further, the PWS scheduler we
use schedules tasks on available idle cores, without reference to the multicore
parameters. Since multicores with a wide range of parameters are expected to
appear on most desktops, such a resource oblivious feature in multicore algo-
rithms appears to be helpful in supporting the portability of program codes.
The PWS scheduler uses work-stealing [9, 7], where load balance is achieved by
cores stealing tasks from other cores as needed.

Our main result, the SPMS sorting algorithm and its resource-oblivious per-
formance, has the bounds stated below in Theorem 1. The algorithm proceeds
in rounds, where a round, roughly speaking, corresponds to a parallel step. Our
analysis uses the following parameters. We suppose that each core performs a
single operation in O(1) time, a cache miss takes at most b time, a steal request
takes at most s time (whether successful or not), and the scheduler’s work at
the start of each round takes at most S time. We consider a multicore with p
cores, each having a private cache of size M organized in blocks of size B, with
all caches sharing an arbitrarily large global memory. The input, of size n ≥Mp
(this restriction ensures that both cores and caches can be fully utilized), is in
the shared memory at the start of the computation, and SPMS is scheduled
under PWS. Then:

Theorem 1. On an input of length n, assuming M ≥ B2 (the ‘tall cache’), for
p ≤ n

max{log logn, M} , the sorting algorithm SPMS takes parallel time

O

(
1
p

(
n logn + b · n logn

B logM

)
+ (b + s + S) logn log logn + bβ(n, p,B)

)
.

The fourth term, β(n, p,B) = O(B logn log log(n/p)), is the block miss cost, and
is bounded by the optimal sequential cache complexity provided p≤ n

B2 log logM logM

(i.e., with a slightly ‘taller’ cache — M ≥ B2 logB log logB suffices). This cost
may also be reduced to match the optimal sequential cache complexity without this
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additional restriction on p if system support is provided for the locking of a block
during writes, and limiting the minimum task size to be at least B.

If we ignore the block miss cost for the moment, this bound represents the
optimal work bound, plus the optimal cache miss bound, plus the critical path
length times the cost of one cache miss plus one steal plus one scheduling event.
Further, we note that there is no need for a global clock, or tight synchronization
on the part of the cores, though the scheduler certainly imposes a significant
degree of synchronization. The computation is entirely resource-oblivious in that
the algorithm makes no mention of p, M or B, and PWS services idle cores
without any reference to the number available or their cache parameters.

Extending the analysis of the randomized work stealer in [8, 1], we can obtain:

Theorem 2. On an input of length n, assuming M≥B2, for p≤ n
max{log logn, M} ,

the sorting algorithm SPMS when scheduled by the randomized work stealer, and
taking into account both cache and block misses, takes expected parallel time

O

(
1
p

(
n logn + b · n logn

B logM

)
+

M

B
· b
s

(
bB

logn
logB

+ (b + s) logn log logn
))

.

(The analysis of this result can be found in [12, 14]).

Discussion. Our sorting algorithm is optimal in all respects except for the crit-
ical pathlength. The sorting algorithm for PEM in [4] achieves optimal O(log n)
parallel steps, but is both cache- and core-aware. Achieving the same bound in a
resource-oblivious manner appears considerably more challenging, and it is not
clear if it is possible. We leave this as a topic for further research.

Another challenging topic is to extend our results to resource-oblivious schedul-
ing on a multi-level caching hierarchy. Given the conflicting requirements of
private and shared caches noted in [5, 10], it appears that some mechanism of
supplying scheduler hints within the algorithm, and having a scheduler that uses
the machine parameters effectively is needed. One such approach is used in [10];
however, that scheduler is not resource-oblivious, in contrast to our results.

In comparing our PWS scheduling to the PEM and Multi-BSP models, we
note that these models both compute in a bulk-synchronous manner. We can
easily adapt our results to work on either PEM or multi-BSP with the same
performance as achieved with the PWS scheduler. However, our PWS frame-
work adapts much more gracefully to differences in speeds among the cores than
these bulk-synchronous models. Thus, if we have a few cores that execute faster
than others (perhaps because they have smaller cache miss cost due to the cache
layout), then PWS would enable the faster cores to take over (i.e, steal) work
from the slower cores, balancing the work across the cores more effectively.

3 SPMS, A New Deterministic Sample, Partition, and
Merge Sort

The heart of the algorithm is a procedure for computing a merging subproblem
MS, whose input comprises r sorted lists L1, L2, · · · , Lr, of total length m, with
m ≤ rc, where c ≥ 6 is a constant.
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The sorting algorithm simply calls the merging procedure with r = m = n.
The merging algorithm performs two successive collections of recursive

√
r-

way merges, each merge being on lists of total length at most rc/2. To enable
this, suitable samples of the input lists will be sorted by a logarithmic time
procedure, which then allows the original problem to be partitioned into smaller
subproblems that are merged recursively. More precisely:
Step 1. Partition the original problem MS into k = O(m/r

c
2−1) disjoint merg-

ing subproblems, M1,M2, · · · ,Mk, each comprising r sorted lists, with each sub-
problem having at most r

c
2 items in its r sorted lists. In addition, the items in

Mi precede those in Mi+1, for 1 ≤ i < k.
Step 2. For each subproblem Mi, group its lists into disjoint subsets of

√
r lists,

and then in parallel merge the lists in each group. As Mi contains at most r
c
2

items, this bound applies to each of the individual groups too. Thus the
√
r-

way merge in each group can be performed recursively. The output, for each
subproblem Mi, is a collection of

√
r sorted lists of total length at most r

c
2 .

Step 3. For each subproblem Mi, recursively merge the
√
r sorted lists computed

in Step 2.
Step 1 details. The basic idea is to take a deterministic sample S of the input
set comprising every r

c
2 -th item in each list, to sort S, and to partition the r input

lists about the items in S thereby forming smaller r-way merging subproblems.
Some of these subproblems may have size as large as r

c
2+1, rather than the

desired r
c
2 . Any such subproblems are partitioned further, as needed, via samples

S′ of size m′/r
c
2−1 for each subproblem of size m′ ≥ r

c
2 . The samples S and S′

are sorted by performing all pairwise comparisons. More precisely:
Step 1.1. Let S comprise every r

c
2 -th item in each of the input lists. Extract S

from the input lists and then sort S, using a simple logarithmic time, quadratic
work algorithm.
Step 1.2. Partition the r input lists L1, L2, · · · , Lr about S, creating subprob-
lems M ′

1,M
′
2, · · · ,M ′

k′ , where k′ = |S| + 1, and M ′
i contains r sublists holding

the items between the (i− 1)th and ith items in S.
Step 1.3. Further partition any subproblem M ′

i of size more than r
c
2 , creating

an overall collection of merging subproblems M1,M2, · · · ,Mk, each of size at
most r

c
2 , with the further property that the items in Mi precede those in Mi+1,

for 1 ≤ i < k. This is done using a sample comprising every r
c
2−1-th item in M ′

i .

Lemma 1. The merging algorithm, on an input of r sorted lists of total length
m ≤ rc, uses O(m log r) operations and O(log r log log r) parallel time, if c ≥ 6.

Proof. The parallel run time T (r,m) is given by: T (r,m) ≤ log r+2T (
√
r, rc/2) =

O(log r log log r).
Clearly, Steps 1.1 and 1.2 take O(m) operations. To see the same bound applies
to Step 1.3, we argue as follows. Each subproblem M ′

i of size m′ generates a
sorting task of size m′/r

c
2−1 ≤ r

c
2+1/r

c
2−1 = r2. Performing all these sorting

tasks requires at most r2 ·
∑

m′/r
c
2−1 ≤ r2 ·m/r

c
2−1 ≤ m operations, if c ≥ 6.
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Let W (r,m) be the operation count for a collection of merging problems of
total size m, where each comprises the merge of r lists of combined size at most
rc. Then we have: W (r,m) ≤ m + 2W (r1/2,m) = O(m log r).

Corollary 1. The sorting algorithm, given an input of size n, performs O(n log n)
operations and has parallel time complexity O(log n log logn), if c ≥ 6.

4 The Computation Model and PWS Scheduling

Before giving the resource oblivious implementation, we need to review the com-
putation model and the PWS scheduling environment, mainly as developed in
[12], although we make some changes here to address some new algorithmic
features in SPMS.

The building blocks for our algorithms are computations on balanced binary
trees such as for prefix sums. Such a computation is carried out by tasks: initially
there is one task at the root of the tree; it forks two subtasks for each of its
subtrees, and when they are done, it resumes and concludes the computation at
the root. We will also use a tree of forking tasks to initiate a collection of parallel
recursive calls, as needed in the merging and sorting algorithms.

Initially the root task for such a tree is given to a single core. Subtasks are
acquired by other cores via task stealing. To this end, each core C has a task
queue. It adds forked tasks to the bottom of the queue, while tasks are stolen
from the top of the queue. So in particular, when C, on executing τ , generates
forked tasks τ1 and τ2, it places the larger of τ1 and τ2 on its queue, τ2 say, and
continues with the execution of τ1. This is a small generalization from [12], where
the two forked tasks were assumed to be of the same size. When C completes τ1,
if τ2 is still on its queue, it resumes the execution of τ2, and otherwise there is
nothing on its queue so it seeks to steal a new task. Except for one routine, our
algorithm will be constructed from BP trees [12], which are trees of equal-sized
forking nodes with an O(1) operation computation at each node, and with the
leaf nodes having either an O(1) operation task or a recursive computation as
their task. There is a mirror image tree for the joins which also performs O(1)
operations at each node. We will often talk of a subtree of the BP tree, when we
really intend a subtree plus the mirror image subtree.

Let τ be a task associated with such a subtree. As in [12], by the size of
τ , |τ |, we mean the amount of data τ accesses in its computation. In contrast
to [12], sometimes we will use the virtual size of τ , vs(τ); always vs(τ) ≥ |τ |.
Efficiency is ensured by the following BP tree property: if τ ′ is forked by τ , then
vs(τ ′) ≤ 1

2vs(τ).
To help with the scheduling, each node in a BP tree receives the integer

priority log vs(τ). These are strictly decreasing from parent to child. We will use
the Priority Work-Stealing Scheduler (PWS) [12], which only allocates tasks of
highest priority in response to steal requests. As noted in [12], task priorities are
strictly decreasing on each task queue, and thus there will be at most one steal
of a task of priority d from each core, and so at most p steals of tasks of priority
d, for any d. This is key to bounding the overhead of the PWS scheduler.
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As noted in Section 2, the I/O cost of an individual task τ is measured in
cache misses, which we upper bound by how many blocks the core executing τ
has to read into its cache, assuming none are present at the start of τ ’s execution,
and block misses, which capture the cost of multiple cores writing to the same
block.

As we shall see, each BP task τ in the sort algorithm incurs O(vs(τ)/B +√
vs(τ)) cache misses when executed sequentially. Each task incurs only O(B)

block miss delay: for most of the tasks this follows from [12] because they engage
in consecutive writes to a linear array; we will show that the remaining class of
tasks will also incur only O(B) block miss delay in their writing.

We will use the following bounds derived in [12] for a collection of parallel BP
computations of total size n and sequential cache complexity Q, when scheduled
under PWS. Here, the maximum (virtual) size of any root task in the BP col-
lection is x, and any task of size s incurs O(s/B +

√
s) cache misses and shares

O(1) blocks with other tasks:

Fact 1. For the I/O cost for a computation of the type stated above:
1. The cache miss bound is O(Q + p · (min{M,x}

B + log min{x,B}+
√
x)).

2. The block miss bound is O(p ·min{B, x} · (1 + log min{x, np }).

The merging algorithm MS is built by combining (collections of parallel) BP
computations, first by sequencing, and second by allowing the leaves of a BP tree
to be recursive calls to the merging algorithm. This generalizes the above tree
computation to a dag which is a series-parallel graph. The formal definition of
such an ‘HBP’ computation is given in [12]. While we do not need the details of a
general HBP computation here, we do need to define priorities carefully in view
of the possible differences in the sizes of the recursive subproblems generated by
a call to MS. We define these priorities in a natural way so that they are strictly
decreasing along any path in the MS computation dag, and all tasks with the
same priority have roughly the same size, as detailed in the full paper [13].

The recursive subproblems generated in Step 2 of MS need not be of the same
size, so this portion of the algorithm does not exactly fit the BP frame-work
of [12]. To handle this, we will first determine the cache-miss overhead for the
natural parallel implementation of the algorithm, which we call the ideal PWS
costing, and then add in the additional cache-miss cost for the PWS schedule.
(The cost of block misses is discussed later.)

Definition 1. The ideal costing assumes that a BP computation uses at most
2n/M cores, one for each distinct subtree of size M and one for each node
ancestral to these subtrees.

The cache miss cost in the ideal costing is O(M/B) per subtree, plus O(1) for
each ancestral node, for a total of O(n/B) cache misses.

We generalize this BP analysis to MS and SPMS by analyzing the algorithm
in terms of parallel collection of tasks, each task of virtual size M . The cost of
each task collection is bounded in turn: each task is costed as if it was allocated
to a distinct core. As we will see, each such collection has total virtual size O(n),
and hence incurs O((n/B) + n

M

√
M) cache misses, which is O(n/B) if M ≥ B2.
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To analyze the cache miss cost of the PWS scheduling of MS, we separate the
cost of steals of small tasks τ (those with vs(τ) ≤M), which we bound later, and
consider the impact of steals of large tasks. To bound this cost for a large stolen
task τ , we overestimate by supposing that no small tasks are stolen from τ . Then
(the possibly overestimated) τ executes one or more of the size M subtrees that
are executed as distinct tasks in the ideal PWS costing, plus zero or more nodes
ancestral to these subtree. Clearly, τ ’s cache miss cost is at most the sum of the
cache miss costs of the corresponding distinct tasks in the ideal PWS costing.
An analogous claim holds for the root task. Summing over the costs of the root
task and of the large stolen tasks, yields that their total cost is bounded by the
ideal PWS costing. This also bounds the processor-aware, cache-oblivious cost
of MS, since the cost for block misses is minimal when there are no steals. We
bound the cost of steals of small tasks using Fact 1, and results we derive here.

A final point concerns the management of local variables in recursive calls.
We assume that if a task τ stolen by a core C has local variables, then the space
allocated by the memory manager for these variables does not share any blocks
with space allocated to other cores. Further, if the data resides in cache till the
end of C’s execution of τ , then the now unneeded local variables are not written
back to the shared memory.

5 The Cache-Oblivious Parallel Implementation of SPMS

To achieve efficient oblivious performance, the merging algorithm MS needs to
be implemented using tasks achieving the optimal ideal costing, as defined above.
Many of the steps in MS are standard BP computations; their ideal costing is
O(n/B) and their PWS overhead can be bounded directly using Fact 1. However,
here we address three types of computations in MS that do not fall within the
framework in [12].
1. The recursion may well form very unequal sized subproblems. However, to
achieve a small cache miss cost, the PWS scheduling requires forking into roughly
equal sized subtasks. Accordingly we present the method of grouping unequal
sized tasks, which groups subproblems in a task tree so as to achieve the balanced
forking needed to obtain good cache-miss efficiency.
2. Balancing I/O for reads and writes in what amount to generalized transposes,
which we call transposing copies. This issue arises in the partitioning in Steps
1.2 and 1.3. The challenge faced by a multicore implementation results from the
delay due to the block misses, as discussed earlier.
3. One collection of tasks for sorting the samples in Step 1 uses non-contiguous
writes. Fortunately, they use relatively few writes. We develop the sparse writing
technique to cope.

Grouping Unequal Sized Tasks. We are given k ordered tasks τ1, τ2, · · · , τk,
where each τi accesses O(|τi|/B) blocks in its computation (they are all recursive
merges). Let ti ≤ t2ave for all tasks, where tave is the average size of the tasks.

The tasks need to be grouped in a height O(log k) binary tree, called the
u-tree, with leaves holding the tasks in their input order. The u-tree is used for
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the forking needed to schedule the tasks. The u-tree will use virtual sizes for its
scheduling subtasks and has the bounds given below. See [13] for more details.

Lemma 2. The ideal PWS costing for scheduling the u-tree plus the cost of
executing tasks τi of size M or less is O(

∑k
i=1 ti/B), where ti = |τi|.

The Transposing Copy. The problem, given a vector A consisting of the se-
quence A11, · · · , A1k, · · · , Ah1, · · ·Ahk of subvectors, is to output the transposed
sequence A11, · · · , Ah1, · · · , A1k, · · · , Ahk, where we are given that the average
sequence length l = |A|/hk ≥ h.

This is done by creating
⌈ |Aij |

l

⌉
tasks of virtual size l to carry out the copying

of Aij . The tasks are combined in column major order, i.e. in the order corre-
sponding to destination locations. The full paper proves the following bound.

Lemma 3. Let τ be a task copying lists of combined size s in the transposing
copy. Then τ incurs O(s/B +

√
s) cache misses.

Sparse Writing. Let A be an s × s array in which each of locations c · s,
1 ≤ c ≤ s is written exactly once, but not in any particular order. A sequential
execution incurs at most s cache misses.

Now consider a BP execution of this computation in which each leaf is respon-
sible for one write. We claim that the I/O cost for all writes to A is O(s2/B+B)
regardless of the ordering of the writes. We establish this bound as follows.

If s ≥ B, each write into A incurs one cache miss, for a total cost of O(s) ≤
O(s2/B) cache misses. There are no block misses in this case.

If s < B, there are only s accesses, but these can incur block misses. Let i
be the integer satisfying s · i ≤ B < s · (i + 1). Then, at most i writes occur
within a single block. The worst-case configuration in terms of block miss cost
occurs when there are i different sets of s/i writes, with each set having one
write per block. Each such write to a block may incur a block wait cost equal to
that of Θ(i) cache misses. Hence the overall delay in this case is at most that of
O(i2 · s/i) = O(s · i) = O(B) cache misses.

5.1 Details of Step 1 in SPMS

Now, we describe parts of the algorithm in detail.
Each substep (except one) uses a BP computation or a collection BP com-

putations running in parallel. We characterize the complexity of each size x
(collection of) computations. Clearly it will have depth O(log x), and unless
otherwise specified will incur O(x/B) cache misses.

We begin with some notation. Let L1, L2, · · · , Lr be the r sorted input lists
of total length m ≤ rc. The r lists are stored in sequential order. Let S =
{e1, e2, · · · , es} comprise every r

c
2 th item in the sequence of sorted lists; recall

that S is sorted in Step 1.1, and then used to partition the r lists in Step 1.2.
Step 1.1. Sort S.
1.1.1. Construct arrays S1, S2, · · · , Ss; each Si is an array of length s which
contains a copy of the sequence of elements in S.
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(a) Compact the s samples within the list sequence L1, · · · , Lr, using prefix sums
for the compaction. The result is an array S1[1..s] containing the s samples. This
uses a sequence of 2 BP computations of size m.
(b) Form arrays Si, 2 ≤ i ≤ s, where each Si is a copy of S1. This is a BP
computation of size s2 ≤ m.
1.1.2. In parallel for each i, compute rank of ei in Si.
First, for each Si, compare ei to each element in Si. Then count the number of
ej ≥ ei, the desired rank of ei in Si. This uses two BP computations, and over
all i, 1 ≤ i ≤ s, they have combined size O(s2).
1.1.3. Create the sorted array S[1..s] where S[i] contains the element ej with
rank ρj = i.

The simple way to implement this step is for each element ei to index itself into
location S[ρi]. This will incur s cache misses, which can be argued is acceptable
with a tall cache, since s2 = O(m). But this implementation could incur s · B
block misses, which is excessive. To reduce the block miss cost, we split this step
into two substeps:
(a) Initialize an all-zero auxiliary array A′[1..m] and write each ei into location
A′[ρi · rc/2].
This is the sparse writing setting analyzed earlier, and results in O(s2/B+B) =
O(m/B + B) cache and block misses in a depth log s computation.
(b) Compact array A′ into S[1..s], which gives the desired sorted array of the
samples. This is a prefix sums computation, a BP computation of size O(m).
Step 1.2. Partition L1, L2, · · · , Lr about S. (Details in [13].)
Step 1.3. For each subproblem M ′

i with |M ′
i | > r

d
2 create a task to further

partition M ′
i . It is analogous to Steps 1.1 and 1.2 except that it uses a sample

S′ of size m′i/r
d
2−1, where m′i = |M ′

i |.

Ideal PWS Costing. Summarizing the above discussion of the cache-miss costs
for the merge (MS) gives the following bound for the number of cache misses in
the ideal PWS costing.

Lemma 4. In the ideal PWS costing, the merging algorithm MS, in performing
a collection of merging tasks of total size n ≥Mp, in which each task comprises
the merge of r lists of combined length at most rc, incurs O(

⌈
n
B

⌉ ⌈ log r
logM

⌉
) cache-

misses, if c ≥ 6 and M ≥ B2.

Proof. As argued in the description of the algorithm, for each merging problem
of size m = Ω(M), Substep 1 incurs O(m/B+

√
m) = O(m/B) cache-misses, as

M ≥ B2; smaller subproblems fit in cache and so incur O($m/B%) cache-misses.
Now let C(r, n) be the cache-miss count for performing such a collection

of merges for problems of merging r lists each of combined size at most rc.
Then, as the algorithm uses O(n) space, we have, for a suitable constant γ > 1:
for n ≤ γM : C(r, n) = $n/B%, and for n ≥ γM : C(r, n) ≤ n

B + 2C(r1/2, n).

For a processor-aware, cache-oblivious implementation of SPMS, there is only
a constant number of block misses per task executed by a core, costing O(bB)
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per task, and the number of tasks in a p-core processor-aware implementation
is O(p · logn

log(n/p) ). Thus, the block miss cost is dominated by the cache miss
cost under our assumption that n ≥ Mp and M ≥ B2. Hence, with the above
analysis and the parallel time bounds for the basic SPMS algorithm, as well as
for the BP computations in the implementations given in this section, we obtain
the result that SPMS can be scheduled on p cores, for p ≤ n

max{M,log logn} , to
obtain optimal speed-up and cache-oblivious cache-efficiency. Note that in such
a processor-aware schedule, there is no need for steals, and hence there is no
further overhead beyond the cache-miss, block miss, and depth bounds that we
have established for the computation.

We next establish that when scheduled under PWS, this implementation also
achieves similar bounds resource-obliviously.

The Analysis of the PWS overhead. In addition to the results in Fact 1,
the companion paper [12] shows that:

1. The cost of each up-pass is bounded by that of the corresponding downpass
in BP and HBP algorithms.

2. The idle work (the time spent by a core when it is not computing nor
writing on a cache or block miss), in a (parallel collection of) BP computations,
aside the waiting already accounted for in the up-pass, is bounded by O(p · ((s+
S+b) logx+bmin{x,B})) where x is the size of the largest task in the collection,
s bounds the time for a steal, S bounds the time to initiate a scheduling round,
and b bounds the time for a cache miss.

3. Additional cache miss costs due to small tasks taking over the work of large
tasks on an up-pass are bounded by the cache miss costs in the downpass.

And, as already noted in this paper, for the present algorithm:
4. The delay due to block misses for a stolen task τ is bounded by the time

for O(B) cache misses. This follows from results in Fact 1 for block misses, and
from our method for Step 1.1.3, described earlier.

Lemma 5. Let M ≥ B2. The delay BMM (n, rc) due to block misses in the
merging algorithm for a collection of merging problems each of size at most
rc, and of total size n ≥ Mp, is bounded by: pB log rc(log log n

p − log logB) if
rc ≥ B and B ≤ n

p < rc, pB log rc(log log rc

B − log logB) if rc ≥ B and n
p ≥ rc,

and by prc log rc if n/p, rc < B.

Proof. Using the bounds in Fact 1 for block misses, and since M ≥ B2 the top
level BP computation causes the following number, BMT(n, rc), of block misses:
pB log n

p if n
p ≤ rc and rc ≥ B, pB log rc if n

p > rc and rc ≥ B, and prc log rc if
rc < B.

Since BMM (n, rc) ≤ BMT(n, rc) + 2BMM (n, rc/2), induction confirms the
claimed bound.

Similar arguments bound the cache miss costs and idle time (see [13]). Adding
these costs, plus those from Lemma 4 yields our main result.
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Theorem 2. When run on p ≤ min{ n
log log n ,

n
M } cores using the PWS scheduler

on an input of size n ≥Mp, where M ≥ B2, the merging algorithm runs in time

O(
n log n

p
+

bn

Bp

logn
logM

+ logn log logn(s + S + b) + bB log n log log
n

p
).

The same bound applies to the sorting algorithm.
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Abstract. In the interval sort problem, we are given an array A of n
items and p ranges of ranks I1 = [�1, u1], . . . , Ip = [�p, up]. The goal
is to rearrange the array so that A[�t..ut] contains the �t-th, . . . , ut-th
smallest elements of A in nondecreasing order, for all t, 1 ≤ t ≤ p, and
A[ut + 1..�t+1 − 1] contains the (ut + 1)-th, . . . , (�t+1 − 1)-th smallest
elements of A, for all t, 0 ≤ t ≤ p. That is, the array is sorted by blocks,
with sorted and unsorted blocks alternating. One of the most interesting
aspects of this research is the unification of several important and related
problems (sorting, selection, multiple selection, partial sorting) under a
single framework. Results on interval sorting generalize the results for
any of these particular—and fundamental—problems.

We propose a divide-and-conquer algorithm, owing to quicksort and
quickselect, named chunksort, to solve the problem. We give an exact
expression for the average number of comparisons made by the basic
variant of chunksort. Then we consider what is the expected optimal
number of comparisons needed to solve an interval sort instance and
we design a variant of chunksort that achieves near optimal expected
performance, up to n+o(n) comparisons. In fact, we conjecture that the
algorithm that we propose has actually optimal expected performance
up to o(n) terms and provide some evidence for this conjecture.

1 Introduction

We call interval sorting the following problem: given an array A of n items drawn
from a totally ordered domain, and a set I = {[�t, ut] | 1 ≤ t ≤ p} of p disjoint
intervals, with

1 ≤ �1 ≤ u1 < �2 ≤ u2 < · · · < �p ≤ up ≤ n,

the goal is to rearrange the array A in such a way that A[�t..ut] contains the
�t-th, (�t + 1)-th, . . . , ut-th smallest elements of A in ascending order, for all t,
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1 ≤ t ≤ p, and furthermore, A[ut +1..�t+1− 1] contains the (ut +1)-th, (ut + 2)-
th, . . . , (�t+1− 1)-th smallest elements of A, but not in any particular order, for
all t, 0 ≤ t ≤ p (we use the convention u0 = 0 and �p+1 = n + 1).

In other words, if we define It = [�t, ut], It = [ut + 1, �t+1 − 1], and if A[R]
denotes the subarray with indices in the range given by R, after interval sorting,
we have

A[I0] ≤ A[I1] ≤ A[I1] ≤ A[I2] ≤ · · · ≤ A[Ip] ≤ A[Ip],

where A[R] ≤ A[S] means that for any two items x ∈ A[R] and y ∈ A[S], we
have x ≤ y. Additionally, each A[It] is sorted in nondecreasing order.

Along the paper we will find convenient to talk about gaps, the It’s, as opposed
to the intervals, the It’s. A subarray A[It] or A[It] will be sometimes called a
block. We will denote mt = ut − �t + 1 the size of the t-th interval and mt the
size of the t-th gap. We shall also use m = m1 + · · ·+ mp for the total number
of items to be sorted and m = m0 + · · · + mp = n−m for the total number of
elements that will remain “unsorted”.

The reader will have undoubtedly noticed that interval sorting generalizes
both sorting, with p = 1, I1 = [1, n], and selection of the j-th, with p = 1,
I1 = [j, j]. It also generalizes the problem of multiple selection, setting I1 =
[j1, j1], . . . , Ip = [jp, jp], and the problem of partial sorting, setting p = 1 and
I1 = [1,m] for some m ≤ n.

Sorting the whole array with worst-case time in Θ(n log n) is an obvious so-
lution for the interval sorting problem, but in many cases, when m 
 n it will
be wasteful. Here, we consider better alternatives.

In this paper, we propose the algorithm chunksort to solve the interval sorting
problem. Chunksort is a simple divide-and-conquer algorithm in the spirit of the
well-known quicksort and quickselect by Hoare [2,3]. It “adapts” its behavior
to the set of intervals provided, performing exactly as quicksort, quickselect,
multiple quickselect [10] or partial quicksort [6] when appropriate. In Section 2
we review the basic variant of the chunksort algorithm. Then, in Section 3 we
consider its expected performance. Section 4 addresses the question of optimally
solving an interval sort problem. We first consider a simple lower bound on the
complexity of comparison-based algorithms for interval sorting. Then we propose
a variant of chunksort that achieves almost expected optimal performance (up
to n+ o(n) comparisons). We finally discuss in Section 5 our conjecture that the
algorithm of Section 4 actually achieves optimal expected performance (up to
o(n) comparisons).

2 Chunksort

The input to the chunksort algorithm is a pair of arrays A[1..n], I[1..p] and
indices i, j, r and s, which delimite the corresponding subarrays A[i..j] and
I[r..s]. Each component of I is a pair encoding the lower and upper ends of an
interval, thus I[t].� = �t and I[t].u = ut. Moreover, we assume that we store two
sentinels I[0].u = 0 and I[p + 1].� = n + 1.
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Algorithm 1. Chunksort
procedure Chunksort(A, i, j, I , r, s)

if i ≥ j then return � A contains one or no elements
end if
if r ≤ s then

pv ← SelectPivot(A, i, j)
Partition(A,pv, i, j, k)
t ← Locate(I, r, s, k)

� Locate the value t such that �t ≤ k ≤ ut with It = [�t, ut],
� or ut < k < �t+1

if ut < k then � k falls in the t-th gap
Chunksort(A, i, k − 1, I, r, t)
Chunksort(A,k + 1, j, I, t + 1, s)

else � k falls in the t-th interval
Chunksort(A, i, k − 1, I, r, t)
Chunksort(A,k + 1, j, I, t, s)

end if
end if

end procedure

At some recursive stage, the algorithm considers some subarray A[i..j], where
it has to sort the blocks defined by the intervals I[r..s]. The algorithm picks an
element from the subarray A[i..j], called the pivot, and rearranges the subarray
so that the pivot lands at position k, i ≤ k ≤ j. All elements in A[i..k − 1] are
smaller than or equal to A[k], and all elements in A[k+1..j] are greather than or
equal to A[k]. The next step is to locate the interval or the gap where the pivot
has fallen. The procedure locate returns t, with �t ≤ k ≤ ut or ut < k < �t+1.

If the pivot is in a gap (ut < k < �t+1), we have to call recursively the
procedure on the left subarray A[i..k − 1] with all intervals to the left of ut, in-
cluding It = [�t, ut], and we have also to call the procedure on the right subarray
A[k + 1..j] with all intervals from It+1 = [�t+1, ut+1] onwards. If the pivot has
fallen inside an interval then we do about the same, but the interval It = [�t, ut]
participates in the two recursive calls. Actually, we might “tune” the algorithm
replacing the interval It = [�t, ut] by two intervals [�t, k−1] and [k+1, ut], using
them for the recursive calls on A[i..k − 1] and A[k + 1..j], respectively. It is not
difficult to see that the algorithm already behaves just as if such replacement
had taken place, since any position which is outside the bounds i and j is simply
ignored.

We can apply several standard techniques to improve chunksort, including
recursion removal, recursion cutoff on small subfiles (the easiest thing to do would
be to fully sort small subfiles using insertion sort), sampling for pivot selection,
loop unwrapping, reordering the recursive calls to minimize stack space, etc.
Also, in a finely tuned implementation of chunksort the location of the cutting
point t within I should be done using binary search for peak performance.

In order to achieve near optimal performance with chunksort, we will see in
Section 4 that the algorithm must pick pivots which land exactly or very near
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to interval ends. That is, in each recursive stage, the final position k of the pivot
should be equal to �t or ut, for some t, or very close.

Then it makes sense to use the following technique. If k = �t for some t,
then instead of the calls Chunksort(A, i, k− 1, I, r, t) and Chunksort(A, k +
1, j, I, t, s), we can make the call to chunksort in the left subarray with the
intervals Ir to It−1 since no element of It participates in this subproblem, and
we can also change the lower bound �t to �t + 1. Similarly, if k = ut, then we
can call to chunksort in the right subarray with the intervals It+1 to Is, and
change the upper bound ut to ut − 1. Furthermore, if the t-th interval contains
a single element and we had k = �t = ut then we have “thrown” this interval
away. Notice that although the optimization works for any variant of chunksort,
in practical terms it does not pay off to include it except when pivots land often
at an extreme of some interval. For instance, this is not the case with the basic
variant which chooses pivots at random.

3 The Average Performance of Chunksort

In this section we will derive the general recurrence for the average number of
comparisons/exchanges/passes made by chunksort. Let Cn;{Ir ,...,Is} be the aver-
age number of comparisons/exchanges/passes/.. . made by chunksort on an array
of size n and the intervals Ir, . . . , Is. We use also Cn = Cn;{I1,...,Ip}. We assume
that all elements are distinct and, as it is usual in the analysis of comparison-
based sorting and selection algorithms, that all n! possible arrangements of the
n elements are equally likely.

When the array is empty we have nothing to do, so C0;{Ir ,...,Is} = 0. Likewise,
if r > s then we assume Cn;{Ir ,...,Is} = 0. Assume now that n > 0 and r ≤ s.
Then the recurrence is almost self-explanatory. We consider all possible cases for
the value of t and whether the pivot landed at It or at It; this yields

Cn;{Ir ,...,Is} = Tn +
s∑

t=r−1

∑
k∈It

πn,k
(
Ck−1;{Ir ,...,It} + Cn−k;{It+1,...,Is}

)
+

s∑
t=r

∑
k∈It

πn,k
(
Ck−1;{Ir ,...,It} + Cn−k;{It,...,Is}

)
, (1)

where πn,k is the probability that the selected pivot is the k-th of the n elements.
Different pivot selection strategies will yield particular splitting probabilities πn,k.
On the other hand, in a more general setting, the recurrence will be valid for
n ≥ n0, if we switch to a different and simpler algorithm when the input is
small enough, namely, when n < n0. Last but not least, the toll function Tn

will depend on the quantity of interest, be it comparisons, exchanges, recursive
passes, etc. Notice that setting r = s = 1 —that is, only one interval— and
the values �1 and u1, we can easily specialize the recurrence above for quicksort,
quickselect and partial quicksort.

Here we should only consider the standard variant, hence n0 = 1 and πn,k =
1/n. That is, since the pivot is chosen at random (or equivalently, we assume
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that the input array A contains a random permutation), the probability that it
is the k-th out of n is the same for all values of k. On the other hand, we will only
consider the comparisons between elements made while partitioning the array
A around the pivot, i. e., we will set Tn = n − 1. We are disregarding thus all
the comparisons between indices, and in particular, those necessary to locate the
interval or gap containing the position of the pivot after partitioning. It might
be argued that since this number is o(n) —either because p is very small, e. g.,
constant, or because we are using binary search— the main order terms in the
average performance of chunksort are not affected.

The solution of (1) is by no means trivial. In particular, we made an edu-
cated guess from the known results for partial quicksort [6] and multiple quick-
select [10], which then we checked by induction. An alternative path is to solve
the cases for one interval, two intervals, etc. (see [5]). A pattern among the so-
lutions emerges, and the general form for the solution can be hypothesized and
then checked by induction. If we follow that path we would first introduce a
generating function

C(z;x, y) =
∑
n≥0

∑
1≤i≤j≤n

Cn;{[i,j]}znxiyj ,

to obtain the average performance when there is a single interval I1 = [i, j].
Recurrence (1) translates to a linear differential equation similar to those satisfied
by quickselect and partial quicksort, and can be solved using similar techniques.
The crucial point to observe here is that, if i = 1 or j = n this problem reduces
to that of partial quicksort, whose solution can be found in [6]. Here one obtains
(see also [5])

Cn;{[i,j]} = 2n+ 2(n + 1)Hn − 6(j − i) + 6− 2(i + 2)Hi − 2(n + 3− j)Hn+1−j .

Going to the next case, p = 2, the formula is very similar, but the size of the
intermediate gap m1 = �2 − u1 − 1 gets involved. We omit here the tedious and
laborious details and provide the general solution, which is given in the following
theorem.

Theorem 1. The average number of element comparisons made by chunksort
to arrange an array of size n, given p intervals It = [�t, ut], 1 ≤ t ≤ p is

Cn = 2n + up − �1 + 2(n + 1)Hn − 7m− 2 + 15p

− 2(�1 + 2)H�1 − 2(n + 3− up)Hn+1−up − 2
p−1∑
t=1

(mt + 5)Hmt+2,

where mt = �t+1 − ut − 1, is the size of the t-th gap It = [ut + 1, �t+1 − 1],
0 ≤ t ≤ p, and m = m1 + m2 + · · · + mp is the combined size of the blocks
which are internally sorted, i. e., mt = ut − �t + 1 is the size of the t-th interval
It = [�t, ut], 1 ≤ t ≤ p.

The reader can readily convince herself that the formula works for quicksort
(p = 1, �1 = 1, u1 = n), for quickselect (p = 1, �1 = u1 = j), for partial quicksort
(p = 1, �1 = 1, u1 = m) and multiple quickselect (�t = ut = jt, for 1 ≤ t ≤ p).
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4 Optimal Interval Sorting

We start first with a simple lower bound on the minimum expected number
Λ(n,m,m) of comparisons needed to solve interval sorting using any comparison-
based algorithm. Here, m = (m1, . . . ,mp) and m = (m0, . . . ,mp) are the two
vectors and the value n univocally determining the interval sorting instance.

To begin with, if we apply interval sort to the array and then we optimally
sort the items that fall in the gaps we obtain a sorted array, but the total number
of comparisons must be at least the minimum number of comparisons necessary
to sort the array at once:

Λ(n,m,m) +
p∑

t=0

log2(mt!) ≥ log2(n!).

Then,

Λ(n,m,m) ≥ n log2 n−
p∑

t=0

mt log2 mt −m log2 e + o(n)

=
p∑

t=1

mt log2 n +
p∑

t=0

mt log2 n−
p∑

t=0

mt log2 mt −m log2 e + o(n)

=
p∑

t=1

mt

(
log2 mt − log2

mt

n

)
−

p∑
t=0

mt log2
mt

n
−m log2 e + o(n)

=
p∑

t=1

mt log2 mt + nH ({m0/n,m1/n,m1/n, . . . ,mp/n,mp/n})

−m log2 e + o(n)

with H({qt}) = −
∑

t qt log2 qt denoting the entropy of the discrete probability
distribution {qt}; note that the qt’s must sum 1.

Now, suppose that we had an algorithm which given an array of n elements
and a rank j, partitioned the array around an element of rank j′ very close to j,
that is, |j− j′| = O(

√
n), using n+ o(n) comparisons with very high probability.

With this algorithm as a building block, a solution to the interval sort problem
would consist of two phases. In the first phase, 2p pivots are brought to positions
�t − δt and ut + εt, for all t, 1 ≤ t ≤ p, for some “small” δt and εt, say, δt + εt =
O(
√
n). Thus the original array is rearranged in such a way that

A[I
′
0] ≤ A[I ′1] ≤ A[I

′
1] ≤ . . . A[Ip] ≤ A[I

′
p],

with I ′t = [�t−δt..ut+εt] ⊇ It, 1 ≤ t ≤ p, and I
′
t = [ut+εt+1..�t+1−δt+1−1] ⊆ It,

0 ≤ t ≤ p.
In the second phase the elements in the ranges I ′t must be optimally sorted;

since the size of I ′t differs by only a small amount from the size of It, the cost of
the second phase is

∑p
t=1 mt log2 mt + O(p

√
n).
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Both phases can be carried out by the chunksort algorithm, provided that we
carefully redesign the selection of pivots at each recursive stage. For example,
when the number of elements to be sorted by some recursive call is not much
smaller than the size of the corresponding subarray, the pivot should be close to
the median of the subarray.

Consider the call Chunksort(A, i, j, I, r, s). The size of the subarray is N =
j − i + 1 and the number of elements to be sorted is

M = mr+1 + . . . + ms−1 + ur −max(i, �r) + 1 + min(us, j)− �s + 1.

If N −M = o(N/ logN) then it is more efficient to sort the whole subarray. In
that case, we would select a sample of Θ(

√
N) elements and choose the median

of the sample as the pivot. After partitioning, the subsequent calls to chunksort
will behave in a similar way, because they receive subarrays where the number
of items to be sorted on each is close to their corresponding sizes. In this way, we
will sort the subarray A[i..j] with an optimal expected number of comparisons
N log2 N + o(N logN) [8].

Because of a similar argument, we assume that all gaps have size Ω(n/ logn);
if not, we will do better by discarding small gaps separating two intervals, i.e.,
merging the two intervals into a single one. The elements of the discarded gaps
will be sorted even though that was not required. But the time to put pivots to
delimit those gaps would be greater than the time needed to sort their elements.

How do we have to select the pivots when M 
 N? If we want to put a pivot
close to some rank ρ, we should use a similar technique to that in the previous
case: take a random sample of s = Θ(

√
N) elements, and choose the element

in the sample whose rank within the sample is ≈ ρ
N · s. Actually, if ρ = �t for

some t, we will take the element in the sample whose rank is ρ
N · s−Δ, for some

positive Δ = o(s), to guarantee with high probability that the choosen pivot has
rank �t − δt for δt = O(

√
N). Likewise, if ρ = ut for some t, we can take the

element in the sample whose rank is ρ
N ·s+Δ, to guarantee with high probability

that the choosen pivot has rank ut + εt with εt = O(
√
N) [7].

It remains thus the problem of deciding which is the rank ρ that we should
choose at each recursive step. For that purpose, the “iron bar cutting” metaphor
turns out to be very useful. Thanks to sampling we can break the original array
(“the iron bar”) at designated marks (“the interval endpoints”). In this sense,
our problem is to cut the iron bar into pieces, making a cut at each given mark.
The resulting pieces will then be either left “unpainted” (= unsorted) or they
will be “painted” (= sorted). Once the bar is cut at the extremes of some piece
to be painted, our procedure takes care of sorting it optimally, so that now we
can concentrate on the optimal way to produce the cuts, since the order in which
we cut the bar matters.

Let ρr, . . . , ρs be the set of endpoints we are dealing with in a given moment:
ρr and ρs delimite the subarray and the cuts must be done at ρr+1, . . . , ρs−1. We
take ρ2t = ut and ρ2t+1 = �t, for 0 ≤ t ≤ p. Let c(r, s) denote the cost of cutting
the subarray at ρr+1, ρr+2, . . . , ρs−1 optimally. We are interested in c(0, 2p+ 1),
with ρ0 = 0 and ρ2p+1 = n + 1.
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If r + 1 ≥ s there is nothing to cut, so c(r, s) = 0. If r + 1 < s then there is 1
or more endpoints and the optimal cost is given by

c(r, s) = ρs − ρr + min
r<t<s

(c(r, t) + c(t, s)).

Here we take the size of the block delimited by the endpoints (not including
them), plus one, as the cost of partitioning the block. The cost should also
include the cost of sampling to select the pivot, but since it is asymptotically
smaller than the cost of partitioning we can safely ignore it, as this will not affect
the main order term of that cost. Finding the optimal costs c(r, s) and hence
the optimal choices for ρt at each recursive stage can be easily accomplished
using dynamic programming. The space requirements are Θ(p2) and the time
for the computation is Θ(p3). Let ω(r, s) = ρs − ρr. Since the “weights” ω(r, s)
satisfy the quadrangle inequality and ω(r, s) ≤ ω(r′, s′) whenever [r, s] ⊆ [r′, s′],
it follows that Knuth-Yao’s technique [11] can be applied and then the optimal
costs and optimal cutting points can be computed in Θ(p2). Let ρ(r, s) denote
the optimal choice to minimize c(r, s) when r + 1 < s. Dynamic programming
gives us these optimal choices, so we can carry out a preprocess to compute
the values ρ(r, s); chunksort will only need to access the array that stores those
values to guide its choices.

In what follows we will show that

c(0, 2p+1) ≤ (n+1)H ({m0/n,m1/n,m1/n, . . . ,mp/n,mp/n})+O(log n). (2)

This implies that the variant of chunksort that we have explained here has almost
optimal expected performance up to n plus lower order terms and provided
that p = o(

√
n). Indeed, with H := H ({m0/n,m1/n,m1/n, . . . ,mp/n,mp/n}),

we have

p∑
t=1

mt log2 mt + n ·H −m log2 e + o(n) ≤ Λ(n,m,m)

≤
p∑

t=1

mt log2 mt + c(0, 2p + 1) + O(p
√
n)

≤
p∑

t=1

mt log2 mt + n ·H + n + lower order terms.

In order to prove (2) we will consider the recurrence for the cost of the first
phase of chunksort in more general terms:

ĉ(r, s) = ρs − ρr + ĉ(r, t) + ĉ(t, s), r + 1 < s

where ρt is the endpoint choosen at the corresponding recursive stage; we do
not insist now that ρt is the optimal cutting point. If we have a look at the
recursion tree for chunksort, then the root node has weight ω(0, 2p + 1) and it
is labeled with the index t of the choosen endpoint. Its left subtree is the tree
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Fig. 1. A recursion tree for chunksort and the associated cost

that corresponds to the partition of the subarray delimited by ρ0 and ρt, while
the right subtree corresponds to the partition of the subarray delimited by ρt
and ρ2p+1, and so on. When the array to partition is delimited by ρt and ρt+1
it contains no endpoints to partition around, and the corresponding subtree is
a leaf contributing zero to the cost. If t is even, then ρt and ρt+1 delimit a gap
and chunksort will not do anything else there. When t is odd, ρt and ρt+1 are
the boundaries of an interval and chunksort will sort (optimally) that interval;
however, we count that cost of sorting intervals separately.

In summary, the sum of the weights in the internal nodes give us the cost of
that particular way of partitioning until gaps and intervals have been “isolated”.
Of course, we must have that this cost is equal to or greater than c(0, 2p + 1).
Let ωt = ω(t, t+ 1) for 0 ≤ t ≤ 2p. Given such a tree, denote dt the depth of the
t-th leaf, 0 ≤ t ≤ 2p. Then the cost of the tree (see Fig. 1) is

C =
∑

v is an internal node

ω(v) =
2p∑
t=0

dtωt

And the cost c(r, s) is the cost of the optimal tree Copt, that is, the one that
minimizes the quantity above. In the example of Fig. 1, internal nodes and leaves
are labelled by its corresponding ω(r, s). Shaded leaves correspond to intervals;
blank leaves correspond to gaps. The endpoint choosen for partition at each
recursive call is depicted next to is corresponding internal node.

If we define βt = ωt/(n+ 1) then C = (n+ 1)P , with P =
∑2p

t=0 dtβt; that is,
P is the external weighted path length.

There are many results on the construction of optimal binary search trees
and near-optimal binary search trees (see, for instance [9] and the references
therein). Here, we face the particular situation where we have to construct an
optimal or near-optimal binary search tree to access its leaves with probabilities
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of access β0, β1, . . . , β2p; the probabilities of access to internal nodes are in our
case all zero.

There are two important reasons to consider now heuristics to construct near
optimal trees. On the one hand, they provide a simple and more efficient alterna-
tive to the dynamic programming to choose a good —if not optimal— endpoint
at each recursive stage of chunksort. On the other hand, we have upper bounds
on the external weighted path length of the tree constructed by such heuristics,
namely [9]

Pheur ≤ H ′ + 1, H ′ = H({βt}).
This entails the sequence of inequalities

Copt ≤ Cheur ≤ (n + 1)(H ′ + 1) ≤ n ·H + n + O(log n),

since H ′ = H + O ((logn)/n). Indeed, we have

β2t =
mt + 1
n + 1

, 0 ≤ t ≤ p; β2t−1 =
mt − 1
n + 1

, 1 ≤ t ≤ p,

and manipulating the expression for H ′, removing the terms for which mt = 1,
and using easy bounds on log(1+x) and log(1−x), yields H ′ = H+O((log n)/n).

To conclude this section, we briefly discuss a couple of heuristic algorithms
that can be used to guide chunksort’s choice of endpoints at each recursive
stage; using any of them will only incur an additional cost of O(p log p), while
the overall expected cost of the resulting chunksort is still near optimal. Both
heuristics are simple adaptations of the heuristics that have been proposed for
the construction of near optimal binary search trees [9].

In one of them, we look for the endpoint ρt, r < t < s, closest to the middle
of the range i..j. If more than one endpoint satisfies this criterion and all them
are ≤ $(j − i + 1)/2% then we take the one with largest index; if all the closest
endpoints are > $(j − i + 1)/2% then we take the one with smallest index. If
ρt ≤ $(j − i + 1)/2% ≤ ρt+1 and both endpoints are at the same distance of the
middle of the range, then we take any of them, say the one with smallest index.
This heuristic is easy to implement; it introduces an additional cost O(log p) at
each recursive stage, for a total cost O(p log p).

The other heuristic is slightly more complicated, as each recursive call needs
to know its level � (the first call is at level 0), and a reference point, initially
$n/2%. In a recursive call at level �, we look for the endpoint closest to the
reference point r, and use the same criteria as before to decide ties. Once the
endpoint ρt is choosen and the partition around the pivot has been carried out,
the subsequent two recursive calls are made with reference points r − �n/2�+1�
and r + $n/2�+1% and level � + 1. This heuristic can also be implemented with
cost O(log p) to locate a good endpoint for each recursive stage.

5 Final Remarks

We conjecture that the variant of chunksort described in Section 4 has actually
expected optimal performance, up to lower order terms, more specifically if the
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dynamic programming algorithm is used to choose cutting points. Indeed, neither
the lower bound on Λ(n,m,m) nor the upper bound on the cost of the optimized
chunksort are tight. It is known [9] that the difference Pheur−Popt ≤ log2 Popt ≈
log2 H . Suppose that Pheur and Popt differ by some small constant c. Then Cheur
and Copt would differ by c(n+1), and the gap between the lower bound and the
cost of optimized chunksort would shrink accordingly.

Additional arguments supporting this conjecture come from considering par-
ticular cases, namely, selecting the j-th smallest element out of n. This is the par-
ticular case of interval sort with p = 1 interval I1 = [j, j]. Therefore, m0 = j − 1
and m1 = n− j. It is well known [1] that the expected number of comparisons
needed is at least n+min(j−1, n−j)+lower order terms, while our lower bound
gives

n

(
− j − 1

n
log2

j − 1
n

− n− j

n
log2

n− j

n

)
+ lower order terms

so the difference is at least (2 − ln 3/ ln 2)n + o(n) ≈ 0.415n + o(n), for any j.
On the other hand,

c(0, 3) = ρ3 − ρ0 + min
0<t<3

(c(0, t) + c(t, 3))

= n + 1 + min(c(0, 1) + c(1, 3), c(0, 2) + c(2, 3))

Since c(0, 1) = c(2, 3) = 0, c(1, 3) = n + 1 − j and c(0, 2) = j, we get c(0, 3) =
n + 1 + min(j, n + 1− j); so we are off from the real lower bound only by lower
order terms. Notice also that both heuristic algorithms considered here would
choose as cutting point ρ1 = j if j > $n/2% and ρ2 = j if j ≤ $n/2%. Hence, they
give a cost

ĉ(0, 3) =

{
n + 1 + n + 1− j, if j > $n/2%
n + 1 + j, if j ≤ $n/2%

}
= n + 1 + min(j, n + 1− j)

Also, by design, optimized chunksort has optimal performance when the num-
ber of items that do not have to be sorted, m, is very small, since it behaves
exactly as an optimal quicksort.

Very related to our work is the recent paper by Kaligosi et al. [4], where the
authors consider the problem of selecting multiple ranks optimally. They propose
near optimal algorithms up to O(n) comparisons for the worst- and expected case
of multiple selection. They make all partitions around pivots that are close to
the median of the current subarray; we have shown that it is worth choosing
some endpoint and then a pivot that will land very close to that endpoint. In
this way, the gap between the lower and upper bound can be reduced to n+o(n),
and as we have seen, it might be even smaller, that is, o(n).

To conclude, interval sorting provides an unified framework to study closely
related problems in sorting and selection. To begin with, the results for chunksort
generalize the previous results for quicksort, quickselect, partial quicksort and
multiple quickselect. Considerations about optimality give rise to interesting
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findings, mathematical challenges and conjectures. For instance, in the light of
the iron bar cutting analogy, the optimal choice of endpoints explains the optimal
strategy for selection [7]: if the rank of the sought element j is ≥ n/2 then we
should choose a pivot landing slightly to the left of j; for that, we must use a
sample of s = Θ(

√
n) elements and choose the element of rank j/n · s−Δ from

the sample, to guarantee with high probability that the pivot will land at j′,
very close, but to the left of j. This uses n + o(n) comparisons and in the next
recursive call we will use n − j′ + o(n − j′) = n − j + o(n − j) comparisons to
put a pivot slightly to the right of j, now by having picked the element of rank
j−j′

n−j′ · s+Δ′ from the sample. With the two pivots in place, the rest of the steps
needed to select the j-th will only need o(n) comparisons.
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Abstract. Assuming the Unique Games Conjecture (UGC), we show
optimal inapproximability results for two classic scheduling problems.
We obtain a hardness of 2 − ε for the problem of minimizing the total
weighted completion time in concurrent open shops. We also obtain a
hardness of 2 − ε for minimizing the makespan in the assembly line
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These results follow from a new inapproximability result for the Vertex
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the problem is inapproximable within k − ε even when the hypergraph
is almost k-partite.
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Assuming the Unique Games Conjecture [14] however, optimal k−ε hardness
is known due to Khot and Regev [15]. Recently, in [1], the authors of this paper
strengthened the Khot-Regev result for the case k = 2: they showed that assum-
ing the UGC, vertex cover in graphs is 2− ε hard to approximate even when the
graph is almost bipartite, i.e. when the graph has two disjoint independent sets
V1, V2 ⊆ V of size (1

2 − ε)|V | each. The techniques developed were also used to
show a tight 2− ε inapproximability result (assuming a variant of the UGC) for
the classic problem of minimizing the weighted completion time with precedence
constraints. They designed a PCP with one free bit, near-perfect completeness,
and arbitrarily low soundness, and used the equivalence between hardness of
vertex cover problem and existence of PCPs with zero free bits [6,2].

In this paper, we obtain a stronger UGC-based inapproximability result for
Ek-Vertex-Cover which subsumes both [15,1] and holds on hypergraphs that are
almost k-partite (essential for the applications). Our result is conceptually dif-
ferent and much simpler than both these results (albeit using a recent invariance
style theorem of Mossel [19]). Formal statement of our result is:

Theorem 1. Assuming the Unique Games Conjecture, for any integer k ≥ 2
and arbitrary constants ε, δ > 0, given a k-uniform hypergraph G = (V,E),
distinguishing between the following cases is NP-hard:

– (YES Case): there exist disjoint subsets V1, . . . , Vk ⊆ V , satisfying |Vi| ≥
1−ε
k |V | and such that no hyperedge contains two or more vertices from some

Vi.
– (NO Case): every vertex cover has size at least (1− δ)|V |.

Note that in the YES case, letting V ′ = V \ (V1 ∪ . . . ∪ Vk), the sets V ′ ∪ Vi for
i = 1, . . . , k are almost disjoint vertex covers of size at most ( 1

k + ε)|V | each.

1.1 Applications

Our hypergraph vertex cover result was motivated by showing hardness results
for two classic problems in scheduling. The first is the problem of minimizing
weighted completion time of jobs in the so-called Concurrent Open Shop model
(also referred to as the Order Scheduling model). The second is the problem of
minimizing the makespan in the so-called assembly line problem.

Concurrent Open Shop: There is a collection of machines M = {1, . . . ,m} with
each machine capable of producing its own unique type of component. There
is a collection of jobs J = {1, . . . , n} where each job requires a specific amount
of components from each machine. Formally, each job j ∈ J has weight wj

and requires a processing of pij units for each i = 1, . . . ,m. In the concurrent
open shop model, there is no restriction on how the pij units for a job must
be scheduled. The components of a job are independent of each other, and for
example, all of them can be scheduled in parallel. A job is completed when all
its components are completed and the goal is to minimize the total weighted
completion time of the jobs.
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Given its generality, the problem is widely used to model various applications
in manufacturing and supply chain (see for example [16] for a survey). Several
2 approximations, using various different techniques are known for it [17,7,18].
However, until recently only NP-Hardness was known. Garg et al showed that
the problem is APX-Hard [7]. More recently, Mastrolilli et al [18] showed an
NP-hardness of 6

5 − ε, and a hardness of 4
3 − ε assuming the UGC. In this work

we give a tight hardness result of 2− ε assuming the UGC. Our result is based
on combining the construction of [18] with Theorem 1.

The Assembly Line Problem: There are m + 1 machines M = {0, . . . ,m}. Ma-
chine 0 is special and called the assembly machine. Each job j has an operation
Oij of size pij for each machine i = 1, . . . ,m. These operations can be done in
any order. After all these operations are completed, a final operation O0j of size
p0j is performed on machine 0 (that assembles the operations O1j , . . . , Omj to
produce the final product j). The job j is completed when O0j is completed. The
goal is to minimize the makespan, or equivalently, the latest completion time of
a job.

The problem is a classic one [20] and has a trivial 2-approximation: in fact any
arbitrary schedule that does not waste time unnecessarily is a 2-approximation.
This is because maxi=0,...,m Load(i) is a lower bound for the problem, where
Load(i) is the total size of operations on machine i. On the other hand, any
non-idling schedule achieves a makespan of Load(0) + maxi=1,...,m Load(m). A
somewhat better 2− 1

m approximation is also known [20]. The problem was known
to be strongly NP-hard even for m = 2 [20]. Resolving its approximability status
featured in Schuurman and Woeginger’s [21] well-known list of important open
problems in scheduling. It was subsequently observed by several researchers (but
unpublished) that an APX-Hardness follows from known hardness results for
coloring k-colorable graphs. However, these results only yield a small hardness
factor. In this work we show that the trivial 2-approximation algorithm described
above is essentially the best assuming the UGC.

1.2 Techniques

Our hardness reduction for the hypergraph vertex cover problem is quite simple
and described in Sections 2.2, 3, and 4. Here we give a quick overview. As is
standard in UGC-based reductions, the crux of our construction is a dictatorship
test. This can be viewed as a construction of a k-uniform hypergraph with vertex
set Ωn for a finite set Ω. The hypergraph has these two properties:

– (Completeness): If the hypergraph is partitioned into |Ω| sets {Vω}ω∈Ω based
on jth co-ordinate for any fixed j, then each hyperedge contains at most one
vertex from Vω for any ω ∈ Ω.

– (Soundness): Any large (i.e. linear sized) independent set in the hypergraph
must have an influential co-ordinate. This follows directly from a theorem
of Mossel [19] that gives gaussian bounds for noise correlation of functions.

Since in the completeness case, we need the hypergraph to be (almost) k-partite,
it would be natural to take |Ω| = k. To satisfy the completeness property, we are
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led to define (x1, . . . , xk) ∈ (Ωn)k to be an hyperedge iff for every co-ordinate j,
(x1

j , . . . , x
k
j ) are distinct, i.e. this tuple is a permutation of Ω. However, this does

not quite work as the set of all permutations of Ω is disconnected as a subset of Ωk,
whereas application of Mossel’s theorem has a certain connectedness requirement.
We get around this problem by a simple trick that seems quite useful for future
applications: we introduce a dummy element called 0 and let Ω = {0, 1, . . . , k}.
The hyperedges are defined as before: (x1, . . . , xk) ∈ (Ωn)k is an hyperedge iff
for every co-ordinate j, (x1

j , . . . , x
k
j ) are distinct. Now the set of all k-tuples of

distinct elements of the k + 1 sized set Ω happens to be a connected subset of
Ωk and therefore Mossel’s theorem is applicable. We let the element 0 to have
negligible probability mass relative to the other elements so that the hypergraph
is almost k-partite. Construction of this hypergraph (i.e. the dictatorship test)
leads to a UGC-based hardness result in a straightforward manner.

2 Preliminaries

2.1 The Unique Games Conjecture

Definition 2. An instance L(G(V,W,E), [n], {σ(v, w)}(v,w)∈E) of Unique
Games consists of a regular bipartite graph G(V,W,E) and a set [n] of la-
bels. For each edge (v, w) ∈ E there is a constraint specified by a permutation
σ(v, w) : [n] 	→ [n]. The goal is to find a labelling � : V ∪W → [n] of the vertices
such that as many edges as possible are satisfied, where an edge e = (v, w) is
said to be satisfied if �(v) = σ(v, w)(�(w)).

Definition 3. Given a Unique Games instance L(G(V,W,E), [n],{σv,w}(v,w)∈E)
let OPT(L) denote the maximum fraction of simultaneously satisfied edges of L
by any labeling, i.e.

OPT(L) :=
1
|E| max

�:V ∪W→[n]

|{ e ∈ E : � satisfies e }|.

A formal statement of the Unique Games Conjecture appears below; the con-
jecture has been widely employed to prove strong inapproximability results for
several problems.

Conjecture 1 ([14]). For any constants ζ, γ > 0, there is a sufficiently large
constant n = n(ζ, γ) such that, for Unique Games instances L with label set [n]
it is NP-hard to distinguish between

– OPT(L) ≥ 1− ζ,
– OPT(L) ≤ γ.

2.2 Gaussian Bounds on Correlated Spaces

Let (Ωk,P) be a (so-called correlated) probability space where Ω is a finite
set and P is a probability distribution over Ωk, and let the relation R := {x ∈
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Ωk | P(x) > 0} ⊆ Ωk be the support of P. Assume moreover that the marginal of
P on any co-ordinate is the same, denote it by P as well. We say that R is a con-
nected relation if for any x, y ∈ R, there exists a path x = y(0), y(1), . . . , y(r) = y
in R such that y(i) and y(i + 1) differ in one coordinate only.

Consider a k-uniform hypergraph with the vertex set Ωn. A tuple (x1, . . . , xk) ∈
(Ωn)k is defined to be an hyperedge if for every co-ordinate 1 ≤ i ≤ n, we
have (x1

i , . . . , x
k
i ) ∈ R. In fact we define a probability distribution on the set

of hyperedges where a random hyperedge (x1, . . . , xk) is selected by selecting
independently for 1 ≤ i ≤ n, the tuple (x1

i , . . . , x
k
i ) from space (Ωk,P). We will

use a theorem of Mossel [19] stating that every large independent set in this
hypergraph must have an influential co-ordinate. Specifically, let A ⊆ Ωn be a
set and fA : Ωn 	→ {0, 1} be its indicator function. The fraction of hyperedges
that lie entirely inside A is clearly,

E(x1,...,xk)

⎡⎣ k∏
j=1

fA(xj)

⎤⎦ .

Mossel’s theorem states that if E[fA] is large and all influences of fA are suffi-
ciently small, then this expectation is lower bounded by a constant, and therefore
A cannot be an independent set. In fact, as is necessary for our application, the
theorem works even for (non-boolean) functions f : Ωn 	→ [0, 1] and one only
requires that degree d influences are sufficiently small. We state the theorem
below and also define the notion of influence of variable.

Theorem 4. (Mossel [19]) Let (Ωk,P) be a correlated space such that the sup-
port R ⊆ Ωk of P is connected and the minimum probability of any atom in R
is at least α ≤ 1

2 . Then there exist continuous functions Γ : (0, 1) 	→ (0, 1) and
Γ : (0, 1) 	→ (0, 1) such that the following holds: for every ε > 0, there exists a
τ > 0 and integer d such that for any function f : Ωn 	→ [0, 1], satisfying

∀ 1 ≤ i ≤ n, Infl≤d
i (f) ≤ τ,

we have:

Γ (E[f ])− ε ≤ E(x1,...,xk)

⎡⎣ k∏
j=1

f(xj)

⎤⎦ ≤ Γ (E[f ]) + ε.

Remark 1. We have stated Theorem 4 in the form that we need (we only need
the lower bound). This is essentially the same statement as Theorem 6.4 in [19].
Therein, the theorem is stated for a multi-function version whereas we only need
the single-function version. The bound ρ(Ω(1)

i , . . . , Ω
(k)
i ) ≤ ρ < 1 required there

follows from the fact that the relation R is connected, see Lemma 2.9 therein. The
author also gives quantitative bounds for Γ (), Γ (), τ , but we don’t necessarily
need specific bounds.

For the sake of quick reference, we note the definition of influence and low degree
influence (see [19, Section 3]). We assume that (Ω,P) is a finite probability space
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and distribution on Ωn is the product distribution Pn. Let f =
∑

φ f̂(φ)Xφ be
the multi-linear representation of f (analogue of the standard Fourier represen-
tation).

Definition 5. For a function f : Ωn 	→ R, and a co-ordinate 1 ≤ i ≤ n,

Infli(f) := E[Var(f)|x1, xi−1, xi+1, . . . , xn] =
∑

φ:φi �=0

f̂(φ)2.

Definition 6. For a function f : Ωn 	→ R, a co-ordinate 1 ≤ i ≤ n, and integer
d, the degree d influence is defined as:

Infl≤d
i (f) :=

∑
φ:φi �=0,|φ|≤d

f̂(φ)2.

Lemma 1. If f : Ωn 	→ [0, 1], then the number of co-ordinates i such that
Infl≤d

i (f) ≥ τ is at most d/τ .

Proof. This follows from:
n∑

i=1

Infl≤d
i (f) =

n∑
i=1

∑
φ:φi �=0,|φ|≤d

f̂(φ)2 ≤ d ·
∑
φ

f̂(φ)2 = d · ‖f‖2
2 ≤ d.

3 Dictatorship Test

In this section we define the appropriate dictatorship test that we will later use
as a gadget to show the UGC based Hardness. Let Ω be a finite set consisting
of k + 1 elements, Ω := {0, 1, . . . , k} (the element 0 is special as we see next).
Let P̃ be a distribution on Ω where the elements 1, . . . , k have probability mass
(1− δ)/k and element 0 has mass δ. Later we will set δ 
 1/k.

Let R denote the following relation on Ωk: A k-tuple (a1, . . . , ak) ∈ R if and
only if elements {a1, . . . , ak} are all distinct. It is easy to see that one can define
a probability distribution P on R such that on each co-ordinate its marginal is
P̃ and moreover each atom in R has probability mass at least α > 0.

Claim. R is a connected relation.

Proof. Suppose (a1, . . . , ak), (b1, . . . , bk) ∈ R. Let us first consider the case when
|{a1, . . . , ak, b1, . . . , bk}| = k + 1. Then there is some index i such that bi /∈
{a1, . . . , ak}. We set ai = bi and proceed inductively on the remaining k − 1
coordinates (without ever considering coordinate i again). Now suppose that
|{a1, . . . , ak, b1, . . . , bk}| = k. In this case we arbitrarily set some coordinate ai

to [k + 1] \ {b1, . . . , bk}, and reduce to the previous case.

Consider a hypergraph G = (V,E) defined on Ωn as follows: Each element
a ∈ Ωn corresponds to a vertex in G. A k-tuple (a1, . . . , ak) ∈ (Ωn)k is an
hyperedge if and only if the relation R is satisfied for each coordinate j, i.e.
for each 1 ≤ j ≤ n, (a1

j , a
2
j , . . . , a

k
j ) ∈ R. The instance satisfies the following

completeness and soundness properties:
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Completeness: Fix any coordinate j, and consider the partition of the vertices
based on the coordinate. That is, for i = 0, . . . , k, let Vi denote the set of vertices
Vi = {v = (a1, . . . , an) : aj = i}. Clearly, |V0| = δ|V | and Vi = (1 − δ)|V |/k for
i = 1, . . . , k.

Claim. Any hyperedge contains at most one vertex from any set Vi.

Proof. Consider any hyperedge e = (a1, . . . , ak) and consider the k-tuple (a1
j , . . . ,

akj ) of the j-th coordinates of the vertices in e. By definition, this tuple satisfies
R, and hence no two of them can be i, and hence lie in Vi.

Soundness:

Claim. For every β > 0, there exists τ > 0 and integer d, such that if A ⊆ Ωn

is an independent set of size β|V |, then A (or rather its indicator function) has
a coordinate with degree d influence at least τ .

Proof. This follows by a direct application of Theorem 4, by choosing ε =
Γ (β)/2.

4 UGC Based Hardness

We assume the following variant of Unique Games Conjecture.

Hypothesis 7. For arbitrarily small constants ζ, γ > 0, there exists an in-
teger n = n(ζ, γ) such that for a Unique Games instance L(G(V,W,E), [n],
{σv,w}(v,w)∈E), it is NP-hard to distinguish between:

– (YES Case:) There is a set W ′ ⊆ W such that |W ′| ≥ (1 − ζ)|W | and a
labeling � : V ∪ W 	→ [n] that satisfies every edge (v, w) for v ∈ V and
w ∈W ′.

– (NO Case:) No labeling satisfies even a γ fraction of edges.

Moreover, we can assume that the graph is both left and right regular. This
variant is equivalent to the original Unique Games Conjecture as shown by Khot
and Regev [15, Lemma 3.6].

Given the UGC instance L, we construct the following hypergraph instance
H = (X,Y ). With each vertex v ∈ V and w ∈ W , we associate the hypercube
Ωn, where Ω is chosen as in the gadget in section 3. Let Ωn(v) denote the
hypercube for vertex v. The set of vertices X for the hypergraph is defined as
X := ∪w∈WΩn(w).

Before we describe the edges, we give some notation. Let σ : [n] → [n] be a
permutation. For an element x = (x1, . . . , xn) ∈ Ωn, let x ◦ σ denote the string
(xσ(1), . . . , xσ(n)). For each vertex v ∈ V and every subset of its k neighbors
w1, . . . , wk ∈W , we define a block B(v, w1, . . . , wk). There will be a collection of
hyperedges for each block defined as follows: For each x1, x2, . . . , xk ∈ Ωn(v) such
that (x1, . . . , xk) ∈ Rn, we have a hyperedge y = (x1◦σ(v, w1), . . . , xk◦σ(v, wk)).
Here R is the relation defined in the gadget in section 3.
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In other words, we identify the coordinates of Ωn(w1), . . . , Ωn(wk) via the
permutations σ(v, wj), and add an hyperedge among k vertices if they satisfy
the relation R on each coordinate.

Completeness: Consider the labeling � in the YES case, and let W ′ be the set
of vertices satisfying the condition in the UGC Hypothesis 7.

For i = 0, 1, . . . , k, we define

Xi =
⋃

w∈W ′
{x : x ∈ Ωn(w), x�(w) = i}.

Note that for each hypercube corresponding to w ∈ W ′, we are partitioning its
vertices based on their �(w) coordinate.

Claim. The sets X0, X1, . . . , Xk are pairwise disjoint. |Xi| ≥ (1− δ)(1− ζ)|X |/k
for each i = 1, . . . , k and no hyperedge contains more than one vertex from Xi.

Proof. The disjointness of the Xi follows by construction. Since the elements
1, . . . , k have probability mass (1 − δ)/k in Ω, it follows that |Xi ∩ Ωn(w)| =
(1 − δ)|Ωn(w)|/k for each w ∈ W ′ and i = 1, . . . , k. As |W ′| ≥ (1 − ζ)|W | this
implies the claimed bound on the size of Xi.

It remains to show that no hyperedge contains two or more vertices from Xi.
Consider some hyperedge y and suppose it lies in some block B(v, w1, . . . , wk),
then y = (x1 ◦ σ(v, w1), . . . , xk ◦ σ(v, wk)) for some (x1, . . . , xk) ∈ Rn. Let S
denote the set of indices j such that wj ∈W ′.

Since Xi ∩ Ωn(w) = ∅ for w /∈ W ′, it follows that if j /∈ S then the vertex
xj◦σ(v, wj) cannot lie in Xi. Thus we need to consider only the indices in S. Now
for any j ∈ S, xj ◦σ(v, wj) lies in Xi iff (xj ◦σ(v, wj))�(wj) = i. Since the labeling
� satisfies the constraints (v, wj) for j ∈ S, we have σ(v, wj)�(wj) = �(v). Thus
(xj◦σ(v, wj))�(wj) = (xj)�(v) for j ∈ S. So if there exist j �= j′ ∈ S such that both
xj ◦σ(v, wj) and xj

′ ◦σ(v, wj′ ) lie in Xi, then this implies that (xj)�(v) = (xj
′
)�(v)

contradicting the fact that (x1, . . . , xk) ∈ Rn.

Soundness: Suppose A is an independent set and that |A| ≥ β|X |. Let Aw =
Ωn(w)∩A be the vertices of A that lie in Ωn(w) for w ∈ W . Define the boolean
function fw : Ωn(w) → {0, 1} where fw(x) = 1 if x ∈ Aw and is 0 otherwise. Let
N(v) ⊆W denote the set of neighbors of v ∈ V . Let

fv(x) = E
w∈N(v)

[fw(x ◦ σ(v, w))].

Since the unique games graph is regular, Ev,x[fv(x)] ≥ β. Call a vertex v ∈ V
good if Ex[fv(x)] ≥ β/2. By an averaging argument, at least β/2 fraction of
vertices in V are good.

Since A is independent set, for any hyperedge y = (x1, . . . , xk) in block
B(v, w1, . . . , wk), it must be that not all fwi(xi) are 1. Thus for any v ∈ V
and any k neighbors w1, . . . , wk of v, we have

E(x1,...,xk)

[
k∏

i=1

fwi(xi ◦ σ(v, wi)

]
= 0. (1)
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Averaging over all k-tuples w1, . . . , wk of neighbors of v, we have

E(x1,...,xk)

[
k∏

i=1

fv(xi)

]

= E(x1,...,xk)Ew1,...,wk∈N(v)

[
k∏

i=1

fwi(xi ◦ σ(v, wi))

]
= 0. (2)

Applying Theorem 4 with ε = Γ (β/2)/2, it follows that fv must have a co-
ordinate with degree d influence at least τ . Let S(v) �= ∅ be the set of all such
influential co-ordinates.

For every good vertex v ∈ V we give it an arbitrary label j from its (non-
empty) set S(v). For any j ∈ S(v),

τ ≤ Infl≤d
j (fv) =

∑
φj �=0,|φ|≤d

f̂v(φ)2 =
∑

φj �=0,|φ|≤d

(
Ew

[
f̂w(σ(v, w)−1(φ))

])2

≤
∑

φj �=0,|φ|≤d

Ew

[
f̂w(σ(v, w)−1(φ))2

]
= Ew

[
Infl≤d

σ(v,w)−1(j)(fw)
]
. (3)

For every w ∈W define the set of candidate labels for w to be

Cand[w] = {i ∈ [n] : Infl≤d
i ≥ τ/2}.

Since the sum of degree d influences is at most d, the number of candidates
|Cand[w]| is at most 2d/τ . Since at least β/2 fraction of vertices v ∈ V are good,
and by (3) for each good vertex at least τ/2 fraction of its neighbors in W have
Infl≤d

σ(v,w)−1(j)(fw) ≥ τ/2. Now if we label each vertex w ∈ W by choosing a
random element of Cand[w] (or any label if this set is empty), it follows that
among the set of edges adjacent to good vertices v, at least a (τ/2)(τ/2d)-fraction
are satisfied in expectation. Thus it follows that there is a labeling for all vertices
which satisfies a (β/2)(τ/2)(τ/2d) fraction of all edges. This completes the proof
of soundness.

5 Applications

5.1 Total Weighted Completion Time Concurrent Open Shop

Recall the problem definition from Section 1.1. We give a reduction from Ek-
Vertex-Cover. Given a k-uniform hypergraph instance G = (V,E) we construct
an instance I of the concurrent open shop problem as follows: A vertex v ∈ V
corresponds to a job Jv in I. Each hyperedge e ∈ E corresponds to a machine
me in I. Let Ev denote the set of hyperedges in G that contain the vertex v. For
each edge in e ∈ Ev we introduce an operation of unit size for job Jv that needs
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to be executed on machine me. All other operations of Jv have size 0. Each job
has weight 1.

We claim that in the YES case, the optimum average weighted completion
time is at most (1 + ε)(k + 1)/2. Let V1, . . . , Vk be the disjoint subsets of V
satisfying the properties stated in theorem 1. Consider the following schedule.
For each job v ∈ Vi schedule all its unit size operations at time i (the size 0
operations can all be completed instantaneously at the beginning of the schedule,
and do not matter). This gives a valid schedule for the jobs corresponding to
vertices in V1 ∪ . . . ∪ Vk, because any hyperedge e ∈ E contains at most one
vertex from Vi, and hence no two operations are assigned to a machine at the
same time. For the remaining jobs in V \(V1∪ . . .∪Vk), we place their operations
arbitrarily in the gaps in the schedule. Since it is a k-uniform hypergraph, each
machine has load at most k, and hence each job completes by time k. Thus the
average completion time is at most

1− ε

k
(1 + 2 + . . . + k) + εk = (1− ε)(k + 1)/2 + εk ≤ (1 + ε)(k + 1)/2.

In the NO case, in any schedule consider the collection V ′ of jobs (vertices) that
complete on or before time k − 1. Now V ′ forms an independent set, since for
any machine (hyperedge) e at most k − 1 unit size operations could have been
completed by time k − 1, and hence at most k − 1 vertices from e could lie in
V ′. Thus, if the average completion time is less than (1− δ)k, this would imply
that at least δ fraction of the jobs finish by time k − 1 or sooner, which implies
the existence of an independent set of size δ|V | in G.

Choosing k large enough and ε, δ arbitrarily small, by Theorem 1 it follows
that the problem is hard to approximate within a factor arbitrarily close to 2
assuming the UGC.

5.2 Makespan Minimization in the Assembly Line Problem

Recall the problem definition from Section 1.1. We give a reduction from Ek-
Vertex-Cover. Given a k-uniform hypergraph instance G = (V,E) we construct
an instance I of the assembly line problem as follows: A vertex v ∈ V corresponds
to a job Jv in I. A hyperedge e ∈ E corresponds to a machine me in I. Let Ev

denote the set of hyperedges in G that contain the vertex v. For each edge in
e ∈ Ev we introduce an operation of unit size for job Jv that must be processed
on machine me. On machine 0, the job Jv has an operation of size k/|V |. All
other operations are of size 0.

We claim that in the YES case, the optimum makespan is at most k+1+ εk.
Let V1, . . . , Vk be the disjoint collection of vertices satisfying the properties of
Theorem 1. Consider the following schedule. For each job v ∈ Vi schedule all its
unit size operations (except those on machine 0) during the time slot [i − 1, i].
For each of these jobs, we schedule their final operation on machine 0 arbitrarily
during the interval [i, i + 1]. This gives a valid schedule for jobs corresponding
to vertices in V1 ∪ . . .∪ Vk because no hyperedge contains more than one vertex
in any Vi and hence no two unit size operations are assigned to a machine
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corresponding to an hyperedge at the same time. Since Vi ≤ (1 − ε)|V |/k, all
the final operations of jobs in Vi can also be completed during [i, i + 1]. For
the remaining jobs in V \ (V1 ∪ . . . ∪ Vk), we place their operations on machines
1, . . . ,m arbitrarily, and schedule their final operations on machine 0 arbitrarily
after time k + 1. Thus the makespan is at most

k + 1 + ε|V | · k/|V | = k + 1 + εk.

In the NO case, in any schedule let V ′ denote the subset of vertices corre-
sponding to the jobs for which the final operation is scheduled before time k−1.
We claim that V ′ corresponds to an independent set, because for any machine
(hyperedge) at most k− 1 operations of unit size could have been completed by
time k− 1, and hence at most k− 1 vertices from the hyperedge could lie in V ′.
Thus, if the makespan is less than 2k − 1− δk = k − 1 + (1− δ)|V | · k/|V |, this
implies that |V ′| ≥ δ|V | and hence there is an independent set of size δ|V |.

Choosing k large enough and ε, δ arbitrarily small, by Theorem 1 it follows
that the problem is hard to approximate within a factor arbitrarily close to 2
assuming the UGC.
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Abstract. The general problem of robust optimization is this: one of
several possible scenarios will appear tomorrow and require coverage,
but things are more expensive tomorrow than they are today. What
should you anticipatorily buy today, so that the worst-case covering
cost (summed over both days) is minimized? We consider the k-robust
model [6,15] where the possible scenarios tomorrow are given by all
demand-subsets of size k.

We present a simple and intuitive template for k-robust problems.
This gives improved approximation algorithms for the k-robust Steiner
tree and set cover problems, and the first approximation algorithms for k-
robust Steiner forest, minimum-cut and multicut. As a by-product of our
techniques, we also get approximation algorithms for k-max-min prob-
lems of the form: “given a covering problem instance, which k of the
elements are costliest to cover?”

1 Introduction

Consider the following k-robust set cover problem: we are given a set system
(U,F ⊆ 2U ). Tomorrow some set of k elements S ⊆ U will want to be covered;
however, today we don’t know what this set will be. One strategy is to wait until
tomorrow and buy an O(log n)-approximate set cover for this set. However, sets
are cheaper today: they will cost λ times as much tomorrow as they cost today.
Hence, it may make sense to buy some anticipatory partial solution today (i.e.
in the first-stage), and then complete it tomorrow (i.e. second-stage) once we
know the actual members of the set S. Since we do not know anything about
the set S (or maybe we are risk-averse), we want to plan for the worst-case, and
minimize

(cost of anticipatory solution) + λ · max
S:|S|≤k

(additional cost to cover S).

Early approximation results for robust problems [4,10] had assumed that the
collection of possible sets S was explicitly given (and the performance guarantee
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depended logarithmically on the size of this collection). Since this seemed quite
restrictive, Feige et al. [6] proposed this k-robust model where any of the

(
n
k

)
subsets S of size k could arrive. Though this collection of possible sets was
potentially exponential sized (for large values of k), the hope was to get results
that did not depend polynomially on k. To get such an algorithm, Feige et
al. considered the k-max-min set-cover problem (“which subset S ⊆ U of size k
requires the largest set cover value?”), and used the online algorithm for set cover
to get a greedy-style O(logm logn) approximation for this problem; here m and
n are the number of sets and elements in the set system. They then used this
max-min problem as a separation oracle in an LP-rounding-based algorithm (à
la [20]) to get the same approximation guarantee for the k-robust problem. They
also showed the max-min and k-robust set cover problems to be Ω( logm

log logm +
logn) hard—which left a logarithmic gap between the upper and lower bounds.
However, an online algorithm based approach is unlikely to close this gap, since
the online algorithm for set cover is necessarily a log-factor worse that its offline
counterparts [2].

Apart from the obvious goal of improving the result for this particular prob-
lem, one may want to develop algorithms for other k-robust problems. E.g., for
the k-robust min-cut problem, some set S of k sources will want to be separated
from the sink vertex tomorrow, and we want to find the best way to cut edges to
minimize the total cost incurred (over the two days) for the worst-case k-set S.
Similarly, in the k-robust Steiner forest, we are given a metric space and a collec-
tion of source-sink pairs, and any set S of k source-sink pairs may desire pairwise
connection tomorrow; what should we do to minimize the sum of the costs in-
curred over the two days? One can extend the Feige et al. framework to first
solve max-min problems using online algorithms, but in all cases we seem to lose
extra logarithmic factors. Moreover, for the above two problems (and others),
the LP-rounding-based framework does not seem to extend directly. The latter
obstacle was also observed by Khandekar et al. [15], who gave constant-factor
algorithms for k-robust versions of Steiner tree and facility location.

1.1 Main Results

In this paper, we present a general template to design algorithms for k-robust
problems. We improve on previous results, by obtaining an O(logm+logn) factor
for k-robust set cover, and improving the constant in the approximation factor
for Steiner tree. We also give the first algorithms for some other standard cover-
ing problems, getting constant-factor approximations for both k-robust Steiner
forest—which was left open by Khandekar et al.—and for k-robust min-cut, and
an O( log2 n

log logn ) approximation for k-robust multicut. Our algorithms do not use a
max-min subroutine directly: however, our approach ends up giving us approx-
imation algorithms for k-max-min versions of set cover, Steiner forest, min-cut
and multicut; all but the one for multicut are best possible under standard as-
sumptions; the ones for Steiner forest and multicut are the first known algorithms
for their k-max-min versions.
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An important contribution of our work (even more than the new/improved
approximation guarantees) is the simplicity of the algorithms, and the ideas in
their analysis. The following is our actual algorithm for k-robust set cover.

Suppose we “guess” that the maximum second-stage cost in the optimal
solution is T . Let A ⊆ U be all elements for which the cheapest set
covering them costs more than β · T/k, where β = O(logm+ logn). We
build a set cover on A as our first stage. (Say this cover costs CT .)

To remove the guessing, try all values of T and choose the solution that incurs
the least total cost CT + λβT . Clearly, by design, no matter which k elements
arrive tomorrow, it will not cost us more than λ ·k ·βT/k = λβT to cover them,
which is within β of what the optimal solution pays.

The key step of our analysis is to argue why CT is close to optimum. We briefly
describe the intuition; details appear in Section 3. Suppose CT � βOpt: then
the fractional solution to the LP for set cover for A would cost � β

lnnOpt � Opt,
and so would its dual. Our key technical contribution is to show how to “round”
this dual LP to find a “witness” A′ ⊆ A with only k elements, and also a
corresponding feasible dual of value� Opt—i.e., the dual value does not decrease
much in the rounding (This rounding uses the fact that the algorithm only put
those elements in A that were expensive to cover). Using duality again, this
proves that the optimal LP value, and hence the optimal set cover for these k
elements A′, would cost much more than Opt—a contradiction!

In fact, our algorithms for the other k-robust problems are almost identical to
this one; indeed, the only slightly involved algorithm is that for k-robust Steiner
forest. Of course, the proofs to bound the cost CT need different ideas in each
case. For example, directly rounding the dual for Steiner forest is difficult, so
we give a primal-dual argument to show the existence of such a witness A′ ⊆ A
of size at most k. For the cut-problems, one has to deal with additional issues
because Opt consists of two stages that have to be charged to separately, and this
requires a Gomory-Hu-tree-based charging. Even after this, we still have to show
that if the cut for a set of sources A is large then there is a witness A′ ⊆ A of at
most k sources for which the cut is also large—i.e., we have to somehow aggregate
the flows (i.e. dual-rounding for cut problems). We prove new flow-aggregation
lemmas for single-sink flows using Steiner-tree-packing results, and for multiflows
using oblivious routing [18]; both proofs are possibly of independent interest.

Paper Outline. In Sections 2 and 2.1 we present the formal framework for
k-robust problems, and abstract out the properties that we’d like from our al-
gorithms. Section 3 contains such an algorithm for k-robust set cover, and k-
robust min-cut appears in Section 4. We refer the reader to the full version of
the paper [13] for missing proofs and results on k-robust Steiner forest and mul-
ticut. There we also present a general reduction from robust problems to the
corresponding max-min problems, which has implications for uncertainty sets
specified by matroid and knapsack type constraints.
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1.2 Related Work

Approximation algorithms for robust optimization was initiated by Dhamdhere
et al. [4]: they study the case when the scenarios were explicitly listed, and
gave constant-factor approximations for Steiner tree and facility location, and
logarithmic approximations to mincut/multicut problems. Golovin et al. [10] im-
proved the mincut result to a constant factor approximation, and also gave an
O(1)-approximation for robust shortest-paths. The k-robust model was intro-
duced in Feige et al. [6], where they gave an O(logm logn)-approximation for
set cover. Khandekar et al. [15] noted that the techniques of [6] did not give
good results for Steiner tree, and developed new constant-factor approximations
for k-robust versions of Steiner tree, Steiner forest on trees and facility location.
Using our framework, the algorithm we get for Steiner tree can be viewed as a
rephrasing of their algorithm—our proof is arguably more transparent and re-
sults in a better bound. Our approach can also be used to get a slightly better
ratio than [15] for the Steiner forest problem on trees.

Constrained submodular maximization problems [17,7,23,3,25] appear very
relevant at first sight: e.g., the k-max-min version of min-cut (“find the k sources
whose separation from the sink costs the most”) is precisely submodular max-
imization under a cardinality constraint, and hence is approximable to within
(1−1/e). But apart from min-cut, the other problems do not give us submodular
functions to maximize, and massaging the functions to make them submodular
seems to lose logarithmic factors. E.g., one can use tree embeddings [5] to reduce
Steiner tree to a problem on trees and make it submodular; in other cases, one
can use online algorithms to get submodular-like properties (we give a general
reduction for covering problems that admit good offline and online algorithms
in [13]). Eventually, it is unclear how to use existing results on submodular
maximization in any general way.

Considering the average instead of the worst-case performance gives rise to
the well-studied model of stochastic optimization [19,14]. Some common gener-
alizations of the robust and stochastic models have been considered (see, e.g.,
Swamy [24] and Agrawal et al. [1]).

Feige et al. [6] also considered the k-max-min set cover—they gave an O(logm
logn)-approximation algorithm for this, and used it in the algorithm for k-robust
set cover. They also showed an Ω( logm

log logm ) hardness of approximation for k-
max-min (and k-robust) set cover. To the best of our knowledge, none of the
k-max-min problems other than min-cut have been studied earlier.

The k-min-min versions of covering problems (i.e. “which k demands are the
cheapest to cover?”) have been extensively studied for set cover [21,8], Steiner
tree [9], Steiner forest [12], min-cut and multicut [11,18]. However these problems
seem to be related to the k-max-min versions only in spirit.

2 Notation and Definitions

Deterministic covering problems. A covering problem Π has a ground-set E of
elements with costs c : E → R+, and n covering requirements (often called
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demands or clients), where the solutions to the i-th requirement is specified—
possibly implicitly—by a family Ri ⊆ 2E which is upwards closed (since this is
a covering problem). Requirement i is satisfied by solution S ⊆ E iff S ∈ Ri.
The covering problem Π = 〈E, c, {Ri}ni=1〉 involves computing a solution S ⊆ E
satisfying all n requirements and having minimum cost

∑
e∈S ce. E.g., in set

cover, “requirements” are items to be covered, and “elements” are sets to cover
them with. In Steiner tree, requirements are terminals to connect to the root
and elements are the edges; in multicut, requirements are terminal pairs to be
separated, and elements are edges to be cut.

Robust covering problems. This problem, denoted Robust(Π), is a two-stage op-
timization problem, where elements are possibly bought in the first stage (at the
given cost) or the second stage (at cost λ times higher). In the second stage,
some subset ω ⊆ [n] of requirements (also called a scenario) materializes, and
the elements bought in both stages must satisfy each requirement in ω. For-
mally, the input to problem Robust(Π) consists of (a) the covering problem
Π = 〈E, c, {Ri}ni=1〉 as above, (b) a set Ω ⊆ 2[n] of scenarios (possibly implicitly
given), and (c) an inflation parameter λ ≥ 1. Since we deal with covering prob-
lems, it can be assumed WLOG that the uncertainty set Ω is downwards closed.
A feasible solution to Robust(Π) is a set of first stage elements E0 ⊆ E (bought
without knowledge of the scenario), along with an augmentation algorithm that
given any ω ∈ Ω outputs Eω ⊆ E such that E0 ∪ Eω satisfies all requirements
in ω. The objective function is to minimize: c(E0) + λ · maxω∈Ω c(Eω). Given
such a solution, c(E0) is called the first-stage cost and maxω∈Ω c(Eω) is the
second-stage cost.

k-robust problems. In this paper, we deal with robust covering problems under
cardinality uncertainty sets: i.e., Ω :=

([n]
k

)
= {S ⊆ [n] | |S| = k}. We denote

this problem by Robustk(Π).

Max-min problems. Given a covering problem Π and a set Ω of scenarios, the
max-min problem involves finding a scenario ω ∈ Ω for which the cost of the min-
cost solution to ω is maximized. Note that by setting λ = 1 in any robust covering
problem, the optimal value of the robust problem equals that of its corresponding
max-min problem. In a k-max-min problem we have Ω =

([n]
k

)
.

2.1 The Abstract Properties We Want from Our Algorithms

Our algorithms for robust and max-min versions of covering problems are based
on the following guarantee.

Definition 1. An algorithm is (α1, α2, β)-discriminating iff given as input any
instance of Robustk(Π) and a threshold T , the algorithm outputs (i) a set ΦT ⊆
E, and (ii) an algorithm AugmentT :

([n]
k

)
→ 2E, such that:

A. For every scenario D ∈
([n]
k

)
,

(i) the elements in ΦT ∪ AugmentT (D) satisfy all requirements in D, and
(ii) the resulting augmentation cost c (AugmentT (D)) ≤ β · T .
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B. Let Φ∗ and T ∗ (respectively) denote the first-stage and second-stage cost
of an optimal solution to the Robustk(Π) instance. If the threshold T ≥ T ∗

then the first stage cost c(ΦT ) ≤ α1 · Φ∗ + α2 · T ∗.

The next lemma shows why having a discriminating algorithm is sufficient to
solve the robust problem. The issue to address is that having guessed T for the
optimal second stage cost, we have no direct way of verifying the correctness
of that guess—hence we choose the best among all possible values of T . For
T ≈ T ∗ the guarantees in Definition 1 ensure that we pay ≈ Φ∗+T ∗ in the first
stage, and ≈ λT ∗ in the second stage; for guesses T 
 T ∗, the first-stage cost
in guarantee (B) is likely to be large compared to Opt.

Lemma 1. If there is an (α1, α2, β)-discriminating algorithm for a robust cover-
ing problemRobustk(Π), then for every ε > 0 there is a

(
(1+ε) ·max

{
α1, β+ α2

λ

})
-

approximation algorithm for Robustk(Π).

In the rest of the paper, we focus on providing discriminating algorithms for
suitable values of α1, α2, β.

2.2 Additional Property Needed for k-Max-min Approximations

As we noted above, a k-max-min problem is a robust problem where the inflation
λ = 1 (which implies that in an optimal solution Φ∗ = 0, and T ∗ is the k-max-min
value). Hence a discriminating algorithm immediately gives an approximation
to the value: for any D ∈

([n]
k

)
, ΦT ∪ AugmentT (D) satisfies all demands in D,

and for the right guess of T ≈ T ∗, the cost is at most (α2 + β)T ∗. It remains to
output a bad k-set as well, and hence the following definition is useful.

Definition 2. An algorithm for a robust problem is strongly discriminating if
it satisfies the properties in Definition 1, and when the inflation parameter is
λ = 1 (and hence Φ∗ = 0), the algorithm also outputs a set QT ∈

([n]
k

)
such that

if c(ΦT ) ≥ α2T , the cost of optimally covering the set QT is ≥ T .

Recall that for a covering problem Π , the cost of optimally covering the set of
requirements Q ∈

([n]
k

)
is min{c(EQ) | EQ ⊆ E and EQ ∈ Ri ∀i ∈ Q}.

Lemma 2. If there is an (α1, α2, β)-strongly-discriminating algorithm for a ro-
bust covering problem Robustk(Π), then for every ε > 0 there is an algorithm
for k-max-min(Π) that outputs a set Q such that for some T , the optimal cost
of covering this set Q is at least T , but every k-set can be covered with cost at
most (1 + ε) · (α2 + β)T .

3 Set Cover

Consider the k-robust set cover problem where there is a set system (U,F)
with a universe of |U | = n elements, and m sets in F with each set R ∈ F
costing cR, an inflation parameter λ, and an integer k such that each of the sets(
U
k

)
is a possible scenario for the second-stage. Given Lemma 1, it suffices to
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Algorithm 1. Algorithm for k-Robust Set Cover
1: input: k-robust set-cover instance and threshold T .
2: let β ← 36 ln m, and S←

{
v ∈ U | min cost set covering v has cost at least β · T

k

}
.

3: output first stage solution ΦT as the Greedy-Set-Cover(S).
4: define AugmentT ({i}) as the min-cost set covering i, for i ∈ U \ S; and

AugmentT ({i}) = ∅ for i ∈ S.
5: output second stage solution AugmentT , where

AugmentT (D) :=
⋃

i∈D AugmentT ({i}) for all D ⊆ U .

show a discriminating algorithm as defined in Definition 1 for this problem. The
algorithm given below is easy: pick all elements which can only be covered by
expensive sets, and cover them in the first stage.
Claim 1 (Property A for Set Cover). For all T ≥ 0 and scenario D ∈

(
U
k

)
,

the sets ΦT

⋃
AugmentT (D) cover elements in D, and c(AugmentT (D)) ≤ β T .

Proof: The elements in D∩S are covered by ΦT ; and by definition of AugmentT ,
each element i ∈ D \ S is covered by set AugmentT ({i}). Thus we have the first
part of the claim. For the second part, note that by definition of S, the cost of
AugmentT ({i}) is at most β T/k for all i ∈ U . �
Theorem 1 (Property B for Set Cover). Let Φ∗ denote the optimal first
stage solution (and its cost), and T ∗ the optimal second stage cost. Let β =
36 lnm. If T ≥ T ∗ then c(ΦT ) ≤ Hn · (Φ∗ + 12 · T ∗).

Proof: We claim that there is a fractional solution x̄ for the set covering instance
S with small cost O(Φ∗ + T ∗), whence rounding this to an integer solution
implies the theorem, since the greedy algorithm has performance ratio Hn. For
a contradiction, assume not: let every fractional set cover be expensive, and
hence there must be a dual solution of large value. We then round this dual
solution to get a dual solution to a sub-instance with only k elements that costs
> Φ∗ + T ∗, which is impossible (since using the optimal solution we can solve
every instance on k elements with that cost).

To this end, let S′ ⊆ S denote the elements that are not covered by the optimal
first stage Φ∗, and let F ′ ⊆ F denote the sets that contain at least one element
from S′. By the choice of S, all sets in F ′ cost at least β · Tk ≥ β · T∗

k . Define the
“coarse” cost for a set R ∈ F ′ to be ĉR = $ cR

6T∗/k%. For each set R ∈ F ′, since

cR ≥ βT∗
k ≥ 6T∗

k , it follows that ĉR · 6T∗
k ∈ [cR, 2 · cR), and also that ĉR ≥ β/6.

Now consider the following primal-dual pair of LPs for the set cover instance
with elements S′ and sets F ′ having the coarse costs ĉ.

min
∑

R∈F ′ ĉR · xR max
∑

e∈S′ ye∑
R�e xR ≥ 1, ∀e ∈ S′,

∑
e∈R ye ≤ ĉR, ∀R ∈ F ′,

xR ≥ 0, ∀R ∈ F ′. ye ≥ 0, ∀e ∈ S′.

Let {xR}R∈F ′ be an optimal primal and {ye}e∈S′ an optimal dual solution. The
following claim bounds the (coarse) cost of these fractional solutions.
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Claim 2. If β = 36 lnm, then the LP cost is
∑

R∈F ′ ĉR ·xR =
∑

e∈S′ ye ≤ 2 · k.
Before we prove Claim 2, let us assume it and complete the proof of Theorem 1.
Given the primal LP solution {xR}R∈F ′ to cover elements in S′, define an LP
solution to cover elements in S as follows: define zR = 1 if R ∈ Φ∗, zR = xR if
R ∈ F ′ \ Φ∗; and zR = 0 otherwise. Since the solution z̄ contains Φ∗ integrally,
it covers elements S \ S′ (i.e. the portion of S covered by Φ∗); since zR ≥ xR,
z̄ fractionally covers S′. Finally, the cost of this solution is

∑
R cRzR ≤ Φ∗ +∑

R cRxR ≤ Φ∗ + 6T∗
k ·

∑
R ĉRxR. But Claim 2 bounds this by Φ∗ + 12 · T ∗.

Since we have a LP solution of value Φ∗ + 12T ∗, and the greedy algorithm is
an Hn-approximation relative to the LP value for set cover, this completes the
proof. �
Claim 1 and Theorem 1 show our algorithm for set cover to be an (Hn, 12Hn,
36 lnm)-discriminating algorithm. Applying Lemma 1 converts this discriminat-
ing algorithm to an algorithm for k-robust set cover, and gives the following
improvement to the result of [6].

Theorem 2. There is an O(logm+logn)-approximation for k-robust set cover.

It remains to give the proof for Claim 2 above; indeed, that is where the technical
heart of the result lies.
Proof of Claim 2: Recall that we want to bound the optimal fractional set
cover cost for the instance (S′,F ′) with the coarse (integer) costs; xR and ye
are the optimal primal and dual solutions. For a contradiction, assume that the
LP cost

∑
R∈F ′ ĉRxR =

∑
e∈S′ ye lies in the unit interval ((γ− 1)k, γk] for some

integer γ ≥ 3.

Define integer-valued random variables {Ye}e∈S′ by setting, for each e ∈ S′ inde-
pendently, Ye = �ye�+Ie, where Ie is a Bernoulli(ye−�ye�) random variable. We
claim that whp the random variables Ye/3 form a feasible dual— i.e., they satisfy
all the constraints {

∑
e∈R(Ye/3) ≤ ĉR}R∈F ′ with high probability. Indeed, con-

sider a dual constraint corresponding to R ∈ F ′: since we have
∑

e∈R�ye� ≤ ĉR,
we get that Pr[

∑
e∈R Ye > 3 · ĉR] ≤ Pr[

∑
e∈R Ie > 2 · ĉR]. But now we use a

Chernoff bound [16] to bound the probability that the sum of independent 0-
1 r.v.s,

∑
e∈R Ie, exceeds twice its mean (here

∑
e∈R E[Ie] ≤

∑
e∈R ye ≤ ĉR)

by ε−ĉR/3 ≤ e−β/18 ≤ m−2, since each ĉR ≥ β/6 and β = 36 · lnm. Fi-
nally, a trivial union bound implies that Ye/3 satisfies all the m contraints
with probability at least 1 − 1/m. Moreover, the expected dual objective is∑

e∈S′ ye ≥ (γ − 1)k ≥ 1 (since γ ≥ 3 and k ≥ 1), and by another Chernoff
Bound, Pr[

∑
e∈S′ Ye > γ−1

2 · k] ≥ a (where a > 0 is some constant). Putting it
all together, with probability at least a − 1

m , we have a feasible dual solution
Y ′e := Ye/3 with objective value at least γ−1

6 · k.
Why is this dual Y ′e any better than the original dual ye? It is “near-integral”—

specifically, each Y ′e is either zero or at least 1
3 . So order the elements of S′ in

decreasing order of their Y ′-value, and let Q be the set of the first k elements in
this order. The total dual value of elements in Q is at least min{ γ−1

6 k, k3} ≥
k
3 ,

since γ ≥ 3, and each non-zero Y ′ value is ≥ 1/3. This valid dual for elements
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in Q shows a lower bound of k
3 on minimum (fractional) ĉ-cost to cover the k

elements in Q. Using cR > 3T∗
k · ĉR for each R ∈ F ′, the minimum c-cost to

fractionally cover Q is > 3T∗
k · k

3 = T ∗. Hence, if Q is the realized scenario,
the optimal second stage cost will be > T ∗ (as no element in Q is covered by
Φ∗)—this contradicts the fact that OPT can cover Q ∈

(
U
k

)
with cost at most

T ∗. Thus we must have γ ≤ 2, which completes the proof of Claim 2. �

The k-Max-Min Set Cover Problem. The proof of Claim 2 suggests how to get
a (Hn, 12Hn, 36 lnm) strongly discriminating algorithm. When λ = 1 (and so
Φ∗ = 0), the proof shows that if c(ΦT ) > 12Hn · T , there is a randomized
algorithm that outputs k-set Q with optimal covering cost > T (witnessed by
the dual solution having cost > T ). Now using Lemma 2, we get the claimed
O(logm + logn) algorithm for the k-max-min set cover problem. This nearly
matches the hardness of Ω( logm

log logm + logn) given by [6].

Remarks: We note that our k-robust algorithm also extends to the more general
setting of (uncapacitated) Covering Integer Programs; a CIP (see eg. [22]) is
given by A ∈ [0, 1]n×m, b ∈ [1,∞)n and c ∈ Rm

+ , and the goal is to minimize
{cT · x | Ax ≥ b, x ∈ Zm

+ }. The results above (as well as the [6] result) also
hold in the presence of set-dependent inflation factors—details will appear in
the full version. Results for the other covering problems do not extend to the
case of non-uniform inflation: this is usually inherent, and not just a flaw in
our analysis. Eg., [15] give an Ω(log1/2−ε n) hardness for k-robust Steiner forest
under just two distinct inflation-factors, whereas we give an O(1)-approximation
under uniform inflations.

4 Minimum Cut

We now consider the k-robust minimum cut problem, where we are given an
undirected graph G = (V,E) with edge capacities c : E → R+, a root r ∈ V ,
terminals U ⊆ V , inflation factor λ. Again, any subset in

(
U
k

)
is a possible

second-stage scenario, and again we seek to give a discriminating algorithm. This
algorithm, like for set cover, is non-adaptive: we just pick all the “expensive”
terminals and cut them in the first stage.

Algorithm 2. Algorithm for k-Robust Min-Cut
1: input: k-robust minimum-cut instance and threshold T .
2: let β ← Θ(1), and

S ← {v ∈ U | min cut separating v from root r costs at least β · T
k
}.

3: output first stage solution ΦT as the minimum cut separating S from r.
4: define AugmentT ({i}) as the min-r-i cut in G \ ΦT , for i ∈ U \ S; and

AugmentT ({i}) = ∅ for i ∈ S.
5: output second stage solution AugmentT , where

AugmentT (D) :=
⋃

i∈D AugmentT ({i}) for all D ⊆ U .
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Claim 3 (Property A for Min-Cut). For all T ≥ 0 and D ∈
(
U
k

)
, the edges

ΦT

⋃
AugmentT (D) separate terminals D from r; and c(AugmentT (D)) ≤ β T .

Theorem 3 (Property B for Min-Cut). Let Φ∗ denote the optimal first stage
solution (and its cost), and T ∗ the optimal second stage cost. If β ≥ 10e

e−1 and
T ≥ T ∗ then c(ΦT ) ≤ 3 · Φ∗ + β

2 · T ∗.
Here’s the intuition for this theorem: As in the set cover proof, we claim that
if the optimal cost of separating S from the root r is high, then there must be
a dual solution (which prescribes flows from vertices in S to r) of large value.
We again “round” this dual solution by aggregating these flows to get a set of k
terminals that have a large combined flow (of value > Φ∗+T ∗) to the root—but
this is impossible, since the optimal solution promises us a cut of at most Φ∗+T ∗

for any set of k terminals.
However, more work is required. For set-cover, each element was either covered

by the first-stage, or it was not; for cut problems, things are not so cut-and-dried,
since both stages may help in severing a terminal from the root! So we divide S
into two parts differently: the first part contains those nodes whose min-cut in
G is large (since they belonged to S) but it fell by a constant factor in the graph
G \Φ∗. These we call “low” nodes, and we use a Gomory-Hu tree based analysis
to show that all low nodes can be completely separated from r by paying only
O(Φ∗) more (this we show in Claim 4). The remaining “high” nodes continue
to have a large min-cut in G \ Φ∗, and for these we use the dual rounding idea
sketched above to show a min-cut of O(T ∗) (this is proved in Claim 5). Together
these claims imply Theorem 3.

To begin the proof of Theorem 3, let H := G \Φ∗, and let Sh ⊆ S denote the
“high” vertices whose min-cut from the root in H is at least M := β

2 ·
T∗
k . The

following claim is essentially from Golovin et al. [10].

Claim 4 (Cutting Low Nodes). If T ≥ T ∗, the minimum cut in H separating
S \ Sh from r costs at most 2 · Φ∗.

Claim 5 (Cutting High Nodes). If T ≥ T ∗, the minimum r-Sh cut in H
costs at most β

2 · T ∗, when β ≥ 10·e
e−1 .

Proof: Consider a r-Sh max-flow in the graph H = G\Φ∗, and suppose it sends
αi ·M flow to vertex i ∈ Sh. By making copies of terminals, we can assume each
αi ∈ (0, 1]; the k-robust min-cut problem remains unchanged under making
copies. Hence if we show that

∑
i∈Sh

αi ≤ k, the total flow (which equals the
min r-Sh cut) would be at most k ·M = β

2 ·T ∗, which would prove the claim. For
a contradiction, we suppose that

∑
i∈Sh

αi > k. We will now claim that there
exists a subset W ⊆ Sh with |W | ≤ k such that the min r-W cut is more than
T ∗, contradicting the fact that every k-set in H can be separated from r by a
cut of value at most T ∗. To find this set W , the following redistribution lemma
(see [13] for proof) is useful.

Lemma 3 (Redistribution Lemma). Let N = (V,E) be a capacitated undi-
rected graph. Let X ⊆ V be a set of terminals such min-cutN (i, j) ≥ 1 for all
nodes i, j ∈ X. For each i ∈ X, we are given a value εi ∈ (0, 1]. Then for any
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integer � ≤
∑

i∈X εi, there exists a subset W ⊆ X with |W | ≤ � vertices, and a
feasible flow f in N from X to W so that (i) the total f -flow into W is at least
1−e−1

4 · � and (ii) the f -flow out of i ∈ X is at most εi/4.

We apply this lemma to H = G \ Φ∗ with terminal set Sh, but with capacities
scaled down by M . Since for any cut separating x, y ∈ Sh, the root r lies on one
side on this cut (say on y’s side), min-cutH(x, y) ≥ M—hence the scaled-down
capacities satisfy the conditions of the lemma. Now set � = k, and εi := αi for
each terminal i ∈ Sh; by the assumption

∑
i∈Sh

εi =
∑

i∈Sh
αi ≥ k = �. Hence

Lemma 3 finds a subset W ⊆ Sh with k vertices, and a flow f in (unscaled)
graph H such that f sends a total of at least 1−1/e

4 · kM units into W , and
at most αi

4 ·M units out of each i ∈ Sh. Also, there is a feasible flow g in the
network H that simultaneously sends αi ·M flow from the root to each i ∈ Sh,
namely the max-flow from r to Sh. Hence the flow g+4f

5 is feasible in H , and
sends 4

5 ·
1−1/e

4 · kM = 1−1/e
5 · kM units from r into W . Finally, if β > 10·e

e−1 ,
we obtain that the min-cut in H separating W from r is greater than T ∗: since
|W | ≤ k, this is a contradiction to the assumption that any set with at most k
vertices can separated from the root in H at cost at most T ∗. �
From Claim 3 and Theorem 3, we obtain a (3, β2 , β)-discriminating algorithm for
k-robust minimum cut, when β ≥ 10e

e−1 . We set β = 10e
e−1 and use Lemma 1 to

infer that the approximation ratio of this algorithm is max{3, β
2λ +β} = β

2λ +β.
Since picking edges only in the second-stage is a trivial λ-approximation, the
better of the two gives an approximation of min{ β

2λ +β, λ} < 17. Thus we have,

Theorem 4 (Min-cut Theorem). There is a 17-approximation algorithm for
k-robust minimum cut.

5 Final Remarks

In this paper, we have presented a unified approach to directly solving k-robust
covering problems and k-max-min problems. As mentioned in the introduction,
one can show that solving the k-max-min problem also leads to a k-robust
algorithm—we give a general reduction in [13]. While this general reduction
leads to poorer approximation guarantees for the cardinality case, it easily ex-
tends to more general cases. Indeed, if the uncertainty sets for robust problems
are not just defined by cardinality constraints, we can ask: which families of
downwards-closed sets can we devise robust algorithms for? In [13] we show how
to incorporate intersections of matroid-type and knapsack-type uncertainty sets.

Our work suggests several general directions for research. While the results
for the k-robust case are fairly tight, can we improve on our results for general
uncertainty sets to match those for the cardinality case? Can we devise algo-
rithms to handle one matroid constraint that are as simple as our algorithms for
the cardinality case? An intriguing specific problem is to find a constant factor
approximation for the robust Steiner forest problem with explicit scenarios.
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Abstract. Graph homomorphism problem has been studied intensively.
Given an m×m symmetric matrix A, the graph homomorphism function
ZA(G) is defined as

ZA(G) =
∑

ξ:V →[m]

∏
(u,v)∈E

Aξ(u),ξ(v),

where G = (V, E) is any undirected graph. The function ZA(G) can en-
code many interesting graph properties, including counting vertex covers
and k-colorings. We study the computational complexity of ZA(G), for
arbitrary complex valued symmetric matrices A. Building on the work by
Dyer and Greenhill [1], Bulatov and Grohe [2], and especially the recent
beautiful work by Goldberg, Grohe, Jerrum and Thurley [3], we prove a
complete dichotomy theorem for this problem.

1 Introduction

Graph homomorphism has been studied intensively over the years [4,5,1,6,2,7,3].
Given two graphs G and H , a graph homomorphism from G to H is a map
f : V (G)→ V (H) such that, whenever (u, v) is an edge in G, (f(u), f(v)) is an
edge in H . The counting problem for graph homomorphism is then to compute
the number of homomorphisms from G to H . For a fixed graph H this problem
is also known as the #H-coloring problem. In 1967, Lovász [4] proved that H
and H ′ are isomorphic if and only if for all G, the number of homomorphisms
from G to H and from G to H ′ are the same. Graph homomorphisms and the
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associated partition functions defined next in (1) provide an extremely elegant
and general notion of graph properties [5].

In this paper, all the graphs considered are undirected. We follow the stan-
dard definitions: G is allowed to have multiple edges; H can have loops, multiple
edges and more generally, edge weights. (The standard definition of graph homo-
morphism does not allow self-loops for G. However, our result is stronger: We
prove polynomial-time tractability even for graphs G with self-loops; and at the
same time, our hardness results hold for the more restricted case of G without
self-loops.) Formally, let A = (Ai,j) be an m ×m symmetric matrix. Then for
any undirected graph G = (V,E), we define

ZA(G) =
∑

ξ:V→[m]

wtA(G, ξ), (1)

where
wtA(G, ξ) =

∏
(u,v)∈E

Aξ(u),ξ(v)

is called the weight of ξ. ZA(G) is also called the partition function from statis-
tical physics.

Graph homomorphisms can express many natural graph properties. For ex-
ample, if we take H to be the graph over two vertices {0, 1}, with an edge (0, 1)
and a loop at 1, then a graph homomorphism from G to H corresponds to a
Vertex Cover of G, and the counting problem simply counts the number of
vertex covers. As another example, if H is the complete graph over k vertices
without self-loops, then the problem is exactly the k-Coloring problem for G.
Many additional graph invariants can be expressed as ZA(G) for appropriate A.
Consider the 2× 2 Hadamard matrix

H =
(

1 1
1 −1

)
, (2)

where we index the rows and columns by {0, 1}. In ZH(G), wtH(G, ξ) = ±1 and
is −1 precisely when the induced subgraph of G on ξ−1(1) has an odd number of
edges. Therefore, (2n−ZH(G))/2 is the number of induced subgraphs of G with
an odd number of edges. In [6], Freedman, Lovász, and Schrijver characterized
what graph functions can be expressed as ZA(G).

In this paper, we study the computational complexity of ZA(G) where A is
an arbitrary fixed m ×m symmetric matrix over the complex numbers, and G
is an input graph. The complexity question of ZA(G) has also been intensively
studied. In [8] Hell and Nešetřil first studied the complexity of the decision pro-
blem for H-coloring (that is, given an undirected graph G, decide whether there
exists a graph homomorphism from G to H or not). They proved that for any
undirected H represented by a symmetric {0, 1}-matrix, H-coloring is either in
P or NP-complete. Dyer and Greenhill [1] then studied the counting version and
proved that for any {0, 1} symmetric matrix A, computing ZA(G) is either in P
or #P-hard. Bulatov and Grohe [2] then gave a sweeping generalization of this
theorem to all non-negative symmetric matrices (see Theorem 2 for the precise
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statement). In a beautiful paper of exceptional depth and vision, Goldberg, Jer-
rum, Grohe, and Thurley [3] proved a complexity dichotomy theorem for all real
valued symmetric matrices A. Recently, Thurley [9] has given a dichotomy the-
orem for complex Hermitian matrices. The polynomial-time tractability result
of the present paper [10] is used in [9]. Results of this type are called complexity
dichotomy theorems: They state, for a wide class of problems, every member of
the class is either tractable (i.e., solvable in P) or intractable (in this case, hard
for the counting class #P). The first well-known dichotomy theorem is Schaefer’s
theorem [11], and many more are proved in the study on constraint satisfaction
problems (CSP in short) [12]. In particular, the famous dichotomy conjecture by
Feder and Vardi [13] on Decision CSP motivated much of subsequent work.

The result of Bulatov and Grohe [2] is both sweeping and enormously appli-
cable. It completely solves the problem for non-negative symmetric matrices A.
However, when we are dealing with non-negative numbers, there are no cancel-
lations in the exponential sum ZA(G) defined by (1). But these potential cancel-
lations, when A is either a real or a complex matrix, may in fact be the source
of surprisingly efficient algorithms for ZA(G). The occurrence of these cancella-
tions, or the mere possibility of such occurrence, makes proving any complexity
dichotomies more difficult. Such a proof must identify all polynomial-time algo-
rithms utilizing the potential cancellations, such as those found in holographic
algorithms [14,15,16], and at the same time carve out exactly what’s left. This sit-
uation is similar to monotone versus non-monotone circuit complexity. It turns
out that indeed there are more interesting tractable (i.e., computable in poly-
nomial time) cases over the reals without the restriction of non-negativity. The
2 × 2 Hadamard matrix H turns out to be one of such cases, as was shown by
Goldberg, Jerrum, Grohe and Thurley in [3].

While positive and negative real numbers provide the possibility of cancel-
lations, over the complex domain there is a significantly richer variety of possible
cancellations. We independently came to the tractability of ZH(·) from a slightly
different angle. In [17] we were studying a certain type of constraint satisfaction
problems. This is motivated by the investigations of a class of counting problems
called Holant problems, and it is connected with the technique called holographic
reductions introduced by Valiant [14,15]. Let us briefly describe this framework.

A signature grid Ω = (G,F) is a tuple, where G = (V,E) is an undirected
graph, and each v ∈ V is attached a function Fv ∈ F . An edge assignment σ for
every e ∈ E gives an evaluation∏

v∈V Fv

(
σ |E(v)

)
,

where E(v) denotes the incident edges of v. The counting problem on an input
instance Ω is to compute

Holant(Ω) =
∑

edge assignments σ

∏
v∈V

Fv

(
σ |E(v)

)
.

For example, if we take σ : E → {0, 1} and attach the Exact-One function at
every v ∈ V , then Holant(Ω) computes the number of perfect matchings of G.
Incidentally, Freedman, Lovász, and Schrijver [6] showed that counting perfect
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matchings cannot be expressed as ZA(·) for any real A. However, every function
ZA(G) (vertex assignment) can be simulated by Holant(Ω) (edge assignment).

We discovered that the following three families of functions

F1 =
{
λ([1, 0]⊗k + ir[0, 1]⊗k)

∣∣ λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3
}
;

F2 =
{
λ([1, 1]⊗k + ir[1,−1]⊗k)

∣∣ λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3
}
;

F3 =
{
λ([1, i]⊗k + ir[1, −i]⊗k)

∣∣ λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3
}

give rise to tractable problems: Holant(Ω), for any Ω = (G,F1 ∪ F2 ∪ F3), can
be computed in polynomial time (we listed functions in Fi in the form of truth
tables on k boolean variables).

Note that by taking r = 1, k = 2 and λ = (1 + i)−1 in F3, we recover exactly
the binary function which corresponds to the 2× 2 Hadamard matrix H in (2);
By taking r = 0 and λ = 1 in F1, we get the Equality function over k bits for
k ≥ 1. Combining these two facts, one can show easily that ZH(G) is a special
case of Holant(Ω), and the tractability of Holant(Ω) implies that of ZH(·).

However, more instructive for us is the natural way in which complex num-
bers appeared in such counting problems, especially when applying holographic
reductions. One can say that the presence of powers of i =

√
−1 in F1, F2 and

F3 “reveals” the true nature of H as belonging to a family of tractable counting
problems where complex numbers are the right language. Thus the investigation
of the complexity of ZA(·) for symmetric complex matrices not only is a natu-
ral generalization, but also can reveal the inner unity and its deeper structural
properties. Interested readers can find more details in [17].

Our investigation of complex-valued graph homomorphisms is also motivated
by partition functions in quantum physics. In classical statistical physics, parti-
tion functions are always real-valued. However, in a generic quantum system for
which complex numbers are the correct language, the partition function is then
complex-valued in general [18]. In particular, if the physics model is over a discr-
ete graph and is non-orientable, then the edge weights are given by a symmetric
complex matrix.

Our main result is the following complexity dichotomy theorem:

Theorem 1. Let A be a symmetric complex matrix, then ZA(·) is either
in P or #P-hard.

Due to the complexity of the proof of Theorem 1, both in terms of its overall
proof structure and in terms of the technical difficulty, we will only give a high
level description of the proof in this extended abstract. The full version of the
paper can be found in [10]. We remark that for algebraic A, we can show that
the dichotomy is decidable, but this will be discussed in a future publication.

2 Preliminaries

For a positive integer n, we let [n] denote the set {1, 2, . . . , n}. We also let [m : n]
where m ≤ n, denote the set {m, . . . , n}. Given x,y ∈ Cn, we use
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〈x,y〉 =
∑n

i=1 xi · yi

to denote their inner product and use x ◦ y to denote their Hadamard product:
z = x ◦ y ∈ Cn, where

zi = xi · yi, for all i ∈ [n].

For a positive integer N , we let ωN denote e2πi/N , a primitive N th root of unity.
Let A = (Ai,j) be a k × � matrix, and let B = (Bi,j) be an m× n matrix.

We use Ai,∗ to denote the ith row, and A∗,j to denote the jth column of A. We
let C = A ⊗B denote the tensor product of A and B: C is a km × �n matrix
whose rows and columns are indexed by [k]× [m] and [�]× [n] such that

C(i1,i2),(j1,j2) = Ai1,j1 · Bi2,j2 , for all i1 ∈ [k], i2 ∈ [m], j1 ∈ [�], j2 ∈ [n].

Given any symmetric n× n matrix A we build an undirected graph G = (V, E)
as follows: V = [n] and ij ∈ E if and only if Ai,j �= 0. We say A is connected
if G is connected; and we say A has connected components A1, . . . ,As, if the
connected components of G are V1, . . . , Vs and for every i, Ai is the |Vi| × |Vi|
sub-matrix of A restricted by Vi ⊆ [n]. Moreover, we say A is bipartite, if G is
bipartite; otherwise A is non-bipartite. Finally we say C is the bipartisation of a
matrix F if

C =
(

0 F
FT 0

)
.

Note that C is always a symmetric matrix no matter whether F is or is not.
Now let A be any symmetric complex matrix. It defines a problem EVAL(A)

as follows: Given an undirected graph G, compute ZA(G). To study the comp-
lexity of EVAL(A) and prove Theorem 1, we need to introduce a larger class of
EVAL problems. We will define a generalized partition function which not only
has edge weights but also has vertex weights. Moreover, the vertex weights also
depend on the degrees of vertices of G, modulo some integer modulus. Formally,
let C ∈ Cm×m be a symmetric matrix and

D =
{
D[0],D[1], . . . ,D[N−1]}

be a sequence of N diagonal matrices in Cm×m for some N ≥ 1. We use D
[r]
i to

denote the (i, i)th diagonal entry of D[r]. We define the problem EVAL(C,D) as
follows: Given G = (V,E), compute

ZC,D(G) =
∑

ξ:V→[m]

wtC,D(G, ξ),

where

wtC,D(G, ξ) =

⎛⎝ ∏
(u,v)∈E

Cξ(u),ξ(v)

⎞⎠( ∏
v∈V

D
[deg(v) modN ]
ξ(v)

)

and deg(v) denotes the degree of v in G.
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We also formally state the dichotomy of Bulatov and Grohe [2] as follows:

Theorem 2 ([2]). Let A be an m×m symmetric, connected, and non-negative
matrix, then

1. If A is bipartite and m ≥ 2, then EVAL(A) is in P if rank(A) = 2,
and is #P-hard otherwise;

2. If A is non-bipartite, then EVAL(A) is in P if rank(A) ≤ 1, and is
#P-hard otherwise.

One technical issue is the model of computation with complex numbers. We can
take any reasonable model of real or complex number computation as long as
arithmetic operations such as + and × are computable, and equality is decidable
[19,20]. For the most part, this issue of computation model seems not central to
this paper, in part because we always consider the symmetric complex matrix
A to be fixed and the complexity measure is on the size of the input G. In the
most restrictive sense, we can require entries of A to be algebraic numbers, and
the theorem holds in the strict bit model of Turing machines. Over the algebraic
numbers, we can prove that our dichotomy theorem gives a decidable criterion.
This will be discussed in a future publication.

3 A High Level Description of the Proof

The first step, in the proof of Theorem 1, is to reduce the problem to connected
graphs and matrices. Let A be an m×m symmetric complex matrix. It is easy
to prove that, if the input graph G has connected components Gi, then

ZA(G) =
∏

i ZA(Gi);

and if G is connected, and A has connected components Aj , then

ZA(G) =
∑

j ZAj (G).

Therefore, if every ZAj (·) is computable in P, then so is ZA(·).
The hardness direction is less obvious. Suppose ZAj (·) is #P-hard for some

j. We want to prove that ZA(·) is also #P-hard. We prove this by showing that
computing ZAj (·) is reducible to computing ZA(·). Let G be an arbitrary input
graph. To compute ZAj (G), it suffices to compute ZAj (Gi) for every connected
component Gi of G. Therefore, we may just assume that G is connected. Define
a pinning version of ZA(·) as follows: For any chosen vertex w ∈ V (G) and any
k ∈ [m], we let

ZA(G,w, k) =
∑

ξ:V→[m], ξ(w)=k

wtA(G, ξ).

Then we prove a Pinning Lemma (Lemma 4.1 in the full version), which states
that the problem of computing ZA(·) is polynomial-time equivalent to the pro-
blem of computing ZA(·, ·, ·). Note that if Vj denotes the subset of [m] such that
Aj is the sub-matrix of A restricted by Vj , then for a connected G, we have

ZAj (G) =
∑

k∈Vj
ZA(G,w, k),
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which gives us a polynomial-time reduction from ZAj (·) to ZA(·).
It turns out that we actually need a total of three Pinning Lemmas (Lemma

4.1, 4.2 and 8.2 in the full version [10]). The proof of the first Pinning Lemma
is an adaptation (to the complex numbers) of a similar lemma proved in [3]. For
the other two Pinning Lemmas, the proofs are a bit more involved. We remark
that all our Pinning Lemmas only show the existence of polynomial-time reduc-
tions between ZA(·) and ZA(·, ·, ·), but they do not constructively produce such
reductions, given A. We also remark that the proof of the Pinning Lemma in
[3] uses a recent result [21] by Lovász for real matrices. This result is not known
for complex matrices. We give a direct proof of our three lemmas without using
the result of Lovász.

After this preliminary step we restrict to connected and symmetric A. As in-
dicated, to our work the two most influential predecessor papers are by Bulatov
and Grohe [2], and by Goldberg et. al. [3]. In both papers, the polynomial-time
algorithms for those tractable cases are relatively straightforward. The difficult
part of the proof is to prove that, in all other cases, the problem of computing
ZA(·) is #P-hard. Over the complex numbers, new difficulties arise in both the
tractability and the hardness part of the proof:

– For the tractability part, it turns out that Gauss sums play a crucial role,
and we devise new polynomial-time algorithms;

– For the hardness part, the difficulty already starts with the most basic
technique called gadget constructions, to be discussed shortly. Technically,
all our hardness proofs are done by reductions to the non-negative case
using Bulatov-Grohe [2]. The difficulty with proving hardness for complex
matrices goes deeper than appearance.

In [2] and [3] the polynomial-time algorithms for the tractable cases are pre-
viously known algorithms. However, the complex numbers afford a much richer
variety of cancellations, which could lead to surprisingly efficient algorithms for
computing ZA(·) for certain complex matrices A. It turns out that this is indeed
the case, and we obtain additional non-trivial tractable cases. These boil down
to the following class of problems:

Zq(·): Let q = pk be a (fixed) prime power for some prime p and
positive integer k. The input of Zq(·) is a quadratic polynomial

f(x1, x2, . . . , xn) =
∑

i,j∈[n] ai,jxixj , where ai,j ∈ Zq for all i, j;

and the output is
Zq(f) =

∑
x1,...,xn∈Zq

ωf(x1,...,xn)
q .

We show that for any fixed prime power q, Zq(·) can be computed in polynomial
time. The tractability part of our dichotomy theorem is then done by reducing
ZA(·), with A satisfying certain structural properties (which we will describe in
the rest of this section), to Zq(·) for some appropriate prime power q. While the
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corresponding sums for finite fields are known to be computable in polynomial
time [22], in particular this includes the special case of Z2 which was used in [3],
our algorithm over rings Zq is new and should be of independent interest. The
algorithm is presented in Section 12 of the full version. (The theorem of [3] can
be considered as the case where the only root of unity is −1. However, we note
that odd prime powers generally behave differently than powers of 2.)

We now briefly describe the proof structure of the dichotomy theorem. First
let A be a connected and symmetric complex matrix. As has already been used
many times before, a key tool in the hardness part is the use of graph gadgets.
With a graph gadget, we can take any input graph G, and produce a modified
graph G∗ with the following property: one can transform the fixed matrix A to
a suitably modified matrix A∗ (which only depends on A and the graph gadget
and does not depend on the input graph G) such that

ZA∗(G) = ZA(G∗), for any undirected graph G.

This gives us a polynomial-time reduction from ZA∗(·) to ZA(·).
A simple example of this maneuver is called thickening : Given any input G

one replaces each edge of G by t parallel edges to get G∗. It is easy to see that
if A∗ is obtained from A by replacing each entry Ai,j with its tth power (Ai,j)t,
then the equation above holds and we get a reduction from ZA∗(·) to ZA(·). In
particular, if A is a real matrix (as in the case of [3]) and t is even, this always
produces a non-negative A∗ to which one may apply the Bulatov-Grohe result:

– either ZA(·) is #P-hard, in which case we are already done;
– or ZA(·) is not #P-hard, in which case ZA∗(·) cannot be #P-hard (due

to the reduction from ZA∗(·) to ZA(·)) and A∗, derived from A, must
pass the Bulatov-Grohe tractability test as described in Theorem 2.

As a result, if we assume ZA(·) is not #P-hard, then the matrix A must satisfy
certain necessary structural conditions. The big picture1 of the proof of the di-
chotomy theorem is then to design various graph gadgets to show that, assuming
ZA(·) is not #P-hard, A must satisfy a collection of strong necessary conditions
over its complex entries Ai,j . To finish the proof, we show that for every A that
satisfies all these conditions, one can reduce ZA(·) to Zq(·) for some appropriate
prime power q (which only depends on A) and thus, ZA(·) is tractable.

For complex matrices A we immediately encountered the following difficulty.
Any graph gadget can only produce a new matrix A∗ whose entries are derived
from those of A by arithmetic operations + and ×. While for real numbers any
even power guarantees a non-negative quantity, no obvious operations over the
complex numbers have this property. Pointedly, conjugation is not an arithmetic
operation. However, it is also clear that for roots of unity one can easily produce
conjugation by multiplications.

1 The exact proof structure, however, is different from this very high-level description,
which will become clear through the rest of the section.
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Thus, the proof of our dichotomy starts with a process to replace an arbit-
rary complex matrix A with a purified complex matrix which has a very special
form. It turns out that we must separate out the cases where A is bipartite or
non-bipartite. A purified bipartite (and symmetric/connected) matrix takes the
following form: It is the bipartisation of a matrix B, where (note that B is not
necessarily symmetric here)

B =

⎛⎜⎜⎜⎝
μ1

μ2
. . .

μk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ζ1,1 ζ1,2 . . . ζ1,m−k

ζ2,1 ζ2,2 . . . ζ2,m−k

...
...

. . .
...

ζk,1 ζk,2 . . . ζk,m−k

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
μk+1

μk+2
. . .

μm

⎞⎟⎟⎟⎠ ,

for some 1 ≤ k < m, in which every μi > 0 and every ζi,j is a root of unity.
The claim (Theorem 5.1 of the full version) is that, for any symmetric, con-

nected and bipartite complex m×m matrix A, either we can already show the
#P-hardness of ZA(·); or there exists an m×m symmetric, connected and puri-
fied bipartite matrix A′ such that computing ZA′(·) is polynomial-time equiva-
lent to computing ZA(·). For non-bipartite A, a corresponding statement holds
(see Theorem 6.1 of the full version). For convenience, in the discussion below,
we only focus on the bipartite case.

Continuing now with a purified and bipartite matrix A′, the next step is to
further regularize its entries. In particular, we need to combine those rows and
columns of A′ where they are essentially the same apart from a multiple of a
root of unity. This process is called Cyclotomic Reduction. In order to carry out
this process, we need to use the more general counting problems EVAL(C,D),
as defined earlier in Section 2. We also need to introduce the following special
matrices called discrete unitary matrices:

Definition 1 (Discrete Unitary Matrices). Let F ∈Cm×m be a matrix with
entries (Fi,j). We say F is an M -discrete unitary matrix for some positive inte-
ger M , if it satisfies the following conditions:

1. Every entry Fi,j of F is a root of unity, and

M = lcm
{
the order of Fi,j : i, j ∈ [m]

}
;

2. F1,i = Fi,1 = 1 for all i ∈ [m], and for all i �= j ∈ [m],

〈Fi,∗,Fj,∗〉 = 0 and 〈F∗,i,F∗,j〉 = 0.

Given any purified bipartite matrix A′, we continue to show that: ZA′(·) is either
#P-hard or polynomial-time equivalent to ZC,D(·) for some C ∈ C2n×2n and
some D of diagonal matrices from C2n×2n where C is the bipartisation of a
discrete unitary matrix, for some positive integer n. In addition to requiring C
to be the bipartisation of a discrete unitary matrix, there are further stringent
requirements for D; otherwise ZA′(·) is #P-hard. The detailed statement can be
found in Theorem 5.2 and 5.3 of the full version, summarized in properties (U1)
to (U5). Roughly speaking, these requirements are:
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– The first diagonal matrix D[0] in D must be the identity matrix; and
– For every diagonal matrix D[r] in D, any of its entries is either zero or

a root of unity.

We call these requirements over C and D, with some abuse of terminology, the
discrete unitary requirements. The proof of these requirements is very involved
and among the most difficult in the paper.

Next, assume that we have a problem (C,D), satisfying the discrete unitary
requirements and in particular, C is the bipartisation of F.

Definition 2. Let q > 1 be a prime power. Then the following q× q matrix Fq

is called the q-Fourier matrix: the (x, y)th entry of Fq, x, y ∈ [0 : q − 1], is ωxy
q .

We show that, either computing ZC,D(·) is #P-hard; or after permuting the
rows/columns F becomes the tensor product of a collection of Fourier matrices:

Fq1 ⊗Fq2 ⊗ · · · ⊗Fqd
, where d ≥ 1 and every qi is a prime power.

Basically we show that even with the stringent conditions put on the pair (C,D)
by the discrete unitary requirements, most of them will still be #P-hard, unless
F has the further property of being a tensor product of Fourier matrices. Being
able to express it as a tensor product of Fourier matrices finally brings in group
theory and Gauss sums. It gives us a canonical way of writing the entries of F
in a closed form (Here we assume that an appropriate permutation of rows and
columns has already been applied to F, as well as C and D). More exactly, we
can index the rows and columns of F using

x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) ∈ Zq1 × Zq2 × · · · × Zqd
,

respectively, such that

Fx,y =
∏
i∈[d]

ωxiyi
qi

, for all x and y.

Assume q1, . . . , qd are powers of s ≤ d distinct primes p1, . . . , ps. Then we can
also view the set of indices x as

Zq1 × Zq2 × · · · × Zqd
= G1 ×G2 × · · · ×Gs,

where Gi is the finite Abelian group which is the product of all the Zqj , j ∈ [d],
such that qj is a power of pi.

This canonical tensor product decomposition of F gives us a natural way to
index the rows and columns of C and each diagonal matrix in D using x. More
precisely, we index the first half of the rows and columns of C and every D[r] in
D using (0,x); and index the second half of the rows and columns using (1,x),
where x ∈ Zq1 × · · · × Zqd

.
With this canonical expression of F and C, we further inquire the structure

of D, and here one more substantial difficulty awaits us. It turns out that there
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are two more properties that we must demand of those diagonal matrices in D:
If D does not satisfy these additional properties, then ZC,D(·) is #P-hard.

First, for each matrix D[r] in D, we use Λr and Δr to denote the support of
D[r], where Λr refers to the first half of the entries and Δr refers to the second
half of the entries: (We let Di denote the (i, i)th diagonal entry of D here)

Λr =
{
x
∣∣∣D[r]

(0,x) �= 0
}

and Δr =
{
x
∣∣∣D[r]

(1,x) �= 0
}
.

We use S to denote the set of superscripts r such that Λr �= ∅ and T to denote
the set of r such that Δr �= ∅, respectively. We can prove that for every r ∈ S,

Λr =
∏
i∈[s]

Λr,i

must be a direct product of cosets Λr,i in the Abelian groups Gi, i ∈ [s]; and for
every r ∈ T ,

Δr =
∏
i∈[s]

Δr,i

must be a direct product of cosets in the same groups; otherwise the problem of
computing ZC,D(·) is #P-hard.

Second, we prove that for every r ∈ S and r ∈ T , respectively, the diagonal
matrix D[r] on its support Λr for the first half of its diagonal entries and on Δr

for the second half of its diagonal entries, respectively, must possess a quadratic
structure; Otherwise, ZC,D(·) is #P-hard. We can express this quadratic struc-
ture as a set of exponential difference equations over bases which are appropriate
roots of unity of orders equal to various prime powers. The constructions used
in this part of the proof are among the most demanding ever attempted.

After all these necessary conditions, we show that if (C,D) satisfies all these
requirements then there is actually a polynomial-time algorithm to compute the
function ZC,D(·) and thus, the problem of computing ZA(·) is in P. To this end,
we reduce ZC,D(·) to Zq(·) for some appropriate prime power q and as remarked
earlier, the tractability of Zq(·) is new and is of independent interest.
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Abstract. We consider the randomized k-server problem, and give improved re-
sults for various metric spaces. In particular, we extend a recent result of Coté et
al [15] for well-separated binary Hierarchically Separated Trees (HSTs) to well-
separated d-ary HSTs for poly-logarithmic values of d. One application of this
result is an exp(O(

√
log log k log n))-competitive algorithm for k-server on n

uniformly spaced points on a line. This substantially improves upon the prior
guarantee of O(min(k, n2/3) for this metric [16].

These results are based on obtaining a refined guarantee for the unfair metrical
task systems problem on an HST. Prior to our work, such a guarantee was only
known for the case of a uniform metric [5,7,18]. Our results are based on the
primal-dual approach for online algorithms. Previous primal-dual approaches in
the context of k-server and MTS [2,4,3] worked only for uniform or weighted
star metrics, and the main technical contribution here is to extend many of these
techniques to work directly on HSTs.

1 Introduction

The k-server problem is a central and well studied problem in competitive analysis of
online problems and is considered by many to be the “holy grail” problem in the field.
The k-server problem is defined as follows. There is a distance function d defined over
an n-point metric space and k servers located at the points of the metric space. At each
time step, an online algorithm is given a request at one of the points of the metric space,
and it is served by moving a server to the requested point. The cost is defined to be the
distance traveled by the server. Thus, the goal of an online algorithm is to minimize
the total sum of the distances traveled by the servers so as to serve a given sequence of
requests. The k-server problem can model many problems, and the most widely studied
of these is paging with all its variants [27]. Paging is the special case of k-server on a
uniform metric. In their seminal paper on competitive analysis, Sleator and Tarjan [27]
gave k-competitive algorithms for paging, and also showed that this is the best possible
for any deterministic algorithm.

The k-server problem in its full generality was first posed by Manasse et al. [24], who
conjectured that a k-competitive online algorithm exists in any metric space and for any
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value of k. This is called the k-server conjecture. After a long line of work, a major
breakthrough was achieved by Koutsoupias and Papadimitriou [23] who gave a 2k − 1
competitive algorithm. We note that for special metrics such as the uniform metric, line
metric [13], and more generally trees [14], a competitive factor of k is known for the
k-server problem. The reader is referred to [9] for an excellent survey of various results
and history of the problem.

However, despite much interest, randomized algorithms for k-server remain poorly
understood. No lower bound better than Ω(log k) is known for any metric space, and
it is widely believed that an O(log k)-competitive randomized algorithm exists for ev-
ery metric space against an oblivious adversary. This is called the randomized k-server
conjecture. Yet, better than k-competitive algorithms are known only for few special
cases [17,5,2,26,16,15]. The most well-studied of these cases is paging and its variants,
for which several Θ(log k)-competitive algorithms are known [17,1,2,21,20,8]1. How-
ever, not much is essentially known beyond the uniform metric. Even for the seemingly
simple case of n uniformly spaced points on a line, which is perhaps the simplest “non-
uniform like” metric, only an O(n2/3)-competitive algorithm [16] is known, which is
o(k)-competitive only for n = o(k3/2).

Given our current level of understanding, resolving a weaker variant of the random-
ized k-server conjecture – obtaining a polylog(k, n,Δ)-competitive algorithm for gen-
eral metrics, where Δ is the diameter of the metric, would be a major breakthrough.2

Since a general metric space can be embedded into a probability distribution over hi-
erarchically well-separated trees (HSTs) with logarithmic distortion of the distances,
it suffices to consider the k-server problem on HSTs to obtain the latter bound. This
approach seems particularly promising, as randomized k-server is relatively well un-
derstood for uniform metrics, and algorithms on an HST can often be obtained by re-
cursively applying a suitable algorithm on uniform metrics. This has previously been
done in many other settings, e.g., metrical task systems and metric labeling [5,18,22].

Along these lines, Coté et al. [15] recently gave the first3 completely formal frame-
work to solving the k-server problem on HSTs by defining a related problem, called
the allocation problem by [3], on uniform metrics. In the allocation problem (defined
formally in Section 2), upon each request, two types of cost are incurred: the hit-cost
and the move-cost. Coté et al. [15] showed that designing an online algorithm that,
given any ε > 0, has a hit-cost of at most (1 + ε) times the total optimum cost and
a move-cost of at most poly-logarithmic times the total optimum cost, would imply a
poly-logarithmic competitive algorithm for the k-server problem (see Theorem 5 below
for a formal statement). Note the asymmetry between the guarantees required for the
hit-cost and move-cost. It is crucial that the hit-cost factor is (1 + ε), as the hit-cost
factor multiplies across the levels of the HST, while the move-cost factor only adds up.
In a very interesting result, Coté et al. [15] were able to obtain such a guarantee for the
allocation problem on a metric space with two points. Using their framework, this guar-
antee for the allocation problem implies an O(logΔ)-competitive algorithm for binary

1 Due lack to space here, we refer the reader to [9] for an excellent survey of paging and other
results for randomized k-server.

2 In fact, even an o(k)-competitive algorithm would be extremely interesting.
3 Previously, related (but simpler) problems such as finely competitive paging were studied [8].
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HSTs. However, being limited to two points, this result is not general enough to imply
any non-trivial guarantees for more general metrics.

Thus, the big outstanding question is to extend the result of Coté et al. [15] to a
uniform metric on an arbitrary number of points. However, as already pointed out by
[15], it is not even clear how to obtain such a guarantee for a space with three points.
In particular, their algorithm crucially uses the fact that the allocation problem on two
points looks like a metrical task system problem (defined later) on a line with a special
cost structure.

1.1 Our Results

In this work we extend the result of Coté et al. [15] for the allocation problem on any
uniform metric on d points. Specifically, we show the following result:

Theorem 1. There exists an algorithm that is (1+ε, O(d log2 k log(k/ε)))-competitive
for the allocation problem on d points.

Exploring the meaning of such a result in the k-server context, let us define an (�, p, α)-
HST as an HST with height �, maximum degree p, and stretch factor α. Given such an
HST and combining the above result with Theorem 5 we get the following.

Theorem 2. Given an (�, p, α)-HST metric, there exists an online algorithm for the
k-server problem with competitive factor:

O

(
min(α, p� log2 k log(k�)) ·

(
1 + O

(
p log2 k log(k�)

α

))�+1)
.

In particular, if α = Ω
(
�p log2 k log(k�)

)
(i.e. the HST is well-separated), then the

algorithm has a competitive ratio of O
(
�p log2 k log(k�)

)
.

While our result applies to any number of points d, our competitive ratio with respect to
the move-cost linearly varies with d, and hence our result is not strong enough to obtain
poly-logarithmic guarantees for general metrics. (For this, one needs a guarantee which
is poly-logarithmic in d.) Still, our result has useful consequences. Applying Theorem
2, along with standard embedding results for equally spaced points on the line, we get
the following Theorem.

Theorem 3. There is a exp
(
O(
√

log log k logn)
)
-competitive algorithm for k-server

on n equally spaced points on a line. In general, for an arbitrary n-point line with
diameter Δ, our algorithm is exp

(
O(
√

log log k logΔ)
)
-competitive.

This is the first online algorithm with a sublinear competitive ratio for the line, providing
strong evidence that randomization does help for this kind of metric. The line metric is
particularly interesting since it is one of the simplest metrics that is essentially different
from the uniform metric. Historically, new insights gained from the line case have often
been useful for more general metrics. For example, the double coverage algorithm was
first discovered for a line [13], and then extended to tree metrics [14]. Obtaining a better
online algorithm, even for a line or a circle, is already stated as a major open problem
in [9, Problem 11.1] .
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Techniques and Comparison with Previous Approaches

Refined Guarantee for Metrical Task Systems: In order to prove Theorem 1, we de-
sign here a new algorithm for the metrical task system problem (MTS) with refined
guarantees, which are interesting on their own. MTS was introduced by Borodin et al.
[10] as a generalization of various online problems. In this problem there is a machine,
or server, which can be in any one of n states 1, 2, . . . , n, and a metric d defining the
cost of moving between states. At each time step t, a new task appears and needs to be
served. The new task is associated with a cost vector ct = (ct(1), . . . , ct(n)) denoting
the processing cost in each of the states. To serve the task, the machine is allowed to
move to any other state from its current state. Assuming the machine is currently in
state i, and it moves to state j, the cost of serving the task is its processing cost ct(j)
plus the movement cost dij . The goal is to minimize the total cost.

We obtain the following refined guarantee for MTS on an HST.

Theorem 4. Consider the MTS problem on an HST of height � and n points. For any
0 < γ < 1, there is an online algorithm achieving the following bounds:

– Its service cost is bounded by (1 + γ) times the optimal cost.
– Its movement cost is bounded by O(log(nγ ) · min{�, log(nγ )}) times the optimal

cost.

While poly-logarithmic guarantees for randomized MTS on HSTs (and hence general
metrics) are already known [5,7,18], the key difference here is that the competitive ratio
with respect to the service cost is only (1 + γ). Previously, such a result was only
known for uniform metrics [5,7,19], where this guarantee was referred to as the unfair
MTS guarantee. Thus, Theorem 4 can be viewed as an extension of the unfair MTS
result of [5,7,19] to HSTs. Such an extension is crucial to obtain meaningful results for
the allocation problem (see Section 4.1 for more details about this reduction). In fact,
obtaining such a result was already proposed as an approach to attacking the allocation
problem [25] (see e.g. slide 45).

As we explain below, it is quite unclear whether Theorem 4 can be obtained using
previous techniques. Next, we explain the techniques we use here.
Previous Results on Randomized MTS: In a breakthrough paper, Bartal et al. [5] ob-
tained the first polylogarithmic competitive randomized algorithm for HSTs (and hence
general metrics) by recursively solving a stronger variant of the MTS problem on uni-
form metrics. This stronger variant is the unfair MTS problem that, given any γ > 0,
pays a movement cost ofO(log(nγ )) times the optimum, but has service cost only (1+γ)
times the optimum. In particular, previous algorithms obtaining a polylogarithmic com-
petitive ratio on HSTs, achieved it by recursively “combining unfair MTS algorithms”
on uniform metrics.

A natural question is whether the approach of recursively combining an unfair MTS
algorithm for uniform metrics can be used to obtain an unfair MTS algorithm for the
entire HST. However, it is not clear how to use previous techniques toward this task [6].
In particular, any approach based on “combining unfair MTS” loses right away at the
second level of the HST the distinction between the service costs and movements costs.
This happens since the cost vector for the unfair MTS algorithm running at a node at a
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higher level must necessarily use the total cost incurred at the lower level (i.e. the sum
of service costs plus movement costs incurred at the lower level). Thus, it is not clear
how to even track the service costs and movement costs for HSTs with 2 or more levels.

Our Techniques: We completely move away from recursively combining unfair MTS
algorithms on uniform metrics. In particular, our algorithm is a “one shot algorithm”
that works directly on the whole metric, and is based on linear programming techniques.
Specifically, we cast the (offline) MTS problem on an HST as a minimization linear
program. We then obtain the dual maximization problem which is used to bound the
cost of our online solution. When a new cost vector arrives, a set of equations is solved
to compute the amount of “flow” it should move from each leaf in the HST to other
leaves. This flow solution is dictated by a single decision implied by a “connecting
function” between primal and dual variables.

At a high level, our approach follows the general primal-dual framework for design-
ing online algorithms developed by Buchbinder and Naor [11,12,2,4,3]. However, the
main contribution here is that we extend many of the previous techniques to work for
HSTs. In particular, all previous results and techniques [2,4,3] hold only for uniform
metrics or weighted star metrics4. These metrics seem substantially simpler than HSTs,
and in general it is not at all clear how to extend these results from uniform metrics
to HSTs. For example, several ways are known to obtain poly-logarithmic guarantees
for k-server on the uniform metric (paging), but extending these results to HSTs would
prove the weaker randomized k-server conjecture!

2 Preliminaries

Allocation Problem: The allocation problem is defined as follows. There is a uniform
metric on n points and there are up to k available servers. At time step t, the total
number of available servers k(t) ≤ k is specified, and a request arrives at some point it.
The request is specified by a (k+1)-dimensional vector ht = (ht(0), ht(1), . . . , ht(k)),
where ht(j) denotes the cost when serving the request using j servers. Upon receiving a
request, the algorithm may choose to move additional servers to the requested point and
then serve it. The cost is divided into two parts. The Move-Cost incurred for moving the
servers, and the Hit-Cost, ht(j), determined by the cost vector. The goal is to minimize
the total cost. In addition, the cost vectors at any time are guaranteed to satisfy the
following monotonicity property: for any 0 ≤ j ≤ k − 1, the costs satisfy ht(j) ≥
ht(j + 1). That is, serving a request with less resources costs more.

Denote by Optcost the optimal cost of an instance of the allocation problem. Coté et
al. [15] showed that if there is an online algorithm that incurs a hit cost of (1+ε)Optcost
and a move cost of β(ε)Optcost, where β(·) is a polylogarithmic function, then there
is a polylogarithmic competitive algorithm for the k-server problem on general metrics.
More generally, the next theorem implicitly follows from their work.

4 In related work, [3] shows how an unfair MTS algorithm on uniform metrics (i.e. the result
of [5]) can be obtained using the primal-dual framework. It also solves the finely competitive
paging problem [8], and the allocation problem assuming the costs satisfy a certain convexity
assumption.
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Theorem 5 ([15,3]). Suppose there is a (1 + ε, β(ε))-competitive algorithm for the
allocation problem on a uniform metric on d points. Let H be a d-ary HST with depth
� and parameter α. Then, for any ε ≤ 1, there is a β(ε)γ�+1/(γ − 1)-competitive
algorithm for the k-server problem on H , where

γ = (1 + ε)
(

1 +
3
α

)
+ O

(
β(ε)
α

)
.

Hierarchically well-separated trees: We formally define a hierarchically well-separated
tree (HST) with stretch factor α and fix some notation. We denote the leaves of an HST
by 1, . . . , n and use i to index them. In an HST all leaves have the same depth, denoted
by � (where we use the convention that a star has depth 1). The root r is at level 0. Let
�(v) denote the level of node v. Then, the distance of v to its parent is α�−�(v) and so the
diameter of the HST is O(α�−1). Let Tv denote the set of leaves in the subtree rooted
at node v. For a leaf i, let (i, j) denote the j-th ancestor of i. That is, (i, 0) is i itself,
(i, 1) is the parent of i, and so on. Note that (i, �) is the root r for any leaf i. Let p(v)
be the parent node of v and let C(v) be the set of children of v. The number of children
of v is denoted by |C(v)|; if v is a leaf then we use the convention |C(v)| = 1.

LP Formulation for MTS on an HST: We study the MTS problem on a metric M
defined by an HST. By a standard transformation, we can assume that the cost vector
at any time has the form c · ei, where c is arbitrarily small and ei = (0, 0, . . . , 1, 0, . . .)
has 1 in the i-th position. Hence, we use it to denote the location with non-zero cost at
time t.

We now present our linear programming formulation of the MTS problem on an
HST. Our algorithm keeps a fractional solution in which each leaf i has mass yi,t at
time t. Let yv,t denote the total mass in the subtree rooted at v at time t. Then, by
definition, yv,t =

∑
w∈C(v) yw,t =

∑
i∈Tv

yi,t. Note that this is consistent with the
definition for leaves. The variables will be yi,t for each leaf i and time t. Let zv,t denote
the decrease in the total probability mass in leaves of Tv at time t. Note that there is no
need to define a variable zr,t (for the root) and without loss of generality it suffices to
charge only for removing mass from a subtree (and not for introducing more mass to a
subtree). The linear program is as follows.

(P ) min
∑
v,t

α�−�(v)zv,t +
∑
t

c · yit,t

For any time t:
∑

i yi,t = 1 (1)

For any time t and subtree Tv (v �= r): zv,t ≥
∑

i∈Tv
(yi,t−1 − yi,t) (2)

Clearly, the formulation is valid. The first constraint says that the total probability mass
on the leaves is exactly 1. The second set of constraints captures the movement cost (i.e.
the cost of decreasing the total probability mass in a subtree) at each internal node.

We now define the dual program. We associate variables at and bv,t with the above
constraints. For notational convenience, let Δbv,t+1 = bv,t+1 − bv,t. If v is the j-th
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parent of leaf i, we will use the notation v and (i, j) interchangeably (especially if we
need to specify the relation of v to i).

(D) max
∑
t

at

For any time t and leaf i �= it: at −
∑�−1

j=0 Δb(i,j),t+1 ≤ 0 (3)

For any time t and leaf it: at −
∑�−1

j=0 Δb(it,j),t+1 ≤ c (4)

For any time t and subtree Tv: bv,t ≤ α�−�(v) (5)

Equivalently, the last constraint can be written as b(i,j),t ≤ αj for any time t, leaf i, and
index j.

We view the dual as follows. With each node v in the tree there is a variable bv that
varies as a function of time, but is bounded by a fixed constant depending on the level of
v (constraint (5)). The dual profit can only be obtained by increasing at, and hence we
try to increase these variables as much as possible over time. At time t, when a request
arrives at leaf it, constraints (3) require that for every leaf i �= it, the sum of bv values
along the path from i to the root must increase so as to offset at. Thus, they force the bv
variables to increase as at is raised. However, as the bv’s are bounded from above, this
process cannot go on for too long, thus preventing the growth of the dual profit. The
rescue comes from the slack in the corresponding constraint for leaf it (constraint (4)),
allowing us to decrease the appropriate bv variables as requests arrive over time.

3 The Metrical Task System Algorithm

The algorithm for the MTS problem on an HST is based on a two-step approach. First,
we show how to maintain online a fractional solution, then show how to transform the
fractional online algorithm into a randomized algorithm (the second step is actually
trivial). The randomized algorithm is going to maintain a primal solution (a probability
distribution on states) and a corresponding dual solution. The high level idea of the
algorithm is very simple. It maintains a (carefully chosen) relation between the primal
and dual variables. When a cost arrives at leaf it at time t, we update the dual variables
subject to the dual constraints ((3)-(5)). The relation between the primal and the dual
variables determines how much probability mass should be moved out of leaf it and
how it should be distributed among other leaves.

The relation between the dual and primal variables is that the value of variable yv,t
(amount of mass in subtree Tv) is a function of the dual variable bv,t+1:

yv,t � f(bv,t+1) �
γ · |C(v)|

n

(
exp

(
ln (1 + n/γ) bv,t+1

α�−�(v)

)
− 1

)
. (6)

This relation is maintained throughout the execution of the algorithm. Let 0 < γ < 1 be
an arbitrary constant. Recall that if v is a leaf then |C(v)| = 1. Before continuing with
the description of the algorithm, we should derive several properties from the invariant.
These properties are somewhat technical and we omit them due to space limitations.
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3.1 The Algorithm

We are now ready to describe our algorithm. At any time t, the algorithm maintains a
distribution on the leaves yi,t. We describe how this distribution is updated upon arrival
of a new request. Suppose, without loss of generality, that the request at time t arrives
at leaf 1 with cost (c, 0, 0, ..., 0). The high level idea of the algorithm is very simple.
Since the cost is non-zero only at leaf 1, we should move some probability mass out of
leaf 1, and distribute it to various other leaves. To determine the exact amount at each
leaf, the algorithm simply should keep the following invariants:

MTS Conceptual Algorithm: When a request arrives at time t at leaf 1 keep the
following invariants:

1. (Tight Duals:) All dual constraints of type (3) on leaves 2, 3, . . . , n are tight.
2. (Hit leaf:) Either y1,t = 0, or the dual constraint (4) on leaf 1 is tight.
3. (Consistency:) For each node v, yv =

∑
w∈C(v) yw.

It turns out that the conceptual algorithm above completely determines how much
mass we should move from leaf 1 to any other leaf in the sub-tree. So, essentially, the
restriction on keeping the dual constraints tight and keeping consistency (i.e., mass in
each sub-tree is equal to the mass in its children) completely determines the algorithm!

For the rest of this section we perform some calculations to give an explicit descrip-
tion of the algorithm, specifying the exact rate at which we should move mass in the
tree. Having obtained these rates, we will bound the total movement cost and the total
service cost by relating it to the growth of the dual profit.

We first give an intuitive description of the process. When the cost arrives at leaf 1 at
time t, if y1,t = 0 then the primal cost is zero and the dual profit is also zero. Moreover,
nothing changes and all the invariants continue to hold. Thus, we consider the case
that y1,t. We start increasing at at rate 1. At each step we would like to keep all dual
constraints tight, as well as consistent. However, raising at violates the dual constraints
on leaves 2, 3, . . . , n, forcing us to raise other dual variables to keep these constraints
tight. Raising these variables may also violate consistency (Invariant (3)), and thus lead
to the update of other dual variables. This process results in the transfer of mass from
leaf 1 to leaves 2, 3, . . . , n, and also the constraint on leaf 1 becomes tighter. We stop
the updating process when either the constraint on leaf 1 is tight, or when y1,t = 0. We
next consider this process more formally.

Consider the root, and let 1j , 1 ≤ j ≤ �, denote the node at level j containing leaf 1
(1� is the leaf itself). Since mass moves out of each subtree containing 1, variable bv,t+1
decreases for each v = 1j . For every other node v in the tree not containing 1, the prob-
ability mass increases. Any node v not containing 1 must be a sibling of some unique
node 1j . By symmetry, all siblings v of a node 1j must increase bv,t+1 at the same rate
(it can be easily checked that this is indeed necessary to keep consistency). We wish to
determine the increase/decrease rate of all dual variables in the tree with respect to at.

Let us use the following notation. For 1 ≤ j ≤ �, let Δbj � − db1j,t+1

dat
be the rate at
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which b1j,t+1 is decreasing with respect to at. For 1 ≤ j ≤ �, let Δb′j �
dbw,t+1

dat
be the

rate at which the siblings of 1j are increasing with respect to at.
We can derive the quantities Δbj andΔb′j in a top-down fashion as follows (the exact

arguments are omitted due to lack of space). We first consider the siblings of 11 (i.e.
children of root other than 11). Let v be one of these siblings. If we raise bv,t+1 by Δb′1,
by the consistency requirement, the sum of Δb′ on any path from v to a leaf in Tv must
be δ(1) ·Δb′1. As at is growing at rate 1, keeping the dual constraint (3) tight for leaves
in Tv requires that

δ(1) ·Δb′1 = 1.

This takes care of the dual constraints for these leaves. Now, this increase of mass
must come by decreasing the mass in T11 since the total probability mass is 1. To keep
consistency of the root we should set Δb1 so that:

Δb′1 = (Δb1 + Δb′1) ·
(
y11,t +

γ · |C(1)|
n

)
/ (1 + γ) .

We repeat the argument for siblings of node 12. Let v be a sibling. Consider a path from
a leaf in Tv to the root. Their dual constraint (3) already grows at rate 1+δ(1)Δb1. This
must be compensated by increasing bv,t+1, and by consistency all the variables bw,t+1
for w ∈ Tv. Therefore, Δb′2 has to be set so that:

δ(2) ·Δb′2 = 1 + δ(1)Δb1.

Again, this additional increase of mass must come from an additional decreasing mass
in T12 . To keep consistency of 11 we must set Δb2 so that:

Δb′2 = (Δb2 + Δb′2) ·
(
y12,t +

γ · |C(2)|
n

)
/

(
y11,t +

γ · |C(1)|
n

)
.

Continuing on, we obtain a system of linear equations. Due to lack of space, the set of
constraints fully defining our algorithm is omitted. Solving the equations we get:

Δb′j =
(1 + γ)
δ(j)

·
(
y1j−1,t +

γ · |C(j − 1)|
n

)−1

Δbj =
1 + γ

δ(j)
·
((

y1j ,t +
γ · |C(j)|

n

)−1

−
(
y1j−1,t +

γ · |C(j − 1)|
n

)−1
)
.

This fully defines our explicit MTS algorithm in terms of derivatives. To implement it,
the algorithm simply does a binary search for the correct value of at defining the correct
flow.



296 N. Bansal, N. Buchbinder, and J.(S.) Naor

MTS Explicit Algorithm: When a request arrives at time t at leaf 1 keep the
following invariants:

1. While the dual constraint of leaf 1 is not tight and y1,t > 0:
2. Increase at with rate 1.
3. Decrease each b1j with rate:

db1j ,t+1

dat
=

1 + γ

δ(j)
·
[(

y1j ,t +
γ · |C(j)|

n

)−1

−
(
y1j−1,t +

γ · |C(j − 1)|
n

)−1
]
.

4. For each sibling w of 1j increase bw,t+1 with rate:

dbw,t+1

dat
=

(1 + γ)
δ(j)

(
y1j−1 +

γ · |C(j − 1)|
n

)−1

.

5. For every node w, recursively, top to bottom, if the variable of the parent of
w, bv,t+1 is increasing/decreasing with rate c, then decrease/increase bw,t+1
with rate c/α.

Based on these rates, we can now calculate the movement cost and the service cost as
a function of the dual profit. This allows us to show our main result, Theorem 4. The
proof is omitted.

4 Applications of the MTS Algorithm

In this section we will describe applications of our method to several problems.

4.1 The Allocation Problem

The allocation problem on d points and k servers can be viewed as an MTS problem
on O((k + 1)d) states. There is a state for each possible way of distributing (up to) k
servers among the d points. There is a natural metric on these states (equal to half the
hamming distance between vectors corresponding to two states). The diameter (ratio of
maximum to minimum distance between any two distinct points) of this space is k.

One issue in the allocation problem is that the number of available servers k(t) can
change with time. This can be handled as follows. Suppose we have an instance of
the allocation problem on d points. Now, imagine that there are d + 1 points and the
number of servers is fixed at k. The number of servers at point d + 1 is supposed to
be at least k − k(t). We can enforce this via MTS, by setting an infinite cost to states
having less than k− k(t) servers at d+ 1. Thus, the number of states in MTS is at most
O((k + 1)d+1).

We embed the metric space of the MTS problem into a probability distribution over
dominating HSTs. Note that the embedding only affects the move costs. Moreover,
the distortion is at most O(logΔ) = O(log k), where Δ is the diameter of the space.
The depth of the HST is � = O(log k). Theorem 4 implies an (1 + ε, O(� log(n/ε)))
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competitive algorithm for MTS on an HST with depth �. By the application to an
allocation problem on d points, in which n = O(kd) and adding an addition factor
log(Δ) = O(log k) due to distortion in the movement costs, we obtain that

Theorem 6. There exists an (1 + ε, O(d log2 k log(k/ε)))-competitive algorithm for
the allocation problem of degree d.

4.2 Application to k-Server on d-Ary HSTs

We use theorem 5 that relates the k-server problem on HSTs to the allocation problem.
By Theorem 6 we have β(ε) = O(d log2 k log(k/ε))). Thus we obtain:

Theorem 7. Let T be a d-ary HST with depth � and parameter α, then for any ε ≤ 1,
there exists a competitive algorithm for the HST with competitive factor:

O

(
min(α, d log2 k log(k/ε)/ε) ·

(
1 + ε + O(

d log2 k log(k/ε)
α

)
)�+1)

.

Choosing ε = 1
� , if α = Ω

(
�d log2 k log(k�)

)
, the algorithm is O

(
�d log2 k log(k�)

)
-

competitive.

4.3 The k-Server Problem on Equally Spaced Points on the Line

A well known (folklore) result for embedding a line into an HST is the following5.

Lemma 1. For anyα≥2, the line metric can be embedded into an (�=logΔ/ logα,d=
O(α), α)-HST, with distortion of α logΔ.

Apply Theorem 7 with ε = 1 and α = exp(O(
√

log log k logΔ)) (which turn out to
optimal choices of parameters), yielding:

Theorem 8. There exists an exp
(√

O(log log k logΔ)
)

-competitive algorithm for the

the k-server problem on the line.
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Abstract. We give a rigorous account on the complexity landscape of an im-
portant real-time scheduling problem that occurs in the design of software-based
aircraft control. The goal is to distribute tasks τi = (ci, pi) on a minimum number
of identical machines and to compute offsets ai for the tasks such that no collision
occurs. A task τi releases a job of running time ci at each time ai + k · pi, k ∈ N0
and a collision occurs if two jobs are simultaneously active on the same ma-
chine. Our main results are as follows: (i) We show that the minimization prob-
lem cannot be approximated within a factor of n1−ε for any ε > 0. (ii) If the
periods are harmonic (for each i, j one has pi | p j or p j | pi), then there exists
a 2-approximation for the minimization problem and this result is tight, even
asymptotically. (iii) We provide asymptotic approximation schemes in the har-
monic case if the number of different periods is constant.

1 Introduction

The motivation for this research comes from a real-word combinatorial optimization
problem that was communicated to us by our industrial partner, a major avionics com-
pany. The aircraft designers need to schedule highly critical periodic control tasks with
a predictable and static scheduling policy such that preemption and dynamic effects
are avoided. The model that is used in this context is as follows. One is given tasks
τ1, . . . ,τn where each task τi = (ci, pi) is characterized by its execution time ci ∈ N and
period pi ∈ N. The goal is to assign the tasks to identical machines and to compute
offsets ai ∈N0 such that no collision occurs. A task τi generates one job with execution
time ci at every time unit ai + pi · k for all k ∈ N0. Each job needs to be processed im-
mediately and non-preemptively after its generation on the task’s machine. A collision
occurs if two jobs are simultaneously active on one machine.

p1 2p1 3p1 4p1p2 2p2p30 lcm

p1 2p1 3p1 4p1p2 2p2p30 lcm
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The picture above shows three tasks τ1 = (1,6),τ2 = (1,10) and τ3 = (2,15). The
upper part shows an infeasible assignment of offsets (a1 = 0, a2 = 1, a3 = 2) whereas
the lower part shows a feasible assignment of offsets (a1 = 1, a2 = 0, a3 = 2). Notice
that the schedule repeats after the least-common multiple (lcm) of the periods.

In the single machine context and with unit execution times, this problem was studied
by Wei and Liu [WL83] who called the problem of computing offsets the periodic
maintenance problem. Baruah et al. [BRTV90] and independently [BBNS02, Bha98]
show that the periodic maintenance problem is NP-hard in the strong sense.

The engineers are however interested in the corresponding machine minimization
problem, i.e., they want to find the minimum number of identical machines on which the
tasks can be distributed in a feasible way. We refer to this problem as the periodic main-
tenance minimization problem. Korst et al. [KALW91, KAL96] studied this problem
and show independently from [BRTV90] and [BBNS02, Bha98] that it is NP-hard in
the strong sense. It occurs in particular when additional features have to be implemented
on a given architecture. For the avionics company it is then preferable to re-design the
control software only rather than to re-design and change the hardware components.
Sometimes even moderately sized real-word instances turn out to be unsolvable with
state-of-the-art integer programming approaches. One feature that the easier instances
share is that, with only few exceptions, their tasks have harmonic periods, i.e., for each
pair of tasks τi,τ j one has pi | p j or p j | pi. Thus, one question that arises is whether
instances with this divisibility property are easier to solve than general instances.

For many combinatorial optimization problems, the answer to an analogous ques-
tion is indeed yes. For instance, KNAPSACK with divisible items [Mar85, VA97] or the
MIXING SET problem with divisible capacities [ZIRdF08, CSW08] are only two exam-
ples, where one has polynomial time algorithms on the one hand for the divisible case
and NP-hardness for the general case. For the periodic maintenance minimization prob-
lem that is in the focus of this work the difference is however drastic and reflects very
well the experience with those real-word instances whose tasks mostly have harmonic
periods and very general instances.

Our contribution is a rigorous account on the complexity and approximability landscape
of the above described machine-minimization problem. Our results are summarized in
Table 1. In this extended abstract, we limit ourselves to the description of the following
results that are highlighted in this table. More results and details are presented in the
full version of this paper [EHN+10].
�We prove that, for any ε > 0, it is NP-hard to approximate the periodic maintenance
minimization problem within a factor of n1−ε , i.e., that the trivial approximation al-
gorithm is essentially tight. This explains the difficulty of moderately sized instances
without harmonic periods from a theoretical viewpoint. The result is achieved by a re-
duction from COLORING that relies on basic number-theoretic results like the Chinese
Remainder Theorem and the Prime Number Theorem. We remark that the reduction has
been given independently in [BBNS02, Bha98]. The hardness result also holds under
resource augmentation.
�We show that the periodic maintenance minimization problem with harmonic periods
allows for a 2-approximation algorithm. Furthermore, we show that this is tight, even
asymptotically. It is remarkable that a simple variant of First-Fit can be analyzed to
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Table 1. The approximability landscape of the periodic maintenance minimization problem. Here
qk and q1 denote the largest and smallest period length, respectively.

arbitrary periods
period lengths k algorithms hardness results

k arbitrary 2OPT +k−1 n1−ε OPT
k constant

( 3
2 + ε

)
OPT +k

( 3
2 − ε

)
OPT +k−1

harmonic periods
period lengths k algorithms hardness results

k arbitrary 2OPT (2− ε)OPT +o(OPT )
k constant (1+ ε)OPT +k

( 3
2 − ε

)
OPT +k−1

qk/q1 constant (1+ ε)OPT +1 (2− ε)OPT

be a 2-approximation algorithm. The analysis differs however considerably from the
simple analysis that shows that First-Fit for BIN-PACKING yields a 2-approximation.
The novel concept that we use is the one of a witness for certain groups of machines.
These witnesses prove that these groups are heavily loaded. If a witness for a certain
group of machines is missing, the instance can be separated into two independent sub-
instances. This allows for an analysis by induction.
� Even though the 2-approximation result for the case of harmonic periods is tight, we
show that a stronger restriction leads to an asymptotic PTAS: If the number of differ-
ent periods k is constant, we have an efficient algorithm with approximation guarantee
(1 + ε)OPT + k, for any constant ε > 0. The basic approach follows the ideas of the
classical APTAS for BIN-PACKING of Fernandez de la Vega and Luecker [FdlVL81].
The more complicated nature of the periodic maintenance problem, however, requires
several interesting and nontrivial extensions of the techniques such as a more sophis-
ticated rounding procedure and advanced structural insights into the solutions to the
periodic maintenance problem. This helps to enumerate the solution space to find a
template that can be turned into a solution with the desired approximation guarantee.

Related work. There is excessive literature on real-time scheduling; for surveys see,
e.g., [BHR93, But04, Leu04]. In contrast to our problem, one is often interested in veri-
fying whether a set of tasks can be scheduled on one machine with a certain scheduling
policy. The periodic maintenance minimization problem generalizes BIN-PACKING. In
fact, if the periods of tasks are all identical, the problem is equivalent to BIN-PACKING.
The problem is, however, more general and the approximation ratios known for BIN-
PACKING do not carry over. While there is, for instance, a 1.5-approximation algorithm
for BIN-PACKING [SL94], achieving this performance ratio is impossible for our prob-
lem, even for the case of harmonic periods.

2 Harmonic Periods

First-Fit is a simple and very popular heuristic for many packing problems, such as,
e.g., BIN-PACKING etc. Adapted to our problem, First-Fit considers tasks in some given
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order and greedily packs the current task on the first open machine on which it fits. In
case there is no such machine, it opens a new machine on which the current task is
scheduled.

A crucial subproblem occurring in this context is to decide whether a task τ can be
scheduled on a machine on which other tasks, say τ1, . . . ,τn, have already been sched-
uled without changing the offsets of these tasks. If all processing times are equal to 1
and the period of τ is p, we will see in Section 3 that the feasible offsets a for task τ are
the solutions to the system

a �≡ a j mod gcd(p, p j) for j = 1, . . . ,n. (1)

For arbitrary (not harmonic) p j ∈ N and p = ∏n
i=1 p j, this is the NP-complete problem

of computing simultaneous incongruences, see, e.g., [GJ79]. Thus, for instances of the
periodic maintenance minimization problem with arbitrary periods, already this crucial
subproblem is NP-hard and it is not clear how to implement First-Fit.

In this section we consider the special case of harmonic periods. In Section 2.1 we
show how the crucial subproblem can be solved efficiently in this case by making clever
use of a special solution structure.

In the following we always assume that tasks τ1 = (c1, p1), . . . ,τn = (cn, pn) are
sorted such that p j | p j+1, for j = 1, . . . ,n−1. Moreover, the number of different period
lengths of the input-tasks is denoted by k and the set of all task periods is denoted by
Q = {q1, . . . ,qk}, where qi | qi+1, for i = 1, . . . ,k−1.

2.1 Bin Trees

An important encoding of single-machine schedules which we use repeatedly in this
paper is the (compressed) bin tree that we now explain. Assume that offsets a j for tasks
τ j = (c j, p j), j = 1, . . . ,n, are given. Then the resulting schedule, i.e., which task runs a
job at which time, repeats itself after the largest period qk. The smallest period q1 par-
titions the time-horizon [0,qk) into bins [i ·q1,(i+1) ·q1); see Figure 1 for an example.

Assume that the offsets a j, j = 1, . . . ,n, determine a feasible single-machine schedule
for tasks τ1, . . . ,τn where no two jobs collide. By a simple shifting argument, we can
assume w.l.o.g. that the first task τ1 with minimum period p1 = q1 has offset a1 = 0
(see also Figure 1). Now consider an additional task τ = (c, p) with maximum period
p = qk. Clearly, one can find a feasible offset for this task if and only if one of the qk/q1

bins has a free slot of size c.

0 q1 2 ·q1 3 ·q1 4 ·q1 5 ·q1 6 ·q1

Fig. 1. A schedule for a single machine. The gray jobs belong to tasks with period length q1, the
striped jobs to tasks with period length q2 = 3 · q1, and the checkered jobs to tasks with period
length q3 = 6 ·q1.
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Fig. 2. The full bin tree corresponding to the schedule in Figure 1

Fig. 3. The compact form of the bin tree in Figure 2

Consider two bins Bi = [i · q1,(i + 1) · q1) and B j = [ j · q1,( j + 1) · q1) such that
i≡ j mod qr/q1. As far as tasks with period length up to qr are concerned, these bins
look the same. As a shorthand, we write Bi ≡r B j when i≡ j mod qr/q1.

The root of a full bin tree is a node representing a bin containing all tasks of period
length q1. It has q2/q1 children, each of which represents a bin that contains all its
parent’s tasks and may contain additional tasks of period length q2. We say that the root
is of period q1, and its children are of period q2.

In general, a node B of period qr contains only tasks of period length up to qr. If
qr < qk, it has qr+1/qr children, each of which is a node of period qr+1. Each child of B
represents a bin that contains all tasks of B and may contain additional tasks of period
length qr+1. Each scheduled task of period length qr appears in a unique node of period
qr and in all children of that node.

As a consequence of this definition, there is a one-to-one correspondence between
nodes of period qr in the full bin tree and equivalence classes of bins modulo the equiv-
alence relation≡r. Furthermore, the hierarchy of equivalence relations≡r (r = 1, . . . ,k)
corresponds to the hierarchy of the tree in the following way: If two nodes of period
≥ qr have the same ancestor of period qr, then their corresponding bins are equivalent
modulo≡r, and vice versa. In particular the leafs of the bin-tree correspond to the bins
of the schedule. Thus we can freely convert between a feasible schedule in terms of task
offsets and the corresponding bin tree representation; see Figure 2.

The number of nodes in a full bin tree is dominated by its leaves, of which there
are qk/q1 many, so we cannot operate efficiently on full bin trees and, in particular, we
cannot afford to store a full bin tree to implement our First-Fit heuristic. However, if a
node of period qr does not contain a task of period qr, it is completely determined by
its parent. Therefore, we only need to store those nodes of the tree that introduce a new
task to the schedule, see Figure 3 for an example. In this way we have a compressed
bin tree whose number of nodes is bounded by the number of tasks and that can be
constructed in polynomial time.
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Coming back to the implementation of First-Fit, given a bin tree and an unscheduled
task τ whose period length is greater or equal to the period lengths of all tasks in the
bin tree, one can easily determine whether τ can be inserted into the bin tree in compact
form by checking all the leaves of the compact tree, as well as all nodes to which a new
leaf of the right period can be added. We will use this fact in the next subsection.

2.2 First-Fit Algorithm

In the sequel we use the following term: If a subset of tasks is assigned to a machine,
then the type of this machine is the smallest period of these tasks. The First-Fit algorithm
maintains a list M1, . . . ,M� of open machines where Mi was opened before Mj if i < j.
The algorithm is initialized with the empty list. Then, the algorithm proceeds as follows.
For j = 1, . . . ,n:

1. Find the first machine on which τ j fits and insert it into a leaf of that machine’s bin
tree such that no gaps are created within the leaf. Within this machine’s bin tree,
break ties between leaves arbitrarily.

2. If τ j does not fit on any open machine, we open a new machine of type p j and add
τ j to the root node of its bin tree. Furthermore, to simplify the analysis later, we
open a second new machine of type p j. On this machine we schedule a dummy task
with running time 0 and period p j.

Note that, because tasks are added in non-decreasing order of period lengths, we only
add tasks to leaves of the compressed bin tree as discussed above.

The utilization of a task τ = (c, p) is defined as util(τ) = c/p. For a set of tasks I and
a machine M we define util(I) = ∑τ∈I util(τ) and util(M) = ∑τ on M util(τ), respectively.
The utilization util(I) is a lower bound for OPT (I). The main result of this section is
the following theorem.

Theorem 1. The First-Fit algorithm is a 2-approximation algorithm.

Before we present the proof of Theorem 1 we will discuss some differences to the
analysis of the First-Fit algorithm for BIN-PACKING and motivate the concept of a
witness that turns out to be very useful. The simple observation showing that First-
Fit for BIN-PACKING is a 2-approximation is as follows: If First-Fit opens a new bin,
then let α be the minimum weight of all previously opened bins. This implies that the
current item has weight at least 1−α and if there are any other open bins, they must
have weight at least max{α,1−α}. The average weight of the bins is thus at least 1/2.

Now suppose that the First-Fit algorithm for the machine minimization problem
opens a new machine for task τ j = (c j, p j). If the type q of some machine with low
utilization is smaller than the running time c j of the task, then this task cannot be run
on this machine. Thus, it may happen that there are many open machines with a low
utilization. In particular, it is not true that the average utilization of the open machines
is at least 1/2. However, we can derive a lower bound on the average load of the ma-
chines whose type is compatible with τ j , where the set of compatible types is denoted
by Q( j) := {q ∈Q : c j ≤ q≤ p j}.
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Lemma 1. Suppose that the First-Fit algorithm cannot schedule τ j on one of its open
machines and opens two new machines instead. Let q ∈ Q( j) be a compatible machine
type, and let M1, . . . ,M�, � > 0, be the machines of type q that were open before the
algorithm tries to assign τ j . Then, 1

� ∑�
i=1 util(Mi) > 1

2 .

Proof. First observe that � ≥ 2 because the First-Fit algorithm always opens two ma-
chines of the same type at a time. Consider the bin trees corresponding to machines
M1, . . . ,M� when τ j should be added. Note that the leaves of the trees are of period at
most p j. Let α > 0 be the minimum fill ratio over all leaf-bins of the trees. If α > 1

2 ,
then every bin is more than half filled and the claim follows.

Thus, we can assume that α ≤ 1
2 . Let B be a leaf bin of fill ratio α , and M be the

machine B belongs to. Thus, the utilization of M is at least α . We will show that all
leaf bins of the machines {M1, . . . ,M�} \ {M} have a fill ratio greater than 1−α . This
implies, in particular, that all machines other than M have a utilization greater than
1−α . Since �≥ 2, the claim then follows by an averaging argument.

Let B be a leaf bin on a machine Mi �= M. There are two cases to consider: The
First-Fit algorithm considers Mi before or after M. If Mi is considered before M, let τ
be any task assigned to B. Now consider the time when τ was assigned by First-Fit. At
that time, either B or an ancestor of B was a leaf-bin. First-Fit tried to assign τ to B (or
its ancestor) but failed. Now τ fills at most an α-fraction of a bin, which implies that
the fill ratio of B (or its ancestor) must have been more than 1−α , otherwise τ would
have been packed there instead. Thus, B has fill ratio greater than 1−α at the time τ is
assigned. For the case where Mi is considered after M, we can analogously argue that a
task in B could have been assigned to B (or an ancestor). ��

Let τ j be a task and let M j be the set of machines that are open when First-Fit tries to
assign τ j. Let Q′ ⊆Q( j) be a subset of the compatible machine types and let M ′ ⊆M j

be the subset of machines whose type is in Q′. The above lemma implies that, if First-
Fit opens two new machines when it tries to assign τ j, then the average load of the
machines in M ′ is at least 1/2. We say that τ j is a witness of M ′. In particular, if
q < p j is compatible with τ j and if Mq denotes the machines of type q that are created
by First-Fit, then τ j is a witness of Mq. We have the following lemma.

Lemma 2. FF(I) denotes the number of machines opened by the First-Fit heuristic. If
for all q ∈ Q, q < qk, the set Mq has a witness, then FF(I)≤ 2OPT (I).

Proof. Let q ∈ Q with q < qk, and let τ be a witness for Mq. Then we can apply
Lemma 1 to show that ∑M∈Mq util(M) ≥ 1

2 |Mq|. Now let M ′ be the set Mqk without

the two last machines that we call M̃1 and M̃2. Let τ be a task assigned to M̃1. Observe
that τ is a witness for M ′. Thus, ∑M∈M ′ util(M)≥ 1

2 |M ′|. Hence we have FF(I)−2≤
2 · util(I \ {τ}) which implies FF(I)− 2 < 2 · util(I) ≤ 2 ·OPT(I). Since both FF(I)
and 2 ·OPT(I) are even, we conclude FF(I)≤ 2 ·OPT(I). ��

If the special case of Lemma 2 does not apply, we can identify sub-instances that are
pairwise independent of each other, yet cover all machines opened by First-Fit. We use
this observation to prove Theorem 1 by induction.
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Proof (of Theorem 1). We prove the theorem by induction on k, the number of dif-
ferent periods. If k = 1, then the claim is obvious. Now assume that First-Fit is a
2-approximation for all instances with less than k periods. If for all q ∈ Q, q < qk,
the set Mq has a witness, again the claim follows directly with Lemma 2.

Thus, let q ∈ Q, q < qk be a period such that Mq does not have a witness. We now
partition the tasks into I′ := {τ ∈ I : First-Fit assigns τ to a machine of type ≤ q} and
I′′ := I\I′. Moreover, let I := {τi ∈ I′ : pi ≤ q}. Let τ j be an arbitrary task in I′′. Then
q is not compatible with τ j since otherwise τ j would be a witness for Mq. Thus, each
task in I′′ has a running time > q. As the period lengths of all tasks in I are at most q,
no task in I can be scheduled together with a task in I′′. This shows that I and I′′ are
independent in the sense that OPT (I)+ OPT(I′′) = OPT (I∪ I′′)≤ OPT (I).

On the other hand, since First-Fit assigns each task of I′ to a machine of type ≤ q
and these must have been opened and typed by a job in I, one has FF(I) = FF(I′) and
FF(I) = FF(I)+ FF(I′′). Using the induction hypothesis, we get

FF(I) = FF(I)+ FF(I′′)≤ 2OPT (I)+ 2OPT(I′′)≤ 2OPT (I).
This concludes the proof. ��

Surprisingly, the approximation result in Theorem 1 is tight, even if one aims for asymp-
totic approximation guarantees. This is in sharp contrast to the classical BIN-PACKING

problem, where one has a fully polynomial asymptotic approximation scheme [KK82]
and for which one does not know variants of First-Fit with optimal (asymptotic) ap-
proximation ratios. The proof of the following theorem can be found in [EHN+10]. It
is established via a reduction from PARTITION and boosting.

Theorem 2. Unless P = NP, there is no approximation algorithm with a guarantee of
(2− ε)OPT + o(OPT) for the case of harmonic periods, for any ε > 0.

2.3 An APTAS for a Constant Number of Periods

For the case of harmonic periods the 2-approximation algorithm cannot be improved,
unless P = NP. This holds even asymptotically. In particular, there is no hope for an
asymptotic PTAS. Our experience with real-world instances from our industrial partner,
however, is that these instances often have only very few different period lengths. We
thus consider the case where the number of different periods k is bounded by a constant
and present an asymptotic PTAS for this restricted setting.

Theorem 3. For any ε > 0 and k bounded by a constant, there is an efficient algorithm
that computes a solution of value at most (1 + ε)OPT(I)+ k.

We only sketch the main ideas of the algorithm. For a complete description we refer
to the full version of this paper [EHN+10]. Although the high level idea is the same
as for the APTAS for BIN-PACKING [FdlVL81], the more complex nature of the peri-
odic maintenance problem imposes novel and interesting difficulties. In particular, we
cannot simply classify tasks as big or small, since different bin sizes occur on different
machines. Therefore we must do this classification relative to the size of the bin, making
the rounding procedure significantly more involved. After the rounding, we determine
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q1 2q1 3q1 4q1 5q10 6q1

Fig. 4. A schedule in bin structure. The gray jobs belong to tasks with period length q1, the
striped jobs to tasks with period length q2 = 3 · q1 and the checkered jobs to tasks with period
length q3 = 6 ·q1.

the optimal solution for the big tasks by enumeration, making non-trivial use of the con-
cept of bin trees. Finally, we add the small tasks using First-Fit. All these steps have to
be performed with extreme care not to introduce extra additive factors to the guarantee
on the objective function.

First, we show that the individual schedule for each machine can be assumed to have
a particular structure. More precisely, we say that a schedule obeys the bin structure
if each bin satisfies the following (see also Figure 4): (i) Let q be the smallest period
length of a task on the machine; then, there is a task τ j with p j = q and a j = 0; (ii) if
a task τ j starts before a task τ j′ in the bin, then p j ≤ p j′ ; and (iii) all jobs in a bin are
processed consecutively.

Notice that the same bin tree structure described in Section 2.1 can be used for so-
lutions that follow the bin structure. Moreover, a simple swapping argument shows the
following lemma.

Lemma 3. Let I′ be a set of tasks assigned to a machine M. If there is a feasible sched-
ule for I′, then there is a feasible schedule that obeys the bin structure.

The structure given by this lemma is crucial to describe schedules compactly: Given an
assignment of tasks to bins in the bin tree such that no bin is overloaded, we can find an
offset for each task such that no two tasks collide. In particular, in the enumeration step
of our APTAS, we will only enumerate over the assignments of the tasks to the bins,
not the individual schedules within each bin.

Rounding. In order to round the execution times of big tasks, more forethought is nec-
essary compared to the APTAS for BIN-PACKING. We want to achieve two goals: On
the one hand, only a constant number of big tasks should fit into a bin. On the other
hand, we want to ensure that, later on, the remaining space in the bins can be used
efficiently by the First-Fit procedure for the small tasks.

Given a bin size q ∈Q, we say that a task τ j is small with respect to q if c j < εq and
big if εq ≤ c j ≤ q. Now the rounding is done independently for each period length q�:
For i = 1, . . . ,k, in iteration i, we only round tasks that are big with respect to qi, and that
have not been rounded before. These tasks are sorted by non-decreasing execution times
and then partitioned into O(1/ε2) many groups. All groups are of equal size except for
the first group which may have fewer elements. The execution times of all tasks of the
same group are then rounded up to the maximum execution time of that group.

Denote by I′ the rounded instance. For each period length q� and each bin size qi,
denote by L�,i the set of tasks on the last group. We define L := ∪�,iL�,i and J := I′ \L.
Using OPT (I) as a template for J, one can show that OPT (J)≤ OPT (I). For each bin
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size q, denote by Cq the set of all execution times c of big tasks in J such that c ≤ q
(and thus a task with execution time c could possibly be scheduled in such a bin). The
rounding ensures that the cardinality of each set Cq is bounded by a constant.

We will show at the end that the tasks in L together with a certain subset of the
small tasks can be packed onto O(ε)OPT (I)+k extra machines. Now, we proceed with
presenting an approximation algorithm for J.

Enumeration of Solutions. In order to enumerate the solutions of big tasks in J, it is
crucial to compactly represent the bin trees. We introduce the concept of a bin configu-
ration which, given a bin schedule, encodes: (a) the level of a bin on the bin tree; (b) the
size of the bin q; (c) the assignment of big tasks; and (d) the space reserved for small
tasks for each period length, rounded down to the nearest multiple of εq.

Since the number of big tasks in a bin is at most 1/ε , and |Cq| is bounded by a
constant, the total number of bin configurations is also bounded by a constant. We can
therefore enumerate the bin configurations on the compressed bin trees in polynomial
time as follows:

(i) Assume that, for each machine, we have already determined the bin configurations
of all bins up to level qi in its corresponding compressed bin trees.

(ii) For each bin configuration of level qi+1, we enumerate the number of bins follow-
ing this configuration. In what follows, we consider only the iteration in which we
enumerate the respective amount that corresponds to the optimal solution to J.

(iii) Attach each node configuration to a parent node on any machine, such that the
jobs of period lengths up to qi coincide.

One of the enumerated solutions corresponds—up to permutation of sub-trees—to an
optimal solution to J. Indeed, by an inductive argument, we can assume that levels up
to qi contains the right number of nodes of each configuration. Then, if in Step (ii) we
enumerate the correct number of bins with each configuration, it is clear that Step (iii)
will successfully attach the nodes to the trees.

Moreover, the running time of the algorithm is polynomial. Indeed, since the number
of configurations on each level is at most a constant λ , Step (ii) can be performed in
time O(nλ ). Thus, the running time of the whole algorithm is bounded by O(nkλ ).

The APTAS. We are now ready to state the APTAS: (1) Round tasks and define instances
J and L; (2) enumerate over all possible configurations of bin trees; (3) assign the big
tasks in J according to the bin configurations; (4) greedily assign small tasks to bins by
using the reserved space in the configurations; call S the set of small tasks that could
not be assigned; (5) for each period length q independently, schedule all jobs in L∪ S
of period q with the classical First-Fit algorithm for BIN-PACKING. (Notice that, in this
last step, we do not mix tasks of different period lengths on the same machine.)

Up to Step (4) of the algorithm, we have only used OPT (J) ≤ OPT (I) many ma-
chines. It remains to show that First-Fit in Step (5) assigns tasks in L∪ S to at most
O(ε)OPT + k machines. We omit the proof and refer to [EHN+10].

Lemma 4. First-Fit assigns tasks in L∪S to at most O(ε)OPT + k machines.

If not only k is bounded by a constant but even qk/q1, one can obtain a better bound.
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Theorem 4. For any ε > 0 and qk/q1 bounded by a constant, there is an efficient algo-
rithm that computes a solution of value at most (1 + ε)OPT(I)+ 1.

The main difference to the algorithm above is that here a task τi is small if ci ≤ εq1 and
big otherwise. Also, we need to be more careful with the First-Fit procedure to assign
the remaining small jobs as in Step (5). For full details we refer to [EHN+10].

3 Arbitrary Period Lengths

In this section we study the periodic maintenance problem in the setting of arbitrary,
i.e., not necessarily harmonic, period lengths. We only sketch the results. For more
details see [EHN+10].

One can derive a First-Fit algorithm as follows: Partition the tasks according to their
period lengths. Then do First-Fit for period lengths separately such that no two jobs
with different period lengths are scheduled on the same machine. Denote by FF(I)
the number of machines in the resulting schedule. Using utilization bound techniques
similar to BIN-PACKING, we obtain the following theorem.

Theorem 5. For any instance I it holds that FF(I)≤ 2 ·OPT + k−1.

Now assume that k is bounded by some constant and let ε > 0. We call a task τ small
if util(τ) ≤ ε , otherwise we call τ big. We define the sets Ismall and Ibig respectively.
We enumerate all solutions for the big tasks and call the best solution ENUM(Ibig).
This can be done in polynomial time since there are at most �1/ε� big tasks on each
machine and k is assumed to be constant (a similar argument as used in [FdlVL81] for
BIN-PACKING). We output EFF(I) := min

{
FF(I),ENUM(Ibig)+ FF(Ismall)

}
.

Theorem 6. Assume that k is bounded by a constant. Then, EFF(I) can be computed
in polynomial time and EFF(I)≤ (3/2 + O(ε))OPT + k.

In the remainder of this section we show that the periodic maintenance minimization
problem is hard to approximate within a factor of n1−ε using an approximation preserv-
ing reduction from COLORING. We remark that this reduction has been stated indepen-
dently in [BBNS02, Bha98]. Again, we only sketch the results and refer to [EHN+10]
for more details. The result still holds if we restrict the problem to unit execution times.

For unit execution times, a set of offsets is feasible if and only if ai + ki · pi �=
a j + k j · p j for all i, j and ki,k j ∈ N0. With elementary number theory [NZM91] it is
easy to see that this is equivalent to ai �≡ a j mod gcd(pi, p j). The reduction works as
follows. Let the graph G = (V,E) be an instance of the COLORING problem. Let E be
the complement of E , i.e., E := {{u,v} : u,v ∈V,{u,v} /∈ E}. We choose pairwise dif-
ferent primes qe for all e ∈ E . This can be done in polynomial time with the sieve of
Eratosthenes since the Prime Number Theorem guarantees Θ (x/ ln(x)) primes among
the first x natural numbers (see, e.g., [NZM91]). For each node v ∈ V , we define a task
τv = (cv, pv) with cv := 1 and pv := ∏e∈E: v∈e qe. We denote with red(G) := {τv : v∈V}
the periodic maintenance instance obtained from the graph G using this construction.
Note that we can compute red(G) in polynomial time. Our construction has the follow-
ing properties:
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Lemma 5. Given a graph G = (V,E), the machine minimization instance red(G) sat-
isfies the following properties.

a) For each edge {u,v} ∈ E, tasks τu and τv cannot be assigned to the same machine.
b) For an independent set U ⊆V , tasks {τv : v ∈U} can be scheduled on one machine.

These properties can be used to show that our construction is a reduction.

Lemma 6. For each k ∈ N, a graph G is k-colorable if and only if red(G) can be
scheduled on k machines.

It is shown in [Zuc07] that it is NP-hard to approximate the COLORING problem within
a factor of n1−ε , for any constant ε > 0, where n is the number of nodes of the graph.
This immediately implies the claimed inapproximability result.

Theorem 7. The periodic maintenance minimization problem cannot be approximated
within a factor of n1−ε , for any constant ε > 0, unless P = NP.

We remark that the primes generated in the reduction can get exponentially large (al-
though their encoding length is polynomial). For that reason, this result only shows that
it is weakly NP-hard to approximate within the factor given in Theorem 7. The question
whether there is a pseudopolynomial time algorithm with a constant factor approxima-
tion guarantee remains open.
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Abstract. We show that a natural online algorithm for scheduling jobs
on a heterogeneous multiprocessor, with arbitrary power functions, is
scalable for the objective function of weighted flow plus energy.

1 Introduction

Many prominent computer architects believe that architectures consisting of
heterogeneous processors/cores, such as the STI Cell processor, will be the dom-
inant architectural design in the future [8,13,12,17,18]. The main advantage of
a heterogeneous architecture, relative to an architecture of identical processors,
is that it allows for the inclusion of processors whose design is specialized for
particular types of jobs, and for jobs to be assigned to a processor best suited for
that job. Most notably, it is envisioned that these heterogeneous architectures
will consist of a small number of high-power high-performance processors for crit-
ical jobs, and a larger number of lower-power lower-performance processors for
less critical jobs. Naturally, the lower-power processors would be more energy
efficient in terms of the computation performed per unit of energy expended,
and would generate less heat per unit of computation. For a given area and
power budget, heterogeneous designs can give significantly better performance
for standard workloads [8,17]; Emulations in [12] suggest a figure of 40% better
performance, and emulations in [18] suggest a figure of 67% better performance.
Moreover, even processors that were designed to be homogeneous, are increas-
ingly likely to be heterogeneous at run time [8]: the dominant underlying cause
is the increasing variability in the fabrication process as the feature size is scaled
down (although run time faults will also play a role). Since manufacturing yields
would be unacceptably low if every processor/core was required to be perfect,
and since there would be significant performance loss from derating the entire
chip to the functioning of the least functional processor (which is what would be
required in order to attain processor homogeneity), some processor heterogeneity
seems inevitable in chips with many processors/cores.
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The position paper [8] identifies three fundamental challenges in scheduling
heterogeneous multiprocessors: (1) the OS must discover the status of each pro-
cessor, (2) the OS must discover the resource demand of each job, and (3) given
this information about processors and jobs, the OS must match jobs to processors
as well as possible. In this paper, we address this third fundamental challenge.
In particular, we assume that different jobs are of differing importance, and we
study how to assign these jobs to processors of varying power and varying en-
ergy efficiency, so as to achieve the best possible trade-off between energy and
performance.

Formally, we assume that a collection of jobs arrive in an online fashion over
time. When a job j arrives in the system, the system is able to discover a size
pj ∈ R>0, as well as a importance/weight wj ∈ R>0, for that job. The importance
wj specifies an upper bound on the amount of energy that the system is allowed
to invest in running j to reduce j’s flow by one unit of time (assuming that
this energy investment in j doesn’t decrease the flow of other jobs)—hence jobs
with high weight are more important, since higher investments of energy are
permissible to justify a fixed reduction in flow. Furthermore, we assume that
the system knows the allowable speeds for each processor, and the system also
knows the power used when each processor is run at its set of allowable speeds.
We make no real restrictions on the allowable speeds, or on the power used for
these speeds.1 The online scheduler has three component policies:

Job Selection: Determines which job to run on each processor at any time.
Speed Scaling: Determines the speed of each processor at each time.
Assignment: When a new job arrives, it determines the processor to which

this new job is assigned.

The objective we consider is that of weighted flow plus energy. The rationale
for this objective function is that the optimal schedule under this objective
gives the best possible weighted flow for the energy invested, and increasing the
energy investment will not lead to a corresponding reduction in weighted flow
(intuitively, it is not possible to speed up a collection of jobs with an investment
of energy proportional to these jobs’ importance).

We consider the following natural online algorithm that essentially adopts the
job selection and speed scaling algorithms from the uniprocessor algorithm in
[5], and then greedily assigns the jobs based on these policies.

Job Selection: Highest Density First (HDF)
Speed Scaling: The speed is set so that the power is the fractional weight of

the unfinished jobs.
Assignment: A new job is assigned to the processor that results in the least

increase in the projected future weighted flow, assuming the adopted speed
scaling and job selection policies, and ignoring the possibility of jobs arriving
in the future.

1 So the processors may or may not be speed scalable, the speeds may be continuous
or discrete or a mixture, the static power may or may not be negligible, the dynamic
power may or may not satisfy the cube root rule, etc.
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Our main result is then:

Theorem 1. This online algorithm is scalable for scheduling jobs on a hetero-
geneous multiprocessor with arbitrary power functions to minimize the objective
function of weighted flow plus energy.

In this context, scalable means that if the adversary can run processor i at speed
s and power P (s), the online algorithm is allowed to run the processor at speed
(1 + ε)s and power P (s), and then for all inputs, the online cost is bounded
by O(f(ε)) times the optimal cost. Intuitively, a scalable algorithm can handle
almost the same load as optimal; for further elaboration, see [20,19]. Theorem
1 extends theorems showing similar results for weighted flow plus energy on
a uniprocessor [5,2], and for weighted flow on a multiprocessor without power
considerations [9]. As scheduling on identical processors with the objective of
total flow, and scheduling on a uniprocessor with the objective of weighted flow,
are special cases of our problem, constant competitiveness is not possible without
some sort of resource augmentation [16,3].

Our analysis is an amortized local-competitiveness argument. As is usually the
case with such arguments, the main technical hurdle is to discover the “right” po-
tential function. The most natural strawman potential function to try is the sum
over all processors of the single processor potential function used in [5]. While
one can prove constant competitiveness with this potential in some special cases
(e.g. where for each processor the allowable speeds are the non-negative reals,
and the power satisfies the cube-root rule), one can not prove constant compet-
itiveness for general power functions with this potential function. The reason
for this is that the uniprocessor potential function from [5] is not sufficiently
accurate. Specifically, one can construct configurations where the adversary has
finished all jobs, and where the potential is much higher than the remaining on-
line cost. This did not mess up the analysis in [5] because to finish all these jobs
by this time the adversary would have had to run very fast in the past, wasting a
lot of energy, which could then be used to pay for this unnecessarily high poten-
tial. But since we consider multiple processors, the adversary may have no jobs
left on a particular processor simply because it assigned these jobs to a different
processor, and there may not be a corresponding unnecessarily high adversarial
cost that can be used to pay for this unnecessarily high potential.

Thus, the main technical contribution in this paper is a seemingly more ac-
curate potential function expressing the additional cost required to finish one
collection of jobs compared to another collection of jobs. Our potential func-
tion is arguably more transparent than the one used in [5], and we expect that
this potential function will find future application in the analysis of other power
management algorithms.

In section 3, we show that a similar online algorithm is O(1/ε)-competitive
with (1+ ε)-speedup for unweighted flow plus energy. We also remark that when
the power functions Pi(s) are restricted to be of the form sαi , our algorithms
give a O(α2)-competitive algorithm (with no resource augmentation needed) for
the problem of minimizing weighted flow plus energy, and an O(α)-competitive
algorithm for minimizing the unweighted flow plus energy, where α = maxi αi.
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1.1 Related Results

Let us first consider previous work for the case of a single processor, with un-
bounded speed, and a polynomially bounded power function P (s) = sα. [21]
gave an efficient offline algorithm to find the schedule that minimizes average
flow subject to a constraint on the amount of energy used, in the case that jobs
have unit work. [1] introduced the objective of flow plus energy and gave a con-
stant competitive algorithm for this objective in the case of unit work jobs. [6]
gave a constant competitive algorithm for the objective of weighted flow plus en-
ergy. The competitive ratio was improved by [15] for the unweighted case using
a potential function specifically tailored to integer flow. [4] extended the results
of [6] to the bounded speed model, and [10] gave a nonclairvoyant algorithm
that is O(1)-competitive.

Still for a single processor, dropping the assumptions of unbounded speed and
polynomially-bounded power functions, [5] gave a 3-competitive algorithm for the
objective of unweighted flow plus energy, and a 2-competitive algorithm for frac-
tional weighted flow plus energy, both in the uniprocessor case for a large class of
power functions. The former analysis was subsequently improved by [2] to show
2-competitiveness, along with a matching lower bound on the competitive ratio.

Now for multiple processors: [14] considered the setting of multiple homo-
geneous processors, where the allowable speeds range between zero and some
upper bound, and the power function is polynomial in this range. They gave an
algorithm that uses a variant of round-robin for the assignment policy, and job
selection and speed scaling policies from [6], and showed that this algorithm is
scalable for the objective of (unweighted) flow plus energy. Subsequently, [11]
showed that a randomized machine selection algorithm is scalable for weighted
flow plus energy (and even more general objective functions) in the setting
of polynomial power functions. Both these algorithms provide non-migratory
schedules and compare their costs with optimal solutions which could even be
migratory. In comparison, as mentioned above, for the case of polynomial power
functions, our techniques can give a deterministic constant-competitive online
algorithm for non-migratory weighted flow time plus energy. (Details appear in
the final version.)

In non-power-aware settings, the paper most relevant to this work is that
of [9], which gives a scalable online algorithm for minimizing weighted flow on
unrelated processors. Their setting is even more demanding, since they allow the
processing requirement of the job to be processor dependent (which captures a
type of heterogeneity that is orthogonal to the performance energy-efficiency
heterogeneity that we consider in this paper). Our algorithm is based on the
same general intuition as theirs: they assign each new job to the processor that
would result in the least increment in future weighted flow (assuming HDF is
used for job selection), and show that this online algorithm is scalable using an
amortized local competitiveness argument. However, it is unclear how to directly
extend their potential function to our power-aware setting; we had success only
in the case that each processor had allowable speed-power combinations lying in
{(0, 0), (si, Pi)}.
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1.2 Preliminaries

Scheduling Basics. We consider only non-migratory schedules, which means
that no job can ever run on one processor, and later run on some other processor.
In general, migration is undesirable as the overhead can be significant. We assume
that preemption is allowed, that is, that jobs may be suspended, and restarted
later from the point of suspension. It is clear that if preemption is not allowed,
bounded competitiveness is not obtainable. The speed is the rate at which work
is completed; a job j with size pj run at a constant speed s completes in pj

s
seconds. A job is completed when all of its work has been processed. The flow
of a job is the completion time of the job minus the release time of the job.
The weighted flow of a job is the weight of the job times the flow of the job.
For a t ≥ rj , let pj(t) be the remaining unprocessed work on job j at time t.
The fractional weight of job j at this time is wj

pj(t)
pj

. The fractional weighted
flow of a job is the integral over times between the job’s release time and its
completion time of its fractional weight at that time. The density of a job is its
weight divided by its size. The job selection policy Highest Density First (HDF)
always runs the job of highest density. The inverse density of a job is its size
divided by its weight.

Power Functions. The power function for processor i is denoted by Pi(s), and
specifies the power used when processor is run at speed s. We essentially allow
any reasonable power function. However, we do require the following minimal
conditions on each power function, which we adopt from [5]. We assume that the
allowable speeds are a countable collection of disjoint subintervals of [0,∞). We
assume that all the intervals, except possibly the rightmost interval, are closed
on both ends. The rightmost interval may be open on the right if the power
Pi(s) approaches infinity as the speed s approaches the rightmost endpoint of
that interval. We assume that Pi is non-negative, and Pi is continuous and
differentiable on all but countably many points. We assume that either there is a
maximum allowable speed T , or that the limit inferior of Pi(s)/s as s approaches
infinity is not zero (if this condition doesn’t hold then, then the optimal speed
scaling policy is to run at infinite speed). Using transformations specified in [5],
we may assume without loss of generality that the power functions satisfy the
following properties: P is continuous and differentiable, P (0) = 0, P is strictly
increasing, P is strictly convex, and P is unbounded. We use Qi to denote P−1

i ;
i.e., Qi(y) gives us the speed that we can run processor i at, if we specify a limit
of y.

Local Competitiveness and Potential Functions. Finally, let us quickly
review amortized local competitiveness analysis on a single processor. Consider
an objective G. Let GA(t) be the increase in the objective in the schedule for
algorithm A at time t. So when G is fractional weighted flow plus energy, GA(t)
is P t

A+wt
A, where P t

A is the power for A at time t and wt
A is the fractional weight

of the unfinished jobs for A at time t. Let OPT be the offline adversary that
optimizes G. A is locally c-competitive if for all times t, if GA(t) ≤ c·GOPT (t). To
prove A is (c+d)-competitive using an amortized local competitiveness argument,
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it suffices to give a potential function Φ(t) such that the following conditions hold
(see for example [19]).
Boundary condition: Φ is zero before any job is released and Φ is non-negative

after all jobs are finished.
Completion condition: Φ does not increase due to completions by either A

or OPT.
Arrival condition: Φ does not increase more than d ·OPT due to job arrivals.
Running condition: At any time t when no job arrives or is completed,

GA(t) +
dΦ(t)
dt

≤ c ·GOPT (t) (1)

The sufficiency of these conditions for proving (c + d)-competitiveness follows
from integrating them over time.

2 Weighted Flow

Our goal in this section is to prove Theorem 1. We first show that the on-
line algorithm is (1 + ε)-speed O(1

ε )-competitive for the objective of fractional
weighted flow plus energy. Theorem 1 then follows since HDF is (1 + ε)-speed
O(1

ε )-competitive for fixed processor speeds [7] for the objective of (integer)
weighted flow.

Let OPT be some optimal schedule minimizing fractional weighted flow. Let
wt
a,i(q) denote the total fractional weight of jobs in processor i’s queue that have

an inverse density of at least q. Let wt
a,i := wt

a,i(0) be the total fractional weight
of unfinished jobs in the queue. Let wt

a :=
∑

iw
t
a,i be the total fractional weight

of unfinished jobs in all queues. Let wt
o,i(q), w

t
o,i, and wt

o be similarly defined for
OPT. When the time instant being considered is clear, we drop the superscript
of t from all variables.

We assume that once OPT has assigned a job to some processor, it runs the
BCP algorithm [5] for job selection and speed scaling—i.e., it sets the speed of
the ith processor to Qi(wo,i), and hence the ith processor uses power Wo,i, and
uses HDF for job selection. We can make such an assumption because the results
of [5] show that the fractional weighted flow plus energy of the schedule output
by this algorithm is within a factor of two of optimal. Therefore, the only real
difference between OPT and the online algorithm is the assignment policy.

2.1 The Assignment Policy

To better understand the online algorithm’s assignment policy, define the “shadow
potential” for processor i at time t to be

Φ̂a,i(t) =
∫ ∞

q=0

∫ wt
a,i(q)

x=0

x

Qi(x)
dx dq (2)

The shadow potential captures (up to a constant factor) the total fractional
weighted flow to serve the current set of jobs if no jobs arrive in the future.
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Based on this, the online algorithm’s assignment policy can alternatively be
described as follows:

Assignment Policy. When a new job with size pj and weight wj arrives at
time t, the assignment policy assigns it to a processor which would cause the
smallest increase in the shadow potential; i.e. a processor minimizing∫ dj

q=0

∫ wt
a,i(q)+wj

x=0

x

Qi(x)
dx dq −

∫ dj

q=0

∫ wt
a,i(q)

x=0

x

Qi(x)
dx dq

=
∫ dj

q=0

∫ wt
a,i(q)+wj

x=wt
a,i(q)

x

Qi(x)
dx dq

2.2 Amortized Local Competitiveness Analysis

We apply a local competitiveness argument as described in subsection 1.2. Be-
cause the online algorithm is using the BCP algorithm on each processor, the
power for the online algorithm is

∑
i Pi(Qi(wa,i)) = wa. Thus GA = 2wa. Simi-

larly, since OPT is using BCP on each processor GOPT = 2wo.

Defining the potential function. For processor i, define the potential

Φi(t) =
2
ε

∫ ∞

q=0

∫ (wt
a,i(q)−wt

o,i(q))+

x=0

x

Qi(x)
dx dq (3)

Here (·)+ = max(·, 0). The global potential is then defined to be Φ(t) =
∑

i Φi(t).
Firstly, we observe that the function x/Qi(x) is increasing and subadditive.
Then, the following lemma will be useful subsequently, the proof of which will
appear in the full version of the paper.

Lemma 1. Let g be any increasing subadditive function with g(0) ≥ 0, and
wa, wo, wj ∈ R≥0. Then,∫ wa+wj

x=wa

g(x) dx −
∫ (wa−wo)+

x=(wa−wo−wj)+
g(x) dx ≤ 2

∫ wj

x=0
g(wo + x) dx

That the boundary and completion conditions are satisfied are obvious. In
Lemma 2 we prove that the arrival condition holds, and in Lemma 3 we prove
that the running condition holds.

Lemma 2. The arrival condition holds with d = 4
ε .

Proof. Consider a new job j with processing time pj , weight wj and inverse
density dj = pj/wj , which the algorithm assigns to processor 1 while the optimal
solution assigns it to processor 2. Observe that

∫ dj

q=0

∫ wo,2(q)+wj

x=wo,2(q)
x

Q2(x) dx dq is the
increase in OPT’s fractional weighted flow due to this new job j. Thus our goal
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is to prove that the increase in the potential due to job j’s arrival is at most this
amount. The change in the potential ΔΦ is:

2
ε

∫ dj

q=0

(∫ (wa,1(q)−wo,1(q)+wj)+

x=(wa,1(q)−wo,1(q))+

x

Q1(x)
dx−

∫ (wa,2(q)−wo,2(q))+

x=(wa,2(q)−wo,2(q)−wj)+

x

Q2(x)
dx

)
dq

Now, since x/Q1(x) is an increasing function we have that∫ (wa,1(q)−wo,1(q)+wj)+

x=(wa,1(q)−wo,1(q))+

x

Q1(x)
dx ≤

∫ wa,1(q)+wj

x=wa,1(q)

x

Q1(x)
dx

and hence the change of potential can be bounded by

2
ε

∫ dj

q=0

(∫ wa,1(q)+wj

x=wa,1(q)

x

Q1(x)
dx−

∫ (wa,2(q)−wo,2(q))+

x=(wa,2(q)−wo,2(q)−wj)+

x

Q2(x)
dx

)
dq

Since we assigned the job to processor 1, we know that∫ dj

q=0

∫ wa,1(q)+wj

x=wa,1(q)

x

Q1(x)
dx dq ≤

∫ dj

q=0

∫ wa,2(q)+wj

x=wa,2(q)

x

Q2(x)
dx dq

Therefore, the change in potential is at most

ΔΦ ≤ 2
ε

∫ dj

q=0

(∫ wa,2(q)+wj

x=wa,2(q)

x

Q2(x)
dx −

∫ (wa,2(q)−wo,2(q))+

x=(wa,2(q)−wo,2(q)−wj)+

x

Q2(x)
dx

)
dq

Applying Lemma 1, we get:

ΔΦ ≤
(
2 · 2

ε

) ∫ dj

q=0

∫ wo,2(q)+wj

x=wo,2(q)

x

Q2(x)
dx dq

Lemma 3. The running condition holds with constant c = 1 + 1
ε .

Proof. Let us consider an infinitesimally small interval [t, t+dt) during which no
jobs arrive and analyze the change in the potential Φ(t). Since Φ(t) =

∑
i Φi(t),

we can do this on a per-processor basis. Fix a single processor i, and time t. Let
wi(q) := (wa,i(q) − wo,i(q))+, and wi := (wa,i − wo,i)+. Let qa and qo denote
the inverse densities of the jobs being executed on processor i by the algorithm
and optimal solution respectively (which are the densest jobs in their respective
queues, since both run HDF). Define sa = Qi(wa,i) and so = Qi(wo,i). Since
we assumed that OPT uses the BCP algorithm on each processor, OPT runs
processor i at speed so. Since the online algorithm is also using BCP, but has
(1 + ε)-speed augmentation, the online algorithms runs the processor at speed
(1 + ε)sa. Hence the fractional weight of the job the online algorithm works on
decreases at a rate of sa(1 + ε)/qa. Therefore, the quantity wa,i(q) drops by
sa dt(1 + ε)/qa for q ∈ [0, qa]. Likewise, wo,i(q) drops by so dt/qo for q ∈ [0, qo]
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due to the optimal algorithm working on its densest job. We consider several
different cases based on the values of qo, qa, wo,i, and wa,i and establish bounds
on dΦi(t)/dt; Recall the definition of Φi(t) from equation (3):

Φi(t) =
2
ε

∫ ∞

q=0

∫ (wt
a,i(q)−wt

o,i(q))+

x=0

x

Qi(x)
dx dq

Case (1): wa,i < wo,i: The only possible increase in potential function occurs
due to the decrease in wo,i(q), which happens for values of q ∈ [0, qo]. But for
q’s in this range, wa,i(q) ≤ wa,i and wo,i(q) = wo,i. Thus the inner integral is
empty, resulting in no increase in potential. The running condition then holds
since wa,i < wo,i.

Case (2): wa,i > wo,i: To quantify the change in potential due to the online
algorithm working, observe that for any q ∈ [0, qa], the inner integral of Φi

decreases by∫ wi(q)

x=0

x

Qi(x)
dx−

∫ wi(q)−(1+ε) sa dt
qa

x=0

x

Qi(x)
dx =

wi(q)
Qi(wi(q))

(1 + ε)
sa dt

qa

Here, we have used the fact that dt is infinitisemally small to get the above
equality. Hence, the total drop in Φi due to the online algorithm’s processing is

2
ε

∫ qa

q=0

wi(q)
Qi(wi(q))

(1 + ε)
sa dt

qa
dq ≥ 2

ε

∫ qa

q=0

wi

Qi(wi)
(1 + ε)

sa dt

qa
dq

=
2
ε

wi

Qi(wi)
(1 + ε)sa dt

Here, the first inequality holds because x/Qi(x) is a non-decreasing function,
and for all q ∈ [0, qa], we have wa,i(q) = wa,i and wo,i(q) ≤ wo,i and hence
wi(q) ≥ wi.

Now to quantify the increase in the potential due to the optimal algorithm
working: observe that for q ∈ [0, qo], the inner integral of Φi increases by at most∫ wi(q)+ so dt

qo

x=wi(q)

x

Qi(x)
dx =

wi(q)
Qi(wi(q))

so dt

qo

Again notice that we have used that fact that here dt is an infinitesimal period
of time that in the limit is zero. Hence the total increase in Φi due to the optimal
algorithm’s processing is at most

2
ε

∫ qo

q=0

wi(q)
Qi(wi(q))

so dt

qo
dq ≤ 2

ε

∫ qo

q=0

wi

Qi(wi)
so dt

qo
dq =

2
ε

wi

Qi(wi)
so dt.

Again here, the first inequality holds because x/Qi(x) is a non-decreasing func-
tion, and for all q ∈ [0, qo], we have wa,i(q) ≤ wa,i and wo,i(q) = wo,i and hence
wi(q) ≤ wi.
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Putting the two together, the overall increase in Φi(t) can be bounded by

dΦi(t)
dt

≤ 2
ε

wa,i − wo,i

Qi(wa,i − wo,i)
[−(1 + ε)sa + so]

=
2
ε
(wa,i − wo,i)

[−(1 + ε)Qi(wa,i) + Qi(wo,i)]
Qi(wa,i − wo,i)

≤ −2
ε
ε(wa,i − wo,i) = −2(wa,i − wo,i)

It is now easy to verify that by plugging this bound on dΦi(t)
dt into the running

condition that one gets a valid inequality.

Case (3): wa,i = wo,i: In this case, let us just consider the increase due to OPT

working. The inner integral in the potential function starts off from zero (since
wa,i − wo,i = 0) and potentially (in the worst case) could increase to∫ so dt

qo

0

x

Qi(x)
dx

(since wo,i drops by so dt/qo and wa,i cannot increase). However, since x/Qi(x)
is a monotone non-decreasing function, this is at most∫ so dt

qo

0

wo,i

Qi(wo,i)
dx =

so dt

qo

wo,i

Qi(wo,i)

Therefore, the total increase in the potential Φi(t) can be bounded by

2
ε

∫ qo

q=0

wo,i

Qi(wo,i)
so dt

qo
dq =

2
ε
so dt

wo,i

Qi(wo,i)
=

2
ε
wo,i dt

It is now easy to verify that by plugging this bound on dΦi(t)
dt into the running

condition, and using the fact that wa,i = wo,i, one gets a valid inequality.

3 The Algorithm for Unweighted Flow

In this section, we give an immediate assignment based scheduling policy and
the potential function that can be used to show (using basically the same line
of reasoning as in the last section) that it is O(1/ε)-competitive against a non-
migratory adversary for the objective of unweighted flow plus energy, assuming
the online algorithm has resource augmentation of (1 + ε) in speed. Note that
this result has a better competitiveness than the result for weighted flow from
Section 2, but holds only for the unweighted case. Once again we can assume
that the adversary is running the BCP algorithm on each processor. Just like the
weighted case, the crux of our algorithm would be in designing a good assign-
ment policy.

Our algorithm works as follows: Each processor maintains a queue of jobs that
have currently been assigned to it. At some time instant t, for any processor i, let
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nt
a,i(q) denote the number of jobs in processor i’s queue that have a remaining

processing time of at least q. Let nt
a,i denote the total number of unfinished jobs

in the queue. Now our algorithm is the following:

When a new job arrives, the assignment policy assigns it to a processor which
would cause the smallest increase in the “shadow potential”; i.e., a processor
minimizing

∫ p

q=0

nt
a,i(q)+1∑
j=1

j

Qi(j + 1)
dq −

∫ p

q=0

nt
a,i(q)∑
j=1

j

Qi(j + 1)
dq =

∫ p

q=0

(nt
a,i(q) + 1)

Qi(nt
a,i(q) + 2)

dq

The job selection on each processor is SRPT (Shortest Remaining Processing
Time), and we set the power of processor i at time t to nt

a,i + 2 if nt
a,i �= 0

(and power zero otherwise). Once the job is assigned to a processor, it is never
migrated.

Note that, even without accounting for resource augmentation, the online algo-
rithm runs processor i at a speed of Qi(nt

a,i+2)·1(na,i>0), instead of Qi(nt
a,i+1)·

1(na,i>0) as in [5]; since OPT uses BCP without any changes, it runs processor
i at speed Qi(nt

o,i + 1) · 1(no,i>0).
We now describe our potential function Φ. For time t and processor i. Define

nt
o,i as the number of unfinished jobs assigned to processor i by the optimal

solution at time t, and nt
o,i(q) to be the number of these jobs with remaining

processing time at least q. The global potential function is Φ(t) =
∑

i Φi(t),
where Φi(t) is the potential for processor i defined as:

Φi(t) =
4
ε

∫ ∞

q=0

(nt
a,i(q)−nt

o,i(q))+∑
j=1

j/Qi(j + 1) dq (4)

Recall that (x)+ = max(x, 0), and Qi = P−1
i .
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Better Scalable Algorithms for Broadcast Scheduling
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Abstract. In the classic broadcast scheduling problem, there are n pages stored
at a server, and requests for these pages arrive over time. Whenever a page is
broadcast, it satisfies all outstanding requests for that page. The objective is to
minimize the average flowtime of the requests. In this paper, for any ε > 0, we
give a (1 + ε)-speed O(1/ε3)-competitive online algorithm for the broadcast
scheduling problem, even when page sizes are not identical. This improves over
the recent breakthrough result of Im and Moseley [18], where they obtained a
(1 + ε)-speed O(1/ε11)-competitive algorithm for the setting when all pages
have the same size.

This is the first scalable algorithm for broadcast scheduling with varying size
pages, and resolves the main open question from [18]. Furthermore, our algorithm
and analysis are considerably simpler than [18], and also extend to the general
setting of dependent requests.

1 Introduction

We consider the classic problem of scheduling in a broadcast setting to minimize the
average response time. In the broadcast scheduling problem, there are n pages, and
requests for these pages arrive over time. There is a single server that can broadcast
pages. Whenever a page is transmitted, it satisfies all outstanding requests for that page.
In the most basic version of the problem, we assume that time is slotted and that each
page can be broadcast in a single time slot. Any request r is specified by its arrival
time a(r) and the page p(r) that it requests; we let [m] denote the set of all requests. A
broadcast schedule is an assignment of pages to time slots. The flow-time (or response
time) of request r under a broadcast schedule equals b(r)−a(r) where b(r) ≥ a(r)+1
is the earliest time slot after a(r) when page p(r) is broadcast. The objective is to
minimize the average flow-time, i.e. 1

m ·
∑

r∈[m](b(r) − a(r)).
More general versions of the problem have also been studied. One generalization is

to assume that pages have different sizes. A complicating issue in this case is that a
request for a page may arrive in the midst of a transmission of this page. There are two
natural models studied here, depending on whether the client can cache content or not.
In the caching version, a request is considered satisfied as soon as it sees one complete
transmission of a page (so it could first receive the latter half of the page and then receive
the first half). Without a cache, a request can only be satisfied when it starts receiving
the page from the beginning and when the page is completely transmitted. The latter
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version is natural, for example, with movie transmissions, while the former is applicable
for file transmissions. When pages have arbitrary sizes, it is also standard to consider
preemptive schedules (i.e. transmission of a page need not occur at consecutive time-
slots). This is because no reasonable guarantee can exist if preemption is disallowed.

Another generalization is the case of so called dependent requests. Here a request
consists of a subset of pages, and this request is considered completed only when all
the pages for this request have been broadcast.

1.1 Previous Work

The broadcast scheduling setting has studied extensively in the last few years, both
in the offline and online setting. Most of the work has been done on the most basic
setting with unit page sizes and no dependencies. In addition to minimizing the aver-
age response time, various other metrics such as throughput maximization [6,21,15],
maximum response time [4,5,8,9], delay-factor [9] etc. have also been studied quite ex-
tensively. We describe here the work related to minimizing the average response time.
We first consider the offline case. The first guarantee of any kind was a 3-speed, 3-
approximation due to Kalyanasundaram, Pruhs and Veluthapillai [20]. After a sequence
of works [16,17,1], an O(log2 n/ log log n)-approximation based on iterated rounding
techniques was obtained by Bansal, Coppersmith and Sviridenko [2]. This is currently
the best approximation known for the problem. It is also known that the problem is
NP-Hard [14,5]. While no APX-hardness result is known, it is known that the natural
LP formulation (which is the basis of all known results for this problem), has a (rather
small) integrality gap of 28/27 = 1.037 [1].

In the online case, which is perhaps more interesting for practical applications of the
problem, very strong lower bounds are known. In particular, any deterministic algorithm
must be Ω(n) competitive and any randomized algorithm must be Ω(

√
n) competitive

[20,1]. Thus, it is most natural to consider the problem in the resource augmentation
setting, where the online algorithm is provided a slightly faster server than the optimum
offline algorithm. The first positive result was due to Edmonds and Pruhs [11] who
gave an algorithm B-Equi and showed that it is (4 + ε)-speed, O(1/ε)-competitive.
The algorithm B-Equi produced a schedule where several pages may be transmitted
fractionally in a single time slot. Edmonds and Pruhs [11] also showed how to convert
B-Equi into a valid schedule (i.e. only one page is transmitted in each time slot) using
another (1 + ε)-speedup and losing a factor of 1/ε in the competitive ratio, which gave
a (4 + ε)-speed, O(1/ε2)-competitive algorithm.

This result is based on a very interesting idea. The authors make a connection with
another scheduling problem on multiprocessors known as non-clairvoyant scheduling
with sublinear-nondecreasing speedup curves. This problem is very interesting in its
own right with several applications and was introduced in a previous paper by Edmonds
[10]. In that paper, Edmonds gave a (2+ε)-speed, O(1/ε)-competitive algorithm called
Equi for the non-clairvoyant scheduling problem. Edmonds and Pruhs showed that the
broadcast scheduling problem can be reduced to non-clairvoyant scheduling problem
while losing a factor of 2 in the speed up required [11]. Given the (2+ε)-speed,O(1/ε)-
competitive algorithm Equi, this yields the (4+ ε)-speed, O(1/ε)-algorithm B-Equi for
broadcast (where pages are transmitted fractionally in each time-slot).
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Recently, Edmonds and Pruhs [13] gave a very elegant algorithm called LAPS(β) for
the non-clairvoyant scheduling problem. They showed that for any ε > 0, the algorithm
LAPS(ε/2) is (1 + ε

2 )-speed O(1/ε2) competitive. Using the Edmonds-Pruhs reduc-
tion from broadcast to non-clairvoyant scheduling mentioned above [11], this implies
an (2 + ε)-speed, O(1/ε2)-competitive ‘fractional’ broadcast schedule. Losing another
factor of 1/ε, this can be converted to a valid broadcast schedule that is (2 + ε)-speed,
and O(1/ε3)-competitive. These results [11,13] also hold when page sizes are non-unit
but preemption is allowed.

Another natural online algorithm that has been studied is Longest Wait First (LWF).
This is a natural greedy algorithm that at any time broadcast the page for which the total
waiting time of outstanding requests is the highest. Edmonds and Pruhs [12] showed
that LWF is 6-speed, O(1)-competitive. They also showed that no no(1) guarantee is
possible unless the speedup is at least (1 +

√
5)/2 ≈ 1.61. In particular, this rules out

the possibility of LWF being a (1 + ε)-speed, O(1)-competitive algorithm. Recently,
the results for LWF has been improved by [7]. They show that LWF if 2.74-speed,
O(1)-competitive. They also improve the lower bound on speed up required to 2− ε.

Until recently, a major open question in the area had been whether there are fully
scalable algorithms. Intuitively, fully scalable algorithms are important from a practical
point of view, since one would expect them to perform close to optimum in practice. See
[19,22] for a formal discussion of this issue. Recently, in a breakthrough result, Im and
Moseley [18] obtained the first scalable algorithms for broadcast scheduling. In particu-
lar, they design an algorithm call LA−W , that is (1+ ε)-speed, O(1/ε11)-competitive.
This algorithm is similar to LWF, but it favors pages that have recent requests. The
analysis of LA −W is based on a rather complicated charging scheme. Additionally,
the algorithm in [18] only works for unit-size pages, and the authors leave open the
question for varying-size pages.

The case of dependent requests has been studied by [23]. They show that a general-
ization of the B-Equi algorithm, called B-EquiSet is (4+ε)-speed,O(1/ε3)-competitive,
even in the setting where pages have arbitrary lengths (with preemptions).

1.2 Our Results

In this paper we give fully scalable algorithms for broadcast scheduling with improved
guarantees. Our algorithm and analysis are much simpler than that of [18], and they
also extend to the general setting with non-uniform page sizes and dependent requests.
In particular we prove the following results:

Theorem 1. Consider the broadcast scheduling setting where pages have arbitrary
sizes and requests are dependent. Moreover, no cache is available. Then, if preemp-
tion is allowed, for every 0 < ε ≤ 1/4, there is a (1 + ε)-speed, O

( 1
ε3

)
-competitive

deterministic online algorithm.

Again, when we say there is no cache available, it means that a request for a page is
satisfied only at the earliest time when the contents of the page are received in order. In
particular, if a request for a page p occurs in the middle of some broadcast of p, it has
to wait for the current broadcast of p to complete before receiving the next broadcast
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of the page in the correct order. In the model with dependent requests, each request is
associated with a set of pages, and is satisfied only when each of the pages in its set has
been transmitted in correct order.

As mentioned earlier, in order to obtain any reasonable guarantees under arbitrary
page-sizes, one needs to consider the preemptive version, i.e. transmissions of a page
need not occur continuously (for an example as to why, refer to the full version of the
paper [3]).

Remark: Although we state the above result only for the (more restrictive) version
where there is no cache available, the approximation guarantee in Theorem 1 holds
relative to an optimal schedule for the (less restrictive) version where cache is available.
Thus Theorem 1 implies scalable online algorithms for both versions, with and without
caching. For the setting where cache is available, the problem can even be reduced
to dependent requests with unit sized pages, since we can replace a page p of length
�p by �p unit size pages, and modify any original request for p to now request the
corresponding �p unit size pages.

In the full version [3], we also prove the following theorem, which shows a (random-
ized) algorithm with better competitive ratio for the special case when all pages have
identical sizes.

Theorem 2. If all pages are of unit size, then for every 0 < ε ≤ 1/4, there is a (1 + ε)-
speed, O

( 1
ε2

)
-competitive randomized online algorithm for broadcast scheduling.

Our algorithms and its analysis are inspired by the algorithm LAPS for non-clairvoyant
scheduling [13]. Our main idea is to bypass the reduction (from broadcast scheduling
to non-clairvoyant scheduling) [11] that loses a factor of 2 in the speedup and directly
adapt those ideas to broadcast scheduling. The algorithm and its analysis are in fact very
simple. Our approach is the following: We first consider the fractional version of the
problem (i.e. pages can be fractionally transmitted in each time-slot and a request for a
page of size � is satisfied as soon as there have been � units of the page transmitted after
the arrival of the request) and show that a variant of LAPS (adapted to the broadcast
setting) is (1 + ε)-speed, O(1/ε2)-competitive. Note that this guarantee matches that
for LAPS. Then we show how to round this fractional schedule in an online manner
to obtain an integral schedule (i.e. only one page transmitted in each time-slot, and a
request is satisfied only when it receives the contents of the page in order). This idea of
reducing broadcast scheduling to a fractional version, and solving the fractional version
was also used implicitly in the algorithms of Edmonds and Pruhs [11,12], but one main
difference in our work is that we consider a different fractional relaxation, and this
enables us to obtain a fully scalable algorithm.

Given the results above, a natural question is whether the loss of factor 2 speed up in
previous approaches [11,12] can be avoided in the reduction from broadcast scheduling
to the non-clairvoyant scheduling problem. It turns out that this is indeed possible. We
give a reduction from fractional broadcast scheduling to non-clairvoyant scheduling
that does not incur any loss in speed up or in the competitive ratio (i.e. it is a (1, 1)
transformation). Again, the main idea to achieve this lies in the appropriate definition of
the fractional broadcast problem, and the online rounding algorithms required to reduce
the broadcast problem to its fractional relaxation. Note that this reduction combined
with LAPS [13] would also imply our results. However, in this paper we have chosen to
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present our results directly without going via the non-clairvoyant reduction, since the
proofs seem much simpler and cleaner with this approach. We note that this reduction
could be useful in other contexts, and present it in the full version.

2 Broadcast Scheduling: The General Model

We now formally define the problem we are studying. There are n pages with each
page p having an integer size lp; page p consists of lp distinct units/positions that are
numbered 1 to lp (for instance, one could think of these units as the individual bytes of
the page). Requests for subsets of these pages arrive over time. There is a single server
that can broadcast pages: in each time-slot the server broadcasts some position/unit
of some page. Any request r is specified by its arrival time a(r) and the set of pages
P(r) ⊆ [n] that it requests; we let [m] denote the set of all requests. A broadcast
schedule is an assignment of page-positions (i.e. tuple 〈p, i〉 where p ∈ [n] and i ∈
{1, · · · , lp}) to time slots. For any request r, page p ∈ P(r) is said to be completed
if the server has broadcast all the lp positions of page p in the order 1 through lp,
after the arrival time time a(r) (though these may not necessarily occur in consecutive
time-slots). The flow-time of request r under a broadcast schedule equals b(r) − a(r)
where b(r) ≥ a(r) + 1 is the earliest time slot after a(r) when all the pages requested
in P(r) have been completed. The objective is to minimize the average flow-time, i.e.
1
m ·

∑
r∈[m](b(r)−a(r)). We assume that the pages all have size at least 1, and therefore

the optimal value is also at least one.

3 Fractional Broadcast Scheduling

As mentioned earlier, our algorithm is based on first solving the ‘fractional’ version of
the problem, and then rounding this fractional schedule into a valid ‘integral’ schedule.
Recall that with non-uniform page sizes, an integral schedule is one where only one
page is transmitted in each time slot; however since pages have arbitrary sizes, complete
transmission of a page may occupy non-contiguous time-slots.

In the fractional broadcast problem, the algorithm can transmit pages in a continuous
manner. Here, at any (continuous) time instant t, the algorithm is allowed to broadcast
each page p ∈ [n] at rate xp(t), such that

∑n
p=1 xp(t) ≤ 1 for all t. In the setting with

resource augmentation, we allow
∑

p xp(t) ≤ 1 + ε for all t (i.e the online algorithm
gets a slightly higher transmission rate). For any request r ∈ [m] and page p ∈ P(r),
define

b(r, p) := inf

{
s :

∫ s

a(r)
xp(t)dt ≥ lp

}
,

i.e. the earliest time after the release of request r when lp units of page p have been
broadcast. The fractional completion time of any request r ∈ [m] is then:

b(r) := max
p∈P(r)

b(r, p),

i.e. the time after the arrival of request r when all pages requested by r have been
completely broadcast. Finally the flow-time of request r equals b(r)− a(r). Notice that
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in fractional broadcast (unlike the original broadcast problem), we don’t have the notion
of lp distinct positions of each page p, and also don’t have the requirement of receiving
a page in order; we only require the schedule to broadcast a total of lp indistinguishable
units for page p.

3.1 The Fractional Algorithm

We now describe our algorithm. At any continuous time t, let N(t) denote the set of
active requests, i.e. those which have not yet been fractionally completed. Let N ′(t)
denote the ε|N(t)| “most-recent” requests among N(t), i.e. those with the latest arrival
times. For each request r ∈ N ′(t), let Unfin(r, t) denote an arbitrary page p ∈ P(r)
that has not been fractionally broadcast to an extent lp since the arrival time a(r). The
algorithm then time shares among the pages {Unfin(r, t) | r ∈ N ′(t)}, i.e.

xp(t) := (1 + 4ε) · |{r ∈ N ′(t) : Unfin(r, t) = p}|
|N ′(t)| , ∀ p ∈ [n].

Clearly,
∑n

p=1 xp(t) ≤ 1 + 4ε at all times t. For the sake of analysis, also define:

yr,p(t) :=
{ 1+4ε
|N ′(t)| if r ∈ N ′(t), and p = Unfin(r, t)
0 otherwise

, ∀ t ≥ 0

In particular, yr,p(t) is the share of request of r for page p, if we distribute the 1 + 4ε
processing equally among requests in N ′(t). Notice that the rate xp(t) of page p trans-
mitted at time t could be much larger than yr,p(t) even for requests with Unfin(r, t) = p,
because Unfin(r′, t) could also be page p for other requests r′.

3.2 Analysis of Fractional Broadcast

Our analysis is based on a potential function argument inspired by that for LAPS [13].
We first describe the potential function, and then use it to bound the competitive ratio.

Let Opt denote an optimal (offline) fractional broadcast schedule for the given in-
stance, and let On denote the fractional online schedule produced by the above algo-
rithm. For any request r ∈ [m], let b∗(r) denote the completion time of r in Opt, and
let b(r) denote its completion time in On. For any r ∈ [m], page p ∈ P(r), and times
t1 < t2, define On(r, p, t1, t2) :=

∫ t2
t1

yr,p(t)dt, i.e. the fractional time that the online
algorithm has devoted towards page p on behalf of request r in the interval [t1, t2].
Observe that since any request r is inactive after time b(r), we have yr,p(t) = 0 for
all t > b(r) and p ∈ P(r). Thus On(r, p, t,∞) = On(r, p, t, b(r)) for all r ∈ [m],
p ∈ P(r), and t ≥ 0.

At any (continuous) time t and for any page p ∈ [n], let x∗p(t) denote the rate at
which Opt broadcasts p. We have

∑
p x
∗
p(t) ≤ 1 since the offline optimal is 1-speed.

For page p ∈ [n] and times t1 < t2, let Opt(p, t1, t2) :=
∫ t2
t1

x∗p(t)dt denote the amount
of page p transmitted by Opt in the interval [t1, t2]. At any continuous time t, let N(t)
and N∗(t) denote the set of requests that are not completed in On and Opt respectively.
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We now define the contribution of any request r ∈ [m] and page p ∈ P(r) to the
potential as follows.

zr,p(t) =
On(r, p, t,∞) · Opt(p, a(r), t)

lp

The total contribution of request r is then zr(t) =
∑

p∈P(r) zr,p(t). Note that zr(t) ≥ 0
for any r and t. Finally, the overall potential function is defined as

Φ(t) :=
1
ε
·
∑

r∈N(t)

rank(r) · zr(t),

where rank is the function which orders active requests based on arrival times (with the
highest rank of |N(t)| going to the request which arrived most recently and a rank of 1
to the oldest active request).

We will now show that the following inequality holds over all sufficiently small
intervals [t, t + dt) such that no requests arrive or complete in On during this interval.
Time instants where requests arrive or complete in On will be handled separately.

ΔOn(t) + ΔΦ(t) ≤ 2
ε2
ΔOpt(t). (3.1)

Since we ensure that Φ(0) = Φ(∞) = 0, it is immediate to see that the total cost of the
online algorithm is competitive with the optimal offline cost, up to a factor of 2

ε2 .
Request Arrival: We show that ΔΦ = 0 (clearly this suffices, since we can assume

that arrivals happen instantaneously and hence ΔOn = ΔOpt = 0). When a request r
arrives at time t, we have zr(t) = 0 as r is entirely unsatisfied by Opt. Thus, Φ does not
change due to r. Moreover, as the requests are ranked in the increasing order of their
arrival, the ranks of other requests are unaffected and hence ΔΦ = 0.

Request Completes under Online and leaves the set N(t): When a request r leaves
N(t), by definition its zr(t) reaches 0. Moreover, the rank of any other request r′ ∈
N(t) can only decrease. Since zr′(t) ≥ 0 for any r′, the contribution due to these
requests to the potential can only decrease. Thus ΔΦ ≤ 0. And again, at that instant,
ΔOn = ΔOpt = 0, and hence equation (3.1) holds.

Now consider any sufficiently small interval (t, t + dt) when neither of the above
two events happen. There are two causes for change in potential:

Offline broadcast in (t, t + dt): We will show that ΔΦ(t) ≤ 1
ε |N(t)|dt. To see this,

consider any page p. The amount of page p transmitted by Opt in this interval is x∗p(t)dt.
This broadcast of x∗p(t)dt amount of page p causes the quantity zr,p(t) to increase for
all those requests r that are alive and have p ∈ P(r) unfinished in On at time t. Recall
the definition of ‘completion time’ b(r, p) for page p of request r. Define,

C(t, p) := {r ∈ [m] | p ∈ P(r), a(r) ≤ t < b(r, p)}

Now, since the rank of any alive request is at most |N(t)|, we get that the total increase
in Φ over the interval [t, t + dt) due to Opt’s broadcast is at most:

ΔΦ ≤ 1
ε
|N(t)| ·

∑
p

∑
r∈C(t,p)

On(r, t,∞)x∗p(t)dt
lp

. (3.2)
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We show that
∑

r∈C(t,p) On(r, t,∞) ≤ lp for any page p. Let r′ = argmax{b(r, p) |
r ∈ C(t, p)} be the request in C(t, p) for which page p is completed last by On. Since
page p for r′ is not completed until b(r′, p) and a(r′) ≤ t, it must be that On broadcasts
at most lp units of page p during [t, b(r′, p)]; otherwise b(r′, p) would be smaller. Hence∑

r∈C(t,p) On(r, t, b(r′, p)) ≤ lp. Observe that for all r ∈ C(p, t) and t ≥ b(r′, p), we
have yr,p(t) = 0 since b(r, p) ≤ b(r′, p). Thus

∑
r∈C(t,p) On(r, t,∞) ≤ lp. Now

plugging this into equation (3.2), we have that

ΔΦ ≤ 1
ε
|N(t)| ·

∑
p

x∗p(t)dt ≤
1
ε
|N(t)| · dt (3.3)

Recall that
∑

p x
∗
p(t) ≤ 1 since Opt is 1-speed.

Online broadcast in (t, t + dt): Recall that On broadcasts page p at rate xp(t), and
yr,p(t) is the rate at which On works on page p for request r. Consider any fixed request
r ∈ N ′(t) \N∗(t), i.e. on which On works but is completed by Opt. Observe that for
every p ∈ P(r), Opt(r, p, t) ≥ lp since Opt has completed request r. Thus zr(t) ≥∑

p∈P(r) On(r, p, t,∞). Note also that
∑

p∈P(r) yr,p(t) = (1 + 4ε)/|N ′(t)|. Thus,

d

dt
zr(t) ≤ −

∑
p∈P(r)

yr,p(t) = − 1 + 4ε
|N ′(t)| , for all r ∈ N ′(t) \N∗(t).

Furthermore, since each request that On works on in [t, t + dt) has rank at least
(1− ε) · |N(t)|, the potential Φ increases at rate,

d

dt
Φ(t) ≤ −1

ε
(1− ε)N(t) · (1 + 4ε)

|N ′(t)| (|N ′(t)| − |N∗(t)|) .

Since (1− ε)(1 + 4ε) ≥ (1 + 2ε) for ε ≤ 1/4, we get

d

dt
Φ(t) ≤ −

(
1
ε

+ 2
)
|N(t)|+ 1

ε2
(1+4ε)|N∗(t)| ≤ −

(
1
ε

+ 1
)
·|N(t)|+ 2

ε2
·|N∗(t)|.

(3.4)
Observe that d

dtOn(t) = |N(t)| and d
dtOpt(t) = |N∗(t)|. Using (3.3) and (3.4),

d

dt
On(t) +

d

dt
Φ(t) ≤ |N(t)|+ 1

ε
|N(t)| −

(
1
ε

+ 1
)
|N(t)|+ 2

ε2
|N∗(t)|

≤ 2
ε2
|N∗(t)| =

2
ε2
· d

dt
Opt(t),

which proves Equation (3.1). Thus we obtain:

Theorem 3. For any 0 < ε ≤ 1
4 , there is a (1 + 4ε)-speed O

( 1
ε2

)
competitive deter-

ministic online algorithm for fractional broadcast scheduling with dependencies and
non-uniform sizes.

4 Deterministic Online Rounding of Fractional Broadcast

In this section, we focus on getting an integral broadcast schedule from the fractional
schedule in an online deterministic fashion. Formally, given any 1-speed fractional
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broadcast schedule On, we will obtain a (1 + ε)-speed integral broadcast schedule Rnd
(which gets to transmit an additional unit of page every $ 1

ε % time-steps) such that

∑
r

(bI(r)− a(r)) ≤ O

(
1
ε

)
·
∑
r

(b(r)− a(r)) (4.5)

where bI(r) (resp. b(r)) is the completion time of request r in the integral (resp. frac-
tional) schedule. An important issue in converting the fractional schedule to an integral
one is that a valid broadcast of any page p now requires the lp positions of page p to be
transmitted in the correct order. While this is relatively easy to guarantee if one is will-
ing to lose a factor of 2 in the speed up, (see for example the rounding step in [11,23]),
the algorithm here is much more subtle.

For any request r ∈ [m] and page p ∈ P(r), job 〈r, p〉 denotes the page p request
due to r. The arrival time of job 〈r, p〉 is the arrival time a(r) of the corresponding
request. We say that a job 〈r, p〉 is completed if the schedule contains a valid broadcast
of page p starting after time a(r). The completion time of job 〈r, p〉 in schedule Rnd
(resp. On) is denoted bI(r, p) (resp. b(r, p)). The rounding algorithm maintains a queue
of tuples (denoting transmissions of pages) of the form τ = 〈p, w, s, i〉 where p ∈ [n]
is a page, w ∈ R+ is the width, s ∈ Z+ is the start-time, and i ∈ {1, · · · , lp} is the
index of the next position of page p to transmit. At each time-slot, the deterministic
schedule broadcasts the current position of the tuple having least width. Intuitively, if
the fractional solution completed a page very quickly, we would want the corresponding
transmission of that page to occur quickly in the integral solution as well. Also, for each
page we need to track the time s when the current transmission began for this page, and
the fraction of this page transmitted since time s to ensure that the requests receive the
pages in correct order. Formally, our algorithm is described in Algorithm 1.

In order to bound the flowtime in schedule Rnd, we prove the following:

bI(r, p)− b(r, p) ≤ 6
ε
·
(
b(r, p)− a(r)

)
+

10
ε
, for all jobs 〈r, p〉. (4.6)

Notice that since this applies for all pages corresponding to any request, this implies the
stated goal in equation (4.5), since bI(r, p)− a(r) = bI(r, p)− b(r, p)+ b(r, p)− a(r).
To this end, consider any fixed job 〈r, p〉, and let t = b(r, p). If at this time t, job 〈r, p〉
is marked then clearly bI(r, p) ≤ t = b(r, p) and Equation (4.6) holds. So assume that
〈r, p〉 is unmarked. In this case (from the description of the algorithm) it must be that Q
contains a tuple τ = 〈p, w, s, i〉 where width w ≤ b(r, p)− a(r). Then let us define,

tA :=max {z ≤ t | at time z, either some request of width > w is dequeued or Q=∅}

tB :=min {z ≥ t | at time z, either some request of width > w is dequeued or Q=∅}
Hence schedule Rnd always broadcasts some tuple of width at most w during interval
T := (tA, tB), and there are no tuples of width smaller than w at times tA and tB .
Clearly bI(r, p) ≤ tB and b(r, p) = t ≥ tA; so it suffices to upper bound tB − tA by
the right hand side in (4.6).

Fix a page q ∈ [n], and let Πq denote the set of all tuples of page q that are broadcast
(in even one time-slot) during T . Let Nq = |Πq|. We now prove some claims about Πq .
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Algorithm 1. GenRounding(t)
1: initialize all jobs as unmarked when they arrive.
2: simulate fractional online algorithm to obtain schedule On.
3: for any unmarked job 〈r, p〉 that completes under On at time t, i.e. b(r, p) = t, do
4: if there is a tuple τ = 〈p,w, s, i〉 ∈ Q of page p with s ≥ a(r) then
5: update the width of tuple τ to min(w, b(r, p)− a(r)).
6: else
7: insert new tuple 〈p, b(r, p)− a(r),∞, 1〉 into Q.
8: end if
9: end for

10: dequeue the tuple τ = 〈p, w, s, i〉 that has least width amongst all elements in Q.
11: broadcast position i of page p in this time-slot.
12: if broadcast of p corresponding to τ is just beginning (i.e. i = 1) then
13: set s = t, i.e. equal to the current time slot .
14: end if
15: if broadcast of p corresponding to τ is complete (i.e. i = lp) then
16: mark all jobs 〈r′, p〉 of page p having a(r′) ≤ s.
17: else
18: enqueue the modified tuple 〈p,w, s, i + 1〉 into Q.
19: end if
20: repeat steps (10)-(19) if t is an integer multiple of � 1

ε
�.

Lemma 1. For each τ ∈ Πq , the start-time s(τ) ≥ tA − w.

Proof. Since τ is broadcast at some time-slot during T , its width must be at most w at
that time. Let 〈r′, q〉 denote the job that caused τ ’s width to be at most w. Then it must
be that a(r′) ≤ s(τ) and b(r′, q) ≤ a(r′) + w ≤ s(τ) + w. Observe that at time tA,
queue Q contains no tuple of width at most w. Thus b(r′, q) ≥ tA, i.e. s(τ) ≥ tA − w,
which proves the lemma.

Based on this lemma, we index tuples in Πq as {τj | 1 ≤ j ≤ Nq} in increasing order
of the start-times, i.e. tA − w ≤ s(τ1) ≤ s(τ2) ≤ · · · s(τNq) ≤ tB . In the following,
for page q and times t1 < t2, On(q, t1, t2) denotes the amount of page q transmitted by
fractional schedule On during interval (t1, t2).

Lemma 2. For any 1 ≤ j ≤ Nq − 1, we have On(q, s(τj), s(τj+1)) ≥ lq.

Proof. Consider the time t′ when tuple τj+1 is first inserted intoQ. Since τj must have
entered Q before τj+1, it must be that s(τj) < t′ ≤ s(τj+1); otherwise τj+1 would not
be inserted as a new tuple. Suppose τj+1 is inserted due to the completion of job 〈r′, q〉
in On. Then it must also be that a(r′) > s(τj); otherwise job 〈r′, q〉 would just have
updated the width of τj and not inserted a new tuple in Step 7. Clearly b(r′, q) = t′, and
hence On(q, s(τj), s(τj+1)) ≥ On(q, a(r′), b(r′, q)) ≥ lq.

Lemma 3. On(q, tA − w, tC) ≥ lq, where tC = max{s(τ1), tA + w}.

Proof. Let 〈r′, q〉 denote the first job that caused τ1’s width to be at most w (recall
from lemma 1, there must be such a job). Again, it must be that b(r′, q) ≥ tA and so
a(r′) ≥ tA − w. We consider two cases:
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1. s(τ1) ≤ tA. In this case, we have a(r′) ≤ s(τ1) ≤ tA and so b(r′, q) ≤ a(r′)+w ≤
tA + w. Thus On(q, tA − w, tA + w) ≥ On(q, a(r′), b(r′, q)) ≥ lq.

2. s(τ1) > tA. Since start-time of tuple τ1 lies in T , for job 〈r′, q〉 we have b(r′, q) ≤
s(τ1). Therefore, On(q, tA − w, s(τ1)) ≥ On(q, a(r′), b(r′, q)) ≥ lq .

Since tC = max{s(τ1), tA + w}, the lemma follows by the above cases.

Adding the expressions in lemmas 2 and 3, we obtain:

Nq · lq ≤
Nq−1∑
j=1

On(q, s(τj), s(τj+1)) + On(q, tA − w, tC)

≤ On(q, tA − w, s(τ1))+
Nq−1∑
j=1

On(q, s(τj), s(τj+1)) + On(q, tA − w, tA + w)

= On(q, tA − w, s(τNq )) + On(q, tA − w, tA + w)
≤ On(q, tA − w, tB) + On(q, tA − w, tA + w)

Now summing this inequality over all pages q ∈ [n],

n∑
q=1

Nq · lq ≤
n∑

q=1

On(q, tA−w, tB)+
n∑

q=1

On(q, tA−w, tA +w) ≤ tB− tA +3w+2,

(4.7)
where the last inequality follows from the fact that On is 1-speed. On the other hand,
Rnd is always busy during T : it is always broadcasting some tuple in

⋃n
q=1 Πq . Fur-

thermore, since Rnd can broadcast an extra unit of page every $ 1
ε % time units, we obtain:

n∑
q=1

Nq · lq ≥ (1 + ε/2) · (tB − tA)− 3.

Combining this with equation (4.7), we have tB − tA ≤ 6
ε · w + 10

ε , which implies
equation (4.6). Thus we obtain Theorem 1.
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Abstract. We consider online scheduling so as to maximize the minimum load,
using a reordering buffer which can store some of the jobs before they are as-
signed irrevocably to machines. For m identical machines, we show an upper
bound of Hm−1 + 1 for a buffer of size m − 1. A competitive ratio below Hm

is not possible with any finite buffer size, and it requires a buffer of size Ω̃(m) to
get a ratio of O(log m). For uniformly related machines, we show that a buffer of
size m+1 is sufficient to get an approximation ratio of m, which is best possible
for any finite sized buffer. Finally, for the restricted assignment model, we show
lower bounds identical to those of uniformly related machines, but using different
constructions. In addition, we design an algorithm of approximation ratio O(m)
which uses a finite sized buffer. We give tight bounds for two machines in all the
three models.

These results sharply contrast to the (previously known) results which can be
achieved without the usage of a reordering buffer, where it is not possible to get
a ratio below an approximation ratio of m already for identical machines, and
it is impossible to obtain an algorithm of finite approximation ratio in the other
two models, even for m = 2. Our results strengthen the previous conclusion that
a reordering buffer is a powerful tool and it allows a significant decrease in the
competitive ratio of online algorithms for scheduling problems. Another interest-
ing aspect of our results is that our algorithm for identical machines imitates the
behavior of the greedy algorithm on (a specific set of) related machines, whereas
our algorithm for related machines completely ignores the speeds until the end,
and then only uses the relative order of the speeds.

1 Introduction

Scheduling problems are most frequently described in a framework of assigning jobs to
machines. There are various kinds of scheduling problems depending upon the proper-
ties of the machines, allowable assignments, and the cost criteria. Our goal is to study
a natural model where the assignment of jobs is performed dynamically, in the sense
that jobs are being considered one by one, and generally must be assigned in this order,
while the information on future jobs is unknown. We consider parallel machines, and
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a problem variant which possesses features of both offline and online scenarios. These
are not offline problems, since the input arrives gradually, but they are not purely online
either, since we allow partial reordering of the input.

More specifically, in this paper we study a variant called scheduling with a reordering
buffer, where a buffer, which can store a fixed number of unassigned jobs, is available.
Thus each new job must be either assigned to a machine or stored in the buffer (possibly
in the case where the buffer is already full, the algorithm is forced to evict another job
from the buffer, which must be assigned to a machine immediately). A job which is
assigned to a machine, is assigned irrevocably to that machine.

In this paper, we are concerned with max-min allocations, that is, the goal is max-
imizing the minimum load. The concept of such allocations is related to the notion of
fair division of resources [2]. Originally, the goal function was used for describing sys-
tems where the complete system relies on keeping all the machines productive for as
long as possible, as the entire system fails even in a case that just one of the machines
ceases to be active [18]. Additional motivations for the goal function come from is-
sues of Quality of Service. From the networking aspect, this problem has applications
to basic problems in network optimization such as fair bandwidth allocation. Consider
pairs of terminal nodes that wish to communicate; we would like to allocate bandwidth
to the connections in a way that no link unnecessarily suffers from starvation, and all
links get a fair amount of resources. Another motivation is efficient routing of traffic.
Consider parallel links between pairs of terminal nodes. Requests for shifting flow are
assigned to the links. We are interested in having the loads of the links balanced, in the
sense that each link should be assigned a reasonable amount of flow, compared to the
other links. Yet another incentive to consider this goal function is congestion control by
fair queuing. Consider a router that can serve m shifting requests at a time. The data
pieces of various sizes, needing to be shifted, are arranged in m queues (each queue
may have a different data rate), each pays a price which equals the delay that it causes
in the waiting line. Our goal function ensures that no piece gets a “preferred treatment”
and that they all get at least some amount of delay.

We are mainly interested in two models of parallel machines, namely identical ma-
chines [20] and uniformly related machines [3,7]. The input is a stream of jobs, of
indices 1, 2, . . ., where the single attribute of each job j is its processing time, pj , also
known as its size. The goal is always to partition the jobs into m subsets, where each
subset is to be executed on one specific machine, that is, there are m machines, of in-
dices {1, 2, . . . ,m}, and each job is to be assigned to one of them. Online algorithms
see the input jobs one at a time, and need to assign each job before becoming familiar
with the remaining input. In the identical machines model, the completion time (also
called load) of a machine is the total size of the jobs assigned to it, while for uniformly
related machines (also known as related machines), each machine i has a speed si as-
sociated with it, and the completion time (or load) of a machine is the total size of jobs
assigned to it, scaled by the speed of the machine. Without loss of generality, let the
speeds be s1 ≤ · · · ≤ sm.

An additional common variant considered here is restricted assignment [5]. The ma-
chines have identical speeds, though each job j is associated with a subset of the ma-
chines, Mj ⊆ {1, 2, . . . ,m}, and can be assigned only to a machine in Mj .
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Notations. Throughout the paper we use the following notations. The size of the buffer
is denoted by K . We use OPT to denote an optimal solution as well as its value or profit
(i.e., the load of its least loaded machine). For an (offline or online) algorithm ALG we
denote its value or profit by ALG as well. For a minimization problem, the value of a
solution is called its cost and the approximation ratio of ALG is the infimum R such
that for any input, ALG ≤ R · OPT, whereas for a maximization problem (such as the
problem studied here), the approximation ratio of ALG is the infimum R such that for
any input, R · ALG ≥ OPT (note that we use numbers greater than 1 for approximation
ratios for a maximization problem). If the approximation ratio of ALG is at most r,
then we say that it is an r-approximation. Let Ht denote the harmonic series, that is,
Ht =

∑t
i=1

1
t .

Related work. This problem (without a buffer) has been well studied (known by dif-
ferent names such as “machine covering” and “the Santa Claus problem”) in the com-
puter science literature (see e.g. [18,12,11,24,6,15,17,2]). For identical machines, it is
known that any online algorithm for identical machines has an approximation ratio of
at least m (the proof is folklore, see [24,4]), and this bound can be achieved using a
greedy algorithm which assigns each job to the least loaded machine, as was shown by
Woeginger [24]. Before the usage of our approach of incorporating a reordering buffer
became popular, there were other attempts to overcome this bound. Randomized algo-
rithms were studied in [4], where it was shown that the best approximation ratio which
can be achieved using randomization is Θ̃(

√
m). Several types of semi-online variants

were considered, where one of the following was assumed: the largest processing time
of any job is given in advance, the total size is given in advance, or both are given. It
was shown that in these cases, the best approximation ratio remains Θ(m) [23,8]. Here
we show that our approach allows us to reduce the approximation ratio much more sig-
nificantly. It should be noted, that an additional, much stronger, semi-online variant was
studied as well, where it is assumed that jobs arrive sorted by non-increasing process-
ing time. In this variant, which is much closer to an offline problem than our model, the
approximation ratio is at most 4

3 [11,12].
For uniformly related machines, no algorithm with finite approximation ratio exists

even for two machines [4]. The semi-online problem where jobs arrive sorted by non-
increasing order, and the problem where the profit of an optimal algorithm is known
in advance, admit m-approximations, which is best possible in both cases. If the two
types of information are combined, a 2-approximation is known [4]. To the best of our
knowledge, no positive results are known for the case of restricted assignment. It is
known that no finite approximation ratio can be achieved for a purely online algorithm,
even for two machines [9], and even in the model of hierarchical machines, where for
every j, the set Mj is a prefix of the machine set.

In all variants of scheduling with a buffer studied in the past, a finite length buffer
(usually of size O(m)) already allowed to achieve the best possible approximation ratio
(for any finite sized buffer). Moreover, in almost all cases, the approximation ratio is
significantly reduced, compared to the best possible purely online algorithm. We next
survey the results for the min-max allocation problem (also known as the minimum
makespan problem), whose goal is dual to our goal function, with a buffer.
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Kellerer et al. [22] and Zhang [25] considered the case of two identical machines,
and showed that a buffer of size 1 allows to achieve an approximation ratio of 4

3 , which
is best possible. For m identical machines, Englert et al.[16] showed that a buffer of
size O(m) is sufficient. Their algorithm has the best possible approximation ratio for
every value of m, while this ratio tends to 1.47 for large m. It is known that for online
scheduling, no algorithm can have an approximation ratio smaller than 1.853 [1,19].
For the more general case of uniformly related machines, it was shown in [13] that for
two machines, a buffer of size 2 is sufficient to achieve the best approximation ratio. In
fact, for some speed ratios between the two machines, a buffer of size 1 is sufficient,
while for some other speed ratios, a buffer of size 1 provably is not enough to achieve
the best bound. Note that it was shown by [16] that a buffer of size m − 1 reduces the
approximation ratio for uniformly related machines below the lower bound of the case
without a reordering buffer, specifically, in addition to the case of identical machines,
Englert et al. [16] designed a 2-approximation algorithm for related machines, which
uses a buffer of size O(m). Whereas, without a buffer it is known that no algorithm can
have an approximation ratio below 2.43 [7]. Finally, for the standard online scheduling
problem in the restricted assignment model, there are tight bounds of Θ(logm) on
the approximation ratio [5]. The lower bound still holds if there is a buffer, since the
construction of [5] holds for fractional assignment (where a job can be split arbitrarily
among the machines that can run it); each job can be replaced by very small jobs, and
so the usage of a buffer does not change the result.

The analogous questions for preemptive scheduling on identical machines were re-
solved in [14]. In this variant, jobs can be arbitrarily distributed among the machines,
with the restriction that two parts of one job cannot be simultaneously processed on two
machines. The best possible upper bound over all values of m is 4

3 , while for the case
without a buffer, this value is approximately 1.58, as was shown by Chen et al. [10].

Our results. For identical machines, we design an algorithm which uses a buffer of size
m− 1, and has an approximation ratio of at most Hm−1 + 1. For m = 2, we design a
different 3

2 -approximation algorithm, which is optimal. We show a lower bound of Hm

for any finite sized buffer, and in addition, we show that for a buffer size of o( m
logm ),

an upper bound of O(logm) cannot be achieved. Interestingly, our algorithm IMITATE

imitates the behavior of a greedy algorithm for uniformly related machines, with the
speeds {1, 1

2 ,
1
3 , . . . ,

1
m}.

For the cases of related machines and restricted assignment, we extend the known
negative results of [4,9], and show that a buffer of size at most m − 2 does not ad-
mit an algorithm of finite approximation ratio. For an arbitrary sized buffer, we show
lower bounds of m on the approximation ratio of any algorithm. The proofs of the lower
bounds in the two models are very different, but the results are similar. We complement
these result by O(m)-approximation algorithms, which use a finite sized buffer. Specif-
ically, for the related machines model we design an algorithm of approximation ratio
m, which uses a buffer of size m + 1, and an algorithm of approximation ratio below
2m − 1, which uses a buffer of size m − 1. For two machines we design a different
2-approximation algorithm, which uses a buffer of size 1. For the restricted assign-
ment model we present an algorithm of approximation ratio at most 2m which uses a
buffer of size O(m2). For two machines, we give a simpler algorithm of approximation
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ratio 2, which only requires a buffer of size 1. In contrast to the algorithm for identical
machines, which attributes phantom speeds to the machines, the algorithm for related
machines ignores the speeds during the main loop, and in the final loop, only uses the
relative order of speeds, rather than their values.

Omitted proofs are deferred to the full version.

2 Identical Machines

We start with the most elementary case of identical machines. We first show limitations
on the performance and the required buffer size of any algorithm.

2.1 Lower Bounds

In some of the lower bound proofs, the input sequence starts with a large number of
very small jobs. In such a case, having a buffer is not meaningful, since almost all jobs
must be assigned. The difficulty is in spreading these small jobs among the machines
without knowing the sizes of future jobs. The next proof has some similarities with a
lower bound for the preemptive variant [21].

Theorem 1. For any buffer size K , no online algorithm can have an approximation
ratio below Hm.

Proof. We only give the construction here, and defer the proof to the full version. Let
ε > 0 be a very small constant such that ε = 1/N for some N ∈ N which is divisible
by m!. The input contains N jobs of size ε, where N >> K . Let b1 ≤ · · · ≤ bm be
the resulting loads for a given algorithm, after the last of these jobs has arrived. Since
at most K of them remain in the buffer, we have 1−Kε ≤

∑m
i=1 bi ≤ 1.

Next, j jobs of size 1/(m − j) arrive for some 0 ≤ j ≤ m − 1. These j jobs are
called large jobs. For this input, the optimal value is OPTj = 1/(m− j). �

The following proposition implies that we in fact need a buffer of size Ω(m/ logm) to
get an approximation ratio which is logarithmic in m.

Proposition 1. Let f(m) be a function where f(m) < m for all m > 1. For a buffer
size f(m), no algorithm can have an approximation ratio below m/(f(m) + 1).

2.2 Algorithm

While the lower bound constructions are relatively simple, it is harder to see what an al-
gorithm of sufficiently small approximation ratio should do. Intuitively, given the lower
bound construction in the proof of Theorem 1, the machines should be relatively unbal-
anced. We achieve this by acting as if the machines have speeds (the so-called phantom
speeds). We next define the algorithm IMITATE, which has a buffer of size m− 1. IMI-
TATE always keeps the largest m− 1 jobs in the buffer.
ALGORITHM IMITATE. We store the first m− 1 jobs in the buffer. Upon an arrival of
a job, in the case that the buffer already contains m − 1 jobs, consider those jobs and
the new job. Let the size of the smallest job among these m jobs be X . A job of size
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X will be assigned while the other jobs are stored in the buffer. The algorithm imitates
the behavior of the so-called post-greedy algorithm for uniformly related machines. We
define the phantom speed of the machine of index i to be 1

i . Let Li denote the current
load of machine i. The next job is assigned to a machine which minimizes i · (Li +X).

Upon termination of the input sequence, let b2 ≤ . . . ≤ bm be the sizes of jobs
remaining in the buffer. (If there are only j < m − 1 jobs in the buffer, then we let
bi = 0 for 2 ≤ i ≤ m− j.) The job of size bi is assigned to machine i (machine 1 does
not get a job). We call this job the final job of machine i.

In what follows, we use �i to denote the load of machine i before the assignment of
the final job, and Li be the final load of machine i. That is, Li = �i + bi for 2 ≤ i ≤ m
and L1 = �1. Note that if b2 = 0, that is, the buffer contains less than m− 1 jobs upon
termination of the input sequence, then �i = 0 for all 1 ≤ i ≤ m.

To analyze the algorithm, we start with proving the following lemmas.

Lemma 1. Let 1 ≤ i ≤ m and 2 ≤ k ≤ m, i �= k. Then k · Lk ≥ i · �i.

Proof. If �i = 0, then the claim trivially holds. Otherwise, let μ be the size of the last job
ever assigned to machine i (neglecting the final job). Let λk be the load of machine k at
that time in which μ was assigned. Then k(λk+μ) ≥ i�i by the post-greedy assignment
rule. We have Lk = �k + bk ≥ λk + μ, using the properties bk ≥ μ, since just before
the assignment of the final jobs, the buffer contains the largest m− 1 jobs in the input,
and �k ≥ λk, since �k is the load of machine k just before the final jobs are assigned,
while λk is the load of this machine at an earlier time. Hence Lk ≥ λk + μ ≥ i·�i

k . �

Lemma 2. For i ≥ 2, �1 ≥ (i− 1)�i.

Proof. If �i = 0, then we are done. Otherwise let μ be the size of the last job ever
assigned to machine i prior to the allocation of the final jobs. Let λ1 be the load of
machine 1 at the time when we assigned μ. Then λ1 + μ ≥ i�i by the post-greedy
assignment. Since �i ≥ μ and �1 ≥ λ1, we get �1 ≥ λ1 ≥ i�i − μ ≥ (i− 1)�i. �

We denote the total size of all jobs except for the final ones by Δ. That is, we let
Δ =

∑m
i=1 �i.

Lemma 3. (Hm−1 + 1)�1 ≥ Δ.

Proof. By Lemma 2, we conclude that for all i ≥ 2, �1 ≥ (i−1)�i, and hence �1
i−1 ≥ �i.

We sum up the last inequality for all 2 ≤ i ≤ m, and we get
∑m

i=2
�1
i−1 ≥

∑m
i=2 �i =

Δ− �1. On the other hand,
∑m

i=2
�1
i−1 = Hm−1�1, so (Hm−1 + 1)�1 ≥ Δ. �

Lemma 4. For any k > 1, (Hm − 1
k )kLk ≥ Δ− �k.

Proof. For all 1 ≤ i ≤ m such that i �= k, we have that �i ≤ k·Lk

i by Lemma 1.
Summing up for all i �= k we get Δ− �k =

∑
i�=k �i ≤

∑
i�=k

k·Lk

i = kLk

∑
i�=k

1
i =

kLk(Hm − 1
k ). �

Lemma 5. For any 1 ≤ k ≤ m, OPT ≤ 1
k (Δ +

∑k
j=2 bj).

Theorem 2. The approximation ratio of IMITATE is at most Hm−1 + 1.
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3 Uniformly Related Machines

3.1 Lower Bounds

Theorem 3. For a buffer of size at most m− 2, no algorithm can have a finite approx-
imation ratio on related machines.

Proof. Let the speed of machine i be Si−1 for some large S ≥ m + 1. Without loss of
generality assume that the buffer has size m− 2. The input sequence starts with m− 1
jobs of sizes S, S2, . . . , Sm−1. At least one of these jobs cannot remain in the buffer.
Let Sk be the size of the assigned job. Let j be the machine it is assigned to. If j ≤ k,
there is another job of size 1. Otherwise, another job of size Sm arrives.

In the first case, there is a machine in {k + 1, . . . ,m} which does not receive a job
in {Sk, . . . , Sm−1}, this machine has a profit of at most Sk−1/Sk = 1/S (there are m
jobs, so if a machine gets two jobs then ALG = 0). In this case, OPT = 1.

In the second case, if the machines {k+1, . . . ,m} have all jobs {Sk, . . . , Sm}, then
machines {1, . . . , k} only have k − 1 jobs and ALG = 0. Again, each machine must
have one job exactly. Thus the machine having Sk has a profit of at most Sk/Sk = 1,
while OPT = S. Letting S →∞, we get a ratio of ∞. �

Theorem 4. For any buffer size K , no algorithm can have an approximation ratio be-
low m for related machines.

Proof. Again, we only give the construction here. Let the speed of machine i be Si−1

for some large S ≥ m + 1. The first phase is the same as for identical machines (see
Lemma 1). Then in the second phase for some 1 ≤ j ≤ m, the next jobs are of sizes
1/Sj−1, 1/Sj−2, . . . , 1/S and S, S2, . . . , Sm−j (if j = 1 then the first set is empty and
if j = m then the second set is empty). In the second phase there is one job of each size,
so there are m−1 jobs. We have that the optimal value in this case is OPTj = 1/(Sj−1)
(put the job of size 1/Si on machine j − i for i �= 0 and all small jobs on machine j;
note that i can be negative). �

3.2 An Algorithm for m Related Machines

We next present an algorithm of approximation ratio m which uses a buffer of size
m+1. In the full version, we design another algorithm of an approximation ratio slightly
less than 2m − 1, which uses a buffer of size m − 1. Our algorithms ignore the exact
speeds, and only use their relative order.

Here we show that by using just two extra buffer positions compared to the minimum
number of positions required to get an algorithm of finite approximation ratio, it is
possible to get an optimal approximation ratio of m and hence save a factor of almost
2. In the case m = 2, the algorithm can be easily modified to keep only two jobs in the
buffer, rather than three.

The algorithm works as follows. The first m + 1 jobs are stored in the buffer. Upon
arrival of a job, it is possibly swapped with a job of the buffer to maintain the property
that the buffer contains the largest jobs seen so far.
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The algorithm runs List Scheduling (LS) [20] on the machines, while ignoring the
speeds. That is, a job is assigned to a minimally loaded machine, that is, a machine for
which the total size of jobs assigned to it so far is minimum. Let the remaining jobs
in the buffer when the input ends be c0 ≤ · · · ≤ cm. We slightly abuse notation and
let ci denote also the size of job ci. If the buffer contains at most m − 1 jobs, then
any assignment is optimal, since in this case, OPT = 0. If there are m jobs in the buffer,
then assigning job ci to machine i results in an optimal solution. The case that the buffer
contains m + 1 jobs is analyzed below (even if no other jobs were assigned).

The jobs {c0, c1, . . . , cm} are assigned in one of the following 2m−1 ways, depend-
ing on which option gives the largest profit.

1. Assign c0 to the least loaded machine (in terms of the total size of jobs assigned to
it), and ci to machine i for all i = 1, 2, . . . ,m.

2. Assign the jobs as in the previous case, but move cj to machine m for some 1 ≤
j ≤ m− 1.

3. Assign ci to machine i for all i = 1, 2, . . . ,m. assign c0 to a machine j for some
1 ≤ j ≤ m− 1.

In our analysis below, we show that there is always at least one assignment which shows
that the approximation ratio is at most m.

Theorem 5. The approximation ratio of this algorithm is at most m.

Proof. We scale the input such that OPT = 1. Let T be the total size of all the jobs.
Then T ≥

∑m
i=1 si. If ci ≥ si/m for i = 1, . . . ,m, we are done. Else, let k be the

maximum index for which ck < sk/m. We consider three cases.

Case 1: k = m (i.e., cm < sm/m). We analyze only options where c0 is assigned
greedily to the least loaded machine. Let a1, . . . , am be total sizes of jobs assigned to
machines, neglecting c1, . . . , cm but not c0. That is, since c0 is assigned greedily, it is
counted as part of some ai.

If am = maxi ai, we analyze the first assignment option. Recall that T is the total
size of all the jobs, that is T =

∑m
i=1(ai + ci). The load of machine m is

am + cm
sm

=
maxi ai + maxi ci

sm
≥ T/m

sm
≥ 1

m
.

For each other machine i ≤ m − 1, we have ai + ci ≥ am. To see this, note that
if am = 0 this clearly holds. Otherwise, let x be the size of the last job assigned to
machine m before cm. Due to the assignment rule ai ≥ am − x. Since all the jobs in
the buffer are larger than all other jobsand since c0 ≤ ci, we conclude that x ≤ ci and
the claim follows. Hence,

∑m
j=1 aj = T −

∑m
j=1 cj ≥ T −m · sm

m ≥ si, due to the
definition of T , the property ci ≤ cm < sm

m and T ≥
∑m

j=1 sj ≥ si + sm.
Finally,

ai + ci
si

≥ am
si

≥ 1
msi

m∑
j=1

aj ≥
1
m

holds since ai + ci ≥ am, am = maxj aj ≥ 1
m

∑m
j=1 aj , and

∑m
j=1 aj ≥ si.
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If am < maxi ai, let j = arg maxi ai < m. Consider the second type of assignment,
for this specific value of j. As before,

∑m
t=1 at ≥ si, aj = maxt at ≥ 1

m

∑m
t=1 at and

so aj ≥ si

m for all i < m. Similarly to the previous proof, we can show ai + ci ≥ aj , so

ai + ci
si

≥ aj
si
≥ 1

m
for 1 ≤ i < m, i �= j.

For machine j, already aj/sj ≥ 1/m. Finally, for machine m, am + cj ≥ aj ≥ ai (for
all 1 ≤ i ≤ m). We need to bound (am + cj + cm)/sm and we get (am + cj) + cm ≥
maxi ai + maxi ci ≥ T/m ≥ sm/m.

Case 2: 1 < k < m. Consider the third assignment option, where c0 is assigned to
machine k. We now let ai denote the total size of jobs assigned to machine i before the
jobs c0, . . . , cm are assigned, so T =

∑m
i=1 ai +

∑m
i=0 ci.

For machines k + 1 ≤ i ≤ m, we have (ai + ci)/si ≥ ci/si ≥ 1
m and are done.

Let j = argmaxi ai. We have
∑k

i=0 ci < (k + 1) · sk

m ≤ sk since k < m. There are
at least k machines of OPT that have no jobs in the set {ck+1, . . . , cm}, so

∑m
i=1 ai +∑k

i=0 ci ≥ s1 + · · ·+ sk, or
∑m

i=1 ai ≥ sk−1 (using the property k > 1) and therefore
aj ≥ sk−1/m. As before, we have ai + ci ≥ aj for any machine 1 ≤ i ≤ m, so for
1 ≤ i ≤ k − 1, we find (ai + ci)/si ≥ aj/sk−1 ≥ 1/m.

However, ak + c0 ≥ aj , since the assignment of the last job of machine j (excluding
cj) to machine k would have increased the total size of jobs assigned to it to at least aj ,
and c0 is no smaller than that job, so

ak + c0 + ck ≥ aj + ck ≥
∑m

i=1 ai
m

+
∑k

i=0 ci
k + 1

≥ sk
m

,

since aj ≥ ai for all 1 ≤ i ≤ m, ck ≥ ci for all 0 ≤ i ≤ k, and k + 1 ≤ m.

Case 3: k = 1. We have ci ≥ si/m for i = 2, . . . ,m, so we only need to consider
machine 1. Consider the first assignment, and use the notations ai as in the first case. At
least one machine of OPT has no jobs of c2, . . . , cm, so

∑m
i=1 ai + c1 ≥ s1 = mini si.

We have a1 + c1 ≥ ai for 2 ≤ i ≤ m, so a1 + c1 ≥ s1/m and (a1 + c1)/s1 ≥ 1/m.�

4 Restricted Assignment

4.1 Lower Bounds

We first state the lower bounds which we show for the case of restricted assignment.

Theorem 6. For a buffer of size at most m − 2, no algorithm can have a finite ap-
proximation ratio in the restricted assignment setting, that is, a buffer of size Ω(m) is
required for a finite approximation ratio.

Theorem 7. For any finite-sized buffer, any online algorithm has an approximation
ratio of at least m.



Max-min Online Allocations with a Reordering Buffer 345

4.2 An Algorithm for Restricted Assignment with a Finite-Sized Buffer

We now present an algorithm for restricted assignment. At each time, for every machine
i, we keep the m largest jobs which can be processed on i, in the buffer. Every job which
is not in this set (or a job which stops being in this set) is assigned in a greedy fashion
to a least loaded machine which can process it. Thus, the required size of the buffer is
m2. Assume OPT > 0, so every machine has at least one job that can be assigned to it.

At the end of the input we assign the jobs from the buffer in an optimal way (i.e., we
test all possible assignments and pick the best one). Note that it is possible to reduce
the number of tested assignments while maintaining optimality. We will analyze a fixed
assignment which depends on a (fixed) optimal solution OPT, which we define next.

Let S be the set of machines such that OPT has at least one job of size OPT/(2m)
assigned to it. Then, we would like to pick for every machine in S one job from the
buffer of size at least OPT/(2m), and assign it to that machine. Note that a machine
having less than m jobs which it can process must belong to S, since in the optimal
solution it has less than m jobs assigned to it, the largest of which has a size of at least
OPT/(m− 1).

Lemma 6. Such an assignment of jobs of size at least OPT/(2m) is possible.

Proof. Let ji be the largest job (of size at least OPT/(2m)) assigned to machine i by
OPT. If ji is in the buffer, then we assign it to machine i. We do this for every i ∈ S.
So far jobs were only assigned to their machines in OPT, so each job was assigned to at
most one machine.

At the end of this process there might be additional machines in which we planned
to assign to each such machine is not in the buffer. Therefore, the reason that for such a
machine i we did not assign jobs is that there are more than m jobs which can be pro-
cessed by i and which are larger than ji. This means that i is a machine which initially
(after the termination of the input) has m jobs in the buffer which can be assigned to it.
At least one such job was not assigned before (since at most m− 1 jobs from the buffer
have been assigned), so we can assign it to i. Applying this procedure for one machine
at a time, we will get an allocation of one job for each machine in S and such a job has
size at least OPT/(2m) as we required. �

After dealing with the set S, we continue to allocate one job to each machine not in S.
We apply the following rule, for each machine i /∈ S we allocate to i the largest job in
the buffer, which can be run on i, and which was not allocated before. We again assign a
job to one machine at a time. We can always allocate a job from the buffer to i because
initially there are at least m jobs which can be processed by i, and every machine is
allocated exactly one job from the buffer.

Lemma 7. If machine i /∈ S is allocated a job j, then for every job j′ of size pj′ ,
which can be processed on machine i and is either still in the buffer after each machine
received a job out of the buffer, or was allocated by the list scheduling algorithm before
the input terminated, we have pj ≥ pj′ .

Proof. Job j is larger than any job which is left in the buffer after every machine was
allocated one job out of those left in the buffer (taking into account only the jobs which
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can be processed by machine i). The jobs assigned greedily before the final step are no
larger than j, since the buffer keeps the m largest jobs which i can receive. �

The jobs remaining in buffer, after each machine received a job out of the buffer, are
assigned one by one, so that each job is assigned greedily to the least loaded machine
that can process it. We say that a job j is small if it was allocated greedily (either at
the earlier stage or after the input ends). Other jobs are called large. Therefore, the
algorithm has allocated exactly one large job for each machine, and if OPT has assigned
a job of size at least OPT/(2m) to machine i, then the large job of i is of size at least
OPT/(2m).

Theorem 8. Every machine is allocated a load of at least OPT/(2m).

Proof. A machine i ∈ S is allocated a large job of size at least OPT/(2m) as we
discussed above. Hence, it suffices to consider a machine i /∈ S whose large job is
of size less than OPT/(2m). Fix such a machine i. For every machine j �= i we denote
by Cj the set of jobs which OPT assigns to i and the algorithm assigns to j. Note that
Cj may contain a large job, but in this case the large job is of size at most OPT/(2m)
(as otherwise i ∈ S which is a contradiction).

We consider the total size of small jobs in Cj . Denote by x the last small job from
the set Cj assigned to j. Note that by the greedy fashion in which jobs are assigned
we conclude that if we discard x from Cj , the total size of remaining small jobs in Cj

is at most the total size of small jobs assigned to i (as otherwise the algorithm would
not assign x to j). Recall that the large job of i is at least as large as x, and hence we
conclude that the total size of small jobs of Cj is at most the total assigned jobs to
machine i. Summing up over all j we conclude that the total size of small jobs which
OPT assigns to machine i and the algorithm assigns to other machines is at most m− 1
times the load of machine i in the solution returned by the algorithm. The total size of
large jobs which OPT assigns to machine i is at most OPT/2 (as each such job has size
less than OPT/(2m)). Hence, the total size of small jobs which OPT assigns to machine
i is at least OPT/2. Therefore, the algorithm assigns at least OPT/(2m) to machine i,
and the claim follows. �
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Abstract. A hypergraph H = (V, E) is called s-orientable, if there is
an assignment of each edge e ∈ E to one of its vertices v ∈ e such that
no vertex is assigned more than s edges. Let Hn,m,k be a hypergraph,
drawn uniformly at random from the set of all k-uniform hypergraphs
with n vertices and m edges. In this paper we establish the threshold for
the 1-orientability of Hn,m,k for all k ≥ 3, i.e., we determine a critical
quantity c∗k such that with probability 1− o(1) the graph Hn,cn,k has a
1-orientation if c < c∗k, but fails doing so if c > c∗k.

We present two applications of this result that involve the paradigm
of multiple choices. First, we show how it implies sharp load thresholds
for cuckoo hash tables, where each element chooses k out of n locations.
Particularly, for each k ≥ 3 we prove that with probability 1− o(1) the
maximum number of elements that can be hashed is (1− o(1))c∗kn, and
more items prevent the successful allocation. Second, we study random
graph processes, where in each step we have the choice among any edge
connecting k random vertices. Here we show the existence of a phase
transition for avoiding a giant connected component, and quantify pre-
cisely the dependence on k.

1 Introduction

A hypergraph is called s-orientable if for each edge we can select one of its
vertices, so that all vertices are selected at most s times. This definition gen-
eralizes the classical notion of orientability of graphs, where we want to orient
the edges under the condition that no vertex has in-degree larger than s. In
this paper we focus on the property of 1-orientability of random hypergraphs.
In particular, we consider random k-uniform hypergraphs, for k ≥ 3, with n ver-
tices and m = �cn� edges. Our main result establishes the existence of a critical
density c∗k, such that when c crosses this value the probability that the random
hypergraph is 1-orientable drops abruptly from 1− o(1) to o(1), as the number
of vertices n grows.

Similar sharp threshold behaviour has been established in the case of ran-
dom graphs for the property of s-orientability for any s ≥ 1 by Fernholz and
Ramachandran in [13]. However, these critical densities for k-uniform random
� This author is supported by the Humboldt Foundation.
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hypergraphs with k ≥ 3 are only known for very large s – see the recent pa-
per by Gao and Wormald [16]. Let Hn,	cn
,k denote a k-uniform hypergraph,
drawn uniformly at random for the set of k-uniform hypergraphs with vertex set
Vn := {1, . . . , n} and �cn� edges. We show the following result.

Theorem 1. For any integer k ≥ 3 let ξ∗ be the unique solution of the equation

k =
ξ∗(eξ

∗ − 1)
eξ∗ − 1− ξ∗

, (1.1)

and set c∗k = ξ∗

k(1−e−ξ∗ )k−1 . Then the following holds with probability 1− o(1).

1. If c < c∗k, then Hn,	cn
,k is 1-orientable.
2. If c > c∗k, then Hn,	cn
,k is not 1-orientable.

Numerically we obtain for example that c∗3
.= 0.917, c∗4

.= 0.976 and c∗5
.= 0.992,

where “ .=” indicates that the values are truncated to the last digit shown. More-
over, a simple calculation reveals that c∗k = 1− e−k + o(e−k) for k →∞.

In the remainder we give two applications of the above theorem in the context
of computer science as well as in discrete mathematics.

Cuckoo Hashing. The first application regards the technique of cuckoo hashing,
which was introduced by Pagh and Rodler [21]. The general setting considered
here is a slight variation of it, as defined by Fotakis, Pagh, Sanders and Spirakis
in [14]. We are given a table with n locations, and we assume that each location
can hold only one item. Further generalizations where two or more items can
be stored have also been studied, see e.g. [10,5,13], but we will not treat those
cases. Moreover, there is a set I of items, such that each x ∈ I is assigned k ≥ 2
random distinct locations �1(x), . . . , �k(x). This assumption may be somehow
idealized, as exponentially many bits would be needed to store such fully ran-
dom sets of locations. However, there is theoretical evidence that even “simple”
hash functions can be sufficient in practice, provided that the underlying data
stream fulfills certain natural conditions; we refer the reader to the papers [19]
by Mitzenmacher and Vadhan and [9] by Dietzfelbinger and Schellbach, and the
references therein.

A natural question in cuckoo hashing is the following. As the number of avail-
able items increases, it becomes more and more unlikely that all of them can
be inserted into the table such that each item is assigned to one of its k desired
locations. In other words, if |I| is “small”, then with high probability, i.e., with
probability arbitrarily close to 1 when n becomes large, there is such an assign-
ment to the locations in the table that respects the k choices of the items. On
the other hand, if |I| becomes “large”, then such an assignment does not exist
with high probability (trivially, this happens at the latest when n + 1 items are
available). The important question is whether there is a critical size for I where
the probability for the existence of a valid assignment drops instantaneously in
the limiting case from 1 to 0, i.e., whether there is a load threshold for cuckoo
hashing.
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Cuckoo hashing can be modeled with the use of random hypergraphs: the n
vertices represent the locations, and each available item is a hyperedge that
contains k vertices. Let us become a little more precise. Let H∗

n,m,k denote a
hypergraph that is drawn uniformly at random from the set of k-uniform multi-
graphs with n vertices and m edges. Then, an instance of H∗

n,m,k corresponds
precisely to a cuckoo hashing scenario, where the table consists of n locations,
there are m items in total, and each item chooses k random locations as specified
above.

The case of k = 2 choices is theoretically well-understood. As already men-
tioned, there is a natural correspondence to random graphs, which makes the
analysis tractable; we refer the reader to [7] and [11] for further details.

Note that H∗
n,m,k may have multiple edges, which happens when two items

choose the same k locations. However, an easy calculation shows that the ex-
pected number of multiple edges is o(1), and thus H∗

n,m,k should be very similar
to Hn,m,k in a probabilistic sense.

Proposition 1. Let P be a property of simple hypergraphs. Then, for any c > 0
and k ≥ 3

P
(
Hn,	cn
,k ∈ P

)
= P

(
H∗

n,	cn
,k ∈ P
)

+ o(1).

Now, it can be readily seen that the allocation of �cn� random items is possible
in a cuckoo hash table if and only if H∗

n,	cn
,k is 1-orientable. Thus the following
is now immediate from Theorem 1 and Proposition 1.

Theorem 2. The load threshold for cuckoo hashing with k ≥ 3 choices is c∗k.

The result of Theorem 2 for k ≥ 4 was obtained independently by Frieze and
Melsted [15] using a different approach. Namely, they reduced the problem into
finding a perfect matching on a suitable random bipartite graph, where they
analyzed very precisely the Karp-Sipser algorithm. A different approach to the
result of Theorem 2 was also followed by Dietzfelbinger, Goerdt, Mitzenmacher,
Montanari, Pagh and Rink [8], who reduced it to the XORSAT problem.

Avoidance of Giants. The second application of our analysis has to do with the
problem of the avoidance of giant connected components in random graphs. If
one chooses �cn� random edges on a set of n vertices, the celebrated result of
Erdős and Rényi [12] states that 1/2 is the critical value of c above which a giant
component emerges with probability 1−o(1). More specifically, if c < 1/2 is fixed,
then with probability 1 − o(1) all components contain at most C logn vertices,
for some C depending on c. But if c > 1/2, then there exists γ = γ(c) > 0 such
that with probability 1 − o(1) there is a unique component with γn vertices,
whereas every other component has no more than C′ logn vertices for some
C′ = C′(c) > 0. In this case, the unique largest component is called the giant
component. D. Achlioptas posed the following question: if one is presented with
�cn� random pairs of edges on a set of n vertices, is it possible to choose an edge
from each pair so that with probability 1− o(1) no giant component exists even
for values of c which are larger than 1/2? In fact, originally an online version
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of this question was posed: if the �cn� random pairs appear sequentially and
the choice of an edge from each pair is made without knowledge of the pairs
that have not been presented yet, is there a method of choice that avoids the
emergence of a giant component when c > 1/2? Such an online process is called
an Achlioptas process. Bohman and Frieze [1] were the first to give explicitly
such a process which is able to avoid the emergence of a giant component for
c < 0.535. Subsequently, Spencer and Wormald [22] pushed this even further to
0.83. Moreover, Bohman, Frieze and Wormald [3] showed that an upper bound
for c is 0.96445.

Here we deal with the offline version of this problem. That is, we are initially
given �cn� random sets of edges A1, . . . , A	cn
. The question is whether with
probability 1− o(1) every set of edges E that intersects each Ai induces a giant
connected component. Bohman and Kim [4] established a critical value for c in
the case where the Ai’s contain two independent random edges each. Here we
generalize this question to the case where instead of pairs of edges the Ai’s are
sets of vertices of size k, and we are allowed to choose any of its induced edges.

Theorem 3. Let A1, . . . , A	cn
 be a sequence of subsets of Vn of size k ≥ 3
chosen independently and uniformly at random. Then the following hold with
probability 1− o(1):

1. If c > c∗k, then there exists δ > 0 so that for every collection of edges E on Vn
such that E ∩Ai �= ∅, for all i = 1, . . . , �cn�, the set E induces a connected
component with at least δn vertices.

2. If c < c∗k, then there exists a collection of edges E on Vn with E ∩ Ai �= ∅,
for all i = 1, . . . , �cn�, such that all connected components that the set E
induces have o(n) vertices.

This theorem follows with some additional work from Theorems 4 and 5 stated
below and imply our main result, i.e., Theorem 1. In short, these theorems
state that c∗k is the critical value for the emergence of a subgraph of Hn,	cn
,k
that contains more edges than vertices. As we will see in the next section, this
property implies also the 1-orientability of Hn,	cn
,k.

2 Proof of the Main Result

In what follows we will be referring to a hyperedge of size k as a k-edge and we
will be calling a hypergraph where all of its hyperedges are of size k a k-graph.

Suppose now that we are given a k-graph H with n vertices and m edges. Note
that an assignment of the edge to the set of vertices such that every edge gets
assigned to one of its vertices is possible, if the following condition is satisfied:
every one of the induced subgraphs of H has less k-edges than vertices. We call
the ratio of the number of edges of a k-graph over its number of vertices the
density of this k-graph.

It turns out that this necessary condition is also sufficient – see the proof
of Theorem 1 below. In other words, the crucial parameter that determines
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whether an appropriate assignment of the edges to the vertices is possible is
the maximal density of an induced subgraph. The next theorem says that if the
number of items exceeds c∗kn, then there is a subgraph with density > 1. Before
we state it, let us introduce some additional notation. We define the core of a
hypergraph H to be the maximum subgraph of H that has minimum degree at
least 2; if such a subgraph does not exist then we say that the core is empty. The
core of random hypergraphs and its structural characteristics have been studied
quite extensively in recent years – see for example the papers by Cooper [6] or
Molloy [20].

Theorem 4. Let c∗k be defined as in Theorem 1. If c > c∗k, then with probability
1− o(1) the core of Hn,cn,k has density greater than 1.

This theorem is not very difficult to prove, given the results in [6] and [18].
However, it requires some technical work, which is accomplished in Section 3.
The heart of this paper is devoted to the “subcritical” case, where we show that
the above result is essentially tight.

Theorem 5. Let c∗k be defined as in Theorem 1. If c < c∗k, then with probability
1− o(1) all subgraphs of Hn,cn,k have density smaller than 1.

The proof of this theorem is technically more challenging and it is spread over
the remaining sections. With Theorems 4 and 5 at hand we are able to give the
proof of Theorem 1.

Proof (Theorem 1). Given a hypergraph H with n vertices and m edges, let us
construct an auxiliary bipartite graph B = (I, L;E), where I represents the m
edges, L represents the n vertices, and {i, �} ∈ E if � is one of the k vertices
of edge i. Note that it is possible to assign all edges to vertices such that each
edge is assigned to one of its vertices if and only if there is a matching in B
that covers all vertices in I. By Hall’s Theorem such a matching exists if and
only if for all I ′ ⊆ I we have that |I ′| ≤ |Γ (I ′)|, where Γ (I ′) denotes the set of
neighbors of the vertices in I ′ inside L.

As a next step, let us describe more precisely the set Γ (I ′). For a random
hypergraphHn,m,k, the set Γ (I ′) is precisely the set of vertices that are contained
in the hyperedges that belong to I ′. So, if c < c∗k, Theorem 5 guarantees that
with high probability for all I ′ we have |Γ (I ′)| > |I ′|, and therefore a matching
exists. On the other hand, if c > c∗k, then there is with high probability an I ′ such
that |Γ (I ′)| < |I ′|; choose for example I ′ to be the set of items that correspond
to the edges in the core of Hn,m,k. Hence a matching does not exist in this case,
and the proof is completed.

3 Properties of Random k-Graphs

The aim of this section is to determine the value c∗k and prove Theorem 4.
Moreover, we will introduce some known facts and tools that will turn out to be
very useful in the study of random hypergraphs, and will be used later on in the
proof of Theorem 5 as well.
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(More) Models of random k-graphs. For the sake of convenience we will
carry out our calculations in the Hn,p,k model of random k-graphs. This is
the “higher-dimensional” analogue of the well-studied Gn,p model, where each
possible (2-)edge is included independently with probability p. More precisely,
given n ≥ k vertices we obtain Hn,p,k by including each k-tuple of vertices with
probability p, independently of every other k-tuple.

Standard arguments show that if we adjust p suitably, then the Hn,p,k model
is essentially equivalent to the Hn,cn,k model. Roughly speaking, if we set p =
ck/

(
n−1
k−1

)
, then Hn,p,k is expected to have p

(
n
k

)
= cn edges. In fact, much more

is true. Let P be a convex hypergraph property, that is, whenever we have
three hypergraphs on the same vertex set H1, H2, H3 such that H1 ⊆ H2 ⊆ H3
and H1, H3 ∈ P , then H2 ∈ P as well. (We also assume that P is closed under
automorphisms.) Clearly any monotone property is also convex and, therefore,
in particular the properties examined in Theorem 5. The following proposition is
a generalization of Proposition 1.15 from [17, p.16] and its proof is very similar
to the proof of that – so we omit it.

Proposition 2. Let P be a convex property of hypergraphs, and let p=ck/
(
n−1
k−1

)
,

where c > 0. If P (Hn,p,k ∈ P) → 1 as n→∞, then P (Hn,cn,k ∈ P) → 1 as well.

Working on the core of Hn,p,k – the Poisson cloning model. Recall that
the core of a hypergraph is its maximum subgraph that has minimum degree
at least 2. At this point we introduce the main tool for our analysis of the core
of Hn,p,k. This is the so-called Poisson cloning model that was introduced by
Kim [18] and was used for a variety of problems. Our treatment here was inspired
by the analysis of Bohman and Kim [4] in the context of Achlioptas processes.

The Poisson cloning model H̃n,p,k for k-graphs with n vertices and parame-
ter p ∈ [0, 1] is defined as follows. Consider a set of n vertices Vn and consider
also a family, indexed by this set, of i.i.d. Poisson random variables with param-
eter λ := p

(
n−1
k−1

)
. For each v ∈ Vn let d(v) denote the corresponding random

variable from this family. Then H̃n,p,k is constructed in three steps as follows.
First, for every v ∈ Vn the degree of v is a random variable and equals d(v). Sec-
ond, for each such v we generate d(v) copies, which we call v-clones or simply
clones, and choose uniformly at random a matching from all perfect k-matchings
on the set of all clones. Note that such a matching may not exist – in this case
we choose a random matching that leaves less than k clones unmatched. Finally,
we generate H̃n,p,k by contracting the clones to vertices, i.e., by projecting the
clones of v onto v itself for every v ∈ Vn.

Note that the last two steps in the above procedure are together equivalent to
the configuration model Hd,k for random hypergraphs with degree sequence d =
(d1, . . . , dn). In other words, Hd,k is a random multigraph where the ith vertex
has degree di.

The following statement is implied by [18, Theorem 1.1], and says that the
study of Hn,p,k may be reduced to the study of the Poisson cloning model.

Theorem 6. If P
(
H̃n,p,k ∈ P

)
→ 0 as n→∞, then P (Hn,p,k ∈ P) → 0 as well.
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The next result that we shall exploit gives a precise description of the core of
H̃n,p,k. Particularly, Theorem 6.2 in [18] implies the following statement, where
we write “x± y” for the interval of numbers (x− y, x + y).

Theorem 7. Let λ2 := minx>0
x

(1−e−x)k−1 . Moreover, let x̄ be the largest so-
lution of the equation x = (1 − e−xck)k−1, and set ξ := x̄ck. Assume that
ck = p

(
n−1
k−1

)
= λ2 + σ, where σ > 0 is fixed. Then, for any 0 < δ < 1 the

following is true with probability 1 − o(1). If Ñ2 denotes the number of vertices
in the core of H̃n,p,k, then

Ñ2 = (1− e−ξ − ξe−ξ)n± δn.

Furthermore, the core itself is distributed like the Poisson cloning model on Ñ2
vertices, where the Poisson random variables are conditioned on being at least
two and have parameter Λc,k, where Λc,k = ξ + β, for some |β| ≤ δ.

In what follows, we say that a random variable is a 2-truncated Poisson variable,
if it is distributed like a Poisson variable, conditioned on being at least two. We
immediately obtain by Chebyshev’s inequality the following corollary.

Corollary 1. Let N2 and M2 denote the number of vertices and edges in the
core of Hn,p,k. Then, for any 0 < δ < 1, with probability 1− o(1),

N2 = (1− e−ξ − ξe−ξ)n± δn and M2 =
1
k
ξ(1 − e−ξ)n± δn,

where ξ = x̄ck and x̄ is the largest solution of the equation x = (1 − e−xck)k−1.
The same is true for the quantities Ñ2 and M̃2 of H̃n,p,k.

3.1 Proof of Theorem 4 and the Value of c∗
k

In this section we will prove Theorem 4, i.e., we will show that the core of Hn,p,k

has density at least one if p = ck/
(
n−1
k−1

)
and c > c∗k. Let 0 < δ < 1, and denote by

N2 and M2 the number of vertices and edges in the core of Hn,p,k. By applying
Corollary 1 we obtain that with probability 1− o(1)

N2 = (1− e−ξ − ξe−ξ)n± δn and M2 =
1
k
ξ(1 − e−ξ)n± δn,

where ξ = x̄ck and x̄ is the largest solution of the equation x = (1− e−xck)k−1.
The value of c∗k is then obtained by taking N2 = M2, and ignoring the additive
error terms. The above values imply that the critical ξ∗ is given by the equation

1− e−ξ∗ − ξ∗e−ξ∗ =
ξ∗

k
(1− e−ξ∗) =⇒ k =

ξ∗(1− e−ξ∗)
1− e−ξ∗ − ξ∗e−ξ∗ .

This is precisely (1.1). So, k determines ξ∗ and x̄ satisfies x̄ = (1− e−x̄ck)k−1 =
(1− e−ξ∗)k−1. Therefore, the critical density is

c∗k :=
1
k

ξ∗

(1− e−ξ∗)k−1 . (3.1)
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Proof (Theorem 4). The above calculations imply that for any 0 < δ < 1 with
probability 1− o(1)

M2

N2
=

1
k

ξ(1− e−ξ)
1− e−ξ − ξe−ξ

± 2δ. (3.2)

Moreover, if c = c∗k, then M2/N2 = 1± 2δ. To complete the proof it is therefore
sufficient to show that M2/N2 is an increasing function of c. Note that the ratio

ξ(1−e−ξ)
1−e−ξ−ξe−ξ is the expected value of a 2-truncated Poisson random variable with
parameter ξ, which is known (and easily seen) to be increasing in ξ. Recall that
ξ = x̄ck. The proof is now complete through the first part of the following claim.

Claim. The quantity ξ = x̄ck is increasing with respect to c. So, with probability
1− o(1)

M2

N2
< 1 , if c < c∗k and

M2

N2
> 1 , if c > c∗k.

4 Proof of Theorem 5

Let us begin with introducing some notation. For a hypergraph H we will denote
by VH its vertex set and by EH its set of edges. Additionally, vH and eH shall
denote the number of elements in the corresponding sets. For U ⊂ VH we denote
by vU , eU the number of vertices in U and the number of edges joining vertices
only in U . Finally, dU is the total degree in U , i.e., the sum of the degrees in H
of all vertices in U .

We say that a subset U of the vertex set of a hypergraph is 1-dense, if it has
density at least one, i.e., the subgraph induced by U has at least as many edges
as vertices. Working towards the proof of Theorem 5, we begin with showing
that whenever c < 1, Hn,cn,k does not contain large 1-dense subsets, for any
k ≥ 3. In particular, we will first argue about sets with no more than 0.7n
vertices; for them it is sufficient to use a first moment argument that is based on
rough counting. For larger sets of vertices we need more sophisticated arguments
regarding the structure of the core of Hn,cn,k.

The following statement deals with the case k ≥ 5; is not best possible, but
it suffices for our purposes.

Lemma 1. Let k ≥ 5, c < 1. Then Hn,cn,k contains no 1-dense subset with less
than 0.7n vertices with probability 1− o(1).

Proof. The probability that an edge of Hn,cn,k is contained completely in a
subset U of the vertex set is

(|U|
k

)
/
(
n
k

)
≤ ( |U|n )k. Let k

n ≤ u ≤ 0.7. Then

P (∃ 1-dense subset with un vertices) ≤
(

n

un

)
·
(
cn

un

)
ukun ≤ en(2H(u)+ku lnu),

where H(x) = −x lnx − (1 − x) lnx denotes the entropy function. Note that
the second derivative of the exponent in the expression above is k−2+kx

x(1−x) , which
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is positive for x ∈ (0, 1). Hence the exponent is convex, implying that it is
maximized either at u = k/n or at u = 0.7. Note that

2H(0.7) + k0.7 ln(0.7) ≤ 2H(0.7) + 5 · 0.7 ln(0.7) ≤ −0.02

and that

2H
(
k

n

)
+

k2

n
ln
(
k

n

)
= − (k2 − 2k) lnn

n
+ O

(
1
n

)
.

So, the minimum is obtained at u = k/n, and we conclude the proof with

P (∃ 1-dense subset with ≤ 0.7n vertices) =
∑

k/n≤u≤0.7

O(n−k2+2k) = O(n−14).

For the case k = 3 as well as for the rest of our analysis we need to exploit more
sophisticated properties of 1-dense sets. In particular, we will use the following
statement, which was observed by Bohman and Kim [4]. We present a proof for
the sake of completeness.

Proposition 3. Let H be a k-graph with density < 1 and let U be an inclusion
maximal 1-dense subset of VH . Then eU = vU and all edges e ∈ EH satisfy |e ∩
U | �= k − 1.

Proof. If eU > vU , then let U ′ = U ∪ {v}, where v is any vertex in VH \U . Note
that such a vertex always exists, as U �= VH . Moreover, denote by d the degree
of v in U , i.e., the number of edges in H that contain v and all other vertices
only from U . Then

eU ′

vU ′
=

eU + d

vU + 1
≥ eU

vU + 1
≥ 1,

which contradicts the maximality of U . Similarly, if there was an edge e such
that |e ∩ U | = k − 1, then we could construct a larger 1-dense subset of VH by
adding the vertex in e \ U to U .

Motivated by the above proposition, we use the following stronger claim for
random 3-uniform hypergraphs.

Lemma 2. Let H be a 3-graph, and call a set U ⊂ VH bad if eU = |U | and ∀e ∈
EH : |e ∩ U | �= 2. Then, for any c ≤ 0.95

P (Hn,cn,3 contains a bad subset U with ≤ n/2 vertices) = o(1).

To argue about larger sets and, thus, complete the proof of Theorem 5, it suffices
to focus our analysis on the core of Hn,cn,k. Indeed, suppose that Hn,cn,k contains
a 1-dense subset of vertices, and let U be such a minimal one (with respect to
the number of vertices). Then each edge in the subgraph induced by U contains
at least two vertices of U , as otherwise we could remove a vertex of degree one
or zero in order to obtain a 1-dense set U ′ ⊂ U . This implies that the core
of Hn,cn,k contains all minimal 1-dense subsets. Therefore it suffices to focus on
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the analysis of the core of H̃n,p,k and show that with probability 1− o(1) it does
not contain any 1-dense subset – by Theorem 6 this is implied for Hn,cn,k too.

We will work with some c which is slightly below c∗k. Let δ > 0. As ξ is
increasing with respect to c (cf. Claim 3.1), there exists a γ = γ(δ) > 0 such

that c = c∗k − γ and ξ = ξ∗− δ, where ξ∗ is the unique solution of k = ξ∗(eξ∗−1)
eξ∗−1−ξ∗ .

Let
n2 = n(1− e−ξ − ξe−ξ) and m2 = (1 − ekδ)n2,

where ek is given by ξ(eξ−1)
eξ−ξ−1 = k(1−ekδ+Θ(δ2)). Note that Corollary 1 implies

that N2 = n2 ± δ2n, using δ2 instead of δ. Moreover, setting δ3 instead of δ
in (3.2) and taking Taylor’s expansion around ξ∗ imply that, with probability
1− o(1),

M2 = m2 ± δ2n. (4.1)

Now, for β, q ∈ [0, 1] let X
(1)
q,β = X

(1)
q,β(C) denote the number of subsets of the

core C of H̃n,p,k with �βN2� vertices and total degree �q ·kM2� that are maximal
1-dense. The main tool in our proofs is the following sharp bound.

Lemma 3. Let Tz be the unique solution of z = Tz(1−e−Tz )
1−e−Tz−Tze−Tz , where z > 2

and let

I(z) =

{
z (ln Tz − ln ξ)− ln

(
eTz − Tz − 1

)
+ ln

(
eξ − ξ − 1

)
, if z > 2

ln 2− 2 ln ξ + ln(eξ − ξ − 1), if z = 2
.

Let β ∈ [0, 1) and let β ≤ q ≤ 1− 2(1− β)/k. Then

P
(
X

(1)
q,β > 0

)
= o(1)+(

m2

qn2

)
(2k − k − 1)m2−qn2 exp

(
n2H(β)− km2H (q)− n2(1− β)I

(
k(1 − q)
1− β

)
+ O(n2δ

2 ln(1/δ))
)
.

Moreover, when q < β, the above probability is 0.

With the above estimate available, a substantial part of our work is devoted to
the proof of the following statement.

Lemma 4. Let δ > 0 be sufficiently small. Then the following holds with prob-
ability 1 − o(1). For any 0.7 ≤ β ≤ 1 − ekδ/2, and any β ≤ q ≤ 1 − 2(1−β)

k we
have X

(1)
q,β = 0.

The lower bound for q in the above lemma comes from the fact that otherwise
the corresponding probability is zero (cf. Lemma 3). Moreover, the upper bound
in the range of q stems from the fact that the average degree of the complement
of a set with t vertices and total degree q · kM2 is at least two. More precisely,
the total degree of the core satisfies for small δ > 0

kM2 ≥ q · kM2 + 2(N2 − t) =⇒ q ≤ 1− 2(1− β)N2

kM2

(4.1)
≤ 1− 2(1− β)

k
.
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With the above result at hand we can finally complete the proof of Theorem 5.

Proof (Theorem 5). It is sufficient to show that the core C of H̃n,p,k contains
with probability 1−o(1) no maximal 1-dense subsets, where p = ck/

(
n−1
k−1

)
. Note

also that it is sufficient to argue about subsets of size up to, say, (1− ekδ/2)N2
as (4.1) implies that for small δ all larger subsets have density smaller than 1.

Let k ≥ 5. By applying Lemma 1 we obtain that Hn,cn,k does not contain
any 1-dense set with less that 0.7n vertices, and the same is true for H̃n,p,k, by
Proposition 2 and Theorem 6. In particular, C does not contain such a subset,
and it remains to show the claim for sets of size at least 0.7n ≥ 0.7N2. The
proof is completed by applying Lemma 4, as we can choose δ > 0 as small as we
please.

The case k = 3 requires slightly more work. Lemma 2 guarantees that C has
no subset with ≤ n/2 vertices that contains exactly as many edges as vertices,
and there is no edge that contains precisely two vertices in that set. In other
words, by using Proposition 3, C does not contain a maximal 1-dense set with
n/2 vertices. However, we know that with probability 1− o(1)

N2 = (1− eξ
∗
− ξ∗e−ξ∗ ±O(δ))n, where 3 =

ξ∗(eξ
∗ − 1)

eξ∗ − 1− ξ∗
.

Numerical calculations imply that N2 ≥ 0.63n for any δ that is small enough.
So, C does not contain any maximal 1-dense subset with less than n/2 ≤ N2/(2 ·
0.63) ≤ 0.77N2 vertices. In this case, the proof is completed again by applying
Lemma 4. Finally, the case k = 4 was treated in [4]. This completes the proof of
Theorem 5.
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Abstract. Computing a minimum vertex cover in graphs and hyper-
graphs is a well-studied optimizaton problem. While intractable in gen-
eral, it is well known that on bipartite graphs, vertex cover is polynomial
time solvable. In this work, we study the natural extension of bipartite
vertex cover to hypergraphs, namely finding a small vertex cover in k-
uniform k-partite hypergraphs, when the k-partition is given as input.
For this problem Lovász [16] gave a k

2
factor LP rounding based ap-

proximation, and a matching
(

k
2
− o(1)

)
integrality gap instance was

constructed by Aharoni et al. [1]. We prove the following results, which
are the first strong hardness results for this problem (here ε > 0 is an
arbitrary constant):
– NP-hardness of approximating within a factor of

(
k
4
− ε

)
, and

– Unique Games-hardness of approximating within a factor of
(

k
2
− ε

)
,

showing optimality of Lovász’s algorithm under the Unique Games
conjecture.

The NP-hardness result is based on a reduction from minimum vertex
cover in r-uniform hypergraphs for which NP-hardness of approximating
within r−1−ε was shown by Dinur et al. [5]. The Unique Games-hardness
result is obtained by applying the recent results of Kumar et al. [15], with
a slight modification, to the LP integrality gap due to Aharoni et al. [1].
The modification is to ensure that the reduction preserves the desired
structural properties of the hypergraph.

1 Introduction

A k-uniform hypergraphG = (V,E) consists of a set of vertices V and hyperedges
E where every hyperedge is a set of exactly k vertices. The hypergraph G is said
to be m-colorable if there is a coloring of the vertex set V with at most m colors
such that no hyperedge in E has all its vertices of the same color. We shall be
interested in the stricter condition of strong colorability as defined in Aharoni
et al. [1], wherein G is said to be m-strongly-colorable if there is an m-coloring
such of the vertex set V such that every hyperedge E has k distinctly colored
vertices. In particular a k-strongly-colorable k-uniform hypergraph is a k-partite
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k-uniform hypergraph, where the k-partition of the vertex set corresponds to
the k color classes.

A vertex cover of a hypergraph G = (V,E) is a subset V ′ of vertices such
that every hyperedge in E contains at least one vertex from V ′. The problem
of computing the vertex cover of minimum size in a (hyper)graph has been
deeply studied in combinatorics with applications in various areas of optimization
and computer science. This problem is known to be NP-hard. On the other
hand, for k-uniform hypergraphs the greedy algorithm of picking a maximal
set of disjoint hyperedges and including all the vertices in those hyperedges
gives a factor k approximation. More sophisticated algorithmic techniques only
marginally improve the approximation factor to k − o(1) [9].

Several inapproximability results have been shown for computing the mini-
mum vertex cover. For general k, an Ω(k1/19) hardness factor was first shown
by Trevisan [21], subsequently strengthened to Ω(k1−ε) by Holmerin [10] and
to a k − 3− ε hardness factor due to Dinur, Guruswami and Khot [4]. The cur-
rently best known k − 1 − ε hardness factor is due to Dinur, Guruswami, Khot
and Regev [5] who build upon [4] and the seminal work of Dinur and Safra [6]
who showed the best known 1.36 hardness of approximation for vertex cover in
graphs (k = 2).

All of the above mentioned results are based on standard complexity assump-
tions. However, assuming Khot’s Unique Games Conjecture (UGC) [12], an es-
sentially optimal k − ε hardness of approximating the minimum vertex cover
on k-uniform hypergraphs was shown by Khot and Regev [14]. In more recent
works the UGC has been used to relate the inapproximability of various classes
of constraint satisfaction problems (CSPs) to the corresponding semi-definite
programming (SDP) integrality gap [19], or the linear programming (LP) inte-
grality gap [17] [15]. The recent work of Kumar et al. [15] generalizes the result
of [14] and shall be of particular interest in this work.

In this work we investigate the complexity of computing the minimum vertex
cover in hypergraphs that are strongly colorable and where the strong coloring
is given as part of the input. Variants of this problem are studied for databases
related applications such as distributed data mining [7], schema mapping discov-
ery [8] and in optimizing finite automata [11]. The particular case of computing
the minimum vertex cover in k-uniform k-partite (with the partition given) hy-
pergraphs was studied by Lovász [16] who obtained a k/2 approximation for
it by rounding its natural LP relaxation. Subsequently, Aharoni, Holzman and
Krivelevich [1] proved a tight integrality gap of k/2− o(1) for the LP relaxation.
On the hardness side, [11] and [8] give reductions from 3SAT to it, which imply
that the problem is APX-hard. However, to the best of our knowledge no better
hardness of approximation was known for this problem.

In this work we show a
(
k
4 − ε

)
hardness of approximation factor for com-

puting the minimum vertex cover on k-uniform k-partite hypergraphs. Actually,
we prove a more general hardness of approximation factor of (m−(k−1))(k−1)

m − ε
for computing the minimum vertex cover in m-strongly colorable k-uniform hy-
pergraphs. The result for k-uniform k-partite hypergraphs follows by a simple
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reduction. Our results are based on a reduction from minimum vertex cover in
k-uniform hypergraphs for which, as mentioned above, the best known factor
k − 1− ε hardness of approximation factor was given in [5].

We also study the results of [15] in the context of the problems we consider.
In [15], the authors proved that LP integrality gaps for a large class of mono-
tone constraint satisfaction problems, such as vertex cover, can be converted
into corresponding UGC based hardness of approximation results. As presented,
the reduction in [15] does not guarantee that the structural properties of the
integrality gap will be carried through into the final instance. Nevertheless, we
observe that the integrality gap instance of [1] can be combined with the work
of [15] with only a slight modification to yield an essentially optimal k/2− o(1)
factor hardness of approximation for computing the minimum vertex cover in
k-uniform k-partite hypergraphs, i.e. the final instance is also guaranteed to be
a k-uniform k-partite hypergraph. Similar tight inapproximability can also be
obtained for a larger class of hypergraphs which we shall define later.

Main Results. We summarize the main results of this paper in the following
informal statement.

Theorem (Informal). For every ε > 0, and integers k � 3 and m � 2k, it
is NP-hard to approximate the minimum vertex cover on m-strongly-colorable
k-uniform hypergraphs to within a factor of

(m− (k − 1))(k − 1)
m

− ε.

In addition, it is NP-hard to approximate the minimum vertex cover on k-
uniform k-partite hypergraphs to within a factor of k

4 − ε, and within a factor of
k
2 − ε assuming the Unique Games conjecture.

We now proceed to formally defining the problems we consider, followed by a
discussion of the previous work and a precise statement of our results on these
problems.

2 Problem Definitions

We now define the variants of the hypergraph vertex cover problem studied in
this paper.

Definition 1. For any integer k � 2, an instance G = (V,E) of the hypergraph
vertex cover problem HypVC(k), is a k-uniform hypergraph (possibly weighted)
where the goal is to compute a vertex cover V ′ ⊆ V of minimum weight.

Definition 2. For any integers m � k � 2, an instance of G = (V,E) of St-

rongColored-HypVC(m, k) is a m-strongly-colorable k-uniform hypergraph
where the m-strong-coloring of G is given. Formally, a partition of V into m
disjoint subsets (color classes) Vi (1 � i � m) is given, such that every hyperedge
in E has at most one vertex from each color class. In other words, every hyperedge
contains k distinctly colored vertices. The goal is to compute the minimum weight
vertex cover in G.
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Definition 3. For any integer k � 2, an instance G = (V,E) of HypVCparti-

te(k) is an k-uniform k-partite hypergraph with the k-partition given as input.
The goal is to compute the minimum weight vertex cover in G. Note that Hyp-

VCpartite(k) is the same as StrongColored-HypVC(k, k).

The following definition generalizes the class of k-partite hypergraphs and defines
the minimum vertex cover problem for that class.

Definition 4. For any integer k � 2 and positive integers p1, . . . , pk, a hyper-
graph G = (V,E) is called (p1, . . . , pk)-split if there is a k-partitioning V1, . . . , Vk
of the vertex set V such that for every hyperedge e ∈ E, |e∩Vi| = pi for 1 � i � k.
HypVCsplit(r, k, p1, . . . , pi) denotes the problem of computing the minimum
vertex cover in (p1, . . . , pk)-split r-uniform hypergraphs where the k-partitioning
is given as input. Here

∑k
i=1 pi = r. Note that HypVCpartite(k) is the same

as HypVCsplit(k, k, 1, . . . , 1).

3 Previous Work and Our Results

3.1 Previous Results

Let LP0 be the natural “covering” linear programming relaxation for hypergraph
vertex cover (see, for example, Section 1 of [1]). The linear program is oblivious
to the structure of the hypergraph and can be applied to any of the variants of
hypergraph vertex cover defined above. The following theorem, first proved by
Lovász [16] gives an upper bound on the integrality gap of the relaxation LP0
for HypVCpartite(k). All the upper bounds on the integrality gap stated in
this section are achieved using polynomial time rounding procedures for LP0.

Theorem 1. (Lovász [16]) For any integer k � 2, for any instance G of Hyp-

VCpartite(k),
OPTVC(G)
VALLP0(G)

� k

2
(1)

where OPTVC(G) is the weight of the minimum vertex cover in G and VALLP0(G)
is the optimum value of the objective function of the relaxation LP0 applied to G.

We observe that the relaxation LP0 does not utilize the k-partiteness property
of the input hypergraph. Therefore, the upper bound in Equation (1) holds
irrespective of whether the k-partition is given as input. On the other hand, the
k-partition is necessary for the efficient rounding algorithm given by the previous
theorem. We note that for general k-uniform hypergraphs the gap between the
size of the minimum vertex cover and value of the LP solution can be as high as
k − o(1). The following theorem states that Equation (1) is essentially tight.

Theorem 2. (Aharoni et al. [1]) The integrality gap of LP0 on instances of
HypVCpartite(k) is k/2− o(1).

For instances of StrongColored-HypVC(m, k) Aharoni et al. [1] proved lower
and upper bounds summarized in the following theorem.
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Theorem 3. (Aharoni et al. [1]) Let G be an instance of StrongColored-

HypVC(m, k) where m, k � 2. If m � k(k − 1) then,

OPTVC(G)
VALLP0(G)

� (m− k + 1)k
m

(2)

In addition, the integrality gap of LP0 when m � k(k − 1) is (m−k+1)k
m − o(1).

On the other hand, when k < m < k(k − 1) then,

OPTVC(G)
VALLP0(G)

� mk

m + k
+ min

{
m− k

2m
a,

k

m
(1 − a)

}
, (3)

where a = m2

m+r −
⌊

m2

m+r

⌋
.

Theorems 1 and 2 were generalized by [1] to split hypergraphs as defined in
Definition 4. Their general result is stated below.

Theorem 4. (Aharoni et al. [1]) For any positive integers r, k, p1, . . . , pk such
that

∑k
i=1 pi = r � 2, and any instance G of HypVCsplit(r, k, p1, . . . , pk),

OPTVC(G)
VALLP0(G)

� max
{r

2
, p1, . . . , pk

}
. (4)

In addition, the integrality gap of LP0 on instances of HypVCsplit(r, k, p1, . . . , pk)
is max

{
r
2 , p1, . . . , pk

}
− o(1).

The following theorem states the best known NP-hardness of approximation for
the minimum vertex on general hypergraphs.

Theorem 5. (Dinur et al. [5]) For any ε > 0 and integer k � 3, it is NP-hard
to approximate HypVC(k) to a factor of k − 1− ε.

The above hardness of approximation for general k is not known to be tight.
On the other hand, assuming the Unique Games Conjecture one can obtain
optimal inapproximability factors of k−o(1) for HypVC(k). The following formal
statement was proved by Khot and Regev [14].

Theorem 6. (Khot et al. [14]) Assuming the Unique Games Conjecture of Khot
[12], For any ε > 0, it is NP-hard to approximate HypVC(k) to within a factor
of k − ε.

Remark 1. A recent paper by Bansal and Khot [3] shows a strong hardness result
assuming the UGC for distinguishing between a k-uniform hypergraph that is
almost k-partite and one which has no vertex cover containing at most a (1− ε)
fraction of vertices (for any desired ε > 0). We note that this is very different
from our problem where the input is always k-partite with a given k-partition
(and in particular has an easily found vertex cover with a 1/k fraction of vertices,
namely the smallest of the k parts).
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3.2 Our Results

NP-hardness results. We prove the following theorem on the NP-hardness of
approximating the minimum vertex cover on strongly colorable hypergraphs.

Theorem 7. For every ε > 0 and integer m � k � 3 (such that m � 2k), it is
NP hard to approximate StrongColored-HypVC(m, k) to within a factor of

(m− (k − 1))(k − 1)
m

− ε.

The above theorem is proved in Section 4 via a reduction from HypVC(k) to
StrongColored-HypVC(m, k). A simple reduction from StrongColored-

HypVC(k, k′) also shows the following hardness results for HypVCpartite(k)
and HypVCsplit(r, k, p1, . . . , pk). We prove Theorem 8 in Section 5 while we
omit the proof of Theorem 9 due to lack of space.

Theorem 8. For every ε > 0 and integer k > 16, it is NP-hard to approximate
HypVCpartite(k) within a factor of k

4 − ε.

Theorem 9. For every ε > 0, and positive integers r, k, p1, . . . , pk such that∑k
i=1 pi = r � 3 and t := max{p1, . . . , pk} � 3, it is NP-hard to approximate

HypVCsplit(r, k, p1, . . . , pk) to within a factor of

max
{ r

4
, t− 1

}
− ε.

The above hardness of approximation results do not quite match the algorithmic
results in Theorem 4. The next few paragraphs illustrate how recent results of
[15] can be combined with the integrality gaps given in Theorems 1 and 4 to
yield tight inapproximability for the corresponding problems.

Unique Games hardness. In recent work Kumar, Manokaran, Tulsiani and
Vishnoi [15] have shown that for a large class of monotone constraint problems,
including hypergraph vertex cover, integrality gaps for a natural LP relaxation
can be transformed into corresponding hardness of approximation results based
on the Unique Games Conjecture.

The reduction in [15] is analyzed using the general bounds on noise correlation
of functions proved by Mossel [18]. For this purpose, the reduction perturbs a
“good” solution, say x∗, to the LP relaxation for the integrality gap GI =
(VI , EI), so that x∗ satisfies the property that all variables are integer multiples
of some ε > 0. Therefore, the number of distinct values in x∗ is m ≈ 1/ε.
The reduction is based on a “dictatorship test” over the set [m] × {0, 1}r (for
some parameter r) and the hardness of approximation obtained is related to the
performance of a certain (efficient) rounding algorithm on x∗, which returns a
solution no smaller than the optimum on GI . As described in [15] the reduction
is not guaranteed to preserve structural properties of the integrality gap instance
GI , such as strong colorability or k-partiteness.

We make the simple observation that the dictatorship test in the above reduc-
tion can analogously be defined over VI × {0, 1}r which then preserves strong
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colorability and partiteness properties of GI into the final instance. The gap
obtained depends directly on the optimum in GI . This observation, combined
with the result of [15] and the integrality gap for HypVCpartite(k) stated in
Theorem 1 yields the following optimal UGC based hardness result.

Theorem 10. Assuming the Unique Games Conjecture, it is NP-hard to ap-
proximate HypVCpartite(k) to within a factor of k

2 − ε for any ε > 0.

Due to lack of space we omit the proof and refer the reader to the full ver-
sion of this paper and [15] for details of the analysis. Similar inapproximability
results can be obtained for StrongColored-HypVC(m, k) and HypVCspl-

it(r, k, p1, . . . , pk) using the corresponding integrality gaps given in Theorems 3
and 4.

4 Reduction from HypVC(k) to StrongColored-

HypVC(m, k) and Proof of Theorem 7

Let k and m be two positive integers such that m � k � 2. In this section we give
a reduction from an instance of HypVC(k) to an instance of StrongColored-

HypVC(m, k).

Reduction. Let the H = (U,F ) be an instance of HypVC(k), i.e. H is a k-
uniform hypergraph with vertex set U , and a set F of hyperedges. The reduction
constructs an instance G = (V,E) of StrongColored-HypVC(m, k) where G
is an k-uniform, m-strongly colorable hypergraph, i.e. V = ∪m

i=1Vi, where Vi are
m disjoint subsets (color classes) such that every hyperedge in E has exactly
one vertex from each subset. The main idea of the reduction is to let new vertex
set V be the union of m copies of U , and for every hyperedge e′ ∈ F , add all
hyperedges which contain exactly one copy (in V ) of every vertex in e′, and at
most one vertex from any of the m copies of U (in V ). Clearly every hyperedge
‘hits’ any of the m copies of U in V at most once which naturally gives an m-
strong coloring of V . It also ensures that if there is a vertex cover in G which is
the union of a subset of the copies of U , then it must contain at least m− k + 1
of the copies. Our analysis shall essentially build upon this idea.

To formalize the reduction we first need to define a useful notation.

Definition 5. Given a hyperedge e′ = {u1, . . . , uk} in F , and a subset I ⊆ [m]
where |I| = k, a mapping σ : I 	→ {u1, . . . , uk} is said to be a “(I, e′)-matching”
if σ is a one-to-one map. Let ΓI,e′ be the set of all (I, e′)-matchings. Clearly,
|ΓI,e′ | = k! , for all I ⊆ [m], |I| = k and e′ ∈ F .

The steps of the reduction are as follows.

1. For i = 1, . . . ,m, let Vi = U × {i}
2. For every hyperedge e′ in F , for every subset I ⊆ [m] such that |I| = k , for

every (I, e′)-matching σ ∈ ΓI,e′ we add the hyperedge e = e(e′, I, σ) which
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is defined as follows.

∀i ∈ [m], Vi ∩ e =

{
(σ(i), i) if i ∈ I

∅ otherwise.
(5)

The above reduction outputs the instance G = (V,E) of StrongColored-

HypVC(m, k). Note that the vertex set V is of size m|U | and for every hyperedge
e′ ∈ F the number of hyperedges added in E is

(
m
k

)
· k!. Therefore the reduction

is polynomial time. In the next section we present the analysis of this reduction.

Analyzing the Reduction

Theorem 11. Let C be the size of the optimal vertex cover in H = (U,F ), and
let C′ be the size of the optimal vertex cover in G = (V,E). Then,

(m− (k − 1))C � C′ � mC

Using the above theorem we can complete the proof of Theorem 7 as follows.

Proof. (of Theorem 7) Theorem 11 combined with the k−1−ε inapproximability
for HypVC(k) given by [5] and stated in Theorem 5, implies an inapproxima-
bility of,

(m− (k − 1))C1

mC2
,

for some integers C1, C2 (depending on H) such that C1 � C2(k − 1 − ε) for
some ε > 0. It is easy to see that the above expression can be simplified to yield

(m− (k − 1))(k − 1)
m

− ε′ (6)

as the inapproximability factor for StrongColored-HypVC(m, k). This proves
Theorem 7. ��

Proof. (of Theorem 11) We first show that there is a vertex cover of size at most
mC in G, where C is the size of an optimal vertex cover U∗ in H . To see this
consider the set V ∗ ⊆ V , where V ∗ = U∗ × [m]. For every hyperedge e′ ∈ F ,
e′∩U∗ �= ∅, and therefore e∩U∗×{i} �= ∅, for some i ∈ [m], for all e = e(e′, I, σ).
Therefore, V ∗∩e �= ∅ for all e ∈ E. The size of V ∗ is mC which proves the upper
bound in Theorem 11. In the rest of the proof we shall prove the lower bound
in Theorem 11.

Let S be the optimal vertex cover in G. Our analysis shall prove a lower
bound on the size S in terms of the size of the optimal vertex cover in H . Let
Si := Vi ∩ S for i ∈ [m]. Before proceeding we introduce the following useful
quantity. For every Y ⊆ [m], we let AY ⊆ U be the set of all vertices which have
a copy in Si for some i ∈ Y . Formally,

AY := {u ∈ U | ∃i ∈ Y s.t. (u, i) ∈ Si}.

The following simple lemma follows from the construction of the edges E in G.
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Lemma 1. Let I ⊆ [m] be any subset such that |I| = k. Then AI is a vertex
cover of the hypergraph H.

Proof. Fix any subset I as in the statement of the lemma. Let e′ ∈ F be any
hyperedge in H . For a contradiction assume that AI ∩ e′ = ∅. This implies that
the sets Si (i ∈ I) do not have a copy of any vertex in e′. Now choose any
σ ∈ ΓI,e′ and consider the edge e(e′, I, σ) ∈ E. This edge can be covered only by
vertices in Vi for i ∈ I. However, since Si does not contain a copy of any vertex
in e′ for i ∈ I the edge e(e′, I, σ) is not covered by S which is a contradiction.
This completes the proof. ��
The next lemma combines the previous lemma with the minimality of S to show
a strong structural statement for S, that any Si is “contained” in the union of
any other k sets Sj . It shall enable us to prove that most of the sets Si are large.

Lemma 2. Let I ⊆ [m] be any set of indices such that |I| = k. Then, for any
j′ ∈ [m], Sj′ ⊆ AI × {j′}.
Proof. Let I be any choice of a set of k indices in [m] as in the statement of the
lemma. From Lemma 1 we know that AI is a vertex cover in H and is therefore
non-empty. Let j′ ∈ [m] be an arbitrary index for which we shall verify the
lemma for the above choice of I. If j′ ∈ I, then the lemma is trivially true.
Therefore, we may assume that j′ �∈ I. For a contradiction we assume that,

(u, j′) ∈ Sj′ \ (AI × {j′}) (7)

From the minimality of S, we deduce that there must be a hyperedge, say e ∈ E
such that e is covered by (u, j′) and by no other vertex in S; otherwise S\{(u, j′)}
would be a smaller vertex cover in G. Let e = e(e′, I ′, σ) for some e′ ∈ F , I ′ ⊆ [m]
(|I ′| = k) and σ ∈ ΓI′,e′ . Now, since (u, j′) covers e, we obtain that j′ ∈ I ′ and
σ(j′) = u ∈ e′. Combining this with the fact that j′ �∈ I, and that |I| = |I ′| = k,
we obtain that I \ I ′ �= ∅.

Let j ∈ I \I ′. We claim that (u, j) �∈ Sj . To see this, observe that if (u, j) ∈ Sj

then u ∈ AI which would contradict our assumption in Equation (7).
We now consider the following hyperedge ẽ = ẽ(e′, Ĩ, σ̃) ∈ E where the quan-

tities are defined as follows. The set Ĩ simply replaces the index j′ in I ′ with the
index j, i.e.

Ĩ = (I ′ \ {j′}) ∪ {j}. (8)

Analogously, σ̃ ∈ ΓĨ,e′ is identical to σ except that it is defined on j instead of
j′ where σ̃(j) = σ(j′) = u. Formally,

σ̃(i) =

{
σ(i) if i ∈ Ĩ \ {j}
u if i = j

(9)

Equations (8) and (9) imply the following,

Vi ∩ ẽ = Vi ∩ e ∀i ∈ [m] \ {j, j′} (10)
Vj ∩ ẽ = (u, j) (11)
Vj′ ∩ ẽ = ∅ (12)
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Since (u, j′) ∈ S uniquely covers e, Equation (10) implies that ẽ is not covered
by any vertex in Si for all i ∈ [m] \ {j, j′}. Moreover, since j′ �∈ Ĩ no vertex in
Sj′ covers ẽ. On the other hand, by our assumption in Equation (7) (u, j) �∈ Sj ,
which along with Equation (11) implies that no vertex in Sj covers ẽ. Therefore,
ẽ is not covered by S. This is a contradiction to the fact that S is a vertex cover
in G and therefore our assumption in Equation (7) is incorrect. This implies that
Sj′ ⊆ AI × {j′}. This holds for every j′, thus proving the lemma. ��

Note that the above lemma immediately implies the following corollary.

Corollary 1. For every I ⊆ [m], |I| = k, we have A[m] = AI .

It is easy to see the following simple lemma.

Lemma 3. For any vertex u ∈ A[m], let Iu ⊆ [m] be the largest set such that
u �∈ AIu . Then, |Iu| < k.

Proof. Suppose the above does not hold. Then Iu (or any subset of Iu of size k)
would violate Corollary 1, which is a contradiction. This completes the proof. ��

The above lemma immediately implies the desired lower bound on the size of S.

Lemma 4. Let C be the size of the optimal vertex cover in H. Then,

|S| � (m− (k − 1))C.

Proof. For convenience, let q = |A[m]|. Note that, by Lemma 1 A[m] is a vertex
cover in H . Therefore, q � C. From Lemma 3 we deduce that every vertex
u ∈ A[m] has a copy (u, i) in at least m − (k − 1) of the sets Si. Therefore, S
contains m− (k − 1) copies of every vertex in A[m] which yields,

|S| � (m− (k − 1))q � (m− (k − 1))C,

thus completing the proof. ��

The above also completes the proof of the lower bound of Theorem 11. ��

5 Reduction from StrongColored-HypVC(k, k′) to
HypVCpartite(k) and Proof of Theorem 8

We prove Theorem 8 by giving a simple reduction from an instance G = (V,E)
of StrongColored-HypVC(k, k′) to an instance G′ = (V ′, E′) of HypVC-

partite(k) where the parameters will be chosen later.
Given G = (V,E) construct V ′ by adding k “dummy” vertices b1, . . . , bk to

V , i.e. V ′ = V ∪ {b1, . . . , bk}. Let V1, . . . , Vk be the k color classes of V . For any
hyperedge e ∈ E, construct a corresponding hyperedge e′ ∈ E′ which contains
all the vertices in e in addition to bi if e ∩ Vi = ∅ for all i ∈ [k]. It is easy to
see that G′ is a k-partite hypergraph with the k-partition given by the subsets
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Vi ∪ {bi}. As a final step, set the weight of the dummy vertices b1, . . . , bk to be
much larger than |V ′| so that no dummy vertex is chosen in any optimal vertex
cover in G′. This is because V is always a vertex cover in G. Note that the
hypergraph can be made unweighted by the (standard) technique of replicating
each dummy vertex many times and multiplying the hyperedges appropriately.

Since no optimal vertex cover in G′ contains a dummy vertex we deduce that
an optimal vertex cover in G′ is an optimal vertex cover in G and vice versa.
From Theorem 7, for any ε > 0, we obtain a hardness factor of,

(k − (k′ − 1))(k′ − 1)
k

− ε,

for approximating HypVCpartite(k). Let α := (k′−1)
k . The above expression

is maximized in terms of k when (1−α)α
2 attains a maximum where α ∈ [0, 1].

Clearly, the maximum is obtained when α = (k′−1)
k = 1

2 , thus yielding as the
hardness of approximation factor:(

k′ − 1
2

)
− ε =

(
k

4

)
− ε,

which proves Theorem 8.
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1 Laboratorie d’Informatique, École Polytechnique, 91128 Palaiseau-Cedex, France
rue1982@lix.polytechnique.fr

2 Department of Computer Science, Technion, Haifa, Israel
ignasi@cs.technion.ac.il

3 Dept. of Mathematics, National and Kapodistrian University of Athens, Greece
sedthilk@math.uoa.gr

Abstract. We provide a framework for the design and analysis of
dynamic programming algorithms for surface-embedded graphs on n ver-
tices and branchwidth at most k. Our technique applies to general fami-
lies of problems where standard dynamic programming runs in 2O(k·log k)·
n steps. Our approach combines tools from topological graph theory and
analytic combinatorics. In particular, we introduce a new type of branch
decomposition called surface cut decomposition, capturing how partial
solutions can be arranged on a surface. Then we use singularity analysis
over expressions obtained by the symbolic method to prove that partial
solutions can be represented by a single-exponential (in the branchwidth
k) number of configurations. This proves that, when applied on surface
cut decompositions, dynamic programming runs in 2O(k) · n steps. That
way, we considerably extend the class of problems that can be solved in
running times with a single-exponential dependence on branchwidth and
unify/improve all previous results in this direction.
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1 Introduction

One of the most important parameters in the design and analysis of graph al-
gorithms is the branchwidth of a graph. Branchwidth, together with its twin
parameter of treewidth, can be seen as a measure of the topological resemblance
of a graph to a tree. Its algorithmic importance dates back in the celebrated
theorem of Courcelle (see e.g. [6]), stating that graph problems expressible in
Monadic Second Order Logic can be solved in f(bw) · n steps (here bw is the
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branchwidth1 and n is the number of vertices of the input graph). Using pa-
rameterized complexity terminology, this implies that a large number of graph
problems are fixed-parameter tractable when parameterized by the branchwidth
of their input graph. As the bounds for f(bw) provided by Courcelle’s theorem
are huge, the design of tailor-made dynamic programming algorithms for specific
problems so that f(bw) is a simple –preferably a single-exponential– function,
became a natural (and unavoidable) ingredient for many results on graph algo-
rithms (see [3,4,20, 10]). In this paper, we provide a general framework for the
design and analysis of dynamic programming algorithms for graphs embedded
in surfaces where f(bw) = 2O(bw).

Dynamic programming. Dynamic programming is applied in a bottom-up
fashion on a rooted branch decomposition of the input graph G, that roughly
is a way to decompose the graph into a tree structure of edge bipartitions (the
formal definition is in Section 2). Each bipartition defines a separator S of the
graph called middle set, of cardinality bounded by the branchwidth of the input
graph. The decomposition is routed in the sense that one of the parts of each
bipartition is the “lower part of the middle set”, i.e., the so-far processed one.
For each graph problem, dynamic programming requires the suitable definition
of tables encoding how potential (global) solutions of the problem are restricted
to a middle set and the corresponding lower part. The size of these tables reflects
the dependence on k = |S| in the running time of the dynamic programming.

Designing the tables for each middle set S is not always an easy task and
may vary considerably due to the particularities of each problem. The simplest
cases are problems such as Vertex Cover and Dominating Set, where the
certificate of the solution is a set of vertices whose choice is not restricted by
some global condition. This directly yields to the desired 2O(k) upper bound
on their size. For other problems, such as Longest Path, Cycle Packing,
or Hamiltonian Cycle, things are more complicated as the tables encode
pairings of vertices of S, which are 2Θ(k log k) many. However, for such problems
one can do better for planar graphs following the approach introduced in [12].
The idea in [12] is to use a special type of branch decomposition called sphere
cut decomposition (introduced in [19]) that can guarantee that the pairings are
non-crossing pairings around a virtual edge-avoiding cycle (called noose) of the
plane where G is embedded. This restricts the number of tables corresponding
to a middle set S by the k-th Catalan number, which is single-exponential in k.
The same approach was extended for graphs embedded in surfaces of genus γ [9].
The idea in [9] was to perform a planarization of the input graph by splitting
the potential solution into at most γ pieces and then applying the sphere cut
decomposition technique of [12] to a more general version of the problem where
the number of pairings is still bounded by some Catalan number (see also [11]
for the application of this technique for more general graphs).

1 The original statement of Courcelle’s theorem used the parameter of treewidth in-
stead of branchwidth. The two parameters are approximately equivalent, in the sense
that one is a constant-factor approximation of the other.
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A wider family of problems are those where the tables of dynamic program-
ming encode packings of S into sets; throughout this paper, we call these prob-
lems packing-encodable problems. Typical problems of this type are Connected

Vertex Cover, Feedback Vertex Set, and Steiner Tree, where the con-
nected components of a potential solution can be encoded by a collection of
disjoint subsets of S, each of of arbitrary cardinality. Here, the general bound
on the table size is given by the k-th Bell number, and thus again by 2Θ(k·log k).
(To exemplify the differences between distinct encodings, typical dynamic pro-
gramming algorithms for Vertex Cover and Connected Vertex Cover

can be found in [18].) Unfortunately, for the latter category of problems, none
of the current techniques is able to drop this bound to a single-exponential one
for graphs embedded in surfaces.

Our results. In this paper, we follow a different approach in order to design
single-exponential (in bw) algorithms for graphs embedded in surfaces. In par-
ticular, we deviate significantly from the planarization technique of [9], which
is not able to tackle problems whose solutions are encoded by general pack-
ings. Instead, we extend the concept of sphere cut decomposition from planar
graphs to graphs embeddable in generic surfaces, and we exploit directly the
combinatorial structure of the potential solutions in the topological surface. Our
approach permits us to provide in a unified way a single-exponential (in bw)
time analysis for all aforementioned problems. Examples of other such problems
are Connected Dominating Set, Connected r-Domination, Connected

FVS, Maximum Leaf Spanning Tree, Maximum Full-Degree Spanning

Tree, Maximum Eulerian Subgraph, or Maximum Leaf Tree. Our results
imply all the results in [9, 12], and with running times whose genus dependence
is better than the ones in [9], as discussed in Section 6.

Our techniques. For our results we enhance the current technology of dynamic
programming with new tools for both topological graph theory and analytic com-
binatorics. We first propose a special type of branch decomposition of embedded
graphs with nice topological properties, which we call surface cut decomposition
(see Section 4). Roughly, the middle sets of such a decomposition are situated
along a bounded (by the genus γ) set of nooses of the surface with few (again
bounded by γ) common points. Such a decomposition is based on the concept of
polyhedral decomposition introduced in Section 3. We prove that the sizes of the
tables of the dynamic programming correspond to the number of non-crossing
partitions of vertex sets lying in the boundary of a generic surface. To count
these partitions, we use a powerful technique of analytic combinatorics: singu-
larity analysis over expressions obtained by the symbolic method (for more on
this technique, see the monograph of Flajolet and Sedgewick [13]). The symbolic
method gives a precise asymptotic enumeration of the number of non-crossing
partitions, that yields the single-exponentiality of the table size (see Section 5).
As this is the first time such a counting is done, our combinatorial results have
independent mathematical interest.

For performing dynamic programming, our approach resides in a common
preprocessing step that constructs a surface cut decomposition (Algorithm 2
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in Section 4). Then, what remains is just to run the dynamic programming
algorithm on such a surface cut decomposition. The exponential bound on the
size of the tables of this dynamic programming algorithm is provided as a result
of our analysis (Theorem 4 of Section 6). Due to space limitations, this extended
abstract contains no proofs; they can be found in [18].

2 Preliminaries

Topological surfaces. In this paper, surfaces are compact and their boundary
is homeomorphic to a finite set (possibly empty) of disjoint circles. We denote
by β(Σ) the number of connected components of the boundary of a surface Σ.
The Surface Classification Theorem [16] asserts that a compact and connected
surface without boundary is determined, up to homeomorphism, by its Euler
characteristic χ(Σ) and by whether it is orientable or not. More precisely, ori-
entable surfaces are obtained by adding g ≥ 0 handles to the sphere S2, obtaining
the g-torus Tg with Euler characteristic χ(Tg) = 2 − 2g, while non-orientable
surfaces are obtained by adding h > 0 cross-caps to the sphere, hence obtain-
ing a non-orientable surface Ph with Euler characteristic χ(Ph) = 2 − h. We
denote by Σ the surface (without boundary) obtained from Σ by gluing a disk
on each of the β(Σ) components of the boundary. It is then easy to show that
χ(Σ) = β(Σ) + χ(Σ). A subset Π of a surface Σ is surface-separating if Σ \Π
has at least 2 connected components. It is convenient to work with the Euler
genus γ(Σ) of a surface Σ, which is defined as γ(Σ) = 2− χ(Σ).

Graphs embedded in surfaces. For a graph G we use the notation (G, τ) to
denote that τ is an embedding of G in Σ, whenever the surface Σ is clear from
the context. An embedding has vertices, edges, and faces, which are 0, 1, and 2
dimensional open sets, and are denoted V (G), E(G), and F (G), respectively. In
a 2-cell embedding, also called map, each face is homeomorphic to a disk. The
degree d(v) of a vertex v is the number of edges incident with v, counted with
multiplicity (loops are counted twice). An edge of a map has two ends (also
called half-edges), and either one or two sides, depending on the number of faces
which is incident with. A map is rooted if an edge and one of its half-edges and
sides are distinguished as the root-edge, root-end and root-side, respectively.

For a graph G, the Euler genus of G, denoted γ(G), is the smallest Euler
genus among all surfaces in which G can be embedded. An O-arc is a subset
of Σ homeomorphic to S1. A subset of Σ meeting the drawing only at vertices
of G is called G-normal. If an O-arc is G-normal, then we call it a noose. The
length of a noose is the number of its vertices. Many results in topological graph
theory rely on the concept of representativity [19, 17], also called face-width,
which is a parameter that quantifies local planarity and density of embeddings.
The representativity rep(G, τ) of a graph embedding (G, τ) is the smallest length
of a non-contractible (i.e., non null-homotopic) noose in Σ. We call an embedding
(G, τ) polyhedral [16] if G is 3-connected and rep(G, τ) ≥ 3, or if G is a clique
and 1 ≤ |V (G)| ≤ 3. With abuse of notation, we also say in that case that the
graph G itself is polyhedral.
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For a given embedding (G, τ), we denote by (G∗, τ) its dual embedding. Thus
G∗ is the geometric dual of G. Each vertex v (resp. face r) in (G, τ) corresponds
to some face v∗ (resp. vertex r∗) in (G∗, τ). Also, given a set S ⊆ E(G), we denote
by S∗ the set of the duals of the edges in S. Let (G, τ) be an embedding and
let (G∗, τ) be its dual. We define the radial graph embedding (RG, τ) of (G, τ)
(also known as vertex-face graph embedding) as follows: RG is an embedded
bipartite graph with vertex set V (RG) = V (G)∪V (G∗). For each pair e = {v, u},
e∗ = {u∗, v∗} of dual edges in G and G∗, RG contains edges {v, v∗}, {v∗, u},
{u, u∗}, and {u∗, v}. The medial graph embedding (MG, τ) of (G, τ) is the dual
embedding of the radial embedding (RG, τ) of (G, τ). Note that (MG, τ) is a
Σ-embedded 4-regular graph.

Tree-like decompositions of graphs. Let G be a graph on n vertices. A
branch decomposition (T, μ) of a graph G consists of an unrooted ternary tree T
(i.e., all internal vertices are of degree three) and a bijection μ : L→ E(G) from
the set L of leaves of T to the edge set of G. We define for every edge e of T
the middle set mid(e) ⊆ V (G) as follows: Let T1 and T2 be the two connected
components of T \{e}. Then let Gi be the graph induced by the edge set {μ(f) :
f ∈ L∩V (Ti)} for i ∈ {1, 2}. The middle set is the intersection of the vertex sets
of G1 and G2, i.e., mid(e) := V (G1)∩V (G2). The width of (T, μ) is the maximum
order of the middle sets over all edges of T , i.e., w(T, μ) := max{|mid(e)| : e ∈
T }. An optimal branch decomposition of G is defined by a tree T and a bijection
μ which give the minimum width, the branchwidth, denoted by bw(G).

Let G = (V,E) be a connected graph. For S ⊆ V , we denote by δ(S) the set
of all edges with an end in S and an end in V \S. Let {V1, V2} be a partition of
V . If G[V \ V1] and G[V \ V2] are both non-null and connected, we call δ(V1) a
bond of G [19].

A carving decomposition (T, μ) is similar to a branch decomposition, only
with the difference that μ is a bijection between the leaves of the tree and the
vertex set of the graph G. For an edge e of T , the counterpart of the middle
set, called the cut set cut(e), contains the edges of G with endvertices in the
leaves of both subtrees. The counterpart of branchwidth is carvingwidth, and is
denoted by cw(G). In a bond carving decomposition, every cut set is a bond of
the graph. That is, in a bond carving decomposition, every cut set separates the
graph into two connected components.

3 Polyhedral Decompositions

We introduce in this section polyhedral decompositions of graphs embedded in
surfaces. Let G be an embedded graph, and let N be a noose in the surface.
Similarly to [5], we use the notation G N for the graph obtained by cutting G
along the noose N and gluing a disk on the obtained boundaries.

Definition 1. Given a graph G = (V,E) embedded in a surface of Euler genus
γ, a polyhedral decomposition of G is a set of graphs G = {H1, . . . , H�} together
with a set of vertices A ⊆ V such that
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• |A| = O(γ);
• Hi is a minor of G[V \A], for i = 1, . . . , �;
• Hi has a polyhedral embedding in a surface of Euler genus at most γ, for

i = 1, . . . , �; and
• G[V \A] can be constructed by joining the graphs of G applying clique sums

of size 0, 1, or 2.

Algorithm 1 provides an efficient way to construct a polyhedral decomposition,
as it is stated in Proposition 1.

Algorithm 1. Construction of a polyhedral decomposition of an embedded graph
Input: A graph G embedded in a surface of Euler genus γ.
Output: A polyhedral decomposition of G.

A = ∅, G = {G} (the elements in G, which are embedded graphs, are called compo-
nents).
while G contains a non-polyhedral component H do

Let N be a noose in the surface in which H is embedded,
and let S = V (H) ∩N .
if N is non-surface-separating then

Add S to A, and replace in G component H with H [V (H) \ S] N .
if N is surface-separating then

Let H1, H2 be the subgraphs of H N corresponding to the two surfaces occur-
ring after splitting H
if S = {u} ∪ {v} and {u, v} /∈ E(H) then

Add the edge {u, v} to Hi, i = 1, 2.
Replace in G component H with the components of H N containing at least
one edge of H .

return {G, A}.

In the above algorithm, the addition of an edge {u, v} represents the existence
of a path in G between u and v that is not contained in the current component.

Proposition 1. Given a graph G on n vertices embedded in a surface, Algo-
rithm 1 constructs a polyhedral decomposition of G in O(n3) steps.

4 Surface Cut Decompositions

In this section we generalize sphere cut decompositions to graphs on surfaces;
we call them surface cut decompositions. First we need a topological definition.
A subset Π of a surface Σ is fat-connected if for every two points p, q ∈ Π , there
exists a path P ⊆ Π such that for every x ∈ P , x �= p, q, there exists a subset
D homeomorphic to an open disk such that x ∈ D ⊆ Π . We can now define the
notion of surface cut decomposition.

Definition 2. Given a graph G embedded in a surface Σ, a surface cut decompo-
sition of G is a branch decomposition (T, μ) of G such that, for each edge e ∈ E(T ),
there is a subset of vertices Ae ⊆ V (G) with |Ae| = O(γ(Σ)) and either
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• |mid(e) \Ae| ≤ 2, or
• there exists a polyhedral decomposition {G, A} of G and a graph H ∈ G such

that
◦ Ae ⊆ A;
◦ mid(e) \Ae ⊆ V (H);
◦ the vertices in mid(e) \Ae are contained in a set N of O(γ(Σ)) nooses,

such that the total number of occurrences in N of the vertices in mid(e)\
Ae is |mid(e) \Ae|+O(γ(Σ)); and

◦ Σ \
⋃

N∈N N contains exactly two connected components, which are both
fat-connected.

Note that a sphere cut decomposition is a particular case of a surface cut de-
composition when γ = 0, by taking Ae = ∅, G containing only the graph itself,
and all the vertices of each middle set contained in a single noose.

We now show in Algorithm 2 how to construct a surface cut decomposition
of an embedded graph. More details can be found in [18].

Algorithm 2. Construction of a surface cut decomposition of an embedded graph
Input: An embedded graph G.
Output: A surface cut decomposition of G.

Compute a polyhedral decomposition {G, A} of G, using Algorithm 1.
for each component H of G do

1. Compute a branch decomposition (T ′
H , μ′

H) of H , using [2, Theorem 3.8].
2. Transform (T ′

H , μ′
H) to a carving decomposition (T c

H , μc
H) of the medial graph

MH .
3. Transform (T c

H , μc
H) to a bond carving decomposition (T b

H , μb
H) of MH , us-

ing [19].
4. Transform (T b

H , μb
H) to a branch decomposition (TH , μH) of H .

Construct a branch decomposition (T, μ) of G by merging the branch decompositions
{(TH , μH) | H ∈ G}, and by adding the set of vertices A to all the middle sets.
return (T, μ).

Theorem 1. Given a graph G on n vertices embedded in a surface of Euler
genus γ, with bw(G) ≤ k, Algorithm 2 constructs, in 23k+O(log k) · n3 steps, a
surface cut decomposition (T, μ) of G of width at most 27k +O(γ).

How surface cut decompositions are used for dynamic programming
We shall now discuss how surface cut decompositions guarantee good upper
bounds on the size of the tables of dynamic programming algorithms for packing-
encodable problems. The size of the tables depends on how many ways a partial
solution can intersect a middle set during the dynamic programming algorithm.
The advantage of a surface cut decomposition is that the middle sets are placed
on the surface in such a way that permits to give a precise asymptotic enumer-
ation of the size of the tables. Indeed, in a surface cut decomposition, once we
remove a set of vertices whose size is linearly bounded by γ, the middle sets are
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either of size at most two (in which case the size of the tables is bounded by a
constant) or are situated around a set of O(γ) nooses, where vertices can be re-
peated at most O(γ) times. In such a setting, the number of ways that a partial
solution can intersect a middle set is bounded by the number of non-crossing
partitions of the boundary-vertices in a fat-connected subset of the surface (see
Definition 2). By splitting the boundary-vertices that belong to more than one
noose, we can assume that these nooses are mutually disjoint. That way, we
reduce the problem to the enumeration of the non-crossing partitions of O(γ)
disjoint nooses containing � vertices, which are 2O(�) ·�O(γ) ·γO(γ), as we prove in
the following section (Theorem 3). Observe that the splitting operation increases
the size of the middle sets by at most O(γ), therefore � = k + O(γ) and this
yields an upper bound of 2O(k) · kO(γ) · γO(γ) on the size of the tables of the
dynamic programming. In Section 5 we use singularity analysis over expressions
obtained by the symbolic method to count the number of such non-crossing par-
titions. Namely, in Sections 5.1 and 5.2 we give a precise estimate of the number
of non-crossing partitions in surfaces with boundary. Then we incorporate two
particularities of surface cut decompositions: firstly, we deal with the set A of
vertices originating from the polyhedral decomposition. These vertices are not
situated around the nooses that disconnect the surface into two connected com-
ponents, and this is why they are treated as apices in the enumeration. Secondly,
we take into account that, in fact, we need to count the number of non-crossing
packings rather than the number of non-crossing partitions, as a solution may
not intersect all the vertices of a middle set, but only a subset. The combina-
torial results of Section 5 are of interest by themselves, as they are a natural
extension to higher-genus surfaces of the classical non-crossing partitions in the
plane, which are enumerated by the Catalan numbers (see e.g. [14]).

5 Non-crossing Partitions in Surfaces with Boundary

In this section we obtain upper bounds for non-crossing partitions in surfaces
with boundary. The concept of a non-crossing partition in a general surface
is not as simple as in the case of the disk, and must be defined carefully. In
Section 5.1 we set up our notation. In Section 5.2 we obtain a tree-like structure
that provides a way to obtain asymptotic estimates. In this part, we exploit map
enumeration techniques, together with singularity analysis.

5.1 2-Zone Decompositions and Non-crossing Partitions

Let Σ be a surface with boundary. A 2-zone decomposition of Σ is a decompo-
sition of Σ where all vertices lay in the boundary of Σ and there is a coloring
of the faces using 2 colors (black and white) such that every vertex is incident
(possibly more than once) with a unique black face. Black faces are also called
blocks. A 2-zone decomposition is regular if every block is contractible. All 2-
zone decompositions are rooted : every connected component of the boundary of
Σ is edge-rooted. We denote by SΣ(k),RΣ(k) the set of general and regular
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2-zone decompositions of Σ with k vertices, respectively. A 2-zone decomposi-
tion s over Σ defines a non-crossing partition πΣ(s) over the set of vertices.
Let ΠΣ(k) be the set of non-crossing partitions of Σ with k vertices. The main
objective of this section is to obtain bounds for |ΠΣ(k)|. The critical observation
is that each non-crossing partition is defined by a 2-zone decomposition. Conse-
quently, |ΠΣ(k)| ≤ |SΣ(k)|. The strategy to enumerate this second set consists
in reducing the enumeration to simpler families of 2-zone decompositions. More
specifically, the following propositionshows that it is sufficient to study regular
decompositions:

Proposition 2. Let s ∈ SΣ be a 2-zone decomposition of Σ and let πΣ(s) be
the associated non-crossing partition. Then there exists a regular 2-zone decom-
position m ∈ RΣ such that πΣ(s) = πΣ(m).

In other words, |ΠΣ(k)| ≤ |SΣ(k)| ≤ |RΣ(k)| for each value of k. Instead of
counting |RΣ(k)|, we reduce our study to the family of regular 2-zone decom-
positions where each face (block or white face) is contractible. The reason is
that, as we show later, this subfamily provides the greatest contribution to the
asymptotic enumeration. This set is called the set of irreducible 2-zone decom-
positions of Σ, and it is denoted by PΣ(k). Equivalently, an irreducible 2-zone
decomposition cannot be realized in a proper surface contained in Σ. The details
can be found in [18].

5.2 Tree-Like Structures, Enumeration, and Asymptotic Counting

In this subsection we provide estimates for the number of irreducible 2-zone
decompositions, which are obtained directly for the surface Σ. The main point
consists in exploiting tree-like structures of the dual graph associated to an
irreducible 2-zone decomposition. For simplicity of the presentation, the con-
struction is explained on the disk. The dual graph of a non-crossing partition on
the disk is a tree whose internal vertices are bicolored (black color for blocks).
We use this family of trees in order to obtain a decomposition of elements of
the set PΣ(k). (The reader which is not familiar with the symbolic method and
analytic combinatorics is referred to [13].) In [18] the enumeration of this basic
family is done, as well as the enumeration of the related families.

The construction for general surfaces is a generalization of the previous one.
An example is shown in the leftmost picture of Fig. 1. For an element m ∈ PΣ(k),
denote by M the resulting map on Σ (recall the definition of Σ in Section 2).
From M we reconstruct the initial 2-zone decomposition m by pasting vertices
of degree 1 which are incident to the same face, and taking the dual map. From
M we define a new rooted map on Σ as follows: we start deleting recursively
vertices of degree 1 which are not roots. Then we continue dissolving vertices of
degree 2. The resulting map has β(Σ) faces and all vertices have degree at least
3 (apart from root vertices, which have degree 1). The resulting map is called
the scheme associated to M ; we denote it by SM . See Fig. 1 for an example.
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Fig. 1. Construction of the scheme of an element in PΣ . The dual of an irreducible 2-
zone decomposition is shown on the left. After deleting vertices of degree 1 recursively
and dissolving vertices of degree 2, we obtain the associated scheme on the right.

An inverse construction can be done using maps over Σ and families of
plane trees. Using these basic pieces, we can reconstruct all irreducible 2-zone
decompositions. Exploiting this decomposition and using singularity analysis,
we get the following theorem (Γ denotes the classical Gamma function [13]):

Theorem 2. Let Σ be a surface with boundary. Then,

|ΠΣ(k)| ≤k→∞
C(Σ)

Γ (3/2γ(Σ) + β(Σ)− 3)
· k3/2γ(Σ)+β(Σ)−4 · 4k,

where C(Σ) is a function depending only on Σ that is bounded by γ(Σ)O(γ(Σ)).

Additional constructions. So far, we enumerated families of non-crossing
partitions with boundary. Firstly, in surface cut decompositions we need to deal
with a set of additional vertices that play the role of apices (cf. the last para-
graph of Section 4). Secondly, we show how to extend the enumeration from
non-crossing partitions to non-crossing packings. In both cases, we show that
the modification over generating functions (GFs for short) does not depend on
the surface Σ where non-crossing partitions are considered. The analysis consists
in symbolic manipulation of GFs and application of singularity analysis over the
resulting expressions. Combining the univariate asymptotic obtained in Theo-
rem 2 with the constructions described above, we obtain the bound on the size
of the tables when using surface cut decompositions:

Theorem 3. Let ΠΣ,l(k) be the set of non-crossing partitions of Σ with k ver-
tices and a set of l apices. Then the value

∑k
i=0

(
k
i

) ∣∣ΠΣ,l(k)
∣∣ is upper-bounded,

for large k, by

C(Σ)
22+lΓ (3/2γ(Σ) + β(Σ)− 3)

· k3/2γ(Σ)+β(Σ)−4+l · 5k+1,

where C(Σ) is a function depending only on Σ that is bounded by γ(Σ)O(γ(Σ)).
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6 Conclusions and Open Problems

Our results can be summarized as follows.

Theorem 4. Given a packing-encodable problem P in a graph G embedded in
a surface of Euler genus γ, with bw(G) ≤ k, the size of the tables of a dynamic
programming algorithm to solve P on a surface cut decomposition of G is bounded
above by 2O(k) · kO(γ) · γO(γ).

As we mentioned, the problems tackled in [9] can be encoded with pairings, and
therefore they can be seen as special cases of packing-encodable problems. As a
result of this, we reproduce all the results of [9]. Moreover, as our approach does
not use planarization, our analysis provides algorithms where the dependence on
the Euler genus γ is better than the one in [9]. In particular, the running time
of the algorithms in [9] is 2O(γ·bw+γ2·log(bw)) · n, while in our case the running
time is 2O(bw+γ·log(bw)+γ·log γ) · n.

Dynamic programming is important for the design of subexponential exact
or parameterized algorithms. Using the fact that bounded-genus graphs have
branchwidth at most O(

√
γ · n) [15], we derive the existence of exact algorithms

in O∗(2O(
√
γn+γ·log(γ·n))) steps for all packing-encodable problems. Moreover,

using bidimensionality theory (see [7,8]), one can derive 2O(γ·√k+γ·log(γ·k)) ·nO(1)

step parameterized algorithms for all bidimensional packing-encodable problems.
Sometimes dynamic programming demands even more complicated encod-

ings. We believe that our results can also serve in this direction. For instance,
surface cut decompositions have recently been used in [1] for minor containment
problems, where tables encode partitions of packings of the middle sets.

A natural extension of our results is to consider more general classes of graphs
than bounded-genus graphs. This has been done in [11] for problems where the
tables of the algorithms encode pairings of the middle sets. To extend these re-
sults for packing-encodable problems (where tables encode subsets of the middle
sets) using the planarization approach of [11] appears to be a quite complicated
task. We believe that our surface-oriented approach could be more successful in
this direction and we find it an interesting, but non-trivial task.

Acknowledgement. We would like to thank Marc Noy and Sergio Cabello for
valuable ideas and for pointing us to several interesting references.

References

1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster Parameterized
Algorithms for Minor Containment. In: Proc. of the 12th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT) (to appear, 2010)

2. Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Proc.
of the 17th Conf. on Uncertainty in Artificial Intelligence (UAI), pp. 7–15 (2001)

3. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with
bounded decomposability – a survey. BIT 25(1), 2–23 (1985)



Dynamic Programming for Graphs on Surfaces 383

4. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In:
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Abstract. We present a logspace algorithm for computing a canonical
labeling, in fact a canonical interval representation, for interval graphs.
As a consequence, the isomorphism and automorphism problems for in-
terval graphs are solvable in logspace.

1 Introduction

There has been persistent interest in the algorithmic aspects of interval graphs in
the past decades, also spurred by their applicability to DNA sequencing (cf. [23])
and scheduling problems (cf. [17]). In 1976, Booth and Lueker presented the first
recognition algorithm for interval graphs [2] running in time linear in the number
of vertices and edges, which they followed up by a linear-time interval graph iso-
morphism algorithm [16]. These algorithms are based on a special data structure
called PQ-trees. By pre-processing the graph’s modular decomposition tree, Hsu
and Ma [8] later presented a simpler linear-time recognition algorithm that avoids
the use of PQ-trees. Habib et al. [6] achieve the same time bound employing the
lexicographic breadth-first search of Rose, Tarjan, and Lueker [20] and in combi-
nation with smart pivoting. A parallel NC2 algorithm was given by Klein in [10].

All of the above algorithms have in common that they compute a perfect
elimination ordering (peo) of the graph’s vertices. This ordering has the property
that for every vertex, its neighborhood among its successors in the ordering forms
a clique. Fulkerson and Gross [5] show that a graph has a peo if and only if it is
chordal, and the above methods determine whether a graph is an interval graph
once its peo has been determined in linear time.

Our methods are optimized for space complexity. As such, our exposition
neither relies on computing the graph’s peo, nor do we use transitive orientation
algorithms for comparability graphs as in [13]. Instead, the basis of our work is
the observation of Laubner [14] that in an interval graph, the graph’s maximal
cliques and a modular decomposition tree are definable by means of first-order
logic. This makes these objects tractable in logarithmic space and leads us to

� Supported in part by the Alexander von Humboldt foundation.
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the first logspace algorithm for computing a canonical interval representation for
any interval graph (note that recognition of interval graphs in L follows from the
results of Reif [18]). We identify so-called overlap components of interval graphs
whose interval representations are essentially unique and show how to compute
their interval representations canonically. We color these components with their
canonical interval representations and place them in a tree that allows us to
combine the canonical interval representations of the components to one for the
whole graph. To achieve this, we apply Lindell’s algorithm [15] to the colored
decomposition tree.

Finding logspace algorithms for the graph isomorphism problem of restricted
graph classes is an active research area. It was started by Lindell with his canon-
ization algorithm for trees [15]. In a series of results, Datta, Limaye, Nimbhorkar,
Thierauf and Wagner generalize this to planar graphs [3], whereas Köbler and
Kuhnert show the generalization to k-trees [11]. In each of these cases the isomor-
phism problem has a matching lower bound, i. e. it turns out to be L-complete.
The graph classes considered in these results have in common that their clique
size is bounded by a constant. To the best of our knowledge, our L-completeness
result for interval graph isomorphism is the first for a natural class of graphs
containing cliques of arbitrary size.
Organisation of the paper. Section 2 introduces some preliminaries, notably
the decomposition of interval graphs into overlap components. In Section 3 we
show how to compute a canonical interval representation for a single overlap
component in logspace. Section 4 contains our main result: We give a logspace al-
gorithm to obtain a canonical interval representation of arbitrary interval graphs.
In Section 5 we show that recognition and isomorphism testing of interval graphs
is hard for logspace, thereby proving L-completeness for both problems.

2 Preliminaries

As usual, L is the class of all languages decidable by Turing machines with a
read-only input tape using only O(log n) bounded space on the working tapes.
FL is the class of all functions computable by such machines that additionally
have a write-only output tape. For a set S, we denote its cardinality by ‖S‖.

2.1 Graphs and Set Systems

We write G ∼= H to say that G and H are isomorphic graphs. The vertex set of
a graph G is denoted by V (G). The set of all vertices having distance at most 1
from a vertex v ∈ V (G) is called its neighborhood and denoted by N(v). Note
that v ∈ N(v). We also use N(u, v) = N(u)∩N(v) for the common neighborhood
of two vertices u and v. If N(u) = N(v), we call these vertices twins (note that
only adjacent vertices can be twins).

Let F be a family of sets, which will also be called a set system. We allow
A = B for some A,B ∈ F , i. e. F is a multiset whose elements are sets. The
support of F is defined by supp(F) =

⋃
X∈F X . Sometimes it will be useful
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to regard F as a hypergraph on supp(F) (possibly with multiple hyperedges)
and speak of isomorphic set systems. A slot is an inclusion-maximal subset S of
supp(F) such that each A ∈ F contains either all of S or none of it.

The intersection graph of F is the graph I(F) with vertex set F where A
and B are adjacent if they have a nonempty intersection. Note that, if A = B,
these two vertices are twins in the intersection graph. We say that sets A and B
overlap and write A 	 B if A and B have a nonempty intersection but neither
of them includes the other. The overlap graph O(F) is a spanning subgraph of
I(F) where the sets A and B are adjacent iff they overlap or are equal.

Of course, O(F) can be disconnected even if I(F) is connected. Subsets of
F that span a connected component of O(F) will be referred to as overlap
components of F . Note that overlap components are set systems rather than
subgraphs of O(F) and thus contain more information. If O and O′ are different
overlap components, then either every two sets A ∈ O and A′ ∈ O′ are disjoint
or all sets of one of the two components are contained in a single slot of the other
component. This containment relation determines a tree-like decomposition of
F into its overlap components.

We denote intervals as [a, b] = {i ∈ N0 | a ≤ i ≤ b}. We say [a1, b1] < [a2, b2]
if a1 < a2 or if a1 = a2 and b1 < b2. For interval systems I and J , we write
I < J if the smallest uncommon interval (with due regard to the multiplicities)
belongs to I. A graph G is an interval graph if it is isomorphic to the intersection
graph of a family of intervals I. Such an isomorphism � : V (G) → I is called an
interval labeling of G. The interval system I is called interval representation of
G and will also be denoted by G�. We call G� a minimal interval representation
of G, if the size of supp(G�) is as small as possible. A canonical interval labeling
is a function that for any interval graph G produces an interval labeling �G so
that G�G = H�H whenever G ∼= H .

Similarly, we call an interval system I an interval representation of a set
system F if I ∼= F as hypergraphs, where we assume supp(I) = [0, ‖ supp(F)‖−
1]; an interval labeling of F is a function � : F → I.

2.2 Bundles of maxcliques

An inclusion-maximal clique in a graph G will be called a maxclique. The (max-
clique) bundle Bv at a vertex v consists of all maxcliques containing v. Let
BG = {Bv}v∈V (G). The bundle hypergraph of G has the maxcliques of G as ver-
tices and the bundles in BG as hyperedges. By the overlap components of G we
mean the overlap components of BG.

Lemma 1. Every maxclique C of an interval graph G contains vertices u and
v such that C = N(u, v).

Proof. Given an interval representation of G, we will use notation Iv for the
interval corresponding to a vertex v ∈ V (G). We have C ⊆ N(u, v) for any
u, v ∈ C and, therefore, we only need to find u, v such that N(u, v) ⊆ C. For
this purpose, consider an interval representation of G and choose u, v ∈ C so
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that Iu ∩ Iv is inclusion-minimal. For any w ∈ C, we have Iw ⊇ Iu ∩ Iv for
else Iu ∩ Iw or Iw ∩ Iv would be strictly included in Iu ∩ Iv. Suppose now that
z ∈ N(u, v). Since Iz intersects Iu ∩ Iv , it has nonempty intersection with Iw for
each w ∈ C. By maximality, z ∈ C. ��

This shows that maxcliques can be represented by a pair of vertices u and v such
that N(u, v) is a clique. A bundle Bv can be represented by the corresponding
vertex v. The binary relations Bu ⊆ Bv and Bu 	 Bv between bundles become
first-order definable (in terms of the adjacency and equality relations on V (G))
and, therefore, decidable in logspace. Moreover, the overlap components of G
can be computed in logspace using undirected reachability in O(BG) [19].

The following lemma implies that the bundle hypergraph contains all infor-
mation on the isomorphism type of G (in fact, G ∼= I(BG) holds for any graph).
We omit the proof because of space constraints.

Lemma 2. For every minimal interval representation I of an interval graph G,
I viewed as a hypergraph is isomorphic to the bundle hypergraph of G. �
This shows that theminimal interval representationofG is uniqueup tohypergraph
isomorphism. We will use this fact to construct a minimal interval representation.

3 Canonizing Overlap Components

In this section we show how to compute a canonical interval labeling of overlap
components of interval graphs. It is canonical in the sense that overlap com-
ponents which are isomorphic as set systems are mapped to the same interval
representation. Let O be an overlap component of an interval graph G. We call
two maxcliques M,M ′ ∈ supp(O) indistinguishable in O and write M ∼O M ′,
if there is no bundle Bv ∈ O that contains exactly one of them. Clearly, ∼O is
an equivalence relation on supp(O). The equivalence classes of ∼O are the slots
of O. We can assume that there are no twins in O, as our algorithm also handles
colored graphs and twins can be replaced by a single node colored with their
multiplicity. If O consists of a single bundle Bv, we use the interval labeling �O
that maps Bv to [0, ‖Bv‖ − 1]. So from now on we will assume that O consists
of at least two bundles.

The key observation for obtaining the canonical interval labeling is that the
interval representation of an overlap component O (without twins) is unique up
to reversing. We call a slot S of an overlap component O a side-slot, if each
interval labeling of O places it at the left or right end. Using only the structure
of O, we first show that the two side-slots of O can be identified; then we show
how to compute the order on the other slots once the left end is fixed.

Lemma 3. If an overlap component O of an interval graph consists of at least
two bundles that are no twins, then it has exactly two side-slots. These slots can
be found in FL.

Notice that a slot S = [M ]∼O can be represented by a triple (u, v, w), where
M = N(u, v) is any maxclique contained in S and Bw is any bundle in O.
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Proof sketch. Let � be any interval labeling of O (it exists by Lemma 2). We call
a bundle B marginal if its intersections with the overlapping bundles B′ 	 B
form a single inclusion chain. We can identify the two bundles B1, B2 ∈ O that
are mapped to the longest interval starting leftmost and the longest interval
ending rightmost: (1) They are marginal, and (2) they are no subset of any
other bundle of O. (Other bundles are overlapped from both sides, yielding
two inclusion chains, or spanned by a larger bundle; otherwise O would not be
overlap-connected.)

We now choose two maxcliques M1 and M2 representing the two side-slots of
O: Let Bi be the set of marginal bundles that are contained in Bi (including Bi

itself; this excludes marginal bundles at the other side). Choose Mi ∈ Bi such
that it is not contained in any bundle B ∈ O \ Bi and in as few B ∈ Bi as
possible. This construction uses only information available in O and is possible
in logspace. Its correctness is readily verified using the isomorphism to O�. ��

Following [14], we can now use a side-slot S to define a partial order ≺S on
supp(O) as the smallest relation that satisfies the following properties:

1. C ≺S D for each C ∈ S and D /∈ S.
2. For each bundle Bv in O and maxcliques C1, C2 ∈ Bv, D /∈ Bv:

C1 ≺S D ⇔ C2 ≺S D and D ≺S C1 ⇔ D ≺S C2 (1)

C ≺S D can be read as “if slot S is leftmost, then maxclique C is left of D”.

Lemma 4. If S is a side-slot of O, then ≺S induces a strict linear order on the
slots of O.

Proof. Consider any interval labeling of O. By Lemma 3 we can assume that
S is placed leftmost (reverse the interval representation if necessary). Since the
equivalences in (1) are true for the ordering on the maxcliques induced by any in-
terval representation, ≺S is a subrelation of a strict linear order and is therefore
an asymmetric relation on the maxcliques in supp(O). Moreover, from the defini-
tion of ≺S it is clear that any two indistinguishable maxcliques C,D ∈ supp(O)
are incomparable w. r. t. ≺S .

Now let C,D ∈ supp(O) with C �∼O D. We claim that either C ≺S D or
D ≺S C. Let B0 	 · · · 	Bk be a shortest overlap-path in O such that S ⊆ B0
and Bk contains precisely one of C and D. The claim is proved by induction on
the length k of the path. If k = 0, the claim clearly holds. If k ≥ 1, suppose
w. l. o. g. that C ∈ Bk. If D �∈ Bk−1 then for any E ∈ Bk−1 we have either
D ≺S E or E ≺S D by induction, and since Bk−1 ∩Bk �= ∅ the claim follows. If
D ∈ Bk−1, then also C ∈ Bk−1 since we assumed the path to be shortest. Then
for any F ∈ Bk \ Bk−1, we have D ≺S F or F ≺S D by induction, and again
the claim follows by (1). ��

By Lemma 4 we can use ≺S to define an interval labeling �S of O:

�S : O →
{
[l, r]

∣∣ l, r ∈ [
0, ‖ supp(O)‖ − 1

]}
Bv 	→

[
pos(Bv), pos(Bv) + ‖Bv‖ − 1

]
,
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where a maxclique C ∈ supp(O) has position pos(C) = ‖{D ∈ supp(O) | D ≺S

C}‖ and a bundle Bv ∈ O has position pos(Bv) = min{pos(C) | C ∈ Bv}.
Let �S1 and �S2 be the interval labelings for O corresponding to the two side-

slots S1 and S2 of O. As the pair {O�S1 ,O�S2} of interval representations only
depends on the structure of G, it is invariant under isomorphism. Hence, we can
choose a canonical interval labeling �O of O among �S1 and �S2 by requiring that
the set O�O =

{
�O(Bv) | Bv ∈ O

}
of intervals becomes minimal. We denote the

corresponding order on the maxcliques of O by ≺O. By �O we denote the list of
vertices v whose bundles Bv are in O, ordered by their intervals �O(Bv).

Lemma 5. Given an interval graph G and an overlap component O of G, the
following can be done in logspace:

1. Computing the partial order ≺O on supp(O),
2. computing a canonical interval labeling �O of O,
3. computing the corresponding ordered list of vertices �O, and
4. deciding if O�O is mirror-symmetric or not.

Proof. To prove that C ≺S D can be decided in logspace, we construct an
undirected graph with nodes

{
(C1, C2) | C1 �= C2 maxcliques in O

}
meaning

“C1 ≺S C2” and edges corresponding to the equivalences given in the defini-
tion (1) of ≺S . We also add a start vertex s and connect it to all nodes (C,D)
with C ∈ S, D /∈ S. Now we have C ≺S D iff (C,D) is reachable from s. Reach-
ability in undirected graphs is decidable in L using Reingold’s algorithm [19].

Once ≺S can be decided in logspace, it is easy to compute �S and to choose
the left side-slot S ∈ {S1, S2} such that O�S = min{O�S1 ,O�S2}. O�O is mirror-
symmetric iff both are equal.

Given �O, it is easy to compare the bundles in O, and thereby compute �O. ��

4 Canonizing Interval Graphs

Let G be an interval graph. Again we assume that G has no twins, but allow
a coloring of G instead. We also assume that G is connected – if not, we add
a new vertex and connect it to all others. We define the position of a slot S
in O analogously to that of a bundle, namely pos(S) = min{pos(C) | C ∈ S}
(in fact, these positions are all equal). Additionally we define the position of S
from the right: rpos(S) = minC∈S ‖{D ∈ supp(O) | C ≺O D}‖. If an overlap
component O has a mirror-symmetric canon O�O , we call a slot S of O low if
pos(S) < rpos(S), middle if pos(S) = rpos(S), and high if pos(S) > rpos(S).
If O�O is not mirror-symmetric, we call all its slots low. We say an overlap
component O′ is located at a slot S (of O), if supp(O′) ⊆ S and there is no
overlap component O′′ such that supp(O′) ⊂ supp(O′′) ⊂ supp(O) (note that
different overlap components have different supports).

4.1 Tree Representation

Using the above notions, we now define a tree representation for interval graphs.
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Definition 1. For a connected interval graph G without twins, its tree repre-
sentation T(G) is defined by

V (T(G)) ={ �O, loO,miO, hiO | O is an overlap component of G}
∪ {S | S is a slot of some overlap component O of G}

E(T(G)) ={( �O, loO), ( �O,miO), ( �O, hiO) | O is an overlap component of G}
∪ {(loO, S), (miO, S), (hiO, S) | S is a low/middle/high slot in O}
∪ {(S, �O) | the overlap component O is located at slot S}

Further we define a coloring c of the component-nodes �O and slot-nodes S by

c( �O) = O�O

c(S) =

{
pos(S) if S is low or middle
rpos(S) if S is high

If G is colored, the intervals in c( �O) = O�O inherit the colors of the corresponding
vertices in V (G).

As G is connected, there is an overlap component O0 such that all maxcliques
of G belong to supp(O0). �O0 is the root of the directed tree T(G).

C0 C1 C2 C3 C4 C5 C6

a e f
i

j

b
d

c

g h
{[0, 1], [1, 5], [2, 6]}

b, d, c

lo mi hi

S0
{C0} S6

{C6}S2
{C2,...,C5}S1

{C1}

a

lo mi hi

S0
{C0}

j

lo mi hi

S0
{C6}

e

lo mi hi

S0
{C2}

{[0, 1], [1, 2]}
g, h

lo mi hi

S1
{C4}S0

{C3} S0
{C5}

f

lo mi hi

S0
{C3}

i

lo mi hi

S0
{C5}

Fig. 1. An interval graph representation of a graph G and the corresponding tree
representation T(G). Gray rectangles in T(G) indicate the color of overlap components.
Overlap components have color {[0, 0]} where not indicated. Slot name Sk

{Ci,...,Cj}
denotes slot {Ci, . . . , Cj} and indicates that its color is k. We omit the indices of the
lo, mi and hi nodes as they are clear from the structure of the tree.
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Our goal is to compute a canonical interval labeling of G using a modified
version of Lindell’s canonization algorithm for trees [15] on T(G).

It can easily be verified that T(G) can be computed in logspace. We proceed
to show a basic structural property of T(G).

Lemma 6. There is a one-to-one correspondence between maxcliques of G and
the leaf-nodes of T(G) that are slots.

Proof. Let S be a slot of some overlap component O such that S is a leaf of
T(G). By definition of slots, the maxcliques in S are not distinguished by O.
The bundles in the other overlap components cannot distinguish them either, as
this would imply an overlap path to the bundles of O spanning S. So there is
no vertex v ∈ V (G) whose bundle Bv contains only a part of S, and S must be
a single maxclique of G.

For the other direction, let M be any maxclique of G. Then M ∈ supp(O0),
as the root overlap component O0 contains all maxcliques. Now if M ∈ supp(O)
for some overlap component O, then M is in exactly one of the slots of O, as
slots are equivalence classes and thus partition supp(O). And if M is contained
in some slot S that is not a leaf in T(G), M must be contained in exactly one
overlap component located at S (if none, M would not be maximal, if more, these
overlap components would overlap). Using these observations, we can trace M
to a single slot S that is a leaf of T(G). ��

We will compute a canonical labeling of T(G) and call it �T(G). For this, we
observe a generalization of Lindell’s tree canonization algorithm [15].

Lemma 7. Lindell’s algorithm [15] can be extended to colored trees and to out-
put not only a canonical form, but also a canonical labeling. This modification
preserves the logarithmic space bound.

Proof sketch. Colors can be handled by extending the tree isomorphism order
defined in [15] by using color(s) < color(t) as additional condition (where s and
t are the roots of the trees to compare). The canonical labeling can be computed
by using a counter i initialized to 0: Instead of printing (the opening parenthesis
of) the canon of a node v, increment i and print “v 	→ i”. ��

4.2 Computing a Canonical Interval Labeling

Our aim is a traversal of T(G) that is left-to-right in the resulting canon. That is,
we visit the leaf slots in ascending order of the positions of their corresponding
maxcliques in the computed canonical interval representation. To achieve this,
we use the canonical labeling �T(G).

We first recall the logspace tree traversal that is used in Lindell’s canonization
algorithm. Only the current node must be remembered, because when given a
node, it is possible in logspace to (1) go to its first child, (2) go to its next sibling,
and (3) go to its parent. “First” and “next” can be respective to any order on
the children of a node that can be evaluated in logspace. In our left-to-right
traversal we use the following order:
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– The children of an overlap component node �O are either ordered loO <
miO < hiO (if O�O is not mirror-symmetric or if �T(G)(loO) < �T(G)(hiO))
or hiO < miO < loO (otherwise).

– The children of the first child of an overlap component node �O (this can be
either loO or hiO) are visited in ascending order of their colors.

– The children of the last child of an overlap component node �O (this can be
either hiO or loO) are visited in descending order of their colors.

– The children of a slot node are ordered by their label assigned by �T(G).

Note that the children of loO and hiO all have different colors. Also, miO can have
at most one child. All these conditions can be evaluated in logspace without using
non-local information. Traversing T(G) in this order makes sure that the slots
of an overlap component O are visited either in ascending or descending order
of their positions. The latter case can only occur if O�O is mirror-symmetric.

We complete the description of our algorithm by showing how, while process-
ing T(G), a canonical interval labeling can be computed in logspace. Addition-
ally to the current node we store a current offset o that equals to the number
of maxcliques we have passed already. We initialize o = 0 and increment it by 1
whenever the logspace tree traversal passes a slot node that is a leaf. Whenever
we enter an overlap component node �O = (v1, . . . , vk) for the first time, we out-
put the mappings vi 	→ [li + o, ri + o] where [li, ri] is the ith-smallest interval in
c( �O) = O�O if loO < miO < hiO, and the ith-largest interval otherwise. In the
first case this results in �G(v) = �O(Bv) + o. In the second case this association
is mirrored: If α : O → O is the hypergraph isomorphism that reverses O, then
�G(v) = �O(α(Bv)) + o. After traversing all of T(G), we have output a mapping
for each v ∈ V (G). We call this mapping �G.

Lemma 8. �G is an interval labeling of G.

Proof. Take any u, v ∈ V (G). Let O and O′ be the overlap components con-
taining Bu and Bv, and let o and o′ be the current offsets when O and O′ are
first entered, respectively. If O = O′, we are done because �O is an interval la-
beling and the offset o preserves intersection. If supp(O) and supp(O′) do not
intersect, then u and v are not adjacent. W. l. o. g. assume o < o′. Indeed we
have o + ‖ supp(O)‖ ≤ o′, as the offset is advanced by one for each slot leaf in
the subtree of �O (which correspond to the maxcliques in supp(O) by Lemma 6).
As �O(Bu) ⊆ [0, ‖ supp(O)‖ − 1] (see the definition of �O), �(u) and �(v) do not
intersect. If supp(O) and supp(O′) do intersect, one must be contained in the
other. W. l. o. g. assume supp(O′) ⊂ supp(O) and let S be the slot of O in which
supp(O′) is contained. If u is contained in some maxclique M ∈ S (and thereby
contained in all M ∈ S), then u and v are adjacent. By Lemma 6 and the order
of our tree traversal we have �O(Bu) + o ⊇ [o′, o′ + ‖ supp(O′)‖ − 1]. Finally, if
u is contained in no maxclique M ∈ S, then u and v are not adjacent. Also the
slot leaves corresponding to the maxcliques in Bu will be processed all before or
all after �O′, so �G(v) and �G(u) do not intersect. ��

In the following we prove that the interval labeling �G is canonical.
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Lemma 9. If G and H are isomorphic connected interval graphs without twins,
then T(G) ∼= T(H).

Proof. Since any isomorphism φ between G and H induces a unique mapping
of the overlap components O of G to isomorphic overlap components O′ of H ,
it is clear how to define an isomorphism φ′ between T(G) and T(H) on the
component-nodes �O of T(G). Further, since the canonical interval representa-
tions O�O and O′�O′ coincide, �O and φ′( �O) indeed have the same colors.

In order to define φ′ on the lo, mi and hi nodes of T(G), consider a com-
ponent-node �O = (u1, . . . , uk) of T(G). If O�O is not mirror-symmetric, then it
follows that �O′ = (φ(u1), . . . , φ(uk)). Otherwise, it is also possible that �O′ =
(φ(uk), . . . , φ(u1)). In the first case we let φ′(loO) = loO′, φ′(miO) = miO′ ,
φ′(hiO) = hiO′ ; in the second we let φ′(loO) = hiO′ , φ′(miO) = miO′ and
φ′(hiO) = loO′ . Finally, since all children of a lo, mi or hi node have different
colors there is a unique way to define φ′ on the slot-nodes of T(G). Now it can
be easily checked that φ′ indeed is an isomorphism between T(G) and T(H). ��

Theorem 1. Given an interval graph G, a canonical interval labeling �G for G
can be computed in FL.

Proof. We assume that G has no twins; otherwise their multiplicity can be en-
coded as color and the resulting interval labeling can afterwards be extended to
the original graph. For this case we have already shown that the labeling �G is
computable in FL and that G�G is isomorphic to G. It remains to show that the
labelings �G and �H of any two isomorphic interval graphs G and H map these
graphs to the same interval representation G�G = H�H : By Lemma 9, the colored
trees T(G) and T(H) are isomorphic. Hence it follows that the canonical labelings
�T(G) and �T(H) map these trees to the same colored tree T(G)�T(G) = T(H)�T(H) .
Further, it is easy to see that the interval representation G�G only depends on
the tree T(G)�T(G) , implying that G�G = H�H . ��

There is a standard Turing reduction of the automorphism group problem (i. e.
computing a generating set of the automorphism group of a given graph) to the
search version of graph isomorphism for colored graphs (cf. [7,12]). It is not hard
to see that this reduction can be performed in logspace.

Corollary 1. Computing a generating set of the automorphism group of a given
interval graph, and hence computing a canonical labeling coset for a given interval
graph is in FL. Further, the automorphism problem (i. e., deciding if a given
graph has a non-trivial automorphism) for interval graphs is L-complete.

5 Hardness of Interval Graph Problems

All hardness results in this section are under DLOGTIME-uniform AC0 reduc-
tions. The proofs of both lemmas are easy reductions from the L-complete prob-
lem ORD (cf. [4]), and will be contained in the journal version of this paper.
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Lemma 10. Deciding whether a given graph is an interval graph is L-hard. �

By results of Reif [18] and Reingold [19], this problem is also contained in L.
Thus, interval graph recognition is L-complete.

Remark 1. The reduction used in the proof of Lemma 10 also proves that it is
both L-hard to decide whether a given graph is chordal, and whether a graph is
a unit interval graph. Again, by results of Reif [18] and Reingold [19], recognition
of chordal graphs and of unit interval graphs is therefore L-complete.

Lemma 11. Given an interval graph G, the problem of deciding if it has a non-
trivial automorphism is L-hard. The same holds for the problem of deciding if
two interval graphs are isomorphic. �

6 Conclusion

Going beyond interval graphs, there are several natural graph classes that sug-
gest an investigation whether they can similarly be handled in L. For example,
circular-arc graphs generalize interval graphs as intersection graphs of arcs on
a circle. Just like interval graphs, circular-arc graphs can be recognized effi-
ciently in linear time (cf. [9]). However, while intuition suggests a reduction of
circular-arc graphs to interval graphs by “cutting open” the circle that carries
the graph’s circular-arc representation, all known algorithms require additional
techniques that are fairly specific to circular-arc graphs. One of the obstacles
is that maxcliques cannot be handled as easily as in Lemma 1, since there are
possibly exponentially many of them.

Another generalization of interval graphs is the class of rooted directed path
graphs, i. e. intersection graphs of paths in a rooted and directed tree. While in
this class, maxcliques can still be recognized in a similar way as in this paper,
the recursive procedure for linearly ordering maxcliques as given in Section 3
cannot be employed in the presence of tree nodes of degree ≥ 3 (cf. [14]).

In the above paragraph, it is important that trees are rooted and directed ac-
cordingly, since otherwise the class becomes graph isomorphism-complete (cf. [1]).
The same is true for boxicity-d graphs (d ≥ 2), the intersection graphs of axis-
parallel boxes in Rd (cf. [22]). Also, the two arguably most manifest extensions
of interval graphs, chordal graphs and co-comparability graphs, are known to be
isomorphism-complete. Finally, we would like to point to [21] for further graph
classes for which recognition and isomorphism is not known to be in L.

Acknowledgement. We thank the anonymous referees for helpful comments
and detailed suggestions on how to improve this paper.
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Abstract. We provide evidence that it is computationally difficult to
approximate the partition function of the ferromagnetic q-state Potts
model when q > 2. Specifically we show that the partition function is
hard for the complexity class #RHΠ1 under approximation-preserving
reducibility. Thus, it is as hard to approximate the partition function as
it is to find approximate solutions to a wide range of counting problems,
including that of determining the number of independent sets in a bipar-
tite graph. Our proof exploits the first order phase transition of the “ran-
dom cluster” model, which is a probability distribution on graphs that
is closely related to the q-state Potts model. A full version of this paper,
with proofs included, is available at http://arxiv.org/abs/1002.0986.

1 Introduction

Let q be a positive integer. The q-state Potts partition function of a graph G =
(V,E), with uniform interactions of strength γ ≥ −1 along the edges, is defined
as

ZPotts(G; q, γ) =
∑

σ:V→[q]

∏
e={u,v}∈E

(
1 + γ δ(σ(u), σ(v))

)
, (1)

where [q] = {1, . . . , q} is a set of q spins or colours, and δ(s, s′) is 1 if s = s′, and
0 otherwise. The partition function is a sum over “configurations” σ which assign
spins to vertices in all possible ways. Mostly we shall concentrate in this paper
on the ferromagnetic situation, characterised by γ > 0. In the ferromagnetic
Potts model, configurations σ with many adjacent like spins make a greater
contribution to the partition function ZPotts(G; q, γ) than those with few. The
statistical mechanical model just described was introduced by Potts [19] and
generalises the classical Ising model from two to q spins.

Definition (1) applies only when q is a positive integer. However, it transpires
that, regarding q as an indeterminate, (1) defines a polynomial in q, and in
this way we can make sense of the Potts partition function for non-integer q.
An equivalent, but more concrete way of approaching the partition function
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when q is non-integer is via the Tutte polynomial, which in its “random cluster”
formulation is defined as follows:

ZTutte(G; q, γ) =
∑
F⊆E

qκ(V,F )γ|F |, (2)

where κ(V, F ) denotes the number of connected components in the graph (V, F ).
The notation is as before, except that now q is an arbitrary real number. For
readers who are familiar with the classical (x, y)-parameterisation of the Tutte
polynomial, the transformation between that and the one here is given by γ =
y − 1 and q = (x − 1)(y − 1).

Although (1) and (2) are formally very different, they define the same poly-
nomial in q: see Observation 1. We continue the discussion now in terms of the
Tutte polynomial (2), remembering all along that we include as a special case the
Potts partition function, and as an even more special case that of the Ising model.
We denote by Tutte(q, γ) the computational task of computing ZTutte(G; q, γ)
given a graph G as problem instance. Then each pair (q, γ) defines a separate
computational problem, and we can study the computational complexity of this
problem as q and γ vary. It is important to note that q and γ do not form part
of the problem instance, which consists simply of the graph G. For the purposes
of this discussion, we may assume that q and γ are rational, in order to avoid
representation issues, but in the main body of the paper we work in the wider
class of “efficiently approximable” real numbers.

In a seminal paper, Jaeger, Vertigan and Welsh [14] examined the problem of
computing ZTutte(G; q, γ) exactly. In the exact setting, they completely classified
the complexity of Tutte(q, γ) for all q, γ (in fact for all complex q, γ). It tran-
spires that Tutte(q, γ) is #P-hard (i.e., as hard as determining the number of
satisfying assignments to a CNF Boolean formula), except when q = 1, or when
(q, γ) is one of a finite number of “special points”; in these cases Tutte(q, γ) is
polynomial-time computable.

In light of Jaeger et al.’s strong negative result, attention turned to the ques-
tion of whether ZTutte(G; q, γ) could be approximated with arbitrarily small
specified relative error. In the context of computing partition functions, the ap-
propriate notion of efficient approximate computation is the “Fully polynomial
randomised approximation scheme” or FPRAS, which is rigorously defined in §4.
An early positive result was provided by Jerrum and Sinclair [15], who presented
an FPRAS for the case q = 2 and γ > 0, that is to say, for the ferromagnetic
Ising model. Sadly, no further generally applicable positive results have appeared
since then, though FPRAS’s have been proposed for restricted classes of graphs,
e.g., dense or degree-bounded [1].

Greater progress has been made in the negative direction. Goldberg and Jer-
rum [10] showed, under the reasonable complexity-theoretic assumption RP �=
NP, that no FPRAS exists for Tutte(q, γ) for a wide range of values for the
parameters (q, γ). Stated informally, RP �= NP is the assumption that there
are problems in NP that cannot be decided by a polynomial-time randomised
algorithm. As an indicative example of what is known, the intractability result
of [10] covers the entire half-plane γ < −2 except for the tractable case q = 1
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and the case q = 2 where the problem is equivalent to approximately counting
perfect matchings. Similar results apply when q/γ < −2. The restriction to pla-
nar graphs was treated in a follow-up paper [11]. However none of the existing
intractability results apply to the region q > 0 and γ > 0 that concerns us here,
and which is perhaps the one of greatest physical interest.

Our goal here is to present the first evidence that Tutte(q, γ) is compu-
tationally hard in the region q > 2 and γ > 0, i.e., the region corresponding
to the ferromagnetic Potts model with q > 2 states. We achieve this, but un-
der a stronger complexity-theoretic assumption than RP �= NP. To explain this
assumption, a digression into computational complexity is required.

The complexity class #RHΠ1 of counting problems was introduced by Dyer,
Goldberg, Greenhill and Jerrum [6] as a means to classify a wide class of approx-
imate counting problems that were previously of indeterminate computational
complexity. The problems in #RHΠ1 are those that can be expressed in terms of
counting the number of models of a logical formula from a certain syntactically
restricted class. (Although the authors were not aware of it at the time, this
syntactically restricted class had already been studied under the title “restricted
Krom SNP” [5]. Yet another terminological variation is to say that problems
in #RHΠ1 enumerate solutions to a linear Datalog program.) The complexity
class #RHΠ1 has a completeness class (with respect to approximation-preserving
“AP-reductions”) which includes a wide and ever-increasing range of natural
counting problems, including: independent sets in a bipartite graph, downsets
in a partial order, configurations in the Widom-Rowlinson model (all [6]), the
partition function of the ferromagnetic Ising model with mixed external field
(i.e., not consistently favouring one or other spin) [9], and stable matchings [4].
Either all of these problems admit an FPRAS (i.e., are efficiently approximable),
or none do. No FPRAS is known for any of them at the time of writing, despite
much effort having been expended on finding one. All the problems in the com-
pleteness class mentioned above are inter-reducible via AP-reductions, so any
of them could be said to exemplify the completeness class. However, mainly for
historical reasons, the particular problem #BIS, of counting independent sets
in a bipartite graph, tends to be taken as the exemplar of the class, much in the
same way that Sat has a privileged status in the theory on NP-completeness.
Our main result is

Theorem 1. Suppose that q > 2 and γ > 0 are efficiently approximable. Then
#BIS ≤AP Tutte(q, γ).

Here, ≤AP is the symbol for “is AP-reducible to”, and “efficiently approximable”
is a concept defined in §4; suffice it to say for now that the rational numbers are
trivially efficiently approximable.

One limitation of our inapproximability result is that it is conditional on there
being no FPRAS for #BIS (and the rest of the completeness class), rather than
on the weaker assumption NP �= RP. In fact, we conjecture that #BIS does not
admit an FPRAS. The basis for our conjecture is empirical — namely that the
collection of known #BIS-equivalent problems is growing and that the prob-
lem itself has survived its first decade despite considerable efforts to find an
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FPRAS. For example, Ge and Štefankovič [7] recently proposed an interesting
new MCMC algorithm for sampling indepedent sets in bipartite graphs. Unfor-
tunately, however, the relevant Markov chain mixes slowly in general [8], so even
this interesting new idea does not give an FPRAS.

Despite the fact that our results are limited by a strong complexity-theoretic
assumption, we feel there are counterbalancing strengths that fully justify this in-
vestigation. One is the range and intrinsic interest of the problem under consider-
ation. Whether in the guise of the Potts partition function, or of the Tutte plane,
the computational complexity of Tutte(q, γ) has received considerable attention
since it was first studied by Jaeger et al. [14]: see, for example, [1,21,22,23]. So it
seems worth striving for a complexity classification even under a strong assump-
tion such as the one we are making. The situation is similar to working with the
Unique Games Conjecture in the area of approximation algorithms for optimisa-
tion problems, or employing the class PPAD in analysing the complexity of Nash
equilibria. Futhermore, Theorem 1 has a wide range of applicability, covering as
it does the whole region q > 2, γ > 0, which, in the classical parameterisation of
the Tutte polynomial, equates to the entire upper quadrant of the Tutte plane
above the positive branch of the hyperbola H2 = {(x, y) : (x − 1)(y − 1) = 2}.
Note that the #BIS-hard region extends right to the tractable hyperbola H2.

Another potential strength of the work is that the reduction introduces a novel
technique that may have wider applicability. The idea is conceptually simple
and can be sketched informally here. In the first step, we reduce #BIS to a
hypergraph version of the Tutte polynomial. This step, if not routine, is at least
standard in its techniques. After this, we show how to simulate each hyperedge
containing t vertices by a graph gadget with t distinguished vertices or terminals.

At this point we exploit the first order phase transition that is a feature of the
so-called random cluster model when q > 2. The configurations of the random
cluster model on a graph G are spanning subgraphs of G, which are weighted
according to the numbers of edges and connected components they contain.
As formulated in (2), the Tutte polynomial is the partition function of this
model. The gadget is designed and carefully tuned so that is has two coexisting
“phases”: one in which the random cluster configurations have a large connected
(or “giant”) component, and one in which they don’t. We show that it is possible
to arrange for the t terminals to be (with high probability) in a single component
in one phase and in t distinct components in the other. This provides us with a
bistable gadget that simulates a potentially large hyperedge using many 2-vertex
edges. Note that AP-reductions often exploit phase transitions, playing one class
of configurations off against another. See the examples in [6] and [17]. What is
new here is that, as far as we are aware, this is the first time anyone managed
to derive stronger complexity results using the complex phase transitions that
arise in actual models studied in statistical physics. Unfortunately, the delicate
nature of the gadgets needed to exploit this kind of phase transition does lead
to significant technical complexity in our analysis.

Finally, note that Theorem 1 establishes #BIS-hardness of Tutte(q, γ) but
not #BIS-equivalence. It would be very interesting to know whether there is
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an AP-reduction from Tutte(q, γ) to #BIS. Note that the complexity of ap-
proximate counting is complicated. Bordewich [3] has shown that if any problem
in #P fails to have an FPRAS, then there is an infinite approximation hierarchy
within #P.

2 Preliminaries

As hinted in §1, we need to generalise the model we are working with. Let
H = (V , E) be a hypergraph with vertex set V and hyperedge (multi)set E . The
multivariate Tutte polynomial of H is defined as follows.

ZTutte(H ; q,γ) =
∑
F⊆E

qκ(V,F)
∏
f∈F

γf ,

where q and γ = {γf}f∈E are commuting indeterminates and κ(V ,F) denotes
the number of connected components in the subhypergraph (V ,F). (Two vertices
u, v, are in the same component of (V,F) if u = v, or there is a sequence
f1, . . . , f� ∈ F of hyperedges with u ∈ f1, v ∈ f� and fi∩fi+1 �= ∅ for 1 ≤ i < �.)
This partition function was studied (under a different name) by Grimmett [12].
An undirected graph G can be viewed as a 2-uniform hypergraph (a hypergraph
in which every hyperedge has size 2). In this case, ZTutte(G; q,γ) coincides with
the usual definition of the multivariate Tutte polynomial [20].

Let q be a positive integer. The q-state Potts partition function of H is defined
as follows:

ZPotts(H ; q,γ) =
∑

σ:V→[q]

∏
f∈E

(
1 + γfδ({σ(v) | v ∈ f})

)
,

where [q] = {1, . . . , q} is a set of q spins or colours, and δ(S) is 1 if its argument
is a singleton and 0 otherwise. The partition function is a sum ranging over
assignments of spins to vertices, which are often referred to as “configurations”.
The following observation is due to Fortuin and Kastelyn.

Observation 1. If q is a positive integer then ZPotts(H ; q,γ) = ZTutte(H ; q,γ).

The ferromagnetic Potts model corresponds to the Potts model in the spe-
cial case in which the edge weights γf are non-negative. In this case, a mono-
chromatic edge contributes more weight than an edge with multiple spins. For a
subset F ⊆ E of the hyperedges of a graph, we use γ(F) to denote

∏
f∈F γf .

Consider a graph G = (V,E). Every edge e ∈ E is associated with a quantity
p(e) ∈ [0, 1]. Then for a set of edges A ⊆ E define P̃ (G;A, q, p) =
qκ(V,A)∏

e∈A p(e)
∏

e∈E\A(1− p(e)). Let

Zrc(G; q, p) =
∑
A⊆E

P̃ (G;A, q, p) = ZTutte(G; q,γ)
∏
e∈E

(1− p(e)),

where γe = p(e)/(1 − p(e)). Then the probability of edge-set A in the random
cluster model is given by P (G;A, q, p) = P̃ (G;A, q, p)/Zrc(G; q, p). The random
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cluster model refers to the distribution RC(G; q, p), in which a subset A of edges
is chosen with probability P (G;A, q, p). The difference between ZTutte and Zrc is
simply one of parameterisation. Nevertheless, the change of parameter is useful,
as it allows us to employ probabilistic terminology and to exploit existing results
from the random graph literature.

3 The Random Cluster Model on Some Natural Graphs

Bollobás, Grimmett and Jansen [2] studied the random cluster model on the
complete N -vertex graph KN . More detailed analyses have since been performed,
for example by Luczak and �Luczak [18], but the approach of the earlier paper is
easier to adapt to our needs. For fixed q and a fixed constant λ, they studied the
distribution RC(KN , q, p) where p is the constant function which assigns every
edge e of KN the value p(e) = λ/N . They show that there is a critical value λc,
depending on q, so that, if λ > λc then, as N → ∞, with high probability a
configuration A drawn from RC(KN , q, p) will have a large component (of size
linear in N) and otherwise, with high probability the largest component will
be much smaller (of size logarithmic in N). For q > 2, the critical value is
λc = 2(q − 1) ln(q − 1)/(q − 2). It is important for our analysis that λc < q (see
[2, p.16]).

Let Γ be the complete graph with vertex set VΓ = K ∪ T . Let EΓ denote the
edge set of Γ and let N = |K| and t = |T |. Let K(2) denote the set of unordered
pairs of distinct elements in K and define T (2) similarly. Let � be a value in
[0, 1]. Define p as follows.

p(e) =

⎧⎪⎨⎪⎩
�, if e ∈ K(2),
N−3/4, if e ∈ K × T , and
1, if e ∈ T (2).

Ultimately, we will use the graph Γ (or, more precisely, Γ with the edges T (2)

deleted) as a gadget to simulate the contribution of a hyperedge on the set T
to the multivariate Tutte polynomial of Γ . Thus, we refer to vertices in T as
“terminals” of the graph Γ . For a subset A ⊆ EΓ , let Y (A) be the number of
connected components in the graph (VΓ , A \T (2)) that contain terminals. Since,
when we come to use the gadget, the edges in T (2) will not be present, we are
interested in the structure of connected components in Γ in the absence of these
edges, and specifically we are interested in the random variable Y (A). However,
it turns out that the key properties of the gadget are easier to verify if we work
with a random cluster distribution associated with Γ , exactly as given above,
with the edges T (2) present. Informally, the appropriate “boundary condition”
for the gadget is the one in which the terminals are joined with probability 1.

The following lemma forms the core of the technical part of the paper. The
proof involves comparing the random cluster model to the (multivariate) Erdős-
Rényi model of a random graph. This is done using stochastic domination, in the
spirit of Holley [13] and also using a multivariate version of Bollobás, Grimmett



402 L.A. Goldberg and M. Jerrum

and Jansen’s “Fundamental Lemma”, [2, Lemma 3.1] which studies coloured
versions of random cluster configurations in the special case where one of the
colour-induced subgraphs is an Erdős-Rényi random graph. See the full version
for details.

Lemma 1. Fix q > 2 and let λ = λc+(q−λc)/2. Fix a weight γ > 0 and let N0
be a sufficiently large quantity depending on q and γ. Suppose a number of termi-
nals t > 1 and a tolerance 0 < η < 1 are given and fix N ≥ max{t16, η−1/8, N0}.
Then there is a parameter � satisfying N−3 ≤ � ≤ λ/N ≤ 1

4 such that, if A is
drawn from RC(Γ ; q, p) then

Pr(Y (A) = 1) = γ Pr(Y (A) = t). (3)

Also, for every value of � in the range [N−3, λ/N ], if A is drawn from RC(Γ ; q, p)
then

Pr(1 < Y (A) < t) < η. (4)

Now let Γ̃ = (VΓ , EΓ \ T (2)) be the graph derived from Γ by deleting edges
within T . Let γ = {γe} be the set of edge weights defined by γe = p(e)/(1−p(e)).
For an edge subset A′ ⊆ EΓ \T (2), let κ′(VΓ , A′) denote the number of connected
components that do not contain terminals in the graph (VΓ , A′). Let Ak denote
the set of edge subsets A′ ⊆ EΓ \ T (2) for which the terminals of (VΓ , A′) are
contained in exactly k connected components. Let A =

⋃
k∈[t]Ak (this is the set

of all edge subsets of Γ̃ ). Let Zk be q−k times the contribution to ZTutte(Γ̃ ; q,γ)
from edge subsets A′ ∈ Ak. Formally, Zk =

∑
A′∈Ak qκ

′(V,A′)γ(A′). Let Z =∑t
k=1 Z

k. We will use the following lemma to apply Lemma 1 in our reductions.

Lemma 2. Zk/Z = Pr(Y (A) = k), where A is drawn from RC(Γ ; q, p).

4 Computational Problems, FPRAS’s and Efficiently
Approximable Real Numbers

Fix real numbers q > 2 and γ > 0 and consider the following computational
problem, which is parameterised by q and γ.

Problem. Tutte(q, γ).
Instance. Graph G = (V,E).
Output. ZTutte(G; q,γ), where γ is the constant function with γe = γ for every

e ∈ E.

We are interested in the complexity of approximately solving Tutte(q, γ). We
start by defining the relevant concepts. A randomised approximation scheme for
a function f : Σ∗ → R is a randomised algorithm with the following specification.
It takes as input an instance x ∈ Σ∗ (e.g., for the problem Tutte(q, γ), the input
would be an encoding of a graph G) and a rational error tolerance ε > 0, and
outputs a rational number z (a random variable of the “coin tosses” made by the
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algorithm) such that, for every instance x, Pr
[
e−εf(x) ≤ z ≤ eεf(x)

]
≥ 3

4 . The
randomised approximation scheme is said to be a fully polynomial randomised
approximation scheme, or FPRAS, if it runs in time bounded by a polynomial in
|x| and ε−1. The definition is insensitive to the precise success probability, here
3/4, provided it lies in the interval (1

2 , 1) [16, Lemma 6.1]. We say that a real
number z is efficiently approximable if there is an FPRAS for the problem which
maps any input to the output z. Approximations to real numbers are useful. For

example, if q̂ and γ̂ are approximations to q and γ satisfying e
− ε
n+m q ≤ q̂ ≤

e
ε

n+m q and e
− ε
n+m γ ≤ γ̂ ≤ e

ε
n+m γ and γ̂e = γ̂ for every e ∈ E then

e−εZTutte(G; q,γ) ≤ ZTutte(G; q̂, γ̂) ≤ eεZTutte(G; q,γ).

Thus, to approximate ZTutte(G; q,γ), it suffices to first compute rational approx-
imations q̂ and γ̂, and then approximate ZTutte(G; q̂, γ̂).

When the parameters are efficiently approximable reals, it is possible to ap-
proximate quantities associated with the gadgets Γ and Γ̃ that we studied in
Section 3. We start with the following lemma, which is proved by defining re-
currences for the coefficients of the polynomial Zk. Using the recurrences, the
computation can be done by dynamic programming — the fact that q is not
known exactly causes no essential problems.

Lemma 3. Suppose q > 2 is an efficiently computable real. Consider the gadget
Γ̃ from Section 3 with parameters t, N and � where � ∈ [0, 1] is a rational
number and N1/4 is an integer. There is an FPRAS for computing Z1 and Zt,
given inputs t, N and �.

It will also be necessary for us to approximate the critical edge probability �, so
that, with this approximation, the graph Γ approximately satisfies Equation (3)
in Lemma 1. The following lemma shows that this is possible. The algorithm
presented in the proof breaks the region [N−3, λ/N ] into intervals and tries one
rational value � within each interval. The computation of Pr(Y (A)=1)

Pr(Y (A)=t) uses the
algorithm presented in the proof of Lemma 3 (which gives the right answer by
Lemma 2) and the fact that the ratio of the probabilities is sufficiently close to γ
comes from Lemma 1 and from technical details of the approximation.

Lemma 4. Suppose q > 2 is an efficiently computable real. Fix γ > 0 and let
λ = λc + (q−λc)/2. Suppose that χ > 0 is rational. Consider the gadget Γ from
Section 3 with parameters t, N , and �. There is a randomised algorithm whose
running time is at most a polynomial in χ−1, N and t which takes input N and
t (where it is assumed that N1/4 is an integer and that N ≥ max{t16, N0} for
the constant N0 from Lemma 1) and, with probability at least 3/4, computes a
rational � in the range [N−3, λ/N ] such that, if A is drawn from RC(Γ ; q, p),
then

e−χγ ≤ Pr(Y (A) = 1)
Pr(Y (A) = t)

≤ eχγ.
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5 Approximation-Preserving Reductions and #BIS

Our main tool for understanding the relative difficulty of approximation counting
problems is “approximation-preserving reductions”, taken from Dyer, Goldberg,
Greenhill and Jerrum [6]. Suppose that f and g are functions from Σ∗ to R.
An approximation-preserving reduction from f to g is a randomised algorithm A
for computing f using an oracle for g. The algorithm A takes as input a pair
(x, ε) ∈ Σ∗ × (0, 1), and satisfies the following three conditions: (i) every oracle
call made by A is of the form (w, δ), where w ∈ Σ∗ is an instance of g, and
0 < δ < 1 is an error bound satisfying δ−1 ≤ poly(|x|, ε−1); (ii) the algorithm A
meets the specification for being a randomised approximation scheme for f (as
described above) whenever the oracle meets the specification for being a ran-
domised approximation scheme for g; and (iii) the run-time of A is polynomial
in |x| and ε−1. If an approximation-preserving reduction from f to g exists we
write f ≤AP g, and say that f is AP-reducible to g. Note that if f ≤AP g and
g has an FPRAS then f has an FPRAS. If f ≤AP g and g ≤AP f then we say
that f and g are AP-interreducible.

The definitions allow us to construct approximation-preserving reductions be-
tween problems f and g with real parameters without insisting that the param-
eters themselves be efficiently approximable. Nevertheless, some of our results
restrict attention to efficiently approximable parameters. According to the defini-
tion, approximation-preserving reductions may use randomisation. Nevertheless,
the reductions that we present in this paper are deterministic except for where
they make use of an FPRAS to approximate a real parameter. A word of warn-
ing about terminology: Subsequent to [6], the notation ≤AP has been used to
denote a different type of approximation-preserving reduction which applies to
optimisation problems. We will not study optimisation problems in this paper,
so hopefully this will not cause confusion.

Dyer et al. [6] studied counting problems in #P and identified three classes
of counting problems that are interreducible under approximation-preserving
reductions. The first class, containing the problems that admit an FPRAS, are
trivially AP-interreducible since all the work can be embedded into the reduction
(which declines to use the oracle). The second class is the set of problems that are
AP-interreducible with #Sat, the problem of counting satisfying assignments
to a Boolean formula in CNF. Zuckerman [24] has shown that #Sat cannot
have an FPRAS unless RP = NP. The same is obviously true of any problem to
which #Sat is AP-reducible.

The third class appears to be of intermediate complexity. It contains all of the
counting problems expressible in the logically-defined complexity class #RHΠ1.
Typical complete problems include counting the downsets in a partially ordered
set [6], computing the partition function of the ferromagnetic Ising model with
varying interaction energies and local external magnetic fields [9] and counting
the independent sets in a bipartite graph, which is formally defined as follows.
Problem. #BIS.
Instance. A bipartite graph B.
Output. The number of independent sets in B.
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6 The Reductions

This section of the paper gives an approximation-preserving reduction from
#BIS to the problem Tutte(q, γ). We start by defining the problem of com-
puting the Tutte polynomial of a uniform hypergraph H with fixed positive edge
weights. For fixed positive real numbers q and γ the problem is defined as follows.

Problem. UniformHyperTutte(q, γ)
Instance. A uniform hypergraph H = (V , E).
Output. ZTutte(H ; q, γ), where γ is the constant function with γf = γ for every

f ∈ E .

The following lemma gives an approximation-preserving reduction from #BIS to
the problem UniformHyperTutte(q, q−1). The proof goes via an intermediate
version of #BIS in which vertices have weights and the degrees of all vertices
on the right-hand side are the same.

Lemma 5. Suppose that q > 0 is efficiently approximable. Then #BIS ≤AP
UniformHyperTutte(q, q − 1).

The most difficult part of the paper is reducing UniformHyperTutte(q, γ) to
the problem of approximately computing the (multivariate) Tutte polynomial of
an undirected graph. Using the random-graphs results from Section 3, we will
first (in Lemma 6) show that there is an approximation-preserving reduction to
the following intermediate problem.

Problem. TwoWeightFerroTutte(q).
Instance. Graph G = (V,E) with an edge-weight function γ′ : E → {γ′, γ′′}

where γ′ and γ′′ are rationals in the interval [|V |−3, 1].
Output. ZTutte(G; q,γ ′).

Lemma 6. Suppose that q > 2 and γ > 0 are efficiently approximable. Then
UniformHyperTutte(q, γ) ≤AP TwoWeightFerroTutte(q).

The idea behind the proof of Lemma 6 is to use the graph Γ̃ from §3 to simulate
a hyperedge. The main technical difficulty lies in showing that the tolerance
parameter η controlling inequality (4) in Lemma 1 does not need to be excessively
small in order to guarantee sufficient accuracy in this simulation.

The final Lemma 7 completes the chain of AP-reductions from #BIS to
Tutte(q, γ) and hence the proof of Theorem 1. The key to this final reduc-
tion is a technique for “implementing” an edge of one weight using a subgraph
with edges of another weight. The machinery for doing this is taken from [11,
Section 1.6]. Suppose G be a graph with edge-weight function γ, and f is some
edge of G with edge weight γf = γ∗. We wish to remove the edge of weight γ∗

at the expense of introducing several edges of a specified weight γ. We design a
graph Υ with distinguished vertices s and t and constant edge weight γ that is
equivalent (to a close approximation) to a single edge (s, t) of weight γ∗ in any
graph context. Consider the weighted graph G̃ obtained by removing edge f and
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replacing it with a copy of Υ , identifying s and t with the endpoints of f). We
require of Υ the property that the Tutte polynomial of G̃ is close to the Tutte
polynomial of G, up to an easily computable factor. Using this idea, following
the pattern of [11], but paying particular attention to technical issues arising
because of approximation of real numbers, establishes the last link in the chain
of reductions.

Lemma 7. Suppose that q > 2 and γ > 0 are efficiently approximable. Then
TwoWeightFerroTutte(q) ≤AP Tutte(q, γ).

7 3-Uniform Hypergraphs

Lemma 5 has the following corollary.

Corollary 1. #BIS ≤AP UniformHyperTutte(q, q − 1) for efficiently ap-
proximable q > 0.

Thus, assuming that there is no FPRAS for #BIS, we can conclude that there is
no FPRAS for computing the Tutte polynomial of a uniform hypergraph when
the edge-weights are set to γ = q − 1. The Ising model corresponds to the
q = 2 case of the Potts model. Thus, we conclude that there is no FPRAS for
computing the partition function of the Ising model on a uniform hypergraph
in which every edge has weight 1. We conclude this paper with a contrasting
positive result for 3-uniform hypergraphs. Consider the following problem.

Problem. 3-UniformHyperTutte(q, γ).
Instance. A 3-uniform hypergraph H = (V , E).
Output. ZTutte(H ; q, γ), where γ is the constant function with γf = γ for every

f ∈ E .

Lemma 8. Suppose that γ > 0 is efficiently approximable. There is an FPRAS
for the problem 3-UniformHyperTutte(2, γ).
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Abstract. We say that a polynomial f(x1, . . . , xn) is indecomposable if
it cannot be written as a product of two polynomials that are defined
over disjoint sets of variables. The polynomial decomposition problem is
defined to be the task of finding the indecomposable factors of a given
polynomial. Note that for multilinear polynomials, factorization is the
same as decomposition, as any two different factors are variable disjoint.

In this paper we show that the problem of derandomizing polynomial
identity testing is essentially equivalent to the problem of derandomizing
algorithms for polynomial decomposition. More accurately, we show that
for any reasonable circuit class there is a deterministic polynomial time
(black-box) algorithm for polynomial identity testing of that class if and
only if there is a deterministic polynomial time (black-box) algorithm
for factoring a polynomial, computed in the class, to its indecomposable
components.

An immediate corollary is that polynomial identity testing and poly-
nomial factorization are equivalent (up to a polynomial overhead) for
multilinear polynomials. In addition, we observe that derandomizing the
polynomial decomposition problem is equivalent, in the sense of Ka-
banets and Impagliazzo [1], to proving arithmetic circuit lower bounds
for NEXP.

Our approach uses ideas from [2], that showed that the polynomial
identity testing problem for a circuit class C is essentially equivalent to
the problem of deciding whether a circuit from C computes a polynomial
that has a read-once arithmetic formula.

1 Introduction

In this paper we study the relation between two fundamental algebraic prob-
lems, polynomial identity testing and polynomial factorization. We show that
the tasks of giving deterministic algorithms for polynomial identity testing and
for a variant of the factorization problem (that we refer to as the polynomial de-
composition problem) are essentially equivalent. We first give some background
on both problems and then discuss our results in detail.

Polynomial Decomposition. Let X = (x1, . . . , xn) be the set of variables. For
a set I ⊆ [n] denote with XI the set of variables whose indices belong to I. A
polynomial f , depending on X , is said to be decomposable if it can be written
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as f(X) = g(XS) · h(X[n]\S) for some ∅ � S � [n]. The indecomposable factors
of a polynomial f(X) are polynomials f1(XI1), . . . , fk(XIk

) such that the Ij-s
are disjoint sets of indices, f(X) = f1(XI1) · f2(XI2) · · · fk(XIk

) and the fi’s
are indecomposable. It is not difficult to see that every polynomial has a unique
factorization to indecomposable factors (up to multiplication by field elements).
The problem of polynomial decomposition is defined in the following way: Given
an arithmetic circuit from an arithmetic circuit class C computing a polynomial
f , we have to output circuits for each of the indecomposable factors of f . If we
only have a black-box access to f then we have to output a black-box (i.e. an
algorithm that may use the original black-box) for each of the indecomposable
factors of f . Clearly, finding the indecomposable factors of a polynomial f is
an easier task than finding all the irreducible factors of f . It is not hard to see
though, that for the natural class of multilinear polynomials the two problems are
the same. We also consider the decision version of the polynomial decomposition
problem: Given an arithmetic circuit computing a multivariate polynomial decide
whether the polynomial is decomposable or not. Note that in the decision version
the algorithm just has to answer ‘yes’ or ’no’ and is not required to find the
decomposition.

Many randomized algorithms are known for factoring multivariate polynomi-
als in the black-box and non black-box models (see the surveys in [3,4,5]). These
algorithms also solve the decomposition problem. However, it is a long standing
open question whether there is an efficient deterministic algorithm for factoring
multivariate polynomials (see [3, 6]). Moreover, there is no known deterministic
algorithm even for the decision version of the problem (that is defined analo-
gously). Furthermore, even for the simpler case of factoring multilinear poly-
nomials (which is a subproblem of polynomial decomposition) no deterministic
algorithms are known.

Polynomial Identity Testing. Let C be a class of arithmetic circuits defined
over some field F. The polynomial identity testing problem (PIT for short) for C is
the question of deciding whether a given circuit form C computes the identically
zero polynomial. This question can be considered both in the black-box model, in
which we can only access the polynomial computed by the circuit using queries,
or in the non black-box model where the circuit is given to us. The importance
of this fundamental problem stems from its many applications. For example, the
deterministic primality testing algorithm of [7] and the fast parallel algorithm
for perfect matching of [8] are based on solving PIT problems.

PIT has a well known randomized algorithm [9,10,11]. However, we are inter-
ested in the problem of obtaining efficient deterministic algorithms for it. This
question received a lot of attention recently [12, 13, 14, 1, 15, 16, 17, 18, 19,20,21,
2,22,23,24,25,26,27,28] but its deterministic complexity is still far from being
well understood. In [29, 1, 15, 22] results connecting PIT to lower bounds for
arithmetic circuits where proved, shedding light on the difficulty of the problem.
It is interesting to note that the PIT problem becomes very difficult already
for depth-4 circuits. Indeed, [23] proved that a polynomial time black-box PIT
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algorithm for depth-4 circuits implies an exponential lower bound for general
arithmetic circuits (and hence using the ideas of [1] a quasi-polynomial time
deterministic PIT algorithm for general circuits).

In this work we (essentially) show equivalence between the PIT and polyno-
mial decomposition problems. Namely, we prove that for any (reasonable) circuit
class C, it holds that C has a polynomial time deterministic PIT algorithm if
and only if it has a polynomial time deterministic decomposition algorithm.
The result holds both in the black-box and the non black-box models. That
is, if the PIT for C is in the black-box model then deterministic black-box
decomposition is possible and vice versa, and similarly for the non black-box
case. Before giving the formal statement of our results we give some definitions.

Arithmetic Circuits. An arithmetic circuit in the variables X = {x1, . . . , xn},
over the field F, is a labelled directed acyclic graph. The inputs (nodes of in-
degree zero) are labelled by variables from X or by constants from the field. The
internal nodes are labelled by + or ×, computing the sum and product, resp., of
the polynomials on the tails of incoming edges (subtraction is obtained using the
constant −1). A formula is a circuit whose nodes have out-degree one (namely,
a tree). The output of a circuit (formula) is the polynomial computed at the
output node. The size of a circuit (formula) is the number of gates in it. The
depth of the circuit (formula) is the length of a longest path between the output
node and an input node.

We shall say that a polynomial f(x1, . . . , xn) has individual degrees bounded
by d, if no variable has degree higher than d in f . An arithmetic circuit C
has individual degrees bounded by d if the polynomial that C computes has
individual degrees bounded by d. Finally, we shall say that C is an (n, s, d)-
circuit if it is an n-variate arithmetic circuit of size s with individual degrees
bounded by d. Sometimes we shall think of an arithmetic circuit and of the
polynomial that it computes as the same objects.

In this paper we will usually refer to a model of arithmetic circuits C. It
should be thought of as either the general model of arithmetic circuits or as
some restricted model such as bounded depth circuits, etc.

Our Results. We now formally state our results. We give them in a very general
form as we later apply them to very restricted classes such as depth-3 circuits,
read-once formulas etc.

Theorem 1 (Main). Let C be a class of arithmetic circuits, defined over a
field F. Consider circuits of the form C = C1 + C2 × C3, where the Ci-s are
(n, s, d)-circuits from C and, C2 and C3 are defined over disjoint sets of vari-
ables.1 Assume that there is a deterministic algorithm that when given access
(explicit or via a black-box) to such a circuit C runs in time T (s, d) and de-
cides whether C ≡ 0. Then, there is a deterministic algorithm that when given

1 This requirement seems a bit strange but we need it in order to state our results in
the most general terms.
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access (explicit or via a black-box) to an (n, s, d)-circuit C′ ∈ C,2 runs in time
O(n3 · d · T (s, d)) and outputs the indecomposable factors, H = {h1, . . . , hk}, of
the polynomial computed by C′. Moreover, each hi is in C and size(hi) ≤ s.

The other direction is, in fact, very easy and is given by the following observation.

Observation 1. Let C be a class of arithmetic circuits. Assume that there is
an algorithm that when given access (explicit or via a black-box) to an (n, s, d)-
circuit C ∈ C runs in time T (s, d) and outputs “true” iff the polynomial computed
by C is decomposable. Then, there is a deterministic algorithm that runs in time
O(T (s + 2, d)) and solves the PIT problem for size s circuits from C.

As mentioned above, the irreducible factors of multilinear polynomials are simply
their indecomposable factors. Hence we obtain the following corollary. We give
here a slightly informal statement. The full statement is given in Section 3.1.

Corollary 1 (informal). Let C be an arithmetic circuit class computing mul-
tilinear polynomials. Then, up to a polynomial overhead, the deterministic poly-
nomial identity testing problem and the deterministic factorization problem for
circuits from C are equivalent, in both the black-box the and non black-box models.

We also obtain some extensions to the results above. The first result shows
how to get a non-adaptive decomposition from a PIT algorithm (Theorem 1
gives an adaptive algorithm). To prove it we need a stronger PIT algorithm
than the one used in the proof of Theorem 1. The second extension gives an
algorithm deciding whether for a given polynomial f there are two variables
xi, xj such that f(X) = f1(X[n]\{i}) · f2(X[n]\{j}). This can be thought of as a
generalization of Theorem 1. Finally, we obtain a connection between the decom-
position problem and lower bounds in the sense of Kabanets and Impagliazzo.
Due to space limitations the proofs of those results are omitted from this version.

Motivation. The motivation for this work is twofold. First, the most obvious
motivation is that we think that the problem of connecting the complexity of
PIT and polynomial factorization is very natural. Another motivation is to
better understand the PIT problem for multilinear formulas.3 Although lower
bounds are known for multilinear formulas [30, 31, 32, 33], we do not have an
efficient PIT algorithm even for depth-3 multilinear formulas. Consider the
following approach towards PIT of multilinear formulas. Start by making the
formula a read-once formula. I.e. a formula in which every variable labels
at most one leaf. This can be done by replacing, for each i and j, the j-th
occurrence of xi with a new variable xi,j . Now, using PIT algorithm for
read-once formulas [2, 26], check whether this formula is zero or not. If it is
zero then the original formulas was also zero and we are done. Otherwise start
replacing back each xi,j with xi. After each replacement we would like to verify

2 C′ ∈ C denotes that the circuit C′ is from C.
3 A multilinear formula is a formula in which every gate computes a multilinear poly-

nomial, see [30].
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that the resulting formula is still not zero. Notice that when replacing xi,j with
xi we get zero if and only if the linear function xi−xi,j is a factor of the formula
at hand. Thus, we somehow have to find a way of verifying whether a linear
function is a factor of a multilinear formula. Notice that as we start with a
read-once formula for which PIT is known [2,26], we can assume that we know
many inputs on which the formula does not vanish. One may hope that before
replacing xi,j with xi we somehow managed to obtain inputs that will enable
us to verify whether xi − xi,j is a factor of the formula or not. This of course
is not formal and only gives a sketch of an idea, but it shows the importance
of understanding how to factor multilinear formulas given a PIT algorithm. As
different factors of multilinear formulas are variable disjoint this motivates the
study of polynomial decomposition.

Proof Technique. It is not difficult to see that efficient algorithms for poly-
nomial decomposition imply efficient algorithms for PIT. Indeed, notice that
f(x1, . . . , xn) ≡ 0 iff f(x1, . . . , xn) + y · z, where y and z are two new variables,
is decomposable (in which case y and z are its indecomposable factors). Hence,
an algorithm for polynomial decomposition (even for the decision version of the
problem) gives rise to a PIT algorithm.

The more interesting direction is obtaining a decomposition algorithm given a
PIT algorithm. Note that if f(X) = f1(XI1)·. . .·fk(XIk

) is the decomposition of
f and if we know the sets I1, . . . , Ik then using the PIT algorithm we can easily
obtain circuits for the different fi’s. Indeed, if ā ∈ Fn is such that f(ā) �= 0 then,
for some constant αj , fj(XIj ) = αj ·f |ā[n]\Ij

(X), where ā[n]\Ij
is the assignment

that assigns values to all the variables except those whose index belongs to
Ij .4 Now, given a PIT algorithm we can use it to obtain such ā in a manner
similar to finding a satisfying assignment to a CNF formula given a SAT oracle.
Consequently, finding the partition I1, . . . , Ik of [n] is equivalent to finding the
indecomposable factors (assuming that we have a PIT algorithm).

We present two approaches for finding the partition. The first is by induction:
Using the PIT algorithm we obtain an assignment ā = (a1, . . . , an) ∈ Fn that
has the property that for every j ∈ [n] it holds that f depends on xj if and
only if f |ā[n]\{j} depends on xj . Following [34, 35, 2, 26] we call ā a justifying
assignment of f . Given a justifying assignment ā, we find, by induction, the
indecomposable factors of f |xn=an . Then, using simple algebra we recover the
indecomposable factors of f from those of f |xn=an . This is the idea behind the
proof of Theorem 1.

In the second approach, we observe that the variables xi and xj belong to the

same set I in the partition iff Δijf
Δ= f · f |xi=y,xj=w− f |xi=y · f |xj=w �≡ 0, when

y and w are two new variables. Using this observation we obtain the partition by
constructing a graph G on the set of vertices [n] in which i and j are neighbors
if and only if Δijf �≡ 0. The sets of the partition are exactly the connected
components of G. Due to space limitations we present only the first approach.

4 In fact, we also need a constant α, that is easily computable, to get that f(X) =
α · f1(XI1 ) · . . . · fk(XIk ).
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Related Works. The only work that we are aware of that studies the relation
between PIT and polynomial factorization is [36]. There, Kaltofen and Koiran
gave polynomial time deterministic identity testing algorithm for a class of super-
sparse univariate polynomials, and from there obtained a deterministic factor-
ization algorithm for a related class of bivariate polynomials. This model is, of
course, very different from the models studied here.

As mentioned above, justifying assignments were first defined and used in
[34,35] for the purpose of giving randomized polynomial time learning algorithms
for read-once arithmetic formulas. In [2,26] justifying assignments were used in
conjunction with new PIT algorithms in order to obtain deterministic quasi-
polynomial time interpolation algorithms for read-once formulas. We rely on the
ideas from [26] for obtaining justifying assignments from PIT algorithms.

Another line of works that is related to our results is that of Kabanets and
Impagliazzo [1] and of [22]. There it was shown that the question of derandomiz-
ing PIT is closely related to the problem of proving lower bounds for arithmetic
circuits. These results use the fact that factors of small arithmetic circuits can
also be computed by small arithmetic circuits. This gives another connection
between PIT and polynomial factorization, although a less direct one.

The results of [1] relate PIT to arithmetic lower bounds for NEXP. However,
these lower bounds are not strong enough and do not imply that derandom-
ization of PIT gives derandomization of other algebraic problems. Similarly,
the results of [15] show that polynomial time black-box PIT algorithms give
rise to exponential lower bounds for arithmetic circuits which in turn, using
ideas a-la [1], may give quasi-polynomial time derandomization of polynomial
factorization.5 However, this still does not guarantee polynomial time deran-
domization as is achieved in this work.

Organization. In Section 2 we give the required definition and discuss partial
derivatives and justifying assignments. In Section 3 we prove our main result
and derive some corollaries.

2 Preliminaries

For an integer n denote [n] = {1, . . . , n}. In this paper all the circuits and
polynomials are defined over some field F. In most of our algorithms we will
need to assume that F is larger than some function depending on n (we will
mostly have the requirement |F| > nd, where n is the number of variables and
d is an upper bound on the individual degrees of the given circuit/polynomial).
We note that this is not a real issue as in most works on factoring or on PIT it
is assumed that we can access a polynomially large extension field of F. From
now on we assume that F is sufficiently large.

For a polynomial f(x1, . . . , xn), a variable xi and a field element α we
denote with f |xi=α the polynomial resulting from substituting α to xi.
5 We note that, currently, it is not clear how to derandomize the factorization problem

using lower bounds for arithmetic circuits.
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Similarly, given a subset I ⊆ [n] and an assignment ā ∈ Fn we define f |xI=āI

to be the polynomial resulting from substituting ai to xi for every i ∈ I.
We say that f depends on xi if there exist ā ∈ Fn and b ∈ F such that:
f(a1, a2, . . . , ai−1, ai, ai+1, . . . , an) �= f(a1, a2, . . . , ai−1, b, ai+1, . . . , an). We de-
note var(f) Δ= {i ∈ [n] | f depends on xi }. It is not difficult to see that f de-
pends on xi if and only if xi appears when f is written as a sum of monomials.
By substituting a value to a variable of f we obviously eliminate the dependence
of f on this variable. However, this can also eliminate the dependence of f on
other variables, so we may lose more ‘information’ than intended. To handle this
problem we define a ‘lossless’ type of an assignment. Similar definitions were
given in [34, 35,2,26]. For completeness we repeat the definitions here.

Definition 1 (Justifying assignment). Given an assignment ā ∈ Fn we say
that ā is a justifying assignment of f if for every subset I ⊆ var(f) we have that
var(f |xI=āI ) = var(f) \ I.

Proposition 1 ( [2]). An assignment ā ∈ Fn is a justifying assignment of f if
and only if var(f |xI=āI ) = var(f) \ I for every subset I of size |I| = |var(f)|− 1.

We now show how to get a justifying assignment from a polynomial identity
testing algorithm. This was first done in [2] (and generalized in [26]). Before
stating the result we shall need the following definition.

Definition 2 (Partial Derivative). Let f ∈ F[x1, . . . , xn] be a polynomial.
The partial derivative of f w.r.t. xi and direction α ∈ F is defined as ∂f

∂αxi

Δ=

f |xi=α − f |xi=0. For an arithmetic circuit C we define ∂C
∂αxi

Δ= C|xi=α −C|xi=0.

Our algorithm will consider a circuit class C but will require a PIT algorithm
for a slightly larger class. Namely, for every circuit C ∈ C we will need a PIT
algorithm for circuits of the form ∂C

∂αxi
. To ease the reading we shall refer to all

circuits of the form ∂C
∂αxi

as ∂C.

Theorem 2 ( [2, 26]). Let F be a field of size |F| ≥ nd. Let f be a polynomial
that is computed by an (n, s, d)-circuit C ∈ C. Then, there is an algorithm that
returns a justifying assignment ā for f in time O(n3d ·T (s, d)), where T (s, d) is
the running time of the PIT algorithm for circuits of the form ∂C where C ∈ C
is an (n, s, d)-circuit.

2.1 Indecomposable Polynomials

Definition 3. We say that a polynomial f ∈ F[x1, . . . , xn] is indecomposable if
it is non-constant and cannot be represented as the product of two (or more) non-
constant variable disjoint polynomials. Otherwise, we say that f is decomposable.

Clearly decomposability is a relaxation of irreducibility. For example, (x + y +
1)(x + y − 1) is indecomposable but is not irreducible. Also note that any uni-
variate polynomial is indecomposable. The following lemma is easy to prove.
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Lemma 1 (Unique decomposition). Let f ∈ F[x1, . . . , xn] be a non-constant
polynomial. Then f has a unique (up to multiplication by field elements) factor-
ization to indecomposable factors.

Observation 2. Let f be a multilinear polynomial. Then f is indecomposable
if and only if f is irreducible. In particular, if f(x̄) = f1(x̄) · f2(x̄) · . . . · fk(x̄) is
the decomposition of f , then the fi-s are f ’s irreducible factors.

3 Decomposition

In this section we give the proof of Theorem 1. Algorithm 1 shows how to find the
indecomposable factors for a polynomial computed by C using the PIT algorithm.
In fact, the algorithm returns a partition I = {I1, . . . , Ik} of [n] such that the
decomposition of f is f = h1(XI1)·. . .·hk(XIk

), for some polynomials h1, . . . , hk.
We call I the variable-partition of f . The idea behind the algorithm is to first
find a justifying assignment ā to f using Theorem 2. Then, to find the partition
of f |xn=an . Finally, by using the PIT algorithm, to decide which sets in the
partition of f |xn=an belong to the partition of f and which sets must be unified.

Algorithm 1. Finding variable partition
Input: An (n, s, d)-circuit C from a circuit class C, a justifying assignment ā for C,
and access to a PIT algorithm as in the statement of Theorem 1.
Output: A variable-partition I

1: Set I = ∅, J = [n] (I will be the partition that we seek).
2: Set xn = an and recursively compute the variable-partition of C′ = C|xn=an . Let
I′ be the resulting partition (note that when n = 1 then we just return I = {{1}}).

3: For every set I ∈ I′ check whether C(ā) · C ≡ C|xI=āI · C|x[n]\I=ā[n]\I
. If this is

the case then add I to I and set J ← J \ I . Otherwise, move to the next I .
4: Finally, add the remaining elements to I. Namely, I ← I ∪ {J}.

The following lemma gives the analysis of the algorithm and its correctness.

Lemma 2. Let C be an (n, s, d)-circuit from C such that var(C) = [n]. As-
sume there exists a PIT algorithm as in the statement of Theorem 1. Let ā be a
justifying assignment of C. Then given C and ā Algorithm 1 outputs a variable-
partition I for the polynomial computed by C. The running time of the algorithm
is O(n2 · T (s, d)), where T (s, d) is as in the statement of Theorem 1.

Proof. The proof of correctness is by induction on n. For the base case (n = 1)
we recall that a univariate polynomial is an indecomposable polynomial. Now
assume that n > 1. Let C = h1(XI1) · . . . · hk−1(XIk−1) · hk(XIk

) be the
decomposition of C where I = {I1, . . . , Ik} is its variable-partition. Assume
w.l.o.g. that n ∈ Ik. Consider C′ = C|xn=an . It holds that C′ = C|xn=an =
h1 · . . . · hk−1 · hk|xn=an = h1 · . . . · hk−1 · g1 · g2 · . . . · g� where the gi-s are
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the indecomposable factors of hk|xn=an . Denote with Ik = {Ik,1, . . . , Ik,�} the
variable-partition of hk|xn=an . As ā is a justifying assignment of C we obtain
that var(C′) = [n − 1]. From the uniqueness of the decomposition (Lemma 1)
and by the induction hypothesis we get that, when running on C′, the algo-
rithm returns I ′ = {I1, . . . , Ik−1, Ik,1, . . . , Ik,�}. The next lemma shows that the
algorithm indeed returns the variable-partition I.

Lemma 3. Let f(x̄) ∈ F[x1, . . . , xn] be a polynomial and let ā ∈ Fn be a justify-
ing assignment of f . Then I ⊆ [n] satisfies that f(ā) ·f ≡ f |xI=āI ·f |x[n]\I=ā[n]\I

,
if and only if I is a disjoint union of sets from the variable-partition of f .

Proof. Assume that equality holds. Then, as ā is a justifying assignment of f
we have that f |xI=āI , f |x[n]\I=ā[n]\I

�≡ 0 and hence f(ā) �= 0. Consequently, if

we define h(XI)
Δ= f |x[n]\I=ā[n]\I

and g(X[n]\I)
Δ= f |xI=āI

f(ā) then we obtain that
f(x̄) = h(XI) · g(X[n]\I). The result follows by uniqueness of decomposition.

To prove the other direction notice that we can write f(x̄) ≡ h(XI) ·g(X[n]\I)
for two polynomials h and g. We now have that, f |xI=āI ≡ h(ā) · g(X[n]\I) and
similarly f |x[n]\I=ā[n]\I

≡ h(XI) · g(ā). Hence, f(ā) · f ≡ h(ā) · g(ā) · h(XI) ·
g(X[n]\I) ≡ f |xI=āI · f |x[n]\I=ā[n]\I

. This concludes the proof of Lemma 3. ��
By the lemma, each Ij (j < k) will be added to I whereas no Ik,j will be
added to it. Eventually we will have that J = Ik as required. To finish the proof
of Lemma 2 we now analyze the running time of the algorithm. The following
recursion is satisfied, where t(n, s, d) is the running time of the algorithm on
input an (n, s, d)-circuit C ∈ C: t(n, s, d) = t(n − 1, s, d) + O(|I ′| · T (s, d)) =
t(n− 1, s, d) +O(n · T (s, d)), which implies that t(n, s, d) = O(n2 · T (s, d)). ��

The proof of Theorem 1 easily follows.

Proof (of Theorem 1). We first note that the assumed PIT algorithm also works
for circuits in ∂C, when C is an (n, s, d)-circuit from C. Therefore, by Theorem 2
we have an algorithm that finds a justifying assignment ā, as well as computes
var(C).6 This requires O(n3 · d · T (s, d)) time. Once var(C) is known we can
assume w.l.o.g that var(C) = [n]. Lemma 2 guarantees that Algorithm 1 returns
a variable-partition I in time O(n2 ·T (s, d)). At this point we can define, for every
I ∈ I the polynomial hI

Δ= C|x[n]\I=ā[n]\I
. It is now clear that for α = C(ā)1−|I|

we have that C = α
∏
I∈I

hI is the decomposition of C. Moreover, note that from

the definition, each hi belongs to C and has size at most s. The total running
time can be bounded from above by O(n3 · d · T (s, d)). ��
To complete the equivalence between polynomial decomposition and PIT we
provide a short proof of Observation 1.

Proof (of Observation 1). Let C be an arithmetic circuit. Consider C′ Δ= C+y ·z
where y, z are new variables. Clearly, C′ is decomposable iff C �≡ 0 (we also notice
that C′ is multilinear iff C is). ��
6 It is not difficult to compute var(C) given Theorem 2 and in fact it is implicit in the

proof of the theorem.
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3.1 Some Corollaries

An immediate consequence of Theorem 1 is that there are efficient algorithms for
polynomial decomposition in circuit classes for which efficient PIT algorithms
are known. The proof of the following corollary is immediate given the state of
the art PIT algorithms.

Corollary 2. Let f(x̄) be a polynomial. We obtain the following algorithms.

1. If f has degree d and m monomials then there is a polynomial time (in
m,n, d) black-box algorithm for computing the indecomposable factors of f
(this is the circuit class of sparse polynomials, see e.g. [12]).

2. If f is computed by a depth-3 circuit with top fan-in k (i.e. a ΣΠΣ(k) circuit,
see [17]) and degree d then there is an (nd)O(k2) non black-box algorithm for
computing the indecomposable factors of f (see [18]). In the black-box model
there is an nO(k6 log d) time algorithm over finite fields and an (nd)O(k4) time
algorithm over Q, for the task (see [28]).

3. If f is computed by sum of k Preprocessed Read-Once arithmetic formulas
of individual degrees at most d (see [26]), then there is an (nd)O(k2) non
black-box algorithm for computing the indecomposable factors of f and an
(nd)O(k2+logn) black-box algorithm for the problem.

We now prove Corollary 1. We give a more formal statement, again, in full gen-
erality, so that it can be applied to restricted models of arithmetic circuits as well.

Corollary 1 restated: Let C be an arithmetic circuit class computing multilin-
ear polynomials. Assume that there is a deterministic PIT algorithm that runs in
time T (s) when given as input a circuit of the form C = C1 +C2×C3, where all
the Ci-s ∈ C are n-variate circuits of size s and C2 and C3 are variable disjoint.
Then, there is a deterministic algorithm that when given access (explicit or via
a black-box) to an n-variate circuit C′ ∈ C, of size s, runs in time poly(n, T (s))
and outputs the irreducible factors, h1, . . . , hk, of the polynomial computed by
C′. Moreover, each hi can be computed by a size s circuit from C.

Conversely, assume there is a deterministic factoring algorithm that runs in
time T (s) when given as input a size s circuit from C (or even just a deterministic
algorithm for the corresponding decision problem). Then C has a PIT algorithm,
for size s circuits, of running time O(T (s + 2)).

In particular, if one of the problems has a polynomial time algorithms, namely
T (s) = poly(s), then so does the other. The two directions hold both in the black-
box and non black-box models.

Proof. The claim is immediate from Theorem 1 and Observations 1 and 2. ��

4 Concluding Remarks

We showed a strong relation between PIT and polynomial decomposition. As
noted, for multilinear polynomials, decomposition is the same as factoring. Thus,
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for multilinear polynomials PIT and factorization are equivalent up to a poly-
nomial overhead. It is an interesting question whether such a relation holds for
general polynomials. Namely, whether PIT is equivalent to polynomial factor-
ization.

We note that in restricted models it may be the case that a polynomial
and one of its factors will have a different complexity. For example, consider

the polynomial f(x1, . . . , xk) =
k∏

i=1
(xki − 1) +

k∏
i=1

(xi − 1) =
k∏

i=1
(xi − 1) ·(

k∏
i=1

(xk−1
i + . . . + 1) + 1

)
. Then f has 2k+1 − 1 monomials, but one of its ir-

reducible factors has kk monomials. Thus, for k = logn we can compute f
as a sparse polynomial, but some of its factors will not be sparse (the fact
that f has only logn variables is not really important as we can multiply f by
xlog n+1 · . . . · xn and still have the same problem). Thus, it is also interesting to
understand whether it is even possible to have some analog of our result for the
factorization problem in restricted models. This question touches of course the
interesting open problem of whether the depth of a factor can increase signifi-
cantly with respect to the depth of the original polynomial.
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On Sums of Roots of Unity

Bruce Litow�
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Abstract. We make two remarks on linear forms over Z in complex
roots of unity. First we show that a Liouville type lower bound on the
absolute value of a nonvanishing form can be derived from the time
complexity upper bound on Tarski algbera. Second we exhibit an efficient
randomized algorithm for deciding whether a given form vanishes. In the
special case where the periods of the roots of unity are mutually coprime,
we can eliminate randomization. This efficiency is surprising given the
doubly exponential smallness of the Liouville bound.

1 Introduction

We make two remarks on linear forms over Z in complex roots of unity. First we
show that a Liouville type lower bound on the absolute value of a nonvanishing
form can be derived from the time complexity upper bound on Tarski algbera.
Second we exhibit an efficient randomized algorithm for deciding whether a given
form vanishes. In the special case where the periods of the roots of unity are
mutually coprime, we can eliminate randomization. This efficiency is surprising
given the doubly exponential smallness of the Liouville bound.

In general, a linear form over Z is an expression Λ(X1, . . . , Xr) =
∑r

i=1 bi ·Xi,
where bi ∈ Z and Xi is an indeterminate. We are interested in the case where
the Xi range over complex roots of unity. The period d of a root of unity ω is the
least positive integer such that ωd = 1. In Section 2 we give an efficient algorithm
to decide whether Λ(ω1, . . . , ωr) = 0. We refer to this as the sums problem. We
explain what we mean by efficient. Let b =

∑r
i=1 |bi| and � = log b (base 2 loga-

rithm). Let di be the period of ωi and d = LCM(d1, . . . , dr). We regard �+ log d
as the size of an instance. As usual, φ(x) denotes the Euler totient of x. We show
that the sums problem is in RP (random polytime) and if the di are mutually
coprime, then we show that the sums problem is in P (polytime). Details about
RP and P can be found in [1]. Determining whether these forms vanish is ar-
guably the most elementary problem of computational algebraic number theory
but we do not know of other methods that have polynomial running time in
both the bit sizes of b and d.

We introduce some notation. The few facts from algebra that we use later
can be found in [4,5]. Z,N and N+ denote the integers, nonnegative integers
and positive integers, respectively. Q and C denote the complex numbers and
� Discipline of IT, James Cook University, Townsville, Qld. 4811, Australia
bruce.litow@jcu.edu.au

S. Abramsky et al. (Eds.): ICALP 2010, Part I, LNCS 6198, pp. 420–425, 2010.
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rationals, respectively.Z[X ] denotes the polynomials overZ in the indeterminate
X . If f ∈ Z[X ] and α ∈ C, then f(α) is the value of f(X) at X = α. The
coefficient of Xn in f ∈ Z[X ] is denoted by [n]f(X). For f(X) ∈ Z[X ] let
|f(X)| =

∑
n |[n]f(X)|. We regard log |f(X)| as the size of f(X).

2 Tarski Algebra and Liouville Bounds

A detailed study of Liouville bounds and related subjects can be found in [8].
The Tarski algebra time complexity result is taken from [2]. If f(X) ∈ Z[X ],
α ∈ C is algebraic and f(α) �= 0, then one can determine a lower bound on |f(α)|
that depends only on |f(X)| and algebraic properties of α. This is known as a
Liouville bound. We next relate the sums problem to Liouville bounds.

Consider a linear form Λ(ω1, . . . , ωr). Let ω be a root of unity of period d.
We can write ωi = ωci where ci ∈ N+ and ci ≤ d. From this we see that
Λ(ω1, . . . , ωr) =

∑r
i=1 bi ·ωci . Let g(X) =

∑r
i=1 bi ·Xci . That is, Λ(ω1, . . . , ωr) =

g(ω). This enables us to apply directly a Liouville bound on g(ω) to Λ(ω1, . . . , ωr).
We fix the polynomial g(X) in this role. Note that b = |g(X)|.

We employ the first order theory of the real field, R, known as Tarski algebra
(TA) to simplify proofs and also to reveal certain concepts that would otherwise
be obscured by approximation methods tailored to quite specific problems con-
cerning algebraic numbers. The original results, due to A. Tarski were reported
in a preliminary way in [6] and then more comprehensively in [7]. Tarski showed
that any sentence of TA could be decided by explicit quantifier elimination. Sub-
sequent to his demonstration others refined the decision method, thereby vastly
reducing the time complexity over Tarski’s procedure. The decision problem for
TA is treated in great detail in [2].

For our purpose a TA formula has the form

Q1y1, . . . , Qaya A(x1, . . . , xb, y1, . . . , ya) ,

where the variables y1, . . . , ya are bound by quantifiers Q1, . . . , Qa ( existen-
tial or universal), x1, . . . , xb are free variables and A(x1, . . . , xb, y1, . . . , ya) is
a Boolean expression in atomic formulas. An atomic formula has the form
u(x1, . . . , xb, y1, . . . , ya) 1 0, where

u(x1, . . . , xb, y1, . . . , ya) ∈ Z[x1, . . . , xb, y1, . . . , ya]

and 1 is one of the relation symbols =, <,>. This application of triality eliminates
the need for negation in TA formulas. The coefficients of u(x1, . . . , xb, y1, . . . , ya)
are understood to be built up from the 0-adic function symbols 0, 1 in binary
notation (essentially). The axioms of TA are the field axioms for R and the
standard first order logic axioms with equality. Since we need to work over C
we simply note, as Tarski did in his original work that arithmetic over C can
be faithfully represented by arithmetic on elements of R×R supplemented by
the Fortran-style rules for complex arithmetic in terms of ordered pairs of reals.
Such things as |α|2 for α ∈ C admit straightforward representations in this way.
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We write B(x1, . . . , xb) to indicate a TA formula, possibly with bound variables
and the indicated free variables. We say that B(x1, . . . , xb) and C(x1, . . . , xb)
are equivalent if for all (α1, . . . , αb) ∈ Rb, B(α1, . . . , αb) ⇔ C(α1, . . . , αb). The
size of a formula is defined naturally in terms of the sizes of the polynomials in
atomic fromulas.

The next theorem is established in [2].

Theorem 1. Given B(x1, . . . , xb), an equivalent, quantifier-free formula can be
computed in ad

O(c)
time, where a is the size of B(x1, . . . , xb), d is the number of

distinct variables (including bound ones) in B(x1, . . . , xb) and c is the number
of quantifier alternations.

Using Theorem 1 we now derive a lower bound on |Λ(ω1, . . . , ωr)| in case it does
not vanish . Recall that � = log b = log |g(X)|.

Theorem 2. If Λ(ω1, . . . , ωr) �= 0, then

|Λ(ω1, . . . , ωr)| > 1/2(d+�)a

,

where a is an absolute positive constant.

Proof. For the moment we proceed informally outside TA. With variables rang-
ing over C. We introduce formulas in these variables.

– A(x) ⇔ xd = 1 ∧ g(x) �= 0.
– B(x, y) ⇔ A(x) ∧ |g(x)|2 ≥ y. We could represent |g(x)| in TA but we are

aiming for a simple exposition.
– C(z) ⇔ ∀ x, y B(x, y) ∧B(x, z) ⇒ y ≤ z.

It is plain that C(α) holds for exactly one value, namely the least value of |g(ω)|
over all d-th roots of unity for which g(ω) �= 0.

Conversion of C(z) to a TA formula is straightforward. For example xd is
actually the binomial expansion of (u+

√
−1 ·v)d, with real and imaginary terms

collected separately. A similar observation applies to rendering g(x). Note that
we can use g(x) · g(x̄) = |g(x)|2, where the bar indicates complex conjugation. It
is easy to check that a TA formula for C(z) of size (d+�)O(1) can be constructed.
For example, g(X) requires O(� · d) bits. Note that the binomial coefficients can
be represented in TA in binary notation. Applying Theorem 1, C(z) is equivalent
to a quantifier-free TA formula C̃(z), which can be constructed in (d+ �)a time
for some absolute positive constant a. Now, C̃(z) is a Boolean in atomic formulas.
We can write C̃(z) in DNF as

∨
p

∧
q Dp,q where each Dp,q is atomic. The time

required to do this is irrelevant. The critical size element has to do with the Dp,q.
From the toplogy of C and the fact that C̃(z) holds for exactly one value α we
conclude that α is a zero of some of the polynomials appearing among the Dp,q.
Each polynomal, since it was constructed in (d + �)a time has bit size at most
(d + �)a. This means that the coefficient sizes of the polynomial are bounded
above by 2(d+�)a

. It is elementary from algebra that the zero |α| is bounded
below by 1/22·(d+�)2a

.
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We compare the TA derived lower bound with a standard Liouville bound. For
details on Liouville bound results see [8].

Theorem 3. If g(X) ∈ Z[X ] and α is a root of unity of period d such that
g(α) �= 0, then |g(α)| > |g(X)|−d.

Our TA derived lower bound is 2−(d+�)a

versus the Liouville bound of b−d =
2−d·�. The constant a > 2, so the TA bound is inferior to the Liouville bound.
However, the TA bound is much easier to derive. We do not know of a sharp
lower bound on |Λ(ω1, . . . , ωr)|.

3 Algorithms for the Sums Problem

We retain all notation from Section 1. Recall that � + log b is the sums problem
instance size. Let e(z) = exp(2 ·π ·

√
−1 ·z). Let [a : b] denote the integer interval

between a and b inclusive. For x, y, z ∈ N let |x|y be the least z ≡ x mod y.
The next lemma enables us to sidestep the Liouville lower bound.

Lemma 1. Let g(X) ∈ Z[X ]. If ω is a root of unity of period d such that
g(ω) �= 0, then for at least φ(d)/2 elements k ∈ [1 : d− 1], |g(ωk)| > 1/|g(X)|.

Proof. If k is coprime to d, then g(ω) = 0 ⇔ g(ωk) = 0. This follows from the
fact that ω and ωk have the same minimal polynomial u(X) so if g(ω) = 0, then
g(X) is divisible by β · u(X), where β is a nonzero rational. Assume g(ω) �= 0.
Let A =

∏
k g(ω

k), where k ∈ [1 : d− 1] runs over all elements that are coprime
to d. We argue that A is a nonnegative integer. Since A �= 0, it remains to show
that A is an integer.

– The roots of unity form a subset of the ring of algebraic integers. It follows
that A is an algebraic integer.

– A is fixed by all automorphisms of Q[ω]. These are given by ω → ωk for k
coprime to d. Hence, A ∈ Q.

– We have that A is in the intersection of the algebraic integers and Q but
this is Z.

We now know that |A| ≥ 1. Now, |g(ωk)| ≤ |g(X)|. Assume that c factors ofA have
absolute value less than 1/|g(X)|. We must have, at least, |g(X)|φ(d)−c/|g(X)|c ≥
1. This forces c < φ(d)/2.

Since Λ(ω1, . . . , . . . , ωr) = g(ω) we also have Λ(ωk
1 , . . . , ω

k
r ) = g(ωk). This tells

us that if k and d are coprime, then Λ(ω1, . . . , . . . , ωr) = 0 ⇔ Λ(ωk
1 , . . . , ω

k
r ) = 0.

Theorem 4. The sums problem is in RP.

Proof. Uniformly and randomly choose k ∈ [1 : d−1]. The probability that k is co-
prime to d is φ(d)/(d−1) so the probability that k also satisfies |Λ(ω)1k, . . . , ωk

r )| >
1/b is by Lemma 1 at least φ(d)/(2d) = Ω(1/�). This follows from the prime
number theorem since φ(d) is at least the number of primes up to d, which is
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Θ(d/ log d). See [3]. Note that Λ(ωk
1 , . . . , ω

k
r ) = Λ(ω|k|d1

1 , . . . , ω
|k|dr
r ). Let Em(z) =∑m

n=0(2 · π ·
√
−1 · z)n/n!. Obtain Λ̂ from Λ(ω|k|d1

1 , . . . , ω
|k|dr
r ) by substituting

Em(|gi · k|di/di) for ωk
i , where ωi = e(gi/di). It is easy to check that if m >

4·π·exp(1), then |ωk
i −Em(|gi·k|di/di)| < 1/2m. Ifm > max{1+log b, 4·π·exp(1)},

then
|Λ(ωk

1 , . . . , Λ
k
r )− Λ̂| < 1/(2b) . (1)

If |Λ̂| ≥ 1/(2b), then Λ(ω1, . . . , ωr) �= 0 because otherwise |Λ̂−Λ(ωk
1 , . . . , Λ

k
r )| =

|Λ̂| < 1/(2b), contradicting Eq. 1. If |Λ̂| < 1/(2b), then we claim the probability
that Λ(ω1, . . . , ωr) �= 0 is less than 1−Θ(1/�). This follows from the fact that if
|Λ̂| > 1/b, then |Λ̂−Λ(ωk

1 , . . . , Λ
k
r)| > 1/(2b), contradicting Eq. 1. The probability

that |Λ̂| > 1/b is Ω(1/�). These probabilities satisfy the definition of RP since
0 ≤ (1− 1/�)� < 1/ exp(1).

We modify notation from the proof of Theorem 4. Now, define Λ =
∑

k Λ

(ωk
1 , . . . , ω

k
r )·Λ(ωd−k

1 , . . . , ωd−k
r ), where k ∈ [1 : d−1] is coprime to d. Since g(ωk)

is the complex conjugate of g(ωd−k), it is clear that Λ =
∑

k |Λ(ωk
1 , . . . , ω

k
r )|2.

Lemma 2. If Λ(ω1, . . . , ωr) = 0, then Λ = 0, otherwise Λ > φ(d)/(2b2).

Proof. The first claim follows from Λ(ωk
1 , . . . , ω

k
r ) = g(ωk). The second claim

follows from Lemma 1.

Theorem 5. If the di are mutually coprime, then the sums problem is in P.

Proof. Assume the di are mutually coprime. Let U be the set of k ∈ [1 : d−1] that
are coprime to d. By the Chinese remainder theorem, the elements of U are in
bjiective correspondence with the set of tuples (a1, . . . , ar) where ai ∈ [1 : di−1].
Assume i �= j. Let μi,j =

∏
h �=i,j(dh−1) and μi,i =

∏
j �=i(dj−1). For each ordered

pair (a, b) ∈ [1 : di − 1] × [1 : dj − 1] there are μi,j elements k ∈ U such that
(|k|di , |d−k|dj ) = (a, b). If i = j, then for each (a, d−a) ∈ [1 : di−1]× [1 : di−1]
there are μi,i elements k ∈ U such that (|k|di , |d− k|di) = (a, d− a).

It follows from the foregoing observations that

Λ =
∑
i�=j

bi · bj · μi,j ·
∑

a∈[1:di−1],b∈[1:dj−1]

ωa
i · ωb

j +
∑
i

b2i · μi,i · (di − 1); .

We have used ωa
i · ωd−a

i = 1 and
∑

a∈[1:di−1] 1 = di − 1.

Noting that

ωa
i · ωb

j = e(
|a · dj + b · di|di·dj

di · dj
)

we introduce Λ̂ by substituting Em(
|a·dj+b·di|di·dj

di·dj
) for e(

|a·dj+b·di|di·dj

di·dj
) in Λ.

Let d∗ = max di. There are fewer than d2∗ + d∗ < 2 · d2 terms in our sum. The
maximum value of |bi · bj · μi,j is less than b2 · d. From this we have

|Λ− Λ̂| < 2 · (b · d)2 · δ ,
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where δ is the maximum over all

|e(
|a · dj + b · di|di·dj

di · dj
)− Em(

|a · dj + b · di|di·dj

di · dj
)| .

From the proof of Theorem 4 if m > max{1+log b, 4 ·π ·exp(1)}, then δ < 1/2m.
By choosing m so that 2 · (b ·d)2/2m < 1/(2b2) we can determine whether Λ = 0
since if Λ �= 0 we know that |Λ| > φ(d)/(2b2) > 1/b2. Thus, we can choose
m > max{4 · π · exp(1), log(4 · b3 · d2)}. From this bound it is clear that Λ̂ can
be computed in (� + log d)O(1) time.

We made several overestimates. Slightly better bounds may result in cases where
a quantitative relationship between d and b holds.
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Abstract. The Exponential Time Hypothesis (ETH) says that deciding
the satisfiability of n-variable 3-CNF formulas requires time exp(Ω(n)).
We relax this hypothesis by introducing its counting version #ETH,
namely that every algorithm that counts the satisfying assignments re-
quires time exp(Ω(n)). We transfer the sparsification lemma for d-CNF
formulas to the counting setting, which makes #ETH robust.

Under this hypothesis, we show lower bounds for well-studied #P-hard
problems: Computing the permanent of an n×n matrix with m nonzero
entries requires time exp(Ω(m)). Restricted to 01-matrices, the bound
is exp(Ω(m/ log m)). Computing the Tutte polynomial of a multigraph
with n vertices and m edges requires time exp(Ω(n)) at points (x, y)
with (x − 1)(y − 1) �= 1 and y /∈ {0,±1}. At points (x, 0) with x �∈
{0,±1} it requires time exp(Ω(n)), and if x = −2,−3, . . ., it requires
time exp(Ω(m)). For simple graphs, the bound is exp(Ω(m/ log3 m)).

1 Introduction

The permanent of a matrix and the Tutte polynomial of a graph are central top-
ics in the study of counting algorithms. Originally defined in the combinatorics
literature, they unify and abstract many enumeration problems, including imme-
diate questions about graphs such as computing the number of perfect matchings,
spanning trees, forests, colourings, certain flows and orientations, but also less
obvious connections to other fields, such as link polynomials from knot theory,
reliability polynomials from network theory, and (maybe most importantly) the
Ising and Potts models from statistical physics.

From its definition (repeated in (1) below), the permanent of an n×n-matrix
can be computed in O(n!n) time, and the Tutte polynomial (2) can be evaluated
in time exponential in the number of edges. Both problems are famously #P-
hard, which rules out the existence of polynomial-time algorithms under stan-
dard complexity-theoretic assumptions, but that does not mean that we have
to resign ourselves to brute-force evaluation of the definition. In fact, Ryser’s
� Supported by the Deutsche Forschungsgemeinschaft within the research training
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famous formula [19] computes the permanent with only exp(O(n)) arithmetic
operations, and more recently, an algorithm with running time exp(O(n)) for n-
vertex graphs has also been found [4] for the Tutte polynomial. Curiously, both
of these algorithms are based on the inclusion–exclusion principle. We show that
these algorithms cannot be significantly improved, by providing conditional lower
bounds of exp(Ω(n)) for both problems.

It is clear that #P-hardness is not the right conceptual framework for such
claims, as it is unable to distinguish between different types of super-polynomial
time complexities. For example, the Tutte polynomial for planar graphs remains
#P-hard, but can be computed in time exp(O(

√
n)) [20]. Therefore, we work

under the Exponential Time Hypothesis (ETH), viz. the complexity theoretic
assumption that some hard problem (namely, Satisfiability of 3-CNF formulas
in n variables) requires time exp(Ω(n)). More specifically, we introduce #ETH,
a counting analogue of ETH which models the hypothesis that counting the
satisfying assignments requires time exp(Ω(n)).

Computing the permanent. The permanent of an n× n matrix A is defined as

perA =
∑
π∈Sn

∏
1≤i≤n

Aiπ(i) , (1)

where Sn is the set of permutations of {1, . . . , n}. This is redolent of the determi-
nant from linear algebra, detA =

∑
π sign(π)

∏
i Aiπ(i), the only difference is an

easily computable sign for every summand. Both definitions involve a summa-
tion with n! terms, but admit much faster algorithms that are textbook material:
The determinant can be computed in polynomial time using Gaussian elimina-
tion and the permanent can be computed in O(2nn) operations using Ryser’s
formula.

Valiant’s celebrated #P-hardness result [23] for the permanent shows that
no polynomial-time algorithm à la “Gaussian elimination for the permanent”
can exist unless P = NP, and indeed unless P = P#P. Several unconditional
lower bounds for the permanent in restricted models of computation are also
known. Jerrum and Snir [13] have shown that monotone arithmetic circuits need
n(2n−1−1) multiplications to compute the permanent, a bound they can match
with a variant of Laplace’s determinant expansion. Raz [18] has shown that
multi-linear arithmetic formulas for the permanent require size exp(Ω(log2 n)).
Ryser’s formula belongs to this class of formulas, but is much larger than the
lower bound; no smaller construction is known. Intriguingly, the same lower
bound holds for the determinant, where it is matched by a formula of size
exp(O(log2 n)) due to Berkowitz [2]. One of the easy consequences of the present
results is that Ryser’s formula is in some sense optimal under #ETH. In particu-
lar, no uniformly constructible, subexponential size formula such as Berkowitz’s
can exist for the permanent unless #ETH fails.

A related topic is the expression of perA in terms of det f(A), where f(A) is
a matrix of constants and entries from A and is typically much larger than A.
This question has fascinated many mathematicians for a long time, see Agrawal’s
survey [1]; the best known bound on the dimension of f(A) is exp(O(n)) and it
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is conjectured that all such constructions require exponential size. In particular,
it is an important open problem if a permanent of size n can be expressed as
a determinant of size exp(O(log2 n)). Our result is that under #ETH, if such a
matrix f(A) exists, computing f must take time exp(Ω(n)).

Computing the Tutte polynomial. The Tutte polynomial, a bivariate polynomial
associated with a given graph G = (V,E) with n vertices and m edges, is de-
fined as

T (G;x, y) =
∑
A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−|V | , (2)

where k(A) denotes the number of connected components of the subgraph (V,A).
Despite their unified definition (2), the various computational problems given

by T (G;x, y) for different points (x, y) differ widely in computational complexity,
as well as in the methods used to find algorithms and lower bounds. For example,
T (G; 1, 1) equals the number of spanning trees in G, which happens to admit a
polynomial time algorithm, curiously again based on Gaussian elimination. On
the other hand, the best known algorithm for computing T (G; 2, 1), the number
of forests, runs in exp(O(n)) time.

Computation of the Tutte polynomial has fascinated researchers in computer
science and other fields for many decades. For example, the algorithms of On-
sager and Fischer from the 1940s and 1960s for computing the so-called partition
function for the planar Ising model are viewed as major successes of statisti-
cal physics and theoretical chemistry; this corresponds to computing T (G;x, y)
along the hyperbola (x−1)(y−1) = 2 for planar G. Many serious attempts were
made to extend these results to other hyperbolas or graph classes, but “after
a quarter of a century and absolutely no progress”, Feynman in 1972 observed
that “the exact solution for three dimensions has not yet been found”.1

As for the permanent, the failure of theoretical physics to “solve the Potts
model” and sundry other questions implicit in the computational complexity
of the Tutte polynomial were explained only with Valiant’s #P-hardness pro-
gramme. After a number of papers, culminating in [12], the polynomial-time
complexity of exactly computing the Tutte polynomial at points (x, y) is now
completely understood: it is #P-hard everywhere except at those points (x, y)
where a polynomial-time algorithm is known; these points consist of the hyper-
bola (x−1)(y−1) = 1 as well as the four points (1, 1), (−1,−1), (0,−1), (−1, 0).

We give an exp(Ω(n)) lower bound that matches the exp(O(n)) algorithm
from [4] and which holds under #ETH everywhere except for |y| = 1. In par-
ticular, this establishes a gap to the planar case, which admits an exp(O(

√
n))

algorithm [20]. Our hardness results apply (though not everywhere, and some-
times with a weaker bound) even if the graphs are sparse and simple. These
classes are of particular interest because most of the graphs arising from appli-
cations in statistical mechanics arise from bond structures, which are sparse and
simple.

1 The Feynman quote and many other quotes describing the frustration and puzzle-
ment of physicists around that time can be found in the copious footnotes of [11].
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Fig. 1. Exponential time complexity under #ETH of the Tutte plane for multigraphs
(left) and simple graphs (right) in terms of n, the number of vertices. White areas on
the map correspond to uncharted territory. The black hyperbola (x−1)(y−1) = 1 and
the four points close to the origin are in P. Everywhere else, in the shaded regions, we
prove a lower bound exponential in n, or within a polylogarithmic factor of it.

It has been known since the 1970s [16] that graph 3-colouring can be solved
in time exp(O(n)), and this is matched by an exp(Ω(n)) lower bound un-
der ETH [10]. Since graph 3-colouring corresponds to evaluating T at (−2, 0),
the exponential time complexity for T (G;−2, 0) was thereby already under-
stood. In particular, computing T (G;x, y) for input G and (x, y) requires vertex-
exponential time, an observation that is already made in [7] without explicit
reference to ETH.

The literature for computing the Tutte polynomial is very rich, and we make
no attempt to survey it here. A recent paper of Goldberg and Jerrum [9], which
shows that the Tutte polynomial is even hard to approximate for large parts of
the Tutte plane, contains an overview. A list of graph classes for which subex-
ponential time algorithms are known can be found in [4].

2 Results

The exponential time hypothesis (ETH) as defined in [10] is that satisfiability
of 3-CNF formulas cannot be computed substantially faster than by trying all
possible assignments, i.e., it requires time exp(Ω(n)). We define the counting
exponential time hypothesis via the counting version of 3-Sat.

Name. #3-Sat

Input. 3-CNF formula ϕ with n variables and m clauses.
Output. The number of satisfying assignments to ϕ.

The best known algorithm for this problem runs in time O(1.6423n) [15]. Our
hardness results are based on the following hypothesis.

(#ETH) There is a constant c > 0 such that no deterministic algorithm
can compute #3-Sat in time exp(c · n).

At the expense of making the hypothesis more unlikely, the term “deterministic”
may be replaced by “randomized”, but we ignore such issues here. Note that ETH
trivially implies #ETH whereas the other direction is not known. By introducing
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the sparsification lemma, [10] show that ETH is a robust notion in the sense that
the clause width 3 and the parameter n in its definition can be replaced by d ≥ 3
and m, respectively, to get an equivalent hypothesis, albeit the constant c may
change in doing so. We transfer the sparsification lemma to #d-Sat and get a
similar kind of robustness for #ETH:

Theorem 1. For all d ≥ 3, #ETH holds if and only if #d-Sat requires time
exp(Ω(m)).

In the full paper, we go into more depth about computational complexity aspects
of #ETH, including a proof of Thm. 1.

The Permanent. For a set S of rationals we define the following problems:

Name. Perm
S

Input. Square matrix A with entries from S.
Output. The value of per A.

We write Perm for Perm
IN. If B is a bipartite graph with aij edges from the

ith vertex in the left half to the jth vertex in the right half (1 ≤ i, j ≤ n), then
per(aij) equals the number of perfect matchings of B. Thus Perm

0,1 and Perm

and can be viewed as counting the perfect matchings in bipartite graphs and
multigraphs, respectively.

We express our lower bounds in terms of m, the number of non-zero entries
of A. Without loss of generality, n ≤ m, so the same bounds hold for the pa-
rameter n as well. Note that these bounds imply that the hardest instances have
roughly linear density.

Theorem 2. Under #ETH,

(i) Perm
−1,0,1 requires time exp(Ω(m)).

(ii) Perm requires time exp(Ω(m)).
(iii) Perm

01 requires time exp(Ω(m/ log n)).

The proof is in §3. For (i), we follow a standard reduction by Valiant [23,17]
but use a simple equality gadget derived from [5] instead of Valiant’s XOR-
gadget. For (ii) we use interpolation to get rid of the negative weights. Finally,
to establish (iii) we replace large positive weights by gadgets of logarithmic size,
which increases the number of vertices and edges by a logarithmic factor.

The Tutte Polynomial. The computational problem Tutte(x, y) is defined for
each pair (x, y) of rationals.

Name. Tutte(x, y).
Input. Undirected multigraph G with n vertices.
Output. The value of T (G; x, y).

In general, parallel edges and loops are allowed; we write Tutte
01(x, y) for the

special case where the input graph is simple.
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Our main result is that under #ETH, Tutte(x, y) requires time exp(Ω(n))
for specific points (x, y), but the size of the bound, and the graph classes for
which it holds, varies. We summarise our results in the theorem below, see also
Fig. 1. Our strongest reductions give edge-exponential lower bounds, i.e., bounds
in terms of the parameter m, which implies the same bound in terms of n because
m ≥ n in connected graphs. Moreover, a lower bound of exp(Ω(m)) together with
the algorithm in time exp(O(n)) from [4] implies that worst-case instances are
sparse, in the sense that m = O(n). At other points we have to settle for a
vertex-exponential lower bound exp(Ω(n)). While this matches the best upper
bound, it does not rule out a vertex-subexponential algorithm for sparse graphs.

Theorem 3. Let (x, y) ∈ Q2. Under #ETH,

(i) Tutte(x, y) requires time exp(Ω(n)) if (x−1)(y−1) �= 1 and y �∈ {0,±1}.
(ii) Tutte

01(x, y) requires time exp(Ω(m/ log3 m)) if (x−1)(y−1) �∈ {0, 1, 2}
and x �∈ {−1, 0}.

(iii) Tutte
01(x, 0) requires time exp(Ω(m)) if x ∈ {−2,−3, . . .}.

(iv) Tutte
01(x, 0) requires time exp(Ω(n)) if x �∈ {0,±1}.

In an attempt to prove these results, we may first turn to the literature, which
contains a cornucopia of constructions for proving hardness of the Tutte poly-
nomial in various models. In these arguments, a central role is played by graph
transformations called thickenings and stretches. A k-thickening replaces every
edge by a bundle of k edges, and a k-stretch replaces every edge by a path of
k edges. This is used do ‘move’ an evaluation from one point to another. For
example, if H is the 2-stretch of G then T (H ; 2, 2) ∼ T (G; 4, 4

3 ). Thus, every al-
gorithm for (2, 2) works also at (4, 4

3 ), connecting the hardness of the two points.
These reductions are very well-developed in the literature, and are used in mod-
els that are immune to polynomial-size changes in the input parameters, such
as #P-hardness and approximation complexity. However, in order to establish
our exponential hardness results, we cannot always afford such constructions,
otherwise our bounds would be of the form exp(Ω(n1/r)) for some constant r
depending on the blowup in the proof. In particular, the parameter n is destroyed
already by a 2-stretch in a nonsparse graph.

The proofs are omitted, though we sketch the construction involved in the
proof of Thm. 3 (ii, which may be of independent interest. Where we can, we
sample from established methods, carefully avoiding or modifying those that
are not parameter-preserving. At other times we require completely new ideas;
the constructions in §5, which use Theta graph products instead of thickenings
and stretches, may be of independent interest. Like many recent papers, we
use Sokal’s multivariate version of the Tutte polynomial, which vastly simplifies
many of the technical details.

Consequences. The permanent and Tutte polynomial are equivalent to, or gen-
eralisations of, various other graph problems, so our lower bounds hold for these
problems as well. In particular, it takes time exp(Ω(m)) to compute the follow-
ing graph polynomials (for example, as a list of their coefficients) for a given
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simple graph: the Ising partition function, the q-state Potts partition function
(q �= 0, 1, 2), the reliability polynomial, the chromatic polynomial, and the flow
polynomial. Moreover, we have exp(Ω(n)) lower bounds for the following count-
ing problems on multigraphs: # perfect matchings, # cycle covers in digraphs,
# connected spanning subgraphs, all-terminal graph reliability with given edge
failure probability p > 0, # nowhere-zero k-flows (k �= 0,±1), and # acyclic
orientations.

The lower bound for counting the number of perfect matchings holds even
in bipartite graphs, where an O(1.414n) algorithm is given by Ryser’s formula.
Such algorithms are also known for general graphs [3], the current best bound
is O(1.619n) [14].

For simple graphs, we have exp(Ω(m/ logm)) lower bounds for # perfect
matchings and # cycle covers in digraphs.

3 Hardness of the Permanent

This section contains the proof of Thm. 2. With [0, n] = {0, 1, . . . , n} we establish
the reduction chain #3-Sat 
 Perm

−1,0,1 
 Perm
[0,n] 
 Perm

01 while taking
care of the instance sizes.

Proof (of Thm. 2). First, to prove (i), we reduce #3-Sat in polynomial time to
Perm

−1,0,1 such that 3-CNF formulas ϕ with m clauses are mapped to graphs G
with O(m) edges. For technical reasons, we preprocess ϕ such that every vari-
able x occurs equally often as a positive literal and as a negative literal x̄ (e.g.,
by adding trivial clauses of the form (x ∨ x̄ ∨ x̄) to ϕ). We construct G with
O(m) edges and weights w : E → {±1} such that #Sat(ϕ) can be derived from
perG in polynomial time. For weighted graphs, the permanent is

perG =
∑
C⊆E

w(C) , where w(C) =
∏
e∈C

w(e) .

The sum above is over all cycle covers C of G, that is, subgraphs (V,C) with an
in- and outdegree of 1 at every vertex.

In Fig. 2, the gadgets of the construction are depicted. For every variable x
that occurs in ϕ, we add a selector gadget to G. For every clause c = �1 ∨ �2 ∨ �3
of ϕ, we add a clause gadget to G. Finally, we connect the edge labelled by a
literal � in the selector gadget with all occurrences of � in the clause gadgets,
using equality gadgets. This concludes the construction of G.

The number of edges of the resulting graph G is linear in the number of
clauses. The correctness of the reduction follows along the lines of [17] and [5].
The satisfying assignments stand in bijection to cycle covers of weight (−1)i2j

where i (resp. j) is the number of occurrences of literals set to false (resp. true) by
the assignment, and all other cycle covers sum up to 0. Since we preprocessed ϕ
such that i = j, we obtain perG = (−2)i ·#Sat(ϕ).

To prove (ii), we reduce Perm
−1,0,1 in polynomial time to Perm

[0,n] by inter-
polation: On input G, we conceptually replace all occurrences of the weight −1
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x x̄

�̄2

�̄3�̄1

u

v

u′

v′

−1

Fig. 2. Left: A selector gadget for variable x. Depending on which of the two cycles is
chosen, we assume x to be set to true or false. Middle: A clause gadget for the clause
�1 ∨ �2 ∨ �3. The gadget allows all possible configurations for the outer edges, except
for the case that all three are chosen (which would correspond to �1 = �2 = �3 = 0).
Right: An equality gadget that replaces two edges uv and u′v′. The top loop carries a
weight of −1. It can be checked that the gadget contributes a weight of −1 if all four
outer edges are taken, +2 if none of them is taken, and 0 otherwise.

u v

u

v

a0
a1 a2 ak−1 ak

2 2 2

Fig. 3. Left: This gadget simulates in unweighted graphs edges uv of weight 2. Right:
This gadget simulates edges uv of weight a =

∑k
i=0 ai2i with ai ∈ {0, 1}.

by a variable x and call this new graph Gx. We can assume that only loops have
weight x in Gx because the output graph G from the previous reduction has
weight −1 only on loops. Then p(x) = perGx is a polynomial of degree d ≤ n.

If we replace x by a value a ∈ [0, n], then Ga is a weighted graph with as
many edges as G. As a consequence, we can use the oracle to compute perGa for
a = 0, . . . , d and then interpolate, to get the coefficients of the polynomial p(x).
At last, we return the value p(−1) = perG. This completes the reduction, which
queries the oracle d + 1 graphs that have at most m edges each.

For part (iii), we have to get rid of positive weights. Let Ga be one query of
the last reduction. Again we assume that a ≤ n and that weights �= 1 are only
allowed at loop edges. We replace every edge of weight a by the gadget that
is drawn in Fig. 3, and call this new unweighted graph G′. It can be checked
easily that the gadget indeed simulates a weight of a (parallel paths correspond
to addition, serial edges to multiplication), i.e., perG′ = perGa. Unfortunately,
the reduction blows up the number of edges by a superconstant factor: The
number of edges of G′ is m(G′) ≤ (m + n log a) ≤ O(m + n logn). But since
m(G′)/ logm(G′) ≤ O(m), the reduction shows that (iii) follows from (ii). �

These results immediately transfer to counting the number of perfect matchings
in a graph even if the graph is restricted to be bipartite.
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4 Hyperbolas in the Tutte Plane

Our first goal will be to show that the Tutte polynomial is hard “for all hyper-
bolas” (x−1)(y−1) = q, except for q = 0 (which we understand only partially),
q = 1 (which is in P), and for q = 2 (which he handle separately in the full paper
by a reduction from the permanent). From the hyperbolas, we will specialise the
hardness result to individual points in the following sections.

4.1 The Multivariate Tutte Polynomial

We need Sokal’s multivariate version of the Tutte polynomial, defined in [22] as
follows. Let G = (V,E) be an undirected graph whose edge weights are given by
a function w : E → Q. Then

Z(G; q,w) =
∑
A⊆E

qk(A)
∏
e∈A

w(e) , (3)

where k(A) is the number of connected components in the subgraph (V,A).
If w is single-valued, in the sense that w(e) = w for all e ∈ E, we slightly
abuse notation and write Z(G; q, w). With a single-valued weight function, the
multivariate Tutte polynomial essentially equals the Tutte polynomial,

T (G;x, y) = (x− 1)−k(E)(y − 1)−|V |Z(G; q, w) ,
where q = (x− 1)(y − 1) and w = y − 1 ,

(4)

see [22, eq. (2.26)]. The conceptual strength of the multivariate perspective is
that it turns the Tutte polynomial’s second variable y, suitably transformed, into
an edge weight of the input graph. In particular, the multivariate formulation
allows the graph to have different weights on different edges, which turns out to
be a dramatic technical simplification even when, as in the present work, we are
ultimately interested in the single-valued case.

Sokal’s polynomial vanishes at q = 0, so we will sometimes work with the
polynomial

Z0(G; q,w) =
∑
A⊆E

qk(A)−k(E)
∏
e∈A

w(e) ,

which gives something non-trivial for q = 0 and is otherwise a proxy for Z:

Z(G; q,w) = qk(E)Z0(G; q,w) . (5)

4.2 Three-Terminal Minimum Cut

We first establish that with two different edge weights, one of them negative, the
multivariate Tutte polynomial computes the size of a 3-terminal minimum cut,
for which we observe hardness under #ETH in the full paper. This connection
has been used already in [8,9], with different reductions, to prove hardness of
approximation.

The graphs we will look at are connected and have rather simple weight
functions. The edges are partitioned into two sets E∪̇T , and for fixed rational w
the weight function is given by
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w(e) =

{
−1, if e ∈ T ,

w, if e ∈ E.
(6)

For such a graph, we have

Z0(G; q,w) =
∑

A⊆E∪T
qk(A)−1w|A∩E|(−1)|A∩T |. (7)

For fixed G and q, this is a polynomial in w of degree at most m.

Lemma 1. Let q be a rational number with q �∈ {1, 2}. Computing the coeffi-
cients of the polynomial w 	→ Z0(G; q,w), with w as in (6), for a given simple
graph G requires time exp(Ω(m)) under #ETH.

Moreover, this is true even if |T | = 3.

From this result, the argument continues in two directions. For simple graphs
and certain parts of the Tutte plane, we proceed in §4.3 and §5. For nonsimple
graphs and certain (other) parts of the Tutte plane, we can use just thickening
and interpolation, which we lay out in the full paper.

4.3 The Tutte Polynomial Along a Hyperbola

To apply Lemma 1 to the Tutte polynomial, we need to get rid of the nega-
tive edges, so that the weight function is single-valued. In [9], this is done by
thickenings and stretches, which we need to avoid. However, since the number of
negative edges is small (in fact, 3), we can use another tool, deletion–contraction.
We will omit the case q = 0 from this analysis, because we won’t need it later,
so we can work with Z instead of Z0.

A deletion–contraction identity expresses a function of the graph G in terms
of two graphs G− e and G/e, where

G− e arises from G by deleting the edge e and
G/e arises from G by contracting the edge e, that is, deleting it and identifying

its endpoints so that remaining edges between these two endpoints become
loops.

It is known [22, eq. (4.6)] that Z(G; q,w) = Z(G− e; q,w) + w(e)Z(G/e; q,w).

Lemma 2. Computing the coefficients of the polynomial v 	→ Z(G; q, v) for a
given simple graph G requires time exp(Ω(m)) under #ETH, for all q /∈ {0, 1, 2}.

5 Generalised Theta Graphs

We now prove Thm. 3 (ii) by showing that most points (x, y) of the Tutte
plane, are as hard as the entire hyperbola on which they lie, even for sparse,
simple graphs. The drawback of our method is that we loose a polylogarithmic
factor in the exponent of the lower bound and we do not get any results if
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q := (x − 1)(y − 1) ∈ {0, 1, 2} or if x ∈ {−1, 0}. However, the results are
particularly interesting for the points on the line y = −1, for which we know no
other good exponential lower bounds under #ETH, even in more general graph
classes. We remark that the points (−1,−1), (0,−1), and (1

2 ,−1) on this line
are known to admit a polynomial-time algorithm, and indeed our hardness result
does not apply here. Also, since our technique does not work in the case q = 0,
the point (1,−1) remains mysterious.

For a set S = {s1, . . . , sk} of positive integers, the generalised Theta graph ΘS

consists of two vertices x and y joined by k internally disjoint paths of s1, . . . , sk
edges, respectively. For example,

Θ{2,3,5} is x y .

For such a graph ΘS , we will study the behaviour of the tensor product G⊗ΘS

defined by Brylawski [6] as follows: given G = (V,E), replace every edge xy ∈ E
by (a fresh copy of) ΘS . What makes the ⊗-operation so useful in the study of
Tutte polynomials is that the Tutte polynomial of G ⊗H can be expressed in
terms of the Tutte polynomials of G and H , as studied by Sokal. The necessary
formulas for Z(G⊗ΘS) can be derived from [21, prop 2.2, prop 2.3]. We present
them here for the special case where all edge weights are the same.

Lemma 3 (Sokal). Let q and w be rational numbers with w �= 0 and q �∈
{0,−2w}. Then, for all graphs G and finite sets S of positive integers,

Z(G⊗ΘS ; q, w) = q|E|−|S| ·
∏
s∈S

(
(q + w)s − ws

)|E| · Z(G; q, wS) , (8)

where

wS = −1 +
∏
s∈S

(
1 +

q

(1 + q/w)s − 1

)
. (9)

Our plan is to compute the coefficients of the monovariate polynomial w 	→
Z(G; q, w) for given G and q by interpolation from sufficiently many evalua-
tions of Z(G; q, wS) ∼ Z(G ⊗ ΘS ; q, w). For this, we need that the number of
different wS is at least |E|+ 1, one more than the degree of the polynomial.

Lemma 4. Let q and w be rational numbers with w �= 0 and q �∈ {0,−w,−2w}.
For all integers m ≥ 1, there exist sets S0, . . . , Sm of positive integers such that

(i)
∑

s∈Si
s ≤ O(log3 m) for all i, and

(ii) wSi �= wSj for all i �= j.

Furthermore, the sets Si can be computed in time polynomial in m.

This lemma together with interpolation establishes Thm. 3 (ii).

Acknowledgements. The authors are grateful to Leslie Ann Goldberg and
Andreas Björklund for valuable comments.



Exponential Time Complexity of Permanent and Tutte Polynomial 437

References

1. Agrawal, M.: Determinant versus permanent. In: Proceedings of the 25th Interna-
tional Congress of Mathematicians, ICM, vol. 3, pp. 985–997 (2006)

2. Berkowitz, S.J.: On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters 18(3), 147–150 (1984)

3. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number
of perfect matchings. Algorithmica 52(2), 226–249 (2008)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte poly-
nomial in vertex-exponential time. In: FOCS, pp. 677–686 (2008)

5. Bläser, M., Dell, H.: Complexity of the cover polynomial. In: Arge, L., Cachin,
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Abstract. The minimization problem for Horn formulas is to find a
Horn formula equivalent to a given Horn formula, using a minimum num-
ber of clauses. A 2log1−ε(n)-inapproximability result is proven, which is
the first inapproximability result for this problem. We also consider sev-
eral other versions of Horn minimization. The more general version which
allows for the introduction of new variables is known to be too difficult
as its equivalence problem is co-NP-complete. Therefore, we propose a
variant called Steiner-minimization, which allows for the introduction
of new variables in a restricted manner. Steiner-minimization of Horn
formulas is shown to be MAX-SNP-hard. In the positive direction, a
o(n), namely, O(n log log n/(log n)1/4)-approximation algorithm is given
for the Steiner-minimization of definite Horn formulas. The algorithm is
based on a new result in algorithmic extremal graph theory, on parti-
tioning bipartite graphs into complete bipartite graphs, which may be of
independent interest. Inapproximability results and approximation algo-
rithms are also given for restricted versions of Horn minimization, where
only clauses present in the original formula may be used.

1 Introduction

The CNF minimization problem is to find a shortest CNF expression equivalent
to a given expression. This problem has been studied in different versions for
many decades in switching theory, computer science and engineering, and it is
still a topic of active research, both in complexity theory and circuit design.
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for this problem. Horn minimization is the special case of CNF minimization
for Horn formulas. Horn formulas are conjunctions of Horn clauses, i.e., of dis-
junctions containing at most one unnegated variable. Horn clauses can also be
written as implications. For instance, ā ∨ b̄ ∨ c is a Horn clause which can also
be written as a, b→ c.

Horn formulas are an expressive and tractable fragment of propositional logic,
and therefore provide a basic framework for knowledge representation and rea-
soning [35]. Horn formulas are, for example, a natural framework for represent-
ing systems of rules for expert systems. An interesting potential new application
area for Horn formulas is the automated, interactive development of large-scale
knowledge bases of commonsense knowledge (see [36] for the description of such
a project). This application has algorithmic aspects involving knowledge rep-
resentation, reasoning, learning and knowledge update. A model incorporating
these aspects, called Knowledge Base Learning (KnowBLe) is formulated in [29]
(see also [28,30]) for related work). Efficient algorithms for approximate Horn
minimization would be useful in these applications.

Satisfiability of Horn formulas can be decided in linear time and the equiv-
alence of Horn formulas can be decided in polynomial time [25]. Thus Horn
minimization is expected to be easier than CNF minimization. Horn minimiza-
tion was shown to be NP-complete by Hammer and Kogan [21] if the number
of literals is to be minimized, and by Ausiello et al. [4] and Boros and Čepek [8]
if the number of clauses is to be minimized. On the positive side, Hammer and
Kogan [22] gave a polynomial algorithm for minimizing quasi-acyclic Horn for-
mulas, which include both acyclic and 2-Horn formulas. It was also shown in [21]
that there is an efficient (n− 1)-approximation algorithm for general Horn min-
imization, where n is the number of different variables in the formula (not the
number of variable occurrences). As noted in [18], such an algorithm is also
provided by the Horn formula learning algorithm of [3].

1.1 Contributions of This Paper

First, in Theorem 3 we prove a 2log1−ε(n)-inapproximability result for Horn min-
imization assuming NP �⊆DTIME(npolylog(n)) via a reduction from the Minrep

problem [26]. This seems to be the first inapproximability result for this prob-
lem. We next consider several other versions of the Horn minimization problem.
Depending on the application, different versions may be relevant and thus of
interest for exploration of their approximability properties.

It may be possible to add new variables in order to compress the formula. For
example, the formula

ϕ =
n∧

i=1

n∧
j=1

(xi → yj) (1)

having n2 clauses can be compressed to the 2n clause formula

ψ =
n∧

i=1

(xi → z) ∧
n∧

j=1

(z → yj), (2)
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where z is a new variable. Note that ϕ and ψ are clearly not equivalent, e.g., ϕ
does not depend on z, while ψ does. On the other hand, ϕ and ψ are equivalent
in the sense that they both imply the same set of clauses over the original
variables x1, . . . , xn, y1, . . . , yn. Thus, in terms of the knowledge base application,
the new variable z can be thought of as being internal to the knowledge base
and invisible to the user. Flögel et al. [17] showed that deciding the equivalence
of such extended Horn formulas is co-NP-complete. This is bad news as it shows
that the extended version is too expressive and therefore intractable1.

On the other hand, notice that in the example above the new variable is added
in a rather restricted manner. Formula (1) can be thought of as a complete di-
rected bipartite graph with parts {x1, . . . , xn} and {y1, . . . , yn}. Formula (2),
then, represents the operation of adding a new node z in the middle, with edges
from the xi’s to z and from z to the yj ’s. The two graphs have the same reacha-
bility relations as far as the original nodes are concerned. Using the similarity to
Steiner problems where new points may be added [23], we refer to this operation
as a Steiner extension (a formal definition appears in Section 5). As we observe,
in contrast to general extensions, the equivalence of Steiner extensions can be de-
cided efficiently (Corollary 1). Thus this type of extension could be considered as
a tractable alternative in the applications mentioned. The Steiner minimization
problem for Horn formulas is then to find an equivalent Steiner-extended Horn
formula, for a given Horn formula, with a minimum number of clauses. We show
in Theorem 5 that this problem is MAX-SNP-hard. On the other hand, in Theo-
rem 6 we prove that there is an efficient O(n log logn/(logn)1/4)-approximation
algorithm for this problem, where n is the number of variables in the original
formula. This is the first approximation algorithm for Horn minimization with
a o(n) approximation guarantee.

The algorithm for Steiner minimization makes use of an algorithmic result on
the partition of bipartite graphs into complete bipartite graphs (i.e., bicliques), which
may be of interest on its own. It was shown by Chung, Erdős and Spencer [13] and
Bublitz [10] that the edges of every n-vertex graph can be partitioned into com-
plete bipartite graphs such that the sum of the number of vertices in these bipar-
tite graphs2 is O(n2/ logn), and this is asymptotically the best possible. Tuza [39]
gave an analogous result for bipartite graphs. These results are based on a counting
argument due to Kővári, Sós and Turán [27], which shows that sufficiently dense
graphs contain large complete bipartite subgraphs, and thus are non-constructive.
Kirchner [24] considered the problem of finding an algorithmic version, and gave
an efficient algorithm to find complete balanced bipartite graphs of sizeΩ(

√
logn)

in dense graphs. In a previous paper [33] we improved this to the optimalΩ(log n),

1 Introducing new variables has been considered earlier, going back to Tseitin [38].
While there are many exponential lower bounds for resolution proofs (see, e.g.,
[14]), complexity-theoretic results suggest that proving such results for extended
resolution is much harder [15].

2 Note that the complexity of a partition is not measured by the number of graphs
in it, but by a different measure, which comes from circuit complexity [37].



On Approximate Horn Formula Minimization 441

and as a corollary, showed that partitions proved to exist in [10,13] can also be
found efficiently3.

In this paper we give an algorithmic version for the bipartite case. We show
in Theorem 1 that the edges of every bipartite graph with sides a and b, where
a ≥ b, can be partitioned into complete bipartite graphs such that the sum of
the number of vertices of these graphs is O((ab/ log a)+ a log b+ a), and we give
an efficient algorithm to find such a partition.

We also consider restricted versions of the Horn minimization problem, where
one is restricted to use clauses from the original formula. Such a restriction may
be justified in applications where the particular rules, provided by an expert, are
supposed to be meaningful and thus cannot be replaced. The goal is to eliminate
redundant rules. Modifying the construction of Theorem 3, in Theorem 7 we
prove 2log1−ε(n)-inapproximability for the restricted case, which holds even if the
input formula has clauses of size at most 3.

One may want to optimize a Horn formula in the restricted sense either by
minimizing the number of rules left, or by maximizing the number of rules re-
moved. The two versions may differ in their approximability (cf. the maximum
independent set and the minimum vertex cover problems for graphs). As (1)
suggests, Horn formulas with clauses of the form x → y correspond to directed
graphs. For such formulas, optimization corresponds to transitive reduction prob-
lems for directed graphs. Thus approximation algorithms for these directed graph
problems (in both versions) may be applied for Horn formulas. Examples of this
connection are given in Theorem 8.

The rest of the paper is organized as follows. Bipartite graph decompositions
are discussed in Section 3. Section 4 contains the inapproximability result for
Horn minimization. Horn minimization with new variables is discussed in Sec-
tion 5, and restricted Horn minimization in Section 6.

2 Preliminaries

A clause is a disjunction of literals. A Horn clause is a clause with at most one
unnegated variable. A definite Horn clause has exactly one unnegated variable,
called its head ; the other variables form its body. A negative clause consists of
only negated variables. The size of a clause is the number of its literals. A clause
of size 1 (resp., 2) is a unit (resp., binary) clause. A (definite) Horn formula is
a conjunction of (definite) Horn clauses. The size of a formula is the number of
its clauses. A k-Horn formula is a Horn formula with clauses of size at most k.

A clause C is an implicate of a formula ϕ (also written as ϕ |= C) if every
truth assignment satisfying ϕ also satisfies C. An implicate is a prime implicate

3 Extremal combinatorics provides results on the existence of substructures. The re-
sults of [24] and [33] can be viewed as algorithmic extremal combinatorics as they
also give efficient algorithms to actually find such substructures. Previous results
in this direction are given in [2]. The results of [2] apply to dense graphs and find
substructures of constant size, while here we have to handle sparser graphs as well
and to find substructures of nonconstant size.
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if none of its proper subclauses is an implicate. The resolution operation takes
two clauses of the form C1 ∨ x and C2 ∨ x̄ and produces the clause C1 ∨C2. For
basic properties of resolution, see, e.g. [25].

Deciding whether a definite Horn clause C is an implicate of a definite Horn
formula ϕ can be decided by a simple and well-known marking procedure often
called forward chaining. The procedure begins by marking the variables in the
body of C. If every variable in the body of a clause in ϕ is marked then its head
is marked as well. This is repeated as long as new variables get marked. Then it
holds that C is an implicate of ϕ iff its head gets marked.

3 Partitioning/Covering Bipartite Graphs Using
Bicliques

Let G = G(A,B,E) be a bipartite graph with parts A, B of sizes a, b, respec-
tively, and edge set E of size m. We assume w.l.o.g. that a ≥ b. A bipartite
graph is balanced if |A| = |B|. The complete bipartite graph (or biclique) with
parts of size p and q is denoted by Kp,q. We consider bicliques Gi = (Ai, Bi, Ei)
for i = 1, . . . , t such that Ai ⊆ A,Bi ⊆ B, and (E1, . . . , Et) is a partition, resp. a
cover, of E. The cost of such a decomposition is

∑t
i=1(|Ai|+ |Bi|). The problem

is to find a decomposition of small cost. The trivial decomposition into single
edges has a cost of 2m ≤ 2ab.

We consider two versions of the problem. In the first version we are interested
in finding a partition such that its size is upper bounded by some function of a
and b, independent of m.

Theorem 1. For every bipartite graph G one can find a partition of cost
O
(

ab
log a + a log b + a

)
in polynomial time.

The decomposition is found by iteratively finding large bipartite subgraphs.
There are two procedures, depending on a carefully chosen notion of density.
Let 3 ≤ b ≤ a, 6a ≤ m ≤ ab and f(a, b,m) =

⌊
log a

log(2eab/m)

⌋
; note that the case

b ≤ 2 is trivial.

Lemma 1. Suppose that m ≥ af(a, b,m). Then there is a polynomial time al-
gorithm that finds a Kq,q in G with q = f(a, b,m).

Lemma 2. Suppose that m < af(a, b,m). Then there is a polynomial time al-
gorithm that finds a Kq,q in G with q = �m/a�.

Remark 1. If G is a star then b = 1 and the optimal decomposition has cost
a + 1, hence the upper bound ab/ log a claimed in [39] does not hold, and an
additional term (or some other modification) is needed. It is open whether the
quantity a log b + a can be improved.

In the second version we are interested in finding a partition (resp., cover) of min-
imal cost. For technical reasons, we use a slightly different cost function here (us-
ing this cost function would not change anything in the previous result). The size
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of Kp,q is p·q and the modified cost cost′(Kp,q) of Kp,q is p·q if p = 1 or q = 1, and
is p+q otherwise. The reason for using the modified cost measure for Horn mini-
mization is that when a set of Horn clauses ∧p

i=1∧
q
j=1 (xi → yj) corresponding to

a biclique Kp,q is replaced by a set of Horn clauses ∧p
i=1(xi → z)

∧
∧q
j=1(z → yj)

by introducing a new variable z if p, q > 1, and is left unchanged otherwise, the
size of the new formula is cost′(p, q). We define the Linear-Cost-Biclique-

Cover (resp., Linear-Cost-Biclique-Partition) problem as follows: given
a bipartite graph G = (A,B,E), cover (resp., partition) its edges with bicliques
of minimum total modified cost. The minimization of the number of bicliques in
a cover was shown to be NP-complete by Orlin [34]. The following result follows
by an approximation-preserving reduction from the maximum independent set
problem for 3-regular graphs.

Theorem 2. Assuming P �=NP, Linear-Cost-Biclique-Cover and Linear-

Cost-Biclique-Partition cannot be approximated in polynomial time within
an approximation ratio of 1 + (1/1138) even if the input graph has no biclique
of size more than 6.

4 Inapproximability

Theorem 3. For any fixed 0 < ε < 1, unless NP⊆DTIME(npolylog(n)), the Horn
minimization problem for definite Horn formulas is 2log1−ε n-inapproximable.

The reduction is from the Minrep problem [26]. An instance M is given by a
bipartite graph G = (A,B,E) with |E| = m, a partition of A into equal-size sub-
sets A1, A2, . . . , Aα and a partition of B into equal-size subsets B1, B2, . . . , Bβ .
One can define a natural bipartite super-graph H in the following manner. H
has a super-vertex for every Ai and Bj . There is a super-edge between Ai and
Bj if and only if there exists u ∈ Ai and v ∈ Bj such that (u, v) is an edge
of G. Let the number of super-edges be p. A pair of nodes u and v witnesses
a super-edge (Ai, Bj) provided u ∈ Ai, v ∈ Bj and the edge (u, v) exists in
G. A set of nodes S of G witnesses a super-edge if and only if there exists at
least one pair of nodes in S that witnesses the super-edge. The goal of Minrep

is to find A′ ⊆ A and B′ ⊆ B such that A′ ∪ B′ witnesses every super-edge
of H and |A′| + |B′| is as small as possible. The size of an optimal solution is
denoted by OPT (M). Let s = |A|+ |B|. It is shown in Kortsarz et al. [26] that
Minrep is 2log1−ε n-inapproximable under the complexity-theoretic assumption
NP �⊆DTIME(npolylog(n)).

Consider an instance M of Minrep . Let t be a sufficiently large positive inte-
ger to be fixed later. We construct a definite Horn formula ϕ. For simplicity and
with an abuse of notation, some variables in ϕ are denoted as the correspond-
ing objects (vertices and super-edges) in the Minrep instance. The formula ϕ
contains amplification variables x1, . . . , xt, node variables u for every vertex u
in A ∪B and super-edge variables e for every super-edge e in H . The clauses of
ϕ belong to the following groups:
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amplification clauses: there is a clause xi → u for every i ∈ {1, . . . , t} and for
every u ∈ A ∪B,

witness clauses: there is a clause u, v → e for every super-edge e of H and for
every pair of nodes u ∈ A and v ∈ B witnessing e,

feedback clauses: there is a clause e1, . . . , ep → u for every u ∈ A ∪B, where
e1, e2, . . . , ep are the super-edges of H .

As ϕ is definite, all its prime implicates are definite. Also, as ϕ consists of non-
unit definite clauses, all its prime implicates are non-unit (the all-zero vector
satisfies ϕ and falsifies all unnegated variables). For a further analysis of the
prime implicates of ϕ, we make use of forward chaining.

Lemma 3. Let x be an amplification variable. Then the prime implicates con-
taining x are clauses of the form x→ v, where v is a node or super-edge variable.

Lemma 4. Let U be a set of node variables such that U is not a solution to
Minrep , and U ′ be the set of super-edge variables witnessed by U . Then every
implicate with body contained in U ∪ U ′ has head in U ′.

Lemma 5. Let x be an amplification variable and let ψ be a prime and irre-
dundant Horn formula equivalent to ϕ. Then ψ has at least OPT (M)/2 clauses
containing x.

Based on these lemmas one can prove that the reduction is gap-preserving.

Lemma 6. (Gap preserving reduction lemma)

(a) If OPT(M) = α + β, then OPT(ϕ) ≤ t · (α + β) + m + s.
(b) If OPT(M) ≥ (α + β) · 2log1−ε s then, OPT(ϕ) ≥ t(α + β) · 2log1−ε s/2.

Our result now follows from the inapproximability result for Minrep mentioned
above.

5 Formulas with New Variables

In this section we consider versions of the Horn minimization problem where one
can introduce new variables in order to compress the formula.

5.1 General Extensions

First we consider the general version where there is no restriction on the way
new variables are introduced.

Definition 1 (Generalized equivalence). [17] Let X be a set of variables.
Formulas ϕ and ψ are X-equivalent if for every clause C involving only variables
from X it holds that ϕ |= C iff ψ |= C.
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Consider the set of variables X = {x1, . . . , xn, y1, . . . , yn, u} and the 2n-clause
Horn formula ϕ =

∧
(v1, . . . , vn → u) where vi ∈ {xi, yi} for i = 1, . . . , n, and

the conjunction includes all possible such selections. As no resolutions can be
performed, it follows that all the prime implicates of ϕ are the clauses themselves.
Let now {z1, . . . , zn} be new variables. Then the (2n + 1)-clause Horn formula
ψ = (z1, . . . , zn → u)∧

∧n
i=1(xi → zi)∧ (yi → zi) is X-equivalent to ϕ. Thus the

introduction of new variables can lead to an exponential compression in size.
For knowledge representation formalisms it is useful to have an efficient proce-

dure to decide equivalence. Thus the following result of [17] suggests that general
extensions of Horn formulas are too general for applications.

Theorem 4. [17] Generalized equivalence of definite Horn formulas is co-NP-
complete.

5.2 Steiner Extension

The proof of Theorem 4 shows that generalized equivalence is already hard if new
variables are introduced in a rather restricted manner. This gives a motivation
to consider even more stringent restrictions on the introduction of new variables.

Definition 2 (Steiner extension). Let ϕ be a Horn formula and X be a subset
of its variables. Then ϕ is a Steiner extension over X if every variable not in
X occurs in ϕ either as a head, or as a single body variable in a binary definite
clause having its head in X.

The corresponding notion of equivalence is the following.

Definition 3 (Steiner equivalence). Let X be a set of variables. Horn for-
mulas ϕ and ψ are Steiner X-equivalent if

– ϕ and ψ are X-equivalent,
– both ϕ and ψ are Steiner extensions over X.

The Horn formulas in (1) and (2) in Section 1.1 are both Steiner extensions
over X = {x1, . . . , xn, y1, . . . , yn}, and they are Steiner X-equivalent. On the
other hand, the example in Section 5.1 is not a Steiner extension as additional
variables occur in the body of a non-binary clause. In contrast to Theorem 4,
Steiner equivalence can be decided efficiently.

Proposition 1. There is a polynomial algorithm which, given a Steiner exten-
sion ϕ over X, computes a Steiner X-equivalent Horn formula ψ(X) containing
only the variables in X such that size(ψ) = O(size(ϕ)2).

The Steiner X-equivalence of ϕ1 and ϕ2 can be decided by using Proposition 1
to produce formulas ψ1(X) and ψ2(X) and checking their equivalence.

Corollary 1. Steiner equivalence of Horn formulas is in P.

The minimization problem for Steiner equivalence is the following.
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Definition 4 (Steiner minimization of Horn formulas). Given a Horn
formula ϕ over variables X, find a minimal size Horn formula that is Steiner
X-equivalent to ϕ.

Using the correspondence between bipartite graphs and Horn formulas of binary
clauses discussed earlier, Theorem 2 can be used to show the following.

Theorem 5. Steiner minimization of definite Horn formulas is MAX-SNP-
hard.

We now show that Steiner minimization of definite Horn formulas has an efficient
approximation algorithm with performance guarantee o(n).

Remark 2. It may be assumed w.l.o.g. that Horn formulas to be minimized have
no unit clause prime implicates. This holds as every prime representation can
be partitioned into those unit clauses and a set of clauses not containing any
variable that occurs in a unit clause prime implicate. The second half then can
be minimized separately.

Theorem 6. There is a polynomial time algorithm with approximation ratio

O(n log logn/(logn)1/4)

for Steiner minimization of definite Horn formulas, where n is the number of
variables in the original formula.

The algorithm uses several procedures. It uses previous algorithms for listing
prime implicates of Horn formulas and for body minimization. It also uses a
procedure for the exact minimization of Horn formulas having a short equivalent
formula and the bipartite graph partition algorithm of Section 3.

The prime implicate listing problem for Horn formulas is to produce a list of
all prime implicates of a Horn formula. As the number of prime implicates can
be exponential in the size of the original formula, a possible criterion of efficiency
is total polynomial time, i.e., time polynomial in the combined size of the input
and the output. Boros, Crama and Hammer [9] give an algorithm which lists all
prime implicates of a Horn formula, in time polynomial in the size of the formula
and the number of prime implicates.

Consider the following special case of (standard) Horn minimization.

Problem 1 (
√

logn-Horn minimization). Given a Horn formula ϕ over n vari-
ables, find an equivalent minimal size Horn formula of size at most

√
log n if

such a formula exists, or output ‘none’.

Lemma 7. The
√

logn-Horn minimization problem is polynomial-time solvable.

A further ingredient of the algorithm is an efficient procedure for body minimiza-
tion. The body minimization problem for Horn formulas asks for an equivalent
Horn formula with the minimal number of distinct bodies. While Horn min-
imization is hard, there are efficient algorithms for body minimization. Such
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algorithms were found in several different contexts, such as implicational sys-
tems [19] (see also [11]), functional dependencies for databases [32], directed
hypergraphs [4] and computational learning theory[3].

Given a Horn formula χ over a set of variables X , we now describe a con-
struction of a Steiner extension ψ = STEINER(χ) of χ. Let Bodies(χ) denote
the set of bodies in χ, and Heads(χ) denote the set of heads in χ. Form a bipar-
tite graph G(χ) with parts Bodies(χ) and Heads(χ), adding an edge between
a body and a head if the corresponding Horn clause occurs in χ. Let G1, . . . , Gt

be a decomposition of G(χ) into bicliques obtained by the graph partition pro-
cedure of Theorem 14. Let the bipartite graphs in the decomposition have parts
Ai ⊆ Bodies(χ) and Bi ⊆ Heads(χ) for i = 1, . . . , t. Introduce new variables
y1, . . . , yt, and let ψ = STEINER(χ) consist of the clauses b → yi and yi → h
for every b ∈ Ai and h ∈ Bi, i = 1, . . . , t.

In the following description of the algorithm let
√

logn–HORN–MIN denote
the procedure of Lemma 7 and let MIN-BODY be an efficient body minimization
procedure.

Input: a definite Horn formula ϕ
Algorithm:

if ψ =
√

logn–HORN–MIN(ϕ) �= ‘none’ then return ψ
else return STEINER(MIN-BODY(ϕ))

The performance bound of the algorithm follows by considering different cases
depending on the value of OPT (ϕ) and the relationship between the number of
bodies and heads returned by the body minimization procedure.

6 Restricted Horn Minimization

A special case of the Horn minimization problem is when only clauses from
the original formula may be used in the new formula. Finding an irredundant
subset of clauses representing the input function can always be done in polyno-
mial time using the standard Horn formula procedures. However, there may be
many irredundant formulas, having different sizes. The inapproximability result
in Theorem 7 below shows that in fact it is hard to approximate the shortest
one, even if we assume that the formula to be minimized is 3-Horn.

Theorem 7. For any fixed 0 < ε < 1, unless NP⊆DTIME(npolylog(n)), the re-
stricted Horn minimization problem is 2log1−ε n-inapproximable, even for definite
3-Horn formulas.

As noted in the introduction, in the case of restricted Horn minimization one can
also try to maximize the number of deleted clauses. We refer to this problem
below as Horn maximization. In contrast to Theorem 7, for definite 2-Horn
formulas constant approximation is possible.

4 The bipartite graphs need not be balanced. Also, for this application it would
be sufficient to consider coverings instead of partitions. The result of Section 3 is
formulated for balanced partitions in order to give a stronger positive result.
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Theorem 8
(a) Both the Horn minimization and Horn maximization problems are MAX-
SNP-hard for definite 2-Horn formulas without unit clauses.
(b) Restricted Horn minimization for definite 2-Horn formulas admits a 1.5-
approximation.
(c) Restricted Horn maximization for definite 2-Horn formulas admits a 2-
approximation.

In view of Remark 2, these results follow from [5,42] and the correspondence
between Horn formulas with binary clauses and directed graphs.

Remark 3. For (a), the best inapproximability constants can be be obtained
by using a randomized construction of a special class of Boolean satisfiability
instances by Berman et al.[6] giving an inapproximability constant of 1+(1/896)
for the minimization version and 1 + (1/539) for the maximization version.
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Abstract. We consider several questions inspired by the direct-sum
problem in (two-party) communication complexity. In all questions, there
are k fixed Boolean functions f1, . . . , fk and Alice and Bob have k inputs
x1, . . . , xk and y1, . . . , yk, respectively. In the eliminate problem, Alice
and Bob should output a vector σ1, . . . , σk such that fi(xi) �= σi for at
least one i (i.e., their goal is to eliminate one of the 2k output vectors);
in choose, Alice and Bob should return (i, fi(xi, yi)) and in agree they
should return fi(xi, yi), for some i. The question, in each of the three
cases, is whether one can do better than solving one (say, the first) in-
stance. We study these three problems and prove various positive and
negative results.

1 Introduction

A basic question in complexity theory is how the complexity of computing k in-
dependent instances relates to the complexity of computing one instance. Such
problems, called direct sum problems, have been studied for a variety of com-
putational models. Broadly, the direct sum question asks (with respect to an
arbitrary computational model and any complexity measure):

Question 1. Can “solving” k functions f1, . . . , fk on k independent inputs x1, . . .,
xk (respectively) be done more “efficiently” than just “solving” each fi(xi)?

(Of particular interest is the special case where all functions are identical.) Since
the inputs are independent, it is tempting to conjecture that in reasonable models
the answer is negative. Indeed, it was proved that in several models no significant
saving can be obtained; e.g., for decision trees [7,22,27,14]. However, for other
models, some savings are possible despite the independence of the inputs, e.g.,
non-deterministic communication complexity and randomized communication
complexity [16,10], deterministic communication complexity of relations [10],
and distributional communication complexity [27]. For other models, the answer
is still unknown; e.g., in circuit complexity [11,23,29]. Direct sum results are
important for understanding the power of a computational model. For example,
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it was shown in [17] that a negative answer for a variant of this question implies
circuit lower bounds, in particular,NC1 �= NC2. Furthermore, direct sum results
on the information complexity have been used to prove lower bounds on the
communication complexity of functions [4].

To better understand direct sum questions, a simpler task has been proposed –
eliminating a vector of answers. More precisely, for k fixed Boolean functions
f1, . . . , fk, given k inputs x1, . . . , xk, find a vector σ1, . . . , σk such that fi(xi) �= σi
for at least one i. In other words, given x1, . . . , xk, a-priori there are 2k possible
vectors of outputs for the k instances. Solving the direct sum problem is finding
the correct vector of outputs; eliminating means returning one of the 2k − 1
vectors which is not the vector of outputs. Clearly, if we solve one instance and
obtain, say, a1 = f1(x1), then we can eliminate the vector a1, σ2, . . . , σk for any
σ2, . . . , σk. The question is if we can do better; that is,

Question 2. Can solving eliminate, on k independent instances x1, ..., xk of k
functions f1, . . . , fk, be “easier” than solving the “easiest” function?

(Again, of a particular interest is when all functions are identical.) This ques-
tion and related ones were studied in the context of polynomial-time compu-
tation [1,3,8,9,13,19,24,25,26,28] and computation in general [5,6,12,15,20]. The
question was explored for communication complexity by Ambainis et al. [2].

In this work, we introduce two new problems related to the direct sum ques-
tion, choose and agree. As before, there are k fixed Boolean functions f1, . . . , fk,
and we are given k instances x1, . . . , xk. In the choose problem, the task is to
solve one instance of our choice; i.e., return (i, fi(xi)), for some i. Intuitively,
choose is allowed to pick an “easy” input and answer it. The question is:

Question 3. Can solving choose, on k independent instances x1, ..., xk of k func-
tions f1, . . . , fk, be “easier” than solving the “easiest” function?

In the agree problem, the task is to return fi(xi) for some i (possibly without
knowing for which instance i it corresponds). That is, if all outputs agree, i.e.,
f1(x1) = f2(x2) = · · · = fk(xk) = σ, then agree(x1, . . . , xk) must return σ,
otherwise it may return either 0 or 1. The question is:

Question 4. Can solving agree, on k independent instances x1, ..., xk of k func-
tions f1, . . . , fk, be “easier” than solving the “easiest” function?

Comparing the three tasks, choose is the hardest and eliminate is the easiest, as
solving choose implies solving agree which, in turn, implies solving eliminate
(if we get an answer σ for agree(x1, . . . , xn), then we can eliminate the output
vector (σ, . . . , σ)). However, eliminating may potentially be much easier than
choose and agree; for example, if f1 = f2 and x1 = x2, then solving agree
implies solving f1(x1), while for eliminate one may return (0, 1) (or (1, 0))
without any computation. Furthermore, if we can solve choose efficiently, then
we can solve the direct sum efficiently (use choose to solve one instance and
solve the other instances independently). We do not know of any connections
between the direct sum problem and agree or eliminate.
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We start by mentioning some related work. The direct sum question in com-
munication complexity for deterministic protocols of functions is still open. There
is an example of a relation in which saving of O(k · logn) bits is possible for k
instances by a deterministic protocol [10]. For non-deterministic protocols and
randomized protocols, some saving is possible for some functions [10,16]. How-
ever, the best possible “generic” upper bound for the direct sum of randomized
protocols is not known (while in the non-deterministic case, an additive O(log n)
savings is the best possible [10,16]). Ambainis et al. [2] study the communica-
tion complexity of eliminate. They conjecture that, for functions, no saving is
possible for deterministic protocols. To support their conjecture they supply, in
addition to other results, lower bounds for deterministic, non-deterministic, and
randomized protocols for eliminate of specific functions.

Our Results. We define the choose and agree problems and study their prop-
erties, as well as the properties of eliminate.

– For randomized public-coin protocols, we show that saving of O(log k) bits is
possible for eliminate of some functions (e.g., the inner-product function).

– On the negative side, we prove that the randomized communication complex-
ity of solving a function f is a lower bound on the randomized communica-
tion complexity of eliminatefk , i.e., on computing eliminate on k instances
of f . This implies, together with a trivial upper bound, that the random-
ized communication complexity of computing a function f characterizes the
randomized communication complexity of computing eliminatefk , up-to a
factor of 2O(k). In particular, our results show that eliminate of IP requires
n − O(k) bits even for randomized protocols. This improves a lower bound
of n/(2O(k) logn log logn) for randomized protocols for IP proved in [2].

– We relate the complexity of choosef,g to the non-deterministic and deter-
ministic complexity of solving f and g. In particular, we show that if the
non-deterministic communication complexity of f and g are high, then the
deterministic communication complexity of choosef,g is high. This implies
that for most functions the communication complexity of choosef,g is Ω(n).
We prove a similar, however weaker, lower bound for agreef,g.

To better understand if saving is possible for eliminate in communication com-
plexity, we explore a restriction of eliminate, called r-eliminate. In this case,
Alice has k inputs x1, . . . , xk, however, Bob has one input y. The goal of Alice
and Bob is to find a vector σ1, . . . , σk such that fi(xi, y) �= σi, for at least one i.
In the rest of this section, we assume that f1 = f2 = . . . = fk = f . In this model
significant saving is possible even for k = 2. For example for r-eliminate of the
equality function, if Alice holds two inputs x1 = x2, she can eliminate, say, (0, 1)
without any communication, and if x1 �= x2, she can eliminate (1, 1) without any
communication. We show that for some other functions r-eliminate is hard and
we also give additional examples where some saving is possible:

– r-eliminate of the disjointness function on k instances can be computed
using a deterministic protocol sending (n log k)/k bits; that is, better than
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the deterministic complexity of solving one instance of disjointness (which
is n). By [2], eliminate of k instances of disjointness requires n− O(log n)
bits deterministically [2]. Using this result, we prove that r-eliminate of
disjointness on k instances requires Ω(n/k) bits deterministically. That is,
our protocol is optimal up to a factor of log k.

– r-eliminate of the inner-product function on k instances can be solved de-
terministically by sending n − k + 2 bits. Thus, some saving is possible for
large k’s. We show that our lower bound for eliminateIPk can be trans-
lated to a lower bound of Ω(n/k) for r-eliminate on k instances of IP for
randomized protocols.

– For most functions, r-eliminate of two instances requires at least n − 5
bits. Thus, the naive protocol where Bob sends his input to Alice is nearly
optimal.

In the full version of this paper, we also consider decision trees and circuit com-
plexity. We show that for decision trees, no saving can be obtained for choose,
agree, and eliminate. That is, any decision tree solving eliminatef,g can be
converted into a decision tree of the same size and depth that either computes
f or computes g. This generalizes the results that no saving can be achieved for
decision trees in the direct sum problem [7,22,27,14]. We also prove that the size
of the smallest circuit solving agreef,g is equal to the deterministic communi-
cation complexity of chooseRf ,Rg , where Rf denotes the Karchmer-Wigderson
relation related to f [18]. This is a generalization of results of [18] on the relation
between circuit size of a function f and the communication complexity of Rf .

2 Preliminaries

We consider the two-party communication complexity model of Yao [30]. In this
model, there are three finite sets X,Y , and Z, and a relation R ⊆ X × Y × Z.
Two players, Alice and Bob, get x ∈ X and y ∈ Y respectively. Their goal is to
compute z such that (x, y, z) ∈ R by exchanging bits according to some protocol
(we assume that for every x, y there is some z such that (x, y, z) ∈ R). Let D(R)
be the deterministic communication complexity of solving R, N (R) be the non-
deterministic communication complexity, N 0(R) and N 1(R) be the one-sided
nondeterministic communication complexities, and Rε(R) and Rpub

ε (R) be its
ε-error randomized communication complexity with private and public random
string, respectively. For formal definitions, see [21].

Next, we define the three problems inspired by the direct sum question. For
the three problems there are several possible outputs, i.e., they are relations.

Definition 1 (Choose, Agree, and Eliminate). Let f1, . . . , fk : {0, 1}n ×
{0, 1}n → {0, 1} be functions. In all three problems, the input of Alice and Bob
are a k-tuple x1, . . . , xk and y1, . . . , yk respectively. In choosef1,...,fk

an output
is (i, fi(xi, yi)) where i ∈ {1, . . . , k} . In agreef1,...,fk

, an output is fi(xi, yi)
where i ∈ {1, . . . , k} . Finally, in eliminatef1,...,fk

, an output is any vector
σ1, . . . , σk ∈ {0, 1} for which there exists i such that σi �= fi(xi, yi).
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If f1 = ... = fk = f we abbreviate f1, . . . , fk by fk. Note thatRε(eliminatefk) =
O(1) for ε ≥ 1/2k as a random k-bit output will err with probability 1/2k. As
we shall see that, for ε < 1/2k, Rε(eliminatefk) is large for some functions.

Next, we define a restricted version of eliminate where Bob gets the same y
for all k functions. For simplicity, assume that all k functions are equal.

Definition 2 (R-Eliminate). Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean
function. In r-eliminatefk , Alice gets a k-tuple x1, . . . , xk and Bob gets a single
input y; an output is any vector σ1, . . . , σk ∈ {0, 1} for which there exists i such
that σi �= f(xi, y).

The next theorem relates the randomized communication complexity and the
distributional communication complexity of f .

Theorem 1 (Yao’s min-max Theorem [30]). Let f : X×Y → {0, 1}. Then,
Rpub

ε (f) = maxμDμ
ε (f), where Dμ

ε denotes the ε-error distributional complexity
with respect to μ and the maximum is taken over all distributions μ on X × Y .

3 General Bounds for Choose, Agree, and Eliminate

In this section, we show that saving is possible in public-coin randomized pro-
tocols for eliminate of some functions. We then prove lower bounds on the com-
plexity of choosef1,f2 , agreef1,f2 , and eliminatefk .

Theorem 2. There exist a randomized protocol for eliminatefk with complex-
ity max {n− 0.5 log k, k log k}+O(1) for ε = 2−k/e, in which at least one of the
parties knows the answer at the end.

Proof. We describe a protocol with the desired complexity. In the first step of
the protocol, Bob checks if he has at least

√
k distinct inputs (among his k

inputs). If so, both Alice and Bob treat the public random string r as a sequence
of blocks r1, r2, . . ., each of length n. If there exists i and j such that yi = rj ,
among the first 2n/

√
k blocks of r, Bob sends j to Alice. In this case, Alice

computes σ� = 1− f(x�, rj) for 1 ≤ � ≤ k and outputs σ1, . . . , σk. If Bob cannot
find such index, he sends 0 to Alice, who outputs a random k-bit string. If Bob
has less than

√
k distinct inputs, and Alice has at least

√
k distinct inputs, they

reverse roles. In this case, Bob gets the output. In both cases, the communication
complexity is O(1) + log(2n/

√
k) = n− 0.5 log k + O(1).

If both Alice and Bob have less than
√
k distinct input values (they discover

this fact using O(1) communication) then they do the following. Since Bob has
less than

√
k values, there is a value that appears more than

√
k times. Bob

sends to Alice
√
k indices in which his inputs are the same. Since Alice has less

than
√
k values, there are two indices i, j among the indices that Bob sent such

that xi = xj . Alice outputs an arbitrary vector (σ1, . . . , σk) such that σi �= σj
which is always correct, and the communication complexity is

√
k log k + O(1).

To complete the analysis of the protocol, we bound the error probability
for the cases that Bob (or Alice) has at least

√
k distinct input values. The
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probability that yi �= rj for all 1 ≤ i ≤ k and 1 ≤ j ≤ 2n/
√
k is less than

(1−1/2n)
√
k2n/

√
k ≤ 1/e. In this case, the protocol errs with probability 1/2k. If

yi = rj then the protocol never errs. Thus, the error probability of the protocol
is 2−k/e. ��

Next we state lower bounds for choosef1,f2 and agreef1, f2 in terms of the
deterministic and non-deterministic communication complexity of f1 and f2,
the proof for choose appears in the final version.

Theorem 3. D(choosef1,f2) ≥ min {D(f1),D(f2),max {N (f1),N (f2)}} for ev-
ery two functions f1, f2.

Theorem 4. For every two functions f1, f2 : {0, 1}n × {0, 1}n → {0, 1},
D(agreef1,f2) ≥ max

{
min

{
N 1(f1),N 0(f2)

}
,min

{
N 0(f1),N 1(f2)

}}
−log(2n).

Proof. Let P be a (deterministic) protocol for agreef1,f2 whose complexity is
D(agreef1,f2). We construct a non-deterministic protocol with communication
complexity D(agreef1,f2)+log(2n) either for proving f1(x, y) = 0 or for proving
f2(x, y) = 1. Let S1⊆f−1

1 (0) and S2⊆f−1
2 (1). A pair of inputs (x2, y2) ∈ S2 is

an f1-loser if P(x1, x2, y1, y2) = 0 for at least |S1|/2 pairs (x1, y1) ∈ S1.

Proposition 1. For every two sets S1⊆f−1
1 (0) and S2⊆f−1

2 (1), either there is
a pair (x2, y2) ∈ S2 that is an f1-loser or a pair (x1, y1) ∈ S1 that is an f2-loser.

Proposition 2. Either there is a sequence of 2n pairs (x1, y1), . . . , (x2n, y2n) ∈
f−1
2 (1) s.t., for every (x, y) ∈ f−1

1 (0), it holds that P(x, xi, y, yi) = 0 for at least
one i, or there is a sequence of 2n pairs (x1, y1), . . . , (x2n, y2n) ∈ f−1

1 (0) s.t., for
every (x, y) ∈ f−1

2 (1), it holds that P(xi, x, yi, y) = 1 for at least one i.

Assume that the first case of Proposition 2 holds. We construct a non-
deterministic protocol for proving that f1(x, y) = 0 (if the second case holds,
we would construct a non-deterministic protocol for proving f2(x, y) = 1). Let
(x1, y1), . . . , (x2n, y2n) be the sequence guaranteed by the proposition. The first
idea is, given inputs x, y to f1, to execute P(x, xi, y, yi) for i = 1, . . . , 2n. If in
at least one of the executions, the output of P is 0 then clearly f1(x, y) = 0.
Furthermore, if f1(x, y) = 0, then at least one of the executions will return 0.
This protocol activates P 2n times, and is, thus, extremely inefficient. How-
ever, Alice can guess an index i such that P(x, xi, y, yi) = 0, send it to Bob,
and Alice and Bob execute P(x, xi, y, yi), and output 0 iff P outputs 0. There-
fore, D(agreef1,f2) + log 2n ≥ min

{
N 0(f1),N 1(f2)

}
. Similarly, D(agreef1,f2)

+ log 2n ≥ min
{
N 1(f1),N 0(f2)

}
. ��

Theorem 4 does not rule out an exponential gap between D(agreef1,f2) and
min {D(f1),D(f2)}. For the special case, agreef,f , Theorem 4 implies that the
gap is at most a quadratic; i.e., D(agreef,f ) ≥ N (f)−log(2n)−1 ≥ Ω(

√
D(f))−

log(2n). This should be compared, on one hand, to choosef,f , which is as hard
as computing f and, on the other hand, to solving eliminatef,f , which is equal
to solving eliminatef2 . Furthermore, agreef,f is equivalent to computing f .
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We end this section by stating a lower bound for eliminatefk using the
randomized communication complexity of f .

Theorem 5. Rpub
ε (eliminatefk) ≥ Rpub

ε′ (f), where ε′ = 1
2 −

1/2−ε2k−1

2k−1 .

Proof. We prove the lower bound using Yao’s min-max Theorem (Theorem 1).
Let f : {0, 1}n × {0, 1}n → {0, 1} be a function and μ be a distribution on
{0, 1}n × {0, 1}n such that Rpub

ε (f) = Dμ
ε (f). We start with a randomized pro-

tocol P for eliminatefk with complexity Rε(eliminatefk). We construct a
deterministic protocol P ′′ with the same complexity as P such that the proba-
bility over the inputs, according to μ, that P ′′ computes f(x, y) correctly is at
least ε′. Thus, Rε(eliminatefk) ≥ Dμ

ε′(f) = Rpub
ε′ (f). The construction of P ′′

is done in stages. We first define a protocol P ′ and use it to define P ′′.
For the construction of P ′′, we use constants q0, . . . , qk such that 1 = q0 ≥

q1 ≥ · · · ≥ qk = ε. We also use random variables Z1, . . . , Zk defined as fol-
lows. Pick inputs x1, y1, . . . , xk, yk according to the distribution μk, execute
P(x1, . . . , xk, y1, . . . , yk) and let σ1, . . . , σk be its output. Finally, for 1 ≤ i ≤ k,
define Zi = T if σi = f(xi, yi) and Zi = F otherwise.

By the correctness of P , Pr[Z1 = · · · = Zk = T ] ≤ ε = qk, where the
probability is taken over the choice of inputs, according to the distribution μk,
and over the randomness of P . Thus, there must be an index i, where 1 ≤ i ≤ k,
such that Pr[Zi = T |Z1 = · · · = Zi−1 = T ] ≤ qi/qi−1. Let i be the smallest such
index. That is, Pr[Zj = T |Z1 = · · · = Zj−1 = T ] ≥ qj/qj−1 for 1 ≤ j ≤ i − 1.
In particular, p def= Pr[Z1 = · · · = Zi−1 = T ] =

∏
1≤j≤i−1 Pr[Zj = T |Z1 = · · · =

Zj−1 = T ] ≥ (q1/q0) · (q2/q1) · . . . · (qi−1/qi−2) = qi−1.
Using this index i, we construct a randomized protocol P ′ for computing f .

Intuitively, P ′ will use the fact that with a noticeable probability it can take
the i-th output of P and invert it and obtain a correct output for the i-th
pair of inputs (assuming they are distributed according to μ). On input, x, y,
the protocol P ′ samples x1, y1, . . . , xi−1, yi−1, xi+1, yi+1, . . . , xk, yk according to
μk−1 and gives these inputs both to Alice and to Bob (we will see later how to
implement this step without communication). Alice and Bob execute P(x,y),
where x = (x1, . . . , xi−1, x, xi+1, . . . , xk) and y = (y1, . . . , yi−1, y, yi+1, . . . , yk);
let σ1, . . . , σk be the output of P . If σj = f(xj , yj) for 1 ≤ j ≤ i − 1, then
Alice and Bob output σi. Otherwise, Alice chooses a random bit b with uniform
distribution and outputs this bit.

We next claim that if the inputs x, y are distributed according to μ, then the
error of P ′ is at most ε′. Protocol P ′ succeeds in two cases: (1) σj = f(xj , yj) for
1 ≤ j ≤ i− 1 and σi �= f(x, y); by our choice of i, this happens with probability
at least p · (1 − qi/qi−1) and (2) σj �= f(xj , yj) for some 1 ≤ j ≤ i − 1 and
b = f(x, y); this happens with probability 0.5(1 − p). All together the success
probability of P ′ is p · (1 − qi/qi−1) + 0.5(1− p), where the probability is taken
over the choice of the inputs x, y according to μ, the choice of the other k − 1
pairs of inputs for P according to μk−1, the randomness of P , and the choice of
b. Since p ≤ qi−1 and by choosing qi, qi−1 such that qi/qi−1 ≤ 0.5, the success
probability is at least qi−1 · (1− qi/qi−1)+ 0.5(1− qi−1) = 0.5+0.5qi−1− qi. We
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choose q0
def= 1 and qj

def= 2j−1

2j−1ε
′ − (1 − 1

2j−1 ) for 1 ≤ j ≤ k. Notice that q1 = ε′,
qk = ε, and the success probability of P ′ is at least 1− ε′.

Protocol P ′ is randomized and we want a deterministic protocol P ′′. Fur-
thermore, we need to explain how we can assume that Alice and Bob know
all the other k − 1 pairs of inputs. The derandomization of P ′ is done us-
ing a simple averaging argument: there exists a random string for P ′ such
that the success probability of P ′ with this random string is at least 1 − ε′,
where now the success probability is taken over the choice of x, y according to
μ. We fix such random string to obtain P ′′. As this random string contains
x1, y1, . . . , xi−1, yi−1, xi+1, yi+1, . . . , xk, yk, and P ′′ executes P ′ with the fixed
random string, both Alice and Bob know these inputs. Thus, as the communi-
cation complexity of P ′′ is the same as the communication complexity of P , the
theorem follows. ��

Together with a simple protocol for eliminate, which solves one instance and
guesses the other coordinates, we have that Rε·2k−1(f) ≥ Rε(eliminatefk) ≥
R

1/2− 1/2−ε2k−1

2k−1

(f) ≥ 2−O(k)Rε(f) for ε < 1/2k. In other words, Rε(f) charac-

terizes Rε(eliminatefk) up to a factor of 2O(k).

4 Eliminate and R-Eliminate

We consider the r-eliminate task, where Alice gets a sequence of inputs x1, . . . , xk
and Bob gets a single input y, and their goal is to compute some impossible out-
come for f(x1, y), . . . , f(xk, y). In this model, we have the largest gap possible be-
tween D(f) and D(r-eliminatef2).

Example 1. Consider the equality function, where EQ(x, y) = 1 iff x = y. It is
known that D(EQ) = n. However, D(r-eliminateEQ2) = O(1): if x1 = x2 Alice
outputs (0, 1) (if x1 = y then so is x2). Otherwise, if x1 �= x2, Alice outputs (1, 1)
(since x1, x2 cannot both equal y). By [2], D(eliminateEQk) = Ω(n), thus we
also get the largest possible separation between r-eliminate and eliminate.

Eliminate vs. R-Eliminate. We next identify a simple property of functions
that enables proving that the communication complexity of r-eliminate and
eliminate can differ by a factor of at most 1/k for these functions.

Definition 3. A function f : {0, 1}n × {0, 1}n → {0, 1} is padable with respect
to a function g : {0, 1}m×{0, 1}m → {0, 1}, where m > n, if there exists a value
b ∈ {0, 1} such that f(x, y) = g(bi ◦ x ◦ bm−n−i, a ◦ y ◦ a′), for every i ≤ m− n,
every x, y ∈ {0, 1}n, and every a ∈ {0, 1}i, a′ ∈ {0, 1}m−n−i.

We shall see that natural functions, e.g., disjointness and inner-product, are
padable with respect to themselves (by taking b = 0).

Lemma 1. If a function f : {0, 1}n × {0, 1}n → {0, 1} is padable with respect
to g : {0, 1}nk × {0, 1}nk → {0, 1}, then D(r-eliminategk) ≥ D(eliminatefk)
and Rε(r- eliminategk) ≥ Rε(eliminatefk).
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Proof. Let x1, . . . , xk ∈ {0, 1}n and y1, . . . , yk ∈ {0, 1}n be the inputs of Alice
and Bob (respectively) for eliminatefk . Let y′ = y1 ◦ · · · ◦ yk. As f is padable
with respect to g (with some b), we can pad each input xi of Alice to get x′i =
bn(i−1)xib

n(k−i) (of length nk). We execute an optimal deterministic protocol for
r-eliminategk on inputs (x′1, . . . x

′
k, y

′), and let τ be the answer of the eliminate
protocol. Since f is padable with respect to g, we have f(xi, yi) = g(x′i, y

′) and
so the answer τ is a possible answer for eliminatefk(x1, . . . , xk, y1, . . . , yk) as
well. Hence, D(eliminatefk) ≤ D(r-eliminategk). The same reduction applies
for the randomized case. ��

R-Eliminate for the Disjointness Function. Let DISJ denote the disjointness
function, namely DISJ(S, T ) = 1 iff S ∩ T = ∅ for S, T ⊆ [n] (the inputs sets
S, T are represented by their n-bit characteristic vectors).

Theorem 6. D(r-eliminateDISJk) = O(nk · log k).

Proof. Let S1, . . . , Sk be the inputs of Alice and T be the input of Bob. For
1 ≤ i ≤ k define Ai

def= Si \∪i�=jSj ; that is, Ai contains the elements that appear
only in Si. Let Aj be a smallest set among A1, . . . , Ak; that is, |Aj | ≤ |Ai| for
1 ≤ i ≤ k. Since A1, . . . , Ak are disjoint, |Aj | ≤ n/k. To solve r-eliminateDISJk ,
Alice sends the set Aj to Bob. Bob computes DISJ(Aj , T ) and sends the answer
to Alice. Alice computes the output as follows: If DISJ(Aj , T ) = 0, then Aj

intersects T , and, in particular, Sj intersects T . Therefore, in this case, Alice
may return any vector whose j-th coordinate is 1. If DISJ(Aj , T ) = 1, then
either Sj and T are disjoint, or Sj \Aj intersects T , and therefore Si intersects
T for at least one i �= j (since any element in Sj \ Aj belongs to some Si).
Therefore, the vector whose j-th coordinate is 0 and all other coordinates are 1
is not possible and Alice outputs this vector.

The number of sets of size at most n/k is at most (ek)n/k. Therefore, com-
municating the set Aj requires at most n

k log(ek) ≤ (n/k)(log k + 2) bits. ��

Ambainis et al. [2] showed that D(eliminateDISJk) = Ω(n). Using the fact
that DISJ with n/k-bit inputs is padable with respect to DISJ with n-bit
inputs and Lemma 1, we can obtain lower bounds on the complexity of r-
eliminate of disjointness, that is, D(r-eliminateDISJk) = Ω(n/k). In particu-
lar, we deduce that the protocol of Theorem 6 is optimal up to factor of log k
for deterministic protocols. Theorem 5 and Lemma 1 imply the lower bound
Rε(r- eliminateDISJk) = n/2O(k) for ε < 1/2k+1.

R-Eliminate for the Inner Product function. Let IP : {0, 1}n × {0, 1}n → {0, 1}
be the inner product mod 2 function, i.e. IP(x, y) = x[1] · y[1]⊕, . . . ,⊕x[n] · y[n],
where x[i] and y[i] are the i-th bits of x and y respectively. In the full version
of this paper, we show that some small saving is possible for r-eliminate of IP;
namely, D(r-eliminateIPk) ≤ max {n− k + 2, 0}. We next prove a lower bound
on the randomized communication complexity of eliminateIPk . Specifically, we
prove that Rδ(eliminateIPk) ≥ n − O(k), for δ < 1

4k·22k . This improves over
a lower bound of n/2O(k) logn log logn from [2]. Notice that for k ≥ logn their
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bound is Ω(1), while even for k = o(n) our bound is Ω(n). The lower bound for
IP can also be obtained from Theorem 5; we present the proof below since we
believe that its ideas might be of interest.

Theorem 7. Rδ(eliminateIPk) ≥ n−O(k), for δ < 1/(4k3/22k + 2).

Proof. We will show that if there is a δ-error protocol P for eliminateIPk with
complexity less than n − O(k), then there is a randomized protocol for IP on
inputs of length nk with error less than 1/2− ε with complexity less than nk −
logO(1/ε) contradicting the known lower bound for IP. Given x, y ∈ {0, 1}nk,
the protocol for IP(x, y), denoted P ′, proceeds as follows:

1. Let x = x1, . . . , xk and y = y1, . . . , yk, where |xi| = |yi| = |n|. Alice and
Bob execute the protocol P for eliminateIPk on (x1, . . . , xk, y1, . . . , yk). Let
(σ1, . . . , σk) be the output of P . Denote αi = σi for 1 ≤ i ≤ k (with proba-
bility at least 1− δ, IP(xi, yi) = αi for at least one i).

2. Alice chooses uniformly at random an index 1 ≤ j ≤ k and sends j and
x1, . . . , xj−1, xj+1, . . . , xk to Bob.

3. Bob computes βi = IP(xi, yi), for i ∈ {1, . . . , k} \ {j}, computes a = ⊕i�=jβi,
and c = | {i �= j : αi = βi} |. It computes the protocol’s output as follows:
– if c = 0 (that is, αi �= βi for every i ∈ {1, . . . , k} \ {j}), the output is

a ⊕ αj (in this case if P returns a correct output, then it must be that
αj = βj and the output of P ′ is correct).

– if c > 0, then with probability 1/2 + εc the output is a ⊕ αj and with
probability 1/2− εc it is a⊕ αj , where εc will be determined later.

We analyze the success probability of the protocol P ′. First, assume that P never
errs. We will later remove this assumption. Let m = | {i : αi = IP(xi, yi)} |; that
is, m is the number of correct values among α1, . . . , αk.

The case m = 1: If Alice chooses the unique j such that αj = IP(xj , yj), then
c = 0 and P ′ always succeeds. If Alice chooses any other j, then αj �= IP(xj , yj)
and c = 1, and so the protocol P ′ succeeds with probability 1/2−ε1. All together,
the success probability, in this case, is:

1
k

+
k − 1
k

(
1
2
− ε1

)
≥ 1

2
+

1
2k

− ε1.

The case 2 ≤ m ≤ k: If Alice chooses an index j such that αj = IP(xj , yj) (this
happens with probability m/k), then c = m − 1 and Bob outputs the correct
value (i.e., a ⊕ αj) with probability 1/2 + εm−1. If Alice chooses j such that
αj �= IP(xj , yj) (with probability (1 −m/k)), then c = m and Bob outputs the
correct value (i.e., a ⊕ αj) with probability 1/2 − εm. All together, the success
probability, in this case, is

m

k

(
1
2

+ εm−1

)
+
(
1− m

k

)(1
2
− εm

)
=

1
2

+
m

k
εm−1 −

k −m

k
εm.
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Set εm = 1/(4
(
k
m

)
). Thus, for 2 ≤ m ≤ k, the success probability is:

1
2

+
1
k

(
m

4
(

k
m−1

) − k −m

4
(
k
m

) ) =
1
2

+
1

4k
(
k
m

) .
For m = 1 the success probability is greater than 1/2 + 1/(4k). All together, P ′
succeeds with probability greater than 1/2 + 1

4k( k
k/2)

≥ 1/2 + 1/(4k3/22k) (since(
k

k/2

)
≤ 2k/k1/2).

Next, assume that P errs with probability (at most) δ. In the worst case,
P ′ fails whenever P fails. The success probability of P ′ is, therefore, at least
(1 − δ) · (1/2 + 1/(4k3/22k)). Assuming that δ ≤ 1/(4k3/22k + 2), the success
probability of P ′ is at least 1/2 + 1/(8k22k).

The communication complexity of P ′ is the communication complexity of P ,
on inputs of length n, plus (1−1/k)nk. By [21, Exercise 3.30], the communication
complexity of IP with error 1/2 − ε on inputs of length nk is at least nk −
O(log 1/ε). Thus, we get Rδ(eliminateIPk) + (1− 1/k) ·nk ≥ nk−O(k), which
implies that Rδ(eliminateIPk) ≥ n−O(k). ��

As IP with n/k-bit inputs is padable with respect to IP with n-bit inputs (using
b = 0 in Definition 3) then, using Lemma 1, we get:

Corollary 1. Rδ(r- eliminateIPk) ≥ n
k −O(1) for every δ < 1/(4k3/22k + 2).

We know that R1/2k(eliminateIPk) = O(1). Thus, the error that we allow in
Theorem 7 (and Corollary 1) is nearly optimal.

Eliminate of Most Functions. In the full version of the paper, we prove that
for most functions f r-eliminate cannot be computed efficiently; i.e., we prove
that D(r-eliminatef2) ≥ n− 5 for most functions.
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Additive Spanners in Nearly Quadratic Time

David P. Woodruff

IBM Almaden

Abstract. We consider the problem of efficiently finding an additive
C-spanner of an undirected unweighted graph G, that is, a subgraph H
so that for all pairs of vertices u, v, δH(u, v) ≤ δG(u, v) + C, where δ
denotes shortest path distance. It is known that for every graph G, one
can find an additive 6-spanner with O(n4/3) edges in O(mn2/3) time.
It is unknown if there exists a constant C and an additive C-spanner
with o(n4/3) edges. Moreover, for C ≤ 5 all known constructions require
Ω(n3/2) edges.

We give a significantly more efficient construction of an additive 6-
spanner. The number of edges in our spanner is n4/3polylog n, matching
what was previously known up to a polylogarithmic factor, but we greatly
improve the time for construction, from O(mn2/3) to n2polylog n. No-
tice that mn2/3 ≤ n2 only if m ≤ n4/3, but in this case G itself is a
sparse spanner. We thus provide both the fastest and the sparsest (up
to logarithmic factors) known construction of a spanner with constant
additive distortion.

We give similar improvements in the construction time of additive
spanners under the assumption that the input graph has large girth, or
more generally, the input graph has few edges on short cycles.

1 Introduction

An additive C-spanner (often called a (1, C)-spanner) of an unweighted undi-
rected graph G is a subgraph H with the property that for all vertices u, v,
δH(u, v) ≤ δG(u, v) + C. Here C is known as the distortion.

Spanners have a variety of applications. They are used in space-efficient rout-
ing tables that guarantee almost shortest routes [1], [10], [11], [17], [20], methods
for simulating synchronized protocols in unsynchronized networks [16], parallel
and distributed algorithms for computing almost shortest paths [7], [8], [14], and
in labeling schemes and distance oracles for reporting approximate distances [4],
[6], [19], [21].

There is a tradeoff between the distortion and the sparsity of the spanner.
Studying what sparsity is possible for small constant C has received considerable
attention. For C = 2, Aingworth et al (see [2], and the followup work [5], [12],
[15], [18], [22]) show that O(n3/2) edges are necessary and sufficient; that is,
every graph G contains an additive 2-spanner with this many edges, and there
exist graphs for which any additive 2-spanner requires this many edges. Later,
Baswana et al [5] show that every graph G contains an additive 6-spanner with
O(n4/3) edges. Nothing better than O(n4/3) is known even if the distortion is

S. Abramsky et al. (Eds.): ICALP 2010, Part I, LNCS 6198, pp. 463–474, 2010.
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allowed to be any constant, though lower bounds that degrade with the distortion
are known [23].

Another important measure is the time complexity needed for constructing
such a spanner. As many graph algorithms for distance-approximation [2], [5],
[9], [12] have running time proportional to the number of edges, a key approach
is to first find a spanner of the input graph, and then run existing algorithms on
the spanner rather than the dense input. The value of this approach is diminished
if the time to find the spanner is already too large.

The additive 2-spanner of Aingworth et al has construction time O(mn1/2).
This was improved by Dor, Halpern, and Zwick [12] to Õ(n2) time1 and Õ(n3/2)
edges. The conference version of the additive 6-spanner construction of Baswana
et al [5] had O(mn) time, but was improved to O(mn2/3) in the journal version
[3], and the improvement is attributed to Elkin [13]. Notice that O(mn2/3) is
much larger than Õ(n2). Indeed, m > n4/3; otherwise G itself serves as a sparse
spanner. Hence, mn2/3 > n2.

It should be noted that prior to the work of Baswana et al [5], Dor, Halpern,
and Zwick [12] constructed what they called a 6-emulator of a graph with Õ(n4/3)
edges and Õ(n2) time. A 6-emulator H of a graph G = (V,E) is a weighted graph
on the same vertex set V with an arbitrary edge set E′, subject to the constraint
that dG(u, v) ≤ dH(u, v) ≤ dG(u, v) + 6. Emulators are often much easier to con-
struct than spanners. For instance, it is known that every graph has a 4-emulator
containing Õ(n4/3) edges [12], but the best known additive 4-spanner has size
Θ(n3/2). It was not until the much later work of [5] that an additive 6-spanner
with O(n4/3) edges was constructed, albeit with a much larger running time.

1.1 Results

Our main contribution is a new construction of an additive 6-spanner with
Õ(n4/3) edges in a significantly faster Õ(n2) time. We thus provide both the
fastest and the sparsest (up to logarithmic factors) known construction of a
spanner with constant additive distortion.

Our techniques also solve the following problem: given a subset S of O(n2/3)
vertices of a graph G, find a subgraph H of G containing Õ(n4/3) edges so that
for all u, v ∈ S, δH(u, v) ≤ δG(u, v)+2. Our method solves this problem in Õ(n2)
time. The best previous time was O(mn2/3), using a technique of [3], attributed
to Elkin.

In an attempt to achieve even sparser additive spanners, Baswana et al [5]
study the construction of spanners by parameterizing the number of edges ap-
pearing on any short cycle. Let Γk(G) be the number of edges in G that lie
on a cycle with length at most 2k. They show that for any integers k ≥ 1 and
� ∈ [0, k], there exists an additive (2k + 4�)-spanner with O(Γk(G) + n1+ 1

k+�+1 )
edges that can be constructed in O(mn1− �

k+�+1 ) time. We show that an additive
(2k+ 4�)-spanner with Õ(Γk(G) +n1+ 1

k+�+1 ) edges can be constructed in Õ(n2)

1 Let Õ(f(n)) denote the class of functions that are bounded above by a function that
grows as f(n) · polylog(f(n)).
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time. This gives a sizable improvement upon the previous time bound for a wide
range of k and �.

As an example setting of parameters, if the input graph has girth greater
than 4, we can construct an additive 4-spanner (resp. additive 8-spanner) with
Õ(n4/3) edges (resp. Õ(n5/4) edges) in Õ(n2) time, whereas the prior bound was
O(mn) time (resp. Õ(mn3/4)) time.

1.2 Techniques

Our method is based on a new path-hitting framework. This approach is quite
different than the path-purchasing methods used in [5] to construct an additive
6-spanner. Namely, our work is the first to look at hitting the neighborhood of
a path in the absence of high-degree vertices, provided there are enough vertices
of moderate degree along the path.

In more detail, as in [3], we initially include all edges incident on low-degree
(< n1/3) vertices in the spanner. We then find a dominating set D1 of size
Õ(n2/3) of all vertices of degree at least n1/3. Each vertex in D1 can be thought
of as a cluster center, as in [3], and for each vertex incident to at least one
cluster center, we include an edge to one such center in our spanner. Now
our algorithm deviates from that of [3]. That algorithm needs to compute a
breadth-first search (BFS) tree around each cluster center. It then uses these
trees to iteratively choose walks (i.e., paths with repeated vertices and edges) to
include in the spanner. The main problem is the BFS tree computations, tak-
ing O(mn2/3) time, which is too costly. We now explain how to overcome this
problem.

We first describe a new combinatorial way of looking at the problem. Sup-
pose each shortest path P has x edges missing from the spanner. Then there
are Ω(n1/3x) vertices which are at distance 1 from some vertex in P . This fol-
lows from the fact that the neighborhoods of two vertices that are at a distance
larger than 2 on P cannot intersect, by the triangle inequality. Therefore, if
we choose a random sample D2 of Õ(n2/3/x) of the n vertices, we will hit the
neighborhood of each shortest path. If u ∈ D2 is in the neighborhood of P , and
v1, vr ∈ D1 are neighbors of the first and last missing edge in P , then there are
almost shortest walks from u to v1 and u to vr with a total of roughly x miss-
ing edges. If we include the missing edges on these walks to the spanner for all
pairs of vertices in D1 and D2, the total number of edges added is Õ((n2/3/x) ·
n2/3 · x) = Õ(n4/3). Since x is not the same for all shortest paths, we need
to repeat this procedure for (a logarithmic number of) geometrically increasing
intervals of x.

There are several technical hurdles we need to overcome to implement this in
Õ(n2) time. First, we need a procedure, which, given a subgraph of the input,
finds almost shortest walks between pairs of vertices with the smallest number
of missing edges efficiently. For this bicriteria problem, we design a procedure
FHEASW-Solver which runs in Õ(m′) time, where m′ is the number of edges in
the subgraph. This procedure is based on a BFS-like dynamic program. We can
then run FHEASW-Solver from each vertex in D2, provided for the given value
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of x and the shortest paths P with x edges missing, we can find a subgraph
which contains P and that has Õ(n4/3x) edges. Indeed, in this case the time of
the invocations of FHEASW-Solver will be Õ(|D2|n4/3x) = Õ(n2). If we choose
the subgraph to be all edges with one endpoint of degree at most n1/3x, then it
has at most Õ(n4/3x) edges, as we need. Unfortunately this subgraph may not
contain P if P contains a vertex of degree larger than n1/3x.

This leads us to our final case. If P contains a vertex of degree larger than
n1/3x, then we can compute another dominating set D3 of all vertices of degree
at least d in G, where d is the largest degree of a vertex along P . This domi-
nating set has size Õ(n/d). We can then connect each vertex in this dominating
set to each of the vertices in D1 via an almost shortest walk missing at most
d/n1/3 edges. Indeed, by assumption d > n1/3x, or equivalently, the number x
of missing edges is at most d/n1/3. The total number of edges added is therefore
Õ(|D1|(n/d)(d/n1/3)) = Õ(n4/3). To find the edges to add in this step we need
to run yet another invocation of FHEASW-Solver. We run it on a subgraph of
O(nd) edges, once from each vertex in D3, therefore taking Õ(|D3|nd) = Õ(n2)
total time. Since d is not the same for all shortest paths, we need to vary it in
geometrically increasing intervals as well. This idea of varying the degree and
working in subgraphs is similar to ideas used for additive 2-spanners of Dor,
Halpern, and Zwick [12].

An analysis of the union of the edgesets from the two cases shows that for
any pair of vertices, there is a path in the spanner between them with distortion
at most 6. It turns out that achieving this guarantee requires running FHEASW-
Solver several times on the same subgraph with different parameters. We remark
that our algorithm is Monte Carlo, that is, with high probability an additive-6
spanner is returned. We do not know how to derandomize the algorithm in Õ(n2)
time due to the fact that we need to hit the neighborhood of many paths, but
can only implicitly represent the paths in the allotted Õ(n2) time.

2 Preliminaries

The input is an unweighted undirected graph G = (V,E) on a set V of n vertices
and a set E of m edges. W.l.o.g., n is a power of 8. Let deg(u) be the degree
of u ∈ V , and let N(u) be the set of neighbors of u. For a set S of vertices, let
N(S) be ∪u∈SN(u).

Suppose E′ is an arbitrary subset of E. For u ∈ V , let BFS(u, (V,E′)) denote
a shortest-path tree rooted at u in the graph (V,E′). The following theorem is
standard and stated here for reference. See, e.g., the discussion in [9] or [12].

Theorem 1. (BFS) Given an unweighted undirected graph G = (V,E) and a
vertex u ∈ V , there is an O(m + n)-time algorithm that finds distances, and a
tree of shortest paths, from u to all the vertices of V .

All logarithms, if unspecified, are to the base 2. We will classify all edges of
our input graph G according to their type: an edge e = {u, v} is of type i
if min(deg(u), deg(v)) ∈ [2i, 2i+1). An edge is light if it is of type i for an
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i ≤ logn1/3. Otherwise, it is heavy. We assume the standard RAM model on
O(log n)-sized words in which arithmetic operations take O(1) time.

3 Constructing Additive 6-Spanners

3.1 A Subroutine

In our main algorithm, we need a subroutine which solves the following problem.
Fix an unweighted undirected graph G = (V,E). Fix a root vertex u ∈ V . For
each vertex v ∈ V , suppose we know δG(u, v). We would like to find a walk from
u to v with the least number of heavy edges among all walks from u to v whose
distance is at most δG(u, v)+C for a constant C > 0. More precisely, for a walk
P let φ(P ) be the number of heavy edges along P . We sometimes abuse notation
and let φ{u, v} = φ({u, v}).

Fewest Heavy Edges with Almost Shortest Walks (FHEASW): Given
G, a vertex u, and a constant C, output a data structure for which on input
v ∈ V and i ∈ {δG(u, v), δG(u, v) + 1, . . . , δG(u, v) + C}, there is an algorithm
that returns, in O(φ(P )) time, the heavy edges along a walk P from u to v in G
with δP (u, v) = i and φ(P ) = minwalks P ′ | δP ′ (u,v) = i φ(P ′).

Note that we allow P to be a walk rather than just a path, that is, it is a
path that may contain repeated vertices and edges.

We can solve this problem as follows. For a v ∈ V and i ∈ {δG(u, v), δG(u, v)+
1, . . . , δG(u, v) + C}, let D(v, i) be the minimum number of heavy edges on a
walk to u with length δG(u, v)+i. If there is no such walk, we define D(v, i) = ∞.
Let S(j) be the set of vertices w reachable by a walk from u of length exactly j,
and for which j ≤ δG(u,w) + C. Then,

D(v, i) = min
w∈S(δG(u,v)+i−1)∩N(v)

D(w, i− 1) + φ(w, v) (1)

We can build up the values D(v, i) as follows. We first obtain δG(u, v) for all
v by running the algorithm of Theorem 1. Then to create S(j) given S(j − 1),
we include each v ∈ N(S(j − 1)) for which j ≤ δG(u, v) + C. The time to do
this is O(|N(S(j − 1))|). When computing N(S(j − 1)), we can also update the
appropriate D(v, i) values by Equation (1). Hence, the total time is, up to a
constant factor,

∑
j |N(S(j − 1))|, where S(0) = {u}. The key point is that,

since C is constant, any given vertex can occur in at most C + 1 different sets
S(j). It follows that the total time is O(Cm) = O(m).

While we have shown how to calculate the costs D(v, i), to solve the FHEASW
problem we must also return all heavy edges along a walk from u to v with
length δG(u, v) + i and containing at most D(v, i) heavy edges. One can do this
by keeping side information in the algorithm above. Namely, each time D(v, i)
increases, we can append the heavy edge to a running list of heavy edges along the
walk. This does not affect the overall time complexity by more than a constant
factor. Due to space constraints, we defer further details to the full version of
this paper.
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3.2 Main Algorithm

Spanner Construction(G = (V,E)):

1. Compute the type of each edge and store these values.
2. Initialize F to the set of light edges.
3. Repeat the following steps 3 logn times:

(a) Let R be a random sample of 2n2/3 vertices. For each vertex in [n]\R,
if there is an edge to a vertex in R, add one such edge to F .

(b) For i = logn, (logn)− 1, (logn)− 2, . . . , (logn1/3) + 1,
i. Let E′ be the subset of E of edges of type at most i.
ii. For j = 0, 1, 2, . . . , $log 3n/2i%,

A. Let Si,j be a random subset of $3n/2i+j% vertices.
B. For u ∈ Si,j , Du = FHEASW-Solver((V,E′), u, 4).
C. For u ∈ Si,j , v ∈ R, z ∈ {δ(V,E′)(u, v), δ(V,E′)(u, v) +

1, . . . , δ(V,E′)(u, v) + 4}, add to F the heavy edges on the
walk from u to v given by Du with query input z, provided
the number of heavy edges on the walk is ≤ 2i+j+1/n1/3 + 2.

4. Output H = (V, F ).

Theorem 2. |F | = O(n4/3 log3 n).

Proof. The number of light edges added to F is O(n4/3). The number of edges
added in step 3a, over all 3 logn iterations of step 3, is O(n log n).

For each iteration i of step 3b, at most
∑

j |R||Si,j |(2i+j+1/n1/3 + 2) =∑
j O(n2/3) ·O(n/2i+j) · (2i+j+1/n1/3 +2) = O(n4/3 logn)+

∑
j O(n5/3)/2i+j =

O(n4/3 logn) edges are added to F , where the last inequality follows from the
fact that 2i+j ≥ n1/3. The number of iterations of step 3b is O(log n), and step
3 is invoked 3 logn times, resulting in |F | = O(n4/3 log3 n).

Theorem 3. Spanner Construction can be implemented in O(n2 log2 n) time.

Proof. In step 1 we classify each edge as light or heavy, and assign the corre-
sponding weight. This can be done in O(m) time.

A single iteration of step 3a takes at most O(m) time. Hence, over all O(log n)
iterations, step 3a takes O(m logn) = O(n2 logn) time.

For a single iteration of step 3biiB, for a fixed value of i, j, and u ∈ Si,j ,
FHEASW-Solver takes time O(n2i) , since there are at most O(n2i) edges in
the subgraph. As there are O(n/2i+j) different u ∈ Si,j , it follows that step 3biiB
takes O(n2/2j) time. Hence, summing over all iterations and i and j, step 3biiB
takes O(n2 log2 n) time.

A single iteration of step 3biiC takes at most O(|Si,j ||R|(2i+j+1/n1/3 + 2)) =
O(n/2i+j) ·O(n2/3)(2i+j+1/n1/3 + 2) = O(n4/3) time. Summing over iterations,
step 3biiC takes Õ(n4/3) time.

Hence, the total time of the algorithm is O(n2 log2 n).
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It remains to argue the algorithm’s correctness. We start with a lemma. If P =
(v1, . . . , vs) is a shortest path from vertex v1 to vs, we define N(P ) = ∪s

i=1N(vi).

Lemma 1. In the graph (V,E′) for any E′ ⊆ E, if there is a shortest path P
from u to v containing � vertices of degree at least 2n1/3, then |N(P )| ≥ 2�n1/3/3.

Proof. Let w1, w2, . . . , w� be the sequence of vertices of degree at least 2n1/3

along P (possibly with other vertices in between). Observe that for each j,
N(wj) must be disjoint from ∪j′≥j+3N(wj′). Otherwise one could go from wj to
a vertex x ∈ N(wj)∩ (∪j′≥j+3N(wj′ )), then to a vertex wj′ for some j′ ≥ j + 3,
in two steps. As δP (wj , wj′ ) ≥ 3, this contradicts P being a shortest path, since
each of its sub-paths must be shortest. As |N(wj)| ≥ 2n1/3 for all j, it follows
that

∣∣∪�
j=1N(wj)

∣∣ ≥ 2�n1/3/3.

Theorem 4. With probability at least 1− 1/n, H is an additive 6-spanner.

Proof. Fix a pair {a, b} of vertices in G, and fix any shortest path P from a to
b in G with the fewest heavy edges. We assume that there is at least one heavy
edge on P , as otherwise the path P will be added to F in step 2. So there are
at least two vertices of degree at least 2n1/3 on P . Let w1, w2, . . . , wr be the
ordered sequence of vertices on P of degree at least 2n1/3, where w1 is closest
to a and wr is closest to b.

Consider one iteration of step 3. We show that with probability at least 3/8,
using only the edges added to F in step 2 and the current iteration of step 3,
there is a path of length at most δG(a, b) + 6 from a to b. It will follow that the
probability that there is some iteration for which there is a path of length at
most δG(a, b) + 6 is at least 1 − (3/8)3 logn = 1 − 1/n3. By a union bound, it
will follow that for every pair of vertices, there is such a path with probability
at least 1− 1/n, that is, H is an additive 6-spanner.

Let i∗ be such that all edges along P have type at most i∗, and there is
at least one edge e∗ of type i∗. Observe that i∗ ∈ {logn, (logn) − 1, (logn) −
2, . . . , (logn1/3)+1}. We shall only consider the i∗-th iteration of step 3b. Notice
that the entire path P is included in the edgeset E′. We do a case analysis.
Case 1: The path P contains at most 2i

∗
/n1/3 heavy edges.

In this case we shall only consider the iteration in which j = 0 of step 3bii.
Now, e∗ is of type i∗, which means that at least one of its endpoints y has degree
in the range [2i

∗
, 2i

∗+1). It follows that all edges incident to y have type at most
i∗, and in particular, are included in the graph (V,E′). Consider the following
event E : Si∗,0 ∩N(y) �= ∅. Then,

Pr[E ] ≥ 1−
(

1− |N(y)|
n

)|Si∗,0|
≥ 1−

(
1− 2i

∗

n

)3n/2i∗

≥ 1− 1
e
.

Conditioned on E , let u ∈ Si∗,0 ∩N(y). Let E∗ be the set of edges added in step
3a, and consider the event F : ∃v1 ∈ R for which {w1, v1} ∈ E∗ and ∃vr ∈ R
for which {wr, vr} ∈ E∗. Since degree(w1), degree(wr) ≥ 2n1/3, Pr[F ] ≥ 1 −

2
(
1− 2n1/3

n

)2n2/3

≥ 1− 2e−4. By a union bound, Pr[E ∧ F ] ≥ 1− 1
e −

2
e4 > 3

8 .
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Conditioned on E ∧ F , let v1 be a vertex in R for which {w1, v1} ∈ E∗, and
vr be a vertex in R for which {wr, vr} ∈ E∗. Consider the walk Q from u to v1
which first traverses edge {u, y}, then agrees with path P from y to w1, then
traverses edge {w1, v1}. Observe that the number of heavy edges along Q is at
most 2i

∗
/n1/3 + 2, since P contains at most 2i

∗
/n1/3 heavy edges. Moreover,

by the triangle inequality, the walk Q is of length at most δG(u, v1) + 4 ≤
δ(V,E′)(u, v1) + 4. It follows that in step 3biiC, there will be a walk Q′ added to
F from v1 to u of length at most δ(V,E′)(w1, y) + 2. Similarly, there will be a
walk Q′′ added to F from u to vr of length at most δ(V,E′)(y, wr) + 2.

Hence, the walk P ′ from a to b which agrees with P from a until w1, then
goes to v1, then takes the walk Q′ to u, then the walk Q′′ from u to vr, then
goes to wr, then agrees with P from wr to b, is of length at most |P ′| ≤
δG(a,w1) + 1 + |Q′| + |Q′′| + 1 + δG(wr, b), which is at most δG(a,w1) + 1 +
δ(V,E′)(w1, y)+2+δ(V,E′)(y, wr)+2+1+δG(wr , b), which is at most δG(a, b)+6.

Case 2: The path P contains more than 2i
∗
/n1/3 heavy edges. Let j∗ be such that

the number of heavy edges on P is in the interval [2i
∗+j∗/n1/3, 2i

∗+j∗+1/n1/3).
Each heavy edge on P is of type at most i∗, and so one of the two endpoints must
have degree in the range [2n1/3, 2i

∗+1). It follows that all of the edges incident to
this endpoint in G are included in the graph (V,E′). It follows that there are at
least 2i

∗+j∗−1/n1/3 vertices of degree at least 2n1/3 on P in the graph (V,E′). By
Lemma 1, |N(P )| is therefore at least 2i

∗+j∗/3. Notice that this is also at most
n, and therefore 2j

∗ ≤ 3n/2i
∗
. Hence there is an iteration of step 3bii for which

j = j∗. We only consider this iteration.
By Lemma 1, |N(P )| ≥ 2i

∗+j∗/3. Consider the following event E : Si∗,j∗ ∩

N(P ) �= ∅. Then, Pr[E ] ≥ 1−
(
1− |N(P )|

n

)|Si∗,j∗ |
≥ 1−

(
1− 2i∗+j∗

3n

)3n/2i∗+j∗

≥
1 − 1

e . Conditioned on E , let u ∈ Si∗j∗ ∩ N(P ) and let y ∈ P be such that
{u, y} ∈ E′. As in case 1, letting E∗ be the set of edges added in step 3a, we
have that with probablity at least 3/8 event E occurs and there is a vertex v1 ∈ R
for which {w1, v1} ∈ E∗, and a vertex vr ∈ R for which {wr, vr} ∈ E∗.

As in case 1, consider the walk Q from u to v1, traversing edge {u, y}, agreeing
with P from y to w1, then traversing edge {w1, v1}. This walk contains at most
2i

∗+j∗+1/n1/3 + 2 heavy edges and has length at most δ(V,E′)(u, v1) + 4, so in
step 3biiC there will be a walk Q′ added to F from v1 to u of length at most
δ(V,E′)(w1, y) + 2. And as before, there will be a walk Q′′ added to F from u
to vr of length at most δ(V,E′)(y, wr) + 2. It follows that as in case 1 that there
is a walk P ′ from a to b in the spanner with length at most δG(a, b) + 6. This
completes the proof.

4 Construction for Inputs with Large Girth

Given a graph G with m edges and n vertices, let Γk(G) be the number of
edges in G that lie on a cycle with length at most 2k. Choose ε so that nε =
(k2n)1/(k+�+1). We need the following lemma of Baswana et al.
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Lemma 2. ([5]) There are clusterings C� and Ck of vertices of G with the fol-
lowing properties: (1) for i ∈ {�, k}, each cluster C ∈ Ci is a rooted spanning
tree with radius at most i, and (2) the number of clusters in Ci is n1−iε. The
subgraph Hk,� containing all such spanning trees as well as every edge incident
to a vertex that does not appear in both clusterings C� and Ck can be constructed
in O(m) time and satisfies E[|Hk,�|] = O(Γk(G) + n1+ε).

Now we define a heavy edge to be an edge that does not appear in Hk,�. It is easy
to see that Theorem FHEASW-Solver continues to work with this new definition
of a heavy edge, that is, FHEASW-Solver solves the FHEASW problem (with
respect to this new definition of heavy) in O(m+ n) time, for constant k and �.

We let Base-Edges denote the algorithm guaranteed by Lemma 2. The follow-
ing is our main algorithm.

InterClusterSpanner (G = (V,E)):

1. Initialize F to the output of Base-Edges(G). For i ∈ {k, �}, let Vi denote
the set of centers of vertices in clusters in Ci.

2. Repeat the following steps 3 logn times:
(a) For i = logn, (logn)− 1, (logn)− 2, . . . , 1,

i. Let Si be a random sample of 2n/2i vertices. For each vertex in
[n] \ Si, if there is an edge to a vertex in Si, add one edge to F .

ii. Put q = �logn−kε2i/(2k)�. For j = q, q+1, . . . , $logn1−kε%, sam-
ple a set Si,j ⊆ Vk of $n1−kε2−j% vertices.

iii. Let E′ ⊆ E be the set of edges of type at most i.
iv. For each u ∈ Si ∪ (∪ all j Si,j),

A. Compute Du = FHEASW-Solver((V,E′), u, � + k).
B. For v ∈ V�, z ∈ {δ(V,E′)(u, v), δ(V,E′)(u, v) + 1, . . .,

δ(V,E′)(u, v) + 2� + 2k}, add to F the heavy edges along the
walk from u to v given by Du with query input z, provided it
has at most 2in−kε+�+1 heavy edges if u ∈ Si and 2i ≥ nkε,
or at most 4k2j + � + k heavy edges if u ∈ Si,j for some j.

3. Output H = (V, F ).

Our analysis will assume that the output of Base-Edges in step 1 has O(Γk(G)+
n1+ε) edges. This can be done with probability 1−1/n3 by running the algorithm
of Lemma 2 O(log n) times and taking the output with the least number of edges.

Theorem 5. |F | = O(Γk(G) + n1+ 1
k+�+1 log3 n).

Proof. The number of edges added in step 1 is O(Γk(G) +n1+ 1
k+�+1 ) by Lemma

2 and the definition of ε.
The number of edges added in step 2(a)i is O(n) per iteration, and thus

O(n log2 n) over all 3 logn iterations of step 2 and all choices of i.
The number of edges added in step 2(a)ivB due to u ∈ Si is at most |Si| · |V�| ·(

2in−kε + � + 1
)

= O(n2−i)n1−�ε(2in−kε + � + 1) = O(n2−(k+�)ε + n2−�ε2−i).
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Notice that paths are only added if 2i ≥ nkε, and so this expression is bounded
by O(n2−(k+�)ε). Hence, over all 3 logn iterations of step 2 and all choices of i,
this is bounded by O(n2−(k+�)ε log2 n).

The number of edges added in step 2(a)ivB due to u ∈ Si,j for a fixed j is at
most |Si,j |·|V�|·(4k2j+�+k) = O(n1−kε2−j)·n1−�ε·(4k2j+�+k) = O(n2−(k+�)ε),
and so as we range over all j it is bounded by O(n2−(k+�)ε logn). Since step
2(a)ivB is invoked O(log2 n) times, using the definition of ε we see that the total
number of edges in H meets the claimed bound.

Theorem 6. InterClusterSpanner can be implemented in O(n2 log2 n) time.

Proof. Step 1 can be implemented in O(m) time by Lemma 2. Fix some iteration
of step 2a. Then steps 2ai, 2aii, and 2aiii can be implemented in O(n+m) time.
Step 2aivA runs in time O((|Si| + | ∪ all j Si,j |)n2i) = O(n2) + O(|Si,q|n2i).
Here we used that (1) n1−kε2−j is geometrically decreasing in j, (2) |Si,j | =
$n1−kε2−j%, and (3) j is bounded above by $logn1−kε%. Therefore, |∪ all j Si,j | =
O(|Si,q |). Now, |Si,q| = O(n1−kε/(n−kε2i)) = O(n/2i). Hence, step 2a(iv)A runs
in time O(n2). Over all iterations of step 2 and choices of i in step 2a, this gives
O(n2 log2 n) time.

By definition of FHEASW, step 2aivB runs in time O(|V�|(|Si|2in−kε +∑
j |Si,j |(4k2j))) = Õ(n1−�ε(n2−i · 2in−kε +

∑
j n

1−kε2−j(4k2j))), which equals
O(n2−(k+�)ε logn). Here we used the relation 2in−kε + �+1 = Θ(2in−kε), which
does not hold in general, but if we add the heavy edges along a path for u ∈ Si

in step 2aivB we require that 2i ≥ nkε, so in this case the relation holds. Over all
invocations of step 2 and choices of i in step 2a, this results in O(n2−(k+�)ε log3 n)
time, and thus is dominated by the time for iterations of step 2aivA.

Theorem 7. With probability ≥ 1− 1/n, H is an additive (2k + 4�)-spanner.

Proof. Fix a pair {a, b} of vertices in G and a shortest path P between them. We
assume there is at least one heavy edge along P (recall that we have modified
the definition of heavy), otherwise P will be added to F in step 1. Let w1, . . . , wr

be the ordered sequence of vertices in P (w1 is closest to a, and wr is closest to
b) that appear in both C� and Ck (note that r ≥ 2 since there is a heavy edge
along P ). Let v1, . . . , vr be the centers of the clusters in C� containing w1, . . . , wr,
respectively.

Consider one iteration of step 2. We show that with probability at least 3/8,
using only the edges added to F in step 1 and the current iteration of step
2, there is a path of length at most δG(a, b) + 2k + 4� from a to b. Hence the
probability that there is some iteration for which there is a path of length at
most δG(a, b) + 2k+ 4� is at least 1− (3/8)3 logn ≥ 1− 1/n3. By a union bound,
it will follow that for every pair of vertices, there is such a path with probability
at least 1− 1/n, that is, H is an additive (2k + 4�)-spanner.

Recall that an edge {u, v} is of type i if min(deg(u), deg(v)) ∈ [2i, 2i+1). We
let i∗ be such that all edges along P have type at most i∗, and there is at least
one edge e∗ of type i∗. We shall only consider the i∗-th iteration of step 2a.
Notice that the entire path P is included in the edgeset E′.
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Case 1: P contains at most n−kε2i
∗

heavy edges. Since e∗ is of type i∗, one
of its endpoints y has degree in the range [2i

∗
, 2i

∗+1). Hence, all edges incident
to y have type at most i∗, and are included in the graph (V,E′). Since Si∗ is a

randomly chosen set of size 2n/2i
∗
, with probability at least 1−

(
1− 2∗

n

)2n/2i∗

≥
3/8, there is a vertex u ∈ Si∗ ∩N(y). We condition on this event.

Consider the walk Q from u to v1 which first traverses edge {u, y}, then agrees
with path P from y to w1, then traverses at most � edges along the spanning
tree from w1 to v1 in the cluster centered at v1. Observe that the number of
heavy edges along this walk is at most n−kε2i

∗
+ � + 1. Also, since P contains

at most n−kε2i
∗

heavy edges and at least 1 heavy edge, 2i
∗ ≥ n−kε, as needed

by step 2aivB. Moreover, by the triangle inequality, the walk Q is of length at
most δG(w1, y)+ �+1 ≤ δG(u, y)+ 2�+ 2 ≤ δG(u, y)+ 2�+ 2k. It follows that in
step 2aivB, there will be a walk Q′ added to F from v1 to u of length at most
δ(V,E′)(w1, y)+ �+1. Similarly, there will be a walk Q′′ added to F from u to vr
of length at most δ(V,E′)(y, wr)+ �+1. Hence, the walk from a to b which agrees
with P from a until w1, then goes to v1, then takes the walk Q′ to u, then the
walk Q′′ from u to vr, then goes to wr, then agrees with P from wr to b, is of
length at most δG(a, b) + 2 + 4� ≤ δG(a, b) + 2k + 4�.

Case 2: P contains more than n−kε2i
∗

heavy edges. Let h denote the num-
ber of heavy edges along P . Since P is a shortest path, all vertices along P are
distinct, and so there are at least h of them that appear in a cluster in Ck. We
need the slightly stronger property that there is a set T of t ≥ $h/(2k)% distinct
vertices v ∈ Vk for which some vertex in the cluster centered at v appears along
P . Indeed, otherwise there would exist two vertices along P in the same cluster
in Ck at a distance larger than 2k from each other, contradicting that P is a
shortest path. Observe that t ≤ h+1, the number of heavy edges. Let j∗ ≥ 0 be
such that t ∈ [2j

∗
, 2j

∗+1). Since 2j ranges from n−kε2i
∗
/(2k) to at least n1−kε,

we can consider j = j∗ in step 2(a)ii.
Consider the following event E : Si∗,j∗ ∩ T �= ∅. Then, Pr[E ] is at least 1 −(

1− t
n1−kε

)|Si∗,j∗ | ≥ 1 −
(
1− 2j∗

n1−kε

)�n1−kε2−j∗ �
> 3

8 . Conditioned on E , let
v ∈ Si∗,j∗ ∩ T , and let u be the vertex in the cluster centered at v in Ck that
lies along P . Consider the walk Q which first traverses the at most k edges on
the spanning tree from v to u, then agrees with path P from u to w1, then
traverses the at most � edges along the spanning tree from w1 to v1 in the
cluster centered at v1. The number of heavy edges along this walk is at most
h + � + k ≤ 2kt + � + k ≤ 4k2j

∗
+ � + k. By the triangle inequality, the walk Q

is of length at most δG(u,w1) + k + � ≤ δG(v, v1) + 2k + 2�. It follows that in
step 4aiiC, there will be a walk Q′ added to F from v1 to v of length at most
δ(V,E′)(u,w1) + � + k. Similarly, there will be a walk Q′′ added to F from v to
vr of length at most δ(V,E′)(u,wr) + � + k. Hence, the walk from a to b which
agrees with P from a until w1, then goes to v1, then takes the walk Q′ to v, then
the walk Q′′ from v to vr, then goes to wr, then agrees with P until b will have
length at most δG(a, b) + � + 2(� + k) + � = δG(a, b) + 2k + 4�, as needed.
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Abstract. A well-studied class of functions in communication com-
plexity are composed functions of the form (f ◦ gn)(x, y) =
f(g(x1, y1), . . . , g(xn, yn)). This is a rich family of functions which en-
compasses many of the important examples in the literature. It is thus
of great interest to understand what properties of f and g affect the
communication complexity of (f ◦ gn), and in what way.

Recently, Sherstov [She09] and independently Shi-Zhu [SZ09b] devel-
oped conditions on the inner function g which imply that the quantum
communication complexity of f ◦ gn is at least the approximate poly-
nomial degree of f . We generalize both of these frameworks. We show
that the pattern matrix framework of Sherstov works whenever the inner
function g is strongly balanced—we say that g : X × Y → {−1, +1} is
strongly balanced if all rows and columns in the matrix Mg = [g(x, y)]x,y

sum to zero. This result strictly generalizes the pattern matrix frame-
work of Sherstov [She09], which has been a very useful idea in a variety
of settings [She08b, RS08, Cha07, LS09a, CA08, BHN09].

Shi-Zhu require that the inner function g has small spectral discrep-
ancy, a somewhat awkward condition to verify. We relax this to the usual
notion of discrepancy.

We also enhance the framework of composed functions studied so far
by considering functions F (x, y) = f(g(x, y)), where the range of g is
a group G. When G is Abelian, the analogue of the strongly balanced
condition becomes a simple group invariance property of g. We are able to
formulate a general lower bound on F whenever g satisfies this property.

1 Introduction

Communication complexity studies the minimum amount of communication
needed to compute a function whose input variables are distributed between
two or more parties. Since the introduction by Yao [Yao79] of an elegant mathe-
matical model to study this question, communication complexity has grown into
a rich field both because of its inherent mathematical interest and also its ap-
plication to many other models of computation. See the textbook of Kushilevitz
and Nisan [KN97] for a comprehensive introduction to the field.

S. Abramsky et al. (Eds.): ICALP 2010, Part I, LNCS 6198, pp. 475–489, 2010.
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In analogy with traditional computational complexity classes, one can consider
different models of communication complexity based on the resources available
to the parties. Besides the standard deterministic model, of greatest interest to
us will be a randomized version of communication complexity, where the parties
have access to a source of randomness and are allowed to err with some small
constant probability, and a quantum model where the parties share a quantum
channel and the cost is measured in qubits.

Several major open questions in communication complexity ask about how
different complexity measures relate to each other. The log rank conjecture,
formulated by Lovász and Saks [LS88], asks if the deterministic communication
complexity of a Boolean function F : X × Y → {0, 1} is upper bounded by
a polynomial in the logarithm of the rank of the matrix [F (x, y)]x,y. Another
major open question is if randomized and quantum communication complexity
are polynomially related for all total functions. We should mention here that the
assumption of the function being total is crucial as an exponential separation is
known for a partial function [Raz99].

One approach to these questions has been to study them for restricted classes
of functions. Many functions of interest are block composed functions. For finite
sets X,Y , and E, a function f : En → {−1,+1}, and a function g : X×Y → E,
the block composition of f and g is the function f ◦ gn : Xn × Y n → {−1,+1}
defined by (f ◦ gn)(x, y) = f(g(x1, y1), . . . , g(xn, yn)) where (xi, yi) ∈ X ×Y for
all i = 1, . . . , n. For example, if E = {−1,+1}, the inner product function results
when f is PARITY and g is AND, set-intersection when f is OR and g is AND,
and the equality function when f is AND and g is the function IS-EQUAL,
which is one if and only if x = y.

In a seminal paper, Razborov [Raz03] gave tight bounds for the bounded-
error quantum communication complexity of block composed functions where the
outer function is symmetric and the inner function is bitwise AND. In particular,
this result showed that randomized and quantum communication complexity are
polynomially related for such functions.

More recently, very nice frameworks have been developed by Sherstov
[She07, She09] and independently by Shi and Zhu [SZ09b] to bound the quantum
complexity of block composed functions that goes beyond the case of symmetric
f to work for any f provided the inner function g satisfies certain technical con-
ditions. When g satisfies these conditions, these frameworks allow one to lower
bound the quantum communication complexity of f ◦gn in terms of degε(f), the
approximate polynomial degree of f , a well-studied measure.

Shi and Zhu are able to get a bound on f ◦ gn in terms of the approxi-
mate degree of f whenever g is sufficiently “hard”—unfortunately, the hardness
condition they need is in terms of “spectral discrepancy,” a quantity which is
somewhat difficult to bound, and their bound requires that g is a function on
at least Ω(log(n/d)) bits, where d is the approximate polynomial degree of f .
Because of this, Shi-Zhu are only able to reproduce Razborov’s results with a
polynomially weaker bound.
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Sherstov developed so-called pattern matrices which are the matrix represen-
tation of a block composed function when g is a fixed function of a particularly
nice form. Namely, in a pattern matrix the inner function g : {−1,+1}k× ([k]×
{−1,+1}) → {−1,+1} is parameterized by a positive integer k and defined by
g(x, (i, b)) = xi · b, where xi denotes the ith bit of x. With this g, Sherstov shows
that degε(f) is a lower bound on the quantum communication complexity of
f ◦ gn, for any function f . Though seemingly quite special, pattern matrices
have proven to be an extremely useful concept. First, they give a simple proof
of Razborov’s tight lower bounds for f(x ∧ y) for symmetric f . Second, they
have also found many other applications in unbounded-error communication
complexity [She08b, RS08] and have been successfully extended to multiparty
communication complexity [Cha07, LS09a, CA08, BHN09].

A key step in both the works of Sherstov and Shi-Zhu is to bound the spectral
norm of a sum of matrices ‖

∑
iBi‖. This is the major step where these works dif-

fer. Shi-Zhu apply the triangle inequality to bound this as ‖
∑

iBi‖ ≤
∑

i ‖Bi‖.
On the other hand, Sherstov observes that, in the case of pattern matrices, the
terms of this sum are mutually orthogonal, i.e. B†iBj = BiB

†
j = 0 for all i �= j. In

this case, one has a stronger bound on the spectral norm ‖
∑

iBi‖ = maxi ‖Bi‖.
We extend both the frameworks of Sherstov and Shi-Zhu. In the case of Shi-

Zhu, we are able to reprove their theorem with the usual notion of discrepancy
instead of the somewhat awkward spectral discrepancy. The main observation
we make is that as all Shi-Zhu use in this step is the triangle inequality, we can
repeat the argument with any norm here, including discrepancy itself.

In the case of pattern matrices, special properties of the spectral norm are
used, namely the fact about the spectral norm of a sum of orthogonal matrices.
We step back to see what key features of a pattern matrix lead to this orthogo-
nality property. We begin with the Boolean case, that is, where the intermediate
set E is taken to be {−1,+1}. In this case, a crucial concept is the notion of
a strongly balanced function. We say that g : X × Y → {−1,+1} is strongly
balanced if in the sign matrix Mg[x, y] = g(x, y) all rows and all columns sum to
zero. We show that whenever the inner function g is strongly balanced, the key
orthogonality condition holds; this implies that whenever g is strongly balanced
and has discrepancy under the uniform distribution bounded away from one, the
approximate degree of the outer function f is a lower bound on the quantum
communication complexity of f ◦ gn.

We also consider the general case where the intermediate set is any group G.
That is, we consider functions F (x, y) = f(g(x, y)), where g : X × Y → G for a
group G and f : G → {−1,+1} is a class function on G. The case E = {−1,+1}
discussed above corresponds to taking the group G = Zn

2 . When G is a general
Abelian group, the key orthogonality condition requires more than that the ma-
trix Mg[x, y] = g(x, y) is strongly balanced; still, it admits a nice characterization
in terms of group invariance. A multiset T ∈ G × G is said to be G-invariant if
(s, s)T = T for all s ∈ G. The orthogonality condition will hold if and only if all
pairs of rows and all pairs of columns of Mg (when viewed as multisets) are G-
invariant. One can generalize the results discussed above to this general setting
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with appropriate modifications. In the case that G = Zn
2 , the G-invariant condi-

tion degenerates to the strongly balanced requirement of Mg.

2 Preliminaries

All logarithms are base two. For a complex number z = a+ ib we let z̄ = a− ib
denote the complex conjugate of z and |z| =

√
a2 + b2 and Re(z) = a.

2.1 Complexity Measures

We will make use of several complexity measures of functions and matrices.
Let f : {−1,+1}n → {−1,+1} be a function. For T ⊆ {0, 1}n, the Fourier
coefficient of f corresponding to the character χT is f̂T = 1

2n

∑
x f(x)χT (x) =

1
2n

∑
x f(x)

∏
i∈T xi. The degree of f as a polynomial, denoted deg(f), is the size

of a largest set T for which f̂T �= 0.
We reserve J for the all ones matrix, whose size will be determined by the

context. For a matrix A let A† denote the conjugate transpose of A. We use
A ∗B for the entrywise product of A,B, and A⊗B for the tensor product. If A
is an m-by-n matrix then we say that size(A) = mn. We use 〈A,B〉 = Tr(AB†)
for the inner product of A and B.

Let ‖A‖1 be the �1 norm of A, i.e. sum of the absolute values of entries of A,
and ‖A‖∞ the maximum absolute value of an entry. For a positive semidefinite
matrix M let λ1(M) ≥ · · · ≥ λn(M) ≥ 0 be the eigenvalues of M . We define
the ith singular value of A, denoted σi(A), as σi(A) =

√
λi(AA†). The rank

of A, denoted rk(A) is the number of nonzero singular values of A. We will use
several matrix norms. The spectral or operator norm is the largest singular value
‖A‖ = σ1(A), the trace norm is the summation of all singular values ‖A‖tr =∑

i σi(A), and the Frobenius norm is the �2 norm of the singular values ‖A‖F =√∑
i σi(A)2. When AB† = A†B = 0 we will say that A,B are orthogonal.

Please note the difference with the common use of this term, which usually
means 〈A,B〉 = 0.

Fact 1. For two matrices A,B of the same dimensions, if AB† = A†B = 0,
then

rk(A + B)=rk(A) + rk(B), ‖A + B‖tr =‖A‖tr + ‖B‖tr, ‖A + B‖=max{‖A‖, ‖B‖}.

Another norm we will use is the γ2 norm, introduced to complexity theory in
[LMSS07], and familiar in matrix analysis as the Schur product operator norm.
The γ2 norm can be viewed as a weighted version of the trace norm.

Definition 1
γ2(A) = max

u,v:‖u‖=‖v‖=1
‖A ∗ uv†‖tr.

It is clear from this definition that γ2(A) ≥ ‖A‖tr/
√
mn for an m-by-n matrix A.

For a norm Φ, the dual norm Φ∗ is defined as Φ∗(v) = maxu:Φ(u)≤1 |〈u, v〉|.
The norm γ∗2 , dual to the γ2 norm, looks as follows.
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Definition 2
γ∗2 (A) = max

ui,vj :
‖ui‖=‖vj‖=1

∑
i,j

A[i, j]〈ui, vj〉.

Another complexity measure we will make use of is discrepancy.

Definition 3. Let A be an m-by-n sign matrix and let P be a probability dis-
tribution on the entries of A. The discrepancy of A with respect to P , denoted
discP (A), is defined as

discP (A) = max
x∈{0,1}m,y∈{0,1}n

|x†(A ∗ P )y|.

We will write discU (A) for the special case where P is the uniform distribution.
It is easy to see from this definition that discU (A) ≤ ‖A‖√

size(A)
. Shaltiel [Sha03]

has shown the deeper result that this bound is in fact polynomially tight:

Theorem 2 (Shaltiel). Let A be a sign matrix. Then

1
108

(
‖A‖√
size(A)

)3

≤ discU (A).

Discrepancy and the γ∗2 norm are very closely related. Linial and Shraibman
[LS09c] observed that Grothendieck’s inequality gives the following.

Theorem 3 (Linial-Shraibman). For any sign matrix A and probability dis-
tribution P

discP (A) ≤ γ∗2 (A ∗ P ) ≤ KG discP (A)

where 1.67 . . . ≤ KG ≤ 1.78 . . . is Grothendieck’s constant.

Approximate measures. We will also use approximate versions of these com-
plexity measures which come in handy when working with bounded-error models.
Say that a function g gives an ε-approximation to f if |f(x) − g(x)| ≤ ε for all
x ∈ {−1,+1}n. The ε-approximate polynomial degree of f , denoted degε(f), is
the minimum degree of a function g which gives an ε-approximation to f . We
will similarly look at the ε-approximate version of the trace and γ2 norms. We
give the general definition with respect to any norm.

Definition 4 (approximation norm). Let Φ : Rn → R be an arbitrary norm.
Let v ∈ Rn be a sign vector. For 0 ≤ ε < 1 we define the approximation norm
Φε as

Φε(v) = min
u:‖v−u‖∞≤ε

Φ(u).

Notice that an approximation norm Φε is not itself a norm—we have only defined
it for sign vectors, and it will in general not satisfy the triangle inequality.

As a norm is a convex function, using the separating hyperplane theorem
one can quite generally give the following equivalent dual formulation of an
approximation norm.
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Proposition 1. Let v ∈ Rn be a sign vector, and 0 ≤ ε < 1

Φε(v) = max
u

|〈v, u〉| − ε‖u‖1

Φ∗(u)

A proof of this can be found in the survey [LS09b].

2.2 Communication Complexity

Let X,Y, S be finite sets and f : X×Y → S be a function. We will let D(f) be the
deterministic communication complexity of f , and Rε(f) denote the randomized
public coin complexity of f with error probability at most ε. We refer to the
reader to [KN97] for a formal definition of these models. We will also study
Qε(f) and Q∗ε(f), the ε-error quantum communication complexity of f without
and with shared entanglement, respectively. We refer the reader to [Raz03] for
a nice description of these models.

For notational convenience, we will identify a function f : X×Y → {−1,+1}
with its sign matrix Mf = [f(x, y)]x,y. Thus, for example, ‖f‖ refers to the
spectral norm of the sign matrix representation of f .

For all of our lower bound results we will actually lower bound the approximate
trace norm or γ2 norm of the function. Razborov showed that the approximate
trace norm can be used to lower bound on quantum communication complexity,
and Linial and Shraibman generalized this to the γ2 norm.

Theorem 4 (Linial-Shraibman [LS09d]). Let A be a sign matrix and 0 ≤
ε < 1/2. Then

Q∗ε (A) ≥ log
(
γ2ε
2 (A)

)
− 2.

Composed functions. Before discussing lower bounds on a block composed
function f ◦ gn, let us see what we expect the complexity of such a function to
be. A fundamental idea going back to Nisan [Nis94] and Buhrman, Cleve, and
Wigderson [BCW98], is that the complexity of f ◦gn can be related to the query
complexity of f and the communication complexity of g. This holds true for
deterministic, randomized, and quantum models of communication complexity
and query complexity. For formal definitions of these measures and a survey of
query complexity we recommend [BW02].

One advantage of working with block composed functions in light of this
is that query complexity is in general better understood than communication
complexity. In particular, a polynomial relationship between deterministic query
complexity and degree, and randomized and quantum query complexities and
approximate degree is known. Putting these two facts together gives the following
corollary:

Corollary 1

D(f ◦ gn)=O(deg(f)4D(g)), R1/4(f ◦ gn)=O(deg1/4(f)6R1/4(g) log deg1/4(f))
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Our goal, then, in showing lower bounds on the complexity of a block composed
function f ◦gn is to get something at least in the ballpark of this upper bound. Of
course, this is not always possible. For example, when f is the PARITY function
on n bits, and g(x, y) = ⊕(x, y) this protocol just gives an upper bound of n bits,
when the true complexity is constant. See recent results by Zhang [Zha09] and
Sherstov [She10] for discussions on the tightness of the bounds in Corollary 1.

3 Rank of Block Composed Functions

We begin by analyzing the rank of a block composed function f ◦ gn when the
inner function g is strongly balanced. This case will illustrate the use of the
strongly balanced assumption, and is simpler to understand than the bounded-
error situation treated in the next section.

Let us first formally state the definition of strongly balanced.

Definition 5 (strongly balanced). Let A be a sign matrix, and J be the
all ones matrix of the same dimensions as A. We say that A is balanced if
Tr(AJ†) = 0. We further say that A is strongly balanced if AJ† = A†J = 0. We
will say that a two-variable Boolean function is balanced or strongly balanced if
its sign matrix representation is.

Theorem 5. Let f : {−1,+1}n → {−1,+1} be an arbitrary function, and let g
be a strongly balanced function. Then

rk(Mf◦gn) =
∑

T⊆[n], f̂T �=0

rk(Mg)|T |.

Proof. Let us write out the sign matrix for χT ◦ gn explicitly. If we let M0
g = J

be the all ones matrix and M1
g = Mg, then we can nicely write the sign matrix

representing χT (g(x1, y1), . . . , g(xn, yn)) as MχT ◦gn =
⊗

i M
T [i]
g where T [i] = 1

if i ∈ T and 0 otherwise.
We see that the condition on g implies MχT ◦gnM †

χS◦gn = 0 if S �= T . Indeed,

MχT ◦gnM †
χS◦gn =

(⊗
i

MT [i]
g

)(⊗
i

MS[i]
g

)†
=
⊗
i

(
MT [i]

g (MS[i]
g )†

)
= 0.

This follows since, by the assumption S �= T , there is some i for which S[i] �= T [i]
which means that this term is either MgJ

† = 0 or JM †
g = 0 because g is strongly

balanced. The other case follows similarly.
Now that we have established this property, we can use Fact 1 to obtain

rk(Mf◦gn)=rk
( ∑

T⊆[n]

f̂T χT (g(x1, y1), . . . , g(xn, yn))
)

=
∑

T⊆[n]

f̂T 
=0

rk(MχT ◦gn)=
∑

T⊆[n]

f̂T 
=0

rk(Mg)|T |

In the last step we used the fact that rank is multiplicative under tensor product.
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In particular, this theorem means that whenever g is a strongly balanced function
on a constant number of bits and rk(Mg) > 1, then the log rank conjecture holds
for f ◦ gn.

4 A Bound in Terms of Approximate Degree

In this section, we will address the frameworks of Sherstov and Shi-Zhu. We
extend both of these frameworks to give more general conditions on the inner
function g which still imply that the approximate degree of f is a lower bound
on the quantum query complexity of the composed function f ◦ gn. In outline,
both of these frameworks follow the same plan. By Theorem 4 it suffices to
lower bound the approximate γ2 norm (or approximate trace norm) of f ◦gn. To
do this, they use the dual formulation given by Proposition 1 and construct a
witness matrix B which has non-negligible correlation with the target function
and small γ∗2 (or spectral) norm.

A very nice way to construct this witness, used by both Sherstov and Shi-Zhu,
is to use the dual polynomial of f . This is a polynomial v which certifies that the
approximate polynomial degree of f is at least a certain value. More precisely,
duality theory of linear programming gives the following lemma.

Lemma 1 (Sherstov [She09], Shi-Zhu [SZ09b]). Let f : {−1,+1}n →
{−1,+1} and let d = degε(f). Then there exists a function v : {−1,+1}n → R
such that

1. 〈v, χT 〉 = 0 for every character χT with |T | < d.
2. 〈v, f〉 ≥ ε.
3. ‖v‖1 = 1.

Items (2),(3) are used to lower bound the correlation of the witness matrix with
the target matrix and to upper bound the �1 norm of the witness matrix. In the
most difficult step, and where these works diverge, Item (1) is used to upper
bound the γ∗2 (or spectral) norm of the witness matrix. We treat each of these
frameworks separately in the next two sections.

4.1 Sherstov’s Framework

The proof of the next theorem follows the same steps as Sherstov’s proof for
pattern matrices (Theorem 5.1 [She09]). Our main contribution is to identify
the strongly balanced condition as the key property of pattern matrices which
enables the proof to work.

Theorem 6. Let X,Y be finite sets, g : X × Y → {−1,+1} be a strongly
balanced function, and Mg[x, y] = g(x, y) be the corresponding sign matrix. Let
f : {−1,+1}n → {−1,+1} be an arbitrary function. Then for any ε > 0 and
ε0 > 2ε, we have

Q∗ε (f ◦ gn) ≥ degε0(f) log2

(√|X ||Y |
‖Mg‖

)
−O(1).
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Proof (Sketch). Let d = degε0(f) and let v be a dual polynomial for f with
properties as in Lemma 1. We define a witness matrix as

B[x, y] =
2n

size(Mg)n
v(g(x1, y1), . . . , g(xn, yn))

We will use the matrix B to witness that ‖Mf◦gn‖ε0tr is large via Proposition 1.
The theorem will then follow from Theorem 4.

There are three quantities to evaluate. One can compute 〈Mf◦gn , B〉 and ‖B‖1
using properties 2 and 3 of Lemma 1 respectively, together with the fact that as
Mg is strongly balanced, it is in particular balanced.

The more interesting step is to bound ‖B‖. As shown above, the strongly
balanced property of g implies that the matrices χT ◦ gn and χS ◦ gn are or-
thogonal for distinct sets S, T and so Fact 1 can be used to greatly simplify this
computation. Details are given in the full version.

Using the theorem of Shaltiel relating discrepancy to the spectral norm (Theo-
rem 2), we get the following corollary:

Corollary 2. Let the quantities be defined as in Theorem 6.

Q∗1/8(f ◦ gn) ≥ 1
3

deg1/3(f)
(
log

( 1
discU (Mg)

)
− 7

)
− O(1).

Comparison to Sherstov’s pattern matrix: As mentioned in [She09], Sher-
stov’s pattern matrix method can prove a quantum lower bound of Ω(degε(f))
for block composed functions f ◦gn if the matrix Mg contains the following 4×4
matrix S4 as a submatrix:

S4 =

⎡⎢⎢⎣
1 −1 1 −1
1 −1 −1 1
−1 1 1 −1
−1 1 −1 1

⎤⎥⎥⎦ , S6 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 −1 −1 −1
1 1 −1 1 −1 −1
1 −1 −1 −1 1 1
−1 −1 1 1 1 −1
−1 1 −1 −1 1 1
−1 −1 1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦
In this paper we show that the same lower bound holds as long as Mg contains
a strongly balanced submatrix with discrepancy bounded away from one. Are
there strongly balanced matrices not containing S4 as a submatrix? It turns out
that the answer is yes: we give the above 6× 6 matrix S6 as one example.

4.2 Shi-Zhu Framework

The method of Shi-Zhu does not restrict the form of the inner function g, but
rather works for any g which is sufficiently “hard.” The hardness condition they
require is phrased in terms of a somewhat awkward measure they term spectral
discrepancy.

Chattopadhyay [Cha08] extended the technique of Shi-Zhu to the case of
multiparty communication complexity, answering an open question of Sherstov
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[She08a]. In doing so, he gave a more natural condition on the hardness of g
in terms of an upper bound on discrepancy frequently used in the multiparty
setting and originally due to Babai, Nisan, and Szegedy [BNS92]. As all that
is crucially needed is subadditivity, we do the argument here with γ∗2 , which is
essentially equal to the discrepancy.

Theorem 7. Let f : {−1,+1}n → {−1,+1}, and g : X × Y → {−1,+1}. Fix
0 < ε < 1/2, and let ε0 > 2ε. Then

Q∗ε (f ◦ gn) ≥ degε0(f)−O(1).

provided there is a distribution μ which is balanced with respect to g and for
which γ∗2 (Mg ∗ μ) ≤ degε0

(f)
2en .

Proof. We again use Proposition 1, this time with the γ2 norm instead of the
trace norm. To prove a lower bound we choose a witness matrix B as follows

B[x, y] = 2n · v(g(x1, y1), . . . , g(xn, yn)) ·
n∏

i=1

μ(xi, yi).

where v witnesses that f has approximate degree at least d = degε0(f). This
definition is the same as in the previous section where μ was simply the uniform
distribution. As argued before, we have 〈Mf◦gn , B〉 ≥ ε0 and ‖B‖1 = 1 because
Mg ∗ μ is balanced.

The more interesting step is to upper bound γ∗2(B). We again expand B in
terms of the Fourier coefficients of v. As we do not have special knowledge of
the function g, we simply bound the resulting sum by the triangle inequality.
Details are given in the full version.

5 A General Framework for Functions Composed
through a Group

In this section we begin the study of general function compositions through a
group G. In this case the inner function g : X × Y → G has a group G as its
range, and the outer function f : G→ {−1,+1} is a class function, i.e. one that
is invariant on conjugacy classes. Previous sections deal with the special case
that G = Zn

2 .
Let us recall the basic idea of the proof of Theorem 6. Following the work

of Sherstov and Shi-Zhu [She09, SZ09b], to prove a lower bound on the quan-
tum communication complexity for a composed function f ◦ g, we constructed
a witness matrix B which had non-negligible correlation with f ◦ g and small
spectral norm. We used the dual polynomial p (of f) which has two important
properties, first that p has non-negligible correlation with f and second that p
has no support on low degree polynomials. We can then use the first property
to show that the composed function p ◦ g will give non-negligible inner product
with f ◦ g and the second to upper bound the spectral norm of p ◦ g. The second
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of these tasks is the more difficult. In the case of G = {−1,+1}n, the degree of
a character χT is a natural measure of how “hard” the character is — the larger
T is, the smaller the spectral norm of χT ◦ g will be. In the general group case,
however, it is less clear what the corresponding “hard” and “easy” characters
should be. In Section 5.1, we will show that this framework actually works for
an arbitrary partition of the basis functions into Easy and Hard.

In carrying out this plan, one is still left with upper bounding ‖Mp◦g‖. Here,
as in the Boolean case, it is again very convenient to have an orthogonality
condition which can greatly simplify the computation of ‖Mp◦g‖ and give good
bounds. In the Boolean case we have shown that Mg being strongly balanced
implies this key orthogonality condition. In Section 5.2 and 5.3, we will show
that for the general group, the condition is not only about each row and column
of matrix Mg, but all pairs of rows and pairs of columns. In the Abelian group
case, this reduces to a nice group invariance condition.

Even after applying the orthogonality condition to use the maximum bound
instead of the triangle inequality for ‖Mp◦g‖, the remaining term ‖Mχi◦g‖ (where
χi is a “hard” character) is still not easy to upper bound. For block composed
functions, fortunately, the tensor structure makes it feasible to compute. Section
5.4 gives a generalized version of Theorem 6.

5.1 General Framework

For a multiset T , x ∈ T means x running over T . Thus T = {a(s) : s ∈ S} means
the multiset formed by collecting a(s) with s running over S.

For a set S, denote by LC(S) the |S|-dimensional vector space over the field C
(of complex numbers) consisting of all linear functions from S to C, endowed with
inner product 〈ψ, φ〉 = 1

|S|
∑

s∈S ψ(s)φ(s). The distance of a function f ∈ LC(S)
to a subspace Φ of LC(S), denoted by d(f, Φ), is defined as min{δ : ‖f ′ − f‖∞ ≤
δ, f ′ ∈ Φ}, i.e. the magnitude of the least entrywise perturbation to turn f into Φ.

In the above setting, Theorem 6 generalizes to the following. The proof is
along the line of that of Theorem 6 and is omitted in this conference version.

Theorem 8. Consider a sign matrix A = [f(g(x, y))]x,y where g : X × Y → S
for a set S, and f : S → {−1,+1}. Suppose that there are orthogonal basis
functions Ψ = {ψi : i ∈ [|S|]} for LC(S). For any partition Ψ = ΨHard 2 ΨEasy,
let δ = d(f, span(ΨEasy)). If

1. (regularity) the multiset {g(x, y) : x ∈ X, y ∈ Y } is a multiple of S, i.e. S
repeated for some number of times.

2. (orthogonality) for all x, x′, y, y′ and all distinct ψi, ψj ∈ ΨHard,∑
y

ψi(g(x, y))ψj(g(x′, y)) =
∑
x

ψi(g(x, y))ψj(g(x, y′)) = 0,

then

Qε(A) ≥ log2

√
MN · (δ − 2ε)

maxψi∈ΨHard
(maxg |ψi(g)| · ‖[ψi(g(x, y))]x,y‖)

−O(1).
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In the Boolean block composed function case, the regularity condition re-
duces to the matrix [g(x, y)] being balanced, and later we will prove that the
orthogonality condition reduces to the strongly balanced property.

5.2 Functions with Group Symmetry

For a general finite group G, two elements s and t are conjugate, denoted by
s ∼ t, if there exists an element r ∈ G s.t. rsr−1 = t. Define H as the set of
all class functions, i.e. functions f s.t. f(s) = f(t) if s ∼ t. Then H is an h-
dimensional subspace of LC(G), where h is the number of conjugacy classes. The
irreducible characters {χi : i ∈ [h]} form an orthogonal basis of H . For a class
function f and irreducible characters χi, let f̂i = 〈χi, f〉 = 1

|G|
∑

g∈G χi(g)f(g).
An easy fact is that

|f̂i|=
1
|G|

∣∣∣∣∣∣
∑
g∈G

χi(g)f(g)

∣∣∣∣∣∣ ≤ 1
|G|

∑
g∈G

|f(g)||χi(g)| ≤
( 1
|G|

∑
g∈G

|f(g)|
)
·max

g
|χi(g)|.

(1)

In this section we consider the setting that S is a finite group G. In particular,
we hope to have a better understanding of the orthogonality condition and the
matrix operator norm ‖[ψ(g(x, y))]x,y‖ in this setting.

The standard orthogonality of irreducible characters says that∑
s∈G χi(s)χj(s) = 0. The second condition in Theorem 8 is concerned

with a more general case: For a multiset T with elements in G×G, we need∑
(s,t)∈T

χi(s)χj(t) = 0, ∀i �= j. (2)

The standard orthogonality relation corresponds to the special that T = {(s, s) :
s ∈ G}. We hope to have a characterization of a multiset T to make Eq. (2)
hold.

We may think of the a multiset T with elements in set S as a function on
S, with the value on s ∈ S being the multiplicity of s in T . Since characters
are class functions, for each pair (Ck, Cl) of conjugacy classes, only the value∑

g1∈Ck,t∈Cl
T (g1, t) matters for the sake of Eq. (2). We thus make T a class

function by taking average within each class pair (Ck, Cl). That is, define a new
function T ′ as

T ′(s, t) =
∑

s∈Ck,t∈Cl

T (s, t)/(|Ck||Cl|), ∀s ∈ Ck, ∀t ∈ Cl.

Proposition 2. For a finite group G and a multiset T with elements in G×G,
the following three statements are equivalent:

1.
∑

(s,t)∈T χi(s)χj(t) = 0, ∀i �= j

2. T ′, as a function, is in span{χi ⊗ χi : i ∈ [h]}
3. [T ′(s, t)]s,t = C†DC where D is a diagonal matrix and C = [χi(s)]i,s. That

is, T ′, as a matrix, is normal and diagonalized exactly by the irreducible
characters.
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5.3 Abelian Group

When G is Abelian, we have further properties to use. The first one is that
|χi(g)| = 1 for all i. The second one is that the irreducible characters are homo-
morphisms of G; that is, χi(st) = χi(s)χi(t). This gives a clean characterization
of the orthogonality condition by group invariance. For a multiset T , denote by
sT another multiset obtained by collecting all st where t runs over T . A multiset
T with elements in G×G is G-invariant if it satisfies (g, g)T = T for all g ∈ G.
We can also call a function T : G×G→ C G-invariant if T (s, t) = T (rs, rt) for
all r, s, t ∈ G. The overloading of the name is consistent when we view a multiset
T as a function (counting the multiplicity of elements).

Proposition 3. For a finite Abelian group G and a multiset T with elements
in G×G,

T is G-invariant ⇔
∑

(s,t)∈T
χi(s)χj(t) = 0, ∀i �= j. (3)

Another nice property of Abelian groups is that the orthogonality condition
condition implies the regularity condition; see the full version for a proof. So
what we finally get for Abelian groups is the following.

Corollary 3. For a sign matrix A = [f(g(x, y))]x,y and an Abelian group G, if
d(f, span(ChEasy)) = Ω(1), and the multisets Sx,x′

= {(g(x, y), g(x′, y)) : y ∈
Y } and T y,y′

= {(g(x, y), g(x, y′)) : x ∈ X} are G-invariant for any (x, x′) and
any (y, y′), then

Q(A) ≥ log2

√
MN

maxi∈Hard ‖[χi(g(x, y))]x,y‖
−O(1).

5.4 Block Composed Functions

We now consider a special class of functions g: block composed functions. Sup-
pose the group G is a product group G = G1 × · · · × Gt, and g(x, y) =
(g1(x1, y1), · · · , gt(xt, yt)) where x = (x1, · · · , xt) and y = (y1, · · · , yt). That
is, both x and y are decomposed into t components and the i-th coordinate of
g(x, y) only depends on the i-th components of x and y. The tensor structure
makes all the computation easy. Theorem 6 can be generalized to the general
product group case for arbitrary groups Gi.

Definition 6. The ε-approximate degree of a class function f on product group
G1 × · · · ×Gt, denoted by dε(f), is the minimum d s.t. ‖f − f ′‖∞ ≤ ε, where f ′

can be represented as a linear combination of irreducible characters with at most
d non-identity component characters.

Theorem 9. For sign matrix A = [f(g1(x1, y1), · · · , gt(xt, yt)]x,y where all gi
satisfy their orthogonality conditions, we have

Q(A) ≥ min
{χi},S

∑
i∈S

log2

√
size(Mgi)

deg(χi)‖Mχi◦gi‖
−O(1)
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where the minimum is over all S ⊆ [n] with |S| > deg1/3(f), and all non-identity
irreducible characters χi of Gi.

Previous sections, and [SZ09b], consider the case where all gi’s are the same and
all Gi’s are Z2. In this case, the above bound is equal to the one in Theorem 6, and
the following proposition says that the group invariance condition degenerates
to the strongly balanced property.

Proposition 4. For G = Z×t
2 , the following two conditions for g = (g1, · · · , gt)

are equivalent:

1. The multisets Sx,x′
= {(g(x, y), g(x′, y)) : y ∈ Y } and T y,y′

=
{(g(x, y), g(x, y′)) : x ∈ X} are G-invariant for any (x, x′) and any (y, y′),

2. Each matrix [gi(xi, yi)]xi,yi is strongly balanced.

This equivalence does not in general hold if any group Gi has size larger than two.
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Abstract. Some of the currently best-known approximation algorithms
for network design are based on random sampling. One of the key steps
of such algorithms is connecting a set of source nodes to a random sub-
set of them. In a recent work [Eisenbrand,Grandoni,Rothvoß,Schäfer-
SODA’08], a new technique, core-detouring, is described to bound the
mentioned connection cost. This is achieved by defining a sub-optimal
connection scheme, where paths are detoured through a proper connected
subgraph (core). The cost of the detoured paths is bounded against the
cost of the core and of the distances from the sources to the core. The
analysis then boils down to proving the existence of a convenient core.

For some problems, such as connected facility location and single-sink
rent-or-buy, the choice of the core is obvious (i.e., the Steiner tree in
the optimum solution). Other, more complex network design problems
do not exhibit any such core. In this paper we show that core-detouring
can be nonetheless successfully applied. The basic idea is constructing a
convenient core by manipulating the optimal solution in a proper (not
necessarily trivial) way. We illustrate that by presenting improved ap-
proximation algorithms for two well-studied problems: virtual private
network design and single-sink buy-at-bulk.

Keywords: Approximation algorithms, network design, virtual private
network, buy-at-bulk, rent-or-buy, core detouring.

1 Introduction

In a seminal work, Gupta, Kumar, and Roughgarden [17] introduced a random-
sampling-based framework to design and analyze approximation algorithms for
network design. This way, they achieved improved approximation algorithms for
three relevant network design problems: virtual private network design, single-
sink rent-or-buy, and single-sink buy-at-bulk (see also [4,5,12,21]). Generaliza-
tions and adaptations of their approach were later successfully applied to several
other problems, including multi-commodity rent-or buy [1,8,16], connected fa-
cility location [6], stochastic (online) Steiner tree [8,9,18], universal TSP [9,26]
and many others.
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One of the key ingredients in Gupta et al.’s approach [17] is connecting a
set of source nodes to a randomly and independently sampled subset of them.
The shortest-path distances from the source set to the sampled subset are then
bounded against the cost of an optimum Steiner tree over the sampled nodes. In
a recent work [6], Eisenbrand, Grandoni, Rothvoß, and Schäfer gave an improved
analytical tool, core detouring, to bound the connection cost above. The crux
of their method is designing a sub-optimal connection scheme, and bounding
its cost. In their scheme connection paths are detoured through a proper con-
nected subgraph (core). More formally, consider an undirected graph G with edge
weights {ce}e∈E . We let �(v, u) be the shortest path distance between v and u,
and �(v, U) := minu∈U{�(v, u)} for any U ⊆ V (G). Let also c(E′) :=

∑
e∈E′ ce

for any E′ ⊆ E(G). To lighten the notation, we sometimes use G′ instead of
E(G′) or V (G′), where the meaning will be clear from the context.

Theorem 1 (Core Detouring) [6].Given an undirected graph G = (V,E),
with edge weights1 {ce}e∈E, clients C ⊆ V , a connected subgraph G′, a root
z ∈ V (G′) and p ∈ (0, 1]. Mark each client independently with probability p, and
denote the marked clients by C′. Then E[

∑
v∈C �(v, C′ ∪ {z})] ≤ (e−p|C||C| +

0.8067
p )c(G′) + 2

∑
v∈C �(v,G′).

To have an intuition of the proof of the theorem, imagine G′ as a cycle of
length |C|, and think of the shortest paths �(v,G′) as edges (v, f(v)), where
f : C → V (G′) is a bijective function. This can be enforced by duplicating
the edges of G′, computing an Euler tour of the new graph, and performing
node duplications and edge contractions in a proper way. Now connect each
client v ∈ C to the closest sampled client v′ ∈ C′ in terms of number of hops
(disregarding edge weights). It is not hard to see that each edge (v, f(v)) is used
twice in expectation (once to approach G’ and once to leave it). This accounts
for the factor 2 in the upper bound. Moreover, each edge of G′ is used by 1

2p

connection paths in expectation, which becomes 1
p in the upper bound due to

edge duplication. The refined factor (|C|e−p|C| + 0.8067/p) is obtained by flow
canceling, and a more involving analysis. We remark that in the argument above
the connectivity of G′ is crucial.

Our Results and Techniques. The Core Detouring Theorem is existential
in flavor: it is sufficient to show the existence of a convenient core G′, of small
cost and sufficiently close to the clients C. For some network design problems,
a natural candidate is provided by the structure of the optimum solution. For
example, the optimum solution for connected facility location and single-sink
rent-or-buy contains a Steiner tree T . Applying the Core Detouring Theorem to
T leads to improved approximation algorithms for those two problems [6].

In this paper we show that core-detouring can be successfully applied to other
network design problems, where the optimum solution does not exhibit any con-
venient core. The basic idea here is constructing one such core by manipulating
the optimal solution in a proper way. We illustrate that by presenting improved
1 Throughout this paper we use the terms weight and cost interchangeably.
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approximation algorithms for virtual private network design and single-sink buy-
at-bulk. As we will see, the construction of a good core for the considered prob-
lems involves a few non-trivial ideas.
Virtual Private Network Design (VPN). VPN models scenarios where the
traffic pattern is uncertain or rapidly changing, and henceforth the network must
be able to support a family of traffic matrices. This family is implicitly expressed
by upper bounding the amount of traffic which each node can send and receive.
Virtual Private Network Design (VPN). Given an undirected graph G =
(V,E), with edge weights {ce}e∈E , a set S of senders and R of receivers, with
out-traffic bounds {b+s }s∈S and in-traffic bounds {b−r }r∈R. A traffic matrix M =
{Msr}(s,r)∈S×R is feasible if

∑
r∈R Msr ≤ b+s and

∑
s∈S Msr ≤ b−r for all s ∈ S

and r ∈ R. Find a minimum cost
∑

e∈E cexe capacity reservation {xe}e∈E and
paths {Psr}(s,r)∈S×R such that, for every feasible traffic matrix M , it is possible
to route a flow Msr along path Psr simultaneously for all (s, r) ∈ S×R, without
exceeding the capacity xe reserved on each edge e.
Following the literature on the problem, w.l.o.g. and unless differently stated,
we assume b+s = b−r = 1 for all s ∈ S, r ∈ R, and we let |S| ≤ |R|. Possibly,
S ∩ R �= ∅. We remark that a solution to VPN can be encoded by providing
the paths Psr only. In fact, for a given choice of the paths, the optimal choice
for each xe is the maximum cardinality of a matching in the bipartite graph
Ge = (S ∪ R,Ee), where sr ∈ Ee iff e ∈ Psr. The current best approximation
ratio for VPN is 3.39 [2,5].

Theorem 2. There is an expected 2.80-approximation algorithm for VPN.

The proof of Theorem 2 is based on the following two main ideas. We first show
that the input VPN instance I is equivalent (in expectation) to a different VPN
instance Is with the same set of receivers, and a unique random sender s with
out-traffic bound |S|. Here we crucially exploit König’s theorem: in a bipartite
graph the maximum cardinality of a matching equals the minimum cardinality
of a vertex cover. In particular, König’s theorem implies that graph Ge has a
vertex cover Ce of cardinality |Ce| = xe for any given choice of the paths Psr .

Consider the following problem:
Single-Sink Rent-or-Buy (SROB). Given an undirected graph G = (V,E),
with edge weights {ce}e∈E, a root z, a parameter M ∈ Q+ and clients D ⊆ V .
Find a set of paths {Pzv}v∈D so as to minimize

∑
e∈E ce min{M, |{Pzv | e ∈

Pzv}|}.
We remark that an optimal solution to SROB consists of a Steiner tree con-

taining the root and whose edges support at least M paths each, and a shortest
path from each client to the Steiner tree. The second step of our proof is showing
that, for any s, Is is (deterministically) equivalent to an SROB instance I ′s with
clients D = R, root z = s and parameter M = |S|. We achieve the claimed ap-
proximation guarantee by applying the Core Detouring Theorem to the Steiner
tree in OPTSrob(I ′s)2.
2 For a problem P and an instance I of P , we let OPTP(I) denote the optimal solution

to P on I. We use OPTP(I) also to denote the cost of the optimal solution.
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Single-Sink Buy-at-Bulk (SSBB). SSBB is another prototypical network
design problem, which is used to model scenarios where the capacity is reserved
on edges in a discrete fashion to support a given traffic matrix. (For a comparison,
in the case of VPN the traffic is unknown but the capacity is installed in a
continuous fashion). This is formalized by defining a set of cable types, each
one characterized by a cost (per unit length) and a capacity. We are allowed to
install ni,e ≥ 0 copies of each cable type i on edge e.
Single-Sink Buy-at-Bulk (SSBB). Given an undirected graph G = (V,E),
with edge weights {ce}e∈E , a set of source nodes D and a sink node r. Given
a set of cable types 1, 2, . . . , k, with capacities μ1 ≤ μ2 ≤ . . . ≤ μk and costs
σ1 ≤ σ2 ≤ . . . ≤ σk. Assume δi := σi

μi
is a decreasing function of i (economies

of scale). Find a cable installation {ni,e}1≤i≤k,e∈E , with ni,e ∈ N, minimizing∑
i,e ce σi ni,e and such that one unit of flow can be routed simultaneously from

each source node to the sink without exceeding the capacity
∑

i μi ni,e on each
edge e.
Depending on whether the flow originating at a given source can be routed
along several paths or not, we distinguish between splittable SSBB (s-SSBB)
and unsplittable SSBB (u-SSBB), respectively. The best-known approximation
bounds for s-SSBB and u-SSBB are 23.93 [2,12] and 148.48 [2,21], respectively.

Theorem 3. There is an expected 20.41-approximation algorithm for s-SSBB.

The best-known approximation algorithms for s-SSBB [12,17,21] are based on
random sampling. These algorithms consist of a sequence of aggregation rounds.
In their analysis, in order to upper bound the cost of cables installed at round
t, it is convenient to consider the cost paid by the optimum solution to install
cables of type larger than s, for a proper s. That subset of cables induces a graph
Gs which is in general disconnected. This rules out a direct application of the
Core Detouring Theorem. For this reason, we developed the following generalized
version of that theorem, which applies also to the case G′ is disconnected. For
a given subgraph G′, we let �G′(v, w) be the distance from v to w in the graph
resulting from the contraction (of the connected components) of G′.

Theorem 4 (Multi-Core Detouring).Given an undirected graph G = (V,E),
with edge weights {ce}e∈E, clients C ⊆ V , a subgraph G′, a root z and p ∈ (0, 1].
Mark each client independently with probability p, and denote the marked clients
by C′. Then E[

∑
v∈C �(v, C′∪{z})] ≤ (e−p|C||C|+ 0.8067

p )c(G′)+2
∑

v∈C �G′(v, z).

The theorem above is achieved by embedding the shortest paths in the contracted
graph into the original graph, and considering the graph G′′ induced by edges
crossed by a large enough number of paths. This graph is connected and contains
the root. The Core Detouring Theorem is then applied to G′′. With respect to
our applications, we can think of Theorem 4 as a way of extracting from the
optimum solution (providing G′) a convenient core.

We describe a simple polynomial-time procedure, inspired by an existential
proof by Karger and Minkoff [22], to transform any solution S to s-SSBB into
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a tree solution3 U on the same input instance, while increasing the cost of the
solution at most by a factor 2.

Theorem 5. For any given solution S to an s-SSBB instance, there is a
polynomial-time procedure to construct a tree solution U for the same instance
of cost at most twice the original cost.

Being U feasible for the corresponding u-SSBB instance, we obtain the following
corollary.

Corollary 1. Given a ρ-approximation algorithm for s-SSBB, there is a 2ρ-
approximation algorithm for u-SSBB. In particular, there is a 2 · 20.41 = 40.82
approximation algorithm for u-SSBB.

The results concerning VPN and SSBB are described in Sections 2 and 3, re-
spectively.

Related Work. VPN was independently defined by Fingerhut et al. [7], and by
Duffield et al. [3] and since then, studied by various authors in several variations.
The version that we refer to is also called asymmetric VPN. This problem is
NP-hard even when we restrict to tree solutions [15]. Constant approximation
algorithms are presented in [5,15,17,28]. It is known that the optimum solution is
not always a tree. Curiously, the algorithms in [15,17] construct a tree solution,
while the current best algorithm in [5] does not. We will use a variant of the
latter algorithm to achieve our improved bound.

A 2-approximation is known [5] for the balanced case |S| = |R|, which improves
on the 3-approximation in [20]. In [20] it is proved that an optimal tree solution
for the balanced case can be computed in polynomial time. Very recently [24], it
has been shown that the optimal solution is not a tree even in the balanced case,
and that the problem remains NP-hard in that special case as well. In the same
paper, a (2 + ε)-approximation for the almost balanced case |R|/|S| = O(1) was
stated, for an arbitrary but fixed ε > 0.

In symmetric VPN the traffic is undirected, and each terminal v has a unique
threshold bv which upper bounds the amount of traffic which v is responsible for.
In [15] a 2-approximation is given for symmetric VPN. In the same paper the
authors show that an optimal tree solution can be computed in polynomial time.
The so-called VPN conjecture states that symmetric VPN always has an optimal
tree solution, and hence can be solved in polynomial time. In a breakthrough
paper [11], this conjecture was recently proved to be true (see also [13,19] for
former proofs of the conjecture on ring networks, which introduce part of the
ideas used in [11]).

SSBB has been extensively studied in the literature. It is NP-hard, e.g., by
reduction from the Steiner tree problem. Meyerson, Munagala, and Plotkin [23]
gave an O(log n) approximation for s-SSBB. Garg, Khandekar, Konjevod, Ravi,
Salman, and Sinha [10] described an O(k) approximation, where k is the number
of cable types. The first constant approximation is due to Guha, Meyerson,
3 A tree solution is a solution where edges with non-zero capacity induce a tree.
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(U1) Choose a receiver r∗ ∈ R uniformly at random.
(U2) Mark each receiver uniformly at random with probability α

|S| . Term R′ as the
marked receivers.
(U3) For each s ∈ S, compute a ρst-approximative Steiner tree Ts spanning {s, r∗}∪R′

and install cumulatively 1 unit of capacity on Ts.
(U4) Install 1 unit of capacity cumulatively on the shortest path from each receiver r
to the closest node in R′ ∪ {r∗}.

Fig. 1. Algorithm vpn for VPN

and Munagala [14]: the approximation ratio of their algorithm is roughly 2000.
This approximation was reduced to 216 by Talwar [27]. Gupta, Kumar, and
Roughgarden [17] described an improved 76.8 approximation algorithm, based on
random sampling. Refining their approach, the approximation was later reduced
to 65.49 by Jothi and Raghavachari [21], and eventually to 24.92 by Grandoni
and Italiano [12].

The unsplittable case u-SSBB is less studied, though probably more inter-
esting from an application point of view. The algorithm by Talwar is a 216-
approximation for u-SSBB as well. Unfortunately, this is not the case for the
following improved random-sampling algorithms (i.e., those algorithms do not
guarantee that the flow is unsplittable). Jothi and Raghavachari [21] show how
to transform the 76.8 approximation algorithm for s-SSBB by Gupta et al. [17]
into a 2 · 76.8 = 153.6 approximation algorithm for u-SSBB. Their approach is
algorithm-specific: it would not work with an (even slightly) different algorithm.
(In particular, it cannot be applied to our s-SSBB algorithm nor to the s-SSBB
algorithms in [12,21]). In contrast, the reduction from Corollary 1 can use any
s-SSBB algorithm as a black box.

SROB [15,22,25] is the special case of SSBB where there are only two cable
types, one of very small capacity and cost per unit capacity δ1 = 1, and the other
of cost σ2 = M ≥ 1 and very large capacity. The current best approximation
ratio for SROB is 2.92 [6].

The recent result in [2], trivially implies improved approximation factors 3.39,
2.80, 23.93, and 148.48 for VPN, SROB, s-SSBB, and u-SSBB, respectively.

2 Virtual Private Network Design

In this section we present our improved 2.80-approximation algorithm for VPN,
hence proving Theorem 2. Having in mind that for any fixed δ > 0, there is a
(2+ δ |R||S| )-approximation algorithm for VPN [24] (recall that |R| ≥ |S|), we may
assume that |S| ≤ ε|R| for an arbitrarily small ε > 0.

Algorithm vpn, which is a slight adaptation of the VPN algorithm in [5], is
described in Figure 1. The quantity α is a positive constant to be fixed later.
The best-known approximation factor for the Steiner tree problem is denoted by
ρst. Currently ρst < 1.39 [2].
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For a given VPN instance I and any sender s ∈ S, we let Is be the VPN
instance with the same receiver set as I, and with sender set {s}, where the
out-traffic bound for s is |S|. (Recall that b+s = 1 for the original problem). The
following lemma crucially exploits König’s Theorem.

Lemma 1.
∑

s∈S OPTVpn(Is) ≤ |S| ·OPTVpn(I).

Proof. We show that, for a random sender s∗, E[OPTVpn(Is∗)] ≤ OPTVpn(I).
Let {Psr}(s,r)∈S×R be the optimal paths for I and let {xe}e∈E be the induced
capacities. Consider the solution to Is∗ induced by paths {Ps∗r}r∈R and let
{x′e}e∈E be the corresponding capacity reservation. Consider the bipartite graph
Ge = (S ∪R,Ee), with sr ∈ Ee iff e ∈ Psr. Let Ce ⊆ S ∪R be a vertex cover for
Ge of size xe (which exists by König’s theorem). Clearly x′e ≤ min{|Ne(s∗)|, |S|},
whereby Ne(s∗) are the nodes adjacent to s∗ in Ge. Let us show that E[x′e] ≤ xe.
The event {s∗ ∈ S ∩ Ce} happens with probability |S∩Ce|

|S| . In this case we can
upper bound x′e with |S|. In the complementary case we can upper bound x′e
with |Ne(s∗)| ≤ |R∩Ce|, where we exploit the fact that s∗ can be only adjacent
to nodes of R ∩ Ce (otherwise Ce would not be a vertex cover). Altogether

E[x′e] ≤
|S ∩ Ce|
|S| ·|S|+

(
1− |S ∩ Ce|

|S|

)
·|R∩Ce| ≤ |S∩Ce|+|R∩Ce| = |Ce| = xe.

The claim follows since

E[OPTVpn(Is∗)] ≤ E
[∑
e∈E

cex
′
e

]
≤
∑
e∈E

cexe = OPTVpn(I). ��

Let I ′s be the SROB instance with clients D = R, root z = s and parameter
M = |S|.

Lemma 2. OPTSrob(I ′s) = OPTVpn(Is).

Proof. Consider any set of paths {Psr}r∈R. It is sufficient to show that, for
any given edge e, the corresponding cost associated to edge e is the same in
the SROB and VPN case. The cost paid in the SROB case is by definition
c(e) · min{M, |{Psr : e ∈ Psr}|}. With respect to VPN, consider the set of
receivers Re := {r ∈ R | e ∈ Psr} using edge e. In the worst case a traffic matrix
routes k′ := min{|S|, |Re|} units of flow along e. Hence, also in this case the cost
associated to e is c(e) ·min{|S|, |Re|} = c(e) ·min{M, |{Psr : e ∈ Psr}|}. ��

Let Cs be the Steiner tree in OPTSrob(I ′s), and Us,r the shortest path from
r ∈ R to Cs. Define ΣS :=

∑
s∈S c(Cs) and ΣC := 1

M

∑
s∈S

∑
r∈R c(Us,r). First

we upper bound the cost of the M = |S| Steiner trees computed by vpn.

Lemma 3. E[
∑

s∈S c(Ts)] ≤ ρst ·ΣS + ρst(α + ε) ·ΣC .

Proof. Recall that M/|R| = |S|/|R| ≤ ε. For each s take the core Cs and attach
the path Us,r for all r ∈ R′. Each Us,r, r ∈ R, is used with probability at
most α

M + 1
|R| , thus there exists a Steiner tree over {s, r∗} ∪R′ of expected cost
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c(Cs) + ( α
M + 1

|R| )
∑

r∈R c(Us,r). Multiplying this quantity by the Steiner tree
approximation factor, and summing over all s we obtain∑
s∈S

E[c(Ts)] ≤ ρst

(∑
s∈S

c(Cs)+
( α

M
+

1
|R|

)∑
s∈S

∑
r∈R

c(Us,r)
)
≤ ρstΣS + ρst(α+ ε)ΣC .� 

We next bound the cost of connecting each receiver to the closest node in R′∪{r∗}
via the Core Detouring Theorem.

Lemma 4. E[
∑

r∈R �(r,R′ ∪ {r∗})] ≤ 0.81
α ΣS + 2ΣC .

Proof. Let s ∈ S. Applying the Core Detouring Theorem with C = R, G′ = Cs,
z = r∗ and p = α/M , E[

∑
r∈R �(r,R′ ∪ {r∗})] ≤ (e−

α
M |R||R| + 0.8067

α/M )c(Cs) +
2
∑

r∈R c(Us,r) ≤ 0.81M
α c(Cs) + 2

∑
r∈R c(Us,r), where we use the assumption

|R| � |S| = M . Averaging this bound over all s, we obtain

E
[∑

r∈R

�(r,R′ ∪ {r∗})
]
≤ 0.81M

α

∑
s∈S

1
M

c(Cs)+ 2
1
M

∑
s∈S

∑
r∈R

c(Us,r)=
0.81
α

ΣS + 2ΣC .� 

Theorem 6. For a suitable choice of α and |R|/|S| large enough, Algorithm
vpn gives an expected 2.80 approximation for VPN.

Proof. From Lemmas 1 and 2, ΣS+ΣC = 1/M ·
∑

s∈S
(
M c(Cs) +

∑
r∈R c(Us,r)

)
= 1/M ·

∑
s∈S OPTSrob(I ′s) = 1/M ·

∑
s∈S OPTVpn(Is) ≤ OPTVpn. By Lemmas

3 and 4, the expected cost of the solution computed by the algorithm is

(ρst ·ΣS+ρst(α+ ε)ΣC)+
(0.81

α
ΣS +2ΣC

) α=0.5748

≤ 2.80(ΣC +ΣS)≤ 2.80 ·OPTVpn.� 

Theorem 2 then follows.

3 Single-Sink Buy-at-Bulk

In this section we present our improved algorithms for SSBB. We start with the
proof of the Multi-Core Detouring Theorem. Then we present our results for the
unsplittable and splittable case.

Multi-Core Detouring

Proof (of Theorem 4). Let φp(C,G′) := 2
∑

v∈C �G′(v, z) + γ c(G′) with γ :=
(|C|·e−p|C|+ 0.8067

p ). We will find a connected subgraph G′′ of G with z ∈ V (G′′),
having φp(C,G′′) ≤ φp(C,G′). The claim then follows by applying the Core
Detouring Theorem to G′′. Let Pvz be the path, attaining the length �G′(v, z),
i.e. it is a shortest v-z path in G, where edges in G′ account with cost 0. Since
these paths are shortest paths, we may assume that

⋃
v∈C Pvz induces a tree T ,

rooted at z. For e ∈ T , let me := |{v ∈ C | e ∈ Pvz}| be the number of v-z
paths that contain e. Let G′′ be the graph, induced by the edges e ∈ T with
me ≥ γ/2 (G′′ := {z} if no such edge exists). Moving from a leaf of T to the
root z, the quantity me can only increase, hence the subgraph G′′ is connected
and z ∈ V (G′′). To upperbound φp(C,G′′), we still use Pvz as v-z path, even
if �G′′(v, z) is attained by a different path. Consider any edge e ∈ T . If e ∈ G′,
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then e contributes cost γce to φp(C,G′), otherwise it contributes 2mece. Note
that γce ≤ 2mece iff me ≥ γ/2. By the definition of G′′, the contribution of e
to φp(C,G′′) is min{2mece, γce}, which is never larger than the contribution to
φp(C,G′). The claim follows by applying the Core Detouring Theorem to the
core G′′:

E
[∑

v∈C

�(v,C′ ∪ {z})
]
≤ φp(C, G′′) ≤

∑
e∈T\G′′

2mece +
∑

e∈G′′
γce

=
∑
e∈T

min{2mece, γce} ≤
∑

e∈T\G′
mece +

∑
e∈G′

γce = φp(C, G′).� 

From Splittable to Unsplittable Flows. We first state the following simple
lemma, which is implicitly given in [27].

Lemma 5. [27] Let c∗(x) be the minimum-cost of a cable installation supporting
a capacity reservation x = {xe}e∈E. Then there is a polynomial-time computable
concave function g(·) such that c∗(x) ≤ g(x) ≤ 2 c∗(x).

The choice of g(·) here is g(x) :=
∑

e∈E c(e)f(xe) with f(z) := mini=1,...,k{σi +
δi · z} for z > 0 and f(0) := 0.

For an arbitrary concave cost function g(·), Karger and Minkoff [22] showed
that there is always an optimum solution inducing a tree. It is not hard (just
slightly technical) to turn their existential proof into a polynomial-time proce-
dure to transform any given solution into a tree solution without increasing its
cost with respect to g(·). The proof of Theorem 5, which is omitted here for lack
of space, is obtained by combining that procedure with the concave function
provided by Lemma 5.
The Splittable Case. Our algorithm sssbb for s-SSBB, which is described in
Figure 2, is a slight variant of the algorithms in [12]. By adding dummy clients
in the sink, we can assume that |D| is a multiple of all the capacities μi. The
quantity α is a proper constant to be fixed later. The aggregation algorithm [17]
is a randomized procedure to aggregate a given set of demands x(v) ∈ [0, U) on
the nodes v ∈ V (T ) of a given tree T , under the assumption that the sum of
the demands is a multiple of U > 0. This is obtained by moving demands over
T such that: (1) The amount of flow along each edge of T is at most U , (2) The
final demand x′(v) at each node is either 0 or U , and (3) The expected demand
at each node is preserved, that is: Pr[x′(v) = U ] = x(v)/U .

The algorithm initially selects a subset of k′ cable types i(1), i(2), . . . , i(k′).
For notational convenience, we assume σi(k′+1) = ∞ and i(0) = 0. Then there is
a sequence of k′ + 1 rounds. In each round the demand of the clients (which is
initially 1 for each client) is aggregated in a smaller and smaller subset of clients.
At the beginning of round t ≥ 1 the demand at each client is in {0, μi(t)}. Each
round t consists of three steps. Initially the demand is collected at a random
subset of aggregation points (Collection Step). Then a Steiner tree is computed
on the aggregation points, and the demand is aggregated along such tree via the
aggregation algorithm in multiples of μi(t+1) (Aggregation Step). This is possible
since the sum of the d′t(w)’s, and hence of the x(w)’s, is a multiple of μi(t+1).
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(S1) Select a subset of cable types i(1), . . . , i(k′) in increasing order of capacity, where
i(1) = 1 and i(k′) = k.
(S2) For t = 0, 1, . . . , k′:
(Collection) Let Dt be the set of nodes with positive demand. Each node in Dt is
marked with probability pt = ασi(t)/σi(t+1) (probability 1 if t = 0). Let D′

t be the set
of marked nodes. Each node sends its demand to the closest node in D′

t ∪ {r} along a
shortest path, using cables of type i(t) (type 1 for t = 0). Let d′

t(w) be the new demand
collected at each w ∈ D′

t ∪ {r}.
(Aggregation) If t < k′, compute a ρst-approximate Steiner tree Tt on D′

t∪{r}. Apply
the aggregation algorithm to Tt with U = μi(t+1) and x(w) = d′

t(w) (mod μi(t+1)) for
each terminal node w. The corresponding flow is supported by installing cables of type
i(t + 1) (at most one for each edge of Tt). Let d′′

t (w) be the new demand aggregated
at each node w.
(Redistribution) If t < k′, for each node w ∈ D′

t ∪ {r}, consider the subset of
nodes Dt(w) ⊆ Dt that sent their demand to w during the collection step (including
w itself, if w �= r). Uniformly select a random subset D̃t(w) of Dt(w) of cardinality
d′′

t (w)/μi(t+1). Send μi(t+1) units of flow back from w to each node in D̃t(v) along
shortest paths, installing cables of type i(t + 1).

Fig. 2. Algorithm sssbb

Eventually, the aggregated demand is redistributed back to the source nodes
(Redistribution Step). Only cables of type i(t) and i(t + 1) are used in round t.
At the end of the round the demand at each client is in {0, μi(t+1)}.

It remains to specify how the cable types i(1), . . . , i(k′) are chosen. Differently
from prior work on the topic, we use a randomized cable selection rule. Let
i(1) = 1. Given i(t), 1 < i(t) < k, i(t + 1) is chosen as follows. Let i′(t) > i(t)
and i′′(t) > i(t) be the smallest indexes such that δi′(t)

δi(t)
≤ 1

β and σi′′(t)
σi(t)

≥ β,
respectively. Here β > 1 is a constant to be fixed later. If no proper i′(t) (resp.
i′′(t)) exists, we let i′(t) = k (resp. i′′(t) = k). If i′(t) ≥ i′′(t), i(t + 1) = i′(t).
Otherwise, i(t+1) = i′′(t)−1 with probability σi′′(t)−βσi(t)

σi′′(t)−σi′′(t)−1
, and i(t+1) = i′′(t)

otherwise. Note that, as required i(1) = 1 and i(k′) = k. The proof of the
following lemma will appear in the final version of the paper.

Lemma 6. For any t ∈ {1, 2, . . . , k′ − 2} and h ∈ {0, 1, . . . , k′ − t− 1}, and for
any s ∈ {1, 2, . . . , k}, i(t′) < s ≤ i(t′+1): (a) δi(t+h) ≤ 1

βh δi(t); (b) E[σi(t+h)] ≥
βhE[σi(t)]; (c) E[min{σi(t′+1)

σs
,
δi(t′)
δs

}] ≤ β.

Let At be the cost of the t-th round, t ∈ {0, 1, . . . , k′}. Let moreover Ac
t , Aa

t ,
and Ar

t denote the collection, aggregation, and redistribution costs of the t-th
round, t ∈ {1, . . . , k′ − 1} respectively. By OPT (s) we denote the cost paid by
the optimum solution for cables of type s. The proof of the following lemma is
implicitly given in [12].
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Lemma 7. [12] For t′ ∈ {1, . . . , k′} and t ∈ {1, . . . , k′ − 1}: (1) Pr[d ∈ Dt′ |v ∈
D0] = 1

μi(t′)
; (2) A0 ≤ ρst

∑
s
σi(1)

σs
OPT (s); (3) E[Ak′ ] ≤

∑
s

δi(k′)
δs

OPT (s); (4)

E[Aa
t ] ≤ E

[∑
s min

{
ρstα

δi(t)

δs
, ρst

σi(t+1)

σs

}
OPT (s)

]
; (5) E[Ar

t ] ≤ E
[
δi(t+1)

δi(t)
Ac

t

]
.

Hence it remains to bound E[Ac
t ]. Following [12,17], it is not hard to show that

E[Ac
t ] ≤ 2

αE[Aa
t ]. We next present an improved bound based on the Multi-Core

Detouring Theorem. By adding dummy demands at the root, we can assume that
|Dt| = |D|/μi(t) � pt = ασi(t)/σi(t+1) for all t, and consequently |Dt|e−pt|Dt| +
0.8067/pt ≤ 0.8068/pt.

Lemma 8. For t= 1, . . . , k′−1,E[Ac
t ]≤E[

∑
s min{2 δi(t)

δs
, 0.8068

α

σi(t+1)

σs
}OPT (s)].

Proof. Let j ∈ {1, 2, . . . , k} be an integer value to be fixed later. We denote
by Gj the graph induced by the edges where OPT installs at least one cable
of type s > j. Note that this graph might be disconnected. By the Multi-Core
Detouring Theorem applied to C = Dt, z = r, p = pt and G′ = Gj , E[Ac

t ] :=
E[σi(t)

∑
d∈Dt

�(d,D′t ∪ {r})] ≤ E[σi(t)(2
∑

d∈Dt
�Gj (d, r) + 0.8068

pt
c(Gj))].

By definition, E
[0.8068

pt
σi(t)c(Gj)

]
= E

[0.8068 σi(t+1)

α c(Gj)
]
≤

E
[0.8068

α

∑
s>j

σi(t+1)

σs
OPT (s)

]
. By Lemma 7.1, Pr[d ∈ Dt|d ∈ D] = 1

μi(t)
. Then

E[2σi(t)
∑

d∈Dt
�Gj (d, r)] = E[2σi(t)

μi(t)

∑
d∈D �Gj (d, r)] = E[2δi(t)

∑
d∈D �Gj(d, r)].

Let Lt,j be the cost of routing the flow as in OPT , but paying zero on the
edges of Gj and δi(t) per unit of flow on the remaining edges. Then trivially
δi(t)

∑
d∈D �Gj (d, r) ≤ Lt,j. In turn, OPT pays at least δs per unit flow on

each cable of type s ≤ j, which implies Lt,j ≤
∑

s≤j
δi(t)

δs
OPT (s). We can

conclude that E[2σi(t)
∑

d∈Dt
�Gj (d, r)] ≤ E[2

∑
s≤j

δi(t)

δs
OPT (s)]. Altogether

E[Ac
t ] ≤ E[2

∑
s≤j

δi(t)

δs
OPT (s) + 0.8068

α

∑
s>j

σi(t+1)

σs
OPT (s)]. Since, determin-

istically, δi(t)/δs is decreasing in t while σi(t+1)/σs is increasing in t, the claim
follows by choosing j properly. ��

The proof of Theorem 3, omitted here due to space constraints, follows easily by
combining Lemmas 6, 7, and 8, and imposing β = 2.80 and α = 0.531.
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Abstract. Lutz [20] proposed the following generalization of hardness:
While a problem A is hard for a complexity class C if all problems in C
can be reduced to A, Lutz calls a problem weakly hard if a nonnegligible
part of the problems in C can be reduced to A. For the exponential-time
class E, Lutz formalized these ideas by introducing a resource-bounded
(pseudo) measure on this class and by saying that a subclass of E is
negligible if it has measure 0 in E.

Here we introduce and investigate new weak hardness notions for E,
called E-nontriviality and strong E-nontriviality, which generalize Lutz’s
weak hardness notion for E and which are conceptually much simpler
than Lutz’s concept. Moreover, E-nontriviality may be viewed as the
most general consistent weak hardness notion for E.

1 Introduction

The standard way for proving a problem to be intractable is to show that the
problem is hard or complete for one of the standard complexity classes containing
intractable problems. Lutz [20] proposed a generalization of this approach by
introducing more general weak hardness notions which still imply intractability.
While a set A is hard for a class C if all problems in C can be reduced to A (by
a polynomial-time-bounded many-one reduction) and complete if it is hard and
a member of C, Lutz proposed to call a set A weakly hard if a nonnegligible part
of C can be reduced to A and to call A weakly complete if in addition A ∈ C. For
the exponential-time classes E = DTIME(2lin) and EXP = DTIME(2poly), Lutz
formalized these ideas by introducing resource-bounded (Lebesgue) measures on
these classes and by saying that a subclass of E is negligible if it has measure
0 in E (and similarly for EXP). A variant of these concepts, based on resource-
bounded Baire category in place of measure, was introduced by Ambos-Spies [4]
where now a class is declared to be negligible if it is meager in the corresponding
resource-bounded sense.

A certain drawback of these weak hardness notions in the literature, called
measure-hardness and category-hardness in the following, is that they are based
on the somewhat technical concepts of resource-bounded measure and resource-
bounded category, respectively. So here we introduce some alternative weak hard-
ness notions which are conceptually much simpler and are solely based on the
basic concepts of computational complexity theory.

S. Abramsky et al. (Eds.): ICALP 2010, Part I, LNCS 6198, pp. 503–514, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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While the weak hardness notions in the literature implicitly used the fact that,
by the time-hierarchy theorem, the linear-exponential time class E is actually a
(proper) hierarchy, where the individual levels are the deterministic-time classes
Ek = DTIME(2kn), our primary new weak hardness notion for E, called E-
nontriviality, is based on this observation explicitly. We consider a subclass of E
to be negligible, if it is contained in a fixed level Ek of the linear-exponential-time
hierarchy. In other words, a set A is E-nontrivial if it has predecessors (under
p-m-reducibility) from arbitrarily high levels of this hierarchy.

Since any level Ek of E has measure 0 in E and is meager in E, E-nontriviality
generalizes the previously introduced weak hardness notions for E. On the other
hand, since P ⊆ E1, E-nontriviality still guarantees intractability. In fact, we
may argue that E-nontriviality is the most general weak hardness notion for E
if for such a notion we do not only require that it generalizes E-hardness and
implies intractability but that it also reflects the internal, hierarchical structure
of E.

The second new weak hardness notions we will consider, called strong E-
nontriviality, may be viewed as a link between the weak notion of E-nontriviality
and the stronger notions of measure- and category-hardness. A strongly E-
nontrivial set does not only have predecessors from arbitrarily high levels E \Ek

of the hierarchy E but, for any given k ≥ 1, it has a predecessor in E which
is almost-everywhere complex for the kth level of the linear exponential-time
hierarchy, i.e., which is Ek-bi-immune.

The outline of the paper is as follows.
After formally introducing our new weak hardness notions for E - E-nontrivia-

lity and strong E-nontriviality - in Section 2, in Section 3 we give some examples
of intractable but still E-trivial sets in E thereby showing that E-nontriviality
is a strict refinement of intractability. First we observe that sets of sufficiently
low hyper-polynomial complexity are E-trivial. Though this observation is not
surprising, it gives us some first nontrivial facts on the distribution of trivial
and nontrivial sets in E. For instance it implies that the only sets which code
all E-trivial sets in E are the E-hard sets. We then show (what might be more
surprising) that there are E-trivial sets in E of arbitrarily high complexity, i.e.,
that, for any k ≥ 1, there is an E-trivial set in E \ Ek. In fact, by generalizing a
result of Buhrman and Mayordomo [13] for measure hardness, we obtain some
natural examples of such sets by showing that the sets of the Kolmogorov-random
strings w.r.t. exponential-time-bounded computations are E-trivial.

In Section 4 we give some examples of (strongly) E-nontrivial sets and prove
a hierarchy theorem for the weak E-completeness notions. In fact, we show that
the complete sets under the weak hardness notions considered here can be dis-
tinguished by their minimum densities. So there are exptally sets which are
E-nontrivial whereas no such set can be strongly E-nontrivial, and there are
tally sets which are strongly E-nontrivial whereas no tally set is category-hard
for E. (And, as shown in the literature already, there are sparse category-hard
sets for E whereas every measure-hard set for E is exponentially dense.)
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In Section 5 we analyse the information content of weakly complete sets
thereby giving some more structural differences among the complete sets un-
der the various weak hardness notions. For instance we show, that the disjoint
union of two E-trivial sets is E-trivial again, and that E-trivial sets don’t help,
i.e., if an E-hard set H can be reduced to the disjoint union of sets A and B
where A is E-trivial then H can be reduced to B already. In other words, if
we decompose an E-complete set into two incomplete parts then both parts are
E-nontrivial. For the other weak hardness notions the corresponding claims fail.

Finally, in Section 6 we give a short summary of results on some other as-
pects of our new weak hardness notions which will be presented in more details
somewhere else.

Our notation is standard (see e.g. the monographs of Balcázar et al. [10]
and [11]). Due to lack of space many proofs are omitted and where a proof is
presented usually only a sketch or even only a hint to the ideas underlying the
proof is given.

2 E-Nontriviality and Strong E-Nontriviality

We start with some notation. The exponential time classes we will deal with are
the classes

E =
⋃
k≥1

DTIME(2kn) (Linear Exponential T ime) (1)

EXP =
⋃
k≥1

DTIME(2n
k

) (Polynomial Exponential T ime) (2)

where we will use the following abbreviations for the individual levels of these
classes:

Ek = DTIME(2kn) and EXPk = DTIME(2n
k

).

Note that, by the time-hierarchy theorem, the hierarchies of the linear-exponential-
time classes and of the polynomial-exponential-time classes are proper, and that

E1 = EXP1 ⊂ E ⊂ EXP2.

For comparing problems we use the polynomial-time-bounded version of many-
one reducibility (p-m-reducibility for short) where a set A is p-m-reducible to a
set B (A ≤p

m B) via f if f is polynomial-time computable and A(x) = B(f(x))
for all strings x. We let Pm(A) = {B : B ≤p

m A} denote the class of predecessors
of A under p-m-reducibility and we say that A codes a class C of problems if C ⊆
Pm(A).

2.1 Nontriviality

Definition 1. A set A is trivial for E (or E-trivial for short) if

∃ k ≥ 1 (Pm(A) ∩ E ⊆ Ek) (3)

holds, and A is nontrivial for E (or E-nontrivial for short) otherwise.
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Note that the class of the E-nontrivial sets is closed upwards under ≤p
m hence,

in particular, closed under p-m-equivalence. Also note that for an E-nontrivial
set A there are infinitely many numbers k ≥ 1 such that A has a predecessor in
Ek+1 \ Ek. In fact, for any E-nontrivial set A,

∀ k ≥ 1 ∃B ∈ Ek+1 \ Ek (B ≤p
m A) (4)

holds. This is an easy consequence of the following variant of the padding lemma.

Lemma 1. Let A and k ≥ 1 be given such that A ∈ Ek+1 \ Ek. Then, for any
k′ ≤ k (with k′ ≥ 1), there is a set A′ ∈ Ek′+1 \ Ek′ such that A′ =p

m A.

Proof (Idea). Given k ≥ 2 and A ∈ Ek+1 \ Ek, let A′ = {0f(|x|)1x : x ∈ A} for
f(n) = �nk �. Then A′ =p

m A and A′ ∈ Ek \Ek−1. The claim follows by induction.

2.2 Strong Nontriviality

Recall that a set A is almost everywhere (a.e.) t(n)-complex if, for any Turing
machine M computing A, the runtime timeM(x) of M on input x exceeds t(|x|)
for almost all (i.e., all but finitely many) strings x. Almost everywhere complexity
coincides with bi-immunity, i.e., a set A is a.e. t(n)-complex if and only if A is
DTIME(t(n))-bi-immune (see Balcázar et al. [11]). Here a set A is C-bi-immune
for a class C if there is no infinite set B ∈ C such that B ⊆ A or B ∩A = ∅. In
the following we will tacitly use the fact that, by the time-hierarchy theorem for
a.e. complexity by Geske et al. [14], there are Ek-bi-immune sets A ∈ Ek+1 (for
any k ≥ 1).

Definition 2. A set A is strongly nontrivial for E (or strongly E-nontrivial for
short) if

∀ k ≥ 1 ∃ B (B ∈ Pm(A) ∩ E & B Ek-bi-immune) (5)

holds; and A is weakly trivial for E (or weakly E-trivial for short) otherwise.

Note that, for any Ek-bi-immune set B, B �∈ Ek. So, any strongly E-nontrivial
set A is E-nontrivial. Moreover, just as a set A is E-nontrivial if and only if, for
any k ≥ 1 there is a predecessor B of A which is infinitely often 2kn-complex
but not infinitely often 2(k+1)n-complex (see (4) above), we can show that a set
A is strongly E-nontrivial if and only if, for any k ≥ 1 there is a predecessor B
of A which is a.e. 2kn-complex but not a.e. 2(k+1)n-complex:

∀ k ≥ 1 ∃B ∈ E ∩ Pm(A) (B Ek-bi-immune & B not Ek+1-bi-immune) (6)

Of great technical interest is the following alternative characterization of strong
E-nontriviality.

Theorem 1 (Characterization Theorem for Strong Nontriviality). A
set A is strongly E-nontrivial if and only if there is an E1-bi-immune set B ∈ E
such that B ≤p

m A.
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The nontrivial direction of Theorem 1 follows from the following lemma by con-
sidering the sets Bk there (for a given E1-bi-immune predecessor B ∈ E of A).

Lemma 2. Let B be E1-bi-immune. Then, for any k ≥ 1, there is an Ek-bi-
immune set Bk and an EXPk-bi-immune set B′k such that Bk, B

′
k ∈ Pm(B). If

moreover B ∈ E then the set Bk can be chosen such that Bk ∈ Pm(B) ∩ E.

Proof (Idea). The idea is borrowed from Ambos-Spies et al. [9] where a similar
lemma for randomness in place of bi-immunity is proven: For some appropriately
defined padding functions, the sets Bk and B′k are chosen so that they consist
of those strings for which the padded versions are members of B, namely, Bk =
{x : 0k|x|1x ∈ B} and B′k = {x : 0|x|

k

1x ∈ B}. Since B is almost everywhere
complex, hence, in particular, complex on the set of padded strings, the sets Bk

and B′k are a.e. complex again. Moreover, due to the compression of strings, the
complexity is increased by the required amount.

3 Some Examples of E-Trivial Sets in E

In order to show that E-nontriviality does not coincide with intractability, here
we give some examples of intractable but E-trivial sets. As one might expect, sets
of sufficiently low time complexity are E-trivial. As we will also show, however,
E-trivial sets can be found at all levels of the linear-exponential hierarchy.

3.1 Sets of Low Complexity Are Trivial

Lemma 3. Let t be a nondecreasing, time constructible function such that, for
some number k ≥ 1,

t(p(n)) ≤a.e. 2kn (7)

for all polynomials p. Then any set A ∈ DTIME(t(n)) is E-trivial.

Proof (Sketch). Given A ∈ DTIME(t(n)) it follows from (7) that Pm(A) ⊆ Ek.
So A is E-trivial.

Theorem 2. There is an E-trivial set A ∈ E \ P.

Proof (Sketch). Note that, for any polynomial p, p(n) ≤a.e. 2(logn)2 and that
2(logn)4 �∈ O(2(logn)2 ·log(2(logn)2)). So P ⊆ DTIME(2(logn)2) ⊂ DTIME(2(logn)4)
(where the strictness of the latter inclusion holds by the time-hierarchy theorem).
Moreover, 2(log p(n))4 ≤a.e. 2n for all polynomials p. So, by the former, there is a
set A ∈ DTIME(2(logn)4) \P and, by the latter and by Lemma 3, A is E-trivial.

Theorem 2 can be strengthened by using some results on the p-m-degrees of
hyperpolynomial shifts proven in Ambos-Spies [1]. A set Ah = {1h(|x|)0x : x ∈ A}
is called a hyperpolynomial shift of A if h is a time constructible, nondecreasing
function h : N → N such that h dominates all polynomials. Note that, for any
hyperpolynomial shift Ah of a set A ∈ EXP, Ah ∈ DTIME(t(n)) for a function
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t(n) as in Lemma 3 whence Ah is E-trivial. Now, in [1] it has been shown that
for any computable sets A and B such that A �≤p

m B there is a hyperpolynomial
shift Ah of A such that Ah �≤p

m B. By letting A be any E-complete set, the above
implies:

Theorem 3. For any computable set B which is not E-hard there is an E-trivial
set T such that T �≤p

m B.

So the only sets in E which code all E-trivial sets in E are the E-complete sets.

3.2 Trivial Sets of High Complexity

Having given examples of intractable E-trivial sets of low hyperpolynomial com-
plexity, we now show that there are E-trivial sets at arbitrarily high levels E\Ek

of the E-hierarchy. (So, by Lemma 1, there are E-trivial sets at all levels Ek+1\Ek

of the E-hierarchy.)

Theorem 4. For any k ≥ 1 there is an E-trivial set A in E \ Ek.

The proof of Theorem 4 is based on the following straightforward observation.

Lemma 4 (Boundedness Lemma). Let A and B be sets and let f be a p-m-
reduction function such that A ∈ Ek, B ≤p

m A via f , and

∀∞ x (|f(x)| ≤ k′ · |x|+ k′′ or f(x) �∈ A) (8)

(for some k, k′, k′′ ≥ 1). Then B ∈ Ek′·k.

Proof (of Theorem 4; sketch). Fix k ≥ 1 and let {Ek
e : e ≥ 0} and {fe : e ≥ 0} be

enumerations of Ek and of the class of the p-m-reduction functions, respectively,
such that Ek

e (x) can be computed in time O(2(k+1)max(e,|x|)) and fe(x) can be
computed in time O(2max(e,|x|)) (uniformly in e and x).

By a diagonal argument we define a set A ∈ Ek+2 which meets the require-
ments

�2e : A �= Ek
e

and
�2e+1 : ∀x ∈ Σ∗ (|fe(x)| > |x|+ e + 1 ⇒ fe(x) �∈ A)

for e ≥ 0.
Obviously, the requirements with even indices ensure that A �∈ Ek. Similarly,

by A ∈ Ek+2, the requirements with odd indices ensure that A is E-trivial since,
by Lemma 4, Pm(A) ⊆ E2(k+2).

For the definition of A, call a string y forbidden if y = fe(x) for some number
e and some string x such that |x|+e+1 < |y|. Note that the requirements �2e+1
are met if we do not put any forbidden string into A. Moreover, the question
whether a string y is forbidden can be decided in O(22|y|) steps. Finally, by a
simple counting argument, for any n ≥ 0 there is a string of length n which is
not forbidden.

So if we let A = {ye : ye �∈ Ek
e } where ye is the least string of length e which

is not forbidden then all requirements are met and, as one can easily check,
A ∈ Ek+2.
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Alternatively we obtain E-trivial sets of high complexity in E by refining a re-
sult of Buhrman and Mayordomo [13] on the random strings in the setting of
time-bounded Kolmogorov complexity. Call a string x t(n)-K-random if there
is no t(n)-time-bounded Turing machine compressing x (for the formal defi-
nition, see e.g. Li and Vitanyi [18]), and let Rt be the set of t(n)-K-random
strings. Buhrman and Mayordomo have shown that, for an exponential time
bound t(n) = 2kn (k ≥ 2), the set Rt of t(n)-K-random strings is not weakly
E-complete in the sense of Lutz. This can be strengthened as follows.

Theorem 5. For t(n) = 2kn (k ≥ 2), the set Rt of the t(n)-K-random strings
is E-trivial.

Proof (Idea). As one can easily check, R2kn ∈ E. So, given a set A and a p-
m-reduction function f such that A ≤p

m R2kn

via f , by Lemma 4 it suffices to
show that for almost all x such that |f(x)| > 2|x|, f(x) �∈ R2kn

. But this is
straightforward, since for a string x with |f(x)| > 2|x|, f(x) can be computed
from the shorter string x in polynomial time hence, for sufficiently large x, in
time 2k|x|.

Remark. In this paper we only look at E-(non)trivial sets in E, i.e., investigate
(strong) E-nontriviality as a weak completeness notion, and do not consider
the corresponding, more general weak hardness notion. So we only remark here
that outside of E we can find computable E-trivial sets of arbitrarily high time
complexity. Moreover, there are numerous noncomputable E-trivial sets. In fact,
the class of E-trivial sets has (classical) Lebesgue measure 1. These observations
immediately follow from results in the literature about p-m-minimal pairs. (Sets
A and B form a p-m-minimal pair if, for any set C such that C ≤p

m A and
C ≤p

m B, C ∈ P.) It suffices to observe that, for sets A and B such that B is
E-hard and A and B form a minimal pair, A is E-trivial.

4 On the Density of E-Nontrivial and Strongly
E-Nontrivial Sets

Lutz [20] has shown that any E-measure complete set is exponentially dense
whereas for E-category completeness introduced by Ambos-Spies [4] there are
sparse E-category complete sets. (In fact, in [4] weak completeness notions were
introduced for various time-bounded category concepts. Here we refer to the cat-
egory concept called AFH-category there which proved to be useful for analysing
time-bounded measure (see [7] and [9] for more details) since - in contrast to the
classical Baire category concept - this concept is compatible with measure.) By
results in [4] and [9], however, E-category complete sets cannot be tally.

4.1 A Tally Strongly E-Nontrivial Set

So, in order to distinguish strong E-nontriviality from E-category completeness
(and E-measure completeness), it suffices to show that there are tally strongly E-
nontrivial sets in E. To do so we need the following straightforward observation.
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Lemma 5. Let A ∈ E be Ek+1-bi-immune (k ≥ 1) and let Â be the length
language Â = {x : 0|x| ∈ A}. Then Â ∈ E, Â ≤p

m A, and Â is Ek-bi-immune.

Theorem 6. There is a tally set A ∈ E which is strongly E-nontrivial.

Proof. By Lemma 5 there is a length language A1 ∈ E which is E1-bi-immune.
Moreover, by Theorem 1, A1 is strongly E-nontrivial. Since, for the tally set
A = A1 ∩ {0}∗, A is in E and A is p-m-equivalent to A1, it follows from p-m-
invariance of strong E-nontriviality that A has the desired properties.

4.2 A Lower Bound on the Density of Strongly Nontrivial Sets

In order to distinguish E-nontriviality from strong E-nontriviality we look at very
sparse sets. A set A is exptally if A ⊆ {0δ(n) : n ≥ 0} where δ : N → N is the
iterated exponential function inductively defined by δ(0) = 0 and δ(n+1) = 2δ(n).

We first observe that no exptally set in E is strongly E-nontrivial.

Theorem 7. Let A ∈ E be exptally. Then A is not strongly E-nontrivial.

Since any strongly E-nontrivial set has an E1-bi-immune (hence P-bi-immune)
predecessor, it suffices to show the following.

Lemma 6. Let A and B be sets such that A ∈ E, A is exptally, and B ≤p
m A.

Then B is not P-bi-immune.

The idea of the proof of Lemma 6 is as follows. Given a polynomial bound
p for a p-m-reduction f from B to A, let D = {0δ′(n) : n ≥ 0} where δ′(n)
is the least number m such that p(m + 1) ≥ δ(n). Then D is infinite and
polynomial-time computable. Moreover, for x ∈ D, B(x) can be computed in
polynomial time using the reduction B(x) = A(f(x)). Namely if, for x = 0δ

′(n),
f(x) = 0δ(r) then r < n whence, by definition of δ and δ′ and by A ∈ E, A(f(x))
can be computed in poly(|x|) steps; and if f(x) is not of the form 0δ(r), then
B(x) = A(f(x)) = 0.

The observation that exptally sets in E cannot be strongly E-nontrivial can
be generalized as follows.

Theorem 8. Let A ∈ E and assume that there is an infinite polynomial-time
computable set B ⊆ {0}∗ such that, for any number n with 0n ∈ B,

A ∩ {x : n ≤ |x| < 2n} = ∅. (9)

Then A is not strongly E-nontrivial.

Theorem 8 implies that many constructions (of sets in E) in the theory of the
polynomial-time degrees which are based on so-called gap languages (see e.g.
Section 3 of [3]) yield sets which are not strongly E-nontrivial.
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4.3 Exptally Sets and Nontriviality

In contrast to the above negative result on strong E-nontriviality for exptally
sets, there are exptally sets in E which are E-nontrivial. In fact, any sufficiently
complex exptally set A ∈ E is E-nontrivial.

Theorem 9. Let A ∈ E \ E1 be exptally. Then A is E-nontrivial.

Proof (Idea). Given k ≥ 1, we have to show that there is a set Ak ≤p
m A such

that Ak ∈ E \ Ek. Such a set Ak is obtained from A by compressing strings of
the form 0δ(n) by the factor k: Ak = {0	 δ(n)

k 
 : 0δ(n) ∈ A}. Note that, by A
being exptally, all (but a finite amount) information about A is coded into Ak

in k-compressed form. This easily implies the claim.

Note that, by a straightforward diagonalization, there is an exptally set A ∈
E \ E1. So, by Theorems 9 and 7, there is an E-nontrivial set in E which is not
strongly E-nontrivial.

4.4 The Hierarchy of Weak Completeness Notions

By the above given differences in the possible densities of the sets with the
various weak completeness properties we immediately get the following hierarchy
theorem.

Theorem 10. For any set A the following hold.

A E-hard
⇓

A E-measure hard
⇓

A E-category hard
⇓

A strongly E-nontrivial
⇓

A E-nontrivial
⇓

A intractable

(10)

Moreover all implications are strict and witness sets A for strictness can be found
in E.

5 On the Information Content of E-Nontrivial and
Strongly E-Nontrivial Sets

In the preceding section we have distinguished E-nontriviality from the stronger
weak completeness notions for E by analysing the possible densities of sets with
these properties. Here we present another difference in the sense of information
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content. We look at the following question: If we split a (weakly) complete set A
into two parts A0 and A1, is at least one of the parts (weakly) complete again?
As we will show, for E-nontriviality the answer is YES whereas for the other
weak completeness notions the answer is NO.

In order to make our question more precise we need the following notion. A
splitting of a set A into two disjoint sets A0 and A1 is a p-splitting if there is a
set B ∈ P such that A0 = A ∩ B and A1 = A ∩ B. Note that for a p-splitting
(A0, A1) of A, A0, A1 ≤p

m A and A =p
m A0 ⊕A1 (where A0 ⊕A1 is the effective

disjoint union {0x : x ∈ A0} ∪ {1y : y ∈ A1} of A0 and A1).
Now Ladner [17] has shown that any computable intractable set A can be

p-split into two lesser intractable problems, i.e., into problems A0, A1 �∈ P such
that A0, A1 <p

m A. So, in particular, any E-complete set A can be p-split into
two incomplete sets. In fact, by analysing Ladner’s proof, the set B ∈ P defining
the p-splitting is a gap language. So, by Theorem 8, we obtain the following
stronger observation from Ladner’s proof.

Lemma 7. Let A ∈ E \P. There is a p-splitting of A into sets A0, A1 �∈ P such
that A0 and A1 are weakly E-trivial.

So, in particular, any E-complete (E-measure complete, E-category complete,
strongly E-nontrivial) set A has a p-splitting into sets A0 and A1 which are not
E-complete (E-measure complete, E-category complete, strongly E-nontrivial).
For E-nontriviality, however, the corresponding fact fails.

Theorem 11. Let A be E-nontrivial and let (A0, A1) be a p-splitting of A. Then
A0 is E-nontrivial or A1 is E-nontrivial (or both).

The key to the proof is the simple observation that, for a p-splitting C0, C1 of a
set C �∈ Ek, C0 �∈ Ek or C1 �∈ Ek.

Proof (Sketch). For a contradiction assume that A0 and A1 are E-trivial. Fix
ki such that Pm(Ai) ∩ E ⊆ Eki (i = 0, 1) and let k = max(k0, k1). Moreover,
fix B ∈ P such that A0 = A ∩ B and A1 = A ∩ B. Finally, by E-nontriviality
of A, fix a set C ∈ E \ Ek such that C ≤p

m A and let f be a polynomial-time
computable function such that C ≤p

m A via f . Then, for D = {x : f(x) ∈ B},
D ∈ P. Now, consider the p-splitting C0 = C ∩D and C1 = C ∩D of C given
by D. Then C0, C1 ∈ E and, as one can easily check, C0 ≤p

m A0 and C1 ≤p
m A1.

Since, by the above observation, C0 �∈ Ek or C1 �∈ Ek, this contradicts the choice
of k.

For an E-complete set A we obtain the following interesting variant of Theorem
11, which says that for a proper splitting of an E-complete set both parts are
E-nontrivial.

Theorem 12. Let A be E-complete and let (A0, A1) be a p-splitting of A such
that A0, A1 <p

m A. Then A0 and A1 are E-nontrivial.

We omit the quite involved proof which requires some new result on the distri-
bution of the Ek-bi-immune sets in E.
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6 Further Results and Open Problems

We conclude with a short summary of some other results on our new weak
completeness notions which will appear somewhere else.

6.1 Comparing Weak Hardness for E and EXP

While, by a simple padding argument, E-hardness and EXP-hardness coincide,
Juedes and Lutz [16] have shown that E-measure hardness implies EXP-measure
hardness whereas the converse in general fails. Moreover, by using similar ideas,
the corresponding results have been obtained for category hardness (see [4]).

Now we can easily adapt the concepts of (strong) nontriviality for E to the
polynomial-exponential time class EXP by replacing E and Ek in the definitions
by EXP and EXPk, respectively. Then, the arguments of [16] can be easily
duplicated to show that strong E-nontriviality implies strong EXP-nontriviality
but in general not vice versa.

For clarifying the relations betweenE-nontriviality andEXP-nontriviality,how-
ever, the above arguments fail and new much more sophisticated techniques have
to be employed. As it turns out, in contrast to the above results, E-nontriviality
and EXP-nontriviality are independent. I.e. neither E-nontriviality implies EXP-
nontriviality nor EXP-nontriviality implies E-nontriviality. For details see [5].

6.2 Weak Hardness under Weak Reducibilities

The classical approach to generalize hardness notions is to generalize (weaken)
the reducibilities underlying the hardness concepts, i.e., to allow more flexi-
ble codings in the reductions. So Watanabe [22] has shown that weaker re-
ducibilities than p-m-reducibility like p-btt-reducibility (bounded truth-table), p-
tt-reducibility (truth-table) and p-T -reducibility (Turing) yield more E-complete
sets. For measure-completeness and category-completeness similar results have
been shown in [12] (for both E and EXP). For strong nontriviality we obtain
the corresponding results, i.e., a complete separation of p-m, p-btt, p-tt, and p-T
(for both E and EXP), by fairly standard methods. For nontriviality, however,
the separations of E-nontriviality under p-m, p-btt, p-tt, and p-T reducibilities
require some quite involved and novel speed-up diagonalization technique. The
reason why standard methods fail in this setting might be explained by the fact
that - in contrast to the above results - EXP-nontriviality under p-m, p-btt, and
p-tt coincide. See [6] for details.
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Abstract. In the first part of the paper, we propose an algorithm which
inputs an NFA A and a word a1 · · · an, does a precomputation, and then
answers queries of the form: “is the infix ai · · · aj accepted by A?”. The
precomputation is in time poly(A) · n, and the queries are answered in
time poly(A). This improves on previous algorithms that worked with
the exponentially less succinct DFA’s or monoids.

In the second part of the paper, we propose a transducer model for
data trees. We show that the transducer can be evaluated in linear time.
We use this result to evaluate XPath queries in linear time.

The algorithms in both parts of the paper use factorization forests.

This paper develops the use of factorization forests [8] for efficient evaluation
of automata. The paper has two parts. The first part, which builds on [4,2],
uses factorization forests to evaluate automata on arbitrary infixes of a word
in constant time, after a linear time precomputation. The second part, which
builds on [3,7], uses factorization forests to efficiently evaluate queries of XPath.

Infix evaluation. The first part of the paper studies the following problem,
which is parametrized by a regular language L ⊆ A∗. For a word a1 · · · an ∈ A∗,
we want to build a data structure. Then, we want to use the data structure to
quickly answer queries of the form: given two positions i ≤ j in {1, . . . , n}, answer
if the infix ai · · · aj belongs to L. We call this the infix evaluation problem. A
solution of the problem consists of two algorithms: the preprocessing that inputs
a1 · · · an and builds the data structure, and the query answering which inputs
i ≤ j and outputs the answer to ai · · · aj ∈ L.

A natural solution uses a divide and conquer approach. Suppose that L is
recognized by a nondeterministic automaton with states Q. The preprocessing
splits the word into halves, quarters, and so on. Each such infix is decorated
with the set of state pairs that describe possible runs of the automaton over the
infix. The preprocessing is in time poly(Q) · n, while the query answering is in
time poly(Q) · log(n).

As observed by Thomas Colcombet in [4], a beautiful result of Imre Simon,
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in time independent of the word’s length. The data structure uses an algebraic
approach to regular languages, where a language is recognized by a homomor-
phism from A∗ into a finite monoid M . The preprocessing is in time linear in
|M | · n, and the query answering is in time linear in |M |.

What if the language L is given by an automaton and not a homomorphism?
We can always compile the automaton to a monoid and use the above result.
From the point of view of the length n of the word, the preprocessing is in linear
time, and the query answering is in constant time. However, compiling even a
deterministic automaton into a monoid can yield an exponential blowup. This
gives big constants in the linear and constant times.

We can do better. If the language L is given by a deterministic automaton
with states Q, a fairly straightforward structure, called the tape construction
in [2], can be used to solve the problem with preprocessing in time poly(Q) · |n|
and query answering in time poly(Q).

In this paper, we improve the results from [4] and [2]: we give an algorithm
that works with nondeterministic automata. As with the tape construction, the
preprocessing is in time poly(Q) · n and the query answering in time poly(Q).
The new algorithm does not use the tape construction, which does not seem to
generalize from deterministic to nondeterministic automata. Instead, it builds
on factorization forests.

XPath evaluation. The second part of the paper is about XPath evaluation.
The input for an XPath query is an XML document, which we model as a data
tree. A data tree is a tree where each node carries two pieces of information:
a tag name or label from a finite alphabet A, as well as a data value from an
infinite alphabet D (such as integers, or unicode strings). An XPath query says
“yes” or “no” to each node in a data tree. The XPath evaluation problem is to
find the nodes to which the query says “yes”.

There are algorithms which can solve this problem in time polynomial in the
size of the query ϕ and the number of nodes n in the data tree, see [1] for a survey.
However, with large XML documents (e.g. dblp.xml is currently 674 megabytes
and millions of nodes), an algorithm that is quadratic in n is impractical. In
previous work [3,7], we have developed algorithms which are linear in n.

The first algorithm, from [3], runs in time exp(ϕ) · n. The reason for the
exponential complexity in the query is that parts of the query are represented
by monoids. The algorithm works for an extension of XPath, called Regular
XPath, which allows Kleene star in programs. The second algorithm, from [7],
runs in time poly(ϕ) ·n. It works for XPath without the Kleene star. The general
idea is that monoids can be avoided without the Kleene star. Both algorithms,
especially the first one, use the ideas developed in the infix evaluation problem
that is studied in the first part of this paper.

In the second part of this paper, we propose a new approach to XPath eval-
uation. We introduce an automaton model, which acts as an intermediate step
between XPath and the evaluation algorithm. The automaton model is a type
of transducer, which we call a data aggregate transducer. Given an input data
tree, a data aggregate transducer produces new labels for the nodes, and does
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not change the data values. A data aggregate transducer can evaluate a query
by writing “yes” or “no” in the new label, depending on whether a node is se-
lected. (Strictly speaking, we use compositions of data aggregate transducers to
evaluate XPath queries.)

The advantage of this new approach is that the syntax of XPath is abstracted
into a simple automaton model. This makes the evaluation algorithm easier to
understand, and its structure more apparent. We also believe that the automata
models we introduce, in the general form for data trees (data aggregate transduc-
ers), and in the restricted form for trees without data (which we call aggregate
transducers), are of independent interest for evaluation algorithms.

The evaluation algorithm uses the algebraic techniques developed in the first
part of the paper. Thanks to the efficient algorithms for nondeterministic au-
tomata (the path expressions in an XPath query are naturally modeled by non-
deterministic automata), we get a new result: For data trees of bounded depth, a
query ϕ of XPath with Kleene star can be evaluated in time poly(ϕ) ·n. In other
words, for documents of bounded depth (a common situation), we can combine
the efficient evaluation of [7] with the more powerful query language of [3].

1 Evaluating Infix Queries for Nondeterministic
Automata

This section contains the first part of the paper, which talks about the infix
evaluation problem. Instead of specifying an infix by its first x and last position
y, we use the set of all of its positions X = {x, x+1, . . . , y}. This way we can use
set operations on infixes. If X is a set of positions in a word w, we write w[X ] for
the subsequence of w consisting of positions from X , e.g. a1a2a3[{1, 3}] = a1a3.
We use the name factor of w for a connected set of positions, and the name infix
for the word w[X ] when X is a factor. (Of course, the algorithms represent factors
by just keeping the first and last position.) We write x, y, z for positions, X,Y, Z
for sets of positions, and F,G,H for factors (which are also sets of positions).

Factorization forests. A factorization forest for a word w is a family of factors
that contains {x} for every position x in w, and where every two factors are either
disjoint, or one is contained in the other. There is a natural forest structure on
the factors, so we can talk about descendants, parents, children and siblings, etc.
The level of a factor is the number of its ancestors (including itself).

Suppose that F1, . . . , Fn are consecutive factors (i.e. the first position of Fi+1
is the next position after the last position of Fi). A collation of these factors is any
union of these factors that is also a factor, i.e. any Fi∪· · ·∪Fj for i ≤ j. Consider
a morphism α : A∗ →M into a finite monoid, which we use to map factors into
M . We say that F1, . . . , Fn are α-homogeneous if all of their collations have the
same value under α. A factorization forest is called α-homogeneous if any choice
of at least three consecutive siblings is α-homogeneous.

Suppose that w is a word with a factorization forest F that is α-homogeneous
for a morphism α : A∗ →M . Colcombet observed in [4] that for any factor I of
w, not necessarily from F , its image under α can be calculated in time linear in
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the height of F . Our work builds on this observation. As a first step, we show
that the time can be even logarithmic in the height of F .

Logarithmic querying. For the algorithms, we represent a factorization forest F
as follows. Each factor F ∈ F is represented by a record with its first and last
position, and its image under α. Each position x contains a pointer to the record
of the factor {x}.

Each factor record stores a pointer to its parent factor record, but also to some
other ancestors, as described below. Let n be a number from 0 to the logarithm
of the height of the factorization forest. Consider a factor F ∈ F . We create a
pointer from the record of F to the record of the 2n-parent of F , call it G. (The
2n-parent is the ancestor 2n levels above.) This pointer is called the accelerating
pointer of length 2n. It is decorated by two elements of M , which are the images
under α of the two factors below.

– left(F,G): positions from G that are strictly before all positions from F .
– right(F,G): positions from G that are strictly after all positions from F .

The number of accelerating pointers, and the time required to compute them, is
|F| · log h, where h is the height of F . From now on, we assume in our algorithms
that factorization forests are equipped with accelerating pointers.

The benefit of accelerating pointers is that one can go from a factor to any of
its ancestors by following a number of accelerating pointers that is logarithmic
in the height of the forest. This observation, together with the original idea of
using factorization forests homogeneous with a morphism to calculate images of
infixes, gives the following result.

Lemma 1. Let α : A∗ → M be a morphism, and let F be an α-homogeneous
factorization forest for a word w ∈ A∗. Using the accelerating pointers, the image
under α of any factor can be calculated in time logarithmic in the height of F .

Combining the above lemma with a divide and conquer approach, we get a
solution for the infix evaluation problem that has querying in time log(log(|w|)).
This is because a divide and conquer approach yields a factorization forest with
binary branching, and such a forest is α-homogeneous for any α.

1.1 Monoid of Binary Relations

Let Q be any finite set. We write MQ for the monoid of binary relations Q,
where the monoid operation is relation composition. In this section, we study
factorization forests that are α-homogeneous, for some α : A∗ → MQ. The size
of the monoid MQ is exponential in the size of Q. The main result of the first
part of this paper is that we can build a factorization forest without worrying
about this exponential blowup.

Theorem 1. Consider a morphism α : A∗ → MQ. For any word w ∈ A∗ we
can find, in time poly(Q) · |w|, an α-homogeneous factorization forest for w of
height at most1 poly(MQ).
1 The height can be even linear in |MQ|, but it requires more care in the proof.
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We describe the proof of this theorem in Section 1.2.

Corollary 1. Let L ⊆ A∗ be a language recognized by a nondeterministic au-
tomaton with states Q. The infix evaluation problem for a word w ∈ A∗ can be
solved with precomputation poly(Q) · |w| and query answering in time poly(Q).

Proof. The nondeterministic automaton can be identified with a morphism α :
A∗ → MQ, which maps a word w to the set of pairs (p, q) such that the au-
tomaton has a run from p to q over the word. Using the above theorem, we can
compute a factorization forest in time poly(Q) · |w|. The height of the forest may
be exponential in Q, since the height is bounded by MQ. However, we can use
the logarithm from Lemma 1 to query answer infix queries in time poly(Q). �

1.2 Proof of Theorem 1

For the rest of this section, we fix the monoid MQ and the morphism α. We write
r, s, t for the binary relations which are elements of MQ, and r◦s for composition
of binary relations, which is the monoid operation.
Green’s relations. Let r, s, t, t1, t2 below be elements of MQ.

– r is called a prefix of s, written r ≥R s, if there is some t with r ◦ t = s.
– r is called a suffix of s, written r ≥L s, if there is some t with t ◦ r = s.
– r is called an infix of s, written as r ≥J s, if there are t1, t2 with t1◦r◦t2 = s.
– If r is both a prefix and a suffix of s, we write r ≥H s.

These relations are called Green’s relations. It is easy to see that each of Green’s
relations is a pre-order: it is both transitive and reflexive. The relations are
not necessarily antisymmetric and therefore it makes sense to consider their
connected components. For instance, we say that r and s are R-equivalent,
written r ∼R s, if both r ≥R s and s ≥R r. An equivalence class is called an
R-class. Likewise for L, J and H.

In the algorithm, we will need to perform operations on MQ in time poly(Q).
One such operation is calculating composition r ◦ s, this is easy to do. A prob-
lem that we will have to work around is that we do not know how to test
J -equivalence in time poly(Q). However, we can do this in some special cases,
as stated in the following lemma.

Lemma 2. Given r, s ∈MQ, we can calculate the following in time poly(Q):

r ◦ s, r ◦ s ?∼J r, r ◦ s ?∼J s.

Proof strategy. We present the proof strategy for Theorem 1.
The definition of α-homogeneous factors or factorization forests also makes sense
in a more general setting, where α is any function that maps factors of F to some
set, not necessarily a morphism. We use this generalization to define notions of
J -homogeneity and H-homogeneity. Let F1, . . . , Fn be consecutive factors. We
say the factors are J -homogeneous if they are f -homogeneous under the function



520 M. Bojańczyk and P. Parys

f that maps a factor to the J -class of its image. (In general, f is not a morphism.)
Likewise we define a J -homogeneous factorization forests, and the same for H.

Our proof strategy is to first compute a J -homogeneous factorization forest,
then upgrade it to an H-homogeneous one, and then upgrade that one to an
α-homogeneous one. The main difficulty is in the first step – computing a J -
homogeneous forest; we do this below in Lemma 3. The other steps are done
using basically the same techniques as in the proof of the factorization forest
theorem from [6], or to the proofs of [8,4].

Lemma 3. Let w ∈ A∗. One can compute a J -homogeneous factorization forest
F in time poly(Q) · |w|. The forest has height linear in MQ.

Proof. The algorithm processes word positions from left to right. We begin by
describing the invariant.

The invariant. After processing position x, the algorithm will have computed a
factorization forest Fx for the prefix 1, . . . , x. For each factor we remember one
additional bit: if the factor is open or closed. All open factors have to contain
the last processed position x. Open factors might grow when processing new
positions. Once a factor becomes closed, it does not change. All singleton factors
are closed. Suppose F1, . . . , Fn ∈ Fx is a maximal set of siblings (written from
left to right). The invariant is that they satisfy the following property �:

� The factors F1, . . . Fn−1, and the factor F1 ∪ · · · ∪Fn−1 are all J -equivalent.

Additionally, when they are children of an open factor F ∈ Fx, the following
property �� is satisfied:

�� F and F1 are J -equivalent.

The invariant is satisfied by the initial configuration F1 = {{x}}.
Once we have processed the whole word, it is not difficult to get a J -

homogeneous factorization forest from the one produced by the algorithm. For
each maximal set of siblings F1, . . . , Fn ∈ Fx, it is enough to add a factor
F1 ∪ · · · ∪ Fn−1.
Updating the forest. Suppose we have computed Fx−1, and we want to compute
Fx. Consider the factors open in Fx−1 :

x− 1 ∈ F1 � F2 � · · · � Fn.

There are also closed factors containing x − 1, at least one: {x − 1}. Let C be
the biggest of them. We obtain Fx from Fx−1 as follows.

– Add {x}.
– If C and F1 are not J -equivalent, or n = 0, add open factor G0 = C ∪ {x}.
– Replace the factors Fi by Gi = Fi ∪ {x}, for i ∈ {1, . . . , n}.
– When Gi\{x} and Gi are not J -equivalent close Gi, for i = 0 (if G0 was

added) and for i ∈ {1, . . . , n}.
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The test on J -equivalence in the second and the last step is done using Lemma 2,
since we are testing J -equivalence of a factor and its suffix or prefix. Below we
argue that the invariant is preserved. Then, we show why the algorithm runs in
the required time, and why the factorization forest has height linear in MQ.

Correctness. Extending a factor does not impact on property �, as it does not
talk about a last sibling. Property � has to be checked only for the siblings of
the newly added factor {x}. If G0 is created, {x} has only one sibling, so � is
satisfied. Otherwise C is no longer the last sibling. This happens only when C is
J -equivalent to its parent F1. As F1 is open, it is J -equivalent to its first child
(from ��), hence to all its children (from �), which gives � in the new forest.

Now check the property �� for open factors. Factor G0 stays open only when
G0 and G0\{x} = C are J -equivalent, which is exactly ��. Any other Gi stays
open when it is J -equivalent to Fi, which (from ��) is equivalent to its first child
(which is also the first child of Gi).

Running time. A potential problem is the last step. Potentially we have to
do n tests for J -equivalence. However notice that when Gi\{x} and Gi are
J -equivalent for some i, then they are R-equivalent (Lemma ??), hence also
Gj\{x} and Gj are R-equivalent (J -equivalent) for any j > i. Thus we may
stop testing greater i when we detect an equivalence. The number of tests for
J -equivalence is bounded by the number of factors becoming closed (plus one).
Since the total number of factors in a factorization forest is at most twice the
length of the word, we have a limit on the total number of operations in the last
step of the algorithm.

Two implementation problems remain. First, where do we get the images of
the factors F1, . . . , Fn that are used in the tests for J -equivalence? The answer
is that our algorithm maintains for each open factor Fj , the image of its closed
part Fj − Fj−1. Second, what is the cost of adding x to the factors Fi? The
answer is that this can achieved for free, if we do not store the ends of open
factors, but we only keep in mind that they all end in the currently processed
position x.

Height of the forest. Why is the height of the factorization forest linear in MQ?
It would be useful to look at the J -class of the first child of each non-singleton
factor. The following invariant is preserved by the algorithm: whenever a factor
F in the factorization forest is the parent of a non-singleton factor G, then the
first child of F has a smaller J -class than the first child of G. It guarantees that
the level of a factor is bounded by the position of its first child in the ≤J order.

Why is the invariant satisfied? First observe an auxiliary property of the forest:
every closed factor in the factorization forest (except singletons) has a different
(smaller) J -class than its first child. Indeed, when a factor Gi becomes closed,
it has a different J -class than Gi\{x}, which contains the first child of Gi.

To prove the invariant notice that during execution of the algorithm, the first
child of a factor is never modified. Hence it is enough to analyze each moment
when a new pair of a parent and its child is created. It happens only in the second
step, when G0 is created (creating {x} does not matter, as the invariant does not
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talk about singleton factors). First compare G0 with its only non-singleton child
C. As C is closed, from the above we know that its first child has greater J -class
than C itself, which is the first child of G0. Now compare G0 with its parent G1.
The factor G0 is created only when C (the first child of G0 has greater J -class
than F1. Because F1 is open, from �� we get that it is J -equivalent with its first
child (which is also the first child of G1). �

2 Aggregate Transducers

In this part of the paper, we introduce a new transducer model for data trees.
This transducer is designed so that: a) it can compute interesting properties,
such as XPath queries; b) it can be evaluated in linear time.

2.1 Trees without Data

Basic definitions. We work on finite, labeled, sibling-ordered trees. The trees are
unranked, which means that there is no restriction on the number of children
of a node. We use the usual notions of node, root, child, parent, descendant,
ancestor etc. We write t(x) for the label assigned by the tree t to the node
x. We write trees(A) for the set of trees labeled by alphabet A. To recognize
tree languages, we use nondeterministic automata on unranked trees. The exact
choice of automaton model is not important for the discussion here; we choose
nondeterministic finite hedge automata as defined in Section 8.2.2 of [5].
Transducers. Let A be an input alphabet and B an output alphabet. If s and t
are trees with the same nodes, over alphabets A and B, then we write s⊗ t for
the tree over alphabet A×B that has the same nodes as s, t and maps each node
x to the pair (s(x), t(x)). Consider a tree language over the product alphabet
A×B. This language can interpreted as a binary relation

f ⊆ trees(A)× trees(B)

which contains a pair of trees (s, t) if the tree s⊗ t belongs to the language. Note
that the relation only contains tree pairs that have the same nodes. This type
of relation is called a transducer. We use functional notation for transducers,
writing f(s) for the set of trees t with (s, t) ∈ f . We say a tree automaton
represents f if it represents the underlying tree language over alphabet A×B.
Aggregation. Consider an alphabet B equipped with a linear order. Suppose
that s and t are trees over B that have the same nodes. We use the linear order
to define a new tree, written s� t, which we call the aggregation of s and t. The
tree s � t has the same nodes as s and t, it assigns to a node x the bigger of
the labels s(x), t(x). The aggregation operation is commutative and associative,
and therefore it makes sense to talk about the aggregation �S of a set S of trees
which share the same nodes.
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Aggregate transducers. Suppose that f is a transducer with input alphabet A
and output alphabet B. Suppose also that B is equipped with a linear order.
Consider the function, call it �f , defined as

s ∈ trees(A) 	→ �f(s) =
⊔

t∈f(s)

t ∈ trees(B).

The notation �f(s) is unambiguous, since (�f)(s) and �(f(s)) mean the same
thing. If f(s) is empty, we define �f(s) to be the tree with nodes from s labeled
by the minimal element of B. Note that while f maps each tree to a set of trees,
the function �f maps each tree to a single tree. Any function of the form �f
is called an aggregate transducer. We believe that aggregate transducers are of
independent interest.

2.2 Trees with Data

Data trees. Fix an infinite domain D of data values, e.g. D = N. A data tree
over a finite alphabet A is a tree over alphabet A×D. The set of all data trees
over an alphabet A is denoted dtrees(A). We write such trees as t⊗ μ, where t
is a tree over A and μ a tree over D. The label of a node is its label in t, its data
value is its label in μ. We use the name class for a set of nodes with the same
data value. We assume that the data values are not greater than the number
of nodes; thanks to this the classes can be found in time linear in the tree size.
Data trees will be our document model for XPath queries2.
Data aggregate transducer. We overload the ⊗ notation for sets as follows: if t is
a tree over A and X is a set of nodes, we write t⊗X for the tree over A×{0, 1},
where the label of each node in t is enriched by a bit indicating membership in X .
Consider a transducer f with input alphabet A×{0, 1} and output alphabet B.
Suppose also that B is equipped with a linear order so that trees over B can be
aggregated. Consider the function, call it f̂ , defined as

s⊗ μ ∈ dtrees(A) 	→ f̂(s⊗ μ) =
⊔

Xa class of μ

�f(s⊗X) ∈ trees(B).

This is a function that maps a data tree over A to a tree without data over B.
We use the name data aggregate transducer for any such function. An automaton
representing f̂ is any automaton representing f . Note that since �f(s) is itself
an aggregation, the output f̂(s⊗ μ) is⊔

Xa class of μ

⊔
t∈f(s⊗X)

t.

2 In XML instead of small numbers we have arbitrary strings; however they can be
sorted lexicographically and replaced by numbers in time linear in their total size.
This is true even when the string value in an element node is not given explicitly,
but is a concatenation of string values in its children, see [7].
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The main motivation behind data aggregate transducers is that they can be
used to evaluate XPath queries. We show this in Section 3.
Evaluation. The principal result on data aggregate transducers is that they can
be evaluated in linear time. We have two variants of this result. The first variant
works for the general case of data trees, but the constant in the linear time
is exponential in the state space of the data aggregate transducer. The second
variant has a polynomial constant, but it works only for data words, which are
the special case of data trees where each node has at most one child.

Theorem 2. Let f̂ be a data aggregate transducer represented by a nondeter-
ministic tree automaton with states Q. The output of f̂ on a data tree t⊗ μ can
be evaluated in time

– exp(Q) · |t| in the general tree case;
– poly(Q) · |t| if t⊗ μ is a data word, i.e. each node has one child.

We do not know if the variant for the general tree case can be improved to run
in time poly(Q) · |t|.

2.3 Evaluating a Data Aggregate Transducer on Data Words

In this section, we prove the word case of Theorem 2, which says that data
aggregate transducers can be evaluated in linear time. The tree case is done in
the appendix. Instead of writing a data word as a tree where each node has one
child, we use the standard notation for words as sequences of letters a1 · · · an.

We fix a data aggregate transducer f̂ , and a nondeterministic automaton A
of states Q that recognizes the underlying transducer f . The input alphabet of
A is A× {0, 1}×B. Fix also an input data word w⊗ μ of length n. We want to
compute the output f̂(w ⊗ μ). When talking about factors, we mean factors in
a word of length n.
Snippets. We write ⊥ for the minimal letter in the output alphabet B of f . For a
word v over alphabet B and a set of positions Y , we we write s�Y for the word
obtained from v by replacing the labels of positions outside Y by ⊥. A partial
output is any value (�f(w ⊗ X)) � Y for some class X . A snippet is a partial
output in which Y is a factor that is either disjoint with X , or included in X .

The type of a word v ∈ (A×{0, 1})∗ is the set of state pairs (p, q) such that A
has a run from p to q over v ⊗ u for some u ∈ B∗. The internal type of a factor
Y in a word w ⊗X is the type of the corresponding infix. Let Y1 (respectively,
Y2) consist of all positions before (after) a factor Y . The external type of the
factor Y in a word w⊗X is the set of state pairs (p, q) such that (qI , p) is in the
internal type of Y1 and (q, qF ) is in the internal type of Y2 for an initial state
qI and an accepting state qF . The external type of Y can be deduced from the
internal types of Y1 and Y2.

We will use a concise representation for a snippet (�f(w ⊗ X)) � Y . The
snippet representation consists of: the factor Y , its external type in w ⊗X and
a membership bit saying whether Y is contained in X or disjoint with X . Note
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that this information determines the value of (�f(w⊗X))�Y , as a word in B∗,
even without knowing X .

We now have the necessary concepts to present our proof strategy for Theo-
rem 2. Our goal is to produce the output f̂(w⊗μ). Our algorithm will represent
this output as the aggregation of a set of snippets. Whenever a subroutine of
the algorithm inputs or outputs a set of snippets, we assume that the snippets
are given by their representations.

The algorithm works in three stages.
Stage 1. We compute two factorization forests. Consider two words

w0 = w ⊗ ∅, w1 = w ⊗ {1, . . . , n} ∈ (A× {0, 1})∗.

We will use factorization forests for these words, for the morphism

α : (A× {0, 1})∗ →MQ

which maps a word v to its type. Apply Theorem 1 to the words w0, w1 and the
morphism α, yielding factorization forests F0, F1. These factorization forests
will be used by the next two stages of the algorithm.
Stage 2. We show that for each class X , the output �f(w⊗X) can be represented
by a small number of snippets. This is stated by the following lemma.

Lemma 4. Let X be a set of positions. We can calculate a set SX of snippets
such that �f(w⊗X) = �SX . The cardinality of SX and time to calculate it are
poly(Q) · |X |.

Proof. Let Y1, . . . , Ym be a partition of {1, . . . , n} into factors such that the
odd numbered factors are the maximal factors contained in X , and the even
numbered ones are disjoint with X . (The first and last factors might be empty.)
The set SX consisting of the snippets (�f(w⊗X))� Yi satisfies the thesis. The
factors Yi can be calculated in time linear in the number of positions in X .

We need to find the representation of the snippets, namely the external types
of Yi in w ⊗ X . The calculation will take time linear in m, and therefore at
most linear in the size of X . Let first compute their internal types. For even i,
the internal type of Yi is α(w ⊗ X [Yi]) = α(w0[Yi]), hence we can compute it
using the factorization forest F0. Using F1, we can do the same for odd i. Using
compositionality of types, we calculate internal types of Y1 ∪ · · · ∪ Yi for each
i, going from left to right, and of Yi ∪ · · · ∪ Ym, going from right to left. The
external type of Yi is found basing on the internal types of Y1 ∪ · · · ∪ Yi−1 and
Yi+1 ∪ · · · ∪ Ym. �

Stage 3. In the third and final stage, we show that snippets can be efficiently
aggregated. We apply Lemma 4 to each class X , yielding a set of snippets SX .
All we have to do is to aggregate them, i.e. aggregate all snippets that belong
to some SX for some class X . This can be done in linear time thanks to the
following proposition.

Proposition 1. Let s1, . . . , sm be snippets. Their aggregation s1 � · · · � sm can
be calculated in time poly(Q) · (m + |w|).
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3 An Application to Evaluating Queries of Regular
XPath

Regular XPath is a logic for data trees, which extends XPath 1.0 by adding a
Kleene star. There are two kinds of formulas in Regular XPath: unary queries
and binary queries. A unary query maps a data tree to a set of nodes, and a
binary query maps a data tree to a set of node pairs. The formulas of Regular
XPath and their semantics, as we use them here, are defined in [3].
Theorem 3. Let ϕ be a unary query of Regular XPath. The set of nodes selected
by ϕ in a data tree with n nodes can be computed in time:

– exp(ϕ) · n; or
– poly(ϕ) · n; if the input is a word.

The proof, given in the appendix, is straightforward: describe a query using data
aggregate transducers, and apply Theorem 2. We would like to point out that
a query is not described by a single data aggregate transducer, but a sequential
composition, where each new transducer reads the output of the previous one.
Corollary 2. Let ϕ be a unary query of Regular XPath. The nodes selected by
ϕ in a data tree of height k with n nodes can be computed in time poly(k, ϕ) ·n.

Proof. A data tree t ⊗ μ of height k over an alphabet A can be encoded, by
writing the nodes in document order and decorating them with their depths,
as a data word enck(t⊗ μ) over alphabet A× {1, . . . , k}. This encoding can be
decoded by Regular XPath in the following sense: for each unary query ϕ we can
compute in time poly(k, ϕ) a query enck(ϕ) such that the set of nodes selected
by ϕ in t ⊗ μ can be recovered in linear time from the set of nodes selected by
enck(ϕ) in the data word enck(t⊗ μ). The idea is to replace the axes: e.g. next
sibling is replaced by a disjunction, over all i ∈ {1, . . . , k}, of the binary query
which connects a position x of depth i with the first position y > x such that
y has depth i and all positions between x and y have depth at least i + 1. The
Kleene star is needed to talk about the positions between x and y. �
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Abstract. The well known binary search method can be described as
the process of identifying some marked node from a line graph T by
successively querying edges. An edge query e asks in which of the two
subpaths induced by T \ e the marked node lies. This procedure can be
naturally generalized to the case where T = (V, E) is a tree instead of a
line. The problem of determining a tree search strategy minimizing the
number of queries in the worst case is solvable in linear time [Onak et
al. FOCS’06, Mozes et al. SODA’08].

Here we study the average-case problem, where the objective function
is the weighted average number of queries to find a node An involved
analysis shows that the problem is NP-complete even for the class of
trees with bounded diameter, or bounded degree.

We also show that any optimal strategy (i.e., one that minimizes
the expected number of queries) performs at most O(Δ(T )(log |V | +
log w(T ))) queries in the worst case, where w(T ) is the sum of the node
weights and Δ(T ) is the maximum degree of T . This structural prop-
erty is then combined with a non-trivial exponential time algorithm to
provide an FPTAS for the bounded degree case.

1 Introduction

Searching is one of the fundamental problems in Computer Science and Discrete
Mathematics. In his classical book [16], D. Knuth discusses many variants of the
searching problem, most of them dealing with totally ordered sets. There has
been some effort to extend the available techniques for searching and for other
fundamental problems (e.g. sorting and selection) to handle more complex struc-
tures such as partially ordered sets [22,9,25,24,6]. Here, we focus on searching in
structures that lie between totally ordered sets and the most general posets. We
wish to efficiently locate a particular node in a tree.
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More formally, as input we are given a tree T = (V,E) which has a ‘hidden’
marked node and a function w : V → Z+ that gives the likelihood of a node being
the one marked. In order to discover which node of T is marked, we can perform
edge queries : after querying the edge e ∈ E we receive an answer stating in which
of the two connected components of T \ e the marked node lies. To simplify our
notation let us assume that our input tree T is rooted at a node r. Then, we can
specify a query to an edge e = uv, where u is the parent of v, by referring to v.

A search strategy is a procedure that decides the next query to be posed
based on the outcome of the previous queries. Every search strategy for a tree
T = (V,E) (or for a forest) can be represented by a binary search (decision) tree
D such that a path from the root of D to a leaf � indicates which queries should
be made at each step to discover that � is the marked node. More precisely, a
search tree for T is a triple D = (N,E′, A), where N and E′ are the nodes and
edges of a binary tree and the assignment A : N → V satisfies the following
properties: (a) for every node v of V there is exactly one leaf � in D such that
A(�) = v; (b)[search property] if v is in the right (left) subtree of u in D then
A(v) is (not) in the subtree of T rooted at A(u).

Given a search tree D for T , let d(u, v) be the length (in number of edges)
of the path from u to v in D. Then the cost of D, or alternatively the expected
number of queries of D is given by

cost(D) =
∑

v∈leaves(D)

d(root(D), v)w(A(v)).

Therefore, our problem can be stated as follows: given a rooted tree T = (V,E)
with |V | = n and a function w : V → Z+, the goal is to compute a minimum
cost search tree for T .
The state of the art. The variant of our problem in which the goal is to
minimize the number of edge queries in the worst case has been studied in
several recent papers [3,25,24]. An optimal strategy can be found in linear time
[24]. Also, the worst-case version of searching in trees has been independently
considered as the problem of ranking the edges of a tree [8,7,20].

By contrast, little was known (prior to this paper) about the average-case min-
imization. The known results amount to the O(log n)-approximation obtained
by Kosaraju et al. [17], and Adler and Heeringa [1] for the much more general
binary identification problem, and the constant factor approximation algorithm
given by two of the authors in [18]. However, the complexity of the average-case
minimization of the tree search problem has so far been unknown.
Our results. We significantly narrow the gap of knowledge in the complexity
landscape of the tree search problem under different points of view. We prove
that the problem is NP-Complete even for the class of trees with diameter at
most 4. This results in a complete characterization of the problem’s complexity
with respect to the parametrization in terms of the diameter. In fact, the problem
is polynomially solvable for the class of trees of diameter at most 3.

We also show that the tree search problem under average minimization is
NP-Complete for trees of degree at most 16. This substantially improves upon



On the Complexity of Searching in Trees: Average-Case Minimization 529

the state of the art, the only known result in this direction being an O(n log n)
time solution [13,12] for the class of trees with maximum degree 2. The hardness
results are obtained by fairly involved reductions from the Exact 3-Set Cover
(X3C) with multiplicity 3 [11]. We match this hardness result with an FPTAS. In
order to obtain the FPTAS, we first devise a non-trivial Dynamic Programming
based algorithm that, roughly speaking, computes the best possible search tree,
among the search trees with height at most H , in O(n22H) time. Then, we
show that every tree T admits a minimum cost search tree whose height is
O(Δ · (log n + logw(T ))), where Δ is the maximum degree of T and w(T ) is
the total weight of the nodes in T . This bound allows us to execute the DP
algorithm with H = c ·Δ · (log n+logw(T )), for a suitable constant c, obtaining
a pseudo-polynomial time algorithm for trees with bounded degree. By scaling
the weights w in a fairly standard way we obtain the FPTAS.

We believe that the bound on the height of optimal search trees is of indepen-
dent interest: it is nearly tight since the height of a search tree for a complete
tree of degree Δ is Ω( Δ

logΔ logn). Moreover, it generalizes the known logarithmic
bound on the height of optimal search trees for totally ordered sets [21].

In a paper which is in preparation, we show that the more general problem of
computing an average-case optimal search strategy for partially ordered sets does
not admit an o(log |V |)-approximation unless P = NP . This sharply contrasts
the existence of the FPTAS for bounded degree trees derived in this work.
Other related work. The problem studied here is a particular case of the binary
identification problem (BIP) [10]: given is a set of elements U = {u1, . . . , un},
a set of tests {t1, . . . , tm}, with ti ⊆ U , a ‘hidden’ marked element, and a like-
lihood function w : U 	→ R+. A test t determines whether or not the marked
element is in the set t. The BIP asks to define a strategy that minimizes the
(expected) number of tests to find the marked element. Both the average-case
and the worst-case minimization are NP-Complete [14], and neither admits an
o(logn)-approximation unless P = NP [19,5]. For both versions, simple greedy
algorithms attain O(log n)-approximation [17,2,1]. Adding some structure to the
set of tests yields interesting particular cases. If the set of tests is 2U , then the
optimal average cost strategy is a Huffman tree. Let G be a DAG with vertex set
U . If the set of tests is {t1, . . . , tn}, where ti = {uj|ui � uj in G}, then we have
the problem of searching in a poset [23,17,4]. When G is a directed path we have
the alphabetic coding problem [13]. The problem we study here corresponds to
the particular case where G is a directed tree.

2 Hardness

Our goal is to prove the following hardness results for the search tree problem.

Theorem 1. The search tree problem is NP-Complete in the class of trees of
diameter at most 4. Moreover, it is also NP-Complete in the class of trees of
diameter at most 16.
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In this section we provide a proof for the first half of the theorem via reduction
from the Exact 3-Set Cover problem with multiplicity bounded by 3, i.e., each
element of the ground set can appear in at most 3 sets.

An instance of the 3-bounded Exact 3-Set Cover problem (X3C) is defined
by: (a) a set U = {u1, . . . , un}, with n = 3k for some k ≥ 1; (b) a family
X = {X1, . . . , Xm} of subsets of U, such that |Xi| = 3 for each i = 1, . . .m and
for each j = 1, . . . n, we have that uj appears in at most 3 sets of X . Given
an instance I = (U,X ) the X3C problem is to decide whether X contains a
partition of U, i.e., whether there exists a family C ⊆ X such that |C| = k and⋃

X∈C X = U. This problem is well known to be NP-Complete [11].
For our reduction it will be crucial to define an order among the sets of the

family X . Any total order < on U, say u1 < u2 < · · · < un, can be extended to
a total order ≺ on X ∪ U by stipulating that: (a) for any X = {x1, x2, x3}, Y =
{y1, y2, y3} ∈ X (with x1 < x2 < x3 and y1 < y2 < y3,) the relation X ≺ Y holds
if and only if the sequence x3 x2 x1 is lexicographically smaller than y3 y2 y1; (b)
for every j = 1, . . . , n, the relation uj ≺ X holds if and only if the sequence
uj u1 u1 is lexicographically smaller than x3 x2 x1.

Assume an order < on U has been fixed and ≺ is its extension to U ∪ X ,
as defined above. We denote by Π = (π1, . . . , πn+m) the sequence of elements
of U ∪ X sorted in increasing order according to ≺ . From now on, w.l.o.g., we
assume that according to < and ≺ , it holds that u1 < · · · < un and X1 ≺ · · · ≺
Xm. For each i = 1, . . . ,m, we shall denote the elements of Xi by ui 1, ui 2, ui 3
so that ui 1 < ui 2 < ui 3.

Example 1. Let U = {a, b, c, d, e, f}, X = {{a, b, c}, {b, c, d}, {d, e, f}, {b, e, f}}.
Fixing the standard alphabetical order among the elements of U, we have that the
sets of X are ordered as follows: X1 = {a, b, c}, X2 = {b, c, d}, X3 = {b, e, f}, X4
= {d, e, f}. Then, we have Π = (π1, . . . , π10) = (a, b, c,X1, d,X2, e, f,X3, X4).

We shall first show a polynomial time reduction that maps any instance I =
(U,X ) of 3-bounded X3C to an instance I′ = (T,w) of the tree search problem,
such that T has diameter 4 but unbounded degree. We will then modify such
reduction and show hardness for the bounded case too.

The structure of the tree T . The root of T is denoted by r. For each i =
1, . . . ,m the set Xi ∈ X is mapped to a tree Ti of height 1, with root ri and
leaves ti, si 1, si 2, si 3. In particular, for j = 1, 2, 3, we say that si j is associated
with the element ui j . We make each ri a child of r. For i = 1, . . . ,m, we also
create four leaves ai1, ai2, ai3, ai4 and make them children of the root r. We also
define X̃i = {ti, si 1, si 2, si 3, ai1, . . . , ai4} to be the set of leaves of T associated
with Xi.

The weights of the nodes of T . Only the leaves of T will have non-zero
weight, i.e., we set w(r) = w(r1) = · · · = w(rm) = 0. It will be useful to assign
weight also to each u ∈ U. In particular, our weight assignment will be such that
each leaf in T which is associated with an element u will be assigned the same
weight we assign to u. Also, when we fix the weight of u we shall understand
that we are fixing the weight of all leaves in T associated with u. We extend the
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function w() to sets, so the weight of a set is the total weight of its elements.
Also we define the weight of a tree as the total weight of its nodes.

The weights will be set in order to force any optimal search tree for (T,w)
to have a well-defined structure. The following notions of Configuration and
Realization will be useful to describe such a structure of an optimal search tree.
In describing the search tree we shall use qν to denote the node in the search
tree under consideration that represents the question about the node ν of the
input tree T. Moreover, we shall in general only be concerned with the part of
the search tree meant to identify the nodes of T of non-zero weight. It should be
clear that the search tree can be easily completed by appending the remaining
queries at the bottom.

Definition 1. Given leaves �1, . . . , �h of T, a sequential search tree for �1, . . . , �h
is a search tree of height h whose left path is q�1 , . . . , q�h

. This is the strategy
that asks about one leaf after another until they have all been considered.

Configurations and realizations of Π. For each i = 1, . . . ,m, let DA
i be

the search tree with root qri , with right subtree being the sequential search
tree for ti, si 3, si 2, si 1, and left subtree being a sequential search tree for (some
permutation of) ai1, . . . ai4. We also refer to DA

i as the A-configuration for X̃i.
Moreover, let DB

i be the search tree with root qti and left subtree being a
sequential search tree for (some permutation of) ai1, . . . ai4. We say that DB

i is
the B-configuration for X̃i.

Definition 2. Given two search trees T1, T2, the extension of T1 with T2 is the
search tree obtained by appending the root of T2 to the leftmost leaf of T1. The
extension of T1 with T2 is a new search tree that “acts” like T1 and in case of
all NO answers continues following the strategy represented by T2.

Definition 3. A realization (of Π) with respect to Y ⊆ X is a search tree for
(T,w) defined recursively as follows:1 For each i = 1, . . . , n+m, a realization of
πi πi+1 . . . πn+m is an extension of the realization of πi+1 . . . πn+m with another
tree T ′ chosen according to the following two cases:
Case 1. If πi = uj , for some j = 1, . . . , n, then T ′ is a (possibly empty) sequential
search tree for the leaves of T that are associated with uj and are not queried in
the realization of πi+1 . . . , πn+m.
Case 2. If πi = Xj , for some j = 1, . . . ,m, then T ′ is either DB

j or DA
j according

to whether Xj ∈ Y or not.

We denote by DA the realization of Π w.r.t. the empty family, i.e., Y = ∅.
We are going to set the weights in such a way that every optimal solution is a

realization of Π w.r.t. some Y ⊆ X (our Lemma 1). Moreover, such weights will
allow to discriminate between the cost of solutions that are realizations w.r.t. an
exact cover for the X3C instance and the cost of any other realization of Π . Let
D∗ be an optimal search tree and Y be such that D∗ is a realization of Π w.r.t.
1 For sake of definiteness we set πm+n+1 = ∅ and the realization of πn+m+1 w.r.t. Y

to be the empty tree.
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Y.2 In addition, for each u ∈ U define Wu =
∑

�:X�≺uw(X̃�). It is not hard to
see that the difference between the cost of DA and D∗, can be expressed as

∑
Xi∈Y

⎛⎝w(ti)− (Wui 1 + Wui 2 + Wui 3)−
3∑

j=1

dAB(qsi j )w(ui j)

⎞⎠ , (1)

where dAB(qsi j ) is the difference between the level of the node qsi j in D∗ and
the level qsi j in a realization of Π w.r.t. Y \ {Xi}. To see this, imagine to turn
DA into D∗ one step at a time. Each step being the changing of configuration
from A to B for a set of leaves X̃i such that Xi ∈ Y. Such a step implies: (a)
moving the question qsij exactly dAB(qsij ) levels down, so increasing the cost by
dAB(qsi j )w(ui j); (b) because of (a) all the questions that were below the level
where qsij is moved, are also moved down one level. This additional increase in
cost is accounted for by the Wui j ’s; (c) moving one level up the question about
ti, so gaining cost w(ti).

We will define the weight of ti in order to: compensate the increase in cost (a)-
(b) due to the relocation of qsi j ; and to provide some additional gain only when
Y is an exact cover. In general, the value of dAB(qsi j ) depends on the structure of
the realization for Y \ {Xi}; in particular, on the length of the sequential search
trees for the leaves associated to uκ’s, that appear in Π between Xi and ui j .
However, when Y is an exact cover, each such sequential search tree has length
one. A moment’s reflection shows that in this case dAB(qsi j ) = γ(i, j), where, for
each i = 1, . . . ,m and j = 1, 2, 3, we define

γ(i, j) = j − 5 + |{uκ : ui j ≺ uκ ≺ Xi}|+ 5 · |{Xκ : ui j ≺ Xκ � Xi}|

To see this, assume that Y is an exact cover. Let D′ be the realization for Y \Xi,
and � be the level of the root of the A-configuration for X̃i in D′. The node qsi j

is at level �+ (5− j) in D′. In D∗, the root of the B-configuration for X̃i is also
at level �. Also, in D∗, between level � and the level of qsi j , there are only nodes
associated with elements of some πk s.t. uij ≺ πκ � Xj . Precisely, there is 1 level
per each uκ s.t. uij ≺ uκ ≺ Xi (corresponding to the sequential search tree for
the only leaf associated with uκ); and 5 levels per each Xκ s.t. uij ≺ Xκ � Xi

(corresponding to the left path of the A or B-configuration for X̃κ). In total, the
difference between the levels of qsij in D′ and D∗ is γ(i, j).

Note that γ(i, j) is still well defined even if there is not an exact cover Y ⊆ X .
This quantity will be used to define w(ti).

We are now ready to provide the precise definition of the weight function w.
We start with w(u1) = 1. Then, we fix the remaining weights inductively, using
the sequence Π in the following way: let i > 1 and assume that for each i′ < i
the weights of all leaves associated with πi′ have been fixed3. We now proceed
according to the following two cases:
2 The existence of such a Y will be guaranteed by Lemma 1.
3 By the leaves associated with πi′ we mean the leaves in X̃j , if πi = Xj for some

Xj ∈ X , or the leaves associated with u if πi′ = u for some u ∈ U.
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Case 1. πi = uj, for some j ∈ {1, . . . , n}. Then, we set the weight of the nodes
associated with uj to w(uj) = 1 + 6 max{|T |3w(uj−1),Wuj}, where |T | denotes
the number of nodes of T.
Case 2. πi = Xj , for some j ∈ {1, . . . ,m}. Note that in this case the weights of
the leaves sj 1, sj 2, sj 3 have already been fixed, respectively to w(uj 1), w(uj 2),
and w(uj 3). This is because we fix the weights following the sequence Π and
we have uj 1 ≺ uj 2 ≺ uj 3 ≺ Xj . In order to define the weights of the remain-
ing elements in X̃j we set w(aj1) = · · · = w(aj4) = Wuj 1 + Wuj 2 + Wuj 3 +∑3

κ=1 γ(j, κ)w(uj κ). Finally, we set w(tj) = w(aj1) + w(Xj)/2.

Remark 1. For each i = 1, . . . , n + m, let w(πi) denote the total weight of the
leaves associated with πi. It is not hard to see that w(πi) = O(|T |3i), So we have
that the maximum weight is not larger than w(πm+n) = O(|T |3(m+n)). It follows
that we can encode all weights using O(3|T |(n + m) log |T |) bits, hence the size
of the instance (T,w) is polynomial in the size of the X3C instance I = (U,X ).

Since tm is the heaviest leaf, one can show that in an optimal search tree D∗ the
root can only be qtm or qrm . For otherwise moving one of these questions closer to
the root of D∗ results in a tree with smaller cost, violating the optimality of D∗.
By a similar “exchange” argument it follows that if qrm is the root of D∗ then the
right subtree must coincide with a sequential search tree for tm, sm1, sm2, sm3
and the left subtree of qrm must be a sequential tree for am1, . . . , am4. So the
top levels of D∗ coincide either with DA

m or with DB
m, or equivalently they are a

realization of πm+n. Repeating the same argument on the remaining part of D∗

we have the following:

Lemma 1. Any optimal search tree for the instance (T,w) is a realization of Π
w.r.t. some Y ⊆ X .

Recall now the definition of the search tree DA. Let D∗ be an optimal search tree
for (T,w). Let Y ⊆ X be such that D∗ is a realization of Π w.r.t. Y. Equation
(1) and the definition of w(ti) yield

cost(DA)− cost(D∗) =
∑

Xi∈Y

(
w(Xi)

2
+

3∑
j=1

(
γ(i, j) − dA

B(qsi j )
)

w(ui j)

)

=
n∑

j=1

∑
Xi∈Y
uj∈Xi

(
w(uj)

2
+ Γ (i, j)w(uj)

)
, (2)

where Γ (i, j) = γ(i, κ)− dAB(qsi κ), and κ ∈ {1, 2, 3} is such that si κ = uj .
By definition, if for each j = 1, . . . , n, there exists exactly one Xi ∈ Y such

that uj ∈ Xi, then we have Γ (i, j) = 0. Therefore, equation (2) evaluates exactly
to

∑n
j=1

w(uj)
2 . Conversely, we can prove that this never happens when for some

1 ≤ j ≤ n, uj appears in none or in more than one of the sets in Y. For this we
use the exponential (in |T |) growth of the weights w(uj) and the fact that in such
case the inner sum of the last expression in (2) is non-positive. In conclusion
we have the following result.
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Lemma 2. Let D∗ be an optimal search tree for (T,w). Let Y ⊆ X be such
that D∗ is a realization of Π w.r.t. Y. We have that cost(D∗) ≤ cost(DA) −
1
2

∑
u∈U w(u) if and only if Y is a solution for the X3C instance I = (U,X ).

The NP-Completeness of 3-bounded X3C [11], Remark 1, and Lemma 2 imply
the first half of Theorem 1. The hardness for trees of bounded diameter can
be obtained by refining these hardness instances, carefully introducing nodes to
control the degree expansion.

3 An FPTAS for Searching in Bounded-Degree Trees

First we need to introduce some notation. For any forest F of rooted trees and
node j ∈ F , we denote by Fj the subtree of F composed by j and all of its
descendants. We denote the root of a tree T by r(T ), δ(u) denotes the number
of children of u and ci(u) is used to denote the ith child of u according to some
arbitrarily fixed order. Given a search tree D for T , we use lu to denote the leaf
of D assigned to node u of T .

The following operation will be useful for modifying search trees: Given a
search tree D and a node u ∈ D, a left deletion of u is the operation that
transforms D into a new search tree by removing both u and its left subtree
from D and, then, by connecting the right subtree of u to the parent of u (if it
exists). A right deletion is analogously defined.

A dynamic programming algorithm. We often construct a search tree start-
ing with its ‘left part’. In order to formally describe such constructions, we define
a left path as an ordered path where every node has only a left child. In addition,
the left path of an ordered tree T is defined as the ordered path we obtain when
we traverse T by only going to the left child, until we reach a node which does
not have a left child.

In order to find an optimal search tree in an efficient way, we will define a
family of auxiliary problems denoted by PB(F, P ). For this we first need to
introduce the concept of an extended search tree, which is basically a search tree
with some extra nodes that either have not been associated with a query yet
(unassigned nodes), or cannot be associated with a query (blocked nodes).

Definition 4. An extended search tree (EST) for a forest F = (V,E) is a triple
D = (N,E′, A), where N and E′ are the nodes and edges of an ordered binary
tree and the assignment A : N → V ∪{blocked, unassigned} simultaneously satisfy
the following properties:

(a) For every node v of F , D contains both a leaf � and an internal node u such
that A(�) = A(u) = v;

(b) ∀u, v ∈ D, with A(u), A(v) ∈ F , the following holds: If v is in the right
subtree of u then A(v) ∈ FA(u). If v is in left subtree of u then A(v) /∈ FA(u);

(c) If u is a node in D with A(u) ∈ {blocked, unassigned}, then u does not have
a right child.
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If we drop (c) and also the requirement regarding internal nodes in (a) we have
the definition of a search tree for F . The cost of an EST D for F is analogous to
the cost of a search tree and is given by cost(D) =

∑
d(r(D), u)w(A(u)), where

the summation is taken over all leaves u ∈ D for which A(u) ∈ F .
At this point we establish a correspondence between optimal EST’s and op-

timal search trees. Given an EST D for a tree T , we can apply a left deletion
to the internal node of D assigned to r(T ) and right deletions to all nodes of
D that are blocked or unassigned, getting a search tree D′ of cost cost(D′) ≤
cost(D)− w(r(T )). Conversely, we can add a node assigned to r(T ) to a search
tree D′ and get an EST D such that cost(D) ≤ cost(D′) + w(r(T )). Employing
these observations we can prove the following lemma:

Lemma 3. Any optimal EST for a tree T can be converted into an optimal
search tree for T (in linear time). In addition, the existence of an optimal search
tree of height h implies the existence of an optimal EST of height h + 1.

So we can focus on obtaining optimal EST’s. First, we introduce concepts which
serve as building blocks for EST’s. A partial left path (PLP) is a left path where
every node is assigned (via a function A) to either blocked or unassigned. Let
D be an EST D and L = {l1, . . . , l|L|} be its left path. We say that D is
compatible with a PLP P = {p1, . . . , p|P |} if |P | = |L| and A(pi) = blocked
implies A(li) = blocked .

This definition of compatibility implies a natural one to one correspondence
between nodes of L and P . Therefore, without ambiguity, we can use pi when
referring to node li and vice versa.

Now we can introduce our subproblem PB. First, fix a tree T with n nodes
and a weight function w. Given a forest F = {Tc1(u), Tc2(u) . . . , Tcf (u)}, a PLP
P and an integer B, the problem PB(F, P ) consists of finding an EST for F
with minimum cost among the EST’s for F compatible with P and have height
at most B. Note that F is not a general subforest of T , but one consisting of
subtrees rooted at the first f children of some node u ∈ T , for some 1 ≤ f ≤ δ(u).

Notice that if P is a PLP where all nodes are unassigned and P and B are
sufficiently large, then PB(T, P ) gives an optimal EST for T .

Algorithm for PB(F, P ). We have a base case and two other cases depending
on the structure of F . In all cases, although not explicitly stated, the algorithm
returns ‘infeasible’ if P contains no unassigned nodes. Whenever the algorithm
encounters an ‘infeasible’ subproblem it ignores this choice in the enumeration.

Base case: F has only one node u. In this case, the optimal solution for
PB(F, P ) is obtained from P by assigning its first unassigned node, say pi,
to u and then adding a leaf assigned to u as a right child of pi. Its cost is i ·w(u).

Case 1: F is a forest {Tc1(u), . . . , Tcf(u)}. The idea of the algorithm is to de-
compose the problem into subproblems for the forests Tcf(u) and F \ Tcf(u). For
that, it needs to select which nodes of P will be assigned to each of these forests.
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The algorithm considers all possible bipartitions of the unassigned nodes of P
and for each bipartition U = (Uf , Uo) it computes an EST DU for F compatible
with P . At the end, the algorithm returns the tree DU with smallest cost. The
EST DU is constructed as follows:

1. Let P f be the PLP constructed by starting with P and then setting all
nodes in Uo as blocked. Similarly, let P o be the PLP constructed by starting
with P and setting all nodes in Uf as blocked. Let Df and Do be optimal
solutions for PB(Tcf (u), P

f ) and PB(F \ Tcf (u), P
o), respectively.

2. The EST DU is computed by taking the ‘union’ of Df and Do. More formally,
the ‘union’ operation consists of starting with the path P and then replacing:
(i) every node in P ∩ Uf by the corresponding node in the left path of Df

and its right subtree; (ii) every node in P ∩ Uo by the corresponding node
in the left path of Do and its right subtree.

Notice that the height of every EST DU is at most B; this implies that the
algorithm returns a feasible solution for PB(F, P ). Also, the cost of DU is given
by OPT (PB(Tcf (u), P

f )) + OPT (PB(F \ Tcf(u), P
o)).

The optimality of the above procedure relies on the fact we can build an
EST D̄f for Tcf(u) by starting from an optimal solution D∗ for PB(F, P ) and
performing the following operation at each node v of its left path: (i) if v is
unassigned we assign it as blocked; (ii) if v is assigned to a node in F \ Tcf(u)
we assign it as blocked and remove its right subtree. We can construct an EST
D̄o for F \Tcf(u) analogously. Notice that cost(D̄f )+ cost(D̄o) = cost(D∗). The
proof is then completed by noticing that, for a particular choice of U , D̄f and D̄o

are feasible for PB(Tcf (u), P
f ) and PB(F \ Tcf(u), P

o), so the solution returned
by the above algorithm costs at most OPT (PB(Tcf (u), P

f )) + OPT (PB(F \
Tcf(u), P

o)) ≤ cost(D∗).

Case 2: F is a tree Tv. Let pi be an unassigned node of P and let t be an integer
in the interval [i+1, B]. The algorithm considers all possibilities for pi and t and
computes an EST Di,t for Tv of smallest cost satisfying the following: (i) Di,t

is compatible with P ; (ii) its height is at most B; (iii) the node of the left path
of Di,t corresponding to pi is assigned to v; (iv) the leaf of Di,t assigned to v is
located at level t. The algorithm then returns the tree Di,t with minimum cost.

In order to compute Di,t the algorithm executes the following steps:

1. Let P i be the subpath of P that starts at the first node of P and ends at
pi. Let P i,t be a left path obtained by appending t − i unassigned nodes
to P i and assigning pi as blocked. Compute an optimal solution D′ for
PB({Tc1(v), Tc2(v), . . . , Tcδ(v)(v)}, P i,t).

2. Let p′i be the node of D′ corresponding to pi and let y′ be the last node
of the left path of D′. The tree Di,t is constructed by modifying D′ as fol-
lows: make the left subtree of p′i becomes its right subtree; assign p′i to v;
add a leaf assigned to v as the left child of y′; finally, as a technical detail, add
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some blocked nodes to extend the left path of this structure until the left
path has the same size of P .

It follows from properties (i) and (ii) of the trees Di,t’s that the above procedure
returns a feasible solution for PB(Tv, P ). The proof of the optimality uses the
same type of arguments as in Case 1 and is deferred to the full version of the
paper.

Computational complexity. Notice that it suffices to consider the problems
PB(F, P )’s where |P | ≤ B, since all others are infeasible. All these problems can
be solved in O(n222B) time, since there are O(n2B) such problems and each can
be solved in O(n + 2B) time by employing a dynamic programming strategy.

From the DP algorithm to an FPTAS. The last piece that we need in order
to obtain the FPTAS is a bound on the height of an optimal tree.

Theorem 2. There is an optimal search tree for (T,w) of height at most O(Δ(T )·
(logw(T ) + logn)).

Proof (sketch). First we notice the following:
Claim 1. For any subtree T ′ of T, we can obtain from D∗ a search tree D∗T ′ for
T ′, such that d(r(D∗T ′ ), lx) = d(r(D∗), lx)−nx, where nx is the number of nodes
in the path from r(D∗) to lx assigned to nodes in T − T ′.
Claim 2. Let D∗ be an optimal search tree. Fix 0 ≤ α < 1 and an integer
c > 3(Δ(T ) + 1)α. Then, for every node v∗ ∈ D∗ with d(r(D∗), v∗) ≥ c we have
that w(D∗v∗) ≤ α · w(D∗).

Assume (by contradiction) Claim 2 does not hold for some v∗ satisfying its
conditions. Let T̃ be the tree associated with v∗, rooted at node r̃. Since by
hypothesis w(T̃ ) > α · w(D∗), we create the following search tree D′ which
makes sure parts of T̃ are queried closer to r(D′): the root of D′ is assigned
to r̃; the left tree of r(D′) is a search tree for T − Tr̃ given by Claim 1; in
the right tree of r(D′) we build a left path containing nodes corresponding to
queries for c1(r̃), c2(r̃), . . . , cδ(r̃)(r̃), each having as right subtree a search tree
for the corresponding Tci(r̃) given by Claim 1. If s̄ is the number of nodes of
T − Tr̃ queried in r(D∗) � v∗, then Claim 1 implies that D′ saves at least
s̄− (Δ(T ) + 1) queries for each node in T̃ when compared to D∗; this gives the
expression cost(D′) ≤ cost(D∗)−s̄·w(T̃ )+(Δ(T )+1)w(T ). Using the hypothesis
on c and w(T̃ ), this is enough to reach the contradiction cost(D′) < cost(D∗)
when s̄ ≥ c/3. The case when s̄ < c/3 is a little more involved but uses a similar
construction, only now the role of r̃ is taken by a node inside Tr̃ in order to
obtain a more ‘balanced’ search tree.

Assume that the weight function w is strictly positive (the general case is in
Appendix). Since w is integral, repeated use of Claim 2 yields the desired result.

Employing the previous dynamic programming algorithm with B = O(Δ(T ) ·
(logw(T )+log n)), we obtain an optimal solution in time O

(
(n · w(T ))O(Δ(T ))

)
.

Finally, by a standard weight scaling method (e.g. [15]), we obtain an FPTAS.
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Theorem 3. Consider an instance (T,w) to our search problem where Δ(T ) =
O(1). Then there is a poly(n · w(T ))-time algorithm for computing an optimal
search tree for (T,w). In addition, there is a poly(n/ε)-time algorithm for com-
puting an (1 + ε)-approximate search tree for (T,w).
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Abstract. We solve an open problem by constructing quantum walks
that not only detect but also find marked vertices in a graph. The number
of steps of the quantum walk is quadratically smaller than the classical
hitting time of any reversible random walk P on the graph.

Our approach is new, simpler and more general than previous ones. We
introduce a notion of interpolation between the walk P and the absorbing
walk P ′, whose marked states are absorbing. Then our quantum walk is
simply the quantum analogue of the interpolation. Contrary to previous
approaches, our results remain valid when the random walk P is not
state-transitive, and in the presence of multiple marked vertices.

As a consequence we make a progress on an open problem related to
the spatial search on the 2D-grid.

1 Introduction

Many classical randomized algorithms rely heavily on random walks or Markov
chains. The notion of hitting time is intimately related to the problem of spatial
search, where displacement constraints are modeled by an undirected graph G.
The set of desired vertices, or marked vertices, is denoted by M . Classically, a
simple algorithm to find a marked vertex is to repeatedly apply some random
walk P on G until one of the marked vertices is reached. The hitting time of P ,
HT(P,M), is precisely the expected number of repetitions, or steps, necessary
to reach a marked vertex, starting from the stationary distribution of P .

Quantum walks are natural generalizations of classical random walks. Am-
bainis [1] was the first to solve a natural problem – the “element distinctness
problem” – using a quantum walk. Following this, many quantum walk algo-
rithms were discovered [2,3,4]. Quantum walk algorithms for the spatial search
problem [5] were studied for the hypercube [6] and the grid [7,8].

The notion of hitting time has been carried over to the quantum case
in [8,9,10,11,12,13]. Usually, the quantum hitting time has a quadratic improve-
ment over the classical one. However, until the present paper, several serious
restrictions were imposed: a quantum algorithm could only solve the detection
problem of deciding whether there are marked vertices or not [10], but for being
able to find them the Markov chain had to be reversible, state-transitive, and with
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a unique marked vertex [14,13]. The detection algorithm is quite intuitive and well
understood, whereas the finding algorithm requires an elaborate proof whose in-
tuition is not clear. This is due in part to a modification of the quantum walk, so
that the resulting walk is not a quantum analogue of a Markov chain anymore.

Whether this quadratic speed-up for finding a marked vertex also holds for any
reversible Markov chain and for multiple marked vertices was an open question.
In this paper, we answer this question in the positive. Here we choose another
approach by modifying directly P , and by considering the quantum analogue
of the modified random walk. Doing that we keep some intuition and get sim-
pler proofs while obtaining more general results. The new walk is simply an
interpolation between the walk P and the absorbing walk P ′, where all outgoing
transitions from marked vertices are replaced by self-loops. The interpolation co-
efficient can be used to tune the overlap between the stationary superposition of
the quantum walk and its projection onto marked vertices. For a suitable value,
depending on the relative weight of marked vertices in the stationary distribu-
tion of P , the overlap with marked and unmarked vertices is balanced, leading
to a quantum walk algorithm that finds a marked vertex within

√
HT(P,M)

steps (Theorem 5). The balancing can also be achieved when limited or even
no information is available on the weight of marked vertices (Theorems 6, 7
and 8). As a consequence, we make a progress on an open problem from [5,14]
related to the spatial search on the 2D-grid (Corollary 2).

2 Preliminaries

2.1 Spatial Search on Graphs

We fix throughout the paper an undirected graph G = (X,E) with |X | = n. Let
M ⊆ X be a set of marked vertices and let m = |M |. Vertices are encoded in a
distinguished vertex register. Our goal is to find any of the marked vertices in M
using only evolutions that preserve the locality of G on the vertex register, i.e., to
perform a spatial search on G [5]. Here we define an even more restricted notion of
locality than the ones in [5], but it is more intuitive and sufficiently powerful for
our purpose. We allow two types of operations on the vertex register: static trans-
formations (that can be conditioned on the state of the vertex register but do not
modify it) and shift (that exchanges the value of the vertex register and another
register). Nonetheless, we want to restrict the executions of shift to (x, y) ∈ E.

Definition 1. Let

Shift (x, y) =

{
(y, x), if (x, y) ∈ E,

(x, y), otherwise.
In the first case we say that Shift succeeds, but in the second case it fails.

Definition 2 (Problems). Under the restrictions that only static transforma-
tions and Shift are allowed, consider the following problems:
– Detect(G): Detect if there is a marked vertex in G;
– Find(G): Find any marked vertex in G, with the promise that M �= ∅.
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Detect
(k)(G) (resp. Detect

(≥k)(G)) will denote the problem Detect(G) with
the promise that m = 0 or m = k (resp. m ≥ k). Similarly, define Find

(k)(G)
(resp. Find

(≥k)(G)) as Find(G) with the promise that m = k (resp. m ≥ k).
A natural approach to searching on a graph consists in using a random walk.

Intuitively, a random walk is an alternation of coin flips and shifts. Namely, a coin
is flipped according to the current state x of the vertex register, its value describes
a target vertex y, and Shift is a move from x to y. Let pxy be the probability that
x is shifted to y. Then Shift always succeeds if pxy = 0 whenever (x, y) /∈ E. In
that case, we say that P = (pxy)x,y∈X is a Markov chain on G.

We assume from now on that P is an ergodic Markov chain. Therefore P has
a unique stationary distribution π. We also assume that P is reversible: πxpxy =
πypyx, for all x, y ∈ X . To measure the complexity of implementing a random
walk corresponding to P , we introduce the following black-box operations:
– Check(M): Check if a given vertex is marked;
– Setup(P ): Draw a sample from the stationary distribution π of P ;
– Update(P ): Perform one step of P .

Each of these black-box operations have the corresponding associated imple-
mentation cost. We denote by C, S and U the respective complexities of the
transformations Check(M), Setup(P ) and Update(P ).

2.2 Quantum Version

In the quantum case, the problem extends as follows. Let H = CX be a fixed
Hilbert space with basis (|x〉)x∈X . Again, a transformation is static if it is con-
trolled by the vertex register, that is of type

∑
x∈X |x〉〈x| ⊗ Vx, and Definition 1

of Shift is simply extended by linearity. Then the generalization of random
walks to quantum walks is as follows.

Definition 3. A quantum walk W on G is a composition of static unitary trans-
formations and Shift on an invariant subspace of H⊗H, the walk space, such
that Shift always succeeds when W is restricted to its walk space.

Implicitly we always restrict a quantum walk to its walk space.
We will only consider quantum walks built from quantum analogues of re-

versible Markov chains. Thus we extend the operations Check, Setup and Update
to the quantum setting as follows. Let |0̄〉 ∈ H be a fixed reference state. In the
following, the first register is the vertex register.
– Check(M): Map |x〉|b〉 to |x〉|b〉 if x /∈M and |x〉|b⊕1〉 if x ∈M , for b = 0, 1.
– Setup(P ): Construct the superposition: |π〉 =

∑
x∈X

√
πx|x〉;

– Update(P ): Apply any of V (P ), V (P )† or Shift, where V (P ) satisfies
V (P )|x〉|0̄〉 = |x〉|px〉 = |x〉

∑
y∈X

√
pxy|y〉, for all x ∈ X .

Implicitly, we also allow any controlled version of Check(M), Setup(P ) and
Update(P ), on which we access via oracle.

In terms of applications of Shift, Update has complexity 1, and, Setup has
complexity O(δG) (the diameter of G). Nonetheless, in many algorithmic appli-
cations, the situation is more complex and the number of applications of Shift

is not the only relevant cost, see for instance [1,2].
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2.3 Classical Hitting Time

From now on we will assume that all the eigenvalues of P are within [0, 1]. This
is without loss of generality by replacing P by (Id +P )/2 if necessary. From the
ergodicity of P , the eigenvalue 1 has multiplicity 1. The classical hitting time,
HT(P,M), is defined as the expected number of applications of the Markov
chain P required to hit a marked vertex when starting from π. This can be
used to design a randomized algorithm for Detect and Find based on the
corresponding random walk.

Proposition 1. Let k ≥ 1. Detect
(≥k)(G) can be solved with high probability

and randomized complexity of order
S + T × (U + C), where T = max

|M ′|=k
HT(P,M ′).

Find(G) can be solved with high probability and expected randomized complexity
of order

S + T × (U + C), where T = HT(P,M).

Let P ′ be the Markov chain obtained from P by turning all outgoing transitions
from marked vertices into self-loops. We call P ′ the absorbing version of P . If we
arrange the elements of X so that the marked vertices are the last ones, matrices
P and P ′ have the following block structure:

P :=
(
PUU PUM

PMU PMM

)
, P ′ :=

(
PUU PUM

0 I

)
.

where PUU and PMM are matrices of size (n−m)× (n−m) and m×m, while
PUM and PMU are matrices of size (n−m)×m and m× (n−m).

We first present the matrix characterization of HT(P,M). From the reversibil-
ity of P , we get that D(P ) = diag(

√
π)P diag(

√
π)−1 is a symmetric matrix,

which is also known as the discriminant of P . The latter was introduced in [10]
for symmetric P , and generalized to reversible P in [12]. Set |π〉 =

∑
x∈X

√
πx|x〉,

pM =
∑

x∈M πx and pU =
∑

x∈X\M πx. The respective normalized projections
of |π〉 on marked and unmarked vertices are |M〉 =

∑
x∈M

√
πx/pM |x〉 and

|U〉 =
∑

x∈X\M
√

πx/pU |x〉. Then

HT(P,M) = pU × 〈U |(IdU −D(P )UU )−1|U〉.

For simplicity, we will from now on omit the quantity pU in the above definition.
Indeed, we assume that pM ≤ 1/2, so that the the difference between the two
expressions is at most a factor of 2. Note that if pM > 1/2, then there is no need
for any (classical or quantum) walk to find a marked vertex.

We now introduce the spectral characterization of HT(P,M). Note that the
reversibility of P also implies the alternative definition for the discriminant

(D(P ))xy =
√
pxypyx.

Extending the latter definition of the discriminant to P ′, we get that D(P ′) =
D(P )UU ⊕ IdM . Let |v1〉, |v2〉, . . . , |vn〉 be a system of orthonormal eigenvectors
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of D(P ′) with respective eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn−m < λn−m+1 =
. . . = λn = 1, so that D(P ′) =

∑
k λk|vk〉〈vk|. Then one can rewrite HT(P,M)

as:

HT(P,M) =
∑

k≤n−m

|〈vk|U〉|2

1− λk
.

2.4 Quantum Hitting Time

Quantum walks were successfully used for detecting the presence of marked
vertices quadratically faster than P . Nonetheless, only little is known on the
problem of finding a marked vertex. Below we illustrate the state of the art.

Theorem 1 ([10]). Let k ≥ 1. Detect
(≥k)(G) can be solved with high proba-

bility and quantum complexity of order
S + T × (U + C), where T = max

|M ′|=k

√
HT(P,M ′).

When P is state-transitive and there is a unique marked vertex z (i.e., m = 1),
HT(P, {z}) is independent of z and one can also find z:

Theorem 2 ([14,13]). Assume that P is state-transitive. Find
(1)(G) can be

solved with high probability and quantum complexity of order
S + T × (U + C), where T =

√
HT(P, {z}).

Using standard techniques, such as in [5], Theorem 2 can be generalized to
any number of marked vertices, with an extra logarithmic multiplication factor.
Nonetheless, the complexity of the corresponding algorithms does not decrease
when the size of M increases, contrary to the random walk search algorithm
(Proposition 1) and the quantum walk detecting algorithm (Theorem 1).

Corollary 1. Assume that P is state-transitive. Find(G) can be solved with
high probability and quantum complexity of order

log(n)×
(
S + T × (U + C)

)
, where T =

√
HT(P, {z}), for any z.

2.5 Szegedy’s Quantum Analogue

Following the main lines of Szegedy [10], we define a quantum analogue of a
reversible Markov chain P . Recall that |0̄〉 is an arbitrary reference state in H,
and V (P )|x〉|0̄〉 = |x〉|px〉. Set X = H⊗ span {|0̄〉} = span {|x〉|0̄〉 : x ∈ X}, and
refX = 2

∑
x∈X |x〉〈x| ⊗ |0̄〉〈0̄| − Id, the reflection with respect to X .

Definition 4. The quantum analogue of P is
W (P ) = V (P )† · Shift · V (P ) · refX ,

and its walk space is the subspace spanned by X and W (P )X .

Observe that in [10], the quantum walk is actually defined as (V (P ) ·W (P ) ·
V (P )†)2. Moreover, W (P ) requires 3 calls to Update(P ), and Shift always suc-
ceeds when W (P ) is restricted to its walk space.
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Szegedy proved the following useful lemma which relates the spectral decom-
position of W (P ) in its walk space to the one of P . Let |v1〉, |v2〉, . . . , |vn〉 be
the normalized eigenvectors of D(P ) with respective eigenvalues 0 ≤ λ1 ≤ λ2 ≤
. . . ≤ λn−1 < λn = 1. From the definition of D(P ), observe that |π〉 is a 1-
eigenvector of D(P ), and therefore we set |vn〉 = |π〉.

Lemma 1 ([10]). Define Bk = span {|vk〉|0̄〉,W (P )|vk〉|0̄〉}, for k �= n, and
Bn = span {|vn〉|0̄〉}. Then the walk space of W (P ) is

⊕
k Bk, where W (P )

admits the following spectral decomposition:

– On Bk, k �= n: μ±k = e±iϕk , |Ψ±k 〉, where cosϕk = λk and |Ψ+
k 〉+|Ψ−

k 〉√
2

= |vk〉|0̄〉
– On Bn: μn = 1, |Ψn〉 = |vn〉|0̄〉. B⊥).

Therefore, we will also call |Ψn〉 = |vn〉|0̄〉 the stationary distribution of W (P ).

3 Finding via Quantum Walk

3.1 Classical Interpolation

Our starting state is the stationary superposition |vn〉|0̄〉 = |π〉|0̄〉 of W (P ). We
would like to end in its projection onto marked vertices, namely |M〉|0̄〉, which is
also the stationary superposition of W (P ′). However, in many cases, including
the 2D-grid, every iteration of W (P ′) on |π〉|0̄〉 may remain far from |M〉|0̄〉.

Our approach consists in taking a new random walk, namely an interpolation
between P and P ′, This technique is drastically different from the approach
of [14,13], and up to our knowledge new.

Definition 5. The classical interpolation of P and P ′ is
P (s) = (1 − s)P + sP ′, 0 ≤ s ≤ 1.

This interpolation has some similarities with adiabatic evolutions, where similar
interpolations are usually defined for Hamiltonians. Here the interpolation is of
different nature after we take the quantum analogue of P (s). Nonetheless, this
interpolation still makes sense for adiabatic evolutions, leading to an interesting
connection between the hitting time and the adiabatic condition [15].

Note that P (0) = P , P (1) = P ′, and P (s) has block structure

P (s) =
(

PUU PUM

(1− s)PMU (1− s)PMM + sI

)
.

Decompose the stationary distribution of P as π =
(
πU πM

)
. Remember that

pM =
∑

x∈M πx is the probability to pick a marked vertex from the stationary
distribution. Then

π(s) =
1

1− (1− s)pM

(
(1− s)πU πM

)
is a stationary distribution of P (s), for s ∈ [0, 1]. Moreover one can show that:

Fact 1. For s ∈ [0, 1), the Markov chain P (s) is ergodic and reversible.

For s ∈ [0, 1), let D(s) be the discriminant of P (s). Then D(s) and P (s) are
similar and therefore have the same eigenvalues. Let |v1(s)〉, |v2(s)〉, . . . , |vn(s)〉
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be a system of orthonormal eigenvectors of D(s) with respective eigenvalues
0 ≤ λ1(s) ≤ λ2(s) ≤ . . . ≤ λn−1(s) < λn(s) = 1: D(s) =

∑
k λk(s)|vk(s)〉〈vk(s)|.

We also define W (s) = W (P (s)).
For s = 1, we extend the above for P (1) = P ′. Recall that |vn(s)〉 = |π(s)〉 is

an eigenvector of D(s) with eigenvalue λn(s) = 1. Observe that |vn(s)〉 is in the
two-dimensional subspace spanned by |M〉 and |U〉.

Fact 2. |vn(s)〉 = cos θ(s)|U〉+ sin θ(s)|M〉, where θ(s) = arcsin
√

pM

1−s(1−pM ) .

Intuitively we want |vn(s)〉 to have a large overlap on both |U〉 and |M〉, so
that the algorithm will proceed in two steps: first, map |U〉 to |vn(s)〉, using the
quantum walk (using Update); second, map |vn(s)〉 to |M〉 by projecting onto
marked vertices (using Check). Therefore, ideally we want s to satisfy sin θ(s) =
cos θ(s) = 1/

√
2, namely s = s(pM ), where s(pM ) = 1− pM

1−pM
.

3.2 Quantum Circuit for W (s)

In the following lemma, we assume to know pxx for every x. This is reasonable
since in practice the probability of self-loops is known. In many cases, it is even
independent of x. For the rest of the paper, we assume that this is not an obstacle
(we can assume that one call to Update(P ) allows to learn pxx for any x).

Lemma 2. Assuming that pxx is known for every x, Update(P (s)) can be im-
plemented with complexity C + U.

Proof. From Definition 4, the quantum analogue of P (s) is W (s) = V (P (s))† ·
Shift·V (P (s))·refX , where V (P (s)) is a unitary that maps |x〉|0̄〉 to |x〉|px(s)〉 =
|x〉

∑
y∈X

√
pxy(s)|y〉. Since Shift only depends on G, we just need to explain

how to implement V (P (s)) and its inverse. We now explain how to implement
V (P (s)) using one call to V (P ) and 2 calls to Check(M). The algorithm for its
inverse is obtained from the reverse algorithm.

Simulation(P, M, s)
1. Let |x〉|0̄〉 be the current state
2. Use a fresh qubit (marking register) in state |0〉 and call Check(M).
3. If the marking register is in state |0〉, call V (P ): |x〉|pxy〉|0〉
4. Otherwise

(a) Use another fresh qubit in state |0〉: |x〉|0̄〉|1〉|0〉
(b) Apply a rotation of angle arcsin

√
s on the fourth register:

|x〉|0̄〉|1〉(
√

1− s|0〉 +
√

s|1〉)
(c) If the fourth register is |0〉, apply V (P ) on the first two registers,

Otherwise XOR the first two registers:
|x〉(

√
1− s|px〉|1〉|0〉 +

√
s|x〉|1〉|1〉)

(d) If the second register is |x〉, apply a rotation of angle
− arcsin

√
s/((1− s)pxx + s) on the fourth register,

Otherwise do nothing: |x〉|px(s)〉|1〉|0〉
5. Call Check(M) to uncompute the marking register. ��
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3.3 Hitting Time in s

Following [15], we define the hitting time in s, which intuitively corresponds to
the expected time for P (s) to converge to π(s) from π(0).

Definition 6. HT(s) =
∑
k �=n

|〈vk(s)|U〉|2

1− λk(s)
.

In particular, note that HT(1) = HT(P,M) is the usual hitting time of P with
respect to the set of marked vertices M .

The running time of our quantum search algorithms will depend on HT(s)
for some particular value s ∈ [0, 1]. This can be related to the usual hitting time
HT(P,M) thanks to the following explicit expression for HT(s) (see [15]).

Theorem 3. HT(s) = sin4 θ(s) ·HT(P,M).

4 Quantum Search

4.1 Algorithm with Known Parameters

Theorem 4 (Phase estimation [16,17]). Let W be a unitary operator on H
and t ∈ N. There exists a quantum circuit PhaseEstimation(W, t) using 2t

calls to the controlled operator c−W and O(t2) additional gates, and acting on
eigenstates |Ψk〉 of W as

|Ψk〉 → |Ψk〉
1
2t

2t−1∑
l,m=0

e−
2πilm

2t eiϕkl|m〉,

where eiϕk is the eigenvalue of W corresponding to |Ψk〉.
By linearity, Theorem 4 implies that PhaseEstimation(W, t) resolves any state
along the eigenstates of W , labelling those states with a second register whose
measurement yields an approximation of the first t-bit of the binary decomposi-
tion of ϕk/(2π). Here, we will be mostly interested in the |Ψn〉-component, with
corresponding phase ϕn = 0. In that case, the second register is in the state |0t〉
and the estimation is exact.

We define our main search algorithm with parameters 0 ≤ p∗ ≤ 1 (an approx-
imation of pM ) and t ∈ N. Recall that s(p∗) = 1− p∗

1−p∗ . For suitable parameters,
the algorithm outputs a marked vertex with high probability, if there is any.

QuantumWalkSearch(P, M, p∗, t)
1. Prepare the state |π〉|0̄〉
2. Use a fresh qubit in state |0〉, apply Check(M) and measure the qubit.
3. If the outcome is |1〉, measure the first register (in the vertex basis) and output

the outcome.
4. Otherwise, apply PhaseEstimation(W (s(p∗)), t) on the registers.
5. Use a fresh qubit in state |0〉, apply Check(M) and measure the qubit.
6. If the outcome is |1〉, measure the first register (in the vertex basis) and output

the outcome.
7. Otherwise, output ”No marked vertex”
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Theorem 5. Let p∗, ε1 ∈ [0, 1] be such that cos2 θ(s) sin2 θ(s) ≥ ε1, where
s = s(p∗). Let T ≥ 1 and ε2 ∈ [0, 1] be such that T ≥ π√

2ε2
×
√

HT(s). Then,
QuantumWalkSearch(P,M, p∗, $logT %) outputs a marked vertex with proba-
bility at least ε1 − ε2 and complexity of order S + T × (U + C).
In particular, if |p∗ − pM | ≤ pM/3 and T ≥ 10

√
HT(P,M), then the success

probability is at least 1/20.

Proof. Let t = $logT %. First observe that the complexity analysis is direct since
QuantumWalkSearch(P,M, p∗, t) has complexity of order S+2t×(U+C). We
now assume that we reach Step 4. Otherwise a marked vertex is already found.
Then the current state before Step 4 is |U〉|0̄〉. Let αk(s) = 〈U |vk(s)〉. From now
on, we omit to write the dependence on s explicitly, when there is no ambiguity.

In Step 4, PhaseEstimation(W (s), t) is applied on the state

|U〉|0̄〉 = αn|vn〉|0̄〉+
∑
k �=n

αk|vk〉|0̄〉 = αn|Ψn〉+
1√
2

∑
k �=n

αk

(
|Ψ+

k 〉+ |Ψ−k 〉
)
.

Theorem 4 shows that PhaseEstimation(W (s), t) maps |Ψn〉 to |Ψn〉|0t〉 and
maps |Ψ±k 〉 to |Ψ±k 〉

(
δ±k |0t〉+ |η±k 〉

)
, where

δ±k =
1
2t

2t−1∑
l=0

e±iϕkl and |η±k 〉 =
1
2t

2t−1∑
m=1

2t−1∑
l=0

e−
2πilm

2t e±iϕkl|m〉.

By definition, 〈0t|η±k 〉 = 0. Then, the probability p to obtain a marked vertex by
measuring the first register is at least the probability to obtain both a marked
vertex in the first register and the state |0t〉 in the last register (i.e., the phase
is estimated to be 0). Since |Ψn〉 = |vn〉|0̄〉 and using Fact 2, we see that the
probability p is lower bounded as

p ≥ |αn|2‖ΠM |vn〉‖2 − 1
2

∑
k �=n

|αk|2
(
|δ+
k |2 + |δ−k |2

)
= cos2 θ sin2 θ −

∑
k �=n

|αk|2δ2
k,

where ΠM =
∑

x∈M |x〉〈x| is the projection onto marked vertices and δk = |δ+
k | =

|δ−k |. By hypothesis, we already have cos2 θ sin2 θ ≥ ε1. Therefore, it remains to
prove that the second term in the RHS is at least −ε2.

First, using the definition of δk, we get: δ2
k = sin2(2t−1ϕk)

22t sin2(ϕk/2)
≤ π2

22tϕ2
k
. We also

have by definition of HT(s):

HT(s) =
∑
k �=n

|αk|2
1− cosϕk

=
∑
k �=n

|αk|2

2 sin2(ϕk/2)
≥ 2

∑
k �=n

|αk|2
ϕ2
k

,

which together with the above implies that
∑

k �=n |αk|2δ2
k ≤ π2

2
HT(s)

22t ≤ ε2.
We now prove the last part of the theorem. The following fact is easy to prove:

Fact 3. Let ε1 ≤ 1/4 be such that 2
√
ε1pM ≤ p∗ ≤ 2(1 − √

ε1)pM . Then,
cos2 θ(s) sin2 θ(s) ≥ ε1.

The conditions of Fact 3 are satisfied with ε1 = 1/10. Set ε2 = 1/20. Using
HT(s) ≤ HT(P,M), one can check that the conditions of the theorem are satis-
fied, and therefore the success probability is at least ε1 − ε2 = 1/20. ��
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4.2 General Case

At first, assume we have a correct approximation p∗ of pM . In that case, even if
we do not know HT(P,M), we can use the following algorithm, and still find a
marked vertex with an expected cost O(

√
HT(P,M)).

QuantumWalkSearch′(P, M, p∗, k)
1. Let t = 1.
2. Call k times QuantumWalkSearch(P, M, p∗, t).
3. If no marked vertex is found, set t ← t + 1 and go back to step 2.

Theorem 6. Given p∗ such that |p∗ − pM | ≤ pM/3,
QuantumWalkSearch′(P,M, p∗, 28) solves Find(G) with expected quan-
tum complexity of order

log(T )× S + T × (U + C), where T =
√

HT(P,M).

Proof. The general idea is to use QuantumWalkSearch(P,M, p∗, t) with in-
creasing accuracy of the phase estimation (parameter t), until it is high enough
so that the algorithm outputs a marked element with high probability.

Set s = s(p∗). Let t0 to be the integer such that π
√

HT(s)
2ε2

≤ 2t0 ≤

π
√

2 HT(s)
ε2

, and let T = 2t0 = O(
√

HT(s)). By Theorem 5, for any t ≥
t0, QuantumWalkSearch(P,M, p∗, t) outputs a marked vertex with prob-
ability at least 1/20. Then, step 3 is reached without finding any marked
vertex with probability at most p ≤ (1 − 1/20)28 ≤ 1/4. Moreover,
QuantumWalkSearch(P,M, p∗, t) has complexity of order S + 2t × (U + C).

Let tf be the value of t when QuantumWalkSearch′(P,M, p∗, 28) stops,
that is, the number of iterations of step 2. Then, the expected complexity of
QuantumWalkSearch′(P,M, p∗, 28) is of order N1 × S +N2 × (U + C), where
N1 is the expectation of tf , and N2 is the expectation of 2 + 4 + . . . + 2tf .

First observe that N1 ≤ t0 +
∑∞

t=t0+1 p
t−t0 = O(t0). For N2 we get

N2 ≤
t0∑
t=1

2t +
∞∑

t=t0+1

pt−t0 · 2t = (2 · 2t0 − 2) + 2t0
∞∑
t=1

pt · 2t.

Then using the fact that p ≤ 1/4 we finally obtain

N2 ≤ 2 · 2t0 + 2t0
∞∑
t=1

2−t ≤ 3 · 2t0 .

This concludes the proof since 2t0 = O(
√

HT(s)) and HT(s) ≤ HT(P,M). ��

For the general case we get two possible situations, depending on whether a lower
bound pmin on pM and/or an upper bound HTmax on HT(P,M) is given. In
particular, for Find(G)(≥k), we can set pmin = minM ′:|M ′|=k pM ′ and HTmax =
maxM ′:|M ′|=k HT(P,M ′).

Theorem 7. Given pmin ≤ pM , Find(G) can be solved with expected quantum
complexity of order
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log(1/pmin)×

[
log(T )× S + T × (U + C)

]
, where T =

√
HT(P,M).

Moreover, if HTmax ≥ HT(P,M) is also given, then Find(G) can be solved with
expected quantum complexity of order√

log(1/pmin)×
[
S + T × (U + C)

]
, where T =

√
HTmax.

Proof. We simply prove the first part of the theorem. The second
one is similar using QuantumWalkSearch(P,M, p∗, T ) instead of
QuantumWalkSearch′(P,M, p∗, 28).

From Theorem 6, it is enough to have a good approximation p∗ of pM , such
that 3p∗/4 ≤ pM ≤ 3p∗/2. Moreover, since pmin ≤ pM ≤ 1/2, this condition will
be satisfied for some p∗ ∈ {(2/3)× 2−l : l = 1, . . . , �log(1/pmin)�}.

Let us incorporate step 2 of QuantumWalkSearch′(P,M, p∗, 28) into a loop
on the �log(1/pmin)� possible values of p∗. Then the analysis is basically the
same, except that now the complexity of step 2 is multiplied by a factor of order
log(1/pmin). Instead of looping on all possible values of p∗, we can search for the
right value using Grover’s algorithm, following the approach of [18], therefore
reducing the multiplication factor to

√
log(1/pmin). ��

Theorem 8. Given HTmax ≥ HT(P,M), Find(G) can be solved with expected
quantum complexity of order

log(1/pM )×
[
S + T × (U + C)

]
, where T =

√
HTmax.

Proof. We now use QuantumWalkSearch(P,M, p∗, t) with t = $log
√

HTmax%,
and perform a dichotomic search for an appropriate value of p∗. This dichotomic
search uses backtracking since the branching in the dichotomy is with bounded
error, similarly to the situation in [19].

Initially we set a = 0 and b = 1. Then for testing the current value of p∗ = (a+
b)/2, we run a constant number of times QuantumWalkSearch(P,M, p∗, t). If
a marked vertex is found we stop. Otherwise, if PhaseEstimation(W (s(p∗)), t)
outputs a minority of 0s, we set a = p∗, otherwise we set b = p∗. The details of
the analysis are given in [19]. ��

4.3 Application to the 2D-Grid

Consider a random walk on the 2D-grid of size
√
n ×

√
n, with self-loops. In

this section we consider only the complexity in terms of the number of uses of
Check and Shift. The previous best known quantum complexity of Find(G)(k)

and Find(G)(≥k) was O(
√
n(logn)3/2), from Corollary 1. Since the grid is a 5-

regular graphs (4 directions and 1 self-loop), P is symmetric, and therefore the
stationary distribution of P is uniform, and we simply have pM = m/n. Then
Setup is realized with

√
n uses of Shift, and HT(P, {z}) = Θ(n logn), for any

z. Therefore we get the following corollary of Theorem 5 and Theorem 7, by
upper bounding HT(P,M) = O(n logn).

Corollary 2. Let G be the 2D-grid of size
√
n ×

√
n, and let k ≥ 1. Then

Find(G)(k) can be solved with expected quantum complexity O(
√
n logn), and

Find(G)(≥k) with expected quantum complexity O(
√

n× logn× log(n/k)).
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Abstract. The basic goal in combinatorial group testing is to identify a
set of up to d defective items within a large population of size n ! d using
a pooling strategy. Namely, the items can be grouped together in pools,
and a single measurement would reveal whether there are one or more
defectives in the pool. The threshold model is a generalization of this
idea where a measurement returns positive if the number of defectives
in the pool passes a fixed threshold u, negative if this number is below
a fixed lower threshold � ≤ u, and may behave arbitrarily otherwise. We
study non-adaptive threshold group testing (in a possibly noisy setting)
and show that, for this problem, O(dg+2(log d) log(n/d)) measurements
(where g := u − �) suffice to identify the defectives, and also present
almost matching lower bounds. This significantly improves the previ-
ously known (non-constructive) upper bound O(du+1 log(n/d)). More-
over, we obtain a framework for explicit construction of measurement
schemes using lossless condensers. The number of measurements result-
ing from this scheme is ideally bounded by O(dg+3(log d) log n). Using
state-of-the-art constructions of lossless condensers, however, we come
up with explicit testing schemes with O(dg+3(log d)quasipoly(log n)) and
O(dg+3+βpoly(log n)) measurements, for arbitrary constant β > 0.

1 Introduction

Combinatorial group testing is a classical problem that deals with identification
of sparse Boolean vectors using disjunctive queries. Suppose that among a large
set of n items it is suspected that, for some sparsity parameter d 
 n, up to
d items might be “defective”. In technical terms, defective items are known as
positives and the rest are called negatives. In a pooling strategy, the items can be
arbitrarily grouped in pools, and a single “measurement” reveals whether there
is one or more positives within the chosen pool. The basic goal in group testing
is to design the pools in such a way that the set of positives can be identified
within a number of measurements that is substantially less than n. Since its
introduction in 1940’s [1], group testing and its variations have been extensively
studied and have found surprisingly many applications in seemingly unrelated
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areas. We refer the reader to [2,3] for an extensive review of major results in
this area.

Formally, in classical group testing one wishes to learn an unknown d-sparse1

Boolean vector (x1, . . . , xn) ∈ {0, 1}n using a set of m measurements, where
each measurement is defined by a subset of the coordinates I ⊆ [n] and out-
puts the logical “or”

∨
i∈I xi. The basic goal is to design the measurements in

such a way that all d sparse vectors become uniquely identifiable using as few
measurements as possible. A natural generalization of classical group testing, in-
troduced by Damaschke [4], considers the case where the measurement outcomes
are determined by a threshold predicate instead of logical or. Namely, this model
is characterized by two integer parameters �, u such that 0 < � ≤ u (that are
considered to be fixed constants), and each measurement outputs positive if the
number of positives within the corresponding pool is at least u. On the other
hand, if the number of positives is less than �, the test returns negative, and
otherwise the outcome can be arbitrary. In this view, classical group testing cor-
responds to the special case where � = u = 1. In addition to being of theoretical
interest, the threshold model is interesting for applications, in particular in biol-
ogy, where the measurements have reduced or unpredictable sensitivity or may
depend on various factors that must be simultaneously present in the sample.

The difference g := u− � between the thresholds is known as the gap parame-
ter. As shown by Damaschke [4], in threshold group testing identification of the
set of positives is only possible when the number of positives is at least u. More-
over, regardless of the number of measurements, in general the set of positives
can only be identified within up to g false positives and g false negatives (thus,
unique identification can be guaranteed only when � = u). Additionally, Dam-
aschke constructed a scheme for identification of the positives in the threshold
model. For the gap-free case where g = 0, the number of measurements in this
scheme is O((d + u2) logn), which is nearly optimal (within constant factors).
However, when g > 0, the number of measurements becomes O(dnb + du), for
an arbitrary constant b > 0, if up to g + (u− 1)/b misclassifications are allowed.
Moreover, Chang et al. [5] have proposed a different scheme for the gap-free case
that achieves O(d log n) measurements. A drawback of both schemes mentioned
here is that the measurements are adaptive, which makes them less viable for
numerous applications, in particular, molecular biology. In a non-adaptive set-
ting, all measurements must be specified before their outcomes are revealed. This
makes it convenient to think of the measurements in a matrix form. Specifically,
a non-adaptive measurement matrix is an m× n Boolean matrix whose ith row
is the characteristic vector of the set of items participating in the ith pool, and
the goal would be to design a suitable measurement matrix.

Recently, non-adaptive threshold testing has been considered by Chen and
Fu [6]. They observe that, a generalization of the standard notion of disjunct
matrices (the latter being extensively used in the literature of classical group
testing) is suitable for the threshold model. In our work, we refer to this gen-
eralized notion as strongly disjunct matrices and to the standard notion as

1 A vector is d-sparse if its support has size at most d.
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classical disjunct matrices. Using strongly disjunct matrices, they show that
O(edu+1 log(n/d)) non-adaptive measurements suffices to identify the set of pos-
itives (within g false positives/negatives) even if up to e erroneous measurements
are allowed in the model. This number of measurements almost matches (up to
constant factors) the known lower bounds on the number of rows of strongly
disjunct matrices. However, the dependence on the sparsity parameter is du+1,
which might be prohibitive for an interesting range of parameters, when the
thresholds are not too small (e.g., � = u = 10) and the sparsity parameter is
rather large (e.g., d ≈ n1/10).

In this work, we consider the non-adaptive threshold model in a possibly noisy
setting, where a number of measurement outcomes (specified by an error param-
eter e ≥ 0) may be incorrect. Our first observation is that, a new variation of
classical disjunct matrices (that is strictly weaker than strongly disjunct matri-
ces) suffices for the purpose of threshold group testing. Moreover, we show that
this weaker notion is necessary as well, and thus, essentially captures the com-
binatorial structure of the threshold model. Using a probabilistic construction
(that requires poly(d, logn) bits of randomness), we construct generalized dis-
junct matrices with O(dg+2(log d) log(n/d)) rows. Thus, we bring the exponent
of d in the asymptotic number of measurements from u + 1 (that is necessary
for strongly disjunct matrices) down to g+2, which is independent of the actual
choice of the thresholds and only depends on the gap between them. We also
show that this tradeoff is essentially optimal.

We proceed to define a new auxiliary object, namely the notion of regular
matrices, that might be of independent interest and turns out to be the key
combinatorial object in our explicit constructions. Intuitively, given a gap g ≥ 0,
a suitable regular matrix M1 can be used to “lift” any measurement matrix M2
designed for the threshold model with lower threshold � = 1 and higher threshold
u = g+1 up to any arbitrary lower threshold �′ > 1 and the same gap g. There-
fore, for instance, in order to address the gap-free model, it would suffice to have
a non-adaptive scheme for the classical group testing model with � = u = 1. This
transformation is accomplished using a simple product that increases the height
of the original matrix M2 by a multiplicative factor equal to the height of the
regular matrix M1, while preserving the distinguishing properties of the origi-
nal matrix M2. We will then introduce a framework for construction of regular
matrices using strong lossless condensers that are fundamental objects in deran-
domization theory, and more generally, theoretical computer science. We show
that, by using an optimal condenser, it is possible to construct regular matrices
with only O(d(log d) log n) rows. This almost matches the upper bound achieved
by a probabilistic construction that we will also present. To this date, no explicit
construction of such optimal lossless condensers is known (though probabilistic
constructions are easy to come up with). However, using state of the art in ex-
plicit condensers [7,8], we will come up with two explicit constructions of regular
matrices that achieve an almost linear dependence on d. By combining regular
matrices with strongly disjunct ones we obtain our threshold testing schemes,
achieving bounds that are summarized in Table 1. Due to space restrictions, in
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Table 1. Summary of the parameters achieved by various threshold testing schemes.
The noise parameter p ∈ [0, 1) is arbitrary, and thresholds �, u = � + g are fixed con-
stants. “Exp” and “Rnd” respectively indicate explicit and randomized constructions.
“KS” refers to the construction of strongly disjunct matrices based on Kautz-Singleton
superimposed codes [9] when instantiated by different families of codes.

Number of rows Tolerable errors Remarks

M1 O(du+1 log(n/d)

(1−p)2
) Ω(pd log(n/d)

(1−p)2
) Rnd: Random strongly disjunct matrices.

M2 O(( d
1−p

)u+1 log n) Ω(pd log n
1−p

) Exp: KS using codes on the Gilbert-
Varshamov bound as constructed in [10].

M3 O(( d log n
1−p

)u+1) Ω(pd log n
1−p

) Exp: KS using Reed-Solomon codes.
M4 O(( d

1−p
)2u+1 log n) Ω(pd log n

1−p
) Exp: KS using Algebraic Geometric codes

of Tsfasman-Vlăduţ-Zink [11]
M5 O(( d

√
log n

1−p
)u+3/2) Ω(p( d

√
log n

1−p
)3/2) Exp: KS using Hermitian codes (d !√

log n).

M6 O(dg+2 (log d) log(n/d)

(1−p)2
) Ω(pd log(n/d)

(1−p)2
) Rnd: Construction 3.

M7 O(dg+3 (log d) log2 n

(1−p)2
) Ω(pd2 log2 n

(1−p)2
) Constructions 5 and 2 combined, assum-

ing optimal condensers and strongly dis-
junct matrices.

M8 O(dg+3 (log d)T2 log n

(1−p)g+2 ) Ω(pd2 T2 log n
1−p

) Exp: Constructions 5 and 2 combined
using Theorem 8 and M2, where T2 =
exp(O(log3 log n)) = quasipoly(log n).

M9 O(dg+3+β T �
3 log n

(1−p)g+2 ) Ω(pd2−β log n
1−p

) Exp: Constructions 5 and 2 combined
using Theorem 9 and M2, where β >
0 is any arbitrary constant and T3 =
((log n)(log d))1+u/β = poly(log n, log d).

Ω(dg+2 logd n + edg+1) e Lower bound (see Section 4).

this extended abstract we will mainly present the constructions and omit proof
details that can be found in the full version of the paper.

1.1 Preliminaries

For a matrix M , we denote by M [i, j] the entry of M at the ith row and jth
column. Similarly we denote the ith entry of a vector v by v(i). The support of
a vector x ∈ {0, 1}n, denoted by supp(x), is a subset of [n] := {1, . . . , n} such
that i ∈ supp(x) iff x(i) = 1. The Hamming weight of x, denote by wgt(x) is
defined as |supp(x)|. For an m × n Boolean matrix M and S ⊆ [n], we denote
by M |S the m × |S| submatrix of M formed by restricting M to the columns
picked by S. Moreover, for a vector x ∈ {0, 1}n, we use M [x]�,u to denote the set
of vectors in {0, 1}m that correctly encode the measurement outcomes resulting
from non-adaptive threshold tests defined by the measurement matrix M on x
using threshold parameters �, u. In the gap-free case, this set may only have a
single element that we denote by M [x]u. Thus, for any y ∈ M [x]�,u we have
y(i) = 1 if |supp(Mj) ∩ supp(x)| ≥ u, and y(i) = 0 if |supp(Mj) ∩ supp(x)| < �,
where Mj indicates the jth row of M .
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The min-entropy of a distribution X with finite support Ω is given by H∞(X ) :
= minx∈Ω{− logX (x)}, where X (x) is the probability that X assigns to the
outcome x. The statistical distance between two distributions X and Y defined
on the same finite space Ω is given by 1

2

∑
s∈Ω |X (s) − Y(s)|, which is half the

�1 distance of the two distributions when regarded as vectors of probabilities
over Ω. Two distributions X and Y are said to be ε-close if their statistical
distance is at most ε. We will use the shorthand Un for the uniform distribution
on {0, 1}n, and X ∼ X for a random variable X drawn from a distribution X .
The main technical tool that we use in our explicit constructions is the notion of
lossless condensers. Formally, a function f : {0, 1}ñ×{0, 1}t → {0, 1}�̃ is a strong
lossless condenser for entropy k and with error ε (in short, (k, ε)-condenser) if
for every distribution X on {0, 1}ñ with min-entropy at least k, random variable
X ∼ X and a seed Y ∼ Ut, the distribution of (Y, f(X,Y )) is ε-close to some
distribution (Ut,Z) with min-entropy at least t+ k. A condenser is explicit if it
is polynomial-time computable in its input length.

2 Variations of Disjunct Matrices

The main combinatorial tool used by Chen and Fu in their non-adaptive scheme
is the following generalization of the standard notion of disjunct matrices that
we refer to as strongly disjunct matrices.

Definition 1. A matrix (with at least d + u columns) is said to be strongly
(d, e;u)-disjunct if for every choice of d + u columns C1, . . . , Cu, C

′
1, . . . , C

′
d, all

distinct, we have | ∩u
i=1 supp(Ci) \ ∪d

i=1supp(C′i)| > e.

Observe that, (d, e;u)-disjunct matrices are, in particular, (d′, e′;u′)-disjunct for
any d′ ≤ d, e′ ≤ e, and u′ ≤ u. Moreover, classical (d, e)-disjunct matrices that
are extensively used in group testing literature (see [2, Ch. 7]) correspond to the
special case u = 1. We will refer to e ≥ 0 as the error parameter of the matrix.

To make the main ideas more transparent, until Section 4 we will focus on the
gap-free case where � = u. The extension to nonzero gaps is straightforward and
will be discussed in Section 4. Moreover, often we will implicitly assume that
the Hamming weight of the Boolean vector that is to be identified is at least u
(since otherwise, any (u− 1)-sparse vector would be confused with the all-zeros
vector). Moreover, we will take the thresholds �, u as fixed constants while the
parameters d and n are allowed to grow.

The notion of strongly disjunct matrices, in its general form, has been stud-
ied in the literature under different names and equivalent formulations, e.g.,
superimposed (u, d)-designs/codes and (u, d) cover-free families. An important
motivation for the study of this notion is the hidden hypergraph-learning problem
(cf. [2, Ch. 12]). In this problem, one wishes to learn a “small” hidden subgraph
of a given hypergraph by queries that each specify a set of vertices and output
positive iff the subgraph induced by the specified set contains an edge from the
hidden subgraph. It is known that [12,13], in the hypergraph-learning problem,
any suitable grouping strategy defines a strongly disjunct matrix, and vice versa.
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– Given: An (ñ, k, d̃)q error-correcting code C ⊆ [q]ñ, and integer parameter u > 0.
– Output: An m× n Boolean matrix M , where n = qk, and m = ñqu.
– Construction: First, consider the mapping ϕ : [q] → {0, 1}qu

from q-ary symbols
to column vectors of length qu defined as follows. Index the coordinates of the
output vector by the u-tuples from the set [q]u. Then ϕ(x) has a 1 at position
(a1, . . . , au) iff there is an i ∈ [u] such that ai = x. Arrange all codewords of C as
columns of an ñ× qk matrix M ′ with entries from [q]. Then replace each entry x
of M ′ with ϕ(x) to obtain the output m× n matrix M .

Construction 1. Extension of Kautz-Singleton’s method [9]

The key observation made by Chen and Fu [6] is that threshold group testing
corresponds to the special case of the hypergraph learning problem where the
hidden graph is known to be a clique. It follows that strongly (d, e;u)-disjunct
matrices are suitable choices for the measurement matrices in threshold group
testing with upper threshold u, sparsity d, and when up to �e/2� incorrect mea-
surement outcomes are allowed.

Nonconstructively, a probabilistic argument akin to the standard argument
for the case of classical disjunct matrices (see [2, Ch. 7]) can be used to show that
strongly (d, e;u)-disjunct matrices exist with m = O(du+1(log(n/d))/(1 − p)2)
rows and error parameter e = Ω(pd log(n/d)/(1− p)2), for any noise parameter
p ∈ [0, 1). On the negative side, however, several concrete lower bounds are
known for the number of rows of such matrices [14,15,16]. In asymptotic terms,
these results show that one must have m = Ω(du+1 logd n + edu), and thus, the
probabilistic upper bound is essentially optimal.

For the underlying strongly disjunct matrix, Chen and Fu [6] use a greedy
construction [17] that achieves, for any e ≥ 0, O((e + 1)du+1 log(n/d)) rows,
but may take exponential time in the size of the resulting matrix. Nevertheless,
as observed by several researchers [15,18,12,13], a classical explicit construc-
tion of combinatorial designs due to Kautz and Singleton [9] can be extended
to construct strongly disjunct matrices. This concatenation-based construction
transforms any error-correcting code having large distance into a strongly dis-
junct matrix. The general transformation is given in Construction 1, and rows
M2–M5 of Table 1 show the bounds achieved by this construction when various
families of codes is used2.

Even though, as discussed above, the general notion of strongly (d, e;u)-
disjunct matrices is sufficient for threshold group testing with upper threshold
u, in this section we show that a new, weaker, notion of disjunct matrices as
defined below (which turns out to be strictly weaker when u > 1), would also
suffice. We also define an “auxiliary” notion of regular matrices.

Definition 2. A Boolean matrix M with n columns is called (d, e;u)-regular if
for every subset of columns S ⊆ [n] (called the critical set) and every Z ⊆ [n]

2 Some of these bounds are derived for the first time in this work, and will be elabo-
rated upon in the full version of the paper.
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(called the zero set) such that u ≤ |S| ≤ d, |Z| ≤ |S|, S ∩Z = ∅, there are more
than e rows of M at which M |S has weight exactly u and (at the same rows)
M |Z has weight zero. Any such row is said to u-satisfy S and Z. If, in addition,
for every distinguished column i ∈ S, more than e rows of M both u-satisfy S
and Z and have a 1 at the ith column, the matrix is called (d, e;u)-disjunct (and
the corresponding “good” rows are said to u-satisfy i, S, and Z).

It is easy to verify that (assuming 2d ≤ n) the classical notion of (2d−1, e)-disjunct
matrices is equivalent to strongly (2d−1, e; 1)-disjunct and (d, e; 1)-disjunct. More-
over, any (d, e;u)-disjunct matrix is (d, e;u)-regular, (d− 1, e;u− 1)-regular, and
(d, e)-disjunct (but the reverse implications do not in general hold). Therefore,
the above-mentioned lower bound of m = Ω(d2 logd n+ed) that applies for (d, e)-
disjunct matrices holds for (d, e;u)-disjunct matrices as well. The lemma below
shows that our notion of disjunct matrices is necessary and sufficient for the pur-
pose of threshold group testing:

Lemma 3. Let M be an m × n Boolean matrix that is (d, e;u)-disjunct. Then
for every distinct d-sparse vectors x, x′ ∈ {0, 1}n such that3 supp(x) � supp(x′),
wgt(x) ≥ |supp(x′) \ supp(x)| and wgt(x) ≥ u, we have

|supp(M [x]u) \ supp(M [x′]u)| > e. (1)

Conversely, assuming d ≥ 2u, if M satisfies (1) for every choice of x and x′ as
above, it must be (�d/2�, e;u)-disjunct.

– Given: Boolean matrices M1 and M2 that are m1 × n and m2 × n, respectively.
– Output: An m× n Boolean matrix M1 "M2, where m := m1m2.
– Construction: Let the rows of M := M1"M2 be indexed by the set [m1]× [m2].

Then the row corresponding to (i, j) is defined as the bit-wise or of the ith row
of M1 and the jth row of M2.

Construction 2. Direct product of measurement matrices

We will use regular matrices as building blocks in our constructions of disjunct
matrices to follow. The connection with disjunct matrices is made apparent
through a direct product of matrices defined in Construction 2. Intuitively, using
this product, regular matrices can be used to transform any measurement matrix
suitable for the standard group testing model to one with comparable properties
in the threshold model. The following lemma formalizes this idea.

Lemma 4. Let M1 and M2 be Boolean matrices with n columns, such that M1 is
(d−1, e1;u−1)-regular. Let M := M14M2, and suppose that for d-sparse Boolean
vectors x, x′ ∈ {0, 1}n such that wgt(x) ≥ wgt(x′), we have |supp(M2[x]1) \
supp(M2[x′]1)| ≥ e2. Then, |supp(M [x]u) \ supp(M [x′]u)| ≥ (e1 + 1)e2.

3 Note that at least one of the two possible orderings of any two distinct d-sparse
vectors, at least one having weight u or more, satisfies this condition.
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As a corollary it follows that, when M1 is a (d − 1, e1;u − 1)-regular and M2 is
a (d, e2)-disjunct matrix, the product M := M1 4M2 will distinguish between
any two distinct d-sparse vectors (of weight at least u) in at least (e1 +1)(e2 +1)
positions of the measurement outcomes. This combined with Lemma 3 would
imply that M is, in particular, (�d/2�, (e1 +1)(e2 +1)− 1;u)-disjunct. However,
using a direct argument similar to the above lemma it is possible to obtain a
slightly better result, given by Lemma 5.

Lemma 5. Suppose that M1 is a (d, e1;u − 1)-regular and M2 is a (2d, e2)-
disjunct matrix. Then M1 4M2 is a (d, (e1 + 1)(e2 + 1)− 1;u)-disjunct matrix.

As another particular example, we remark that measurement matrices con-
structed in [19] that are not necessarily disjunct but allow approximation of
sparse vectors in highly noisy settings of the standard group testing model (as
well as those used in adaptive two-stage schemes; cf. [20] and the references
therein), can be combined with regular matrices to offer the same qualities in
the threshold model. In the same way, numerous existing results in group testing
can be ported to the threshold model by using Lemma 4.

3 Constructions

In this section, we introduce several constructions of regular and disjunct matri-
ces. Our first construction, described in Construction 3, is a randomness-efficient
probabilistic construction that can be analyzed using standard techniques from
the probabilistic method. The bounds obtained by this construction are given
by Lemma 6 below. The amount of random bits required by this construction is
polynomially bounded in d and logn, which is significantly smaller than it would
be had we picked the entries of M fully independently.

– Given: Integer parameters n, m′, d, u.
– Output: An m× n Boolean matrix M , where m := m′�log(d/u)�.
– Construction: Let r := �log(d/u)�. Index the rows of M by [r] × [m′]. Sample

the (i, j)th row of M independently from a (u+1)-wise independent distribution
on n bit vectors, where each individual bit has probability 1/(2i+2u) of being 1.

Construction 3. Probabilistic construction of regular and disjunct matrices

Lemma 6. For every p ∈ [0, 1) and integer parameter u > 0, Construction 3
with4 m′ = Ou(d log(n/d)/(1 − p)2) (resp., m′ = Ou(d2 log(n/d)/(1 − p)2))
outputs a (d,Ωu(pm′);u)-regular (resp., (d,Ωu(pm′/d);u)-disjunct) matrix with
probability 1− o(1).

4 The subscript in Ou(·) and Ωu(·) implies that the hidden constant in the asymptotic
notation is allowed to depend on u.
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– Given: A strong lossless (k, ε)-condenser f : {0, 1}ñ × {0, 1}t → {0, 1}̃, integer
parameter u ≥ 1 and real parameter p ∈ [0, 1) such that ε < (1− p)/16,

– Output: An m×n Boolean matrix M , where n := 2ñ and m = 2t+kOu(2u(̃−k)).
– Construction: Let G1 = ({0, 1}̃, {0, 1}k, E1) be any bipartite bi-regular graph

with left vertex set {0, 1}̃, right vertex set {0, 1}k, left degree d := 8u, and right
degree dr := 8u2̃−k. Replace each right vertex v of G1 with

(
dr
u

)
vertices, one for

each subset of size u of the vertices on the neighborhood of v, and connect them to
the corresponding subsets. Denote the resulting graph by G2 = ({0, 1}̃, V2, E2),
where |V2| = 2k

(
dr
u

)
. Define the bipartite graph G3 = ({0, 1}n, V3, E3), where

V3 := {0, 1}t × V2, as follows: Each left vertex x ∈ {0, 1}n is connected to
(y, Γ2(f(x, y)), for each y ∈ {0, 1}t, where Γ2(·) denotes the neighborhood func-
tion of G2 (i.e., Γ2(v) denotes the set of vertices adjacent to v in G2). The output
matrix M is the bipartite adjacency matrix of G3.

Construction 4. A building block for construction of regular matrices

– Given: Integer parameters d ≥ u ≥ 1, real parameter p ∈ [0, 1), and a family
f0, . . . , fr of strong lossless condensers, where r := �log(d/u′)� and u′ is the
smallest power of two such that u′ ≥ u. Each fi : {0, 1}ñ × {0, 1}t → {0, 1}̃(i) is
assumed to be a strong lossless (k(i), ε)-condenser, where k(i) := log u′ + i + 1
and ε < (1− p)/16.

– Output: An m × n Boolean matrix M , where n := 2ñ and m =
2td

∑r
i=0 Ou(2u(̃(i)−k(i))).

– Construction: For each i ∈ {0, . . . , r}, denote by Mi the output matrix of Con-
struction 4 when instantiated with fi as the underlying condenser, and by mi its
number of rows. Define ri := 2r−i and let M ′

i denote the matrix obtained from
Mi by repeating each row ri times. Construct the output matrix M by stacking
M ′

0, . . . , M
′
r on top of one another.

Construction 5. Regular matrices from strong lossless condensers

One of the technical contributions of this paper is a construction of regular ma-
trices using strong lossless condensers. Details of the construction are described
in Construction 5 that assumes a family of lossless condensers with different
entropy requirements5, and in turn, uses Construction 4 as a building block.
The following theorem analyzes the obtained parameters without specifying any
particular choice for the underlying family of condensers.

Theorem 7. The m × n matrix M output by Construction 5 is (d, pγ2t;u)-
regular, where γ = max{1, Ωu(d ·min{2k(i)−�̃(i) : i = 0, . . . , r})}.

5 We have assumed that all the functions in the family have the same seed length t. If
this is not the case, one can trivially set t to be the largest seed length in the family.
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3.1 Instantiations

We now discuss instantiations the result obtained in Theorem 7 by various
choices of the family of lossless condensers. The crucial factors that influence
the number of measurements are the seed length and the output length of the
condenser.

Nonconstructively, it can be shown that strong (k, ε) lossless condensers with
input length ñ, seed length t = log ñ + log(1/ε) + O(1), and output length
�̃ = k + log(1/ε) + O(1) exist, and moreover, almost matching lower bounds are
known [7]. In fact, the optimal parameters can be achieved by a random function
with overwhelming probability. In this work, we consider two important explicit
constructions of lossless condensers. Namely, one based on “zig-zag products”
due to Capalbo et al. [7] and another, coding theoretic, construction due to
Guruswami et al. [8].

Theorem 8. [7] For every k ≤ ñ ∈ �, ε > 0 there is an explicit lossless (k, ε)
condenser with seed length O(log3(ñ/ε)) and output length k + log(1/ε) + O(1).

Theorem 9. [8] For all constants α ∈ (0, 1) and every k ≤ ñ ∈ �, ε > 0
there is an explicit strong lossless (k, ε) condenser with seed length t = (1 +
1/α) log(ñk/ε) + O(1) and output length �̃ = t + (1 + α)k.

As a result, we use Theorem 7 with the above condensers to obtain the following.

Theorem 10. Let u > 0 be fixed, and p ∈ [0, 1) be a real parameter. Then for
integer parameters d, n ∈ � where u ≤ d ≤ n,

1. Using an optimal lossless condenser in Construction 5 results in an m1 × n
matrix M1 that is (d, e1;u)-regular, where m1 = O(d(log n)(log d)/(1−p)u+1)
and e1 = Ω(pd logn),

2. Using the lossless condenser of Theorem 8 in Construction 5 results in an
m2 × n matrix M2 that is (d, e2;u)-regular, where m2 = O(T2d(log d)/(1 −
p)u) for some T2 = exp(O(log3((log n)/(1 − p)))) = quasipoly(log n), and
e2 = Ω(pdT2(1− p)).

3. Let β > 0 be any fixed constant. Then Construction 5 can be instantiated
using the lossless condenser of Theorem 9 so that we obtain an m3 × n
matrix M3 that is (d, e3;u)-regular, where m3 = O(T 1+u

3 d1+β(log d)) for the
quantity T3 defined as T3 := ((logn)(log d)/(1−p))1+u/β = poly(logn, log d),
and e3 = Ω(pmax{T3, d

1−β/u}).

Finally, by combining this result with Lemma 5 using any explicit construc-
tion of classical disjunct matrices, we will obtain (d, e;u)-disjunct matrices that
can be used in the threshold model with any fixed threshold, sparsity d, and
error tolerance �e/2�. In particular, using the coding-theoretic explicit construc-
tion of nearly optimal classical disjunct matrices [10] (a special case of what
shown in row M2 of Table 1), we obtain (d, e;u)-disjunct matrices with m =
O(m′d2(log n)/(1 − p)2) rows and error parameter e = Ω(e′pd(logn)/(1 − p)),
where m′ and e′ are respectively the number of rows and error parameter of
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any of the regular matrices obtained in Theorem 10. We note that in all cases,
the final dependence on the sparsity parameter d is, roughly, O(d3) which has
an exponent independent of the threshold u. Rows M7–M9 of Table 1 summa-
rize the obtained parameters for the general case (with arbitrary gaps). We see
that, when d is not negligibly small (e.g., d = n1/10), the bounds obtained by
our explicit constructions are significantly better than those offered by strongly
disjunct matrices.

4 The Case with Positive Gaps

In preceding sections we have focused on the case where g = 0. However, we
observe that all the techniques that we have developed in this work can be
extended to the positive-gap case by the following observations:

1. Definition 2 can be adapted to allow more than one distinguished columns in
disjunct matrices. In particular, in general we may require the matrix M to
have more than e rows that u-satisfy every choice of a critical set S, a zero
set Z, and any g + 1 designated columns D ⊆ S (at which all entries of the
corresponding rows must be 1). Denote this generalized notion by (d, e;u, g)-
disjunct matrices. It is straightforward to extend Lemma 3 to show that the
notion of (d, e;u, g)-disjunct matrices is necessary and sufficient to capture
non-adaptive threshold group testing with upper threshold u and gap g.

2. Lemma 6 can be generalized to show that Construction 3 (with probability
1−o(1)) results in a (d,Ωu(pd log(n/d)/(1−p)2);u, g)-disjunct matrix if the
number of measurements is increased by a factor O(dg).

3. Lemma 4 can be extended to positive gaps, by taking M1 as a (d−1, e1; �−1)-
regular matrix, provided that, for every y ∈M2[x]1,g+1 and y′ ∈M2[x′]1,g+1,
we have |supp(y) \ supp(y′)| ≥ e2. In particular this is the case if M2 is
strongly (d, e2 − 1; g + 1)-disjunct6. Similarly for Lemma 5, M2 must be
taken as a strongly (2d, e2; g + 1)-disjunct matrix. Consequently, using the
coding-theoretic construction of strongly disjunct matrices introduced in
Construction 1, our explicit constructions of (d, e;u)-disjunct matrices can
be extended to the gap model at the cost of a factor O(dg) increase in the
number of measurements (as summarized in Table 1).

4. Observe that a (d, e;u, g)-disjunct matrix is in particular, strongly (d −
g, e; g + 1)-disjunct and thus, the lower bound Ω(dg+2 logd n + edg+1) on
the number of rows of strongly disjunct matrices applies to them as well.

5 Concluding Remarks

In this work we have introduced the combinatorial notion of (d, e;u)-regular
matrices, that is used as an intermediate tool towards obtaining threshold test-
ing designs. Even though our construction, assuming an optimal lossless con-
denser, matches the probabilistic upper bound for regular matrices, the number
6 Here we are also considering the unavoidable assumption that

max{|supp(x) \ supp(x′)|, |supp(x′) \ supp(x)|} > g.
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of measurements in the resulting threshold testing scheme will be larger than
the probabilistic upper bound by a factor of Ω(d log n). Thus, an outstanding
question is coming up with a direct construction of disjunct matrices that match
the probabilistic upper bound. Moreover, we have assumed the threshold u to
be a fixed constant, allowing the constants hidden in asymptotic notions to
have a poor dependence on u. An outstanding question is whether the num-
ber of measurements can be reasonably controlled when u becomes large; e.g.,
u = Ω(d). Another interesting problem is decoding. While our constructions can
combinatorially guarantee identification of sparse vectors, for applications it is
important to have an efficient reconstruction algorithm as well. Contrary to the
case of strongly disjunct matrices that allow a straightforward decoding proce-
dure (cf. [6]), it is not clear whether in general our notion of disjunct matrices
allow efficient decoding, and thus it becomes important to look for constructions
that are equipped with efficient reconstruction algorithms.
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Abstract. A distribution D over Σ1 × · · · ×Σn is called (non-uniform)
k-wise independent if for any set of k indices {i1, . . . , ik} and for any
z1 · · · zk ∈ Σi1×· · ·×Σik , PrX∼D[Xi1 · · ·Xik = z1 · · · zk] = PrX∼D[Xi1 =
z1] · · ·PrX∼D[Xik = zk]. We study the problem of testing (non-uniform)
k-wise independent distributions over product spaces. For the uniform
case we show an upper bound on the distance between a distribution D
from the set of k-wise independent distributions in terms of the sum of
Fourier coefficients of D at vectors of weight at most k. Such a bound
was previously known only for the binary field. For the non-uniform case,
we give a new characterization of distributions being k-wise independent
and further show that such a characterization is robust. These greatly
generalize the results of Alon et al. [1] on uniform k-wise independence
over the binary field to non-uniform k-wise independence over product
spaces. Our results yield natural testing algorithms for k-wise indepen-
dence with time and sample complexity sublinear in terms of the support
size when k is a constant. The main technical tools employed include dis-
crete Fourier transforms and the theory of linear systems of congruences.

1 Introduction

Nowadays we are both blessed and cursed by the colossal amount of data avail-
able for processing. In many situations, simply scanning the whole data set once
can be a daunting task. It is then natural to ask what we can do in sublinear
time. For many computational questions, if instead of asking the decision version
of the problems, one can relax the questions and consider the analogous prop-
erty testing problems, then sublinear algorithms are often possible. See survey
articles [18,35,27,14].
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Property testing algorithms [36,19] are usually based on robust characteri-
zations of the objects being tested. For instance, the linearity test introduced
in [12] is based on the characterization that a function is linear if and only if
the linearity test (for all x and y, it holds that f(x) + f(y) = f(x + y)) has
acceptance probability 1. Moreover, the characterization is robust in the sense
that if the linearity test accepts a function with probability close to 1, then the
function must be also close to some linear function. Property testing often leads
to a new understanding of well-studied problems and sheds insight on related
problems.

In this work, we show robust characterizations of k-wise independent distri-
butions over discrete product spaces and give sublinear-time testing algorithms
based on these robust characterizations. Note that distributions over product
spaces are in general not product distributions, which by definition are n-wise
independent distributions.

The k-wise Independent Distributions: For finite set Σ, a discrete probability
distribution D over Σn is (non-uniform) k-wise independent if for any set of k
indices {i1, . . . , ik} and for all z1, . . . , zk ∈ Σ, PrX∼D[Xi1 · · ·Xik = z1 · · · zk] =
PrX∼D[Xi1 = z1] · · ·PrX∼D[Xik = zk]. That is, restricting D to any k coor-
dinates gives rise to a fully independent distribution. For the special case of
PrX∼D[Xi = z] = 1

|Σ| for all i and all z ∈ Σ, we refer to the distribution as
uniform k-wise independent1. A distribution is almost k-wise independent if its
restriction to any k coordinates is very close to some independent distribution. k-
wise independent distributions look independent “locally” to any observer of only
k coordinates, even though they may be far from fully independent “globally”.
Furthermore, k-wise independent distributions can be constructed with expo-
nentially smaller support sizes than fully independent distributions. Because of
these useful properties, k-wise independent distributions have many applications
in both probability theory and computational complexity theory [23,25,28,31].

Given samples drawn from a distribution, it is natural to ask, how many
samples are required to tell whether the distribution is k-wise independent or
far from k-wise independent, where by “far from k-wise independent” we mean
that the distribution has large statistical distance from any k-wise independent
distribution. Usually the time and query complexity of distribution testing algo-
rithms are measured against the support size of the distributions; For example,
algorithms that test distributions over {0, 1}n with time complexity o(2n) are
said to be sublinear-time testing algorithms.

Alon, Goldreich and Mansour [4] implicitly give the first robust character-
ization of k-wise independence. Alon et al. [1] improve the bounds in [4] and
also give efficient testing algorithms. All of these results consider only uniform
distributions over GF(2). Our work generalizes previous results in two ways:
to distributions over arbitrary finite product spaces and to non-uniform k-wise
independent distributions.

1 In literature the term “k-wise independence” usually refers to uniform k-wise inde-
pendence.
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1.1 Our Results

Let Σ = {0, 1, . . . , q−1} be the alphabet and let D : Σn → [0, 1] be the distribu-
tion to be tested. For any vector a ∈ Σn, the Fourier coefficient of distribution D

at a is D̂(a) =
∑

x∈Σn D(x)e
2πi

q

∑n
j=1 ajxj = Ex∼D

[
e

2πi
q

∑n
j=1 ajxj

]
. The weight

of a is the number of non-zero entries in a. It is a folklore fact that a distribu-
tion D is uniform k-wise independent if and only if for all non-zero vectors a of
weight at most k, D̂(a) = 0. A natural test for k-wise independence is thus the
following Generic Algorithm for testing k-wise independence shown in Fig. 1.

Generic Algorithm for Testing Uniform k-wise Independence

1. Sample D uniformly and independently M times
2. Use these samples to estimate all the low-weight Fourier coefficients
3. Accept if the magnitudes of all the estimated Fourier coefficients are at most δ

Fig. 1. A generic algorithm for testing uniform k-wise independence

However, in order to prove that the generic algorithm works, one needs to show
that the simple characterization of k-wise independence is robust in the sense
that, for any distribution D, if all its Fourier coefficients at vectors of weight at
most k are at most δ (in magnitude), then D is ε(δ)-close to some uniform k-wise
independent distribution, where the closeness parameter ε depends, among other
things, on the error parameter δ.2 Furthermore, the query and time complexity
of the generic testing algorithm will depend on the underlying upper bound.
One of our main results is the following robust characterization of uniform k-
wise independence. Let Δ(D,Dkwi) denote the distance between D and the set
of k-wise independent distributions over {0, 1, . . . , q − 1}n, then

Δ(D,Dkwi) ≤
∑

0<wt(a)≤k

|D̂(a)|.

Consequently, the sample complexity of our testing algorithm is Õ(n
2k(q−1)2kq2

ε2 )

and the time complexity is Õ(n
3k(q−1)3kq2

ε2 ), which are both sublinear when k =
O(1) and q ≤ poly(n). We further generalize these results to non-uniform k-wise
independent distributions over product space, i.e., distributions over Σ1 × · · · ×
Σn, where Σ1, . . . , Σn are finite sets.

We remark that another related problem, namely testing almost k-wise in-
dependence over product spaces admits a straightforward generalization of the
testing algorithm in [1], which is shown there to work only for the (uniform)
binary case. We refer interested readers to the full version of the paper.
2 Note that, for almost k-wise independence, all the Fourier coefficients at vectors of

weight at most k being small already implies that the distribution is almost k-wise
independent.
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Our results add a new understanding of the structures underlying (non-
uniform) k-wise independent distributions and it is hoped that one may find
other applications of these robust characterizations.

As is often the case, commutative rings demonstrate different algebraic struc-
tures from those of prime fields. For example, the recent improved construc-
tion [16] of 3-query locally decodable codes of Yekhanin [41] relies crucially on a
set system construction [21] which holds only modulo composite numbers. Gen-
eralizing results in the binary field (or prime fields) to commutative rings often
poses new technical challenges and requires additional new ideas. We hope our
results may find future applications in generalizing other results working in the
Boolean domains to general domains.

1.2 Techniques

Previous Techniques: Given a distribution D over binary field, a k-wise inde-
pendent distribution is constructed in [4] by mixing D with a series of carefully
chosen distributions to the given distribution in order to zero-out all the Fourier
coefficients over subsets of size at most k. For a given subset S, the added distri-
bution US is chosen such that, on the one hand it corrects the Fourier coefficient
over S; on the other hand, US ’s Fourier coefficient of D over any other subset
is zero. Using the orthogonality property of Hadamard matrices, they choose
US to be the uniform distribution over all strings whose parity over S is 1 (or
−1, depending on the sign of the distribution’s bias over S). Although one can
generalize it to work for prime fields, this construction breaks down when the
alphabet size is a composite number.

For binary field a better bound is obtained in [1]. This is achieved by first
working in the Fourier domain to remove all the first k-level Fourier coefficients
of the input distribution. Such an operation ends up with a so-called “pseudo-
distribution”, since at some points the resulting function may assume negative
values. Then a series of carefully chosen k-wise independent distributions are
added to the pseudo-distribution to fix the negative points. This approach does
not admit a direct generalization to the non-Boolean cases because, for larger
domains, the pseudo-distributions are in general complex-valued. Nevertheless3,
one may use generalized Fourier expansion of real-valued functions to overcome
this difficulty. We present this approach in the appendices of the full version of
the paper. However, the bound obtained from this approach is weaker than our
main results for the uniform case which we discuss shortly. Moreover, the proof
is “non-constructive” in the sense that we are not aware of what distributions
should we mix with the input distribution to make it a k-wise independent one.
This drawback seems make it hard to generalize the approach to handle the
non-uniform case. In contrast, our results on non-uniform k-wise independence
relies crucially on the fact that the correction process for the uniform case is
explicit and all the distributions used for mixing are of some special structure.

Uniform Distributions: Our results on uniform k-wise independent distributions
extend the framework in [4]. As noted before, the key property used to mend a
3 We thank an anonymous referee for pointing this out.
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distribution into k-wise independent is the orthogonality relation between any
pair of vectors. We first observe that all prime fields also enjoy this nice feature
after some slight modifications. More specifically, for any two vectors a and b in
Zn
p that are linearly independent, the set of strings with

∑n
i=1 aixi ≡ j (mod p)

are uniformly distributed over Sb,� := {x :
∑n

i=1 bixi ≡ � (mod p)} for every
0 ≤ � ≤ p − 1. We will call this the strong orthogonality between vectors a
and b. The case when q = |Σ| is not a prime is less straightforward. The main
difficulty is that the strong orthogonality between pairs of vectors no longer
holds, even when they are linearly independent. Suppose we wish to use some
distribution Ua to correct the bias over a. A simple but important observation is
that we only need that Ua’s Fourier coefficient at b to be zero, which is a much
weaker requirement than the property of being strongly orthogonal between a
and b. Using a classical result in linear systems of congruences due to Smith [38],
we are able to show that, when a satisfies gcd(a1, . . . , an) = 1 and b is not a
multiple of a, the set of strings with

∑n
i=1 aixi ≡ j (mod p) are uniformly

distributed over Sb,� for �’s that lie in a subgroup of Zq (compared with uniform
distribution over the whole group Zp for prime fields case). We refer to this as
weak orthogonality between vectors a and b. To zero-out the Fourier coefficients
at a, we instead bundle the Fourier coefficient at a with the Fourier coefficients
at �a for every � = 2, . . . , q− 1, and treat them as Fourier coefficients defined in
one-dimensional space with � as the variable. This allows us to upper bound the
total weights required to simultaneously correct all the Fourier coefficients at a
and its multiples using only Ua. We also generalize the result to product spaces
of different alphabet sizes D = Σ1 × · · · ×Σn.

Non-uniform Distributions: One possible way of extending the upper bounds for
the uniform case to the non-uniform case would be to map non-uniform prob-
abilities to uniform probabilities over a larger domain. For example, consider
when q = 2 a distribution D with PrD[xi = 0] = 0.501 and PrD[xi = 1] = 0.499.
We could map xi = 0 and xi = 1 uniformly to {1, . . . , 501} and {502, . . . , 1000},
respectively and test if the transformed distribution D′ over {1, . . . , 1000} is k-
wise independent. Unfortunately, this approach produces a huge overhead on the
distance upper bound, due to the fact that the alphabet size increases depends
on the closeness of marginal probabilities over different symbols. However, in the
previous example we would expect D behaves very much like the uniform case
rather than with an additional factor of 1000 blowup in the alphabet size. In-
stead we take the following approach. Consider a stretching/compressing factor
for each marginal probability PrD[xi = zj], where zj ∈ Σ. Specifically, define
θi(zj) = 1

qPrD [xi=zj ]
so that θi(zj) PrD[xi = zj ] = 1

q , the probability in the uni-
form distribution. If we multiply D(x) for each x in the domain by the product
of all n of these factors, the non-uniform k-wise independent distribution will
be transformed into a uniform one. The hope is that distributions close to non-
uniform k-wise independent will also be transformed into distributions that are
close to uniform k-wise independent. However, this could give rise to exponen-
tially large distribution weights at some points in the domain, making the task
of estimating the corresponding Fourier coefficients intractable. Observe that,
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intuitively for testing k-wise independence purposes, all we need to know are the
“local” weight distributions. To be more specific, for a vector a ∈ Σn, define the
support of a by supp(a) = {i ∈ [n] : ai �= 0}. For every non-zero vector a of
weight at most k, we define a new non-uniform Fourier coefficient at a by first
project D to supp(a), then apply the stretching/compressing transformation and
finally compute the Fourier coefficient based on the “transformed” local distribu-
tion. We are able to show a new characterization that D is a non-uniform k-wise
independent distribution if and only if all these low-degree non-uniform Fourier
coefficients are zero. This enable us to apply the Fourier coefficient correcting
approach developed for the uniform cases. Roughly speaking, for any vector a,
we can find a (small-weight) distribution Ua such that mixing D with Ua zeroes-
out the non-uniform Fourier coefficient at a. But this Ua is the distribution to
mix in the ”transformed” world. We therefore apply some appropriate inverse
stretching/compressing transformations to Ua to get Ũa, and show that mixing
Ũa with the original distribution will not only correct the non-uniform Fourier
coefficient at a but also will not increase the non-uniform Fourier coefficients at
any vector b as long as supp(b) � supp(a). Therefore we can start from vectors
of weight k and correct the non-uniform Fourier coefficients level by level until
we finish correcting vectors of weight 1 and finally obtain a k-wise independent
distribution. Bounding the total weights added during this process gives an up-
per bound on the distance between D and non-uniform k-wise independence.
The notion of non-uniform Fourier coefficients may find other applications when
non-uniform independence is involved.

1.3 Other Related Research

There are many works on k-wise independence, most focus on various construc-
tions of k-wise independence or distributions that approximate k-wise indepen-
dence. k-wise independent random variables were first studied in probability
theory [23] and then in complexity theory [13,2,28,29] mainly for derandom-
ization purposes. Constructions of almost k-wise independent distributions were
studied in [31,3,6,17,10]. Construction results of non-uniform k-wise independent
distributions were given in [24,26].

There has been much activity on property testing of distributions. Some exam-
ples include testing uniformity [20,8], independence [7], monotonicity and being
unimodal [9], estimating the support sizes [34] and testing a weaker notion than
k-wise independence, namely, “almost k-wise independence” [1].

Many other techniques have also been developed to generalize results from
Boolean domains to arbitrary domains [15,30,11].

1.4 Organization

We first give some necessary definitions in Section 2. Then we study k-wise
independent distributions over general domains and product spaces in Section 3.1
and Section 3.2, respectively. The cases of non-uniform k-wise independence are
treated in Section 4. Most proofs are omitted from this extended abstract, which
may be found in the full version of the present paper.
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2 Preliminaries

Let n and m be two natural numbers with m > n. We write [n] for the set
{1, . . . , n} and [n,m] for the set {n, n + 1, . . . ,m}. Throughout this paper, Σ
always stands for a finite set. Without loss of generality, we assume that Σ =
{0, 1, . . . , q − 1}, where q = |Σ|.

We use a to denote a vector (a1, . . . , an) in Σn with ai being the ith component
of a. The support of a is the set of indices at which a is non-zero. That is,
supp(a) = {i ∈ [n] : ai �= 0}. The weight of a vector a is the cardinality of its
support. Let 1 ≤ k ≤ n be an integer. We use M(n, k, q) :=

(
n
1

)
(q − 1) + · · · +(

n
k

)
(q − 1)k to denote the total number of non-zero vectors in Σn of weight at

most k. Note that M(n, k, q) = Θ(nk(q − 1)k) for k = O(1). For two vectors a
and b in Σn, we define their inner-product to be a · b =

∑n
i=1 aibi (mod q).

Let D1 and D2 be two distributions over the same domain D. The statistical
distance between D1 and D2 is Δ(D1, D2) = 1

2

∑
x∈D |D1(x)−D2(x)|. One can

check that statistical distance is a metric and in particular satisfies the triangle
inequality. We use statistical distance as the main metric to measure closeness
between distributions in this paper. For any 0 ≤ ε ≤ 1, define a new distribution
to be the convex combination of D1 and D2 as D′ = 1

1+εD1 + ε
1+εD2, then

Δ(D′, D1) ≤ ε
1+ε ≤ ε. Sometimes we abuse notation and call the non-negative

function εD1 a weighted-ε distribution (in particular a small-weight distribution
if ε is small).

Let S = {i1, . . . , ik} ⊆ [n] be an index set. The projection distribution of D
with respect to S, denoted by DS , is the distribution obtained by restricting
to the coordinates in S. Namely, DS : Σk → [0, 1] such that DS(zi1 · · · zik) =∑

x∈Σn:xi1=zi1 ,...,xik
=zik

D(x). For brevity, we sometimes write DS(zj : j ∈ S)
for DS(zi1 · · · zik). We also use xS to denote the k-dimensional vector obtained
from projecting x to the indices in S.

The k-wise Independent Distributions: Let D : Σ1 × · · · × Σn → [0, 1] be a
distribution. We say D is a uniform distribution if for every x ∈ Σ1 × · · · ×
Σn, PrX∼D[X = x] = 1

q1···qn
, where qi = |Σi|. D is k-wise independent if

for any set of k indices {i1, . . . , ik} and for any z1 · · · zk ∈ Σi1 × · · · × Σik ,
PrX∼D[Xi1 · · ·Xik = z1 · · · zk] = PrX∼D[Xi1 = z1] × · · · × PrX∼D[Xik = zk]. D
is uniform k-wise independent if, on top of the previous condition, we have
PrX∼D[Xi = zj] = 1

|Σi| for every i and every zj ∈ Σi. Let Dkwi denote
the set of all uniform k-wise independent distributions. The distance between
D and Dkwi, denoted by Δ(D,Dkwi), is the minimum statistical distance be-
tween D and any uniform k-wise independent distribution, i.e., Δ(D,Dkwi) :=
minD′∈Dkwi Δ(D,D′).

Discrete Fourier Transforms: For background on discrete Fourier transforms in
computer science, the reader is referred to [39,40]. Let f : Σ1 × · · · × Σn → C
be any function defined over the discrete product space, we define the Fourier
transform of D as, for all a ∈ Σ1 × · · · ×Σn,
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f̂(a) =
∑

x∈Σ1×···×Σn

f(x)e2πi( a1x1
q1

+···+ anxn
qn

).

One can easily verify that the inverse Fourier transform is

f(x) =
1

q1 · · · qn
∑

a∈Σ1×···×Σn

f̂(a)e−2πi( a1x1
q1

+···+ anxn
qn

)
.

Note that if Σi = Σ for every 1 ≤ i ≤ n (which is the main focus of this paper),
then f̂(a) =

∑
x∈Σn f(x)e

2πi
q a·x and f(x) = 1

|Σ|n
∑

a∈Σn f̂(a)e−
2πi

q a·x.
We will use the following two simple facts about Fourier transforms which are

easy to verify.

Fact 1. For any integer � which is not congruent to 0 modulo q,
∑q−1

j=0 e
2πi

q �j =0.

Fact 2. Let d, �0 be integers such that d|q and 0 ≤ �0 ≤ d − 1. Then
∑ q

d−1
�=0

e
2πi

q (�0+d�) = 0.

Proposition 1. Let D be a distribution over Σ1×· · ·×Σn. Then D is a uniform
distribution if and only if for any non-zero vector a ∈ Σ1× · · · ×Σn, D̂(a) = 0.

By applying Proposition 1 to distributions obtained from restriction to any k in-
dices, we have the following characterization of k-wise independent distributions
over product spaces, which is the basis of all of our testing algorithms.

Corollary 1. A distribution D over Σ1× · · ·×Σn is k-wise independent if and
only if for all non-zero vectors a of weight at most k, D̂(a) = 0.

Other Definitions and Notation: We are going to use the following notation
extensively in this paper.

Definition 1. Let D be a distribution over Σn. For every a ∈ Σn and every
0 ≤ j ≤ q− 1, define PD

a,j := PrX∼D[a ·X ≡ j (mod q)]. When the distribution
D is clear from context, we often omit the superscript D and simply write Pa,j.

For any non-zero vector a ∈ Zn
q and any integer j, 0 ≤ j ≤ q − 1, let Sa,j :=

{X ∈ Zn
q :

∑n
i=1 aiXi ≡ j (mod q)}. Let Ua,j denote the uniform distribution

over Sa,j.

3 Uniform k-Wise Independent Distributions over
Product Spaces

3.1 Domains of the Form Zn
q

We first consider the problem of testing k-wise independent distributions over
domains of the form Zn

q , where q is the size of the alphabet. Recall that a
distribution D over Zn

q is k-wise independent if and only if for all non-zero
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vectors a of weight at most k, D̂(a) = 0. In the following, we are going to
show that we can mix D with a series (small-weight) distributions to get a new
distribution D′ such that D̂′(a) = 0 for every 0 < wt(a) ≤ k. Therefore D′ is k-
wise independent and thus the total weights of the distributions used for mixing
is an upper bound on the distance between D and the set of k-wise independent
distributions.

Unless stated otherwise, all arithmetic operations in this section are performed
modulo q; For instance, we use a = b to mean that ai ≡ bi (mod q) for each
1 ≤ i ≤ n.

Let a = (a1, . . . , an) be a non-zero vector. We say a is a prime vector if
gcd(a1, . . . , an) = 1. If a is a prime vector, then we refer to the set of vectors
{2a, . . . , (q − 1)a} (note that all these vectors are distinct) as the siblings of a,
and together with a collectively we refer to them as a family of vectors. Note
that families of vectors do not form a partition of all the vectors. For example
when n = 2 and q = 6, vector (4, 0) is a sibling of both (1, 0) and (2, 3), but the
latter two vectors are not siblings of each other.

Recall that Sa,j denotes the set {x ∈ Zn
q :

∑n
i=1 aixi ≡ j (mod q)}.

Proposition 2. If a is a prime vector, then |Sa,j| = qn−1 for any 0 ≤ j ≤ q−1.

Linear Systems of Congruences. Here we record some useful results on
linear systems of congruences. For more on this, the interested reader is referred
to [22] and [38]. These results will be used in the next section to show some
important orthogonality properties of vectors. In this section, all matrices are
integer-valued. Let M be a k × n matrix with k ≤ n. The greatest divisor of
M is the greatest common divisor (gcd) of the determinants of all the k × k
sub-matrices of M . M is a prime matrix if the greatest divisor of M is 1.

Lemma 1 ([38]). Let M be a (k + 1)× n matrix. If the sub-matrix consisting
of the first k rows of M is a prime matrix and M has greatest divisor d, then
there exist integers u1, . . . , uk such that

u1M1,j + u2M2,j + . . . + ukMk,j ≡Mk+1,j (mod d),

for every 1 ≤ j ≤ n.

Consider the following system of linear congruent equations:⎧⎪⎨⎪⎩
M1,1x1 + M1,2x2 + · · ·+ M1,nxn ≡M1,n+1 (mod q)

...
Mk,1x1 + Mk,2x2 + · · ·+ Mk,nxn ≡Mk,n+1 (mod q).

(1)

Let M denote the k×n matrix consisting of the coefficients of the linear system
of equations and let M̃ denote the corresponding augmented matrix of M , that
is, the k × (n + 1) matrix including the extra column of constants.

Definition 2. Let M be the coefficient matrix of Eq.(1) and M̃ be the augmented
matrix. Suppose k < n so that system (1) is a defective system of equations. De-
fine Yk, Yk−1, . . . , Y1 respectively to be the greatest common divisors of the deter-
minants of all the k×k, (k−1)×(k−1), . . . , 1×1, respectively sub-matrices of M .
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Similarly define Zk, Zk−1, . . . , Z1 for the augmented matrix M̃ . Also we define
Y0 = 1 and Z0 = 1. Define s =

∏k
j=1 gcd(q, Yj

Yj−1
) and t =

∏k
j=1 gcd(q, Zj

Zj−1
).

The following theorem of Smith gives the necessary and sufficient conditions for
a system of congruent equations to have solutions.

Theorem 3 ([38]). If k < n, then the (defective) linear system of congruences
(1) has solutions if and only if s = t. Moreover, if this condition is met, the
number of incongruent solutions is sqn−k.

Weak Orthogonality between Families of Vectors. To generalize the proof
idea of the GF(2) case to commutative rings Zq for arbitrary q, it seems crucial to
relax the requirement that linearly independent vectors are strongly orthogonal.
Rather, we introduce the notion of weak orthogonality between a pair of vectors.

Definition 3. Let a and b be two vectors in Zn
q . We say a is weakly orthogonal

to b if for all 0 ≤ j ≤ q − 1, Ûa,j(b) = 0.

We remark that strong orthogonality (defined in the Introduction) implies weak
orthogonality while the converse is not necessarily true. In particular, strong
orthogonality does not hold in general for linearly independent vectors in Zn

q .
However, for our purpose of constructing k-wise independent distributions, weak
orthogonality between pairs of vectors suffices.

The following Lemma is the basis of our upper bound on the distance from
a distribution to k-wise independence. This Lemma enables us to construct a
small-weight distribution using an appropriate convex combination of {Ua,j}q−1

j=0 ,
which on the one hand zeros-out all the Fourier coefficients at a and its sibling
vectors, on the other hand has zero Fourier coefficient at all other vectors. The
proof of the Lemma relies crucially on the results in Section 3.1 about linear
system of congruences.

Lemma 2 (Main). Let a be a non-zero prime vector and b any non-zero vector
that is not a sibling of a. Then a is weakly orthogonal to b.

Proof. Consider the following system of linear congruences:{
a1x1 + a2x2 + · · ·+ anxn ≡ a0 (mod q)
b1x1 + b2x2 + · · ·+ bnxn ≡ b0 (mod q).

(2)

Following our previous notation, let M =
[
a1 a2 · · · an

b1 b2 · · · bn

]
and M̃ =

[
a1 a2 · · · an a0

b1 b2 · · · bn b0

]
.

Since a is a prime vector, Y1 = Z1 = 1. We next show that Y2 can not be a
multiple of q.

Claim. Let M =
[
a1 a2 · · · an
b1 b2 · · · bn

]
. The determinants of all 2× 2 sub-matrices of

M are congruent to 0 modulo q if and only if a and b are sibling vectors.
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Proof. If a and b are sibling vectors, then it is clear that the determinants of
all the sub-matrices are congruent to 0 modulo q. For the only if direction,
we may assume that a is a prime vector, since otherwise we can divide the
first row of M by the common divisor. all we need to prove is that b = ca for
some integer c. First suppose that the determinants of all 2 × 2 sub-matrices
of M are 0. Then it follows that b1

a1
= · · · = bn

an
= c. If c is not an integer,

then c = u
v , where u, v are integers and gcd(u, v) = 1. But this implies v|ai

for every 1 ≤ i ≤ n, contradicting our assumption that a is a prime vector.
Now if not all of the determinants are 0, it must be the case that the greatest
divisor of the determinants of all 2×2 sub-matrices, say d′, is a multiple of q. By
Lemma 1, there is an integer c such that cai ≡ bi (mod d′) for every 1 ≤ i ≤ n.
Consequently, bi ≡ cai (mod q) for every i and hence b is a sibling of a. ��

Let d = gcd(q, Y2). Clearly 1 ≤ d ≤ q − 1 and, according to Claim 3.1, d|q.
Applying Theorem 3 with k = 2 to (2), the two linear congruences are solvable
if and only if d = gcd(q, Y2) = gcd(q, Z2). If this is the case, the total number
of incongruent solutions is dqn−2. Furthermore, if we let h denote the greatest
common divisor of the determinants of all 2 × 2 sub-matrices of M̃ , then d|h.
By Lemma 1, there is an integer u such that b0 ≡ ua0 (mod h). It follows that
d|(b0 − ua0). Let us consider a fixed a0 and write �0 = ua0 (mod d). Since a is
a prime vector, by Proposition 2, there are in total qn−1 solutions to (2). But
for any specific b0 that has solutions to (2), there must be dqn−2 solutions to
(2) and in addition d|q. Since there are exactly q/d b0’s in {0, . . . , q − 1}, we
conclude that (2) has solutions for b0 if and only if b0 = �0 +d�, where �0 is some
constant and � = 0, . . . , qd − 1. Finally we have

Ûa,j(b) =
∑

x∈Zn
q

Ua,j(x)e
2πi

q b·x =
1

qn−1

∑
a·x≡j (mod q)

e
2πi

q b·x

=
d

q

∑
b0:b0=�0+d�

e
2πi

q b0 = 0. (by Fact 2)

This finishes the proof of Lemma 2. ��

Correcting Fourier Coefficients of Sibling Vectors. In this section, we
show how to zero-out all the Fourier coefficients of a family of vectors. Let D
be a distribution over Zn

q . Note that, for every 1 ≤ � ≤ q − 1, the Fourier

coefficient of a vector �a can be rewritten as D̂(�a) =
∑

x∈GD(x)e
2πi

q �a·x =∑q−1
j=0 Prx∼D[a · x ≡ j (mod q)]e

2πi
q �j =

∑q−1
j=0 Pa,je

2πi
q �j . Define MaxBias(a) :=

max0≤j≤q−1 Pa,j − 1
q .

Claim. We have that MaxBias(a) ≤ 1
q

∑q−1
�=1 |D̂(�a)|.
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Theorem 4. Let D be a distribution over Zn
q , then4

Δ(D,Dkwi) ≤
∑

0<wt(a)≤k

|D̂(a)|.

In particular, Δ(D,Dkwi) ≤M(n, k, q)max0<wt(a)≤k |D̂(a)|.

Testing Algorithm and its Analysis. The following Theorem summarizes
the query and time complexities of our testing algorithm for uniform k-wise
independence. The proof is omitted here due to space limitation.

Theorem 5. There is an algorithm that tests k-wise independence over {0, . . . ,
q−1}n with query complexity Õ(n

2k(q−1)2kq2

ε2 ) and time complexity Õ(n
3k(q−1)3kq2

ε2 ).

3.2 Uniform k-Wise Independent Distributions over Product
Spaces

Now we generalize the Zn
q domains case to product spaces. Let Σ1, . . . , Σn be

finite sets. Without loss of generality, let Σi = {0, 1, . . . , qi − 1}. In this sec-
tion, we consider distributions over product space Σ1 × · · · × Σn. Let M =
lcm(q1, . . . , qn) and for each 1 ≤ i ≤ n let Mi = M

qi
. Then the Fourier coeffi-

cients can be rewritten as D̂(a) =
∑

x∈Σ1×···×Σn
D(x)e

2πi
M (M1a1x1+···+Mnanxn) =∑

x∈Σ1×···×Σn
D(x)e

2πi
M (a′

1x1+···+a′
nxn), where a′i = Miai. Therefore we can see D

as a distribution over Σn with effective alphabet size |Σ| = M = lcm(q1, . . . , qn)
and we are only concerned with Fourier coefficients at a′ = (a′1, . . . , a

′
n). Note

that in general M = lcm(q1, . . . , qn) can be an exponentially large number and
is therefore not easy to handle in practice5. We overcome this difficulty by ob-
serving that, since we are only concerned with vectors of weight at most k, we
may take different effective alphabet sizes for different index subsets of size k,
i.e., |ΣS | = lcm(qi1 , . . . , qik) where S = {i1, . . . , ik}.

Under this formalism, we can prove the following Theorem:

Theorem 6. Let D be a distribution over Σ1 × · · · × Σn. Then Δ(D,Dkwi) ≤∑
0<wt(a)≤k |D̂(a)|.

4 Non-uniform k-Wise Independent Distributions

In this section we focus on non-uniform k-wise independent distributions. For
ease of exposition, we only prove our results for the case when the underlying
4 It is easy to verify that the same bound holds for prime field case if we transform the

bound in MaxBias there into a bound in terms of Fourier coefficients. Conversely
we can equivalently write the bound of the distance from k-wise independence in
terms of MaxBias over prime vectors. However, we believe that stating the bound
in terms of Fourier coefficients is more natural and generalizes more easily.

5 Recall that the testing algorithm requires estimating all the low-degree Fourier co-
efficients which is an exponential sum with M as the denominator.
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domain is Σn with q = |Σ|. Our approach here generalizes easily to distributions
over product spaces.

Recall that a distribution D : Σn → [0, 1] is k-wise independent if for any
index subset S ⊂ [n] of size k, S = {i1, . . . , ik}, and for any z1 · · · zk ∈ Σk,
DS(z1 · · · zk) = PrD[Xi1 = z1] · · ·PrD[Xik = zk]. We prove an upper bound on
the distance between D and k-wise independence by reducing the problem to
uniform case and then applying Theorem 4.

In the following we define a set of multipliers which are used to transform
non-uniform k-wise independent distributions into uniform ones. Let pi(z) :=
PrD[Xi = z]. We assume that 0 < pi(z) < 1 for all i ∈ [n] and z ∈ Σ (this
is without loss of generality since if some pi(z)’s are zero, then it reduces to
the case of distributions over product spaces). Define θi(z) := 1

qpi(z)
. Intuitively,

one may think θi(z) as a set of compressing/stretching factors which trans-
form a non-uniform k-wise distribution into a uniform one. For notation conve-
nience, if S = {i1, . . . , i�} and z = zi1 · · · zi� , we use θS(z) to denote the product
θi1(zi1) · · · θi�(zi�).

Definition 4 (Non-uniform Fourier Coefficients). Let D be a distribution
over Σn. Let a be a non-zero vector in Σn with supp(a) being its support set
and Dsupp(a) be the projection distribution of D with respect to supp(a). Set
D′supp(a)(z) = θsupp(a)(z)Dsupp(a)(z), which is the transformed distribution6 of
the projection distribution Dsupp(a). Then the non-uniform Fourier coefficient of
D at a is

D̂non(a) = D̂′supp(a)(a) =
∑

z∈Σsupp(a)

D′supp(a)(z)e
2πi

q a·z. (3)

The idea of defining D′supp(a) is that, if D is non-uniform k-wise independent,
then D′supp(a) will be a uniform distribution over the index set supp(a). Indeed,
our main result in this section is to show the connection between non-uniform
Fourier coefficients and the property of the distribution D being k-wise indepen-
dent. In particular we have the following simple characterization of non-uniform
k-wise independence.

Theorem 7. A distribution D over Σn is k-wise independent if and only if for
every non-zero vector a ∈ Σk with wt(a) ≤ k, D̂non(a) = 0.

The proof of Theorem 7 relies on the observation that, when written in the
form of linear transformation, non-uniform Fourier transform matrix, like the
uniform Fourier transform matrix, can be expressed as a tensor product of a set
of heterogeneous DFT (discrete Fourier transform) matrices. This enables us to
show that the non-uniform Fourier transform is invertible.

Given a distribution D which is not k-wise independent, what is its distance
to non-uniform k-wise independence? In the following, we will follow the same

6 Note that in general D′
supp(a) is not a distribution, since although it is non-negative

everywhere but
∑

x D′
supp(a)(x) = 1 may not hold.
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approach as used in the uniform case and try to find a set of small-weight dis-
tributions to mix with D to zero-out all the non-uniform Fourier coefficients at
vectors of weight at most k. This will show the robustness of characterization of
non-uniform k-wise independence given in Theorem 7.

A careful inspection of Theorem 4 and its proof shows that, if we focus on
the weights added to correct any fixed prime vector and its siblings, we actually
prove the following.

Theorem 8. Let E′ be a distribution over Σn, a be a prime vector of weight
at most k and let Ê′(a), . . . , Ê′((q − 1)a) be the Fourier coefficients at a and
its sibling vectors. Then there exist a set of non-negative real numbers wj , j =
0, 1, . . . , q − 1 such that the (small-weight) distribution7 UE′,a =

∑q−1
j=0 wjUa,j

has the following properties. ÛE′,a(b) = 0 for all non-zero vectors that are not
siblings of a and E′ + UE′,a has zero Fourier coefficients at a, 2a, . . . , (q − 1)a.
Moreover,

∑q−1
j=0 wj ≤

∑q−1
�=1 |Ê′(�a)|.

It is easy to see that the Theorem applies to any non-negative functions as well.
Applying Theorem 8 with E′ equal to D′supp(a) gives rise to a small-weight distri-
bution Usupp(a),a which we denote by Ua, to zero-out all the Fourier coefficients
at a and its siblings8. Now we apply the (reversed) compressing/stretching factor
to Ua to get Ũa,

Ũa(x) =
Ua(x)
θ[n](x)

. (4)

The following Lemma shows that mixing with Ũa zeroes-out the D’s non-uniform
Fourier coefficients at a and its sibling vectors. Moreover, the mixing only adds
up a relative small amount of weight and can only mess up the non-uniform
Fourier coefficient at vectors whose support sets are strictly contained in the
support set of a.

Lemma 3. Let D be a distribution over Σn and a be a prime vector of weight at
most k. Let supp(a) be the support set of a and Ũa be as defined in Equation(4).
Let γk := maxS,z 1

θS(z) , where S is a subset of [n] of size at most k and z ∈ Σ|S|.
Then

– The non-uniform Fourier coefficients of D+ Ũa at a as well as at the sibling
vectors of a whose support sets are also supp(a) are all zero. Moreover,
ˆ̃Unon

a (a′) = 0 for every vector a′ whose support set is supp(a) but is not a
sibling vector of a.

– For any vector b with supp(b) � supp(a), ˆ̃Unon
a (b) = 0.

– The total weight of Ũa is at most γk
∑

x∈Σn Ua(x) ≤ γk
∑q−1

j=1 |D̂non(ja)|.
7 Recall that Ua,j is the uniform distribution over all strings x ∈ Zn

q with a · x ≡
j (mod q).

8 In fact, this only guarantees to zero-out the Fourier coefficients at a and its siblings
whose support sets are the same as that of a. But that suffices for our correcting
purposes because we will proceed to vectors with smaller support sets in later stages.
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Algorithm Testing Non-uniform k-wise Independence (D,k,q,ε)

1. Sample D uniformly and independently M times
2. Use the samples to estimate, for each non-zero vector a of weight at most k

and each z, Dsupp(a)(z), where supp(a) is the support set of a
– Compute D′

supp(a)(z) = θS(z)Dsupp(a)(z)

– Compute D̂non(a) = D̂′
supp(a)(a) =

∑
z D′

supp(a)(z)e
2πi

q
a·z for each a ∈

Σk

3. If maxa |D̂non(a)| ≤ δ return “Yes”; else return “No”

Fig. 2. Algorithm for testing non-uniform k-wise independence

– For any non-zero vector c with supp(c) ⊂ supp(a), ˆ̃Unon
a (c) ≤

γk
∑q−1

j=1 |D̂non(ja)|.
Now we can, for each prime vector a whose support set is of size k, mix D with
Ũa to zero-out all the level k non-uniform Fourier coefficients. By Lemma 3 these
added weights can only mess up the non-uniform Fourier coefficients at level less
than k. We then recompute the non-uniform Fouriere coefficients of the new dis-
tribution and repeat this process for vectors whose support sets are of size k − 1.
Keep doing this until zeroing-out all the non-uniform Fourier coefficients at vec-
tors of weight 1, we finally obtain a non-uniform k-wise independent distribution.

Theorem 9. Let D be a distribution over Σn, then

Δ(D,Dkwi) ≤ O
(
nkq

k(k+3)
2

)
max

a:0<wt(a)≤k
|D̂non(a)|.

4.1 Testing Algorithm and Its Analysis

In Fig. 2, we give an outline of the algorithm for testing non-uniform k-wise in-
dependence when all the marginal probabilities pi(z) are assumed to be known.9

The analysis of the testing algorithm is very much the same10 as that presented
in Section 3.1, we leave the details to interested readers.
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Abstract. An instance of the tollbooth problem consists of an undi-
rected network and a collection of single-minded customers, each of which
is interested in purchasing a fixed path subject to an individual budget
constraint. The objective is to assign a per-unit price to each edge in a
way that maximizes the collective revenue obtained from all customers.
The revenue generated by any customer is equal to the overall price of
the edges in her desired path, when this cost falls within her budget;
otherwise, that customer will not purchase any edge.

Our main result is a deterministic algorithm for the tollbooth prob-
lem on trees whose approximation ratio is O(log m/ log log m), where m
denotes the number of edges in the underlying graph. This finding im-
proves on the currently best performance guarantees for trees, due to
Elbassioni et al. (SAGT ’09), as well as for paths (commonly known as
the highway problem), due to Balcan and Blum (EC ’06). An additional
interesting consequence is a computational separation between tollbooth
pricing on trees and the original prototype problem of single-minded
unlimited supply pricing, under a plausible hardness hypothesis due to
Demaine et al. (SODA ’06).

1 Introduction

An extensively-studied question in economics and operations management is
that of pricing an assortment of products in a given market, trying to maximize
revenue subject to a multitude of constraints. Somewhat informally, the inher-
ent difficulty in such settings boils down to the obvious tension between two
extremes: low prices attract more customers, while high prices generate greater
revenues per purchase. Recently, the spotlights have been turned on computa-
tional challenges in pricing. What seems to be the driving force behind this line
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of research is an immense growth in the range of sources for acquiring costumer
preferences data, which are now available as a result of the widespread use of
the Internet.
The tollbooth problem. One particular computational task that has received
much recent attention is the tollbooth problem, which captures optimization-
related aspects of pricing connection links in networks, e.g., setting prices for
road use in a system of toll highways. Formally, an instance of this problem
consists of an undirected graph G = (V,E) with m edges, which can be broadly
interpreted as products with unlimited supply. An additional ingredient of the
input is a collection C of n single-minded customers, each of which is interested
in purchasing a fixed path subject to an individual budget constraint. Technically
speaking, the demand attributes of customer i are represented by a pair (Pi, bi),
where Pi ⊆ G is the path she wishes to buy, and bi stands for her budget, namely,
the maximum price she is willing to pay for that path. Any customer will buy
a single unit of each edge in the desired path when its total cost falls within
her budget; otherwise, she leaves without buying anything. With this setting in
mind, the goal is to assign a per-unit price to each edge in a way that maximizes
the overall revenue. More precisely, the objective is to compute a pricing scheme
p : E → R+ that maximizes the total revenue over all customers,

∑n
i=1 Rp(i).

Here, Rp(i) denotes the revenue obtained from customer i, which evaluates to∑
e∈Pi

p(e) when this cost does not exceed bi, or to 0, otherwise.

Previous work. Guruswami et al. [13] seem to have been the first to study
the tollbooth problem. Their main results in this context were to show that
tollbooth pricing is APX-hard even when the underlying graph is a tree, and
to devise exact dynamic-programming algorithms for the single-source variant
on trees and for several other special cases. Additional hardness results were ob-
tained by Briest and Krysta [4], who proved that even the seemingly-manageable
setting of a simple path, commonly known as the highway problem, is in fact
weakly NP-hard. Elbassioni, Raman, Ray, and Sitters [7] extended this result
by establishing strong NP-hardness. On the positive side, however, Balcan and
Blum [2] devised an O(logm) approximation for the highway problem; this find-
ing is incomparable with the quasi-PTAS developed by Elbassioni, Sitters, and
Zhang [8] later on. Finally, and very recently, Elbassioni et al. [7] proposed
an O(logm) approximation for arbitrary trees. To conclude, approximating the
tollbooth problem on trees, or even on simple paths, beyond the logarithmic
threshold has remained an open research question.

1.1 Our Results

The main result of this paper is a deterministic algorithm for the tollbooth
problem on trees whose approximation ratio is O(logm/ log logm), improving
on the currently best performance guarantees for trees, as well as for paths, due
to Elbassioni et al. [7], and to Balcan and Blum [2], respectively. Even though
the quantitative magnitude of improvement is not that dramatic, our findings
have additional interesting contributions:
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Conceptual. We identify a computational separation between tollbooth pricing
on trees and the original prototype problem of single-minded unlimited supply
pricing (see Section 1.2). The latter cannot be approximated within a factor
smaller than Ω(log n), under a plausible hardness hypothesis regarding the bal-
anced bipartite independent set problem [6], whereas in the former the resulting
factor is better by Ω(log logn) or more. Regarding the relation between m and
n, we remark that an arbitrary instance of tollbooth pricing on trees can be
reduced to one with m = O(n). The general idea is that, when the number of
edges is significantly larger than the number of customers, paths can be itera-
tively contracted (see, for instance, [7, Sec. 2.2]).

Technical. We believe that some of the algorithmic tools and analysis meth-
ods, illustrated in Sections 2 and 3, are of independent interest, and may be
applicable in other settings as well. In particular, we have already derived new
approximability bounds for graph orientation problems [12] by synthesizing ideas
such as balanced decompositions, segment guessing, and randomization.

1.2 Related Work

We proceed with a brief discussion on the single-minded unlimited supply pricing
problem, from which the computational setting considered in this paper seems
to have emerged. The input to the former problem consists of m different prod-
ucts, with unlimited supply, and a collection of n single-minded customers, each
of which is interested in purchasing a particular subset (or bundle) of products
subject to an individual budget constraint. The goal is to assign a per-unit price
to each product in a way that maximizes the overall revenue, where again, a cus-
tomer will buy a single unit of each product in her bundle only when its total cost
fits within her budget. This problem was originally introduced by Guruswami
et al. [13], who demonstrated that the single-price policy, where all products
are given identical prices, guarantees an approximation ratio of O(log n+logm)
with respect to the optimal revenue. Later on, Balcan, Blum and Mansour [3] ex-
tended this finding to the setting of customers with general valuation functions.
From a hardness point of view, Demaine, Feige, Hajiaghayi, and Salavatipour [6]
established several inapproximability results under various complexity assump-
tions. In particular, they proved a lower bound of Ω(log n), under a plausible
hardness hypothesis regarding the balanced bipartite independent set problem.

A concurrent line of research focused on computing approximate pricing
schemes in terms of other problem parameters. For instance, when the number
of different products is fixed, Hartline and Koltun [14] showed that an FPTAS
can be devised. In addition, Briest and Krysta [4] suggested an O(logB + log �)
approximation, where B is the maximum number of requests per product and
� is the maximum size of any bundle, as well as a different algorithm, whose
performance guarantee is O(�2). Balcan and Blum [2] improved on this result, to
obtain a ratio of O(�), and demonstrated that the vertex pricing problem (where
� = 2) can be approximated within a factor of 4. Vertex pricing was further stud-
ied in [17,16]. Recently, Cheung and Swamy [5] design an LP-based algorithm for
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a more general model of revenue maximization in a limited supply scenario that
implies an O(logB) approximation for single-minded unlimited supply pricing.

2 The Classification Process

Prior to describing the specifics of our approach in detail, which will inevitably
involve delving into technicalities, it would be instructive to concentrate on the
bigger picture. For this purpose, we begin by pointing out that the performance
guarantee of O(logm/ log logm) is obtained by employing the classify-and-select
paradigm. More specifically, we exploit various structural properties to partition
the collection of customers into O(logm/ log logm) pairwise-disjoint classes. For
each such class, given the additional structure imposed, we separately compute
a pricing scheme whose overall revenue comes within a constant factor of the
optimal revenue attainable from this class. In particular, each class is treated
in a completely independent fashion, as if there are no other classes under con-
sideration. Consequently, since the objective function is subadditive, the above-
mentioned approximation ratio follows by picking, out of the set of all pricing
schemes computed, the one that collects maximal revenue. We proceed by de-
scribing the customer classification process; this exposition will allow us to focus
attention on the more involved single-class problem later on.

2.1 Classifying Customers via Balanced Decompositions

In the following, we give a formal account of the process by which customers are
partitioned into classes. To this end, we begin by introducing the notion of an
almost-balanced decomposition, which can be viewed as a generalization of the
well-known centroid decomposition [10]. Note that structural properties in this
spirit have been explored and exploited in various settings (see, e.g., [9,15]).

Definition 1. Let T = (V,E) be a tree. An almost balanced k-decomposition
of T is a partition of T into k edge-disjoint subtrees T1, . . . , Tk such that each
subtree contains between |E|/(3k) and 3|E|/k edges.

Lemma 1. Let T = (V,E) be a tree with |E| ≥ k. An almost balanced k-
decomposition of T exists and can be found in polynomial time. Moreover, the
number of vertices that are shared by at least two subtrees is less than k.

The classification process corresponds to a recursive decomposition of the input
tree T ; to better understand the upcoming discussion, we advise the reader to
consult Figure 1. Let T1 = {T1, . . . , Tk} be an almost balanced k-decomposition
of T into k edge-disjoint subtrees. The first class of customers, C1, consists of
all customers separated by T1, that is, customers i for which the endpoints of
the desired path Pi (henceforth, si and ti) reside in different subtrees of the
decomposition T1. Now, to classify the remaining set of customers, C \ C1, we
recursively apply the previously-described procedure with respect to the collec-
tion of subtrees in T1. Specifically, in the second level of the recursion, an almost
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s3s1

t2

t3

s5

s2

t4 s4

t5

t1

Fig. 1. A schematic example for the collection of customers separated by an almost
balanced k-decomposition, where each triangle marks a single subtree. Here, customers
1, 2, and 3 are separated, whereas 4 and 5 are not.

balanced k-decomposition is computed in each of the subtrees T1, . . . , Tk, to
obtain a set T2, comprising of k2 subtrees. The second class of customers, C2,
consists of all yet-unclassified customers separated by T2. In other words, the
endpoints of each path Pi, for which i ∈ C2, reside in different subtrees of T2,
but in the same subtree of T1. The remaining classes C3, C4, . . . are defined simi-
larly. It is important to note that the recursive process ends as soon as we arrive
at a subtree with strictly less than k edges. In this case, we make use of the
trivial decomposition, where the given subtree is broken into individual edges.

It is quite obvious that, up until this point in time, k was treated as a param-
eter whose value has not been determined yet. For our purposes, we employ the
above-mentioned classification process with k = $log1/2 m%. With this value of k
at hand, one can easily verify that the overall number of levels in the recursion, or
equivalently, the number of customer classes is O(logk m) = O(logm/ log logm).
This claim is immediately implied by observing that the maximum size of a sub-
tree in level � of the recursion is at most (3/k)� · |E|. As a side note, we remark
that the balanced decomposition property, ensuring that all subtrees are of size
roughly |E|/k, does not play any role from this point on, as its sole purpose was
to restrict the number of classes to O(logm/ log logm).

2.2 Why Handling a Single Decomposition Is Sufficient

We remind the reader that a class of customers, say C�, generally consists of
several subsets of customers, each created when different subtrees in T�−1 are
partitioned by the decomposition T�. More specifically, assuming that the sub-
trees in T�−1 are T1, T2, . . ., the class C� can be written as the disjoint union of
C1
� , C

2
� , . . ., where Cj

� is the set of customers that are first separated when Tj

is partitioned. Notice that the desired path of any customer separated by some
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subtree decomposition must be contained in that subtree, since otherwise, this
customer would have been separated in previous recursion steps. This observa-
tion implies that it is sufficient to compute an approximate pricing scheme for a
single subtree decomposition and its induced set of separated customers. Given a
polynomial-time algorithm that computes such pricing schemes, one can sequen-
tially apply it to each of the subtree decompositions in the same recursion level.
The resulting pricing schemes (in edge-disjoint subtrees) can then be “glued” to
form a single scheme, defined for the entire edge set, collecting at least as much
revenue as the sum of all individual subtree revenues.

3 The Single Decomposition Algorithm

In what follows, we focus our attention on a single decomposition, and devise a
randomized algorithm that computes a pricing scheme whose expected revenue is
within a constant factor of the optimal revenue attainable for this decomposition.
Later on, we will argue that this algorithm can be easily derandomized. Formally,
an instance of the problem in question consists of a tree T = (V,E), and a
partition T = {T1, . . . , Tk} of this tree into k edge-disjoint subtrees, where k ≤
$log1/2 m%, such that the number of vertices shared by at least two subtrees is
less than k. In addition, we are given a collection C of n customers, satisfying
the following properties:

1. Each customer i wishes to purchase a path Pi so long as the overall price of
this path does not exceed the budget bi.

2. Each customer path Pi is separated by T , meaning that the endpoints of Pi

reside in different subtrees of the decomposition T .

3.1 Notation and Terminology

For ease of presentation, it would be convenient to introduce some notation and
terminology before describing the nuts and bolts of our algorithm. To better un-
derstand the suggested notation, we refer the reader to the example in Figure 2.

– Let p∗ : E → R+ be an optimal pricing scheme, with a revenue of OPT.
– Let VB ⊆ V be the set of border vertices of T , that is, the set of vertices

that are shared by at least two subtrees in T . In addition, let S ⊆ T be the
skeleton of T , namely, the minimal subtree spanned by all border vertices.
Note that this subtree consists of the union of paths connecting any two
vertices in VB .

– Now, recall that the endpoints of each customer path Pi reside in different
subtrees of the decomposition T , meaning that Pi must traverse at least one
border vertex. Therefore, we can divide each customer path, with endpoints
si and ti, into three (possibly empty) parts:
1. A subpath between si and its closest skeleton vertex vsi .
2. A subpath between ti and its closest skeleton vertex vti .
3. A subpath between vsi and vti , along the skeleton.
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vti
vsi

si
ti

(b)(a)

T5

T6

T4T3T2T1

Fig. 2. (a) An almost balanced 6-decomposition of a tree with 18 edges. Note that
the black vertices are border vertices, and the heavy edges make up the skeleton S .
(b) Dividing the customer path Pi into three parts.

Based on this definition, let RS
p∗(i), RT

p∗(i), and RM
p∗(i) denote the revenues

obtained in the optimal pricing scheme p∗ from the subpaths of customer i,
respectively1. Clearly, Rp∗(i) = RS

p∗(i) + RT
p∗(i) + RM

p∗ (i).

3.2 The Algorithm

Having all necessary definitions in place, we are now ready to present the specifics
of our pricing algorithm, and to analyze its performance. In the remainder of this
section, we consider two complementing scenarios, depending on the contribution
of different path parts to the revenue generated by the optimal pricing scheme p∗.
Somewhat informally, the first scenario captures a situation where a significant
portion of OPT is gained from customer subpaths traversing non-skeleton edges,
or in other words, when

∑n
i=1(R

S
p∗(i)+RT

p∗(i)) = Ω(1)·OPT. The second scenario
corresponds to a situation where a large portion is delivered by subpaths along
the skeleton, that is, when

∑n
i=1 R

M
p∗ (i) = Ω(1)·OPT. For each of these scenarios,

we compute a pricing scheme whose expected revenue is within a constant factor
of optimal. As a result, we obtain a constant approximation ratio by computing
both pricing schemes and picking the one that achieves the maximum revenue.
For sake of simplicity, we begin by considering the easy-to-handle first scenario,
noting that the second, more challenging scenario, will be discussed in the sequel.

Scenario I:
∑n

i=1(R
S
p∗(i) + RT

p∗(i)) ≥ OPT/2

In the present setting, at least half of the optimal revenue is collected from
customer subpaths consisting of non-skeleton edges, meaning that the collective
contribution of the subpaths Pi \ S, over all customers i, is at least OPT/2.
The algorithmic tool that allows us to handle this scenario is a polynomial-time
procedure, due to Guruswami et al. [13], for solving the single-source tollbooth
problem (on trees) to optimality. Here, the underlying assumption is that all

1 These superscripts stand for: S – subpath adjacent to si; T – subpath adjacent to
ti; and M – middle subpath.
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customer paths share a common endpoint, that is, s1 = · · · = sn. With this tool
at hand, the algorithm proceeds as follows:

1. Each decomposition subtree Tj is randomly and independently marked as
being active, with probability 1/2; otherwise, that tree is inactive.

2. We decide in advance that all skeleton edges, as well as all edges within
inactive trees, could be purchased free of charge, i.e., their price is zero.

3. For each active subtree Tj , let Ej be the collection of customer path endpoints
that reside in Tj; note that each customer contributes at most one endpoint
to this collection2. We now contract all skeleton edges of Tj into a single
root3, designated by r, and apply the single-source algorithm, when the
underlying set of customers are only those with an endpoint in Ej . Each such
customer i is now interested in purchasing the path connecting {si, ti} ∩ Ej
to the root r, still with a budget of bi.

Lemma 2. The computed pricing scheme guarantees an expected revenue of at
least OPT/8.

Scenario II:
∑n

i=1 RM
p∗ (i) ≥ OPT/2

In this setting, at least half of the optimal revenue is collected from customer
subpaths consisting of skeleton edges, meaning that the collective contribution
of the subpaths Pi ∩ S, over all customers i, is at least OPT/2. Our algorithm
begins by first deciding that all non-skeleton edges could be purchased for free,
and sets their price to zero. As a result, we may assume that the endpoints of
each customer path are located on the skeleton, since otherwise, we can relocate
them to their closest skeleton vertices, without any consequences whatsoever.
With this structural alteration in mind, the skeleton pricing is carried out in
two phases: segment guessing, where close estimates of the optimal prices along
disjoint subpaths of the skeleton are obtained, followed by randomized assign-
ment, where prices are associated with individual skeleton edges.
Phase I: segment guessing. We remind the reader that the skeleton S is the
minimal subtree of T spanned by all border vertices VB. We denote by VJ the set
of junction vertices, defined as non-border skeleton vertices with degree at least
3 (counting only skeleton edges); it is not difficult to verify that |VJ | < |VB | < k.
Finally, we call the vertex set VB ∪ VJ the core of the skeleton S. Based on
these definitions, we can partition the skeleton into a collection Σ(S) of edge-
disjoint paths, which are referred to as segments. Each such segment is a subpath
of S whose endpoints are core vertices, but its interior traverses only non-core
vertices. Obviously, |Σ(S)| = |VB |+ |VJ | − 1 < 2k.

In what follows, we argue that one could obtain in polynomial time a close
estimate for the total price p∗(σ) =

∑
e∈σ p

∗(e) of each segment σ ∈ Σ(S),

2 Otherwise, Tj contains her desired path, in contradiction to all customer paths in
question being separated by the decomposition T .

3 That is, skeleton edges are removed, and their endpoints are unified into a represen-
tative vertex.
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simultaneously for all segments. To this end, it is sufficient to prove that there
exists a very small set of prices Γ , and a corresponding pricing scheme pΓ :
E → R+, such that the price given by pΓ to every segment falls within Γ , i.e.,
pΓ (σ) ∈ Γ for each σ ∈ Σ(S), and such that pΓ (σ) approximates p∗(σ) well. At
the same time, we would like to make sure that the overall revenue from customer
subpaths consisting of skeleton edges still forms a fixed portion of

∑n
i=1 R

M
p∗ (i).

A construction of this nature is given in the next lemma.

Lemma 3. Let Γ = {2� · bmax/(4nm) : 0 ≤ � ≤ �log(4nm2)�} ∪ {0}, where
bmax = maxi bi. There is a pricing scheme pΓ : E → R+ that satisfies (i)
pΓ (σ) ∈ Γ for each σ ∈ Σ(S), and (ii)

∑n
i=1 R

M
pΓ

(i) ≥
∑n

i=1 R
M
p∗(i)/4.

By Lemma 3, we conclude that to obtain a close estimate for the total price p∗(σ)
of each segment σ ∈ Σ(S), simultaneously for all segments, the total number of
price assignments to be examined is of polynomial size, since

|Γ ||Σ(S)| =
(
O(log(nm))

)O(k) =
(
O(log(nm))

)O(log1/2 m) = o(nm) .

Consequently, we may assume without loss of generality that the collection of
segment prices {pΓ (σ) : σ ∈ Σ(S)}, given in Lemma 3, is known in advance.
This assumption can be easily enforced by enumerating over all o(nm) possible
assignments. On the other hand, it is worth noting that we do not assume any
knowledge of the edge-specific pricing pΓ : E → R+.
Phase II: randomized assignment. The goal of this phase is to complete the
pricing scheme by assigning carefully-picked random prices to individual skeleton
edges, based on the estimated segment prices {pΓ (σ) : σ ∈ Σ(S)}. The crux lies
in making sure that the edge-specific prices always respect the outcome of the
segment guessing phase, as stated in the next invariant.

Invariant 1. With probability 1, the total price of each segment σ ∈ Σ(S) is
exactly pΓ (σ).

Our assignment procedure consists of independent steps, where segments are
processed one after the other. In each step, we consider a skeleton segment
σ = 〈v1, . . . , v�〉, and assign prices to its edges (v1, v2), . . . , (v�−1, v�) in a way
that satisfies Invariant 1. Specifically, as illustrated in Figure 3(a), we pick one
of the following four price assignments uniformly at random:

1. Assign a price of pΓ (σ) to (v1, v2), and zero prices to the remaining edges.
2. Assign a price of pΓ (σ) to (v�−1, v�), and zero prices to the remaining edges.
3. Assign prices based on a v1-rooted single-source problem (see below).
4. Assign prices based on a v�-rooted single-source problem (similar to item 3).

To complete the description of our algorithm, it remains to explain how the
single-source instances (in items 3 and 4) are created and solved; for brevity of
presentation, we focus on the v1-rooted case, noting that the opposite case is
identical, up to changing the roles of v1 and v�. Once again, we will employ the
dynamic-programming algorithm of Guruswami et al. [13] for solving the single-
source tollbooth problem on trees, a tool that was introduced in Scenario I. In
particular, the v1-rooted instance is comprised of the following components:
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– The underlying graph is the segment σ.
– The set of customers are those with an endpoint in {v2, . . . , v�−1}, whose

desired path exits the segment σ through v1.
– For each customer i under consideration, we set up a new endpoint at v1,

instead of the one outside σ, and change her budget to min{pΓ (σ), bi −∑
σ̄:σ̄⊆Pi

pΓ (σ̄)}. Note that the latter term is exactly the budget remaining
to purchase Pi, assuming that a total price of pΓ (σ̄) has already been paid
for each segment σ̄ ∈ Σ(S) that is fully-contained in Pi.

Needless to say, the single-source algorithm does not set a price for the edge
(v�−1, v�), as it is not contained in any desired path of the v1-rooted instance.
Hence, to ensure that Invariant 1 holds, we set the price of (v�−1, v�) to be the
difference between the total segment price pΓ (σ) and the total newly-computed
price of (v1, v2), . . . , (v�−2, v�−1). Here, it is important to point out that this dif-
ference is indeed non-negative, since the dynamic-programming algorithm guar-
antees that the price of each subpath 〈v1, . . . , vj〉 is equal to the budget of some
customer whose desired path is contained in 〈v1, . . . , vj〉 (see [13, Thm. 5.3]); on
the other hand, the budget of every customer cannot exceed pΓ (σ), by definition.
Analysis. The remainder of this section is devoted to proving that the expected
revenue of the pricing scheme computed in the randomized assignment phase is
within a constant factor of optimal, as formally stated in the following lemma.
Lemma 4. The pricing scheme constructed in the randomized assignment phase
guarantees an expected revenue of at least OPT/256.

Recall that we have previously assumed the endpoints of each customer path Pi

to be located on the skeleton. Moreover, since these endpoints reside in different
subtrees of the decomposition T , the path Pi must traverse at least one border
vertex. For this reason, as shown in Figure 3(b), we can divide each customer
path, with endpoints si and ti, into three (possibly empty) parts:

1. A subpath, along partial segment, between si and its closest core vertex usi .
2. A subpath, along partial segment, between ti and its closest core vertex uti .
3. A subpath between usi and uti , along a sequence of complete segments.

(a)

assignment 4:

assignment 3:

assignment 2:

(b)

assignment 1:

pΓ (σ)0 0 0

pΓ (σ) 0 0 0

v�v�−1v�−2v3v2v1

v�v�−1v�−2v3

v�v�−1v�−2v3v2v1

customers leaving through v1

v2

v1 v2 v3 v�−2 v�−1 v�

customers leaving through v�

v1

ūti

ti

uti

si

usi

ūsi

Fig. 3. (a) A schematic description of the four random assignments for the segment σ.
Here, core vertices are marked in black. (b) The new customer path partition.
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With these definitions in mind, let RS̃
pΓ

(i), RT̃
pΓ

(i), and RM̃
pΓ

(i) be the revenues
obtained in the estimated pricing scheme pΓ from the subpaths of customer i,
respectively. We remark that pΓ is the pricing scheme whose existence has been
established in Lemma 3. Note that, by item (ii) of this lemma, we can bound the
sum of the above-mentioned revenues, over all customers, in terms of OPT, since

n∑
i=1

(
RS̃

pΓ
(i) + RT̃

pΓ
(i) + RM̃

pΓ
(i)
)

=
n∑

i=1

RM
pΓ

(i) ≥ 1
4

n∑
i=1

RM
p∗ (i) ≥ OPT

8
.

In what follows, we consider two cases, depending on the contribution of different
path parts to the revenue generated by the pricing scheme pΓ . For each of these
cases, we show that the randomized assignment phase computes a pricing scheme
whose expected revenue is within a constant factor of optimal.

Case I:
∑n

i=1 RM̃
pΓ

(i) ≥ OPT/16. In this setting, a significant fraction of
the optimal revenue is collected from customer subpaths consisting of complete
segments, meaning that the collective contribution of the paths usi � uti ,
over all customers i, is at least OPT/16. Notice that, by Invariant 1, our pricing
scheme always assigns a total price of pΓ (σ) to each segment σ ∈ Σ(S), implying
that the overall price of usi � uti is exactly RM̃

pΓ
(i). Therefore, the revenue

from customer i is at least RM̃
pΓ

(i), unless the total price of the remaining partial
segments si � usi and ti � uti exceeds the residual budget, bi − RM̃

pΓ
(i).

We next argue that, with probability at least 1/16, all edges on these partial
segments will be given zero prices. Consequently, the expected revenue from
customer i is at least RM̃

pΓ
(i)/16, and by linearity of expectation, the overall

expected revenue is no less than
∑n

i=1 R
M̃
pΓ

(i)/16 ≥ OPT/256.
For the purpose of establishing the previously mentioned claim, we will show

that, with probability at least 1/4, each and every edge on si� usi is assigned
a zero price. The claim then follows by observing that an identical property with
respect to ti � uti can be proven along the same lines, and also, that the two
events are independent. Now, notice that if si is a core vertex then the claim
trivially holds, since si � usi is empty. Hence, let us consider the case where
si is an internal vertex on the segment between the core vertices usi and ūsi . In
this case, with probability 1/4, our algorithm assigns a price of zero to all edges
in this segment, except for the edge adjacent to ūsi ; in particular, all edges on
si� usi are assigned zero prices.

Case II:
∑n

i=1(R
S̃
pΓ

(i) + RT̃
pΓ

(i)) ≥ OPT/16. The analysis here is somewhat
more involved, and we provide further details in [11].

3.3 Derandomization

The avid reader may already have noticed that the extent to which we utilize
randomization is rather limited. More specifically, in Scenario I each subtree in
the decomposition is randomly marked as being active or inactive, whereas in
Scenario II one of four possible price assignments is picked at random for each
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segment. In other words, all we need to obtain a deterministic algorithm are
two uniform sample spaces, with O(1) possible values for O(log1/2 m) random
variables. These can be constructed in polynomial time either explicitly, as there
are only O(mO(1)) outcomes to examine, or in a more compact way, by observing
that nothing more than pairwise-independence (see, for instance, [1, Chap. 15])
is required for the preceding analysis.
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Abstract. We show that for every positive ε > 0, unless NP ⊂ BPQP,
it is impossible to approximate the maximum quadratic assignment prob-
lem within a factor better than 2log1−ε n by a reduction from the max-
imum label cover problem. Then, we present an O(

√
n)-approximation

algorithm for the problem based on rounding of the linear programming
relaxation often used in the state of the art exact algorithms.

1 Introduction

In this paper we consider the Quadratic Assignment Problem. An instance of
the problem, Γ = (G,H) is specified by two weighted graphs G = (VG, wG)
and H = (VH , wH) such that |VG| = |VH | (we denote n = |VG|). The set of
feasible solutions consists of bijections from VG to VH . For a given bijection ϕ
the objective function is

valueQAP(Γ, ϕ) =
∑

(u,v)∈VG×VG

wG(u, v)wH(ϕ(u), ϕ(v)). (1)

There are two variants of the problem the Minimum Quadratic Assignment
Problem and the Maximum Quadratic Assignment Problem (MaxQAP) where
the objective function (1) should be minimized or maximized respectively. The
problem was first defined by Koopmans and Beckman [21] and sometimes this
formulation of the problem is referred to as Koopmans-Beckman formulation of
the Quadratic Assignment Problem. Both variants of the problem model an as-
tonishingly large number of combinatorial optimization problems such as trav-
eling salesman, maximum acyclic subgraph, densest subgraph and clustering
problems to name a few. It also generalizes many practical problems that arise
in various areas such as modeling of backboard wiring [29], campus and hos-
pital layout [13,15], scheduling [18] and many others [14,23]. The surveys and
books [2,9,11,10,24,25] contain an in-depth treatment of special cases and various
applications of the Quadratic Assignment Problem.
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The Quadratic Assignment Problem is an extremely difficult optimization
problem. The state of the art exact algorithms can solve instances with approx-
imately 30 vertices, so a lot of research effort was concentrated on constructing
good heuristics and relaxations of the problem.

Previous Results. The Minimum Quadratic Assignment Problem is known
to be hard to approximate even under some very restrictive conditions on the
weights of graphsG and H [28,19]. Polynomial time exact [11] and approximation
algorithms [19] are known for very specialized instances.

In contrast,MaxQAP seem to be more tractable:O(
√
n log2 n)-approximation

algorithm was constructed by Nagarajan and Sviridenko [22] by utilizing approx-
imation algorithms for the minimum vertex cover, densest k-subgraph and star
packing problems. For the special case when one of the edge weight functions (wG

or wH) satisfy the triangle inequality there are combinatorial 4-approximation [3]
and LP-based 3.16-approximation algorithms [22]. Another tractable special case
is the so-called dense Quadratic Assignment Problem [4] this special case admits
a sub-exponential time approximation scheme and in some cases it could be imple-
mented in polynomial time [4,17]. On the negative side, APX-hardness of
MaxQAP is implied by the APX-hardness of its special cases, e.g. TravelingSales-
man Problem with Distances One and Two [26].

An interesting special case of MaxQAP is the Densest k-Subgraph Problem.
The best known algorithm by Bhaskara, Charikar, Chlamtac, Feige, and Vija-
yaraghavan [8] gives a O(n1/4) approximation. However, the problem is not even
known to be APX-hard (under standard complexity assumptions). Feige [16]
showed that the Densest k-Subgraph Problem does not admit a ρ-approximation
(for some universal constant ρ > 1) assuming that random 3-SAT formulas are
hard to refute. Khot [20] ruled out PTAS for the problem under the assumption
that NP does not have randomized algorithms that run in sub-exponential time.

Our Results. Our first result is the first superconstant non-approximability for
MaxQAP. We show that for every positive ε > 0, unless NP ⊂ BPQP (BPQP
is the class of problems solvable in randomized quasi-polynomial time), it is
impossible to approximate the maximum quadratic assignment problem with the
approximation factor better than 2log1−ε n. Particularly, there is no polynomial
time poly-logarithmic approximation algorithms for MaxQAP under the above
complexity assumption. It is an interesting open question if our techniques can
be used to obtain a similar result for the Densest k-Subgraph Problem.

Our second result is an O(
√
n)-approximation algorithm based on rounding

of the optimal solution of the linear programming relaxation. The LP relaxation
was first considered by Adams and Johnson [1] in 1994. As a consequence of
our result we obtain a bound of O(

√
n) on the integrality gap of this relaxation

that almost matches a lower bound of Ω(
√
n/ logn) of Nagarajan and Sviri-

denko [22]. Note, that the previous O(
√
n log2 n)-approximation algorithm [22]

was not based on the linear programming relaxation, and therefore no non-trivial
upper bound on the integrality gap of the LP was known.
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2 Preliminaries

A weighted graph G = (V,w) is specified by a vertex set V along with a weight
function w : V × V → R such that for every u, v ∈ V , w(u, v) = w(v, u) and
w(u, v) ≥ 0. An edge e = (u, v) is said to be present in the graph G if w(u, v) is
non-zero.

We prove the inapproximability of the MaxQAP problem via an approxima-
tion preserving poly-time randomized reduction from the Label Cover problem.

Definition 1 (Label Cover Problem).
An instance of the label cover problem represented as Υ = (G = (VG, EG), π, [k])

consists of a graph G on VG with edge set EG along with a set of labels [k] =
{0, 1, . . . k− 1}. For each edge (u, v) ∈ EG, there is a constraint πuv, a subset of
[k]× [k] defining the set of accepted labelings for the end points of the edge. The
goal is to find a labeling of the vertices, Λ : VG → [k] maximizing the total frac-
tion of the edge constraints satisfied. We will denote the optimum of a instance
Υ by OPTLC(Υ ). In other words,

OPTLC(Υ ) def= max
Λ:VG→[k]

1
|EG|

∑
(u,v)∈E

I((Λ(u), Λ(v)) ∈ πuv)

We will denote the fraction of edges satisfied by a labeling Λ by valueLC(Υ,Λ).

3 Hardness of Approximation

The PCP theorem [6,7], along with the Raz parallel repetition theorem [27]
shows that the label cover problem is hard to approximate within a factor of
2log1−ε n.

Theorem 1 (see e.g., Arora and Lund [5]).If NP �⊂ QP, then for every
positive ε > 0, it is not possible to distinguish satisfiable instances of the label
cover problem from instances with optimum at most 2− log1−ε n in polynomial
time.

We will show an approximation preserving reduction from a label cover instance
to a MaxQAP instance such that: if the label cover instance Υ is completely
satisfiable, the MaxQAP instance Γ with have optimum 1; on the other hand,
if OPTLC(Υ ) is at most δ, then no bijection ϕ obtains a value greater than O(δ).

Strictly speaking, the problem is not well defined when the graphs G and H
do not have the same number of vertices. However, in our reduction, we will
relax this condition by letting G have fewer vertices than H , and allowing the
map ϕ to be only injective (i.e., ϕ(u) �= ϕ(v), for u �= v). The reason is that we
can always add enough isolated vertices to G to satisfy |VG| = |VH |. We also
assume that the graphs are unweighted, and thus given an instance Γ consisting
of two graphs G = (VG, EG) and H = (VH , EH), the goal is to find an injective
map ϕ : VG → VH , so as maximize
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valueQAP(Γ, ϕ) =
∑

(u,v)∈EG

I((ϕ(u), ϕ(v)) ∈ EH),

here I(·) denotes the indicator function. We denote the optimum by OPTQAP(Γ ).
Informally, our reduction does the following. Given an instance Υ = (G =

(VG, EG), π, [k]) of the label cover problem, consider the label extended graph H
on VG × [k] with edges ((u, i)− (v, j)) for every (u, v) ∈ EG and every accepting
label pair (i, j) ∈ πuv. Every labeling Λ for Υ naturally defines a injective map,
ϕ between VG and VG × [k]: ϕ(u) = (u, Λ(u)). Note that ϕ maps edges satisfied
by Λ onto edges of H . Conversely, given a injection ϕ : VG → VG × [k] such
that ϕ(u) ∈ {u} × [k] for every u ∈ VG, we can construct a labeling Λ for Υ
satisfying exactly the constraint edges in G which were mapped on to edges of
H . However, the additional restriction on the injection is crucial for the converse
to hold: an arbitrary injective map might not correspond to any labeling of the
label cover Υ .

To overcome the above shortcoming, we modify the graphs G and H as follows.
We replace each vertex u in G with a “cloud” of vertices {(u, i) : i ∈ [N ]} and
each vertex (u, x) in H with a cloud of vertices {(u, x, i) : i ∈ [N ]}, each index i

is from a significantly large set [N ]. Call the new graphs G̃ and H̃ respectively.
For every edge (u, v) ∈ EG, the corresponding clouds in G̃ are connected by a

random bipartite graph where each edge occurs with probability α. We do this
independently for each edge in EG. For every accepting pair (x, y) ∈ πuv, we
copy the “pattern” between the clouds (u, x, �) and (v, y, �) in H̃ .

Note, that every solution of the label cover problem u 	→ Λ(u) corresponds
to the map (u, i) 	→ (u, Λ(u), i) which maps every “satisfied” edge of G̃ to an
edge of H̃. The key observation now is that, we may assume that every (u, i) is
mapped to some (u, x, i), since, loosely speaking, the pattern of edges between
(u, �) and (v, �) is unique for each edge (u, v): there is no way to map the cloud
of u to the cloud of u′ and the cloud of v to the cloud of v′ (unless u = u′ and
v = v′), so that more than an α fraction of the edges of one cloud are mapped
on edges of the other cloud. We will make the above discussion formal in the
rest of this section.

Hardness Reduction
Input: A label cover instance Υ = (G = (VG, EG), π, [k]).

Output: A MaxQAP instance Γ = (G̃, H̃); G̃ = (VG̃, EG̃), H̃ = (VH̃ , EH̃).
Parameters: Let N be an integer bigger than n4|EG|k5 and α = 1/n.

– Define VG̃ = VG × [N ] and VH̃ = VG × [k]× [N ].
– For every edge (u, v) of G pick a random set of pairs Euv ⊂ [N ]× [N ]. Each

pair (i, j) ∈ [N ] × [N ] belongs to Euv with probability α. The probabilities
are chosen independently of each other.

– For every edge (u, v) of G and every pair (i, j) in Euv, add an edge ((u, i),
(v, j)) to G̃. Then

EG̃ = {((u, i), (v, j)) : (u, v) ∈ EG and (i, j) ∈ Euv}.
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– For every edge (u, v) of G, every pair (i, j) in Euv, and every pair (x, y) in
πuv, add an edge ((u, x, i), (v, y, j)) to H̃ . Then

EH̃ = {((u, x, i), (v, y, j)) : (u, v) ∈ EG, (i, j) ∈ Euv and (x, y) ∈ πuv}.

It is easy to see that the reduction runs in polynomial time. The size of the
instance produced is nN2k. In our reduction, both k and N are polynomial in n.

We will now show that the reduction is in fact approximation preserving
with high probability. In the rest of the section, we will assume Γ = (G̃, H̃) is
a MaxQAP instance obtained from a label cover instance Υ using the above
reduction with parameteres N and α. Note that Γ is a random variable.

We will first show that if the label cover instance has a good labeling, the
MaxQAP instance output by the above reduction has a large optimum. The
following claim, which follows from a simple concentration inequality, shows that
the graph G̃ has, in fact, as many edges as expected.

Claim 1. With high probability, G̃ contains at least α|EG|N2/2 edges.

Lemma 1 (Completeness). Let Υ be a satisfiable instance of the Label Cover
Problem. Then there exists a map of G̃ to H̃ that maps every edge of G̃ to an
edge of H̃. Thus, OPTQAP(Γ ) = |EG̃|.

Proof. Let u 	→ Λ(u) be the solution of the label cover that satisfies all con-
strains. Define the map ϕ : VG̃ → VH̃ as follows ϕ(u, i) = (u, Λ(u), i). Suppose
that ((u, i), (v, j)) is an edge in G̃. Then (u, v) ∈ EG and (i, j) ∈ πuv. Since
the constraint between u and v is satisfied in the instance of the label cover,
(Λ(u), Λ(v)) ∈ πuv. Thus, ((u, Λ(u), i), (v, Λ(v), j)) ∈ EH̃ .

Next, we will bound the optimum of Γ in terms of the value of the label cover
instance Υ . We do this in two steps. We will first show that for a fixed map ϕ
from VG̃ to VH̃ the expected value of Γ can be bounded as a function of the
optimum of Υ . Note that this is well defined as VG̃ and VH̃ are determined by
Υ and N (and independent of the randomness used by the reduction). Next, we
show that the value is, in fact, tightly concentrated around the expected value.
Then, we do a simple union bound over all possible ϕ to obtain the desired
result. We prove the statements below in the full version of the paper.

Lemma 2. For every fixed injective map ϕ : VG̃ → VH̃ ,

Pr
{
valueQAP(Γ, ϕ) − E [valueQAP(Γ, ϕ)] ≥ αN2} ≤ e−n2Nk.

Corollary 1 (Soundness). With high probability, the reduction outputs an in-
stance Γ such that

OPTQAP(Γ ) ≤ α|EG|N2 × (OPTLC(Υ ) + 2α)
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Theorem 2. For every positive ε > 0, there is no polynomial time approxima-
tion algorithm for the Maximum Quadratic Assignment problem with the approx-
imation factor less than D = 2log1−ε n (where n is the number of vertices in the
graph) unless NP ⊂ BPQP.

4 LP Relaxation and Approximation Algorithm

We now present a new O(
√
n) approximation algorithm slightly improving on

the result of Nagarajan and Sviridenko [22]. The new algorithm is surprisingly
simple. It is based on a rounding of a natural LP relaxation. The LP relaxation
is due to Adams and Johnson [1]. Thus we show that the integrality gap of the
LP is O(

√
n).

Consider the following integer program. We have assignment variables xup
between vertices of the two graphs that are indicator variables of the events “u
maps to p”, and variables yupvq that are indicator variables of the events “u
maps to p and v maps to q”. The LP relaxation is obtained by dropping the
integrality condition on variables.

LP Relaxation

max
∑

u,v∈VG
p,q∈VH

wG(u, v)wH(p, q)yupvq

∑
p∈VH

xup = 1, for all u ∈ VG;∑
u∈VG

xup = 1, for all p ∈ VH ;∑
u∈VG

yupvq = xvq, for all u ∈ VG, p, q ∈ VH ;∑
p∈VH

yupvq = xvq, for all u, v ∈ VG, q ∈ VH ;
yupvq = yvqup, for all u, v ∈ VG, p, q ∈ VH ;
xup ∈ [0, 1], for all u ∈ VG, p ∈ VH ;
yupvq ∈ [0, 1], for all u ∈ VG, p ∈ VH .

Approximation Algorithm

1. We solve the LP relaxation and obtain an optimal solution (x∗, y∗). Then
we pick random subsets of vertices LG ⊂ VG and LH ⊂ VH of size �n/2�.
Let RG = VG \LG and RH = VH \LH . In the rest of the algorithm, we will
care only about edges going from LG to RG and from LH to RH ; and we
will ignore edges that completely lie in LG, RG, LH or RH .

2. For every vertex u in the set LG, we pick a vertex p in LH with probability
x∗up and set ϕ̃(u) = p (recall that

∑
p x
∗
up = 1, for all u; with probability

1 −
∑

p∈LH
x∗up we do not choose any vertex for u). Then for every vertex

p ∈ LH , which is chosen by at least one element u, we pick one of these u’s
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uniformly at random; and set ϕ(u) = p (in other words, we choose a random
u ∈ ϕ̃−1(p) and set ϕ(u) = p). Let L̃G ⊂ LG be the set of all chosen u’s.

3. We now find a permutation ψ : RG → RH so as to maximize the contribution
we get from edges from L̃G to RG i.e., to maximize the sum∑

u∈L̃G
v∈RG

wG(u, v)wH(ϕ(u), ψ(v)).

This can be done, since the problem is equivalent to the maximum matching
problem between the sets RG and RH where the weight of the edge from v
to q equals ∑

u∈L̃G

wG(u, v)wH(ϕ(u), q).

4. Output the mapping ϕ for vertices in L̃G, mapping ψ for vertices in RG, and
an arbitrary mapping for vertices in LG \ L̃G, consistent with ϕ and ψ.

Remark 1. In the full version of the paper we also give a de-randomized version
of the algorithm.

4.1 Analysis of the Algorithm

Theorem 3. The approximation ratio of the algorithm is O(
√
n).

While the algorithm is really simple, the analysis is more involved. Let LP ∗

be the value of the LP solution. To prove that the algorithm gives O(
√
n)-

approximation, it suffices to show that

E

⎡⎢⎣ ∑
u∈LG
v∈RG

wG(u, v)wH(ϕ(u), ψ(v))

⎤⎥⎦ ≥ LP ∗

O(
√
n)

. (2)

We split all edges of graph G into two sets: heavy edges and light edges. For
each vertex u ∈ VG, let Wu be the set of

√
n vertices v ∈ VG with the largest

weight wG(u, v). Then, LP ∗ =∑
u∈VG

v∈VG\Wu

∑
p,q∈VH

y∗upvqwG(u, v)wH(p, q) +
∑
u∈VG
v∈Wu

∑
p,q∈VH

y∗upvqwG(u, v)wH(p, q).

Denote the first term by LP ∗I and the second by LP ∗II . Instead of working
with ψ, we explicitly define two new bijective maps νI and νII from RG

to RH and prove, that E

[∑
u∈L̃G
v∈RG

wG(u, v)wH(ϕ(u), νI(v))

]
≥ LP∗

I

O(
√
n) and
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E

[∑
u∈L̃G
v∈RG

wG(u, v)wH(ϕ(u), νII(v))

]
≥ LP∗

II

O(
√
n) . These two inequalities imply

the bound we need, since the sum (2) is greater than or equal to each of the
sums above.

The first map νI is a random permutation between RG and RH . Observe,
that given subsets LG and LH , the events {ϕ̃(u) = p} are mutually independent
for different u’s and the expected size of ϕ̃−1(p) is at most 1, here ϕ̃−1(p) is
the preimage of p (recall the map ϕ̃ may have collisions, and hence ϕ̃−1(p) may
contain more than one element). Thus (we give the details in the full version),

Pr {ϕ(u) = p | LG, LH} ≥
{
x∗up/2, if u ∈ LG and p ∈ LH ;
0, otherwise.

For every u, v ∈ VG and p, q ∈ VH , let Eupvq be the event {u ∈ LG, v ∈ RG, p ∈
LH , q ∈ RH}. Then, Pr {Eupvq} = Pr{u ∈ LG, v ∈ RG, p ∈ LH , q ∈ RH} = 1

16 −
o(1). Thus, the probability that ϕ(u) = p and νI(u) = q is Ω(x∗up/n). We have

E
∑
u∈LG
v∈RG

wG(u, v)wH(ϕ(u), νI(v))

≥ Ω(1)×
∑

u,v∈VG

∑
p,q∈VH

x∗up
n

wG(u, v)wH(p, q)

≥ Ω(1)×
∑

p,q∈VH

wH(p, q)
∑
u∈VG

x∗up
∑

v∈Wu

wG(u, v)
n

≥ Ω(1)×
∑

p,q∈VH

wH(p, q)
∑
u∈VG

x∗up
min{wG(u, v) : v ∈ Wu}√

n
.

On the other hand,

LP ∗I =
∑

p,q∈VH

wH(p, q)
∑
u∈VG

x∗up

⎛⎝ ∑
v∈VG\Wu

y∗upvq
x∗up

wG(u, v)

⎞⎠
≤

∑
p,q∈VH

wH(p, q)
∑
u∈VG

x∗up max{wG(u, v) : v ∈ VG \Wu}

≤
∑

p,q∈VH

wH(p, q)
∑
u∈VG

x∗up min{wG(u, v) : v ∈ Wu}.

We now define νII . For every v ∈ VG, let

l(v) = argmaxu∈VG

⎧⎨⎩ ∑
p,q∈VH

wG(u, v)wH(p, q)yupvq

⎫⎬⎭ .
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We say that (l(v), v) is a heavy edge. For every u ∈ LG, let Ru =
{v ∈ RG : l(v) = u}. All sets Ru are disjoint subsets of RG. We now define a
map ν̃II : Ru → RH independently for each Ru for which ϕ̃(u) is defined (even

if ϕ(u) is not defined). For every v ∈ Ru, and q ∈ RH , define zvq =
y∗

uϕ̃(u)vq

x∗
uϕ̃(u)

.

Observe, that
∑

v∈Ru
zvq ≤ 1 for each q ∈ RH and

∑
q∈RH

zvq ≤ 1 for each
v ∈ Ru. Hence, for a fixed Ru, the vector (zvq : v ∈ Ru, q ∈ RH) lies in the con-
vex hull of integral partial matchings between Ru and RH . Thus, the fractional
matching (zvq : v ∈ Ru, q ∈ RH) can be represented as a convex combination of
integral partial matchings. Pick one of them with the probability proportional
to its weight in the convex combination. Call this matching ν̃uII . Note, that ν̃uII
is injective and that the supports of ν̃u

′
II and ν̃u

′′
II do not intersect if u′ �= u′′

(since Ru′ ∩ Ru′′ = ∅). Let ν̃II be the union of ν̃uII for all u ∈ LG. The partial
map ν̃II may not be injective and may map several vertices of RG to the same
vertex q. Thus, for every q in the image of RG, we pick uniformly at random one
preimage v and set νII(v) = q. We define νII on the rest of RG arbitrarily. In
the full version of the paper, we show that

E
∑
u∈LG
v∈RG

wG(u, v)wH(ϕ(u), νII(v))

≥ 1
4

ELG,LH

⎡⎢⎢⎣ ∑
v∈RG:l(v)∈LG

∑
p∈LH

q∈RH

y∗l(v)pvq wG(u, v)wH(p, q)

⎤⎥⎥⎦

=
1

64 + o(1)

∑
v∈VG

∑
p,q∈VH

y∗l(v)pvq wG(l(v), v)wH(p, q)

=
1

64 + o(1)

∑
v∈VG

max
u∈VG

⎧⎨⎩ ∑
p,q∈VH

y∗upvq wG(u, v)wH(p, q)

⎫⎬⎭
≥ 1

64 + o(1)

∑
v∈VG

1
|Wv|

∑
u∈Wv

∑
p,q∈VH

y∗upvq wG(u, v)wH(p, q)

=
1

64 + o(1)
× LP ∗II
$
√
n % .

This finishes the proof.
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Abstract. The mode of a multiset of labels, is a label that occurs at
least as often as any other label. The input to the range mode problem is
an array A of size n. A range query [i, j] must return the mode of the sub-
array A[i], A[i + 1], . . . , A[j]. We prove that any data structure that uses
S memory cells of w bits needs Ω( log n

log(Sw/n)
) time to answer a range mode

query. Secondly, we consider the related range k-frequency problem. The
input to this problem is an array A of size n, and a query [i, j] must
return whether there exists a label that occurs precisely k times in the
subarray A[i], A[i+1], . . . , A[j]. We show that for any constant k > 1, this
problem is equivalent to 2D orthogonal rectangle stabbing, and that for
k = 1 this is no harder than four-sided 3D orthogonal range emptiness.
Finally, we consider approximate range mode queries. A c-approximate
range mode query must return a label that occurs at least 1/c times that
of the mode. We describe a linear space data structure that supports
3-approximate range mode queries in constant time, and a data struc-
ture that uses O(n

ε
) space and supports (1 + ε)-approximation queries

in O(log 1
ε
) time.

1 Introduction

In this paper we consider the range mode problem, the range k-frequency prob-
lem, and the c-approximate range mode problem. The frequency of a label l in
a multiset S of labels, is the number of occurrences of l in S. The mode of S is
the most frequent label in S. In case of ties, any of the most frequent labels in
S can be designated the mode.

For all the problems we consider the input is an array A of length n containing
labels. For simplicity we assume that each label is an integer between one and n.
In the range mode problem, we must preprocess A into a data structure that
given indices i and j, 1 ≤ i ≤ j ≤ n, returns the mode, Mi,j , in the subarray
A[i, j] = A[i], A[i + 1], . . . , A[j]. We let Fi,j denote the frequency of Mi,j in
A[i, j]. In the c-approximate range mode problem, a query is given indices i
and j, 1 ≤ i ≤ j ≤ n, and returns a label that has a frequency of at least Fi,j/c.

� Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.
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In the range k-frequency problem, a query is given indices i and j, 1 ≤ i ≤ j ≤ n,
and returns whether there is a label occurring exactly k times in A[i, j].

For the upper bounds we consider the unit cost RAM with word size w =
Θ(log n). For lower bounds we consider the cell probe model of Yao [1]. In this
model of computation a random access memory is divided into cells of w bits.
The complexity of an algorithm is the number of memory cells the algorithm
accesses. All other computations are free.

Previous Results. The first data structure supporting range mode queries in con-
stant time was developed in [2], and this data structure uses O(n2 log logn/ logn)
space. This was subsequently improved to O(n2/ logn) space in [3] and finally to
O(n2 log logn/ log2 n) in [4]. For non-constant query time, the first data struc-
ture developed uses O(n2−2ε) space and answers queries in O(nε logn) time,
where 0 < ε ≤ 1

2 is a query-space tradeoff constant [2]. The query time was later
improved to O(nε) without changing the space bound [3].

Given the rather large bounds for the range mode problem, the approximate
variant of the problem was considered in [5]. With constant query time, they solve
2-approximate range mode with O(n logn) space, 3-approximate range mode
with O(n log logn) space, and 4-approximate range mode with linear space. For
(1 + ε)-approximate range mode, they describe a data structure that uses O(nε )
space and answers queries in O(log log(1+ε) n) = O(log logn + log 1

ε ) time. This
data structure gives a linear space solution with O(log logn) query time for c-
approximate range mode when c is constant. There are no known non-trivial
lower bounds for the any of the problems we consider.

Our Results. In this paper we show the first lower bounds for range mode data
structures and range k-frequency data structures and provide new upper bounds
for the c-approximate range mode problem and the range k-frequency problem.

In Section 2 we prove our lower bound for range mode data structures. Specif-
ically, we prove that any data structure that uses S cells and supports range
mode queries must have a query time of Ω( log n

log(Sw/n) ). This means that any data
structure that uses O(n logO(1) n) space needs Ω(logn/ log logn) time to answer
a range mode query. Similarly, any data structure that supports range mode
queries in constant time needs n1+Ω(1) space.

We suspect that the actual lower bound for near-linear space data structures
for the range mode problem is significantly larger. However a fundamental ob-
stacle in the cell probe model is to prove lower bounds for static data structures
that are higher than the number of bits needed to describe the query. The highest
known lower bounds are achieved by the techniques in [6,7] that uses reductions
from problems in communication complexity. We use this technique to obtain
our lower bound and our bound matches the highest lower bound achieved with
this technique.

Actually our construction proves the same lower bound for queries on the form,
is there an element with frequency at least (or precisely) k in A[i, j], where k is
given at query time. In the scenario where k is fixed for all queries it is trivial
to give a linear space data structure with constant query time for determining
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whether there is an element with frequency at least k. In Section 3 we consider
the case of determining whether there is an element with frequency exactly k,
which we denote the range k-frequency problem. To the best of our knowledge,
we are the first to consider this problem. We show that 2D rectangle stabbing
reduces to range k-frequency for any constant k > 1. This reduction proves
that any data structure that uses S space, needs Ω(log n/ log(Sw/n)) time for
a query [7,8], for any constant k > 1. Secondly, we reduce range k-frequency
to 2D rectangle stabbing. This reduction works for any k. This immediately
gives a data structure for range k-frequency that uses linear space, and answers
queries in optimal O(log n/ log logn) time [9] (we note that 2D rectangle stabbing
reduces to 2D range counting). In the restricted case where k = 1, this problem
corresponds to determining whether there is a unique label in a subarray. The
reduction from 2D rectangle stabbing only applies for k > 1. We show, somewhat
surprisingly, that determining whether there is a label occurring exactly twice (or
k > 1 times) in a subarray, is exponentially harder than determining if there is
a label occurring exactly once. Specifically, we reduce range 1-frequency to four-
sided 3D orthogonal range emptiness, which can be solved with O(log2 logn)
query time and O(n logn) space by a slight modification of the data structure
presented in [10].

In Section 4 we present a simple data structure for the 3-approximate range
mode problem. The data structure uses linear space and answers queries in
constant time. This improves the best previous 3-approximate range mode data
structures by a factor O(log logn) either in space or query time. With linear
space and constant query time, the best previous approximation factor was 4.
In Section 5 we use our 3-approximate range mode data structure, to develop
a data structure for (1 + ε)-approximate range mode. This data structure uses
O(nε ) space and answers queries in O(log 1

ε ) time. This removes the dependency
on n in the query time compared to the previously best data structure, while
matching the space bound. Thus, we have a linear space data structure with
constant query time for the c-approximate range mode problem for any constant
c > 1. We note that we get the same bound if we build on the 4-approximate
range mode data structure from [5].

2 Cell Probe Lower Bound for Range Mode

In this section we show a query lower bound of Ω(logn/ log(Sw/n)) for any range
mode data structure that uses S space for an input array of size n. The lower
bound is proved for the slightly different problem of determining the frequency
of the mode. Since the frequency of an element in any range can be determined
in O(log logn) time by a linear space data structure the lower bound for range
mode follows. This data structure stores a linear space static rank data struc-
ture [11] for each label � in the input, containing the positions in A storing �.
The frequency of a label in A[i, j] is the rank difference between i− 1 and j.

Communication Complexity and Lower Bounds. In communication complexity
we have two players Alice and Bob. Alice receives as input a bit string x and
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Bob a bit string y. Given some predefined function, f , the goal for Alice and
Bob is to compute f(x, y) while communicating as few bits as possible.

Lower bounds on the communication complexity of various functions have
been turned into lower bounds for static data structure problems in the cell probe
model. The idea is as follows [12]: Assume we are given a static data structure
problem and consider the function f(q,D) that is defined as the answer to a
query q on an input set D for this problem. If we have a data structure for
the problem that uses S memory cells and supports queries in time t we get a
communication protocol for f where Alice sends t logS bits and Bob sends tw
bits. In this protocol Alice receives q and Bob receives D. Bob constructs the
data structure on D and Alice simulates the query algorithm. In each step Alice
sends logS bits specifying the memory cell of the data structure she needs and
Bob replies with the w bits of this cell. Finally, Alice outputs f(q,D). Thus, a
communication lower bound for f gives a lower bound tradeoff between S and t.

This construction can only be used to distinguish between polynomial and su-
perpolynomial space data structures. Since range mode queries are trivially solv-
able in constant time with O(n2) space, we need a different technique to obtain
lower bounds for near-linear space data structures. Pǎtraşcu and Thorup [6,7]
have developed a technique for distinguishing between near linear and polyno-
mial space by considering reductions from communication complexity problems
to k parallel data structure queries. The main insight is that Alice can simulate
all k queries in parallel and only send log

(
S
k

)
= O(k log S

k ) bits to define the k
cells she needs. For the right values of k this is significantly less than k logS bits
which Alice needs if she performs the queries sequentially.

Lopsided Set Disjointness (LSD). In LSD Alice and Bob receive subsets S and T
of a universe U . The goal for Alice and Bob is to compute whether S∩T �= ∅. LSD
is parameterized with the size |S| = N of Alice’s set and the fraction between the
size of the universe and N , which is denoted B, e.g. |U | = NB. Notice that the
size of Bob’s set is arbitrary and could be as large as NB. We use [X ] to denote
the set {1, 2, . . . , X}. There are other versions of LSD where the input to Alice
has more structure. For our purpose we need Blocked-LSD. For this problem the
universe is considered as the cartesian product of [N ] and [B], e.g. U = [N ]× [B]
and Alice receives a set S such that ∀j ∈ [N ] there exists a unique bj ∈ [B] such
that (j, bj) ∈ S, e.g. S is of the form {(1, b1), (2, b2), . . . , (N, bN ) | bi ∈ [B]}. The
following lower bound applies for this problem [7].

Theorem 1. Fix δ > 0. In a bounded-error protocol for Blocked-LSD, either
Alice sends Ω(N logB) bits or Bob sends Ω(NB1−δ) bits.

Blocked-LSD reduces to N/k parallel range mode queries. Given n, we describe a
reduction from Blocked-LSD with a universe of size n (n = NB) to N/k parallel
range mode queries on an input array A of size Θ(n). The size of A may not be
exactly n but this will not affect our result. The parameters k and B are fixed
later in the construction. From a high level perspective we construct an array of
permutations of [kB]. A query consists of a suffix of one permutation, a number
of complete permutations, and a prefix of another permutation. They are chosen
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such that the suffix determines a subset of Bob’s set and the prefix a subset of
Alice’s set. These two subsets intersect if and only if the frequency of the mode
is equal to two plus the number of complete permutations spanned by the query.

Bob stores a range mode data structure and Alice simulates the query al-
gorithm. First we describe the array A that Bob constructs when he receives
his input. Let T ⊆ [N ] × [B] be this set. The array Bob constructs consists of
two parts which are described separately. We let · denote concatenation of lists.
We also use this operator on sets and in this case we treat the set as a list by
placing the elements in lexicographic order. Bob partitions [N ] into N/k con-
secutive chunks of k elements, e.g. the i’th chunk is {(i − 1)k + 1, . . . , ik} for
i = 1, . . . , N/k. With the i’th chunk Bob associates the subset Li of T with first
coordinate in that chunk, e.g. Li = T ∩ ({(i− 1)k+ t | t = 1, . . . , k}× [B]). Each
Li is mapped to a permutation of [kB].

We define the mapping f : (x, y) → (x − 1 mod k)B + y and let the permu-
tation be ([kB] \ f(Li)) · f(Li), e.g. we map the elements in Li into [kB] and
prepend the elements of [kB] not mapped to by any element in Li such that
we get a full permutation of [kB]. The first part of A is the concatenation of
the permutations defined for each chunk Li ordered by i, e.g. ([kB] \ f(L1)) ·
f(L1) · · · ([kB] \ f(LN/k)) · f(LN/k). The second part of A consists of Bk per-
mutations of [kB]. There is one permutation for each way of picking a set of
the form {(1, b1), . . . , (k, bk) | bi ∈ [B]}. Let R1, . . . , RBk denote the Bk sets
on this form ordered lexicographically. The second part of the array becomes
f(R1) · ([kB] \ f(R1)) · · · f(RBk) · ([kB] \ f(RBk)).

We now show how Alice and Bob can determine whether S ∩ T �= ∅ from
this array. Bob constructs a range mode data structure for A and sends |Li|
for i = 1, . . . , N/k to Alice. Alice then simulates the query algorithm on the
range mode data structure for N/k queries in parallel. The i’th query determines
whether the k elements Qi = {((i−1)k+1, b(i−1)k+1), . . . , (ik, bik)} from S have
an empty intersection with T (actually Li) as follows.

Alice determines the end index of f(Qi) in the second part of A. We note
that f(Qi) always exists in the second part of A by construction and Alice
can determine the position without any communication with Bob. Alice also
determines the start index of f(Li) in the first part of A from the sizes she
initially received from Bob. The i’th query computes the frequency Ri of the
mode between these two indices. Let p be the number of permutations of [kB]
stored between the end of f(Li) and the beginning of f(Qi) in A, then Fi−p = 2
if and only if Qi ∩ T �= ∅, and Fi − p = 1 otherwise. Since each permutation of
[kB] contributes one to Fi, Fi−p is equal to two if and only if at least one of the
elements from Qi is in Li meaning that S∩T �= ∅. We conclude that Blocked-LSD
reduces to N/k range mode queries in an array of size NB + BkkB.

To obtain a lower bound for range mode data structures we consider the
parameters k and B and follow the approach from [7]. Let S be the size of
Bob’s range mode data structure and let t be the query time. In our protocol
for Blocked-LSD Alice sends t log

(
S

N/k

)
= O(tNk log Sk

N ) bits and Bob sends
twN/k + N/k log(kB) bits. By Theorem 1, either Alice sends Ω(N logB) bits
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or Bob sends Ω(NB1−δ). Fix δ = 1
2 . Since N/k log(kB) = o(N

√
B) we obtain

that either tNk log(SkN ) = Ω(N logB) or twN/k = Ω(N
√
B). We constrain B

such that B ≥ w2 and logB ≥ 1
2 log(SkN ) ⇒ B ≥ Sk

n and obtain t = Ω(k).
Since |A| = NB + BkkB and we require |A| = Θ(n), we set k = Θ(logB n).
To maximize k we choose B = max{w2, Skn }. We obtain that t = Ω(k) =
Ω(logN/ log Swk

n ) = Ω(log n/ log Sw
n ) since w > k.

Summarizing, we get the following theorem.

Theorem 2. Any data structure that uses S space needs Ω
(

logn
log( Sw

n )

)
time for

a range mode query in an array of size n.

It follows from the construction that we get the same lower bound for data
structures that support queries that are given i, j and k, and returns whether
there exists an element with frequency exactly k in A[i, j] or support queries
that are given i, j and k and returns whether there is an element with frequency
at least k in A[i, j].

3 Range k-Frequency

In this section, we consider the range k-frequency problem and its connection to
classic geometric data structure problems. We show that the range k-frequency
problem is equivalent to 2D rectangle stabbing for any fixed constant k > 1, and
that for k = 1 the problem reduces to four-sided 3D orthogonal range emptiness.

In the 2D rectangle stabbing problem the input is n axis-parallel rectangles.
A query is given a point, (x, y), and must return whether this point is con-
tained1 in at least one of the n rectangles in the input. A query lower bound
of Ω(log n/ log(Sw/n)) for data structures using S space is proved in [7], and
a linear space static data structure with optimal O(log n/ log logn) query time
can be found in [9].

In four-sided 3D orthogonal range emptiness, we are given a set P of n points
in 3D, and must preprocess P into a data structure, such that given an open-
ended four-sided rectangle R = (−∞, x] × [y1, y2] × [z,∞), the data structure
returns whether R contains a point p ∈ P . Currently, the best solution for this
problem uses O(n log n) space and supports queries in O(log2 logn) time [10].

For simplicity, we assume that each coordinate is a unique integer between
one and 2n (rank space).

Theorem 3. Let k be a constant greater than one. The 2D rectangle stabbing
problem reduces to the range k-frequency problem.

Proof. We show the reduction for k = 2 and then generalize this construction
to any constant value k > 2.

Let R1, . . . , Rn be the input to the rectangle stabbing problem. We construct
a range 2-frequency instance with n distinct labels each of which is duplicated

1 Points on the border of a rectangle are contained in the rectangle.
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1
2
3
4
5

1 2 3 4 5 6

A
B

C

p5 i5
q3
j3

X Y

A = [BBCCCAABA︸ ︷︷ ︸CBABBAACC]︸ ︷︷ ︸
X=[(6,B)(6,B)(5,C)(5,C)(4,C)(3,A)(3,A)(2,B)(1,A)]

Y=[(1,C)(2,B)(3,A)(4,B)(4,B)(5,A)(5,A)(6,C)(6,C)]

6

Fig. 1. Reduction from 2D rectangle stabbing to range 2-frequency. The × marks a
stabbing query, (5, 3). This query is mapped to the range 2-frequency query [i5, |X|+j3]
in A, which is highlighted. Notice that i5 = p5 + 2 since A[p5] = A[p5 + 1].

exactly 6 times. Let R� be the rectangle [x�0 , x�1 ]× [y�0 , y�1 ]. For each rectangle,
R�, we add the pairs (x�0 , �), (x�1 , �) and (x�1 , �) to a list X . Similarly, we add the
pairs (y�0 , �), (y�1 , �), and (y�1 , �) to a list Y . We sort X in descending order and
Y in ascending order by their first coordinates. Since we assumed all coordinates
are unique, the only ties are amongst pairs originating from the same rectangle,
here we break the ties arbitrarily. The concatenation of X and Y is the range
2-frequency instance and we denote it A, i.e. the second component of each pair
are the actual entries in A, and the first component of each pair is ignored.

We translate a 2D rectangle stabbing query, (x, y), into a query for the range
2-frequency instance as follows. Let px be the smallest index where the first
coordinate of X [px] is x, and let qy be the largest index where the first coordinate
of Y [py] is y. If A[px] = A[px + 1], two consecutive entries in A are defined by
the right endpoint of the same rectangle, we set ix = px + 2 (we move ix to
the right of the two entries), otherwise we set ix = px. Similarly for the y
coordinates, if A[|X | + qy] = A[|X | + qy − 1] we set jy = qy − 2 (move jy left
of the two entries), otherwise we set jy = qy. Finally we translate (x, y) to the
range 2-frequency query [ix, |X |+jy] on A, see Figure 1. Notice that in the range
2-frequency queries that can be considered in the reduction, the frequency of a
label is either one, two, three, four or six. The frequency of label � in A[ix, |X |] is
one if x�0 ≤ x ≤ x�1 , three if x > x�1 and zero otherwise. Similar, the frequency
of � in A[|X | + 1, |X | + jy ] is one if y�0 ≤ y ≤ y�1 , three if y > y�1 and zero
otherwise. We conclude that the point (x, y) stabs rectangle R� if and only if the
label � has frequency two in A[ix, |X |+ jy].

Since x, y ∈ {1, . . . , 2n}, we can store a table with the translations from x
to ix and y to jy. Thus, we can translate 2D rectangle stabbing queries to range
2-frequency queries in constant time.

For k > 2 we place k− 2 copies of each label between X and Y and translate
the queries accordingly. ��

The following theorem provides a matching upper bound.

Theorem 4. The range k-frequency problem reduces to 2D rectangle stabbing.
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Proof. Let A be the input to the range k-frequency problem. We translate the
ranges of A where there is a label with frequency k into O(n) rectangles as
follows. Fix a label x ∈ A, and let sx ≥ k denote the number of occurrences
of x in A. If sx < k then x is irrelevant and we discard it. Otherwise, let
i1 < i2 < . . . < is be the position of x in A, and let i0 = 0 and is+1 = n + 1.
Consider the ranges of A where x has frequency k. These are the subarrays,
A[a, b], where there exists an integer � such that i� < a ≤ i�+1 and i�+k ≤ b <
i�+k+1 for 0 ≤ � ≤ sx − k. This defines sx − k + 1 two dimensional rectangles,
[i� + 1, i�+1]× [i�+k, i�+k+1 − 1] for � = 0, . . . , sx − k, such that x has frequency
k in A[i, j] if and only if the point (i, j) stabs one of the sx − k + 1 rectangles
defined by x. By translating the ranges of A where a label has frequency k into
the corresponding rectangles for all distinct labels in A, we get a 2D rectangle
stabbing instance with O(n) rectangles. ��

This means that we get a data structure for the range k-frequency problem that
uses O(n) space and supports queries in O(log n/ log logn) time.

Theorem 5. For k = 1, the range k-frequency problem reduces to four-sided
orthogonal range emptiness queries in 3D.

Proof. For each distinct label x ∈ A, we map the ranges of A where x has
frequency one (it is unique in the range) to a 3D point. Let i1 < i2 < . . . < is be
the positions of x in A, and let i0 = 0 and is+1 = n+1. The label x has frequency
one in A[a, b] if there exist an integer � such that i�−1 < a ≤ i� ≤ b < i�+1. We
define s points, Px = {(i�−1 + 1, i�, i�+1 − 1) | 1 ≤ � ≤ s}. The label x has
frequency one in the range A[a, b] if and only if the four-sided orthogonal range
query [−∞, a]× [a, b]× [b,∞] contains a point from Px (we say that x is inside
range [x1, x2] if x1 ≤ x ≤ x2). Therefore, we let P =

⋃
x∈A Px and get a four-

sided 3D orthogonal range emptiness instance with O(n) points. ��

Thus, we get a data structure for the range 1-frequency problem that uses
O(n log n) space and supports queries in O(log2 logn) time and we conclude that
for data structures using O(n logO(1) n) space, the range k-frequency problem is
exponentially harder for k > 1 than for k = 1.

4 3-Approximate Range Mode

In this section, we construct a data structure that given a range [i, j] computes
a 3-approximation of Fi,j .

We use the following observation also observed in [5]. If we can cover A[i, j]
with three disjoint subintervals A[i, x], A[x + 1, y] and A[y + 1, j] then we have
1
3Fi,j ≤ max{Fi,x, Fx+1,y, Fy+1,j} ≤ Fi,j .

First, we describe a data structure that uses O(n log logn) space, and then we
show how to reduce the space to O(n). The data structure consists of a tree T
of polynomial fanout where the i’th leaf stores A[i], for i = 1, . . . , n. For a node
v let Tv denote the subtree rooted at v and let |Tv| denote the number of leaves



Cell Probe Lower Bounds and Approximations for Range Mode 613

in Tv. The fanout of node v is fv = $
√
|Tv|%. The height of T is Θ(log logn).

Along with T , we store a lowest common ancestor (LCA) data structure, which
given indices i and j, finds the LCA of the leaves corresponding to i and j in T
in constant time [13].

For every node v ∈ T , let Rv = A[a, b] denote the consecutive range of entries
stored in the leaves of Tv. The children c1, . . . , cfv of v partition Rv into fv disjoint
subranges Rc1 = A[ac1 , bc1 ], . . . , Rcfv

= A[acfv
, bcfv

] each of size O(
√
|Tv|). For

every pair of children cr and cs where r < s−1, we storeFacr+1 ,bcs−1
.Furthermore,

for every child rangeRci we store Faci
,k and Fk,bci

for every prefix and suffix range
of Rci respectively. To compute a 3-approximation of Fi,j , we find the LCA of i
and j. This is the node v in T for which i and j lie in different child subtrees, say
Tcx and Tcy with ranges Rcx = [acx , bcx ] and Rcy = [acy , bcy ]. We then lookup
the frequency Facx+1 ,bcy−1

stored for the pair of children cx and cy, as well as the
suffix frequency Fi,bcx

stored for the rangeA[i, bcx ] and the prefix frequency Facy ,j

stored for A[acy , j], and return the max of these.
Each node v ∈ T uses O(|Tv|) space for the frequencies stored for each of the

O(|Tv|) pairs of children, and for all the prefix and suffix range frequencies. Since
each node v uses O(|Tv|) space and the LCA data structure uses O(n) space,
our data structure uses O(n log logn) space. A query makes one LCA query and
computes the max of three numbers which takes constant time.

We just need one observation to bring the space down to O(n). Consider a
node v ∈ T . The largest possible frequency that can be stored for any pair of
children of v, or for any prefix or suffix range of a child of v is |Tv|, and each such
frequency can be represented by b = 1+�log |Tv|� bits. We divide the frequencies
stored in v into chunks of size � logn

b � and pack each of them in one word. This
reduces the total space usage of the nodes on level i to O(n/2i). We conclude
that the data structure uses O(n) space and supports queries in constant time.

Theorem 6. There exists a data structure for the 3-approximate range mode
problem that uses O(n) space and supports queries in constant time.

5 (1 + ε)-Approximate Range Mode

In this section, we describe a data structure using O(nε ) space that given a range
[i, j], computes a (1 + ε)-approximation of Fi,j in O(log 1

ε ) time. Our data struc-
ture consists of two parts. The first part solves all queries [i, j] where Fi,j ≤ $ 1

ε%
(small frequencies), and the latter solves the remaining. The first data structure
also decides whether Fi,j ≤ $ 1

ε%. We use that 1
log (1+ε) = O(1

ε ) for any 0 < ε ≤ 1.

Small Frequencies. For i = 1, . . . , n we store a table, Qi, of length $ 1
ε%, where

the value in Qi[k] is the largest integer j ≥ i such that Fi,j = k. To answer a
query [i, j] we do a successor search for j in Qi. If j does not have a successor
in Qi then Fi,j > $ 1

ε%, and we query the second data structure. Otherwise, let s
be the index of the successor of j in Qi, then Fi,j = s. The data structure uses
O(nε ) space and supports queries in O(log 1

ε ) time.
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Large Frequencies. For every index 1 ≤ i ≤ n, define a list Ti of length t =
$log1+ε(εn)%, with the following invariant: For all j, if Ti[k − 1] < j ≤ Ti[k]
then $ 1

ε (1 + ε)k% is a (1 + ε)-approximation of Fi,j . The following assignment of
values to the lists Ti satisfies this invariant:

Let m(i, k) be the largest integer j ≥ i such that Fi,j ≤ $ 1
ε (1 + ε)k+1% − 1.

For T1 we set T1[k] = m(1, k) for all k = 1, . . . , t. For the remaining Ti we set

Ti[k] =
{
Ti−1[k] if Fi,Ti−1[k] ≥ $ 1

ε (1 + ε)k%+ 1
m(i, k) otherwise

The n lists are sorted by construction. For T1, it is true since m(i, k) is increasing
in k. For Ti, it follows that Fi,Ti[k] ≤ $ 1

ε (1 + ε)k+1% − 1 < Fi,Ti[k+1], and thus
Ti[k] < Ti[k + 1] for any k.

Let s be the index of the successor of j in Ti. We know that Fi,Ti[s] ≤
$ 1
ε (1 + ε)s+1% − 1, Fi,Ti[s−1] ≥ $ 1

ε (1 + ε)s−1% + 1 and Ti[s − 1] < j ≤ Ti[s].
It follows that

$ 1
ε (1 + ε)s−1%+ 1 ≤ Fi,j ≤ $ 1

ε (1 + ε)s+1% − 1 (1)

and that $ 1
ε (1 + ε)s% is a (1 + ε)-approximation of Fi,j .

The second important property of the n lists, is that they only store O(nε )
different indices, which allows for a space-efficient representation. If Ti−1[k] �=
Ti[k] then the following $ 1

ε (1 + ε)k+1% − 1 − $ 1
ε (1 + ε)k% − 1 ≥ �(1 + ε)k� − 3

entries, Ti+a[k] for a = 1, . . . , �(1 + ε)k� − 3, are not changed, hence we store
the same index at least max{1, �(1 + ε)k� − 2} times. Therefore, the number of
changes to the n lists, starting with T1, is bounded by

∑t
k=1

n
max{1,	(1+ε)k
−2} =

O(nε ) . This was observed in [5], where similar lists are maintained in a partially
persistent search tree [14].

We maintain these lists without persistence such that we can access any entry
in any list Ti in constant time. Let I = {1, 1 + t, . . . , 1 + �(n − 1)/t�t}. For
every � ∈ I we store T� explicitly as an array S�. Secondly, for � ∈ I and
k = 1, . . . , $log1+εt% we define a bit vector B�,k of length t and a change list
C�,k, where

B�,k[a] =
{

0 if T�+a−1[k] = T�+a[k]
1 otherwise

Given a bit vector L, define sel(L, b) as the index of the b’th one in L. We set

C�,k[a] = T�+sel(B�,k,a)[k] .

Finally, for every � ∈ I and for k = 1+$log1+εt%, . . . , t we store D�[k] which is the
smallest integer z > � such that Tz[k] �= T�[k]. We also store E�[k] = TD�[k][k].
We store each bit vector in a rank and select data structure [15] that uses O( n

w )
space for a bit vector of length n, and supports rank(i) in constant time. A
rank(i) query returns the number of ones in the first i bits of the input.

Each change list, Cl,k and every D� and E� list is stored as an array. The
bit vectors indicate at which indices the contents of the first $log1+εt% entries of
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T�, . . . , T�+t−1 change, and the change lists store what the entries change to. The
D� and E� arrays do the same thing for the last t− $log1+εt% entries, exploiting
that these entries change at most once in an interval of length t.

Observe that the arrays, C�,k, D�[k] and E�[k], and the bit vectors, B�,k allow
us to retrieve the contents of any entry, Ti[k] for any i, k, in constant time as
follows. Let � = �i/t�t. If k > $log1+εt% we check if D�[k] ≤ i, and if so we return
E�[k], otherwise we return S�[k]. If k ≤ $log1+εt%, we determine r = rank(i− �)
in B�,k using the rank and select data structure. We then return C�,k[r] unless
r = 0 in which case we return S�[k].

We argue that this correctly returns Ti[k]. In the case where k > $log1+εt%,
comparing D�[k] to i indicates whether Ti[k] is different from T�[k]. Since Tz[k]
for z = �, . . . , i can only change once, Ti[k] = E�[k] in this case. Otherwise,
S�[k] = T�[k] = Ti[k]. If k ≤ $log1+εt%, the rank r of i− � in B�,k, is the number
of changes that has occurred in the k’th entry from list T� to Ti. Since C�,k[r]
stores the value of the k’th entry after the r’th change, C�,k[r] = Ti[k], unless
r = 0 in which case Ti[k] = S�[k].

The space used by the data structure is O(nε ). We store 3$nt % arrays, S�, D�

and E� for � ∈ I, each using t space, in total O(n). The total size of the change
lists, C�,k, is bounded by the number of changes across the Ti lists, which is
O(nε ) by the arguments above. Finally, the rank and select data structures, B�,k,
each occupy O( t

w ) = O( t
logn ) words, and we store a total of $nt %$log1+εt% such

structures, thus the total space used by these is bounded by O
(

t
logn

n
t log1+εt

)
=

O
(
n
ε

log(n log(εn))
logn

)
= O

(
n
ε

)
. We use that if $ 1

ε% ≥ n then we only store the small

frequency data structure. We conclude that our data structures uses O
(
n
ε

)
space.

To answer a query [i, j], we first compute a 3-approximation of Fi,j in constant
time using the data structure from Section 4. Thus, we find fi,j satisfying fi,j ≤
Fi,j ≤ 3fi,j. Choose k such that $ 1

ε (1 + ε)k%+ 1 ≤ fi,j ≤ $ 1
ε (1 + ε)k+1%− 1 then

the successor of j in Ti must be in one of the entries, Ti[k], . . . , Ti[k+O(log1+ε3)].
As stated earlier, the values of Ti are sorted in increasing order, and we find the
successor of j using a binary search on an interval of length O(log1+ε3). Since
each access to Ti takes constant time, we use O(log log1+ε3) = O(log 1

ε ) time.

Theorem 7. There exists a data structure for (1 + ε)-approximate range mode
that uses O(nε ) space and supports queries in O(log 1

ε ) time.

The careful reader may have noticed that our data structure returns a frequency,
and not a label that occurs approximately Fi,j times. We can augment our data
structure to return a label instead as follows.

We set ε′ =
√

(1 + ε)− 1, and construct our data structure from above. The
small frequency data structure is augmented such that it stores the label Mi,Qi[k]
along with Qi[k], and returns this in a query. The large frequency data structure
is augmented such that for every update of Ti[k] we store the label that caused
the update. Formally, let a > 0 be the first index such that Ti+a[k] �= Ti[k].
Next to Ti[k] we store the label Li[k] = A[i + a − 1]. In a query, [i, j], let s be
the index of the successor of j in Ti computed as above. If s > 1 we return the
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label Li[s− 1], and if s = 1 we return Mi,Qi[�1/ε′�], which is stored in the small
frequency data structure.

In the case where s = 1 we know that $ 1
ε′ % ≤ Fi,j ≤ $ 1

ε′ (1 + ε′)2% − 1 =
$ 1
ε′ (1 + ε)% − 1 and we know that the frequency of Mi,Qi[�1/ε′�] in A[i, j] is at

least $ 1
ε′ %. We conclude that the frequency of Mi,Qi[�1/ε′�] in A[i, j] is a (1 + ε)-

approximation of Fi,j .
If s > 1 we know that $ 1

ε′ (1 + ε′)s−1% + 1 ≤ Fi,j ≤ $ 1
ε′ (1 + ε′)s+1% − 1 by

equation (1), and that the frequency, fL, of the label Li[s − 1] in A[i, j] is at
least $ 1

ε′ (1 + ε′)s−1%+ 1. This means that Fi,j ≤ 1
ε′ (1 + ε′)s+1 ≤ (1 + ε′)2fL =

(1 + ε)fL, and we conclude that fL is a (1 + ε)-approximation of Fi,j .
The space needed for this data structure is O( n

ε′ ) = O(n(
√

1+ε+1)
ε ) = O(nε ),

and a query takes O(log 1
ε′ ) = O(log 1

ε + log(
√

1 + ε + 1)) = O(log 1
ε ) time.
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Abstract. In this paper we present semidefinite programming (SDP)
gap instances for the following variants of the Label-Cover problem,
closely related to the Unique Games Conjecture: (i) 2-to-1 Label-Cover;
(ii) 2-to-2 Label-Cover; (iii) α-constraint Label-Cover. All of our gap
instances have perfect SDP solutions. For alphabet size K, the inte-
gral optimal solutions have value: (i) O(1/

√
log K); (ii) O(1/ log K);

(iii) O(1/
√

log K).
Prior to this work, there were no known SDP gap instances for any

of these problems with perfect SDP value and integral optimum tending
to 0.

1 Introduction

1.1 The Unique Games Conjecture and Its Variants

Since its introduction in 2002, the Unique Games Conjecture (UGC) of Khot [8]
has proved highly influential and powerful in the study of probabilistically check-
able proofs (PCPs) and approximation algorithms. Assuming the UGC yields
many strong — and often, optimal — hardness of approximation results that
we have been unable to obtain assuming only P �= NP. Perhaps the acme of this
line of research so far is the work of Raghavendra [12], who showed the following
result:

Theorem 1. ([12], informally.) Let C be any bounded-arity constraint satisfac-
tion problem (CSP). Assume the Unique Games Conjecture. Then for a certain
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semidefinite programming (SDP) relaxation of C, the SDP gap for C is the same
as the optimal polynomial-time approximability gap for C, up to an additive con-
stant ε > 0 which can be arbitrarily small.

Unfortunately, because of the additive ε term, Raghavendra’s work is not appli-
cable (even granting the UGC or any related conjecture) for the important case
of completely satisfiable CSPs; equivalently, PCPs with perfect completeness. A
good example of this comes from coloring problems ; e.g., the very well known
problem of coloring 3-colorable graphs. The UGC does not help in deducing any
hardness result for such problems. Indeed the first strong hardness result for it,
due to Dinur, Mossel, and Regev [3], used instead certain variants of UGC which
have perfect completeness, namely, the “2-to-1 Conjecture”, the “2-to-2 Conjec-
ture”, and the “α-Constraint Conjecture”. (These conjectures will be described
formally in Section 3.) An instance of Label-Cover with α-constraints was also
implicit in the result of Dinur and Safra [4] on the hardness of approximating
minimum vertex cover.

Recently, several more works have needed to use these alternate conjectures
with perfect completeness: e.g., O’Donnell and Wu [11] and Tang [16] on Max-
3CSP, Guruswami and Sinop [6] on Max-k-Colorable-Subgraph.

1.2 Statements of the Conjectures

Let us briefly give some definitions so that we may state some of the aforemen-
tioned conjectures more precisely.

Definition 1. A Label-Cover instance L is defined by a tuple ((V,E), R, Ψ).
Here (V,E) is a graph, R is a positive integer and Ψ is a set of constraints
(relations), one for each edge: Ψ = {ψe ⊆ {1, . . . , R}2 | e ∈ E}. A labeling A
is a mapping A : V → [R]. We say that an edge e = (u, v) is satisfied by A if
(A(u), A(v)) ∈ ψe. We define:

OPT(L) = max
A:V→[R]

Pr
e=(u,v)∈E

[(A(u), A(v)) ∈ ψe]

Here the probability is over the uniform distribution of edges, i.e. each edge is
equally likely to be picked.

Definition 2. A constraint ψ ⊆ {1, . . . , R}2 is said to be a d-to-1 projection
if there is a map π : [R] → [R] such that for each element j ∈ [R] we have
|π−1(j)| ≤ d, and (i, j) ∈ ψ if and only if j = π(i). A Label-Cover instance is
said to be d-to-1 if all its constraints are d-to-1 projections.

We now state some conjectures on the inapproximability of Unique and 2-to-1
Label-Cover. In Section 3.1 we will also discuss the two other variants of the
Label-Cover problem, based on 2-to-2 and “α” constraints, and the associated
2-to-2 and α-Constraint Conjectures on their inapproximability.

Conjecture 1. [7] (Unique Games Conjecture) For any ε, δ > 0, it is NP-hard
to decide whether a 1-to-1 bipartite Label-Cover instance L has OPT(L) ≥ 1− ε
or has OPT(L) ≤ δ.
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Notice that the above problem is in P when ε = 0.

Conjecture 2. [7] (2-to-1 Conjecture) For any δ > 0, it is NP-hard to decide
whether a 2-to-1 bipartite Label-Cover instance L has OPT(L) = 1 or has
OPT(L) ≤ δ.

1.3 Evidence for and Against

Despite significant work, the status of the Unique Games Conjecture — as well
as the 2-to-1, 2-to-2, and α-Constraint Conjectures — is unresolved. Towards
disproving the conjectures, the best algorithms known are due to Charikar,
Makarychev, and Makarychev [2]. Using somewhat strong SDP relaxations, those
authors gave polynomial-time SDP-rounding algorithms which achieve:

– Value K−ε/(2−ε) (roughly) for Unique Label-Cover instances with SDP value
1− ε over alphabets of size K.

– Value K−3+2
√

2−ε for 2-to-1 Label-Cover instances with SDP value 1−Θ(ε)
over alphabets of size K.

The best evidence in favor of the Unique Games Conjecture is probably the exis-
tence of strong SDP gaps. The first such gap was given by Khot and Vishnoi [10]:
they constructed a family of Unique Label-Cover instances over alphabet size K
with SDP value 1− ε and integral optimal value K−Θ(ε). In addition to roughly
matching the CMM algorithm, the Khot–Vishnoi gaps have the nice property
that they even hold with triangle inequality constraints added into the SDP.
Even stronger SDP gaps for UGC were obtained recently by Raghavendra and
Steurer [13].

Standing in stark contrast to this is the situation for the 2-to-1 Conjecture
and related variants with perfect completeness. Prior to this work, there were
no known SDP gap families for these problems with SDP value 1 and integral
optimal value tending to 0 with the alphabet size. Indeed, there was hardly any
evidence for these conjectures, beyond the fact that Charikar, Makarychev, and
Makarychev failed to disprove them.

1.4 SDP Gaps as a Reduction Tool

In addition to being the only real evidence towards the validity of the UGC, SDP
gaps for Unique Games have served another important role: they are the starting
points for strong SDP gaps for other important optimization problems. A notable
example of this comes in the work of Khot and Vishnoi [10] who used the UG gap
instance to construct a super-constant integrality gap for the Sparsest Cut-SDP
with triangle inequalities, thereby refuting the Goemans-Linial conjecture that
the gap was bounded by O(1). They also used this approach to show that the
integrality gap of the Max-Cut SDP remains 0.878 when triangle inequalities
are added. Indeed the approach via Unique Games remains the only known way
to get such strong gaps for Max Cut. Recently, even stronger gaps for Max-Cut
were shown using this framework in [9,13]. Another example of a basic problem
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for which a SDP gap construction is only known via the reduction from Unique
Games is Maximum Acyclic Subgraph [5].

In view of these results, it is fair to say that SDP gaps for Unique Games
are significant unconditionally, regardless of the truth of the UGC. Given the
importance of 2-to-1 and related conjectures in reductions to satisfiable CSPs
and other problems like coloring where perfect completeness is crucial, SDP
gaps for 2-to-1 Label-Cover and variants are worthy of study even beyond the
motivation of garnering evidence towards the associated conjectures on their
inapproximability.

2 Our Results

Label-Cover admits a natural semidefinite programming relaxation (see Fig-
ure 1). In this paper, we show the following results on the limitations of the
basic semidefinite programming relaxation for Label-Cover instances with 2-to-
1, 2-to-2, and α constraints:

– There is an instance of 2-to-2 Label-Cover with alphabet size K and optimum
value O(1/ logK) on which the SDP has value 1.

– There are instances of 2-to-1 and α-constraint Label-Cover with alphabet
size K and optimum value O(1/

√
logK) on which the SDP has value 1.

In both cases the instances have size 2Ω(K).
We note that if we only require the SDP value to be 1−ε instead of 1, then inte-

grality gaps for all these problems easily follow from gaps from Unique Games,
constructed by Khot and Vishnoi [10] (by duplicating labels appropriately to
modify the constraints). However, the motivation behind these conjectures is
applications where it is important that the completeness is 1. Another difference
between the 2-to-1 Label-Cover and the Unique Label-Cover is the fact that
for 2-to-1 instances, it is consistent with known algorithmic results of [2] that
OPT be as low as K−c for some c > 0 independent of ε, when the SDP value is
1− ε. It is an interesting question if OPT can indeed be this low even when the
SDP value is 1. Our constructions do not address this question, as we only show
OPT = O(1/

√
logK).

We also point out that our integrality gaps are for special cases of the Label-
Cover problem where the constraints can be expressed as difference equations
over F2-vector spaces. For example, for 2-to-2 Label-Cover, each constraint φe

is of the form x − y ∈ {α, α + γ} where α, γ ∈ Fk
2 are constants. For such con-

straints, the probable of deciding whether an instance is completely satisfiable
(OPT = 1) or not (OPT < 1) is in fact in P. To see this, one can treat the coor-
dinates (x1, . . . , xk) and (y1, . . . , yk) as separate boolean variables and introduce
an auxiliary boolean variable ze for each constraint. We can then rewrite the
constraint as a conjunction of linear equations over F2:

k∧
i=1

(xi − yi − ze · γi = αi) .
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Here xi, yi, αi, γi denote the ith coordinates of the corresponding vectors. Decid-
ing whether a system of linear equations is completely satisfiable is of course in
P. Alternatively, one can note that constraints x − y ∈ {α, α + γ} mod Fk

2 are
Mal’tsev constraints, and hence deciding satisfiability of CSPs based on them is
in P by the work of Bulatov and Dalmau [1].

Despite this tractability, the SDPs fail badly to decide satisfiability. This
situation is similar to the very strong SDP gaps known for problems such as
3-XOR (see [14], [17]) for which deciding complete satisfiability is easy.

3 Preliminaries and Notation

3.1 Label-Cover Problems

In Figure 1, we write down a natural SDP relaxation for the Label-Cover prob-
lem. The relaxation is over the vector variables z(v,i) for every vertex v ∈ V and
label i ∈ [R].

maximize E
e=(u,v)∈E

[ ∑
i,j∈ψe

〈
z(u,i), z(v,j)

〉]
subject to

∑
i∈[R]

∥∥z(v,i)

∥∥2 = 1 ∀ v ∈ V

〈
z(v,i), z(v,j)

〉
= 0 ∀ i �= j ∈ [R], v ∈ V

Fig. 1. SDP for Label-Cover

Our goal in this work is to study integrality gaps for the above SDP for vari-
ous special cases of the Label-Cover problem. We already discussed the Unique
Games and 2-to-1 conjectures on the hardness of certain very special cases of
Label-Cover. We now discuss two other variants of Label-Cover and their con-
jectured inapproximability.

Definition 3. A constraint ψ ⊆ {1, . . . , 2R}2 is said to be a 2-to-2 constraint
if there are two permutations σ1, σ2 : {1, . . . , 2R} → {1, . . . , 2R} such that
(i, j) ∈ ψ if and only if (σ1(i), σ2(j)) ∈ T where

T := {(2l− 1, 2l− 1), (2l− 1, 2l), (2l, 2l− 1), (2l, 2l)}Rl=1.

A Label-Cover instance is said to be 2-to-2 if all its constraints are 2-to-2 con-
straints.

A constraint ψ ⊆ {1, . . . , 2R}2 is said to be an α-constraint if there are two
permutations σ1, σ2 : {1, . . . , 2R} → {1, . . . , 2R} such that (i, j) ∈ ψ if and only
if (σ1(i), σ2(i)) ∈ T ′ where

T ′ := {(2l− 1, 2l− 1), (2l− 1, 2l), (2l, 2l− 1)}Rl=1.

A Label-Cover instance is said to be α if all its constraints are α constraints.
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Conjecture 3. [3] (2-to-2 Conjecture) For any δ > 0, it is NP-hard to decide
whether a 2-to-2 Label-Cover instance L has OPT(L) = 1 or has OPT(L) ≤ δ.

It was shown in [3] that the 2-to-2 Conjecture is no stronger than the 2-to-1
Conjecture.

Conjecture 4. [3] (α Conjecture) For any δ > 0, it is NP-hard to decide whether
a α Label-Cover instance L has OPT(L) = 1 or has OPT(L) ≤ δ.

3.2 Fourier Analysis

Let V := {f : Fk
2 → R} denote the vector space of all real functions on Fk

2 ,
where addition is defined as point-wise addition. We always think of Fk

2 as a
probability space under the uniform distribution, and therefore use notation
such as ‖f‖p := Ex∈Fk

2
[|f(x)|p]. For f , g ∈ F , we also define the inner product

〈f, g〉 := E[f(x)g(x)].
For any α ∈ Fk

2 the Fourier character χα ∈ F is defined by χα(x) := (−1)α·x.
The Fourier characters form an orthonormal basis for V with respect to the
above inner product, hence every function f ∈ V has a unique representation as
f =
∑

α∈Fk
2
f̂(α)χα, where the Fourier coefficient f̂(α) := 〈f, χα〉.

We also sometimes identify each α with the set Sα = {i | αi = 1} and denote
the Fourier coefficients as f̂(S). We use the notation |α| for |Sα|, the number of
coordinates where α is 1.

The following well-known fact states that the norm of a function on Fk
2 is

unchanged when expressing it in the basis of the characters.

Proposition 1 (Parseval’s identity). For any f : Fk
2 → R,

∑
α∈Fk

2
f̂(α)2 =

‖f‖2
2 = E[f(x)2].

We shall also need the following result due to Talagrand (“Proposition 2.3”
in [15]), proven using hypercontractivity methods:

Theorem 2. Suppose F : Fk
2 → R has E[F ] = 0. Then∑

α∈Fk
2\{0}

F̂ (α)2/|α| = O

(
‖F‖2

2

ln(‖F‖2/(e‖F‖1))

)
.

More precisely, we will need the following easy corollary:

Corollary 1. If F : Fk
2 → {0, 1} has mean 1/K, then

F̂ (0)2 +
∑

α∈Fk
2\{0}

F̂ (α)2/|α| = O (1/(K logK))

Proof. We have F̂ (0)2 = E[F ]2 = 1/K2 ≤ O(1/(K logK)), so we can disregard
this term. As for the sum, we apply Theorem 2 to the function F ′ = F − 1/K,
which has mean 0 as required for the theorem. It is easy to calculate that ‖F ′‖2 =
Θ(1/

√
K) and ‖F ′‖1 = Θ(1/K), and so the result follows.
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4 Integrality Gap for 2-to-2 Games

We first give an integrality gap for label cover with 2-to-2 constraints. The
instance for 2-to-1 label cover will be an extension of the one below. In fact,
our analysis of OPT in the 2-to-1 case will follow simply by reducing it to the
analysis of OPT for the 2-to-2 instance below.

The vertex set V in our instance is same as the vertex set of the Unique Games
integrality gap instance constructed in [10]. Let F := {f : Fk

2 	→ {−1, 1}} denote
the family of all boolean functions on Fk

2 . For f , g ∈ F , define the product
fg as (fg)(x) := f(x)g(x). Consider the equivalence relation ∼ on F defined
as f ∼ g ⇔ ∃α ∈ Fk

2 s.t. f ≡ gχα. This relation partitions F into equivalence
classes P1, . . . ,Pn, with n := 2K/K. The vertex set V consists of the equivalence
classes {Pi}i∈[n]. We denote by [Pi] the lexicographically smallest function in the
class Pi and by Pf , the class containing f .

We take the label set to be of size K and identify [K] with Fk
2 in the obvious

way. For each tuple of the form (γ, f, g) where γ ∈ Fk
2 \{0} and f, g ∈ F are such

that (1 + χγ)f ≡ (1 + χγ)g, we add a constraint ψ(γ,f,g) between the vertices
Pf and Pg. Note that the condition on f and g is equivalent to saying that
χγ(x) = 1 =⇒ f(x) = g(x). If f = [Pf ]χα and g = [Pg]χβ and if A : [n] → Fk

2
denotes the labeling, the relation ψ(γ,f,g) is defined as

(A(Pf ), A(Pg)) ∈ ψ(γ,f,g) ⇔ (A(Pf ) + α)− (A(Pg) + β) ∈ {0, γ}.

Note that for any ω ∈ Fk
2 , the constraint maps the labels {ω, ω + γ} for Pf to

the labels {ω+α−β, ω+α−β+γ} for Pg in a 2-to-2 fashion. We denote the set
of all constraints by Ψ . We remark that, as in [10], our integrality gap instances
contain multiple constraints on each pair of vertices.

4.1 SDP Solution

We give below a set of feasible vectors z(Pi,α) ∈ RK for every equivalence class
Pi and every label α, achieving SDP value 1. Identifying each coordinate with
an x ∈ Fk

2 , we define the vectors as

z(Pi,α)(x) :=
1
K

([Pi]χα)(x).

It is easy to check that
∥∥z(Pi,α)

∥∥2 = 1/K for each of the vectors, which satisfies
the first constraint. Also, z(Pi,α) and z(Pi,β) are orthogonal for α �= β since〈

z(Pi,α), z(Pi,β)
〉

=
1
K2 〈[Pi]χα, [Pi]χβ〉 =

1
K2 〈χα, χβ〉 = 0

using the fact that [Pi]2 = 1. The following claim proves that the solution
achieves SDP value 1.

Claim. For any edge e indexed by a tuple (γ, f, g) with f(1 + χγ) ≡ g(1 + χγ),
we have ∑

ω1,ω2∈ψ(γ,f,g)

〈
z(Pf ,ω1), z(Pg,ω2)

〉
= 1
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Proof. Let f ≡ [Pf ]χα and g ≡ [Pg]χβ . Then, (ω1, ω2) ∈ ψe iff (ω1 + α)− (ω2 +
β) ∈ {0, γ}. Therefore, the above quantity equals (divided by 2 to account for
double counting of ω)

1
2
·
∑
ω

(〈
z(Pf ,ω+α), z(Pg,ω+β)

〉
+
〈
z(Pf ,ω+α+γ), z(Pg,ω+β)

〉
+
〈
z(Pf ,ω+α), z(Pg,ω+β+γ)

〉
+
〈
z(Pf ,ω+α+γ), z(Pg,ω+β+γ)

〉)
=

1
2

∑
ω

〈
z(Pf ,ω+α) + z(Pf ,ω+α+γ), z(Pf ,ω+β) + z(Pf ,ω+β+γ)

〉
(1)

However, for each ω, we have z(Pf ,ω+α)+z(Pf ,ω+α+γ) = z(Pf ,ω+β)+z(Pf ,ω+β+γ),
since for all coordinates x,

z(Pf ,ω+α)(x) + z(Pf ,ω+α+γ)(x) =
1
K

([Pf ]χω+α(x) + [Pf ]χω+α+γ(x))

=
1
K

(f(x) + fχγ)χω(x) =
1
K

(g(x) + gχγ)χω(x)

=
1
K

([Pg]χω+β(x) + [Pg]χω+β+γ(x)) = z(Pf ,ω+β)(x) + z(Pf ,ω+β+γ)(x).

This completes the proof as the value of (1) then becomes

1
2

∑
ω

∥∥z(Pf ,ω+α) + z(Pf ,ω+α+γ)
∥∥2 =

1
2

∑
ω

(∥∥z(Pf ,ω+α)
∥∥2+
∥∥z(Pf ,ω+α+γ)

∥∥2)=1.

4.2 Soundness

We now prove that any labeling of the instance described above, satisfies at
most O(1/ logK) fraction of the constraints. Let A : V → Fk

2 be a labeling of
the vertices. We extend it to a labeling of all the functions in F by defining
A([Pi]χα) := A(Pi) + α.

For each α ∈ Fk
2 , define Aα : F → {0, 1} to be the indicator that A’s value is

α. By definition, the fraction of constraints satisfied by the labeling A is

val(A) = E
(γ,f,g)∈Ψ

⎡⎣∑
α∈Fk

2

Aα(f)(Aα(g) + Aα+γ(g))

⎤⎦
= E

(γ,f,g)∈Ψ

⎡⎣∑
α∈Fk

2

Aα(f)(Aα(g) + Aα(gχγ))

⎤⎦
= 2 · E

(γ,f,g)∈Ψ

⎡⎣∑
α∈Fk

2

Aα(f)(Aα(g)

⎤⎦ (2)

where the last equality used the fact that for every tuple (γ, f, g) ∈ Ψ , we also
have (γ, f, gχγ) ∈ Ψ .
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Note that the extended labeling A : F → Fk
2 takes on each value in Fk

2 an
equal number of times. Hence

E
f
[Aα(f)] = Pr

f
[A(f) = α] = 1/K for each α ∈ Fk

2 . (3)

For our preliminary analysis, we will use only this fact to show that for any
α ∈ Fk

2 it holds that

E
(γ,f,g)∈Ψ

[Aα(f)Aα(g)] ≤ O(1/(K logK)). (4)

It will then follow that the soundness (2) is at most O(1/ logK). Although this
tends to 0, it does so only at a rate proportional to the logarithm of the alphabet
size, which is K = 2k.

Beginning with the left-hand side of (4), let’s write F = Aα for simplicity.
We think of the functions f and g being chosen as follows. We first choose a
function h : γ⊥ → {−1, 1}. Note that γ⊥ ⊆ Fk

2 is the set of inputs where χγ = 1
and hence f = g, and we let f(x) = g(x) = h(x) for x ∈ γ⊥. The values of f and
g on the remaining inputs are chosen independently at random. Then

E
(γ,f,g)∈Ψ

[F (f)F (g)] = E
γ

E
h:γ⊥→{−1,1}

[
E

f,g|h
[F (f)F (g)]

]
= E

γ
E

h:γ⊥→{−1,1}

[
E
f |h

[F (f)] E
g|h

[F (g)]
]
. (5)

Let us write PγF (h) for Ef |h F (f), which is also equal to Eg|h F (g). We now use
the Fourier expansion of F . Note that the domain here is {−1, 1}K instead of Fk

2 .
To avoid confusion with characters and Fourier coefficients for functions on Fk

2 ,
we will index the Fourier coefficients below by sets S ⊆ Fk

2 . Given an f ∈ V , we’ll
write fS for

∏
x∈S f(x) (which is a Fourier character for the domain {−1, 1}K).

Now for fixed γ and h,

PγF (h) = E
f |h

[F (f)] = E
f |h

⎡⎣∑
S⊆Fk

2

F̂ (S)fS

⎤⎦ =
∑
S⊆Fk

2

F̂ (S) · E
f |h

[fS].

The quantity Ef |h[fS ] is equal to hS if S ⊆ γ⊥ as is 0 otherwise. Thus, using
the Parseval identity, we deduce that (5) equals

E
γ

E
h:γ⊥→{−1,1}

[
(PγF (h))2

]
= E

γ

⎡⎣ ∑
S⊆γ⊥

(
F̂ (S)
)2⎤⎦ =

∑
S⊆Fk

2

Pr
γ

[S ⊆ γ⊥] ·
(
F̂ (S)
)2

.

Recalling that γ ∈ Fk
2 \ {0} is chosen uniformly, we have that∑

S⊆Fk
2

Pr
γ

[S ⊆ γ⊥] ·
(
F̂ (S)
)2

=
∑
S⊆Fk

2

2− dim(S) ·
(
F̂ (S)
)2

,
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where we are writing dim(S) = dim(span S) for shortness (and defining dim(∅) =
0). For |S| ≥ 1 we have dim(S) ≥ log2 |S| and hence 2− dim(S) ≥ 1/|S|. Thus∑

S⊆Fk
2

2− dim(S) · F̂ (S)2 ≤ F̂ (∅)2 +
∑

∅�=S⊆Fk
2

F̂ (S)2/|S|.

Corollary 1 shows that this is at most O(1/(K logK)). This completes the proof:

val(A)=2·
∑
α∈Fk

2

E
(γ,f,g)∈Ψ

[Aα(f)Aα(g)] ≤ 2·
∑
α∈Fk

2

2− dim(S)Âα(S)2 =O(1/ logK).

5 Integrality Gap for 2-to-1 Label Cover

The instances for 2-to-1 label cover are bipartite. We denote such instances as
(U, V,E,R1, R2, Π) where R2 = 2R1 denote the alphabet sizes on the two sides.
Due to lack of space, in this extended abstract we only state our integrality gap
instances. In the full version of this work we prove that these instances have SDP
value 1 and OPT value O(1/

√
logK), by reduction to our 2-to-2 gap analysis.

As in the case of 2-to-2 games, the set V consists of equivalence classes
P1, . . . ,Pn, which partition the set of functions F = {f : Fk

2 → {−1, 1}}, ac-
cording to the equivalence relation ∼ defined as f ∼ g ⇔ ∃α ∈ Fk

2 s.t.f ≡ gχα.
The label set [R2] is again identified with Fk

2 and is of size K = 2k.
To describe the set U , we further partition the vertices in V according to other

equivalence relations. For each γ ∈ Fk
2 , γ �= 0, we define an equivalence relation

∼=γ on the set P1, . . . ,Pn as

Pi
∼=γ Pj ⇔ ∃f ∈ Pi, g ∈ Pj s.t. f(1 + χγ) ≡ g(1 + χγ).

This partitions P1, . . . ,Pn (and hence also the set F) into equivalence classes
Qγ

1 , . . . ,Qγ
m. It can be verified that the value of m turns out to be 2K/2+1/K

and the partition is different for each γ. The set U has one vertex for each class
of the form Qγ

i for all i ∈ [m] and γ ∈ Fk
2 \ {0}. As before, we denote by [Qγ

i ] the
lexicographically smallest function in the class Qγ

i , and by Qγ
f the class under

∼=γ containing f . Note that if f ∈ Qγ
i , then there exists a β ∈ Fk

2 such that
f(1 + χγ) ≡ [Qγ

i ]χβ(1 + χγ).
The label set R1 has size K/2. For each vertex Qγ

i ∈ U , we think of the labels
as pairs of the form {α, α+γ} for α ∈ Fk

2 . More formally, we identify it with the
space Fk

2/〈γ〉. We impose one constraint for every pair of the form (γ, f) between
the vertices Pf and Qγ

f . If f ≡ [Pf ]χα and f(1 + χγ) ≡ [Qγ
i ]χβ(1 + χγ), then

the corresponding relation ψ(γ,f) is defined by requiring that for any labelings
A : V → [R2] and B : U → [R1],

(B(Qγ
f ), A(Pf )) ∈ ψ(γ,f) ⇔ A(Pf ) + α ∈ B(Qγ

f ) + β.

Here, if B(Qγ
f ) is a pair of the form {ω, ω+γ}, then B(Qγ

f )+β denotes the pair
{ω + β, ω + γ + β}.
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6 From 2-to-1 Constraints to α-Constraints

In the full version of the paper, we that any integrality gap instance for 2-to-
1 games with sufficiently many edges can be converted to an integrality gap
instance for games with α-constraints. The SDP we consider for these games is
identical to the ones considered before, except for the objective function.

Theorem 3. Let L = (U, V,E,R, 2R,Ψ) be a bipartite instance of 2-to-1 label
cover problem with OPT(L) ≤ δ and SDP value 1. Also, let |E| ≥ 4(|U | +
|V |) log(R)/ε2. Then there exists another instance L′ = (U, V,E, 2R,Ψ ′) of Label
Cover with α-constraints having SDP value 1 and OPT(L′) ≤ δ + ε + 1/R.

In brief, the proof of this result is by adding R “fake” labels for each vertex
u ∈ U , and then randomly augmenting the constraints to make them of the
required form.

7 Discussion

The instances we construct have SDP value 1 only for the most basic semidefinite
programming relaxation. It would be desirable to get gaps for stronger SDPs,
beginning with the most modest extensions of this basic SDP. For example, in
the SDP for 2-to-1 Label Cover from Figure 1, we can add valid nonnegativity
constraints for the dot product between every pair of vectors in the set

{z(u,i) | u ∈ U, i ∈ [R]} ,

since in the integral solution all these vectors are {0, 1}-valued. The vectors
we construct do not obey such a nonnegativity requirement. For the case of
Unique Games, Khot and Vishnoi [10] were able to ensure nonnegativity of all dot
products by taking tensor products of the vectors with themselves and defining
new vectors y′(u,i) = y⊗2

(u,i) = y(u,i) ⊗ y(u,i) and z′(v,j) = z⊗2
(v,j) = z(v,j) ⊗ z(v,j).

Since 〈a⊗2,b⊗2〉 = 〈a,b〉2, the desired nonnegativity of dot products is ensured.
We cannot apply this tensoring idea in our construction as it does not pre-

serve the SDP value at 1. For example, for 2-to-2 Label Cover, if we have
z(u,i1) + z(u,i2) = z(v,j1) + z(v,j2) (so that these vectors contribute 1 to the
objective value to the SDP of Figure 1), then upon tensoring we no longer nec-
essarily have z⊗2

(u,i1) + z⊗2
(u,i2) = z⊗2

(v,j1) + z⊗2
(v,j2). Extending our gap instances to

obey the nonnegative dot product constraints is therefore a natural question that
we leave open. While this seems already quite challenging, one can of course be
more ambitious and ask for gap instances for stronger SDPs that correspond to
certain number of rounds of some hierarchy, such as the Sherali-Adams hierar-
chy together with consistency of vector dot products with pairwise marginals.
For Unique Games, gap instances for several rounds of such a hierarchy were
constructed in [13].
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Abstract. Motivated by applications in storage systems and property
testing, we study data stream algorithms for local testing and toler-
ant testing of codes. Ideally, we would like to know whether there exist
asymptotically good codes that can be local/tolerant tested with one-
pass, poly-log space data stream algorithms.

We show that for the error detection problem (and hence, the lo-
cal testing problem), there exists a one-pass, log-space data stream al-
gorithm for a broad class of asymptotically good codes, including the
Reed-Solomon (RS) code and expander codes. In our technically more
involved result, we give a one-pass, O(e log2 n)-space algorithm for RS
(and related) codes with dimension k and block length n that can dis-
tinguish between the cases when the Hamming distance between the
received word and the code is at most e and at least a · e for some ab-
solute constant a > 1. For RS codes with random errors, we can obtain
e ≤ O(n/k). For folded RS codes, we obtain similar results for worst-
case errors as long as e ≤ (n/k)1−ε for any constant ε > 0. These results
follow by reducing the tolerant testing problem to the error detection
problem using results from group testing and the list decodability of the
code. We also show that using our techniques, the space requirement
and the upper bound of e ≤ O(n/k) cannot be improved by more than
logarithmic factors.

1 Introduction

In this work, we consider data stream algorithms for local testing and tolerant
testing of error-correcting codes. The local testing problem for a code C ⊆ Σn

is the following: given a received word y ∈ Σn, we need to figure out if y ∈ C
or if y differs from every codeword in C in at least 0 < e ≤ n positions (i.e. the
Hamming distance of y from every c ∈ C, denoted by Δ(y, c), is at least e). If
e = 1, then this is the error-detection problem. In the tolerant testing problem,
given y, we need to decide if y is at a distance at most e1 from some codeword
or if it has distance at least e2 > e1 from every codeword in C. Ideally, we would
like to answer the following (see Section 2 for definitions related to codes):
� Research supported by NSF CAREER Award CCF-0844796.
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Question 1. Do there exist asymptotically good codes that can be (tolerant)
tested by one-pass, poly-log space data stream algorithms?

To the best of our knowledge, ours is the first work that considers this natural
problem. We begin with the motivation for our work.

Property Testing. Local testing of codes has been extensively studied under
the stricter requirements of property testing. Under the property testing require-
ments, one needs to solve the local testing problem by (ideally) only accessing a
constant number of positions in y. Codes that can be locally tested with a con-
stant number of queries have been instrumental in the development of the PCP
machinery, starting with the original proof of the PCP theorem [1,2]. The cur-
rent record is due to Dinur, who presents codes that have inverse poly-log rate,
linear distance and can be locally tested with a constant number of queries [9].

General lower bounds on local testing of codes, however, have been scarce.
(See, e.g. the recent paper [5]). In particular, it is not known if there are asymp-
totically good codes that can be locally tested with a constant number of queries.
The question remains open even if one considers the harder task of tolerant test-
ing with a constant number of non-adaptive queries [13].

It is not too hard to see that a non-adaptive tolerant tester that makes a con-
stant number of queries gives a single pass, log-space data stream algorithm for
tolerant testing [17]. Thus, if one could prove that any one-pass data stream al-
gorithm for local/tolerant testing of asymptotically good codes requires ω(logn)
space, then they will have answered the question in the negative (at least for
non-adaptive queries). This could present a new approach to attack the question
of local/tolerant testing with a constant number of queries.

Next, we discuss the implications of positive results for local/tolerant testing.

Applications in Storage Systems. Codes are used in current day storage
systems such as optical storage (CDs and DVDs), RAID ([8]) and ECC memory
([7]). Storage systems, up until recently, used simple codes such as the parity code
and checksums, which have (trivial) data stream algorithms for error detection.
However, the parity code cannot detect even two errors. With the explosion in
the amount of data that needs to be stored, errors are becoming more frequent.
This situation will become worse as more data gets stored on disks [11]. Thus,
we need to use codes that can handle more errors.

Reed-Solomon (RS) codes, which are used widely in storage systems (e.g. in
CDs and DVDs and more recently in RAID), are well known to have good error
correcting capabilities. However, the conventional error detection for RS codes
is not space or pass efficient. Thus, a natural question to ask is if one can design
a data stream algorithm to perform error detection for RS codes.

It would be remiss of us not to point out that unlike a typical application
of a data stream algorithm where n is very large, in real life deployments of
RS codes, n is relatively small. However, if one needs to implement the error
detection algorithm in controllers on disks then it would be advantageous to
use a data stream algorithm so that it is feasible to perform error detection
with every read. Another way to use error detection is in data scrubbing [11].
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Here, error detection is run on the entire disk to catch errors. In addition, the
single pass requirement means that we will probe each bit on a disk only once,
which is good for longevity of data. Finally, it would be useful to generalize an
error-detector to a data stream algorithm that could also locate the errors.

It is also plausible that the efficiency of the data stream algorithms will make
it feasible to use RS codes of block length (and alphabet size) considerably
larger than the ones currently in use. For the storage application, designing
algorithms for a widely used code (such as RS) will be more valuable than
answering Question 1 in the affirmative via some new code. Also, even solving
the tolerant testing problem in this case with large constants e1 and e2 would
be useful. (Although local testing a RS code of dimension k requires at least k
queries1, it does not rule out the possibility of a tester in a data stream setting).

Our Results. We give a one-pass, poly-log space, randomized algorithm to
perform error detection for a broad class of asymptotically good codes such as
Reed-Solomon (RS) and expander codes. As a complementary result, we also
show that deterministic data stream algorithms (even with multiple passes) re-
quire linear space for such codes. Thus, for local testing we answer Question 1 in
the affirmative. This should be contrasted with the situation in property testing,
where it is known that for both asymptotically good RS and expander codes, a
linear number of queries is required. (The lower bound for RS codes was discussed
in the paragraph above and the result for expander codes follows from [6].)

It turns out that using existing results for tolerant testing of Reed-Muller
codes over large alphabets [13], one can answer Question 1 in the affirmative for
tolerant testing, though with O(nε) space for any constant ε > 0 [17].

Given the practical importance of RS codes and given the fact that local
testing for RS codes with data stream constraints is possible, for the rest of
the paper we focus mostly on tolerant testing of RS and related codes. We
first remark that a naive tolerant testing algorithm for RS codes that can be
implemented in O(e log n) space is to go through all the

∑e
i=1

(
n
i

)
possible error

locations S and check if the received word projected outside of S belongs to the
corresponding projected down RS code. (This works as long as e ≤ n− k, which
is true w.l.o.g. since n−k is the covering radius of a RS code of dimension k and
block length n.) Using our error detector for RS codes, this can be implemented
as a one-pass O(e logn)-space data stream algorithm. Unfortunately, the run
time of this algorithm is prohibitive, even for moderate values of e.

In this paper, we match the parameters above to within a log factor but with
a (small) polynomial running time for values of e much larger than a constant.
In particular, we present a one-pass, O(e log2 n)-space, polynomial time random-
ized algorithm for a RS code C with dimension k and block length n that can
distinguish between the cases when the Hamming distance between y and C is
at most e and at least a · e (for some constant a > 1). This reduction works
when e(e+ k) ≤ O(n). If we are dealing with random errors, then we can obtain
ek ≤ O(n). Using known results on list decodability of folded RS codes [14], we

1 This follows from the fact that the “dual” code has distance k + 1.
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obtain similar results for worst case errors for e ≤ (n/k)1−ε for any constant
ε > 0. As a byproduct, our algorithms also locate the errors (if the number of
errors is bounded by e), which is desirable for the storage application. We also
show that using our techniques, the space requirement and the upper bound of
e ≤ O(n/k) cannot be improved by more than logarithmic factors.

Ideally, we would like our data stream algorithms to spend poly-log time per
input position. However, in this paper we will tolerate polynomial time algo-
rithms. In particular, naive implementations of the tolerant testing algorithms
take Õ(n2) time. We also show that at the expense of slightly worse parameters,
we can achieve a running time of Õ(ne) for certain RS codes.

Our Techniques. It is well known that error detection for any linear code can
be done by checking if the product of the received word with the parity check
matrix is the all zeros vector. We turn this into a one-pass low space data stream
algorithm using the fingerprinting method. The only difference from the usual
fingerprinting method, where one uses any large enough field, is that we need
to use a large enough extension field of the finite field over which the code is
defined. To show the necessity of randomness, we use the fooling set method from
communication complexity [16]. However, unlike the usual application of two-
party communication complexity in data stream algorithms, where the stream is
broken up into two fixed portions, in our case we need to be careful about how
we divide up the input [17].

We now move on to our tolerant testing algorithm. We begin with the con-
nection to group testing. Let c be the closest codeword to y and let x ∈ {0, 1}n
denote the binary vector where xi = 1 iff yi �= ci. Now assume we could access x
in the following manner: pick a subset Q ⊆ [n] and check if xQ = 0 or not (where
xQ denotes x projected onto indices in Q). Then can we come up with a clever
way of non-adaptively choosing the tests such that at the end we know whether
wt(x) ≤ e or not? It turns out that we can use group testing to construct such
an algorithm. In fact, using e-disjunct matrices (cf. [10]), we can design non-
adaptive tests such that given the answers to the tests one could compute x if
wt(x) ≤ e, else determine that wt(x) > e. (A natural question is how many
tests do e-disjunct matrices require: we will come back to this question in a bit.)
This seems to let us test whether y is within a Hamming distance of e from some
codeword or not. Note that the above is essentially reducing one instance of the
tolerant testing problem to multiple instances of error-detection.

Thus, all we need to do is come up with a way to implement the tests to
x. A natural option, which we take, is that for any test Q ⊆ [n], we check if
yQ ∈ RSQ[k], where RSQ[k] is the RS code (of dimension k) projected onto Q.
This immediately puts in one restriction: we will need |Q| ≥ k (as otherwise every
test will return a yes). However, there is a subtle issue that makes our analysis
more complicated– we do not necessarily have that xQ = 0 iff yQ ∈ RSQ[k].
While it is true that xQ = 0 implies yQ ∈ RSQ[k], the other direction is not
true. The latter is possible only if y agrees with some codeword c′ �= c in the
positions indexed by Q. Now if s is the size of the smallest test and it is the
case that the only codeword that agrees with y in at least s positions is c, then
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we’ll be done. We show that this condition is true for RS codes if s ≥ e + k for
adversarial errors or with high probability if s ≥ 4k for random errors.

It is now perhaps not surprising that the list decodability of the code plays a
role in our general result for worst-case errors. Assume that the code C under
consideration is (n−s, L) list decodable (i.e. every Hamming ball of radius n−s
has at most L codewords in it) and one can do error detection on C projected
down to any test of size at least s. If we pick our disjunct matrix carefully and
L is not too large, it seems intuitive that one should be able to have, for most of
the tests, that xQ �= 0 implies yQ �∈ CQ. We are able to show that if the matrix
is picked at random, then this property holds. In addition, it is the case that the
“decoding” of x from the result of the test can be done even if some of the test
results are faulty (i.e. yQ ∈ CQ even though xQ �= 0). The proof of this fact
requires a fair bit of work: we will come back to the issues in a bit.

Another side-effect of the fact that our algorithm does not readily translate
into the group testing scenario is that even though we have been able to salvage
the case for wt(x) ≤ e, we can no longer guarantee that if wt(x) > e, that our
algorithm will catch it. In the latter case, our algorithm might say wt(x) > e or
it might return a subset S ⊆ [n] that purportedly contains all the error locations.
However, we can always check if y[n]\S ∈ RS[n]\S [k] to rule out the latter case.
This seems to require another pass on the input but we are able to implement
the final algorithm in one pass by giving a one-pass algorithm for the following
problem: Given as input y followed by T ⊆ [n] such that |T | = e, design a one-
pass O(e log n) space algorithm to check if y[n]\T ∈ RS[n]\T [k]. The main idea is
to encode the locations in T as an unknown degree e polynomial and to fill in
the unknown coefficients once the algorithm gets to T in the input.

We now return to the question of how many tests are needed for e-disjunct
matrices. The best known construction uses O(e2 logn) tests [10] and this is
tight to within a log e factor (cf. [12]). Thus, to get sublinear space, we need to
have e = o(

√
n). To break the

√
n barrier, instead of e-disjunct matrices, we use

the notion of (e, e)-list disjunct matrix [15]. An (e, e)-list disjunct matrix has
the property that when applied to x such that wt(x) ≤ e, it returns a subset
S ⊆ [n] such that (i) xi = 1 implies i ∈ S and (ii) |S| ≤ wt(x) + e. It is known
that such matrices exist with O(e logn) rows. We show that such matrices can
be constructed with O(e log2 n) random bits. However, note we can now only
distinguish between the cases of wt(x) ≤ e and wt(x) ≥ 2e.

The use of list disjunct matrices also complicates our result for worst case
errors that uses the list decodability of the code under consideration. The is-
sue is that when we pick the desired matrix at random, with the extra task of
“avoiding” all of the L−1 codewords other than c that can falsify the answer to
the test, we can only guarantee that the “decoding” procedure is able to recover
a constant fraction of the positions in error. This is similar to the notion of er-
ror reduction in [19]. This suggests a natural, iterative O(log e)-pass algorithm.
Using our earlier trick, we can again implement our algorithm in one pass. Fi-
nally, the plain vanilla proof needs Ω(n) random bits. We observe that the proof
goes through with limited independence and use this to reduce the amount of
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randomness to O(e2 log3 n) bits. Reducing the random bits to something smaller,
such as O(e log n), is an open problem.

The speedup in the run time from the naive Õ(n2) to Õ(ne) for the tolerant
testing algorithms is obtained by looking at certain explicit disjunct matrices
and observing that the reduced error detection problems are nicely structured.

There are two unsatisfactory aspects of our algorithms: (i) The O(e log2 n)
space complexity and (ii) The condition that e ≤ O(n/k) (which in turn follows
from the fact that we have s = n/(2e)). We show that both of these shortcomings
are essentially unavoidable with our techniques. In particular, a lower bound on
the 1+ decision tree complexity of the threshold function from [3] implies that
at least Ω(e) invocations of the error detection routine are needed. Further, we
show that for sublinear test complexity, the support size s must be in O(ne logn).
This follows by interpreting the reduction as a set cover problem and observing
that any set covers only a very small fraction of the universe.

Due to space restrictions all proofs and some discussions are omitted from
this extended abstract. The details can be found in the full version [17].

2 Preliminaries

We begin with some notation. Given an integer m, we will use [m] to denote the
set {1, . . . ,m}. We will denote by IFq the finite field with q elements. An a × b
matrix M over IFq will be called strongly explicit if given any (i, j) ∈ [a]× [b], the
entry Mi,j can be computed in space poly(log q + log a + log b). Given a vector
y ∈ Σn (C ⊆ Σn resp.) and a subset S ⊆ [n], we will use yS (CS resp.) to
denote y (vectors in C resp.) projected down to the indices in S. We will use
wt(x) to denote the number of non-zero entries in x. Further, for S ⊆ [n], we
will use wtS(x) to denote wt(xS).

Codes. A code of dimension k and block length n over an alphabet Σ is a subset
of Σn of size |Σ|k. The rate of such a code equals k/n. A code C over IFq is
called a linear code if C is a linear subspace of IFn

q . If C is linear, then it can
be described by its parity-check matrix H , i.e. for every c ∈ C, H · cT = 0. An
asymptotically good code has constant rate and constant relative distance (i.e.
any two codewords differ in at least some fixed constant fraction of positions).

Tolerant Testers. We begin with the central definition. Given a code C ⊆ Σn,
reals 0 ≤ d < c ≤ 1, 0 ≤ ε1 < ε2 ≤ 1 and integers r = r(n) and s = s(n),
an (r, s, ε1, ε2)c,d-tolerant tester T for C is a randomized algorithm with the
following properties for any input y ∈ Σn: (1) If Δ(y, C) ≤ ε1n, then T accepts
with probability at least c; (2) If Δ(y, C) ≥ ε2n, then T accepts with probability
at most d; (3) T makes at most r passes over y; and (4) T uses at most s space
for its computation.

Further, we will consider the following special cases of an (r, s, ε1, ε2)c,d-
tolerant tester: (i) An (r, s, 0, ε)c,d-tolerant tester will be called an (r, s, ε)c,d-
local tester. (ii) An (r, s, 0, 1/n)c,d-tolerant tester will be called an (r, s)c,d-error
detector. There are some definitional issues that are resolved in the full version
of this paper [17].
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List Disjunct Matrices. We give a low-space algorithm that can compute a
small set of possible defectives given an outcome vector which is generated by a
list disjunct matrix [17].

Some Explicit Families of Codes. We now mention two explicit families of
codes that we will see later on in the paper. We first begin with the Reed-Solomon
code. Given q ≥ n ≥ 1 and a subset S = {α1, . . . , αn} ⊆ IFq, the Reed-Solomon
code with evaluation set S and dimension k, denoted by RSS [k], is defined as
follows: Any message in IFk

q naturally defines a polynomial P (X) of degree at
most k − 1 over IFq. The codeword corresponding to the message is obtained
by evaluating P (X) over all elements in S. It is known that a (n − k) × n

parity check matrix of RSS is given by HRSS = {vj · αi
j}

n−k−1, n
i=0 , j=1, where

vj = 1∏
1≤�≤n,� �=j(αj−α�)

.
Another explicit code family we will consider are expander codes. These are

binary codes whose parity check matrices are incidence matrices of constant-
degree bipartite expanders. In particular, if we start with a strongly explicit
expander, then the parity check matrix of the corresponding expander code will
also be strongly explicit.

3 Data Stream Algorithms for Error-Detection

A positive result. We first show that any linear code with a strongly explicit
parity check matrix has an efficient 1-pass data stream error detector.

Note that for a linear code C ⊆ IFn
q with parity check matrix H , the error

detection problem with the usual polynomial time complexity setting is trivial.
This is because by the definition of parity check matrix for any y ∈ IFn

q , y ∈ C

if and only if H · yT = 0. However, the naive implementation requires Ω(n)
space which is prohibitive for data stream algorithms. We will show later that
for deterministic data stream algorithms with a constant number of passes, this
space requirement is unavoidable for asymptotically good codes.

However, the story is completely different for randomized algorithms. If we are
given the syndrome s = HyT instead of y as the input, then we just have to solve
the set equality problem which has a very well known one-pass O(log n)-space
data stream algorithm based on the finger-printing method. Because s is a fixed
linear combination of y (as H is known), we can use the fingerprinting technique
in our case. Further, unlike the usual fingerprinting method, which requires any
large enough field, we need to use an extension field of IFq. For this, we first need
to get our hands on irreducible polynomials over IFq, but fortunately this isn’t
difficult [17]. We now state our result.

Theorem 1. Let C ⊆ IFn
q be a linear code of dimension k and block length n

with parity check matrix H = {hi,j}n−k−1,n
i=0 ,j=1. Further, assume that any entry

hi,j can be computed in space S(n, q), for some function S. Given an a ≥ 1,
there exists a (1, O(S(n, q) + a logn))1,n−a-error detector for C.

It is easy to check that S(q, n) is O(log n) for (strongly explicit) expander codes
and RS codes. This implies the following:
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Corollary 1. Let n ≥ 1. Then for q = 2 and n ≤ q ≤ poly(n), there exists an
asymptotically good code C ⊆ IFn

q that has a (1, O(logn))1,1/2-error detector.

A negative result. We show that randomness is necessary even for local testing.
In particular, we show the following [17]:

Theorem 2. Let C ⊆ [q]n be a code of rate R and relative distance δ and let
0 ≤ ε ≤ δ2/8 be a real number. Then any (r, s, ε)1,0-local tester for C needs to
satisfy r · s ≥ δRn

6 .

Error detection of a projected down code. We will be dealing with RSS [k]
with S = {α1, . . . , αn}. In particular, we are interested in a one-pass, low space
data stream algorithm to solve the following problem: The input is y ∈ IFn

q

followed by a subset E ⊆ S with |E| = e. We need to figure out if yS\E ∈
RSS\E [k]. We have the following result [17]:

Lemma 1. Let e, n, k ≥ 1 be integers such that k + e ≤ n. Then the problem
above can be solved by a one-pass, O(e + a logn) space data stream algorithm
with probability at least 1− n−a, for any a ≥ 1.

4 Tolerant Testing

In this section we assume that we are working with RSS [k], where S = {α1, . . . ,
αn} ⊆ IFq. (However, our results will also hold for closely related codes such as
the folded RS code [14].)

As was mentioned in the Introduction, there is a trivial reduction from one tol-
erant testing instance (say where we are interested in at most e vs. > e errors)
to
(
n
e

)
instances of error detection: for each of the

(
n
e

)
potential error locations,

project the received word outside of those indices and check to see if it’s a code-
word in the corresponding RS code via the algorithm in Theorem 1. Using The-
orem 1 (with a = O(e)), we can implement this as an (1, O(e logn), e/n, (e +
1)/n)1,n−Ω(e)-tolerant tester. Unfortunately, this algorithm uses n

e
O(e) time. Next,

we show how to obtain roughly the same space complexity but with a much better
time complexity.

Theorem 3. Let e, k, n ≥ 1 be integers such that k ≤ n and e ≤ n− k. Then

(a) If e(e + k) ≤ O(n), then there exists a (1, O(e log2 n), e/n, 2e/n)1,n−Ω(1)-
tolerant tester for RSS [k] under worst-case errors.

(b) If ek ≤ O(n), then there exists a (1, O(e log2 n), e/n, 2e/n)1,n−Ω(1)-tolerant
tester for RSS [k] under random errors.

(c) If e ≤ O( s+1
√

sn/k), then there exists a (1, O(e2 log3 n), e/n, 5e/n)1,n−Ω(1)-
tolerant tester for the folded RS code with folding parameter s under worst-
case errors.

Further, all the algorithms can be implemented in Õ(n2) time.
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In the above, the soundness parameter follows by picking a to be large enough
while using Theorem 1. We observe that a naive implementation achieves the
Õ(n2) run time. We also show that for part (a) and (b) by replacing n by n/ logn
in the RHS of the upper bound on k and bumping up the space to O(e2 log2 n),
the algorithms for RSIFq

[k] can be implemented in Õ(ne) time. In fact, along with
the faster running time, we get (1, O(e log2 n), e/n, (e + 1)/n)1,n−Ω(1) -tolerant
testers [17]. For the rest of the section, we will focus on the other parameters of
the algorithms.

All of the results above follow from a generic reduction that uses group testing.
In particular, let y be the received word that we wish to test, and c be the nearest
codeword to y. Let x ∈ {0, 1}n be the characteristic vector associated with error
locations in y with respect to c. The high level idea is essentially to figure out
x using group testing. We will need one definition and one proposition:

Definition 1. Let n, s1, s2, e, �, L ≥ 1 be integers with s1 ≤ s2 and let 0 ≤ γ ≤ 1
be a real. For any subset T ⊂ [n] such that |T | ≤ e, let Fs1,s2(T ) be a collection
of forbidden subsets of [n] of size in the range [s1, s2] such that |Fs1,s2(T )| ≤ L.
A t × n binary matrix M is called a (e, �, γ,Fs1,s2)-list disjunct matrix if there
exist integers 0 ≤ b1 < b2 such that the following hold for any T ⊆ [n] with
|T | ≤ e:

1. For any subset U ⊆ [n] such that |U | ≥ � and U ∩ T = ∅, there exists an
i ∈ U with the following property: The number of rows where the ith column
of M has a one and all the columns in T have a zero is at least b2.

2. The following holds for at least (1 − γ)e many i ∈ T : Let Ri denote all the
rows of M (thought of as subsets of [n]) that contain i. Then |{U ∈ Ri|U ⊆
V, for some V ∈ Fs1,s2(T )}| ≤ b1.

This definition is a natural extension of (e, �)-list disjunctness from [15], which
is itself an extension of the (e)-disjunct matrix from [10].

Proposition 4. Let n, e, �, s1, s2, L, γ,Fs1,s2 be as in Definition 1. Let M be a
(e, �, γ,Fs1,s2)- list disjunct matrix with t rows. Finally, consider an outcome
vector r of applying M to a set of defectives E with |E| ≤ e in the (e,Fs1,s2)-
group testing scenario. Then there exists an algorithm A, which given r can
compute a set G such that |G| ≤ � + e − 1 and |E \ G| ≤ γe. Further, A uses
O(t + logn + S(t, n)) space, where S(t, n) is the space required to compute any
entry of M .

Let M be a t×n binary matrix that is (e, e)-list disjunct. We can get our hands
on M with t = O(e logn) with O(e log2 n) space [17]. Now consider the following
natural algorithm:

For all i ∈ [t], check if yMi ∈ RSMi [k], where Mi is the subset corre-
sponding to the ith row of M . If so, set ri = 0, else set ri = 1. Run A
from Proposition 4 with r as input, to get x̂. (Step 1) If wt(x̂) ≥ 2e,
declare that ≥ 2e errors have occurred. (Step 2) If not, declare ≤ e
errors iff yS\T ∈ RSS\T [k], where T is the subset corresponding to x̂.
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The way the algorithm is stated above, it seems to require two passes. However,
using Lemma 1, we can run Step 2 in parallel with the rest of the algorithm,
resulting in a one-pass implementation.

Let z be the result of applying M on x. Now if it is the case that zi = 1 iff
ri = 1, then the correctness of the algorithm above follows from the fact that M
is (e, e)-list disjunct and Proposition 4. (If wt(x) ≤ e, then we have Sx ⊆ Sx̂

(where Sx is the subset of [n] whose incidence vector is x) and wt(x̂) < 2e, in
which case the algorithm will declare at most e errors. Otherwise, the algorithm
will “catch” the at least e errors in either Step 1 or failing which, in Step 2.)

However, what complicates the analysis is the fact that even though zi = 0
implies ri = 0, the other direction is not true. In particular, we could have
yMi ∈ RSMi [k], even though (y − c)Mi �= 0. The three parts of Theorem 3
follow from different ways of resolving this problem.

Note that if wt(x) ≥ 2e, then we will always catch it in Step 2 in the worst-
case. So from now on, we will assume that 0 < wt(x) ≤ e. Let the minimum
support of any row in M be s.

We begin with part (a). Let s > k+e and define Δ = y−c. Note that we are in
the case where 0 < wt(Δ) ≤ e. Since s ≥ k and cMi ∈ RSMi [k], yMi ∈ RSMi [k]
if and only if ΔMi ∈ RSMi [k]. Note also that for any i, wt(ΔMi ) ≤wt(Δ) ≤ e.
Now, the distance of RSMi [k] is s− k− 1 > e, so for every i with non-zero ΔMi ,
ΔMi �∈ RSMi [k], which in turn means that zi = 1 will always imply that ri = 1
when M has the stated support. It can be shown that s ≥ n/(2e) [17], which
concludes the proof of part (a).

The following lemma follows from the random errors result in [18] and is
needed for part (b):

Lemma 2 ([18]). Let k ≤ n < q be integers such that q >
(
n
k

)2. Then the
following property holds for RS codes of dimension k and block length n over
IFq: For ≥ 1− q−Ω(k) fraction of error patterns e with wt(e) ≤ n− 4k and any
codeword c, the only codeword that agrees in ≥ 4k positions with c + e is c.

Now if s ≥ 4k, then with high probability, every non-zero ΔMi �∈ RSMi [k] (where
Δ is as defined in the proof of part (a)). The fact that s ≥ n/(2e) completes the
proof of part (b).

The proof of part (c) is more involved and needs a strong connection to the
list decodability of the code being tested, which we discuss next.

Connection to List Decoding. Unlike the proofs of part (a) and (b) where
the plain vanilla (e, e)-list disjunct matrix works, for part (c), we need and use a
stronger notion of list disjunct matrices. We show that if the list disjunct matrix
is picked at random, the bad tests (i.e. ri = 0 even though zi = 1) do not
happen often and thus, one can decode the result vector even with these errors.
We show that these kind of matrices suffice as long as the code being tested
has good enough list decodability. The tolerant testing algorithm for a Reed-
Solomon code, for instance, recursively reduces the amount of errors that need
to be detected, and after application of Lemma 1, can be made to accomplish this
in a single pass. We also show that list disjunct matrices with relevant parameters
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from Definition 1 can be found, with high probability, using low space and a low
number of random bits [17].

The space requirement of O(e2 log2 n) of part (c) is unsatisfactory. Reducing
the amount of randomness needed to something like O(e log n) will realize the
full potential our algorithm. We leave this as an open problem.

5 Limitations of Our Techniques

One shortcoming of Theorem 3 is that to distinguish between (say) at most e
and at least 2e errors, we needed e · s ≤ O(n), where s is the minimum support
size of any test. Another shortcoming is that we need O(e log n) space. In this
section, we show that our techniques cannot overcome these limits.

We begin with some quick notation. For any k ≥ 1, a k++ query to a string
x ∈ {0, 1}n corresponds to a subset S ⊆ [n]. The answer to the query is xS if
wt(xS) < k, otherwise the answer is k++ (signifying that wt(xS) ≥ k). (This is
a natural generalization of k+ decision trees considered by Aspnes et al. [3].) A
k++ algorithm to solve the (�, t, n)-threshold function makes a sequence of k++

queries to the input x ∈ {0, 1}n, and can tell whether wt(x) ≤ � or wt(x) ≥ t. If
we think of x as being the indicator vector for error locations, then our reduction
from tolerant testing to error detection can be thought of as a 1++ algorithm
for the (e,O(e))-threshold function.

First we show that the minimum support size that we obtain in our reduction,
even with the stronger k++ primitive, is nearly optimal [17].

Theorem 5. Let 0 ≤ � < t ≤ n and k ≥ 1 be integers. Let ε < 1/2 be a constant
real. Then any non-adaptive, randomized k++ algorithm for the (�, t, n)-threshold
problem with error probability at most ε, where all the queries have support size
at least s, needs to make at least es�/n/nO(k) queries. In particular, any algorithm
that makes a sublinear number of queries needs to satisfy s · � ≤ O(kn log n).

Note that our reduction maps one tolerant testing problem instance (where say
we want to distinguish between at most e error vs. at least 2e errors) to O(e log n)
many instances of error detection. Next we show that this is essentially unavoid-
able even if we use k++ queries for constant k. The following result follows from
the results in [3] and is proven in the full version of the paper [17].

Theorem 6. Let 0 ≤ � < t ≤ n and k ≥ 1 be integers. Then any adaptive, deter-
ministic k++ algorithm for the (�, t, n)-threshold problem makes Ω(�/k) queries.

Acknowledgments

We thank Venkat Guruswami, Steve Li and Ram Swaminathan for helpful dis-
cussions. Thanks to Chris Umans for pointing out [4] to us.



640 A. Rudra and S. Uurtamo

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

2. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.
J. ACM 45(1), 70–122 (1998)

3. Aspnes, J., Blais, E., Demirbas, M., O’Donnell, R., Rudra, A., Uurtamo, S.: k+
decision trees (2010) (manuscript)

4. Bellare, M., Rompel, J.: Randomness-efficient oblivious sampling. In: Proceedings
of the 35th Annual Symposium on Foundations of Computer Science (FOCS), pp.
276–287 (1994)

5. Ben-Sasson, E., Guruswami, V., Kaufman, T., Sudan, M., Viderman, M.: Locally
testable codes require redundant testers. In: IEEE Conference on Computational
Complexity, pp. 52–61 (2009)

6. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3cnf properties are hard to
test. SIAM J. Comput. 35(1), 1–21 (2005)

7. Chen, C.L., Hsiao, M.Y.: Error-correcting codes for semiconductor memory ap-
plications: A state-of-the-art review. IBM Journal of Research and Develop-
ment 28(2), 124–134 (1984)

8. Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: RAID: High-
performance, reliable secondary storage. ACM Computing Surveys 26(2), 145–185
(1994)

9. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
10. Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and its Applications. World

Scientific, Singapore (2000)
11. Elerath, J.: Hard-disk drives: The good, the bad, and the ugly. Communications

of the ACM 52(6), 38–45 (2009)
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Abstract. We find“combinatorially optimal” (guaranteed by the degree-
sequence alone) independent sets for graphs and hypergraps in linear space
in the semi-streaming model.

We also propose a new output-efficient streaming model, that is more
restrictive than semi-streaming (n · logO(1) n space) but more flexible
than classic streaming (logO(1) n space). The algorithms in this model
work in poly-logarithmic space, like in the case of the classical streaming
model, but they can access and update the output buffer, treating it as
an extra piece of memory.

Our results form the first treatment of the classic IS problem in the
streaming setting.

1 Introduction

In this paper we consider streaming algorithms for the classic independent set
problem on graphs and hypergraphs. As input, we are presented with a (hy-
per)graph edge by edge, and we have to output a large set of vertices that
contains no (full) edges. For graphs, a theorem of Paul Turan guarantees an
independent set of size n/(d+ 1), where d is the average degree of the graph. If
the entire degree-sequence, d1, . . . , dn of the graph is available, then

∑n
i=1

1
di+1

is a stronger lower bound for the maximum independent set size (in this paper
n will always denote the number of nodes of the input graph). The formula has
a generalization for hypergraphs as well (see Section 1.2). This “combinatorially
optimal” output size is what we will require of our algorithms.

In the streaming model [13], the data is presented sequentially in the form of a
data stream, one item at a time, and the working space (the memory used by the
algorithm) is significantly less than the size of the data stream. The motivation
for the streaming model comes from practical applications of managing massive
data sets such as, e.g., real-time network traffic, on-line auctions, and telephone
call records. These data sets are huge and arrive at very high rate, making it
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impossible to store the entire input and forcing quick decisions on each data item.
However, most graph problems are impossible to solve within the polylogarithmic
space bound that the traditional streaming model offers (a rare exception is an
algorithm for the problem of counting triangles in a graph [5]).

This observation led to the introduction of the semi-streaming model [13],
where space for n-vertex graphs is restricted to n logO(1) n. The algorithms then
have enough space for some information for each vertex, but not enough to store
the whole graph. A number of graph problems have been studied in the semi-
streaming model, including bipartite matching (weighted and unweighted cases)
[10,9], diameter and shortest paths [10,11], min-cut [1], and graph spanners [11].
The independent set (IS) problem, to our best knowledge, has not been studied
in the model before.

In the case of IS, the n logO(1) n-bound of semi-streaming seems overly gener-
ous, but we cannot reasonably expect a sublinear bound, given the need to store
the problem solution. Instead, we suggest that the focus be placed on the amount
of extra space required, i.e. in addition to that required for storing the solution.

All the algorithms we consider have the common feature that they maintain a
feasible solution at all times. Also, decisions made on edges are irreversible: once
a node is ejected from the solution, it never enters it again. This defines a new
online streaming model. It is closely related to preemptive online algorithms,
considered recently by Epstein et al.[9] in a streaming context for weighted
matching. The difference is that in our problem, we can view the whole ver-
tex set as belonging to the initial solution, thus the solution of any algorithm is
monotonously non-increasing with time. There have been few works on online
graph problems that allow for one-way changes. A rare example is a recent work
of [8] that can be viewed as dealing with maintaining a strong independent set
of a hypergraph when edges arrive in a stream.

To contrast, in the classical online version of the IS problem [12,2], vertices
arrive one by one, along with all incident edges to previous vertices. The online
algorithm must then determine once and for all whether the node is to be in-
cluded in the constructed feasible independent set solution. This problem is very
hard to approximate [12,2]; e.g., a competitive factor of n−1 is best possible for
deterministic algorithm, even when restricted to trees. However, bounded-degree
graphs are comparatively easy, since a factor of Δ is trivial for a deterministic
greedy algorithm.

By focusing on the space requirements and the way the working space can be
used, we seek to gain a deeper understanding of the way independent sets can
be computed. We generally try to avoid any prior assumptions such as knowing
the set or the number of vertices in advance, and we are willing to pay a well-
calculated price for this in terms of extra space.

1.1 Our Contribution

We design space-efficient semi-streaming algorithms for IS. Our starting point
is algorithm RandomOffLine of Shachnai and Srinivasan [14] (see Fig. 2). We
modify this algorithm to achieve:
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– O(n log r) space, instead of n logn, where r is the cardinality of the largest
hyperedge (Algorithm RandomPartialPermute). Also, n does not need
to be known for the algorithm in advance.

– O(n) space (Algorithm RandomMap; here n needs to be known in advance,
and the constants are somewhat compromised).

We also analyse the situation, where we are allowed to keep only a single bit (!)
per node.

Finally, we explore new models of semi-streaming and argue upper and lower
bounds. In the on-line semi-streaming model output-changes can go only in
one direction and a feasible solution must be maintained at all times. Also,
memoryless algorithms are allowed only logarithmic extra space in addition to
the bits required to store the solution.

1.2 Definitions

Given a hypergraph H = (V,E), let n and m be the number of vertices and
edges in H , respectively. We assume that H is a simple hypergraph, i.e. no edge
is a proper subset of another edge. An independent set I in H is a subset of
vertices that contains no edge of H . If I is independent, then V \ I is said to be
a hitting set.

A hypergraph is r-uniform if all edges have the same cardinality r. Graphs
are exactly the 2-uniform hypergraphs. For graphs and hypergraphs the degree
d(v) of a vertex v is the number of edges incident on v. We denote by Δ and
d the maximum and the average degree, respectively. For us, a much better
measure for the degree of the vertex v of H is 1/p, where p is the solution of∑

e�v p
|e|−1 = 1. This we call the efficient degree of v, and we denote it by d∗(v).

Also, define i(H) =
∑

v
1

d∗(v) . For intuition, note that for a d-regular k-uniform

hypergraph H , i(H) = n/ k−1
√
d. Let α(H) be the maximum independent set

size of H . What makes i(H) interesting for us is that α(H) = Ω(i(H)). In
fact, Ω(i(H)) is the strongest lower bound for α(H) we can obtain from the
degree-sequence alone. Let IS denote the problem of finding an independent set
in hypergraphs of size Ω(i(H)).

We can generalize all of the definitions for weighted (hyper)graphs. A vertex-
weighted hypergraph has a non-negative weight function on its vertices. The
notions of average degree etc. carry over to the weighted case in a natural way,
for instance i(H) becomes

∑
v

w(v)
d∗(v) , where w is the weight function. Most of our

results will carry over to the weighted case with obvious modifications.
We also note that our algorithms will be such that if vertices with degree 0

should appear in H , then they will be automatically included in the independent
set that the algorithm outputs.

We assume that the vertices are labelled 0, . . . , n−1. This assumption can be
voided by simply maintaining a lookup table, but the storage requirements for
such lookup are beyond the scope of our considerations here.
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For this article, the most precious resource is space, and we model and regard
memory as a linear array of bits with direct access (as in standard C program-
ming).

2 A Basic Algorithm

All of our algorithms will be based on the well known observation, that in a sparse
graph random sets of the right size are nearly independent. The algorithm we
present in Fig. 1 is crucial to the analysis of the subsequent algorithms in later
sections.

Remark. On a random set of size pn we shall mean either of the two things: 1.
We select a subset of V = [n] of size pn uniformly and randomly. 2. We create
a random subset X of V by the procedure that selects all nodes in V randomly
and independently with probability p. While we prove Lemma 1 only for case 2,
our applications will use lemma for case 1, where it also holds.

Algorithm Basic[p, H]
Input: a hypergraph H(V, E), probability value p

S ← ∅
Let X be a random subset of V of size pn.
For each edge e ∈ E(H) do

If e �⊆ X, let v be any vertex in e \X;
otherwise, let v be any vertex of e.
S ← S ∪ {v}

Output I = V \S

Fig. 1. Algorithm Basic is crucial for most of our performance analysis

We now analyze Basic[p, H].

Lemma 1. Let H(V,E) be a hypergraph and let A be the set of nodes of H with
efficient degree ≤ 1

2p . Then Basic[p, H] will return an independent set I such
that E[|A ∩ I|] ≥ p|A|/2.

Proof. For a node v, let χv be the random variable that takes value 1 if the
node is selected into I, and 0 otherwise. Then |A ∩ I| =

∑
v∈A χv. To estimate

the expectation of χv from below, notice that if v is in X , but for every edge
e incident on v we have e �⊆ X , then v ∈ I. The probability that v ∈ X is p.
The conditional probability that for an e with v ∈ e we have that e �⊆ X is
1− p|e|−1. If the edges incident on v would have only vertex v in common, and
were otherwise disjoint, then this would give us the probability

p
∏

e: v∈e

(
1− p|e|−1

)
≥ p

(
1−
∑
e: v∈e

p|e|−1

)
≥ p/2
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for the desired event, where the last inequality follows from
∑

e: v∈e(2p)
|e|−1 ≤ 1,

since the efficient degree of any v ∈ A by our assumption is at least 1/(2p). When
the (hyper)edges that are incident on v arbitrarily intersect, we use the FKG-
inequality as in [14] towards getting the exact same estimate. The latter implies
that the correlations that arise by letting the edges overlap will make the event
that none of them is contained in X more likely (we omit the details).

The lemma now follows from the additivity of expectation.

3 Permutation-Based Algorithms

The idea of permutation-based algorithms is to randomly permute vertices and
use this random permutation to decide which vertices to include in the indepen-
dent set. Given a set of vertices V , the randomized algorithm RandomOffLine

(see Fig. 2) creates a permutation π on the given set V of vertices. The last ver-
tex of each edge is added to a set S. The set S forms a hitting set and V \S an
independent set.

Algorithm RandomOffLine

Input: a hypergraph H(V,E)

S ← ∅
Let π be a random permutation of the vertices in V
For each edge e ∈ E(H) do

Let v be the last vertex in e with respect to π
S ← S ∪ {v}

Output I = V \S

Fig. 2. The off-line algorithm RandomOffLine

Shachnai and Srinivasan [14] proved the following performance bounds for
RandomOffLine on hypergraphs. An elegant proof for graphs is featured in
the book of Alon and Spencer [4].

Theorem 1 ([14]). Given a hypergraph H, the off-line algorithm RandomOf-

fLine finds an independent set of expected weight Ω(i(H)).

A simple heuristic improvement to the algorithm is to add the last vertex of an
edge to S only if that edge doesn’t already have a representative in the set, i.e.,
if e ∩ S �= ∅. Since the addition of this condition never decreases the solution
size, the performance claims continue to hold.

It is immediately clear that RandomOffLine is actually a streaming algo-
rithm, since it treats the edges in whichever given order. We can even avoid the
assumption that the algorithm knows the number n of vertices in advance. For
that, we construct a random permutation π on-the-fly by randomly inserting
each new vertex in the ordering of the previous vertices.
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We can significantly reduce the space by constructing a partial random per-
mutation instead of a complete random permutation. Each vertex v is associated
with a finite sequence sv of random bits, where each bit in sv is independently
set to 0 or 1 with equal probability. A partial random permutation of the vertex
set V is then a lexicographic order of the corresponding bit-sequences {sv}v∈V .
Consider an edge e ∈ E. Let {sv|v ∈ e} be the set of bit-sequences associated
with the vertices in e. For vertices u, v ∈ e, we write u 5 v if su follows sv in
lexicographical order. We define the vertex u ∈ e to be the last in e, if su is
lexicographically last in the set {sv|v ∈ e}. The idea is that for each vertex v ∈ e
we use the minimum number of bits required to determine if sv is the last in
{sv|v ∈ e}. In other words, we just need to determine which vertex in e is the
last, and the relative order of other vertices in e is not important. The formal
description of this algorithm RandomPartialPermute is given in Fig. 3. Let
sv[j] be the j-th bit in sv.

Algorithm RandomPartialPermute

Input: a stream E of edges

V ← S ← ∅
For each edge e in the stream E do

For each vertex v ∈ e such that v /∈ V do
V ← V ∪ {v}
sv ← ∅

U ← {e}
j ← 1
While |U | �= 1 do

For each v ∈ U such that sv[j] is not defined do
sv[j] = 1 with probability 1

2
, otherwise sv[j] = 0

If ∃v ∈ U such that sv[j] = 1
U ← U\{v ∈ U | sv[j] = 0}

j ← j + 1
S ← S ∪ U

Output I = V \S

Fig. 3. The algorithm RandomPartialPermute

As stated, the algorithm RandomPartialPermute is not fully implemented.
Specifically, it remains to organize the bits stored into a structure that can be
easily accessed. Various approaches are possible that all complicate the picture.
We will instead leave the idea in this partially developed state.

Theorem 2. RandomPartialPermute finds an independent set of expected
weight Ω(i(H)) using expected O(n log r) space and O(r) time to process each
edge.

Proof. First, we show that the ordered set S = {sv|v ∈ V } forms a partial permu-
tation of V . We note that a random permutation can be created by assigning each
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vertex a random number drawn from the uniform distribution on [0, 1) and assert-
ing that u follows v in π, if the random number assigned to u is greater than the
random number assigned to v. A uniform random number drawn from [0, 1) can be
viewed as an infinite sequence of unbiased random bits. RandomPartialPer-

mute creates such a bit-sequence with only as many bits created as needed to
determine if sv is lexicographically last in {sv|v ∈ e} for every edge e such that
v ∈ e. Therefore, the set {sv|v ∈ V } forms a partial permutation of V and we can
apply the same argument as in the proof of Theorem 1 to show that Random-

PartialPermute finds an independent set of expected weight Ω(i(H)).
In the remainder we show that the algorithm uses O(n log r) space to store

the set {sv} of bit-sequences. Given a vertex v, we say that we open the j-th bit
in sv, if the algorithm assigns sv[j] to either 0 or 1.

Consider an edge e incident on v. Let sv,e be the bit-sequence sv at the time
e appears in the stream and let u 5 v if su,e > sv,e. Let U v(e) = {u ∈ e|u 5 v},
U≺v(e) = {u ∈ e|v 5 u} and U=v(e) = {e}\ (U v(e) ∪ U≺v(e)). We need to open
more bits in sv,e only if U v(e) = ∅ and U=v(e) �= ∅, because in this case the
vertices in U=v(e) have the highest bit-sequences and these bit-sequences are
exactly the same as sv,e. In this case we say that e is problematic for v. In any
other case, the opened bits in sv,e are sufficient to decide which vertex covers e,
namely e is covered either by a vertex u ∈ U v(e) if U v(e) �= ∅ or by the vertex
v if U v(e) = ∅ and U=v(e) = ∅.

To simplify the analysis we will open bits in batches, 3 log r bits are opened
initially and immediately following the resolution of a problematic edge, and
further as many bits are opened as are needed to resolve a problematic edge.

Consider an edge e problematic for v. We compute an upper bound on the
expected number of vertices that have the same bit-sequence as v and condition
the computation of this expectation over all the values that v can take. Each time
we encounter a problematic edge we are guarenteed to have 3 log r bits which
may be considered to be random. The bit-sequences that the other vertices in
e take are conditioned on being less than or equal to the bit-sequence for v.
Then, the expected number of vertices that have the same bit-sequence as v in
e at the 3 log r bits under consideration can be determined by: summing over
all r3 possible values that the bit-sequence for v can take and multiplying the
probability that v takes the value of a given bit-sequence, 1

r3 , with the expected
number of other nodes in e that take the same bit-sequence value. The expected
number of nodes in e taking the same bit-sequence value as v is bounded by
(r−1)
i+1 , where i is the bit-sequence value of v (As | e− {v} |≤ r − 1 and i + 1 is

the number of bit-sequences ≤ i). We get an expression

|U=v(e)| ≤
r3∑
i=0

1
r3 (r − 1)

1
i + 1

≤
(3 log r + 1) r−1

r

r2 ≤ 1
r
.

Each time we encounter a problematic edge e, we open 3 log r bits and then as
many bits as needed to determine which of the vertices in U=v(e) has the highest
bit-sequence, in expectation log(1 + 1

r ) bits. In total we open in expectation
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∞∑
i=0

(
3 log r + log(1 +

1
r
)
)(

1
r

)i
≤ 6 log r

bits.

3.1 Linear Space Algorithm

Interestingly, we can run algorithm Basic “in parallel,” for many different p’s
at the same time in the same sequential algorithm! This happens in the case of
algorithm RandomOffLine. For a random permutation π, define

Xk = {first k elements of π} .

Now Xk is a random set with size pn, where p = k/n. Notice that upon running
RandomOffLine we also run Basic for Xk for k = 1, . . . , n in parallel. Indeed,
it holds that when a hyperedge e is processed, we add the last vertex, v, of e to
S. Thus, unless e ⊆ Xk, vertex v is not in Xk. Using this property, we see that
for every vertex v the expectation of χv of Lemma 1 is at least 1

4(d∗(v)+1) , just
by picking Xk for the node with k = n/d∗, and applying the same argument
to bound E[χv] from below, as in Lemma 1. Theorem 1 (aside from a constant
factor) now follows easily from the additivity of expectation.

We now create a new, more efficient algorithm, RandomMap from the ob-
servation that the above argument goes through even when we only use the
properties of Xk for k = 1, 2, 4, 8, . . .. Indeed, if v has efficient degree d∗ then
choose n

2d∗ ≤ k ≤ n
d∗ . Then, we get that χv of Lemma 1 is at least 1

8(d∗(v)+1) .

Algorithm RandomMap

Input: a hypergraph H(V,E)

S ← ∅
Let ρ be a random map V → [log n] described below.
For each edge e ∈ E(H) do

Let v be the vertex in e with the largest image in ρ
(with conflicts resolved arbitrarily)

S ← S ∪ {v}
Output I = V \S

Fig. 4. Algorithm RandomMap

To provide the Xk, for all powers of two, we do not need to create a per-
mutation of the nodes. A map ρ : V → [logn] suffices, where the probability of
ρ(v) = i is 1/2i (to make the total probability equal to one, we set the probability
of ρ(v) = logn to be 2/n instead of 1/n).

Our new algorithm runs in the same way as RandomOffLine, except that
π is replaced by ρ, and when conflicts (i.e., when the smallest element is not
unique) are resolved arbitrarily.
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We now describe how to store and access ρ using small space. Since the domain
of ρ has size logn, there is a straightforward random access implementation
that uses only space n log logn by storing ρ(i) in the memory segment [(i −
1)$log logn%+1, i$log logn%]. We can use the space even more efficiently, however.
Notice that

∑n
i=1 log ρ(i) = O(n). Thus, the sequence

ρ(1) $ ρ(2) $ . . . $ ρ(n)

has bit-length linear in n. But this does not facilitate the binary search for
ρ(i), since there is no indication in the above sequence which ρ value we are
reading. And since the ρ(i)’s have random bit length, we cannot directly access
the address of ρ(i) either. One of several possible solutions is to insert markers
in n/ logn places to guide our search. We put a marker before ρ(1), ρ(1+ logn),
ρ(1 + 2 logn), and so on. Each marker has bit-length logn, and tells which ρ-
value comes immediately after it. The new sequence with the markers obviously
still occupies linear space. It is easy to see that now we can implement a binary
search where each step of the search involves finding the closest marker and to
decide whether to go left or right. Then after each step the search interval is
halved (in terms of bit-length). At the final step a short sequential search leads
to the desired ρ(i). The worst case running time is O((log n)3). There are various
ways to make this algorithm more time-efficient.

4 Online Streaming Algorithms

All the algorithms considered in this paper have the following two properties: (a)
they maintain a feasible solution I at all times, and (b) rejection decisions (i.e.,
the removal of a node from I, or alternatively addition to S) are irrevocable. We
refer to such algorithms as online streaming algorithms.

In this section, we study the power of this model in the deterministic case.
We restrict our attention here to the case of graphs.

Deterministic algorithms: The next result shows that no deterministic algorithm
can attain a performance ratio in terms of d alone, nor a ratio of 2o(Δ).

Theorem 3. The performance ratio of any deterministic algorithm in the online
streaming model is Ω(n). This holds even for trees of maximum degree logn,
giving a bound of Ω(2Δ). It also holds even if the algorithm is allowed to use
arbitrary extra space.

Proof. Assume that n = 2k is a power of 2. Let A be any deterministic algorithm.
We maintain the invariant that the independent set selected by A contains

at most one node in each connected component. We join the n vertices together
into a single tree in k rounds. In round i, for i = 1, 2, . . . , k, n/2i edges are
presented. Each edge connects together two components; in either component,
we choose as endpoint the node that is currently in A’s solution, if there is one,
and otherwise use any node in the component. This ensures that the algorithm
cannot keep both vertices in its solution, maintaining the invariant.
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In the end, the resulting graph is a tree of maximum degree at most k, and
A’s solution contains at most one node.

When allowing additional space, we can match the previous lower bound in terms
of Δ. The proof is omitted for lack of space.

Theorem 4. There is a deterministic algorithm in the online streaming model
with a performance ratio of O(2Δ).

5 Minimal Space Algorithms

In the most restricted case, we have no extra space available. We can refer to
such algorithm as memoryless, since they cannot store anything about previous
events. Can we still obtain reasonable approximations to IS?

We show that there exists a function g allowing us to find a n/g(d)-independent
set in this model, but that g must now be exponential.

The algorithm RandomDelete given in Fig. 5 selects an endpoint at random
from each edge in the stream and removes it from the current solution. Note
that RandomDelete is memoryless. For the sake of simplicity, we restrict our
attention in this section to the case of graphs.

Algorithm RandomDelete

Input: a stream E of edges

V ← S ← ∅
For each edge e in the stream E do

V ← V ∪ e
Randomly select a vertex v ∈ e
S ← S ∪ {v}

Output V \ S

Fig. 5. The algorithm RandomDelete

Intuitively, a memoryless algorithm would seem to be unable to do signifi-
cantly better than randomly selecting the vertex to be eliminated.

Theorem 5. RandomDelete finds an independent set of expected weight
n/2O(d), and this is tight even if the algorithm avoids eliminating vertices un-
necessarily.

Proof. Upper bound. Each vertex v belongs to the final solution V \ S with
probability 2−d(v). Therefore, the expected size of the V \ S is

∑
v∈V 2−d(v) ≥

n/2d, using the linearity of expectation and Jensen’s inequality.
Lower bound. Consider the graph with vertex set V = {v1, v2, · · · , vn} and

edges {vi, vj} for any |i − j| ≤ k. Edges arrive in the stream in lexicographic
order: (v1, v2), (v1, v3), . . . , (v1, vk), (v2, v3), . . . , (vk+1), (v3, v4), etc. Note, that
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all but the first and the last k vertices have degree 2k. Thus, the average degree
d ≤ Δ = 2k.

Let I be the independent set constructed by the algorithm. Consider the first
vertex v1. There are two cases, depending on whether v1 ends up in I.

Case 1: v1 ∈ I. It means that all the neighbors of v1 are deleted. The proba-
bility of this event is P [v1 ∈ I] = 2−k. The remaining stream is identical to the
original one with V = V \ {v1, v2, · · · , vk}.

Case 2: v1 /∈ I. Suppose v1 was selected to cover the t-th edge incident on v1
for some t ∈ [1, k]. Then, the first t−1 neighbors of v1 were selected to cover the
first t− 1 edges incident on v1 and were deleted as well. The remaining stream
is identical to the original one with V = V \{v1, v2, · · · , vt}.

Thus, a vertex vi ∈ V is inserted in I only in Case 1 and the probability of this
event is 2−k, for any i ∈ [1, n−k]. Note, that the last k vertices form a clique, and
so only one vertex from this clique contributes to I. Thus, the expected size of
the independent set found by the algorithm is at most n−k

2k + 1 < n
2k + 1 < n

2d/2 .

Remark 1. The algorithm has the special property of being oblivious in that
the solution maintained, or any other part of memory, is never consulted in the
operation of the algorithm until it is output.

The utility of advice. When both n and p are known in advance, we can obtain
from the Basic schema an algorithm that requires only logarithmic space in
addition to the solution bits. A single bit can record whether a node is contained
in the current independent set solution, i.e. in S ∩X . If p = 1/d∗, the reciprocal
of the efficient degree, then Lemma 1 yields the following bound that is slightly
weaker than i(H).

Theorem 6. When n and p are known in advance, there is an online streaming
algorithm that finds an independent set of expected weight Ω(n/d∗) in O(log n)
extra space and using O(r) time to process each edge.

In comparison with the earlier zero-space algorithms, this suggests that knowl-
edge of the input parameters is highly useful for IS. This relates to the recent
annotation model of [6], although the assumption there is that the advice is
dispensed only after the stream is given.

6 Open Questions

What is the right model for graph problems in the streaming context? All of
our algorithms for IS use: A read-once-only tape + A tape for the output stream
with very limited access + Poly-logarithmic work space. Is poly-logarithmic work
space + restricted storage types the way to capture a range of graph problems
that do not fit conveniently into existing streaming models? If other graph prob-
lems can be also captured by this model, this could grow into a new brand of
research.
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It would be interesting to compute the constants hidden in our performance
gaurantees. Finally, we conjecture that we can make all of our algorithms run
without advance knowledge of n.

Acknowledgement. We are grateful to Páll Melsted for helpful discussions.
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Abstract. Min Ones Constraint Satisfaction Problems, i.e., the task of
finding a satisfying assignment with at most k true variables (Min Ones
SAT(Γ )), can express a number of interesting and natural problems. We
study the preprocessing properties of this class of problems with respect
to k, using the notion of kernelization to capture the viability of pre-
processing. We give a dichotomy of Min Ones SAT(Γ ) problems into
admitting or not admitting a kernelization with size guarantee polyno-
mial in k, based on the constraint language Γ . We introduce a property
of boolean relations called mergeability that can be easily checked for
any Γ . When all relations in Γ are mergeable, then we show a polyno-
mial kernelization for Min Ones SAT(Γ ). Otherwise, any Γ containing a
non-mergeable relation and such that Min Ones SAT(Γ ) is NP-complete
permits us to prove that Min Ones SAT(Γ ) does not admit a polynomial
kernelization unless NP ⊆ co-NP/poly, by a reduction from a particular
parameterization of Exact Hitting Set.

1 Introduction

Preprocessing and data reduction are ubiquitous, especially in the context of
combinatorially hard problems. This contrasts the well-known fact that there
can be no polynomial-time algorithm that provably shrinks every instance of
an NP-hard problem, unless P = NP; we cannot expect every instance to become
smaller. An immediate answer to this apparent disconnect between theory and
practice is to consider preprocessing to be a heuristic, not open to theoretical
performance guarantees, but this is not necessary. A rigorous study is possible,
but one has to accept the existence of instances that cannot be reduced any
further. Such instances can be thought of as already having small size compared
to their inherent combinatorial complexity. In the light of this we should measure
the success of preprocessing related to the difficulty of the instances.

This new goal can be formulated nicely using notions from parameterized
complexity. An instance of a parameterized problem, say (I, k), features an ad-
ditional parameter, intended to capture the super-polynomial part of the combi-
natorial complexity. Thus we can define polynomial-time preprocessing in a way
that cannot be simply ruled out under the assumption that P �= NP: a so-called
polynomial kernelization is a polynomial-time mapping K : (I, k) 	→ (I ′, k′) such
that (I, k) and (I ′, k′) are equivalent and k′ as well as the size of I ′ are bounded
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by a polynomial in the parameter k. While a kernelization with some perfor-
mance guarantee can be obtained by various techniques, achieving the strongest
size bounds or at least breaking the polynomial barrier is of high interest. Con-
sider for example the improvements for Feedback Vertex Set, from the first
polynomial kernel [6], to cubic [3], and now quadratic [21]; the existence of a
linear kernel is still an open problem.

Recently a seminal paper by Bodlaender, Downey, Fellows, and Hermelin [4]
provided a framework to rule out polynomial kernelizations, based on hypothe-
ses in classical complexity. Using results by Fortnow and Santhanam [12], they
showed that so-called compositional parameterized problems admit no polyno-
mial kernelizations unless NP ⊆ co-NP/poly; by Yap [22], this would imply
that the polynomial hierarchy collapses. The existence of such lower bounds has
sparked high activity in the field.

Constraint satisfaction problems. CSPs are a fundamental and general problem
setting, encompassing a wide range of natural problems, e.g., satisfiability, graph
modification, and covering problems. A CSP instance is a formula given as a
conjunction of restrictions, called constraints, on the feasible assignments to
a set of variables. The complexity of a CSP problem depends on the type of
constraints that the problem allows. For instance, Clique can be considered as
a maximization problem (Max Ones; see below) allowing only constraints of the
type (¬x ∨ ¬y). The types of constraints allowed in a problem are captured by
a constraint language Γ (see Section 2 for definitions).

There are several results that characterize problem properties depending on
the constraint language. In 1978, Schaefer [20] classified the problem SAT(Γ ) of
deciding whether any satisfying assignment exists for a formula as being either
in P or NP-complete; as there are no intermediate cases, this is referred to as a
dichotomy. Khanna et al. [14] classified CSPs according to their approximability,
for the problems Min/Max Ones (i.e., finding a satisfying assignment of optimal
weight) and Min/Max SAT (i.e., optimizing the number of satisfied or unsatis-
fied constraints). On the parameterized complexity side, Marx [18] classified the
problem of finding a solution with exactly k true variables as being either FPT
or W[1]-complete. In this paper we are concerned with the problem family Min
Ones SAT(Γ ):

Input: A formula F over a finite constraint language Γ ; an integer k.
Parameter: k.
Task: Decide whether there is a satisfying assignment for F with at
most k true variables.

We study the kernelization properties of Min Ones SAT(Γ ), parameterized by the
maximum number of true variables, and classify these problems into admitting
or not admitting a polynomial kernelization. Note that Min Ones SAT(Γ ) is
in FPT for every finite Γ , by a simple branching algorithm [18]. We also point
out that Max SAT(Γ ), as a subset of Max SNP (cf. [14]), admits polynomial
kernelizations for any constraint language Γ [15].



Preprocessing of Min Ones Problems: A Dichotomy 655

Related work. In the literature there exists an impressive list of problems that
admit polynomial kernels (in fact often linear or quadratic); giving stronger
and stronger kernels has become its own field of interest. We name only a few
results for problems that also have a notion of arity: a kernelization achiev-
ing O(kd−1) universe size for Hitting Set with set size at most d [1], a ker-
nelization to O(kd−1) vertices for packing k vertex disjoint copies of a d-vertex
graph [19], and kernelizations to O(kd) respectively O(kd+1) base set size for any
problem from MIN F+Π1 or MAX NP with at most d variables per clause [15].

Let us also mention a few lower bound results that are based on the frame-
work of Bodlaender et al. [4]. First of all, Bodlaender et al. [5] provided kernel-
preserving reductions, which can be used to extend the applicability of the lower
bounds; a similar reduction concept was given by Harnik and Naor [13].

Using this, Dom et al. [9] gave polynomial lower bounds for a number of prob-
lems, among them Steiner Tree and Connected Vertex Cover. Further-
more they considered problems that have a kf(d) kernel, where k is the solution
size and d is a secondary parameter (e.g., maximum set size), and showed that
there is no kernel with size polynomial in k + d; for, e.g., Hitting Set, Set

Cover, and Unique Coverage. More recently, Dell and van Melkebeek [8] pro-
vided polynomial local bounds for a list of problems, implying that d-Hitting

Set, for d ≥ 2, cannot have a kernel with total size O(kd−ε) for any ε > 0 unless
the polynomial hierarchy collapses. (Note that this is a bound on total size, i.e.,
the space required to write down the instance, while the previously cited upper
bounds are on the number of vertices.) In [16] the present authors show that a
certain Min Ones SAT problem does not admit a polynomial kernel and employ
this bound to show that there are H-free edge deletion respectively edge editing
problems that do not admit a polynomial kernel.

Our work. We give a complete classification of Min Ones SAT(Γ ) problems with
respect to polynomial kernelizability. We introduce a property of boolean rela-
tions called mergeability (see Section 2) and, apart from the hardness dichotomy
of Theorem 2, we distinguish constraint languages Γ by being mergeable or con-
taining at least one relation that is not mergeable. We prove the following result.

Theorem 1. For any finite constraint language Γ , Min Ones SAT(Γ ) admits
a polynomial kernelization if it is in P or if all relations in Γ are mergeable.
Otherwise it does not admit a polynomial kernelization unless NP ⊆ co-NP/poly.

When all relations in Γ are mergeable we are able to provide a new polynomial
kernelization based on sunflowers and non-zero-closed cores (Section 3). We say
that constraints form a sunflower when they have the same variables in some
positions, the core, and the variable sets of the other positions, the petals, are
disjoint (an analogue of sunflowers from extremal set theory). By an adaption
of the Erdős-Rado Sunflower Lemma [11] such sunflowers can be easily found
in sets containing more than O(kd) constraints. If we could then replace these
sunflowers by smaller, equivalent constraints (e.g., of lower arity), we would be
done. Unlike in the d-Hitting Set case (where this is trivial), this is not always
possible in general. However, we show that for mergeable constraints forming



656 S. Kratsch and M. Wahlström

a sunflower there is an equivalent replacement that increases the number of
zero-closed positions; a position of a constraint is zero-closed if changing the
corresponding variable to zero cannot turn the constraint false. We show how
to find sunflowers such that this replacement leads to a simplification of the
instance, resulting in a polynomial-time kernelization with O(kd+1) variables.

If at least one relation in Γ is not mergeable and Min Ones SAT(Γ ) is NP-
complete by [14] then we show, using Schaefer-style implementations, that this
allows us to implement an n-ary selection formula using O(logn) true local
variables (Section 4). A selection formula is simply any kind of formula that
is false when no variables are true, and true whenever exactly one variable is
true, with arbitrary behavior otherwise; particular examples are disjunctions and
parity checks. We show that log-cost selection formulas essentially suffice to allow
a kernelization-preserving reduction from Exact Hitting Set (parameterized
by the number of sets), and that this problem does not admit a polynomial
kernelization unless NP ⊆ co-NP/poly (in a proof following Dom et al. [9]).

2 CSPs and Mergeability

A constraint R(x1, . . . , xd) is the application of a relation R to a tuple of vari-
ables; a constraint language Γ is a set of relations. A formula over Γ is a con-
junction of constraints using relations R ∈ Γ . We consider only finite constraint
languages, and only boolean variables. Finally, having fixed a constraint lan-
guage Γ , a CSP instance is a formula F over Γ . The problem Min Ones SAT(Γ )
was defined in the previous section. As a technical point, we allow repeated
variables in our constraints (e.g., R(x, x, y) is allowed).

The NP-hardness of Min Ones SAT(Γ ) was characterized in [14]. For the
statement of the theorem, we need to define a few basic relation types. A rela-
tion R is 0-valid if (0, . . . , 0) ∈ R; Horn if it can be expressed as a conjunction
of clauses containing at most one positive literal each; and width-2 affine if it
can be expressed as a conjunction of constraints of the form x = y, x �= y,
and x = b for b ∈ {0, 1}. A constraint language Γ is 0-valid (Horn, width-2
affine) if every R ∈ Γ is. Then, the results of [14] are as follows.

Theorem 2 ([14]). Let Γ be a finite set of relations over the boolean domain.
If Γ is zero-valid, Horn, or width-2 affine,then Min Ones SAT(Γ ) is in P (even
with non-negative weights on the variables); otherwise it is NP-complete.

We now define mergeability and give some basic results about it. First, we need
some notation: For two tuples α = (α1, . . . , αr), β = (β1, . . . , βr), let α ∧ β =
(α1 ∧ β1, . . . , αr ∧ βr), and likewise for α ∨ β, and write α ≤ β if αi ≤ βi for
every 1 ≤ i ≤ r (where 0 and 1 are used for false and true values, respectively).
Let Γ be a finite set of relations over the boolean domain. We say that Γ im-
plements a relation R if R is the set of satisfying assignments for a formula
over Γ , i.e., R(x1, . . . , xr) ≡

∧
i Ri(xi1, . . . , xit) where each Ri ∈ Γ (we do not

automatically allow the equality relation unless =∈ Γ ). A constraint is IHSB-
(Implicative Hitting Set Bounded-) if it can be implemented by assignments,
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implications, and negative clauses (i.e., disjunctions of negated variables). Con-
straint types can also be characterized by closure properties. A constraint R is
IHSB- if and only if it is closed under an operation α ∧ (β ∨ γ) for tuples α, β, γ
in R, i.e., α ∧ (β ∨ γ) ∈ R for any choice of α, β, γ ∈ R. See [7] for more on this.

Definition 1. Let R be a relation on the boolean domain. Given four (not nec-
essarily distinct) tuples α, β, γ, δ ∈ R, we say that the merge operation applies
if α ∧ δ ≤ β ≤ α and β ∧ γ ≤ δ ≤ γ. If so, then applying the merge operation
produces the tuple α ∧ (β ∨ γ). We say that R is mergeable if for any four tu-
ples α, β, γ, δ ∈ R for which the merge operation applies, we have α∧(β∨γ) ∈ R.

We give some basic results about mergeability: an alternate presentation of the
property, which will be important in Section 3 when sunflowers are introduced,
and some basic closure properties. Both propositions are easy to check.

Proposition 1. Let R be a relation of arity r on the boolean domain. Partition
the positions of R into two sets, called the core and the petals; w.l.o.g. assume
that positions 1 through c are the core, and the rest the petals. Let (αC , αP ),
where αC is a c-ary tuple and αP an (r − c)-ary tuple, denote the tuple whose
first c positions are given by αC , and whose subsequent positions are given by αP .
Consider then the following four tuples.

α = (αC , αP )
β = (αC , 0)
γ = (γC , γP )
δ = (γC , 0)

If α through δ are in R, then the merge operation applies, giving us

(αC , αP ∧ γP ) ∈ R.

Furthermore, for any four tuples to which the merge operation applies, there is
a partitioning of the positions into core and petals such that the tuples can be
written in the above form.

Proposition 2. Mergeability is preserved by assignment and identification of
variables, i.e., if R is mergeable, then so is any relation produced from R by
these operations. Further, any relation implementable by mergeable relations is
mergeable.

Lemma 1 (�1). Any zero-valid relation R which is mergeable is also IHSB-,
and can therefore be implemented using negative clauses and implications.

Examples 1. As basic examples, positive and negative clauses, and implica-
tions are mergeable. Thus, the same holds for anything implementable by such
relations, such as monotone or antimonotone relations (i.e., α ∈ R implies β ∈ R
for all β ≥ α resp. β ≤ α). A further positive example is the 3-ary ODD rela-
tion (x⊕ y ⊕ z = 1), but not the 3-ary EVEN or 4-ary ODD relations.
1 Proof deferred to the full version [17].
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3 Kernelization

In this section we show that Min Ones SAT(Γ ) admits a polynomial kernelization
if all relations in Γ are mergeable. For the purpose of describing our kernelization
we first define a sunflower of tuples, similarly to the original sunflower definition
for sets. Then we give an adaption of Erdős and Rado’s Sunflower Lemma [11] to
efficiently find such structures in the given set of constraints. We point out that
a similar though more restricted definition for sunflowers of tuples was given
by Marx [18]; accordingly the bounds of our sunflower lemma are considerably
smaller.

Definition 2. Let U be a finite set, let d ∈ N, and let H ⊆ Ud. A sunflower ( of
tuples) with cardinality t and core C ⊆ {1, . . . , d} in U is a subset consisting
of t tuples that have the same element at all positions in C and, in the remain-
ing positions, no element occurs in more than one tuple. The set of remaining
positions P = {1, . . . , d} \ C is called the petals.

As an example, (x1, . . . , xc, y11, . . . , y1p), . . . , (x1, . . . , xc, yt1, . . . , ytp) is a sun-
flower of cardinality t with core C = {1, . . . , c}, if all yij and yi′j′ are distinct
when i �= i′. Note that, differing from Marx [18] variables in the petal positions
may also occur in the core. Observe that every feasible assignment of weight
less than t must assign 0 to all variables yi1, . . . , yip for some i ∈ {1, . . . , t}.
Thus such an assignment must satisfy R(x1, . . . , xc, 0, . . . , 0) when there are con-
straints R(x1, . . . , xc, y11, . . . , y1p), . . . , R(x1, . . . , xc, yt1, . . . , ytp).

Lemma 2 (�). Let U be a finite set, let d ∈ N, and let H ⊆ Ud. If the size
of H is greater than kd(d!)2, then a sunflower of cardinality k + 1 in H can be
efficiently found.

We require some definitions revolving around sunflowers and zero-closed posi-
tions to address the issue of simplifying constraints that form a sunflower.

Definition 3. Let R be an r-ary relation. The relation R is zero-closed on posi-
tion i, if for every tuple (t1, . . . , ti−1, ti, ti+1, . . . , tr) ∈ R we have that R contains
also (t1, . . . , ti−1, 0, ti+1, . . . , tr). A relation is non-zero-closed if it has no zero-
closed positions. We define functions Δ, Π, and ∇:

– ΔP (R) is defined to be the zero-closure of R on positions P ⊆ {1, . . . , r},
i.e., the smallest superset of R that is zero-closed on all positions i ∈ P .

– Π(R) denotes the non-zero-closed core, i.e., the projection of R onto all
positions that are not zero-closed or, equivalently, the relation on the non-
zero-closed positions obtained by forcing xi = 0 for all zero-closed positions.

– ∇C(R) denotes the sunflower restriction of R with core C: w.l.o.g. the re-
lation given by [∇C(R)](x1, . . . , xr) = R(x1, . . . , xr) ∧R(x1, . . . , xc, 0, . . . , 0)
for C = {1, . . . , c}.
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Variables occurring only in zero-closed positions are easy to handle since setting
them to zero does not restrict the assignment to any other variable. To mea-
sure the number of non-zero-closed positions in our formula, i.e., occurrences of
variables that prevent us from such a replacement, we introduce Z(F , R).

Definition 4. Let F be a formula and let R be a relation. We define Z(F , R) as
the set of all tuples (x1, . . . , xt) where [Π(R)](x1, . . . , xt) is the non-zero-closed
core of an R-constraint in F .

We prove that mergeable relations admit an implementation of their sunflower
restrictions using the respective zero-closures on the petal positions. By choosing
carefully the sunflowers that we replace such that the petals contain non-zero-
closed positions this will lower |Z(F , R)|.

Lemma 3 (�). Let R be a mergeable relation and let C ∪ P be a partition of
its positions. Then ΔP (∇C(R)) is mergeable and there is an implementation
of ∇C(R) using ΔP (∇C(R)) and implications.

In the following theorem we establish a preliminary kernel in the form of a
formula F ′ over some larger constraint language Γ ′, such that Z(F ′, R) is small
for every non-zero-valid relation R ∈ Γ ′. The language Γ ′ admits us to apply
Lemma 3, as ΔP (∇C(R)) is not necessarily contained in Γ .

Theorem 3 (�). Let Γ be a mergeable constraint language with maximum ar-
ity d. Let F be a formula over Γ and let k be an integer. In polynomial time one
can compute a formula F ′ over a mergeable constraint language Γ ′ ⊇ Γ with
maximum arity d, such that every assignment of weight at most k satisfies F
if and only if it satisfies F ′ and, furthermore, |Z(F ′, R)| ∈ O(kd) for every
non-zero-valid relation that occurs in F ′.

Proof (sketch). We construct F ′, starting from F ′ = F . While |Z(F ′, R)| >
kd(d!)2 for any non-zero-valid relation R in F ′, search for a sunflower of car-
dinality k + 1 in Z(F ′, R), according to Lemma 2. Let C denote the core of
the sunflower. Replace each R-constraint whose non-zero-closed core matches a
tuple of the sunflower by its sunflower restriction with core C using an imple-
mentation according to Lemma 3. Repeating this step until |Z(F ′, R)| ≤ kd(d!)2

for all non-zero-valid relations R in F ′ completes the construction.
To show correctness we consider a single replacement. We denote the tuples

of the sunflower by (x1, . . . , xc, yi1, . . . , yip), with i ∈ {1, . . . , k + 1}, i.e., w.l.o.g.
with core C = {1, . . . , c} and petals P = {c+1, . . . , c+p}. Let φ be any satisfying
assignment of weight at most k and consider any tuple (x1, . . . , xc, yi1, . . . , yip)
of the sunflower. Let R(x1, . . . , xc, yi1, . . . , yip, z1, . . . , zt) be a constraint whose
non-zero-closed core matches the tuple, w.l.o.g. the last positions of R are zero-
closed, let Z be those positions. Since the zi are in zero-closed positions, φ must
satisfy R(x1, . . . , xc, yi1, . . . , yip, 0, . . . , 0). Observe that, by maximum weight k,
the assignment φ assigns 0 to all variables yi1, . . . , yip for an i ∈ {1, . . . , k + 1}.
Thus φ satisfies R(x1, . . . , xc, 0, . . . , 0).
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Hence for any constraint R(x1, . . . , xc, yi1, . . . , yip, z1, . . . , zt), the assignment
satisfies ∇C(R(x1, . . . , xc, yi1, . . . , yip, z1, . . . , zt)) too. This permits us to replace
each R-constraint, whose non-zero-closed core matches a tuple of the sunflower,
by an implementation of its sunflower restriction with core C, according to
Lemma 3. This uses ΔP∪Z(∇C(R(x1, . . . , xc, yi1, . . . , yip, z1, . . . , zt))) and
implications. ��

Now we are able to establish polynomial kernelizations for Min Ones SAT(Γ )
when Γ is mergeable. For a given instance (F , k), we first generate an equivalent
formula F ′ according to Theorem 3. However, F ′ will not replace F , rather, it
allows us to remove variables from F based on conclusions drawn from F ′.

Theorem 4 (�). For any mergeable constraint language Γ , Min Ones SAT(Γ )
admits a polynomial kernelization.

Proof (sketch). Let (F , k) be an instance of Min Ones SAT(Γ ) and let d be
the maximum arity of relations in Γ . According to Theorem 3, we generate a
formula F ′, such that assignments of weight at most k are satisfying for F if and
only if they are satisfying for F ′. Moreover, for each non-zero-valid relation R, we
have that |Z(F ′, R)| ∈ O(kd). We allow the constant 0 to be used for replacing
variables; a simple construction without using (x = 0) is given in the full proof.

First, according to Lemma 1, we replace each zero-valid constraint of F ′ by
an implementation through negative clauses and implications. Variables that
occur only in zero-closed positions in F ′ are replaced by 0, without affecting the
possible assignments for the other variables. By equivalence of F and F ′ with
respect to assignments of weight at most k, the same is true for F .

Let X be the set of variables that occur in a non-zero-closed position of some
non-zero-valid constraint of F ′. If a variable x ∈ X implies at least k other
variables, i.e., they have to take value 1 if x = 1 by implication constraints
in F ′, then there is no satisfying assignment of weight at most k for F ′ that
assigns 1 to x. By equivalence of F and F ′ with respect to such assignments, we
replace all such variables by 0. Finally we replace all variables y ∈ V (F ′) \X ,
that are not implied by a variable from X in F ′, by the constant 0 in F and F ′.
Note that such variables occur only in zero-closed positions and in implications.

Now we prove a bound of O(kd+1) on the number of variables in F . First, we
observe that all remaining variables of F must occur in a non-zero-closed posi-
tion of some constraint of F ′. We begin by bounding the number of variables
that occur in a non-zero-closed position of some non-zero-valid R-constraint, i.e.,
the remaining variables of the set X . Observe that such a variable must occur
in the corresponding tuple of Z(F ′, R). Since there is only a constant number of
relations of arity at most d and since Z(F ′, R) ∈ O(kd), this limits the number of
such variables by O(kd). For all other variables, their non-zero-closed occurrences
must be in implications, since negative clauses are zero-closed on all positions.
Thus, these variables must be implied by a variable of X . Since each variable
implies at most k−1 other variables, we get an overall bound of O(kd+1). Finally,
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the total size of F is polynomial for a fix d, since the number of variables is
polynomial and the arity of the constraints is bounded. ��

4 Kernel Lower Bounds

We will now complete the dichotomy by showing that if Min Ones SAT(Γ ) is
NP-complete and some R ∈ Γ is not mergeable, then the problem admits no
polynomial kernelization unless NP ⊆ co-NP/poly. The central concept of our
lower bound construction is the following definition.

Definition 5. A selection formula of arity n is a formula on variable sets X
and Y , with |Y | = n and |X | = nO(1), such that there is no solution where Y = 0,
but for any y ∈ Y there is a solution where y = 1 and y′ = 0 for any y′ �= y,
y′ ∈ Y ; refer to such a solution as selecting y. Let the selection cost for y ∈ Y
be the minimum number of true variables in X among assignments selecting y.
A log-cost selection formula is a selection formula where there is a number wn =
O(log n) such that all selection costs are exactly wn, and where every solution
has at least wn true variables among X.

We will show that any Γ as described can be used to construct log-cost selection
formulas, and then derive a lower bound from this. The next lemma describes
our constructions.

Lemma 4. The following types of relations can implement log-cost selection
formulas of any arity.
1. A 3-ary relation R3 with {(0, 0, 0), (1, 1, 0), (1, 0, 1)} ⊆ R3 and (1, 0, 0) /∈ R3,
together with relations (x = 1) and (x = 0).
2. A 5-ary relation R5 with {(1, 0, 1, 1, 0), (1, 0, 0, 0, 0), (0, 1, 1, 0, 1), (0, 1, 0, 0, 0)}
⊆ R5 and (1, 0, 1, 0, 0), (0, 1, 1, 0, 0) /∈ R5, together with relations (x �= y), (x =
1), and (x = 0).

Proof. Let Y = {y1, . . . , yn} be the variables over which a log-cost selection
formula is requested. We will create “branching trees” over variables xi,j for 0 ≤
i ≤ log2 n, 1 ≤ j ≤ 2i, as variants of the composition trees used in [16]. Assume
that n = 2h for some integer h; otherwise pad Y with variables forced to be
false, as assumed to be possible in both constructions.

The first construction is immediate. Create the variables xi,j and add a con-
straint (x0,1 = 1). Further, for all i, j with 0 ≤ i < h and 1 ≤ j ≤ 2i, add a
constraint R3(xi,j , xi+1,2j−1, xi+1,2j). Finally, replace variables xh,j by yj. It can
be easily checked that the requirements on R3 imply that the result is a correct
log-cost selection formula with wn = h = log2 n.

The second construction uses the same principle, but the construction is some-
what more involved. Create variables xi,j and a constraint (x0,1 = 1) as before.
In addition, introduce for every 0 ≤ i ≤ h − 1 two variables li, ri and a con-
straint (li �= ri). Now the intention is that (li, ri) decides whether the path of
true variables from the root to a leaf should take a left or a right turn after
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level i. Concretely, add for every i, j with 0 ≤ i ≤ h − 1 and 1 ≤ j ≤ 2i a con-
straint R5(li, ri, xi,j , xi+1,2j−1, xi+1,2j). It can again be verified that this creates
a log-cost selection formula with wn = 2h = 2 log2 n. ��

We now reach the technical part, where we show that any relation which is not
mergeable can be used to construct a relation as in Lemma 4. The construc-
tions are based on the concept of a witness that some relation R lacks a certain
closure property. For instance, if R is not mergeable, then there are four tu-
ples α, β, γ, δ ∈ R to which the merge operation applies, but such that α ∧ (β ∨
γ) /∈ R; these four tuples form a witness that R is not mergeable. Using the
knowledge that such witnesses exist, we can use the approach of Schaefer [20],
identifying variables according to their occurrence in the tuples of the witness,
to build relations with the properties we need.

Lemma 5 (�). Let Γ be a set of relations such that Min Ones SAT(Γ ) is NP-
complete and some R ∈ Γ is not mergeable. Under a constraint that at most k
variables are true, Γ can be used to force (x = 0) and (x = 1). Furthermore,
there is an implementation of (x = y) using R, (x = 0), and (x = 1).

Lemma 6 (�). Let Min Ones SAT(Γ ) be NP-complete, and not mergeable.
Then Min Ones SAT(Γ ) can express a log-cost selection formula of any arity.

We now show our result, using the tools of [5]. We have the following definition.
Let Q and Q′ be parameterized problems. A polynomial time and parameter
transformation from Q to Q′ is a polynomial-time mapping H : Σ∗ × N →
Σ∗ × N : (x, k) 	→ (x′, k′) such that

∀(x, k) ∈ Σ∗ × N : ((x, k) ∈ Q ⇔ (x′, k′) ∈ Q′) and k′ ≤ p(k),

for some polynomial p.
We will provide a polynomial time and parameter transformation to Min Ones

SAT(Γ ) from Exact Hitting Set(m), defined as follows.

Input: A hypergraphH consisting of m subsets of a universe U of size n.
Parameter: m.
Task: Decide whether there is a set S ⊂ U such that |E ∩ S| = 1 for
every E ∈ H.

It was shown in [5] that polynomial time and parameter transformations preserve
polynomial kernelizability, thus our lower bound will follow. We first show that
Exact Hitting Set(m) admits no polynomial kernelization; the proof follows the
outline of Dom et al. [9].

Lemma 7 (�). Exact Hitting Set(m) admits no polynomial kernelization unless
NP ⊆ co-NP/poly.

We can now show the main result of this section.

Theorem 5. Let Γ be a constraint language which is not mergeable. Then Min
Ones SAT(Γ ) is either in P, or does not admit a polynomial kernelization unless
NP ⊆ co-NP/poly.
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Proof. By Theorem 2, Min Ones SAT(Γ ) is either polynomial-time solvable or
NP-complete; assume that it is NP-complete. By Lemma 5 we have both con-
stants and the constraint (x = y), and by Lemma 6 we can implement log-cost
selection formulas. It remains only to describe the polynomial time and param-
eter transformation from Exact Hitting Set(m) to Min Ones SAT(Γ ).

Let H be a hypergraph. If H contains more than 2m vertices, then it can
be solved in time polynomial in the input length [2]; otherwise, we create a
formula F and fix a weight k so that (F , k) is positive if and only if H has an
exact hitting set. Create one variable yi,j in F for every occurrence of a vertex vi
in an edge Ej in H. For each edge E ∈ H, create a selection formula over the
variables representing the occurrences in E. Finally, for all pairs of occurrences
of each vertex vi, add constraints (yi,j = yi,j′), and fix k = m +

∑
E∈H w|E|,

where wi is the weight of an i-selection formula. We have an upper bound on
the value of k of O(m log n) = O(m2).

Now solutions with weight exactly k correspond to exact hitting sets of H.
Note that k is the minimum possible weight of the selection formulas, which
is taken if exactly one occurrence in each edge is picked. By the definition of
log-cost selection formulas, any solution where more than one occurrence has
been picked (if such a solution is possible at all) will have a total weight which
is larger than this, if the weight of the y-variables is counted as well, and thus
such a solution to F of weight at most k is not possible.

As Exact Hitting Set(m) is NP-complete, it follows from [5] that a polynomial
kernelization for Min Ones SAT(Γ ) would imply the same for Exact Hitting
Set(m), giving our result. ��

Finally, let us remark that our lower bound still applies under the restriction
that constraints contain no repeated variables. Lemma 5 can be adjusted to
provide (x = 1) and (x = y) under this restriction, and we can then use standard
techniques (see [16] and Theorem 4) to complete the bound. Such a restriction
can be useful in showing hardness of other problems, e.g., as in [16].

5 Conclusions

We presented a dichotomy for Min Ones SAT(Γ ) for finite sets of relations Γ ,
characterized by a new property called mergeability. We showed that Min Ones
SAT(Γ ) admits a polynomial kernelization if the problem is in P or if every
relation in Γ is mergeable, while in every other case no polynomial kernelization
is possible, unless NP ⊆ co-NP/poly and the polynomial hierarchy collapses.

An immediate question is the correct size bound for the kernelizable cases.
In this paper, the total size is bounded only as a side-effect of having O(kd+1)
variables, while in [8], it was shown that for a number of problems, including d-
Hitting Set, the “correct” bound on the total size of a kernel is O(kd). Closing this
gap, or even characterizing the problems which admit e.g. quadratic total size
kernels, would be interesting. Similarly, one can ask whether an explicit super-
polynomial (e.g. 2(logm)O(1)

) or exponential lower bound on the kernelizability
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of our source problem Exact Hitting Set (m) is possible. For this, and related
questions, a study of the structure of problems in FPT under the closure of
kernelization-preserving reductions may be useful.

Another question is how the results extend to problems on larger domains,
e.g., when variables can take t different values, but at most k may be non-zero.

Acknowledgements. The authors are thankful to Gustav Nordh and Dániel Marx
for helpful and interesting discussions.
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Abstract. Holographic reductions between some Holant problems and
some #CSP(Hd) problems are built, where Hd is some complex value
binary function. By the complexity of these Holant problems, for each
integer d ≥ 2, #CSP(Hd) is in P when each variables appears at most
d times, while it is #P-hard when each variables appears at most d + 1
times. #CSP(Hd) counts weighted summation of graph homomorphisms
from input graph G to graph Hd, and the maximum occurrence of vari-
ables is the maximum degree of G.

We conjecture the converse of holographic reduction holds for most of
#Bi-restriction Constraint Satisfaction Problems, which can be regarded
as a generalization of a known result about counting graph homomor-
phisms. It is proved that the converse of holographic reduction holds for
some classes of problems.

Keywords: holographic reduction, graph homomorphism, holant prob-
lem, #CSP, #BCSP.

1 Introduction

Class #P is proposed by Valiant and permanent is #P-hard [19]. An important
kind of complexity results about counting problems in #P is dichotomy theorem,
which claims that all problems is a class is either polynomial computable or #P-
hard. There are dichotomy theorems for #CSP [12] [2] [14] [3] [10], counting
graph homomorphisms [16] [1] [8], and Holant problems [10] [11]. Most studied
#CSP problems and Holant problems have domain size 2. Except [15], most
studied counting graph homomorphisms problems have arbitrary domain size,
and they are #CSP problem defined by one binary function, if we permits self-
loop and multi-edge in input graphs. Holant problem is a restricted version of
#CSP, such that each variable occurs twice, but this restriction makes it a more
general problem than #CSP.

In this paper, we construct a series of complex value binary symmetric func-
tions Hd, d = 2, 3, . . .. For each integer d ≥ 2, if permitting a variable occurring
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d + 1 times instead of d times, a polynomial computable #CSP(Hd) problem
becomes #P-hard. In the language of counting graph homomorphisms, for each
integer d > 2, there exists a complex weighted undirected graph Hd, such that
counting the summation of the weights of all homomorphisms from input graph
G to Hd is #P-hard, when the maximum degree of G is restricted to d + 1,
but it has polynomial time algorithm, when the maximum degree is restricted
to d. By the notation #F|H of #Bi-restriction Constraint Satisfaction Problem,
for each integer d ≥ 2, #{Hd}|{=1,=2, . . . ,=d} is polynomial time computable,
while #{Hd}|{=1,=2, . . . ,=d+1} is #P-hard, where =k denote the equivalence
relation of arity k.

It is well known that #SAT and #2SAT are #P-hard. There are many other
#P-hard results of maximum degree bounded counting problems in [18]. There
are two general results about maximum degree and complexity for a class of
problems. In [16], it is proved that if #CSP(H) is hard, then there exist some
constant C (maybe depends on H), such that it is still hard when the maximum
degree of input graph G is restricted to C, where H is a 0-1 weighted undirected
graph. That is, H is a binary function from [n]2 to {0, 1} or rational numbers,
where n is the number of vertices in H . In our result, the range of Hd is complex
numbers, and we do not know whether it can be strengthened to {0, 1}. In [10],
it is proved for complexity weighted Boolean #CSP, if #CSP(F) is hard, then
it is also hard, when each variables appears at most 3 times (#F|{=1,=2,=3}).
In Boolean #CSP, each variable takes value from Boolean domain {0, 1}, so our
result does not hold for Boolean domain. In our result, the domain of Hd is very
large, depending on the construction and d. Our result shows, in a large class
of counting problems, the relation of maximum degree and complexity is quite
complicated.

This result is proved mainly by holographic reduction from some Boolean
domain Holant problems. Holographic reduction is proposed by Valiant in his
senior paper holographic algorithms [21]. There have been lots of studies of holo-
graphic reduction [22] [23] [4] [5] [6] [7] [24], including designing algorithms on
planar graphs, and characterization of matchgates under holographic reduction,
and proving #P-hardness, etc. Here the holographic reduction is between two
problems of different domains. There are not many this kind of applications. The
first example is the holographic algorithm for PL-FO-2-COLOR problem in [21].
Its power is not very clear, although there is characterization for matchgates
case [5].

We also study the converse of holographic reduction. It is an algebra problem,
asking whether the sufficient condition in holographic reduction is also a neces-
sary condition. We conjecture it holds, since it is a generalization of a known
result about graph homomorphisms [17,13], and we prove that it holds for some
classes of Holant problems.

In section 2, we introduce definitions and holographic reduction. In section
3, we prove the result about maximum degree and complexity. In section 4, we
prove the converse of holographic reduction holds for some classes of Holant
problems.
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2 Preliminary

Let [n] denote the set {0, 1, . . . , n−1}. [f0, f1, . . . , fk] denotes a symmetric func-
tion F over [2]k, such that fi is the value of F on the inputs of Hamming
weight i. The value table of a function F over [n]k can be written as a column
vector F = (Fx1x2···xk

) or a row vector F ′ = (Fx1x2···xk
)′ of length nk, where

Fx1x2···xk
= F (x1, x2, . . . , xk). We also look a row or column vector of length nk

as a function in the same way. A binary function F (x, y) can also be written as
a matrix (Tx,y), where Tx,y = F (x, y), and this matrix is denoted by F̂ .

Let =k denote the equivalence relation in k variables. For example, =1 is
[1, 1],and =2 is [1, 0, 1], when variables are in domain [2]. Let Rd

= denote the set
{=1,=2, . . . ,=d}, and R= denote the set of all equivalence relations.

Define a general counting problem #F|H, named #Bi-restriction Constraint
Satisfaction Problem. F and H are two sets of functions in variables of do-
main [n].

An instance (G,φl, φr) of this problem is a bipartite graph G(U, V,E), and
two mappings, φl : v ∈ U → Fv ∈ F and φr : v ∈ V → Fv ∈ H (using Fv to
denote the value of φl or φr on v), satisfying the arity of Fv is dv, the degree of
v. The bipartite graph G is given as two one to one mappings, φ1 : (v, i) → e
and φ2 : (u, i) → e, where v ∈ V and u ∈ U respectively, i ∈ [dv] (or [du]), and
e ∈ E is one of the edges incident to v (or u). Let ev,i = φs(v, i), v ∈ U ∪ V ,
s = 1, 2.

In such an instance, edges are looked as variables with domain [n]. Vertex v is
looked as function Fv(specified by φl or φr) in its edges, and ev,i specifies which
edge of v is the ith input of Fv.

The value on this instance is defined as a summation over all [n] valued as-
signments σ of edges,

#F|H(G,φl, φr) =
∑

σ:E→[n]

∏
v∈U∪V

Fv(σ(ev,1), σ(ev,2), . . . , σ(ev,dv )).

Suppose p is a nonzero constant. If F ∈ F is replace by pF , then the value of
#F|H is simply multiplied by a power of p. Since p does not affect the com-
putational complexity of #F|H, we usually ignore it. #F|{=2} is also called
Holant(F) problem in [10]. #F|R= is #CSP(F), equivalent to Holant(F∪R=).

We say two problems #F|H and #P|Q are result equivalent, if there are two
bijections σl : F → P and σr : H → Q, such that for any instance (G,φl, φr),

#F|H(G,φl, φr) = #P|Q(G, σl ◦ φl, σr ◦ φr).

Use ⊗ to denote tensor product. Suppose A and B are two matrices, and A =
(aij) has size k ×m.

A⊗B =

⎛⎜⎜⎜⎝
a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

ak1B ak2B . . . akmB

⎞⎟⎟⎟⎠ .
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A⊗r denotes the tensor product of r matrices, that is, A⊗1 = A and A⊗(r+1) =
A⊗r ⊗ A. If A = (A1, . . . , Am), that is, the ith column of A is Ai, then the
i1i2 · · · ir column of A⊗r is Ai1 ⊗ · · · ⊗Air by definition.

Suppose F is a binary function, then A⊗2F and AF̂A′ are the column vector
form and matrix form of the same function.

We say two problems #F|H and #P|Q are algebra equivalent, if there exist
a nonsingular matrix M , and two bijections σl : F → P and σr : H → Q, such
that for any function F ∈ F and H ∈ H,

σl(F )′ = F ′ M⊗RF , σr(H) = (M−1)⊗RH H,

where RF (resp. RH) denotes the arity of F (resp. H).
Both result equivalent and algebra equivalent are equivalence relations.

Theorem 1 ([21]). If #F|H and #P|Q are algebra equivalent, then they are
result equivalent under the same bijections σl and σr.

By this theorem, if #F|H and #P|Q are algebra equivalent, we can reduce one
to the other. This kind of reduction is called holographic reduction. The matrix
M in the algebra equivalent is called the base of holographic reduction. There
is another form of this theorem, which is convenient for domain size changed
applications.

Theorem 2 ([21]). Suppose F is a function over [m]s, and H is a function over
[n]t, and M is a m×n matrix. Problems #{F ′}|{M⊗tH} and #{F ′M⊗s}|{H}
are result equivalent.

This theorem also holds for general function sets like Theorem 1.

3 An Application

Let {ai} is Fibonacci sequence, that is, a0 = 0, a1 = 1, ai+2 = ai+1 + ai. d
is an integer no less than 2. Let Fi = [a0, a1, . . . , ai], i = 1, 2, . . . , d, Fd+1 =
[a0, a1, . . . , ad,−2ad].

We need some complexity results for Holant problems. One is that #{=2
}|{F1, . . . , Fd} is polynomial time computable [9,10]. The other is the follow-
ing hardness lemma, which is not a straightforward corollary of the dichotomy
theorems for HolantC and Holant∗ in [10].

Lemma 1. For any integer d ≥ 2, #{=2}|{F1, . . . , Fd+1} is #P-hard.

Proof. We will reduce the problems in the following list to the problem before
it.

#{F1, . . . , Fd+1}|{=2}
#{F1, P, F3}|{=2}

#{F1, F3}|{P}
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#{=1,=3}|{Q}
#{=1,=2,=3}|{Q}

#{=1,=2,=3}|{Q,=2}
#R=|{Q}

In the first reduction, the binary function P = [ad−1, ad,−2ad] is constructed
directly by connecting d− 1 functions F1 = [0, 1] to Fd+1.

The second reduction is simply because #F|F is a restricted version of
#F|{=2}.

The third reduction is holographic reduction by the base M =
(

1 −1
1+
√

5
2

−1+
√

5
2

)
.

Q =
(

2ad − ad−1 5ad + ad−1
5ad + ad−1 2ad − ad−1

)
, ignoring a constant factor.

In the fourth reduction, =2 is constructed by connecting unary function Q̂ =1
to =3, where Q̂ =1 is constructed by connecting =1 to Q.

In the fifth reduction, we can apply the interpolation reduction method in [16]
to realize right side =2, by using Qs, s = 1, 2, . . . , poly(n), to interpolate on the
eigenvalues.

In the last reduction, r − 2 functions =3 are connected by right side =2 to
realize left side =r.

All entries in Q̂ is nonzero, and Q̂ is nonsingular, by result in [1], #R=|{Q}
is #P-hard. ��

Theorem 3. For any integer d ≥ 2, there exist a complex valued symmetric
binary function Hd, such that #{Hd}|Rd

= has polynomial time algorithm, but
#{Hd}|Rd+1

= is #P-hard.

Proof. We construct a holographic reduction between #{=2}|{F1, . . . , Fd+1}
and #{Hd}|{=1, . . . ,=d+1}. Let k = d + 1.

The first problem is in domain [2], and the second problem is in domain [m].
The value of m will be determinated later in the construction.

We construct a matrix M of size 2×m, such that for any 1 ≤ i ≤ k,

M⊗i(=i) = Fi. (1)

Recall that =i and Fi denote the column vectors of length mi and 2i correspond-
ing to the two functions.

Suppose there are cj columns with the same value
(

bj
bjqj

)
in M temporarily,

0 ≤ j ≤ k. We have M⊗i(=i) =
∑k

j=0 cj

(
bj
bjqj

)⊗i

, because the s1s2 · · · si
columns of M⊗i is Ms1 ⊗ · · · ⊗Msi (Ms denotes the sth column of M), and the
vector =i is nonzero only on entries s1s2 · · · si satisfying s1 = s2 = · · · = si.

We need that
∑k

j=0 cj

(
bj
bjqj

)⊗i

= Fi. Notice that both sides of the equation

are symmetric functions. We need
∑k

j=0 cjb
i
j[1, qj , . . . , q

i
j ] = [a0, a1, . . . , ai] holds
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for 1 ≤ i ≤ k. Let bj = 1, we only need
∑k

j=0 cjq
i
j = ai. Let qj are different

integers. Then, this is a system of linear equations in cj with nonsingular Van-
dermonde coefficient matrix in qj . Because qj and ai are integers, the solution
of cj are rational.

We look two simple cases firstly. If the solution of cj are all nonnegative inte-
gers, it is done. If the solution of cj are nonnegative rational numbers. Suppose

p is a constant such that pcj are nonnegative integers. Put pcj columns
(

bj
bjqj

)
in M . We get M⊗i(=i) = pFi. (The constant p does not change the complexity
of the corresponding problem.)

In the general case, the solution of cj may be negative rational. In fact we
only need to show how to utilize bj to realize a factor −1. Suppose we want some

column
(

b
bq

)
in M contribute −1

(
1
q

)⊗i

in M⊗i(=i) =
∑k

j=0 cj

(
bj
bjqj

)⊗i

for

1 ≤ i ≤ k.

Let r = ei2π/(k+1). Replace this column
(

b
bq

)
by k columns

(
bs
bsq

)
, 1 ≤ s ≤

k, where bs = rs. Notice

k∑
s=1

bis =
s∑

s=1

rsi =
k∑

s=0

rsi − 1 =
1− ri(k+1)

1− ri
− 1 = −1,

for all 1 ≤ i ≤ k. These k columns indeed contribute −1
(

1
q

)⊗i

.

Suppose we get the solution of cj from the system of linear equations. Firstly,
we only take the absolute values of this solution, and handle it as the second
simple case to get a matrix M . Secondly, for each cj which should take a negative
value, we replace each of its pcj columns in M by k new columns as above to
get a new M satisfying equations 1.

By theorem 2, let Hd = (=2)M⊗2, then #{=2}|{F1, . . . , Fd+1} and #{Hd}|
Rd+1

= have the same value. Obviously, the same holographic reduction exists
between #{=2}|{F1, . . . , Fd} and #{Hd}|Rd

=.
By the results in [10], we know that #{=2}|{F1, . . . , Fd} is in P, while #{=2

}|{F1, . . . , Fd+1} is #P-hard by lemma 1.
The conclusion follows from the complexity of #{=2}|{F1, . . . , Fd} and #{=2

}|{F1, . . . , Fd+1}. ��

4 Some Partial Converse of Holographic Reduction

Since result equivalent is enough to design reductions, and algebra equivalent is a
sufficient condition of result equivalent, we wonder whether it is also a necessary
condition. If it is not, maybe we can explore more sufficient conditions to design
new reductions. This question itself is also an interesting mathematical problem.

The converse of theorem 1 does not hold for some cases. For example #{F1 =
F2 = (1, 0)}|{(4, 1)′} and #{W1 = (1, 1),W2 = (1, 2)}|{(4, 0)′} always have the
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same value, but obviously there is no nonsingular M such that F1 = W1M and
F2 = W2M .

Unfortunately, the converse of theorem 2 does not hold either. Consider #{F1
= F2 = (1, 0), F3 = (1, 4)}|{(4, 1)′} and #{W1 = (1, 1),W2 = (1, 2),W3 =
(2, 0)}|{(4, 0)′}. They always give the same value. Suppose the converse of Holant
theorem holds, then it must be that F1 = W1M and F2 = W2M , so the second
column of M is a zero vector. Because F3 = W3M , the second entry of F3 should
be zero. Contradiction.

It is still possible that the converse of the two theorems holds for most sit-
uation except some special cases. In the following conjecture, we simply add a
condition on the arity, but maybe this is far from the right condition.

Conjecture 1. #F|H and #P|Q are two counting problems, such that at least
one of F, H, P, Q contains some function of arity more than 1. If they are result
equivalent, then they are algebra equivalent.

We compare this conjecture with the following result. (The result in [17] is more
general.)

Theorem 4 ([17,13]). Suppose H1 and H2 are directed acyclic graphs. If for
all directed acyclic graphs G, the number of homomorphisms from G to H1 is
equal to the number of homomorphisms from G to H2, then H1 and H2 are
isomorphic.

Theorem 4 can be regarded as a special case of the conjecture that H = Q = R=,
and F = {H1}, P = {H2}, with stronger conclusion that the matrix M in algebra
equivalent is a permutation matrix.

Now we prove that if there is a matrix M keeping =k unchanged for all airty
k, then it must be permutation matrix.

Suppose M = (Mij) is n×n matrix. Let Mj denote the jth column of M , and
ej denote the standard column base vector. eij denotes the ith entry of ej , that
is, (eij) is identity matrix. We have condition M⊗k(=k) = (=k), which means∑n

j=1 M
⊗k
j =

∑n
j=1 e

⊗k
j , 1 ≤ k ≤ n. Fix a i and focus on the (ii · · · i)th entry

of these vector equations. We get
∑n

j=1 M
k
ij =
∑n

j=1 e
k
ij , 1 ≤ k ≤ n. This means

{Mij|1 ≤ j ≤ n} and {eij |1 ≤ j ≤ n} are the same multi-set, that is, each row
of M is compose of 1 one and n − 1 zeros. Suppose one column of M contains
more than one 1. For example Msj = Mtj = 1. Consider the (ii · · · ij)th entry of
these vector equations, we will get a contradiction. Hence, M is a permutation
matrix.

In the rest of this paper, we prove that the conjecture holds for several classes
of problems #F|{=2} (Holant problems). We denote this problem by #F for
simplicity. The range of all functions are real numbers.

Since we only consider #F|{=2} problems, the base M keep =2 unchanged,
that is, M⊗2(=2) = (=2). The matrix corresponds to =2 is identity matrix I, so
the matrix form of this equation is MIM ′ = I, which means M is orthogonal.

Theorem 5. Suppose F = {F1, . . . , Ft} and P = {P1, . . . , Pt} are composed of
unary functions over [n]. If #F and #P are result equivalent, then they are
algebra equivalent.
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Proof. This a straightforward linear algebra problem.
Let F (resp. P ) denote the matrix whose ith column is Fi (resp. Pi). The

condition is that F ′F = P ′P .
If t = n and F is full rank, then P is also full rank. Let M = HF−1. Obviously,

MFi = Hi. Because F ′F = H ′H = F ′M ′MF , M is orthogonal matrix.
For the general case, we can show F and P has the same maximum linear

independent column subset (two subset have the same element index) and the
other columns are generated by this set in the same way. We can turn them into
nonsingular matrices. Details omitted. ��

Theorem 6. Suppose F and H are two symmetric binary real functions over
[n]2. If #{F} and #{H} are result equivalent, then they are algebra equivalent.

Proof. Suppose KFK ′ and LHL′ are diagonal matrices and K,L are orthogonal
matrices.

#{F} and #{KFK ′}, #{H} and #{LHL′} are algebra equivalent. We only
need to prove that #{KFK ′} and #{KHK ′} are algebra equivalent.

Consider a cycle of length i. Since #{KFK ′} and #{LHL′} have the same
value on it, tr((KFK ′)i) = tr((LHL′)i).

Take i = 1, . . . , n, we get that the diagonal entries sets of KFK ′ and LHL′

are the same. Hence, #{KFK ′} and #{LHL′} are algebra equivalent under a
permutation matrix. ��

Corollary 1. Suppose F1, F2, H1, H2 are symmetric binary real functions over
[k]2, and all eigenvalues of F1 are equal. If #{F1, F2} and #{H1, H2} are result
equivalent, then they are algebra equivalent.

Proof. By theorem 6, the eigenvalues of H1 are also equal. If these eigenvalues
are zero, then F1 and H1 are zero function. The conclusion holds by theorem 6.

If these eigenvalues λ are not zero, #{F1, F2} (resp. #{H1, H2}) is alge-
bra equivalent to #{λI, P2} (resp. #{λI,Q2}). By theorem 6, #{λI, P2} and
#{λI,Q2} are algebra equivalent. ��

We need the following lemma for the next theorem.

Lemma 2. G = (U, V,E) is a bipartite graph with edge weight function w : E →
{1,−1}. If for every cycles e1, e2, . . . , e2k of G, w(e1)w(e2) · · ·w(e2k) = 1, we
say G is consistent. If G is consistent, then we can extend weight function w to
a complete bipartite graph G′ = (U, V, U × V ), such that G′ is also consistent.

Proof. Given G = (U, V,E), we take a spanning tree of each of its connected
components. We get a forest and denote it by G1 = (U, V,E1). Edges in E1 take
the same weight as in G. Extend G1 to a spanning tree G2 = (U, V,E2), that is,
E1 ⊆ E2, such that the weights of edges in E2−E are either 1 or −1 arbitrarily.
At last, we extend G2 to complete graph G′. For each edge (u, v) �∈ E2, there is
a unique path Pu,v in G2 connecting u and v. We set the weight of (u, v) to the
product of weights of edges in Pu,v.
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Firstly, we prove that G′ is consistent. Take an arbitrary cycle C′ of G′. For
each edge e in C′, there is a unique path Pe corresponding to it in the spanning
tree G2. We replace each edge e in C by its path Pe to get a cycle C2 of G2.
By the definition of weights of G′, the two cycles have the same product of
edge weights. Each edge appears in C2 for even many times. (Otherwise, if C2
contains some edge e for odd many times, the cycle will start from one of the
two components of the graph (U, V,E2−{e}) and stay in the other component.)
Hence the products of edge weights are 1 for both cycles C and C′.

Secondly, we prove that G′ and G give the same weight to edges in E. We
prove it for all edges in each connected component of G. To reuse the notations
above, we can assume that G is connected. By definition, G′ and G give the same
weight to edges in E1. Because both G′ and G are consistent, and the weight of
e = (u, v) �∈ E1 is decided by the weights on the path Pu,v ⊆ E1, they give the
same weight to e. ��
Theorem 7. Suppose F1, F2, H1, H2 are symmetric binary real functions over
[k]2, and all eigenvalues of F1 are different and all eigenvalues of F2 are dif-
ferent. If #{F1, F2} and #{H1, H2} are result equivalent, then they are algebra
equivalent.

Proof. By theorem 6, there exist orthogonal matrices K1, L1 and diagonal
matrix Λ1 such that F1 = K ′

1Λ1K1, H1 = L′1Λ1L1. Because #{F1, F2} and
#{Λ1,K1F2K

′
1}, #{H1, H2} and #{Λ1, L1H2L

′
1}, are algebra equivalent, #{Λ1,

K1F2K
′
1} and #{Λ1, L1H2L

′
1} are result equivalent.

To prove the conclusion, we only need to prove #{Λ1,K1F2K
′
1} and #{Λ1,

L1H2L
′
1} are algebra equivalent. We use F (resp. H) to denote K1F2K

′
1 (resp.

L1H2L
′
1).

Applying theorem 6 to #{F} and #{H}, there exist orthogonal matrices K,
L and diagonal matrix Λ such that F = KΛK ′, H = LΛL′. The diagonal entries
of Λ are different eigenvalues.

Let σi denote the binary relation {(i, i)}, i ∈ [n]. Consider a circle of r + s
with r functions Λ1 and s functions F . The value of #{Λ1, F} on this instance
is tr(Λr

1F
s) = tr(Λr

1KΛsK ′). This equation holds for any r and s. Suppose the
ith diagonal entry of Λ1 is λi. tr(Λr

1KΛsK ′) = Σiλ
r
i tr(σiKΛsK ′). Fix s and

take n different values of r. We get a nonsingular system of linear equations in
tr(σiKΛsK ′), with Vandermonde coefficient matrix in λi.

Similar analysis also holds for tr(Λr
1LΛ

sL′). By the conditions tr(Λr
1F

s) =
tr(Λr

1H
s). Two systems of linear equations are the same, so if λi �= 0, tr(σiKΛsK ′)

= tr(σiLΛsL′). If there is some unique λi0 = 0, notice tr((Σi∈[n]σi)KΛsK ′) =
tr(=2 KΛsK ′) = tr(LΛsL′) = tr((Σi∈[n]σi)LΛsL′), we also have tr(σi0KΛsK ′)
= tr(σi0LΛsL′).

Similar analysis holds for Λ part. Hence, for any i, j, tr(σiKσjK
′) =

tr(σiLσjL′), which means (K(i, j))2 = (L(i, j))2.
Define a weighted undirected bipartite graph G = (U, V,E), such that (i, j) ∈

E iff L(i, j) �= 0. The weight of (i, j) is w((i, j)) = K(i, j)/L(i, j) ∈ {1,−1}.
We just consider Λr

1F
s in the above analysis. If consider Λr1

1 F r2Λr3
1 F r4 , we

can get for any i, j, k, l ∈ [n], tr(σiKσjK
′σkKσlK

′) = tr(σiLσjL′σkLσlL′),



Holographic Reduction: An Application and Partial Converse 675

which means K(i, j)K(k, j)K(k, l)K(i, l) = L(i, j)L(k, j)L(k, l)L(i, l). If none of
them is zero, ((i, j), (k, j), (k, l), (i, l)) is a cycle in G, and the equation says G
is consistent on this cycle (the product of edge weights in the cycle is 1). If we
consider arbitrary alternations between Λ and F , we get arbitrary cycles, so G
is consistent. By lemma 2, we can get a consistent complete bipartite graph G′.
Suppose the weight function of G′ is W (i, j), which is also a matrix.

For any 2 × 2 submatrix W ({i, k}, {j, l}) of W , its two rows are identical or
linear dependent by a factor −1 (consider the circle ((i, j), (k, j), (k, l), (i, l)) in
G′). Hence the rank of W is 1.

Suppose W is the product of two ±1 valued vectors δ1δ
′
2. Let diag(δi) de-

note the diagonal matrix whose diagonal is δi. Since W (i, j)L(i, j) = K(i, j)
for all entries, diag(δ1) L diag(δ2) = K. Notice diag(δ1) Λ1 diag(δ1) = Λ1 and
diag(δ2) Λ diag(δ2) = Λ. #{Λ1, F} and #{Λ1, H} are algebra equivalent by ma-
trix diag(δ1). ��

Corollary 2. Suppose F1, F2, H1, H2 are symmetric binary real functions over
[2]2. If #{F1, F2} and #{H1, H2} are result equivalent, then they are algebra
equivalent.

Proof. Since the size of domain is 2, either one of F1 and F2 have the same
eigenvalues, or neither of them has.

The first case is by corollary 1, the second case is by theorem 7. ��

Corollary 3. Suppose F1, H1 are unary real functions over [2], and F2, H2 are
symmetric binary real functions over [2]2. If #{F1, F2} and #{H1, H2} are result
equivalent, then they are algebra equivalent.

Proof. Let binary functionsF3 = F⊗2
1 ,H3 = H⊗2

1 . Apply corollary2 to #{F3, F2}
and #{H3, H2}.

There exists orthogonal matrix M , such that M⊗2F3 = H3, M⊗2F2 = H2
Because M⊗2F3 = H3, which means (MF1)⊗2 = H⊗2

1 , either MF1 = H1 or
MF1 = −H1. If MF1 = H1, the conclusion holds by base M . If MF1 = −H1,
the conclusion holds by base −M . ��

Theorem 8. Suppose F3, H3 are symmetric ternary real functions over [2]3, If
#{F3} and #{H3} are result equivalent, then they are algebra equivalent.

Proof. Suppose H3 = [h0, h1, h2, h3]. F1 (resp. H1) denote the unary function by
connecting two inputs of F3 (resp. H3) using =2 , that is, H1 = [h0+h2, h1+h3].

Let F2 (resp. H2) denote the binary function which is one F3 (resp. H3)
function connected by one F1 (resp. H1).

Obviously, #{F1, F2} and #{H1, H2} are result equivalent. Apply corollary
3 to #{F1, F2} and #{H1, H2}. There exists orthogonal matrix M such that
MF1 = H1 and M⊗2F2 = H2.

Let M⊗3F3 = [f0, f1, f2, f3], Δj = hj − fj, j = 0, 1, 2, 3. Because MF1 =
[f0 + f2, f1 + f3] and MF1 = H1, Δ0 + Δ2 = 0 and Δ1 + Δ3 = 0.

Let H1 = [h0 + h2, h1 + h3] = MF1 = [a, b], then H2 = [ah0 + bh1, ah1 +
bh2, ah2 + bh3] and M⊗2F2 = [af0 + bf1, af1 + bf2, af2 + bf3]. (F2 is composed
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of F3 and F1. Because M is orthogonal, M⊗2F2 can be realized by composing
M⊗3F3 and MF1.) Because M⊗2F2 = H2, aΔ0 + bΔ1 = 0, aΔ1 + bΔ2 = 0,
aΔ2 + bΔ3 = 0.

Now we get five linear equations about Δj . Notice a and b are real numbers,
since F3 and H3 are real functions. Calculation shows that, there is only zero
solution iff a2 + b2 �= 0. Hence, if a �= 0 or b �= 0, we have proved M⊗3F3 = H3.

If a = b = 0, H1 = MF1 = [0, 0], so F1 = [0, 0]. let F3 = [x, y,−x,−y]. There

exist s = (x − iy)/2 and t = (x + iy)/2 such that F3 = s

(
1
i

)⊗3

+ t

(
1
−i

)⊗3

.

Because x and y are real number, s �= 0, t �= 0. Under base
(

1 1
i −i

)
, #{F3}|{F3}

is holographic reduced to #{[s, 0, 0, t]}|{[8t, 0, 0, 8s]}. Similarly, H3 also has form

H3 = c

(
1
i

)⊗3

+ d

(
1
−i

)⊗3

, and under the same base, #{H3}|{H3} is holo-

graphic reduced to #{[c, 0, 0, d]}|{[8d, 0, 0, 8c]}.
Because #{F3}|{F3} is special case of #{F3}, #{[s, 0, 0, t]}|{[8t, 0, 0, 8s]} and

#{[c, 0, 0, d]}|{[8d, 0, 0, 8c]} are result equivalent. Hence, st = cd.

Notice
(

( cs)
1
3 0

0 (dt )
1
3

)
can turn [s, 0, 0, t] into [c, 0, 0, d]. Let

M =
(

1 1
i −i

)(
( cs)

1
3 0

0 (dt )
1
3

)(
1 1
i −i

)−1

.

Then, M⊗3F3 = H3 and M ′M = I (the second equation is right because of the
condition st = cd). ��
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Abstract. Let s be a string whose symbols are solely available through
access(i), a read-only operation that probes s and returns the symbol
at position i in s. Many compressed data structures for strings, trees,
and graphs, require two kinds of queries on s: select(c, j), returning the
position in s containing the jth occurrence of c, and rank(c, p), counting
how many occurrences of c are found in the first p positions of s. We
give matching upper and lower bounds for this problem. The main con-
tribution is to introduce a general technique for proving lower bounds on
succinct data structures, that is based on the access patterns of the sup-
ported operations, abstracting from the particular operations at hand.

1 Introduction

We are given a read-only sequence s ≡ s [0, n− 1] of n symbols over an integer
alphabet Σ = [σ] ≡ {0, 1, . . . , σ− 1}, where 2 ≤ σ ≤ n. The symbols in s can be
read using access(i), for 0 ≤ i ≤ n− 1: this primitive probes s and returns the
symbol at position i, denoted by s [i]. Given the sequence s, its length n, and the
alphabet size σ, we want to support the following query operations for a symbol
c ∈ Σ: select(c, j) returns the position inside s containing the jth occurrence
of symbol c, or −1 if that occurrence does not exist; rank(c, p) counts how many
occurrences of c are found in s [0, p− 1].

We postulate that an auxiliary data structure, called a succinct index, is con-
structed in a preprocessing step to help answer these queries rapidly. In this
paper, we study the natural and fundamental time-space tradeoff between two
parameters t and r for this problem:

– t = the probe complexity, which is the maximal number of probes to s (i.e.
calls to access) that the succinct index makes when answering a query1;

– r = the redundancy, which is the number of bits required by the succinct
index, and does not include the space needed to represent s itself.

Clearly, these queries can be answered in negligible space but O(n) probes by
scanning s, or in zero probes by making a copy of s in auxiliary memory at
1 The time complexity of our results in the RAM model with logarithmic-sized words

is linearly proportional to the probe complexity. Hence, we focus on the latter.

S. Abramsky et al. (Eds.): ICALP 2010, Part I, LNCS 6198, pp. 678–689, 2010.
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preprocessing time, but with redundancy of Θ(n log σ) bits. We are interested
in succinct indices that use few probes, and have redundancy o(n log σ), i.e.,
asymptotically smaller than the space for s itself. Specifically, we obtain upper
and lower bounds on the redundancy r ≡ r(t, n, σ), viewed as a function of the
maximum number t of probes, the length n of s, and the alphabet size σ. We
assume that t > 0 in the rest of the paper.

Motivation. Succinct indices have numerous applications to problems involving
indexing massive data sets [1]. The rank and select operations are basic prim-
itives at the heart of many sophisticated indexing data structures for strings,
trees, graphs, and sets [10]. Their efficiency is crucial to make these indexes fast
and space-economical. Our results are most interesting for the case of “large”
alphabets, where σ is a not-too-slowly growing function of n. Large alphabets are
common in modern applications: e.g. many files are in Unicode character sets,
where σ is of the order of hundreds or thousands. Inverted lists or documents
in information retrieval systems can be seen as sequences s of words, where the
alphabet Σ is obviously large and increasing with the size of the collection (it is
the vocabulary of distinct words appearing over the entire document repository).
Our results. Our first contribution is showing that the redundancy r in bits

r(t, n, σ) = Θ

(
n log σ

t

)
(1)

is tight for any succinct index solving our problem, for t = O(log σ/ log log σ).
(All the logarithms in this paper are to the base 2.) We provide matching upper
and lower bounds for this range of values on t, under the assumption that O(t)
probes are allowed for rank and select, i.e. we ignore multiplicative constant
factors. The result is composed by a lower bound of r = Ω(n log σ

t ) bits that
holds for t = o(log σ) and by an upper bound of r = O(n log σ

t + n log log σ). We
will also provide a lower bound of r = Ω(n log t

t ) for t = O(n) in the full version,
extending the σ = 2 case of [7]. This leaves open what is the optimal redundancy
when t = Ω( log σ

log log σ ). Running times for the upper bound are O(t + log log σ)
for rank and O(t) for select.

An interpretation of (1) is that, given a data collection D, if we want to build
an additional succinct index on D that saves space by a factor t over that taken
by D, we have to pay Ω(t) access cost for the supported queries. Note that the
plain storage of the sequence s itself requires n logσ bits. Moreover, our result
shows that it is suboptimal to build σ individual succinct indexes (like those for
the binary-alphabet case, e.g. [16]), one per symbol c ∈ [σ]: the latter approach
has redundancy Θ(σn log t

t ) while the optimal redundancy is given in eq. (1),
when t = O(log σ/ log log σ).

Lower bounds are our main findings, while the matching upper bounds are
derived from known algorithmic techniques. Thus, our second contribution is
a general technique that extends the algorithmic encoding/decoding approach
in [4] in the sense that it abstracts from the specific query operation at hand, and
focuses on its access pattern solely. For this, we can single out a sufficiently large,
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conflict free subset of the queries that are classified as stumbling or z-unique. In
the former case, we extract direct knowledge from the probed locations; in the
latter, the novelty of our approach is that we can extract (implicit) knowledge
also from the unprobed locations. We are careful not to exploit the specific se-
mantics of the query operations at this stage. As a result, our technique applies
to other kinds of query operations for predecessor, prefix sum, permutation, and
pattern searching problems, to name a few, as long as we can extract a suf-
ficiently large subset of the queries with the aforementioned features. We will
discuss them extensively in the full version.

We also provide further running times for the rank/select problem. For ex-
ample, if σ = (logn)O(1), the rank operation requires only O(t) time; also, we
can get O(t log log σ log(3) σ) time2 for rank and O(t log log σ) time for select
(Theorem 4). As a corollary, we can obtain an entropy-compressed data struc-
ture that represents s using nHk(s) + O( n log σ

log log σ ) bits, for any k = o( logσ n
log log σ ),

supporting access in O(1) time, rank and select in O(log log σ) time (here,
Hk(s) is the kth-order empirical entropy).

Related work. The conceptual separation of the index from the input data was
introduced to prove lower bounds in [6,13]. It was then explicitly employed for
upper bounds in [5,11,17], and was fully formalized in [1]. The latter contains
the best known upper bounds for our problem3, i.e. O(s) probes for select
and O(s log k) probes for rank, for any two parameters s ≤ log σ/ log log σ and
k ≤ σ, with redundancy O(n log k+n(1/s+ 1/k) logσ). For example, fixing s =
k = log log σ, they obtain O(log log σ) probes for select and O(log log σ log(3) σ)
probes for rank, with redundancy O(n log σ/ log log σ). By eq. (1), we get the
same redundancy with t = O(log log σ) probes for both rank and select. Hence,
our probe complexity for rank is usually better than [1] while that of select
is the same. Our O(log log σ) running times are all better when compared to
O((log log σ)2 log(3) σ) for rank and O((log log σ)2) for select in [1].

2 General Technique

This section aims at stating a general lower bound technique, of independent
interest, which applies not only to both rank and select but to other query
operations as well. Suppose we have a set S of strings of length n, and a set Q of
queries that to be supported on S using at most t probes each and an unknown
redundancy r . Under certain assumptions on S and Q, we can show a lower
bound on r. Clearly, any choice of S and Q is allowed for the upper bound.

Terminology. We now give a framework that relies on a simple notion of entropy
H(S), where H(X) = $log |X |% for any class of |X | combinatorial objects [3]. The
framework extends the algorithmic encoding/decoding approach [4]. Consider an
arbitrary algorithm A that can answer to any query in Q performing at most

2 We define log(1) x := log2 x and for integer i ≥ 2, log(i) x := log2(log
(i−1) x).

3 We compare ourselves with the improved bounds given in the full version of [1].
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t probes on any s ∈ S, using a succinct index with r bits. We describe how to
encode s using A and the succinct index as a black box, thus obtaining E(s)
bits of encoding. Then, we describe a decoder that knowing A, the index of r
bits, and the latter encoding of E(s) bits, is able to reconstruct s in its original
form. The encoding and decoding procedure are allowed unlimited (but finite)
computing time, alibet A can make at most t probes per query.

The lower bound on r arises from the necessary condition maxs∈S E(s) + r ≥
H(S), since otherwise the decoder cannot be correct. Namely, r ≥ H(S) −
maxs E(s): the lower E(s), the tighter the lower bound for r. Our contribution
is to give conditions on S and Q so that the above approach can hold for a
variety of query operations, and is mostly oblivious of the specific operation at
hand since the query access pattern to s is relevant. This appears to be novel.

First, we require S to be sufficiently dense, that is, H(S) ≥ n log σ − Θ(n).
Second, Q must be a subset of [σ] × [n], so that the first parameter specifies a
character c and the second one an integer p. Elements of Q are written as qc,p.
Third, answers to queries must be within [n]. The set Q must contain a number
of stumbling or z-unique queries, as we define now. Consider an execution of A
on a query qc,p ∈ Q for a string s. The set of accessed position in s, expressed
as a subset of [n] is called an access pattern, and is denoted by Pats(qc,p).

First, stumbling queries imply the occurrence of a certain symbol c inside their
own access pattern: its position can be decoded by using just the answer and
the parameters of the query. Formally, qc,p ∈ Q is stumbling if there exists a
computable function f that takes in input c, p and the answer of qc,p over s, and
outputs a position x ∈ Pats(qc,p) such that s[x] = c; x is called the target of qc,p.
The rationale is that the encoder can avoid storing any information regarding
s[x] = c, since x can be extracted by the decoder from f and the t probed
positions by A. We let Q′s ⊆ Q be the set of stumbling queries over s.

Second, z-unique queries are at the heart of our technique, where z is a positive
integer. Informally, they have specific answers implying unique occurrences of a
certain symbol c in a segment of s of length z + 1. Formally, a set U of answers
is z-unique if for any qc,p having answer in U , there exists a unique i ∈ [p, p+ z]
such that s[i] = c (i.e. s[j] �= c for all j ∈ [p, p + z], j �= i). A query qc,p having
answer in U is called z-unique and the corresponding position i is called the
target of qc,p. Note that, to our purposes, we will restrict to the cases where
H(U) = O(n). The rationale is the following: when the decoder wants to rebuild
the string it must generate queries, execute them, and test whether they are
z-unique by checking if their answers are in U . Once that happens, it can infer
a position i such that s[i] = c, even though such a position is not probed by the
query. We denote by Q′′s (z) ⊆ Q \Q′s the set of z-unique queries over s that are
not stumbling. We also let Tgts(qc,p) denote the target of query qc,p over s, if it
exists, and let Tgts(Q) = ∪q∈QTgts(q) for any set of queries Q.

Main statement. We now state our main theorem. Let S be a set of strings such
that H(S) ≥ n log σ − Θ(n). Consider a set of queries Q that can be answered
by performing at most t probes per query and using r bits of redundancy.
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Theorem 1. For any z ∈ [σ], let λ(z) = mins∈S |Tgts(Q
′
s) ∪ Tgts(Q

′′
s (z))|.

Then, there exists integers γ and δ with min{λ(z), n}/(15t) ≤ γ + δ ≤ λ(z),
such that any succinct index has redundancy

r ≥ γ log
(σ
z

)
+ δ log

(
σδ

t|Q|

)
−Θ(n).

The proof goes through a number of steps, each dealing with a different issue
and is deferred to Section 3.

Applications. We now apply Theorem 1 to our two main problems, for an
alphabet size σ ≤ n.

Theorem 2. Any algorithm solving rank queries on a string s ∈ [σ]n using
at most t = o(log σ) character probes (i.e. access queries), requires a succinct
index with r = Ω

(
n log σ

t

)
bits of redundancy.

Proof. We start by defining the set S of strings. For the sake of presentation,
suppose σ divides n. An arbitrary string s ∈ S is the concatenation of n/σ
permutations of [σ]. Note that |S| = (σ!)n/σ and so we have H(S) ≥ n log σ −
Θ(n) bits (by Stirling’s approximation).

Without loss of generality, we prove the bound on a derivation of the rank
problem. We define the set Q and fix the parameter z = σ3/4

√
t, so that the

queries are qc,p = rank(c, p + z) − rank(c, p), where c ∈ [σ] and p ∈ [n] with
p mod z ≡ 0. In this setting, the z-unique answers are in U = {1}. Indeed,
whenever qc,p = 1, there exists just one instance of c in s[p, p + z]. Note that
|Q| = nσ/z > n, for σ larger than some constant.

Observe that λ(z) ≥ n, as each position i in s such that s[i] = c, is the target
of exactly one query qc,p: supposing the query is not stumbling, such a query is
surely z-unique. By Theorem 1, γ + δ ≥ n/(30t) since a single query is allowed
to make up to 2t probes now. (This causes just a constant multiplicative factor
in the lower bound.) Having met all requirements, we apply Theorem 1, and get
r ≥ F , where F := γ log

(
σ
z

)
− δ log

(
nt
zδ

)
.

We distinguish between two cases. If δ ≤ n/σ1/4, then δ log((nt)/(zδ)) ≤
(n/σ1/4) log

(
(ntσ1/4)/(nz)

)
≤ (n/2σ1/4) log(t/σ), since δ log(1/δ) is monotone

increasing in δ as long as δ ≤ λ(z)/2 (and n/σ1/4 ≤ λ(z)/2 for sufficiently large
σ). Hence, recalling that t = o(log σ), the absolute value of the second term in F
is o(n/t) for σ larger than a constant. Moreover, γ ≥ n/(30t)−δ ≥ n/(60t) in this
setting, so that the bound r ≥ F reduces to r ≥ (n/240t) log σ− (n/120t) log t−
Θ(n) = (n/240t) log σ − Θ(n). In the other case, we have δ ≥ n/σ1/4, and
δ log(ntzδ ) ≤ δ log

(
(σ1/4t)/(σ3/4

√
t)
)

= (δ/2) log(t/σ). Therefore, we know that
γ log(σ/z) + (δ/2) log(σ/t) ≥ 1

2 (γ + δ) log(σ/z), as we chose z ≥ t. Again, we
obtain r ≥ (n/120t) log σ − Θ(n). In both cases, the Θ(n) term is negligible as
t = o(log σ), hence the bound. ��

Theorem 3. Any algorithm solving select queries on a string s ∈ [σ]n using
at most t = o(log σ) character probes (i.e. access queries), requires a succinct
index with r = Ω

(
n log σ

t

)
bits of redundancy.
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Proof. The set S of strings is composed by full strings, assuming that σ divides n.
A full string contains each character exactly n/σ times and, differently from
Theorem 2, has no restrictions on where they can be found. Again, we have
H(S) ≥ n logσ −Θ(n).

The set Q of queries is qc,p = select(c, p), where p ∈ [n/σ], and all queries
in Q are stumbling ones, as select(c, i) = x immediately implies that s[x] = c
(so f is the identity function). There are no z-unique queries here, so we can
fix any value of z: we choose z = 1. It is immediate to see that λ(z) = n, and
|Q| = n, as there are only n/σ queries for each symbols in [σ]. By Theorem 1,
we know that γ + δ ≥ n/(15t). Hence, the bound is r ≥ γ log σ + δ log

(
σδ
nt

)
≥

(n/15t) log(σ/t2)−Θ(n). Again, as t = o(log σ) the latter term is negligible. ��

3 Proof of Theorem 1

We give an upper bound on E(s) for any s ∈ S by describing an encoder and a
decoder for s. In this way we can use the relation maxs∈S E(s) + r ≥ H(S) to
induce the claimed lower bound on r (see Sec. 2). We start by exploiting z-unique
and stumbling queries to encode a single position and its content compactly.
Next, we deal with conflicts between queries: not all queries in Q are useful for
encoding. We describe a mechanical way to select a sufficiently large subset of
Q so that conflicts are avoided. Bounds on γ and λ arise from such a process.
Finally, we show how to store query parameters to be read by the decoder.

Entropy of a single position and its content. We first evaluate the entropy
of positions and their contents by exploiting the knowledge of z-unique and
stumbling queries. We use the notation H(S|Ω) for some event Ω as a shortcut
for H(S′) where S′ = {s ∈ S|s satisfies Ω}.

Lemma 1. For any z ∈ [σ], let Ωc,p be the condition “qc,p is z-unique”. Then
it holds H(S)−H(S|Ωc,p) ≥ log(σ/z)−O(1).

Proof. Note that set (S|Ωc,p) = {s ∈ S : Tgts(qc,p) is defined on s} for a given
query qc,p. It is |(S|Ωc,p)| ≤ (z + 1)σn−1 since there at most z + 1 candidate
target cells compatible with Ωc,p and at most |S|/σ possible strings with position
containing c at a fixed position. So, H(S|Ωc,p) ≤ log(z + 1) + H(S)− log σ. ��

Lemma 2. Let Ω′c,p be the condition “qc,p is a stumbling query”. Then, it holds
that H(S)−H(S|Ω′c,p) ≥ log(σ/t)−O(1).

Proof. The proof for this situation is already known from [8]. In our notation,
the proof goes along the same lines as that of Lemma 1, except that we have
t choices instead of z + 1. To see that, let m1,m2, . . . ,mt be the positions, in
temporal order, probed by the algorithm A on s while answering qc,p. Since the
query is stumbling, the target will be one of m1, . . . ,mt. It suffices to remember
which one of the t steps probe that target, since their values m1, . . . ,mt are
deterministically characterized given A, s, qc,p. ��
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Conflict handling. In general, multiple instances of Lemma 1 and/or Lemma 2
cannot be applied independently. We introduce the notion of conflict on the
targets and show how to circumvent this difficulty. Two queries qb,o and qc,p
conflict on s if at least one of the following three condition holds: (i) Tgts(qc,p) ∈
Pats(qb,o), (ii) Tgts(qb,o) ∈ Pats(qc,p), (iii) Tgts(qc,p) = Tgts(qb,o). A set of
queries where no one conflicts with another is called conflict free. The next
lemma is similar to the one found in [9], but the context is different.

Lemma 3 defines a lower bound on the maximum size of a conflict free subset
of Q. We use an iterative procedure that maintains at each ith step a set Q∗i of
conflict free queries and a set Ci of available targets, such that no query q whose
target is in Ci will conflict with any query q′ ∈ Q∗i−1. Initially, C0 contains all
targets for the string s, so that by definition |C0| ≥ λ(z). Also, Q∗0 is empty.

Lemma 3. Let i ≥ 1 be an arbitrary step and assume |Ci−1| > 2|C0|/3. Then,
there exists Q∗i and Ci such that (a) |Q∗i | = 1 + |Q∗i−1|, (b) Q∗i is conflict free,
(c) |Ci| ≥ |C0| − 5it ≥ λ(z)− 5it.

By applying Lemma 3 until |Ci| ≤ 2|C0|/3, we obtain a final set Q∗, hence:

Corollary 1. For any s ∈ S, z ∈ [σ], there exists a set Q∗ containing z-unique
and stumbling queries of size γ + δ ≥ min{λ(z), n}/(15t), where γ = |{q ∈
Q∗|q is stumbling on s}| and δ = |{q ∈ Q∗|q is z-unique on s}|.

Encoding. We are left with the main task of describing the encoder. Ideally,
we would like to encode the targets, each with a cost as stated in Lemma 1 and
Lemma 2, for the conflict free set Q∗ mentioned in Corollary 1. Characters in
the remaining positions can be encoded naively as a string. This approach has a
drawback. While encoding which queries in Q are stumbling has a payoff when
compared to Lemma 2, we don’t have such a guarantee for z-unique queries when
compared to Lemma 1. Without getting into details, according to the choice of
the parameters |Q|, z and t, such encoding sometimes saves space and sometimes
does not: it may use even more space than H(S). For example, when |Q| = O(n),
even the naive approach works and yields an effective lower bound. Instead, if
Q is much larger, savings are not guaranteed. The main point here is that we
want to overcome such a dependence on the parameters and always guarantee a
saving, which we obtain by means of an implicit encoding of z-unique queries.

Archetype and trace. Instead of trying to directly encode the information
of Q∗ as discussed above, we find a query set QA called the archetype of Q∗,
that is indistinguishable from Q∗ in terms of γ and δ. The extra property of
QA is to be decodable using just O(n) additional bits, hence E(s) is smaller
when QA is employed. The other side of the coin is that our solution requires
a two-step encoding. We need to introduce the concept of trace of a query qc,p
over s, denoted by Traces(qc,p). Given the access pattern Pats(qc,p) = {m1 <
m2 < · · · < mt} (see Section 2), the trace is defined as the string Traces(qc,p) =
s[m1] · s[m2] · · · · s[mt]. We also extend the concept to sets of queries, so that for
Q̂ ⊆ Q, we have Pats(Q̂) =

⋃
q∈Q̂ Pats(q), and Traces(Q̂) is defined using the

sorted positions in Pats(Q̂).



Optimal Trade-Offs for Succinct String Indexes 685

Then, we define a canonical ordering between query sets. We define the pred-
icate qc,p ≺ qd,g iff p < g or p = g ∧ c < d over queries, so that we can sort
queries inside a single query set. Let Q1 = {q1 ≺ q2 ≺ · · · ≺ qx} and let
Q2 = {q′1 ≺ q′2 ≺ · · · ≺ q′y} be two distinct query sets. We say that Q1 ≺ Q2 iff
either q1 ≺ q′1 or recursively (Q1 \ {q1}) ≺ (Q2 \ {q′1}).

Given Q∗, its archetype QA obeys to the following conditions for the given s:

– it is conflict free and has the same number of queries of Q∗;
– it contains exactly the same stumbling queries of Q∗, and all remaining

queries are z-unique (note that they may differ from those in Q∗);
– if p1, p2, . . . , px are the positional arguments of queries in Q∗, then the same

positions are found in QA (while character c1, c2, . . . , cx may change);
– Pats(Q∗) = Pats(QA);
– among those query sets complying with the above properties, it is the mini-

mal w.r.t. to the canonical ordering ≺.

Note that Q∗ complies with all the conditions above but the last. Therefore,
the archetype of Q∗ always exists, being either a smaller query set (w.r.t. to ≺)
or Q∗ itself. The encoder can compute QA by exhaustive search, since its time
complexity is not relevant to the lower bound.

First step: encoding for trace and stumbling queries. As noted above the
stumbling queries for Q∗ and QA are the same, and there are δ of them. Here,
we encode the trace together with the set of stumbling queries. The rationale is
that the decoder must be able to rebuild the original trace only, whilst encoding
of the positions which are not probed is left to the next step, together with
z-unique queries. Here is the list of objects to be encoded in order:

(a) The set of stumbling queries expressed as a subset of Q.
(b) The access pattern Pats(QA) encoded as a subset of [n], the positions of s.
(c) The reduced trace, obtained from Traces(QA) by removing all the characters

in positions that are targets of stumbling queries. Encoding is performed
naively by storing each character using log σ bits. The positions thus re-
moved, relatively to the trace, are stored as a subset of [|Traces(QA)|].

(d) For each stumbling query qc,p, in the canonical order, an encoded integer i
of log t bits indicating that the ith probe accesses the target of the query.

The decoder starts with an empty string, it reads the access pattern in (b), the
set of removed positions in (c), and distributes the contents of the reduced trace
(c) into the remaining positions. In order the fill the gaps in (c), it recovers the
stumbling queries in (a) and runs each of them, in canonical ordering. Using the
information in (d), as proved by Lemma 2, it can discover the target in which to
place its symbol c. Since QA is conflict free, we are guaranteed that each query
will always find a symbol in the probed positions.

Lemma 4. Let � be the length of Traces(QA). The first step encodes information
(a)–(d) using at most � log σ + O(n) + δ log(|Q|/δ)− δ log(σ/t) bits.
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Proof. Space occupancy for all objects: (a) uses log
(|Q|

δ

)
= δ log(|Q|/δ) + O(δ);

(b) uses log
(
n
�

)
≤ n bits; (c) uses (�− δ) log σ bits for the reduced trace plus at

most � bits for the removed positions; (d) uses δ log t bits. ��

Second step: encoding of z-unique queries and unprobed positions. We
now proceed to the second step, where targets for z-unique queries are encoded
along with the unprobed positions. They can be rebuilt using queries in QA. To
this end, we assume that encoding of Lemma 4 has already been performed and,
during decoding, we assume that the trace has been already rebuilt. Recall that
γ is the number of z-unique queries. Here is the list of objects to be encoded:

(e) The set of queries in QA that are z-unique, expressed as a subset of QA

according to the canonical ordering ≺. Also the set of z-unique answers U
is encoded as a subset of [n].

(f) For each z-unique query qc,p, in canonical order, the encoded integer p. This
gives a multiset of γ integers in [n].

(g) The reduced unprobed region of the string, obtained by removing all the
characters in positions that are targets of z-unique queries. Encoding is per-
formed naively by storing each character using log σ bits. The positions thus
removed, relatively to the unprobed region, are stored as a subset of [n− �].

(h) For each z-unique query qc,p, in the canonical order, an encoded integer i of
log z + O(1) bits indicating which position in [p, p + z] contains c.

The decoder first obtains QA by exhaustive search. It initializes a set of |QA|
empty couples (c, p) representing the arguments of each query in canonical or-
der. It reads (e) and reuses (a) to obtain the parameters of the stumbling queries
inside QA. It then reads (f) and fills all the positional arguments of the queries.
Then, it starts enumerating all query sets in canonical order that are compatible
with the arguments known so far. That is, it generates characters for the argu-
ments of z-unique queries, since the rest is known. Each query set is then tested
in the following way. The decoder executes each query by means of the trace. If
the execution tries a probe outside the access pattern, the decoder skips to the
next query set. If the query conflicts with any other query inside the same query
set, or its answer denotes that the query is not z-unique (see Section 2 and (e)),
it skips to the next query set. In this way, all the requirements for the archetype
are met, hence the first query set that is not skipped is QA.

Using QA the decoder rebuilds the characters in the missing positions of the
reduced unprobed region: it starts by reading positions in (g) and using them to
distribute the characters in the reduced region encoded by (g) again. For each z-
unique query qc,p ∈ QA, in canonical order, the decoder reads the corresponding
integer i inside (h) and infers that s[i + p] = c. Again, conflict freedom ensures
that all queries can be executed and the process can terminate successfully.

Lemma 5. The second step encodes information (e)–(h) using at most (n −
�) log σ + O(n)− γ log(σ/z) bits.

Proof. Space occupancy: (e) uses log
(|QA|

γ

)
≤ |QA| bits for the subset plus,

recalling from Section 2, O(n) bits for U ; (f) uses log
(
n+γ
γ

)
≤ 2n bits; (g)
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requires (n− �−γ) logσ bits for the reduced unprobed region plus log
(
n−�
γ

)
bits

for the positions removed; (h) uses γ log z + O(γ) bits. ��

Proof (of Theorem 1). By combining Lemma 4 and Lemma 5 we obtain that
for each s ∈ S, E(s) ≤ n log σ + O(n) + δ log

(
t|Q|
δσ

)
− γ log

(
σ
z

)
. We know that

r + maxs∈S E(s) ≥ H(S) ≥ n logσ −Θ(n), hence the bound follows. ��

4 Upper Bounds

Our approach follows substantially the one in [1], but uses two new ingredients,
that of monotone hashing [2] and succinct SB-trees [12], to achieve an improved
(and in many cases optimal) result. We first consider these problems in a slightly
different framework and give some preliminaries.

Preliminaries. We are given a subset T ⊆ [σ], where |T | = m. Let R(i) =
|{j ∈ T |j < i}| for any i ∈ [σ], and S(i) be the i + 1st element of T , for i ∈ [m].

The value of S(R(p)) for any p is named the predecessor of p inside T . For any
subset T ⊆ [σ], given access to S(·), a succinct SB-tree [12] is a systematic data
structure that supports predecessor queries on T , using O(|T | log log σ) extra
bits. For any c > 0 such that |T | = O(logc σ), the succinct SB-tree supports
predecessor queries in O(c) time plus O(c) calls to S(·). The data structure
relies on a precomputed table of n1−Ω(1) bits depending only on σ,d not on T .

A monotone minimal perfect hash function for T is a function hT such that
hT (x) = R(x) for all x ∈ T , but hT (x) can be arbitrary if x �∈ T . We need a
monotone minimal perfect hash function for T , as introduced in [2], that occupies
O(m log log σ) bits and can be evaluated in O(1) time.

Although function R(·) has been studied extensively in the case that T is
given explicitly, we consider the situation where T can only be accessed through
(expensive) calls to S(·). We also wish to minimize the space used (so e.g. cre-
ating an explicit copy of T in a preprocessing stage, and then applying existing
solutions, is ruled out). We give the following extension of known results:

Lemma 6. Let T ⊆ [σ] and |T | = m. Then, for any 1 ≤ k ≤ log log σ, there is
a data structure that supports R(·) in O(log log σ) time plus O(1 + log k) calls
to S(·), and uses O((m/k) log log σ) bits of space. The data structure uses a
pre-computed table (independent of T ) of size σ1−Ω(1) bits.

Proof. We construct the data structure as follows. We store every (log σ)th ele-
ment of T in a y-fast trie [18]. This divides T into buckets of log σ consecutive
elements. For any bucket B, we store every kth element of T in a succinct SB-
tree. The space usage of the y-fast trie is O(m) bits, and that of the succinct
SB-tree is O((m/k) log log σ) bits.

To support R(·), we first perform a query on the y-fast trie, which takes
O(log log σ) time. We then perform a query in the appropriate bucket, which
takes O(1) time by looking up a pre-computed table (which is independent of
T ) of size σ1−Ω(1). The query in the bucket also requires O(1) calls to S(·). We
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have so far computed the answer within k keys in T : to complete the query for
R(·) we perform binary search on these k keys using O(log k) calls to S(·). ��

Supporting rank and select. In what follows, we use Lemma 6 choosing
k = 1 and k = log log σ. We now show the following result, contributing to
eq. (1). Note that the first option in Theorem 4 has optimal index size for t
probes, for t ≤ log σ/ log log σ. The second option has optimal index size for t

probes, for t ≤ log σ/ log(3) σ, but only for select.

Theorem 4. For any 1 ≤ t ≤ σ, there exist data structures with complexities:
(a) select in O(t) probes and O(t) time, and rank in O(t) probes and O(t+

log log σ) time using a succinct index with r = O(n(log log σ + (log σ)/t)) bits of
redundancy. If σ = (logn)O(1), the rank operation requires only O(t) time.

(b) select in O(t) probes and O(t log log σ) time, and rank in O(t log(3) σ)
probes and O(t log log σ log(3) σ) time, using r = O(n(log(3) σ + (log σ)/t)) bits
of redundancy for the succinct index.

Proof. We divide the given string s into contiguous blocks of size σ (assume for
simplicity that σ divides n = |s|). As in [1,10], we use O(n) bits of space, and
incur an additive O(1)-time slowdown, to reduce the problem of supporting rank
and select on s to the problem of supporting these operations on a given block
B. We denote the individual characters of B by B [0] , . . . , B [σ − 1].

Our next step is also as in [1]: letting nc denote the multiplicity of character c
in B, we store the bitstring Z = 1n001n10 . . . 1nσ−10s of length 2σ, and augment it
with the binary rank and select operations, using O(σ) bits in all. Let c = B [i]
for some 0 ≤ i ≤ σ−1, and let π [i] be the position of c in a stably sorted ordering
of the characters of B (π is a permutation). As in [1], select(c, ·) is reduced,
via Z, to determining π−1(j) for some j. As shown in [14], for any t ∈ [σ]
permutation π can be augmented with O(σ + σ log σ

t ) bits so that π−1(j) can be
computed in O(t) time plus t evaluations of π(·) for various arguments.

If Tc denotes the set of indexes in B containing the character c, we store a
minimal monotone hash function hTc on Tc, for all c ∈ [σ]. To compute π(i), we
probe s to find c = B [i], and observe that π(i) = R(i)+

∑c−1
i=0 ni. The latter term

is obtained in O(1) time by operations on Z, and the former term by evaluating
hTc(i). By the result in [2], the complexity of select(c, i) is as claimed.

As noted above, supporting rank(c, i) on s reduces to supporting rank on
an individual block B. If Tc is as above, we apply Lemma 6 to each Tc, once
with k = 1 and once with k = log log σ. Lemma 6 requires some calls to S(·),
but this is just select(c, ·) restricted to B, and is solved as described above. If
σ = (logn)O(1), then |Tc| = (logn)O(1), and we store Tc itself in the succinct
SB-tree, which allows us to compute R(·) in O(1) time using a (global, shared)
lookup table of size n1−Ω(1) bits. ��

The enhancements described here also lead to more efficient non-systematic data
structures. Namely, for σ = Θ(nε) , 0 < ε < 1, we match the lower bound of [9,
Theorem 4.3]. Moreover, we improve asymptotically both in terms of space and
time over the results of [1], employing techniques such as [5,11,17]:
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Corollary 2. There exists a data structure that represents any string s of length
n using nHk(s) + O( n log σ

log log σ ) bits, for any k = o( logσ n
log log σ ), supporting access in

O(1) time, rank and select in O(log log σ) time.

Acknowledgments. We are grateful to a referee for the numerous comments.
This work was supported in part by MIUR of Italy under project AlgoDEEP
prot. 2008TFBWL4.

References

1. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: Proc. SODA 2007, pp. 680–689 (2007); Also,
full version available in Internet

2. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
searching a sorted table with O(1) accesses. In: Proc. SODA 2009, pp. 785–794
(2009)

3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Series in Telecom-
munications and Signal Processing). Wiley-Interscience, Hoboken (2006)
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Abstract. We consider the problem of constructing optimal decision
trees: given a collection of tests which can disambiguate between a set of
m possible diseases, each test having a cost, and the a-priori likelihood
of the patient having any particular disease, what is a good adaptive
strategy to perform these tests to minimize the expected cost to identify
the disease? We settle the approximability of this problem by giving a
tight O(log m)-approximation algorithm.

We also consider a more substantial generalization, the Adaptive TSP
problem, which can be used to model switching costs between tests in
the optimal decision tree problem. Given an underlying metric space, a
random subset S of cities is drawn from a known distribution, but S is
initially unknown to us—we get information about whether any city is
in S only when we visit the city in question. What is a good adaptive
way of visiting all the cities in the random subset S while minimizing
the expected distance traveled? For this adaptive TSP problem, we give
the first poly-logarithmic approximation, and show that this algorithm
is best possible unless we can improve the approximation guarantees for
the well-known group Steiner tree problem.

1 Introduction

Consider the following two adaptive covering optimization problems:

– Adaptive TSP under stochastic demands. (AdapTSP) A traveling salesperson
is given a metric space (V, d), distinct subsets S1, S2, . . . , Sm ⊆ V such that
Si appears with probability pi (and

∑
i pi = 1), and she needs to serve

requests at this subset of locations. However, she does not know the identity
of the random subset: she can only visit locations, at which time she finds out
whether or not that location is part of the subset. What adaptive strategy
should she use to minimize the expected time to serve all requests?

– Optimal Decision Trees. Given a set of m diseases, there are n binary tests
that can be used to disambiguate between these diseases. If the cost of
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performing test t ∈ [n] is ct, and we are given the likelihoods {pj}j∈[m] that a
typical patient has the disease j, what (adaptive) strategy should the doctor
use for the tests to minimize the expected cost to identify the disease?

It can be shown that the optimal decision tree problem is a special case of
the former problem (a formal reduction is given in Section 4.) In both these
problems we want to devise adaptive strategies, which take into account the
revealed information in the queries so far (e.g., cities already visited, or tests
already done) to determine the future course of action—i.e., our output must be
a decision tree. In contrast, a non-adaptive strategy corresponds to a decision
list. While some problems have the property that the best adaptive and non-
adaptive strategies have similar performances, both the above problems have a
large adaptivity gap [9] (the worst ratio between the performance of the optimal
non-adaptive and optimal adaptive strategies). Hence it is essential that we seek
good adaptive strategies.

The optimal decision tree problem has long been studied (its NP-hardness
was shown in 1976 [22], and many references and applications can be found
in [29]). On the algorithms side, O(logm)-approximation algorithms have been
given for the special cases where the likelihoods {pj} are all equal, or where
the test costs {ct} are all equal [25,8,1,4,29,18]. But the problem has remained
open for the case when both the probabilities and the costs are arbitrary—the
previous results only imply O

(
log 1

pmin

)
and O

(
log(m cmax

cmin
)
)

approximation
algorithms for the general case. An O(logm)-approximation for general costs and
probabilities would be the best possible unless NP ⊆ DTIME[nO(log logn)] [4];
and while the existence of such an algorithm has been posed as an open question,
it has not been answered prior to this work.

Apart from being a natural adaptive optimization problem, AdapTSP can
be viewed as a generalization of the optimal decision tree problem when there
are arbitrary (metric) switching costs between tests. Similar extensions from
uniform to metric switching-costs, have been studied for the multi-armed bandit
problem [15,16]. To the best of our knowledge, the adaptive TSP problem has
not been studied previously.
In this paper, we settle the approximability of the optimal decision tree problem:

Theorem 1. There is an O(logm)-approximation for the optimal decision tree
problem with arbitrary test costs and arbitrary probabilities; the problem admits
the same approximation ratio even when the tests have non-binary outcomes.

In fact, this result arises as a special case of the following theorem:

Theorem 2. There is an O(log2 n logm)-factor approximation algorithm for
the adaptive TSP problem.

We also show that AdapTSP is at least as hard to approximate as the well-
known group Steiner tree problem [12,21]. Thus AdapTSP is Ω(log2−ε n) hard
to approximate even on tree metrics; our results are essentially best possible on
such metrics, and we lose an extra logarithmic factor to go to general metrics,
as in the group Steiner tree problem.
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A Word about our Techniques. To solve the AdapTSP problem, we first
solve the “Isolation” problem, which seeks to identify which of the m scenarios
has materialized; once we know the scenario we can visit its vertices using,
say, Christofides’ heuristic. The idea behind our algorithm for Isolation is this—
suppose each vertex lies in at most half the scenarios; if we visit one vertex in each
of the m scenarios using a short tour (which is just group Steiner tree [12]), we’d
notice at least one of these vertices to have a demand—this would reduce the
number of possible scenarios by 50%. This is necessarily an over-simplified view,
and there are many details to handle: we need not visit all scenarios—visiting
all but one allows us to infer the last one by exclusion; the expectation in the
objective function means we need to solve a min-latency version of group Steiner
tree; not all vertices need lie in less than half the scenarios. Another major issue
is that moreover we do not want our performance to depend on the size of the
probabilities, in case some of them are exponentially small, so we cannot just
hope to reduce the measure of the remaining scenarios by 50%. Finally, we need
to charge our cost directly against the optimal decision tree. All these issues can
be resolved to give an O(log2 n · logm) approximation for Isolation (and hence for
AdapTSP) with n nodes and m scenarios. The Isolation algorithm also involves
an interesting combination of ideas from the group Steiner [12,5] and minimum
latency [2,6,10] problems—it uses a greedy strategy that is greedy with respect
to two different criteria, namely both the probability measure and the number
of scenarios. This idea is formalized in our definition of the partial latency group
Steiner (LPGST) problem.

For the special case of the optimal decision tree problem, we show that we
can use the min-sum set cover problem [11] instead of the min-latency version of
group Steiner tree; this avoids an O(log2 n) loss in the approximation guarantee,
and hence gives us an optimal O(logm)-approximation for the optimal decision
tree problem. Our result further reinforces the close connection between the
min-sum set cover problem and the optimal decision tree problem that was first
noticed by Chakravarthy et al. [4].

Paper Outline. The results on AdapTSP and Isolation appear in Section 3, and
the improved algorithm for optimal decision tree appears in Section 4. Due to
lack of space, we refer the reader to the full version [20] for all missing proofs.
In [20] we also give the hardness result for AdapTSP, and extend our algorithm
to obtain a poly-logarithmic approximation algorithm for the related adaptive
traveling repairman problem (where the objective is expected response time).

1.1 Other Related Work

The optimal decision tree problem has been studied earlier by many authors,
with algorithms and hardness results being shown by [22,25,1,8,4,3,18]; as men-
tioned above, the algorithms in these papers give O(logm)-approximations only
when either the probabilities or costs (or both) are polynomially-bounded. Ta-
ble 1 in Guillory and Bilmes [18] gives a good summary of known approxima-
tion ratios; in general, the best approximation guarantees are O

(
log 1

pmin

)
and
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O
(
log(m cmax

cmin
)
)
. The O(logm)-approximation for arbitrary costs and probabil-

ities solves an open problem from these papers.
There are many results on adaptive optimization. E.g., [13] considered an

adaptive set-cover problem; they give an O(log n)-approximation when sets may
be chosen multiple times, and an O(n)-approximation when each set may be
chosen at most once. This was improved in [27] to O(log2 n logm), and subse-
quently to the best-possible O(log n)-approximation by [26], also using a greedy
algorithm. In very recent work [14] generalize adaptive set-cover to so-called
‘adaptive submodularity’, and give some applications. [7] considered adaptive
strategies for stochastic routing problems using a greedy-like algorithm where
they solved an LP at each step. [17] studied adaptive transmission in noisy
channels (that have multiple states) to maximize the utility (i.e., the difference
between success-probability and probing-cost). The adaptivity-gap is large in all
these problems, as is the case for the problems considered in this paper, and
hence the solutions need to be inherently adaptive.

The AdapTSP problem is related to universal TSP [24,19] and a priori TSP
[23,30,31] only in spirit—in both the universal and a priori TSP problems, we
seek a master tour which we shortcut once the demand set is known, and the goal
is to minimize the worst-case or expected length of the shortcut tour. The crucial
difference is that the demand subset is revealed in toto in these two problems,
leaving no possibility of adaptivity—this is in contrast to the slow revelation of
the demand subset that occurs in AdapTSP.

2 Notation

Throughout this paper, we deal with demand distributions over vertex-subsets
that are specified explicitly. I.e. demand distribution D is specified by m distinct
subsets {Si ⊆ V }mi=1 having associated probabilities {pi}mi=1 such that

∑m
i=1 pi =

1. This means that the realized subset D ⊆ V of demand-vertices will always
be one of {Si}mi=1, where D = Si with probability pi (for all i ∈ [m]). We also
refer to the subsets {Si}mi=1 as scenarios. The following definition captures all
adaptive strategies.

Definition 1 (Decision Tree). A decision tree T in metric (V, d) is a rooted
binary tree where each non-leaf node of T is labeled with a vertex u ∈ V , and its
two children uyes and uno correspond to the subtrees taken if there is demand
at u or if there is no demand at u. Thus given any realized demand D ⊆ V , a
unique path PD is followed in T from the root down to a leaf.

For metric (V, d) and root r ∈ V , an r-tour is a tour that begins and ends at r.

3 The Adaptive TSP and Isolation Problems

The input to adaptive TSP is a metric (V, d) with root r ∈ V and a demand
distribution D over subsets of vertices. The crucial aspect in this model is that
information on whether or not there is demand at a vertex v is obtained only
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when that vertex v is visited. The objective is to find an adaptive strategy that
minimizes the expected time to visit all vertices of the realized scenario drawn
from D.

We assume that the distribution D is specified explicitly with a support-size of
m. The more general setting would be to consider black-box access to distribution
D: however, as shown in [28], AdapTSP under general black-box distributions
admits no o(n) approximation if the algorithm is restricted to polynomially
many samples. This is the reason we consider an explicit demands model for
D. Moreover, AdapTSP under explicit demands still contains interesting special
cases such as optimal decision tree problem. One could also consider AdapTSP
under independent demand distributions; however in this case there is a trivial
solution: visit all vertices having non-zero probability along an approximately
minimum TSP tour. In terms of Definition 1, we have:

Definition 2 (The AdapTSP Problem). Given metric (V, d), root r and de-
mand distribution D, the goal in AdapTSP is to compute a decision tree T in
metric (V, d) with the added conditions that:
• the root of T is labeled with the root vertex r, and
• for each scenario i ∈ [m], the path PSi followed on input Si ∈ support(D)
contains all vertices in Si.

The objective function is to minimize the expected tour length
∑m

i=1 pi · d(PSi),
where d(PSi) is the length of the tour that starts at r, visits the vertices on path
PSi in that order, and returns to r.

A closely related problem is the Isolation problem. This has the same input as the
AdapTSP problem, but the goal is not necessarily to visit all the vertices in the
realized scenario, but just to identify the unique scenario that has materialized.

Definition 3 (The Isolation Problem). Given metric (V, d), root r and de-
mand distribution D, the goal in Isolation is to compute a decision tree T in
metric (V, d) with the added conditions that:
• the root of T is labeled with the root vertex r, and
• for each scenario i ∈ [m], the path PSi followed on input Si ∈ support(D)
ends at a distinct leaf-node of T .

The objective function is to minimize the expected tour length IsoTime(T ) :=∑m
i=1 pi ·d(PSi), where d(PSi) is the length of the tour that starts at r, visits the

vertices on path PSi in that order, and returns to r.

Note the only difference between this definition and the one for AdapTSP is that
the tree path PSi need not contain all vertices of Si, and the paths for different
scenarios should end at distinct leaf-nodes. The following simple lemma relates
these two objectives.

Lemma 1. An α-approximation algorithm for Isolation implies an
(
α + 3

2

)
ap-

proximation for AdapTSP.

In the next few subsections, we give an O(log2 n logm)-approximation algorithm
for Isolation, which by this lemma implies the same result for AdapTSP.
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3.1 Approximation Algorithm for the Isolation Problem

Recall that an instance of Isolation is specified by a metric (V, d), a root vertex
r ∈ V , and m scenarios {Si}mi=1 with associated probability values {pi}mi=1. At a
high level, our approach is a simple divide-and-conquer based one. The algorithm
for Isolation is recursive: given an instance, it first develops a strategy to generate
several sub-instances from this instance, each given by some proper subset M ⊆
[m] of scenarios, with associated probabilities {qi}i∈M where

∑
i∈M qi = 1. (We

refer to such a sub-instance of the original Isolation instance as 〈M, {qi}i∈M 〉.)
We then recursively build an isolation strategy within each sub-instance. The
real question is: How do we generate these sub-instances so that we can charge
these to the cost of the best decision tree?

A useful subroutine to address this and solve Isolation will be the partial
latency group Steiner (LPGST) problem, where we are given a metric (V, d), g
groups of vertices {Xi ⊆ V }gi=1 with associated weights {wi}gi=1, root r ∈ V ,
and a target h ≤ g. A group i ∈ [g] is said to be covered (or visited) by r-tour τ
if any vertex in Xi is visited, and the arrival time of group i is the length of the
shortest prefix of τ that contains an Xi-vertex. The arrival times of all uncovered
groups are set to be the tour-length. The weighted sum of arrival times of all
groups is termed latency of the tour, i.e.,

latency(τ) =
∑

i covered wi ·arrival timeτ (Xi)+
∑

i uncovered wi · length(τ). (3.1)

The goal in the LPGST problem is to compute a minimum latency tour that
covers at least h groups. Note that this objective generalizes the standard min-
latency objective, where we have to cover all groups. In the full version [20] we
prove the following result:

Theorem 3. There is an (O(log2 n), 4)-bicriteria approximation algorithm for
LPGST. I.e., the tour output by the algorithm visits at least h

4 groups and has
latency at most O(log2 n) times the optimal latency of a tour that visits h groups.

In this subsection, we present the algorithm for Isolation assuming this result for
LPGST. Let us begin by showing the partitioning algorithm.

The Partitioning Algorithm. The algorithm Partition (given below as Algo-
rithm 1) finds an r-tour τ in the metric such that after observing the demands
on τ , the number of scenarios that are consistent with these observations is only
a constant fraction of the total. E.g., if there was a vertex v such that ≈ 50%
of the scenarios contained it, then visiting vertex v would reduce the candidate
scenarios by ≈ 50%, irrespective of the observation at v, giving us a tangible
notion of progress. However, each vertex may give a very unbalanced partition
or such a vertex may be too expensive to visit, so we may have to visit multiple
vertices—this is the basic idea in algorithm Partition.

The Isolation Algorithm. To follow a divide-and-conquer strategy, the final al-
gorithm is fairly natural given the partitioning scheme. The algorithm IsoAlg
(given as Algorithm 2) proceeds in several phases. In each phase, it maintains
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Algorithm 1. Algorithm Partition( 〈M, {qi}i∈M 〉 )
1: let g = |M |. For each v ∈ V , define Fv := {i ∈ M | v ∈ Si}, and

Dv :=
{

Fv if |Fv| ≤ g
2

M \ Fv if |Fv| > g
2

2: for each i ∈ M , set Xi ← {v ∈ V | i ∈ Dv}. Note that either the presence of a
demand at some vertex v reduces the number of still-possible scenarios by half, or
the absence of demand does so. To handle this asymmetry, this step takes scenarios
{Si}i∈M and “flips” some vertices to get Xi.

3: run the LPGST algorithm (Theorem 3) with metric (V, d) with root r, groups
{Xi}i∈M with weights {qi}i∈M , and target |M | − 1.

let τ := r, v1, v2, · · · , vt−1, r be the r-tour returned.
4: let {Pk}t

k=1 be the partition of M where

Pk :=
{

Dvk \
(
∪j<k Dvj

)
if 1 ≤ k ≤ t− 1

M \
(
∪j<t Dvj

)
if k = t

5: return tour τ and the partition {Pk}t
k=1.

a candidate set M of scenarios such that the realized scenario lies in M . Upon
observing demands along the tour produced by algorithm Partition (in Step 2),
a new set M ′ ⊆ M containing the realized scenario is identified such that the
number of candidate scenarios reduces by a constant factor (i.e. |M ′| ≤ 7

8 · |M |);
then IsoAlg recurses on scenarios M ′. After O(logm) such phases the realized
scenario would be correctly identified.

Algorithm 2. Algorithm IsoAlg〈M, {qi}i∈M 〉
1: If |M | = 1, return this unique scenario as realized.
2: run Partition〈M, {qi}i∈M 〉

let τ = (r, v1, v2, · · · , vt−1, r) be the r-tour and {Pk}t
k=1 be the partition of M

returned.
3: let q′j :=

∑
i∈Pk

qi for all j ∈ 1 . . . t.
4: traverse tour τ and return directly to r after visiting the first (if any) vertex vk∗

(for k∗ ∈ [t− 1]) that determines that the realized scenario is in Pk∗ ⊆ M . If there
is no such vertex until the end of the tour τ , then set k∗ ← t.

5: run IsoAlg〈Pk∗ , { qi
q′

k∗
}i∈Pk∗ 〉 to isolate the realized scenario within the subset Pk∗ .

Note that the adaptive Algorithm IsoAlg implicitly defines a decision tree too:
create a path (r, v1, v2, · · · , vt−1, vt = r), and hang the subtrees created in the
recursive call on each instance 〈Pk, { qi

q′k
}〉 from the respective node vk.

Remark: We use the LPGST problem as a subroutine in solving Isolation, in-
stead of the seemingly simpler density group Steiner problem [5]. The reason
behind this is that we measure progress in the recursive scheme IsoAlg as the
number of candidate scenarios, whereas in computing the objective we need to
use the probabilities of scenarios. This is also the reason why our final algorithm
interleaves both greedy objectives: number and probabilities of scenarios. It is
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not clear whether a greedy algorithm w.r.t. only one of these objectives can
achieve the same approximation ratio.

3.2 The Analysis for Algorithm IsoAlg

We now prove the performance guarantee and correctness of Algorithm IsoAlg.
By the construction in algorithm IsoAlg, it follows that the realized scenario is
identified after O(logm) recursive calls to IsoAlg. To complete the analysis, we
need two additional ideas: (1) relating the LPGST and Isolation objective-values
in each call to IsoAlg (which bounds the cost in a single sub-instance), and (2)
establishing a subadditivity property of Isolation, that bounds the expected cost
across all ‘parallel’ sub-instances (i.e. those in the same phase).

For any instance J of the isolation problem, let IsoTime∗(J ) denote its opti-
mal value. Missing proofs in the following analysis can be found in [20].

Claim 1. For any instance J = 〈M, {qi}i∈M 〉, the optimal value of the LPGST
instance considered in Step 3 of Algorithm Partition(J ) is at most IsoTime∗(J )—
i.e., the LPGST instance costs at most the isolation instance.

Proof: Let T be an optimal decision tree corresponding to Isolation instance
J , and hence IsoTime∗(J ) = IsoTime(T ). Note that by definition of the sets
{Fv, Dv}v∈V , any internal node in T labeled vertex v has its two children vyes
and vno corresponding to the realized scenario being in either Fv or M \ Fv (in
that order), or equivalently, Dv or M \Dv (now not necessarily in that order).

Consider an r-tour σ that starts at the root r of T and moves from each node
v to its unique child that corresponds to M \Dv, until it reaches a leaf-node l,
when it returns to r. Let the vertices in this tour σ be r, u1, u2, · · · , uj , r (where
uj is the last vertex visited in T before leaf l). Since T is a feasible decision tree
for the isolation instance, the leaf l is labeled by a unique scenario a ∈ M such
that when T is run under demands Sa, it traces path from the root to leaf node l.
Moreover, every scenario b ∈M \ {a} gives rise to a root-leaf path that diverges
from the root-l path (i.e. σ). From the way we constructed σ, the scenarios that
diverged from σ were precisely ∪j

k=1Duk
, and hence ∪j

k=1Duk
= M \ {a}.

Now consider the r-tour σ as a potential solution to the LPGST instance in
Step 3. Since |∪j

k=1 Duk
| = |M |−1, the definition of the Xi’s says that this path

hits |M | − 1 of these sets Xi, so it is indeed feasible. Also, the definition of the
isolation cost implies that the latency of this tour σ is at most the isolation cost
IsoTime(T ) = IsoTime∗(J ). �
If we use a (ρLPGST, 4)-bicriteria LPGST algorithm, we get the following claim:

Claim 2. The latency of tour τ returned by Algorithm Partition is at most
ρLPGST · IsoTime∗(〈M, {qi}i∈M 〉). Furthermore, the resulting partition {Pk}tk=1
has each |Pk| ≤ 7

8 |M | for each k ∈ [t], when |M | ≥ 2.

Proof: By Claim 1, the optimal value of the LPGST instance in Step 3 of al-
gorithm Partition is at most IsoTime∗(〈M, {qi}i∈M 〉); now the approximation
guarantee from Theorem 3 implies that the latency of the solution tour τ is at
most ρLPGST times that. This proves the first part of the claim.
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Consider τ := 〈r = v0, v1, · · · , vt−1, vt = r〉 the tour returned by the LPGST
algorithm in Step (3) of algorithm Partition; and {Pk}tk=1 the resulting partition.
Claim 1 and Theorem 3 imply that the number of groups covered by τ is | ∪t−1

k=1

Dvk
| ≥ |M|−1

4 ≥ |M|
8 (when |M | ≥ 2). By definition of the sets Dv, it holds that

|Dv| ≤ |M |/2 for all v ∈ V ; moreover, since all but the last part Pk is a subset
of some Dv, it holds that |Pk| ≤ |M|

2 for 1 ≤ k ≤ t− 1. Moreover, the set Pt has
size |Pt| = |M \ (∪j<tDvj )| ≤ 7

8 |M |. �
Of course, we don’t really care about the latency of the tour per se, we care about
the cost incurred in isolating the realized scenario. But the two are related (by
their very construction), as the following claim formalizes:

Claim 3. At the end of Step 4 of IsoAlg〈M, {qi}i∈M 〉, the realized scenario lies
in Pk∗ . The expected distance traversed in this step ≤ 2ρLPGST · IsoTime∗(〈M,
{qi}i∈M 〉).

Now, the following simple claim captures the “sub-additivity” of IsoTime∗.

Claim 4. For any instance 〈M, {qi}i∈M 〉 and any partition {Pk}tk=1 of M ,∑t
k=1 q

′
k · IsoTime∗(〈Pk, { qi

q′k
}i∈Pk

〉) ≤ IsoTime∗(〈M, {qi}i∈M 〉), (3.2)

where q′k =
∑

i∈Pk
qi for all 1 ≤ k ≤ t.

Proof: Let T denote the optimal decision tree for the instanceJ0 :=〈M, {qi}i∈M 〉.
For each k ∈ [t], consider instance Jk := 〈Pk, { qi

q′k
}i∈Pk

〉; one feasible adaptive
strategy for instance Jk is obtained by taking the decision tree T and considering
only paths to the leaf-nodes labeled by {i ∈ Pk}. Note that this is a feasible so-
lution since T isolates all scenarios ∪t

k=1Pk. Moreover, the expected cost of such
a strategy for Jk is

∑
i∈Pk

qi

q′
k
· d(πi) where πi denotes the tour traced by T un-

der scenario i ∈ Pk. Hence Opt(Jk) ≤
∑

i∈Pk

qi

q′k
· d(πi). Summing over all parts

k ∈ [t], we get

t∑
k=1

q′k · Opt(Jk) ≤
t∑

k=1

q′k ·
∑
i∈Pk

qi
q′k
· d(πi) =

∑
i∈M

qi · d(πi) = Opt(J0), (3.3)

where the penultimate equality uses the fact that {Pk}tk=1 partitions M . �
Given the above claims, we finally bound the expected cost of the strategy given
by our algorithm.

Theorem 4. The expected length of the strategy given by IsoAlg〈M, {qi}i∈M 〉 is
at most:

2ρLPGST · log8/7 |M | · IsoTime∗(〈M, {qi}i∈M 〉).

Proof: We prove this by induction on |M |. The base case of |M | = 1 is trivial,
since zero length is traversed, and hence we consider |M | ≥ 2. Let instance
I0 := 〈M, {qi}i∈M 〉. For k ∈ [t], consider the sub-instance Ik := 〈Pk, { qi

q′k
}i∈Pk

〉,
where q′k =

∑
i∈Pk

qi. By the inductive hypothesis, for any k ∈ [t], the expected
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length of IsoAlg(Ik) is at most 2ρLPGST · log8/7 |Pk| · IsoTime∗(Ik) ≤ 2ρLPGST ·
(log8/7 |M | − 1) · IsoTime∗(Ik), since |Pk| ≤ 7

8 |M | (from Claim 2 as |M | ≥ 2).
By Claim 3, the expected length traversed in Step 4 of IsoAlg(I0) is at most

2ρLPGST · IsoTime∗(I0). The probability of recursing on Ik is exactly q′k for each
k ∈ [t], hence the expected length of IsoAlg(I0) is at most:

2ρLPGST · IsoTime∗(I0) +
∑t

k=1 q
′
k · (exp. length of IsoAlg(Ik))

≤ 2ρLPGST · IsoTime∗(I0) +
∑t

k=1 q
′
k · 2ρLPGST · (log8/7 |M | − 1) · IsoTime∗(Ik)

≤ 2ρLPGST · IsoTime∗(I0) + 2ρLPGST · (log8/7 |M | − 1) · IsoTime∗(I0)
= 2ρLPGST · log8/7 |M | · IsoTime∗(I0)

where the third inequality uses Claim 4. �
Applying Theorem 4 on the original Isolation instance gives an O(ρLPGST · logm)-
approximately optimal algorithm; using Theorem 3 implies ρLPGST = O(log2 n).

Theorem 5. There is an O(log2 n · logm)-approximation algorithm for Isolation
with n vertices and m scenarios.

Combining this theorem with Lemma 1 we obtain Theorem 2. A comment about
the optimality of these results: we show in [20] that AdapTSP (and by Lemma 1,
Isolation as well) is as hard to approximate as the group Steiner problem, and
hence any improvement here will make progress on that problem too.

4 Optimal Decision Tree Problem

In the optimal decision tree problem [25,1,3], we are given a set of m diseases
with associated probabilities {pi}mi=1 that sum to 1, and a collection {Tj}nj=1 of
n binary tests with non-negative costs {cj}nj=1. Each test j ∈ [n] is a subset
Tj of the diseases that correspond to passing the test; so performing test j
distinguishes between diseases Tj and [m] \ Tj .

Definition 4. A test strategy S is a binary tree where each internal node is
labeled by a test, and each leaf node is labeled by a disease such that:
– For each disease i ∈ [m] define a path πi in S from the root node to some

leaf as follows. At any internal node, if i passes the test then πi follows the
right branch; if it fails the test then πi follows the left branch.

– For each i ∈ [m], the path πi ends at a leaf labeled disease i.
The cost Li of a disease i ∈ [m] is the sum of test-costs along path πi; and the
cost of the test strategy S is

∑m
i=1 pi · Li. The objective in the optimal decision

tree problem is to compute a test strategy of minimum cost.

Observe that the optimal decision tree problem is a special case of Isolation:
given an instance of optimal decision tree (as above), consider a metric (V, d)
induced by a weighted star with center r and n leaves corresponding to the tests.
For each j ∈ [n], we set d(r, j) = cj

2 . The demand scenarios are as follows: for
each i ∈ [m], scenario i is {j ∈ [n] | i ∈ Tj}. It is easy to see that this Isolation
instance corresponds exactly to the optimal decision tree instance. Based on
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this, it suffices to focus on Isolation in weighted star-metrics, and we obtain the
following improved bound (see [20]).

Theorem 6. There is an
(
O(1), O(1)

)
bicriteria approximation algorithm for

LPGST on weighted star metrics.

Setting ρLPGST = O(1) (from Theorem 6) in the analysis of Section 3.2, we
obtain an O(ρLPGST · logm) = O(logm) approximation for Isolation on weighted
star-metrics. This completes the proof of Theorem 1 for binary outcomes.
Multiway tests. Chakravarthy et al. [3] considered the optimal decision tree
problem when the outcomes of tests are multiway (not just binary), and gave an
O(logm)-approximation under unit probabilities and costs. We observe that our
algorithm can be easily extended to this problem with non-uniform probabilities
and costs. In this setting (when each test has at most l outcomes), any test j ∈ [n]
induces a partition {T k

j }lk=1 of [m], and performing test j determines which of the
parts the realized disease lies in. Firstly note that this problem is also a special
case of Isolation. As before consider a metric (V, d) induced by a weighted star
with center r and n leaves corresponding to the tests. For each j ∈ [n], we set
d(r, j) = cj

2 . Additionally for each j ∈ [n], introduce l copies of test-vertex j,
labeled (j, 1), · · · , (j, l), at zero distance from each other. The demand scenarios
are defined naturally: for each i ∈ [m], scenario i is {(j, k) | i ∈ T k

j }. Clearly
this Isolation instance is equivalent to the (multiway) test strategy instance.
Since the resulting metric is still a weighted star (we only made vertex copies),
Theorem 6 and the algorithm of Section 3.2 imply an O(logm)-approximation
for this multiway decision tree problem. Thus we obtain Theorem 1.
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Abstract. Knowledge extraction is a fundamental notion, modeling machine
possession of values (witnesses) in a computational complexity sense and en-
abling one to argue about the internal state of a party in a protocol without prob-
ing its internal secret state. However, when transactions are concurrent (e.g., over
the Internet) with players possessing public-keys (as is common in cryptogra-
phy), assuring that entities “know” what they claim to know, where adversaries
may be well coordinated across different transactions, turns out to be much more
subtle and in need of re-examination. Here, we investigate how to formally treat
knowledge possession by parties (with registered public-keys) interacting over
the Internet. Stated more technically, we look into the relative power of the notion
of “concurrent knowledge-extraction” (CKE) in the concurrent zero-knowledge
(CZK) bare public-key (BPK) model where statements being proven can be dy-
namically and adaptively chosen by the prover.

We show the potential vulnerability of man-in-the-middle (MIM) attacks turn
out to be a real security threat to existing natural protocols running concurrently in
the public-key model, which motivates us to introduce and formalize the notion of
CKE, alone with clarifications of various subtleties. Then, both generic (based on
standard polynomial assumptions), and efficient (employing complexity leverag-
ing in a novel way) implementations forNP are presented for constant-round (in
particular, round-optimal) concurrently knowledge-extractable concurrent zero-
knowledge (CZK-CKE) arguments in the BPK model. The efficient implementa-
tion can be further practically instantiated for specific number-theoretic language.

1 Introduction

Zero-knowledge (ZK) protocols allow a prover to assure a verifier of validity of the-
orems without giving away any additional knowledge (i.e., computational advantage)
beyond validity. This notion was introduced in [14], and its generality was demonstrated
in [13]. Traditional notion of ZK considers the security in a stand-alone (or sequential)
execution of the protocol. Motivated by the use of such protocols in an asynchronous
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network like the Internet, where many protocols run simultaneously, studying security
properties of ZK protocols in such concurrent settings has attracted much research ef-
forts in recent years. Informally, a ZK protocol is called concurrent zero-knowledge if
concurrent instances are all (expected) polynomial-time simulatable, namely, when a
possibly malicious verifier concurrently interacts with a polynomial number of honest
prover instances and schedules message exchanges as it wishes.

The concept of “proof of knowledge” (POK), informally discussed in [14], was then
formally treated in [1,11,2]. POK systems, especially zero-knowledge POK (ZKPOK)
systems, play a fundamental role in the design of cryptographic schemes, enabling a
formal complexity theoretic treatment of what does it mean for a machine to “know”
something. Roughly speaking, a “proof of knowledge” means that a possibly malicious
prover can convince the verifier that an NP statement is true if and only if it, in fact,
“knows” (i.e., possesses) a witness to the statement (rather than merely conveying the
fact that a corresponding witness exists). With the advancement of cryptographic mod-
els where parties first publish public-keys (e.g., for improving round complexity [5])
and then may choose the statements to prove, knowledge extraction becomes more sub-
tle (due to possible dependency on published keys), and needs re-examination. Here,
we investigate the relative power of the notion of “concurrent knowledge-extraction” in
the concurrent zero-knowledge BPK model with adaptive input selection.

The BPK model, introduced in [4], is a natural cryptographic model. A protocol in
this model simply assumes that all verifiers have each deposited a public key in a public
file (which are referred to as the key generation stage), before user interactions take
place (which are referred to as the proof stage). No assumption is made on whether
the public-keys deposited are unique or valid (i.e., public keys can even be “nonsensi-
cal,” where no corresponding secret-keys exist or are known). In many cryptographic
settings, availability of a public key infrastructure (PKI) is assumed or required, and in
these settings the BPK model is, both, natural and attractive (note that the BPK model is,
in fact, a weaker version of PKI where in the later added key certification is assumed).
It was pointed out by Micali and Reyzin [16] that the BPK model is, in fact, applicable
to interactive systems in general.

Verifier security in the BPK model (against malicious provers) turned out to be more
involved than anticipated, as was demonstrated by Micali and Reyzin [16] who showed
that under standard intractability assumptions there are four distinct meaningful notions
of soundness, i.e., from weaker to stronger: one-time, sequential, concurrent and reset-
table soundness. Here, we focus on concurrent soundness, which, roughly speaking,
means that a possibly malicious probabilistic polynomial-time (PPT) prover P ∗ cannot
convince the honest verifier V of a false statement even when P ∗ is allowed multiple
interleaving interactions with V in the public-key model. They also showed that any
black-box ZK protocol with concurrent soundness in the BPK model (for non-trivial
languages outside BPP) must run at least four rounds [16].

Concurrent soundness only guarantees that concurrent interactions cannot help a ma-
licious prover validate a false statement in the public-key model. However, it does not
prevent a malicious prover from validating a true statement but without knowing any
witness for the statement being proved. This potential vulnerability is not merely a the-
oretical concern: In fact, most concurrent ZK protocols in the BPK model involve a
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sub-protocol in which the verifier proves to the prover the knowledge of the secret-key
corresponding to its public-key. A malicious prover, in turn, can (as we show) exploit
these sub-proofs by the verifier in other sessions, without possessing a witness to these
sessions’ statements. This issue, in turn, motivates the need for careful definitions and
for achieving concurrent verifier security for concurrent ZK in the BPK model for adap-
tively chosen proofs, so that one can remedy the above security vulnerability.

Our contributions. We first investigate the subtleties of concurrent verifier security in
the public-key model in the case of proof of knowledge for dynamically chosen input
languages. Specifically, we show concurrent interleaving and malleating attacks against
some existing natural protocols running concurrently in the BPK model, which shows
that concurrent soundness and normal arguments of knowledge (and also traditional
concurrent non-malleability) do not guarantee concurrent verifier security in the public-
key model.

Then, we formulate concurrent verifier security that remedies the vulnerability as
demonstrated by the concrete attacks which are of the concurrent man-in-the-middle
(CMIM) nature, along with subtlety clarifications and discussion. The security notion
defined is named concurrent knowledge-extraction (CKE) in the public-
key model, which essentially means that for adaptively chosen statements whose vali-
dations are successfully conveyed by a possibly malicious prover to an honest verifier
by concurrent interactions, the prover must “know” the corresponding witnesses in a
sense that the knowledge known by the prover is “independent” of honest verifier’s
secret-key.

We then present both generic (based on standard polynomial assumptions) and effi-
cient (employing complexity leveraging in a novel way) black-box implementations of
constant-round (in particular, round-optimal) CZK-CKE arguments forNP in the BPK
model. The efficient implementation can be, further, practically instantiated for specific
important number-theoretic languages.

2 Preliminaries

In this section, we briefly recall some basic tools and definitions.

Commitments. Commitment schemes enable a party, called the sender, to bind itself to
a single value in the initial commitment stage, while keeping it unknown to the receiver
(this property is called hiding). Furthermore, when the commitment is opened in a later
decommitment stage, it is guaranteed that the “opening” can yield only the single value
determined in the commitment phase (this property is called binding).

One-round perfectly-binding commitments can be based on any one-way permuta-
tion (OWP) [13], whereas tow-round statistically-binding commitments can be based
on any one-way function (OWF) [17]. In addition, practical statistically-binding com-
mitments can be implemented under the decisional Diffie-Hellman (DDH) assumption.
On the other hand, one-round statistically-hiding commitments can be based on any
collision-resistant hash function [15]. Two-round statistically-hiding commitments can
be based on any claw-free collection with efficiently recognizable indices [11], and
three-round statistically-hiding commitments can be based on any OWF admitting Σ-
protocols [22].
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Σ-protocols and ΣOR-protocols. Informally, a Σ-protocol is itself a 3-round public-
coin special honest verifier zero-knowledge (SHVZK) protocol with special soundness
in the knowledge-extraction sense. A Σ-protocol is called computational/statistical Σ-
protocol, if it is computational/statistical SHVZK. A very large number of Σ-protocols
have been developed in the literature. In particular, (the parallel repetition of) Blum’s
protocol for DHC [3] is a computational Σ-protocol for NP , and most practical Σ-
protocols for number-theoretical languages are of perfect SHVZK property. One basic
construction with Σ-protocols is the OR of a real and simulated transcript, called ΣOR

[6], that is a concrete witness indistinguishability protocol.

Witness Indistinguishability (WI). A protocol is called WI (resp., statistical WI) for
an NP-language L, if the views of any PPT malicious verifier V ∗ in two runs of the
protocol, w.r.t. the same common input x ∈ L and the same auxiliary input z ∈ {0, 1}∗
to V ∗ but (possibly) different private witnesses to the prover, are computationally (resp.,
statistically) indistinguishable. WI is preserved under concurrent composition.

In this work, we employ, in a critical way, constant-round statistical WI argument/
proof of knowledge (WIA/POK). We briefly note two simple ways to implement statisti-
cal WIA/POK. First, for any statistical/perfect Σ-protocol, the OR-proof (i.e., the ΣOR-
protocol [6]) is statistical/perfect WIPOK. The second approach is to modify Blum’s
protocol for DHC [3] (that is computational WIPOK) into constant-round statistical
WIAOK, by replacing the statistically-binding commitments used in the first-round of
Blum’s protocol by constant-round statistically-hiding commitments.

Strong WI (SWI) [11]. A protocol 〈P, V 〉 for a language L (with NP-relation RL)
is called SWI, if the views of any PPT malicious verifier V ∗ in two runs of the proto-
col, 〈P (w0), V ∗(z0)〉(x0) and 〈P (w1), V ∗(z1)〉(x1), are indistinguishable, whenever
the distributions (x0, z0) and (x1, z1) are indistinguishable (where (xb, wb) ∈ RL for
b ∈ {0, 1}). Any ZK protocol is itself SWI [11]. Different from regular WI, SWI is not
preserved under concurrent composition [12]. But, an SWI protocol can be easily trans-
ferred into a regular WI protocol: On common input x and private witness w, the prover
commits w to cw, and then proves that the value committed to cw is a valid witness for
x ∈ L. Such a protocol is called commit-then-SWI, which is regular WI for L.

The BPK model with adaptive language selection. We say a class of languages L
is admissible to a protocol 〈P, V 〉 if the protocol can work (i.e., be instantiated) for
any language L ∈ L. Typically, L could be the set of all NP-languages (via NP-
reduction in case 〈P, V 〉 can work for an NP-complete language) or the set of any
languages admitting Σ-protocols (in this case 〈P, V 〉 could be instantiated for any lan-
guage in L efficiently without going through generalNP-reductions). For protocols in
the BPK model, let RKEY be an NP-relation validating the public-key and secret-key
pair (PK,SK) generated by any honest verifier, i.e., RKEY (PK,SK) = 1 indicates
that SK is a valid secret-key corresponding to PK .

In this work, for concurrent verifier security of a protocol in the BPK model, we
consider an s-concurrent malicious prover P ∗ that, on a system parameter n, interacts
with honest verifier instances in at most s(n) sessions, where s(·) is a polynomial. Fur-
thermore, different from the traditional BPK model formulation [4,16], we assume P ∗

can set the admissible languages (to be proved to honest verifiers) that may potentially
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depend on honest verifiers’ public-keys. Though it may be more difficult to achieve
concurrent verifier security against adversaries with adaptive language selection in the
BPK model, this is a far more realistic model for cryptographic protocols running con-
currently in the public-key model where mixing the public-key structure as part of the
language is a natural adversarial strategy. For any (PK,SK) ∈ RKEY , we denote

by view
V (SK)
P∗ (1n, z, PK) the random variable describing the view of P ∗ specific to

PK , which includes its random tape, the auxiliary string z, the public-key PK , and all
messages it receives from the instances of the honest verifier V of secret-key SK .

3 Concurrent Knowledge-Extraction: Motivation, Formulation
and Discussion

We show a concurrent interleaving and malleating attack on the concurrent ZK protocol
of [7,23] that is both concurrently sound and normal argument of knowledge (AOK) in
the BPK model, in which by concurrent interactions a malicious prover P ∗ can (with
probability 1) convince an honest verifier of a true (public-key related) statement but
without knowing any witness to the statement being proved. Due to space limitation,
the reader is referred to the full paper [20] for the attack details. This shows that con-
current soundness and normal AOK do not guarantee that an adversary does “know”
what it concurrently claims to know against an honest verifier in the public-key model.
This concrete attack (on naturally existing concurrently sound CZKAOK in the BPK
model) serves a good motivation for understanding “possession of knowledge on the
Internet with registered keys”, i.e., the subtleties of concurrent knowledge-extraction in
the public-key model. We note that this attack is of a man-in-the-middle nature, and is
related to malleability of protocols.

Now, we proceed to formulate concurrent verifier security in light of the attack
against the protocol of [7,23]. The security notion assuring that a malicious prover
P ∗ does “know” what it claims to know, when it is concurrently interacting with the
honest verifier V , can informally be formulated as: for any x, if P ∗ can convince V
(with public-key PK) of “x ∈ L” (for an NP-language L) by concurrent interac-
tions, then there exists a PPT knowledge-extractor that outputs a witness for x ∈ L.
This is a natural extension of the normal arguments of knowledge into the concurrent
public-key setting. However, this formulation approach is problematic in the concur-
rent public-key setting. The reason is: the statements being proved may be related to
PK , and thus the extracted witness may be related to the corresponding secret-key SK
(even just the secret-key as shown by the concrete attack on the protocol of [7,23]); But,
in knowledge-extraction the PPT extractor may have already possessed SK . To solve
this subtlety, we require the extracted witness, together with adversary’s view, to be
independent of SK . But, the problem here is how to formalize such independence, in
particular, w.r.t. a CMIM? We solve this in the spirit of non-malleability formulation [9].
That is, we consider the message space (distribution) of SK , and such independence
is roughly formulated as follows: let SK be the secret-key and SK ′ is an element ran-
domly and independently distributed over the space of SK , then we require that, for
any polynomial-time computable relation R, the probability Pr[R(w̄, SK, view) = 1]
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is negligibly close to Pr[R(w̄, SK ′, view) = 1], where w̄ is the set of witnesses ex-
tracted by the knowledge extractor for successful concurrent sessions and view is the
view of P ∗. This captures the intuition that P ∗ does, in fact, “know” the witnesses to
the statements whose validations are successfully conveyed by concurrent interactions.

Definition 1 (concurrent knowledge-extraction (CKE) in the public-key model)
We say that a protocol 〈P, V 〉 is concurrently knowledge-extractable in the BPK
model w.r.t. some admissible language set L and some key-validating relation RKEY ,
if for any positive polynomial s(·), any s-concurrent malicious prover P ∗, there exist
a pair of (expected) polynomial-time algorithms S (the simulator) and E (the extrac-
tor) such that for any sufficiently large n, any auxiliary input z ∈ {0, 1}∗, and any
polynomial-time computable relation R (with components drawn from {0, 1}∗ ∪ {⊥}),
the following hold in accordance with the experiment ExptCKE(1n, z) described below:

ExptCKE(1n, z)

The simulator S = (SKEY , SPROOF ):
(PK, SK, SK′) ←− SKEY (1n), where the distribution of (PK,SK) is iden-
tical with that of the output of the key-generation stage of the honest verifier V ,
RKEY (PK, SK) = RKEY (PK, SK′) = 1 and the distributions of SK and SK′

are identical and independent. In other words, SK and SK′ are two random and independent
secret-keys corresponding to PK.

(str, sta) ←− S
P∗(1n, PK, z)
PROOF (1n, PK, SK, z). That is, on inputs (1n, PK, SK, z) and

with oracle access to P ∗(1n, PK, z) (by providing random tape to P ∗ and running P ∗ as
subroutine), the simulator S outputs a simulated transcript str, and some state information sta
to be transformed to the knowledge-extractor E.

We denote by S1(1n, z) the random variable str (in accordance with above processes
of SKEY and SPROOF ). For any (PK, SK) ∈ RKEY and any z ∈ {0, 1}∗,
we denote by S1(1n, PK, SK, z) the random variable describing the first output of

S
P∗(1n, PK, z)
PROOF (1n, PK, SK, z) (i.e., str specific to (PK, SK)).

The knowledge-extractor E:
w ←− E(1n, sta, str). On (sta, str), E outputs a list of witnesses to statements whose vali-
dations are successfully conveyed in str.

– Simulatability. The following ensembles are indistinguishable:{viewV (SK)
P∗ (1n, z,

PK)}(PK,SK)∈RKEY ,z∈{0,1}∗ and {S1(1n, PK, SK, z)}(PK,SK)∈RKEY ,z∈{0,1}∗ .
– Secret-key independent knowledge-extraction. E, on inputs (1n, str, sta), out-

puts witnesses to all statements successfully proved in accepting sessions in str.
Specifically, E outputs a list of strings w = (w1, w2, · · · , ws(n)), satisfying the
following:
• wi is set to be ⊥, if the i-th session in str is not accepting (due to abortion or

verifier verification failure), where 1 ≤ i ≤ s(n).
• Correct knowledge-extraction (for individual statements): In any other

cases (i.e., for successful sessions), with overwhelming probability (xi, wi) ∈
RL, where xi is the common input selected by P ∗ for the i-th session in str
and RL is the admissible NP-relation for L ∈ L set by P ∗ in str.
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• (Joint) knowledge extraction independence (KEI): Pr[R(SK,w, str) =
1] is negligibly close to Pr[R(SK ′, w, str) = 1].

The probabilities are taken over the randomness of S in the key-generation stage
(i.e., the randomness for generating (PK,SK, SK ′)) and in all proof stages, the
randomness of E, and the randomness of P ∗. If the KEI property holds for any (not
necessarily polynomial-time computable) relation R, we say the protocol 〈P, V 〉
satisfies statistical CKE.

We first note that the above CKE formulation follows the simulation-extraction ap-
proach of [19]. Here, the key augmentation, besides some other adaptations in the
public-key model, is the property of knowledge-extraction independence (KEI) ex-
plicitly required (the KEI notion originally appeared in the incomplete work of [23],
August 2006 update). Though the CKE and KEI notions are formulated in the frame-
work of public-key model, they are actually applicable to protocols in the plain model,
in general, in order to capture knowledge extractability against concurrent adversaries
interacting with honest players of secret values.

Below, we discuss and clarify various subtleties surrounding the CKE formulation.
More details are referred to the full paper [20].

Simulated public-keys vs. real public-keys. In our CKE formulation, the simulation-
extraction is w.r.t. simulated public-keys. A natural and intuitive strengthening of the
CKE formulation might be: the simulator/extractor uses the same public-keys of the
honest verifiers. In this case, as the simulator/extractor does not possess honest verifier’s
secret-key, the KEI property can be waived. But, the observation here is: constant-round
CKE (whether ZK or not) with real public-keys are impossible. Specifically, constant-
round CKE with real public-keys implies constant-round CZK (potentially, concurrent
non-malleable ZKPOK) in the plain model by viewing verifier’s public-keys as a part
of common inputs, which is however impossible at least in the black-box sense [5].

On CKE with independent language. With the above KEI formulation, we are ac-
tually formulating the independence of the witnesses, used (“known”) by CMIM ad-
versary, on the secret-key (witness) used by verifier (who may in turn play the role of
prover in some sub-protocols). A naive solution for KEI, which appears to make sense,
may be to require the language and statements being proved are independent of veri-
fier’s public-keys. But, this approach has the following problems: Firstly, if the protocol
is forNP-Complete, the statements being proved, selected adaptively by the adversary,
can always be related to verifier’s public-key (e.g., via NP-reductions); Secondly, as
the statements being proved are selected adaptively by the CMIM adversary on the fly,
in general it is hard to distinguish whether the maliciously chosen statements are in-
dependent of verifiers’ public-keys or not; Thirdly, the applicability of this approach
is significantly limited (and even useless in practice, where keys are used in essential
ways in malicious settings like the Internet).

CKE vs. concurrent soundness. As a consequence of the attack on the CZK proto-
col of [7,23] that is both concurrently sound and can be implemented based on any
OWF, we show that, assuming any OWF, CKE is a strictly stronger notion for concur-
rent verifier security than concurrent soundness in the public-key model. We note that,
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prior to our work, whether A/POK is strictly stronger than soundness (in the concurrent
public-key setting) is unknown.

Taking adversary’s view, i.e., str, into account for capturing KEI. We note this is
necessary for the completeness of KEI formulation. Specifically, consider the following
(seemingly impossible) case that: for any extracted wi in w̄, wi = PRFs(SK), where
the seed s could be either a part of the adversary’s random tape or a value computed
from its view. In other words, the witnesses extracted are always dependent on the
secret-key used by the simulator/extracotor, and thus the adversary may not necessarily
be aware of the extracted knowledge. But, without taking account of adversary’s view,
Pr[R(SK, w̄) = 1] is still negligibly close to Pr[R(SK ′, w̄) = 1] in this case for any
polynomial-time computable relation R.

We note that, explicitly taking account of adversary’s view seems to be necessary
for correct and complete CNM formulations, whenever (not necessarily extractable)
knowledge independence is a necessary property to be considered. We note that this
issue is applicable to some related works, and can also be traced back to the origin of
NM formulation [9].

On extending the Bellare-Goldreich (BG) quantitative approach for stand-alone
POK into the concurrent setting. We note that, besides the subtle KEI issue, there are
some difficulties (or inconveniences) to extend the BG quantitative approach for stand-
alone POK [1,11,2] (i.e., the quantitative definition of expected knowledge-extraction
time that is in inverse proportion to the probability the adversary convinces of the state-
ment) into the concurrent setting. Below, we consider two possible approaches to extend
the BG quantitative approach (for stand-alone POK) into the concurrent setting.

The first approach is: for each of all the concurrent sessions, we consider the prob-
ability that the adversary (i.e., the malicious prover P ∗) successfully finishes the ses-
sion. Denote by pi the probability that the adversary successfully finish the i-th session.
Note that this probability is particularly taken over the random coins of P ∗ and all ran-
dom coins of the honest verifier instances in all concurrent sessions. But, within the
simulation-extraction formulation framework, it is difficult to give a precise quantita-
tive definition of the knowledge-extraction time inversely proportional to pi. The reason
is: when we apply the underlying stand-alone knowledge-extractor (guaranteed by the
Bellare-Goldreich POK definition) on the successful i-th session in the simulated tran-
script, the knowledge-extraction is actually with respect to the probability, denote p′i,
that P ∗ successfully finish the i-th session when the coins of the honest verifier in-
stances in all other sessions (other than the i-th session) are fixed (i.e., determined by
the simulated transcript str). Clearly, p′i can be totally different from pi (e.g., pi may be
non-negligible, but p′i can be negligible), and thus the knowledge-extraction time w.r.t
p′i can be totally different from that w.r.t pi.

The second approach is to separate the simulation and knowledge-extraction. Specif-
ically, besides indistinguishable simulation, we separately require (regardless of the
simulated transcript) that for any x selected adaptively by the adversary during its con-
current attack, if the adversary P ∗ can, with probability px, convince the honest ver-
ifier of the statement “x ∈ L” in one of the s(n) sessions by concurrent interactions,
the knowledge-extraction time should be in inverse proportion to px. We note that this
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approach does not work. On the one hand, suppose P ∗ convinces x ∈ L in one of
the s(n) sessions (say the i-th session) with some non-negligible probability, but with
negligible probability in all other sessions. In this case, it is okey if the knowledge ex-
traction is w.r.t. the i-th session, but will fail w.r.t other sessions. On the other hand, one
may argue that to remedy the above subtlety, we can add a (polynomial-time) bound on
the knowledge-extraction in each session, but this solution fails if the adversary con-
vinces of the statement “x ∈ L” with negligible probability in all sessions. In general,
it may be hard to distinguish the two cases, i.e., the case that P ∗ succeeds with negli-
gible probability in all sessions and the case that P ∗ may succeed with non-negligible
probability in some (but not all) sessions.

We note that the work [8] takes the approach of extending the BG (stand-alone) POK
formulation into the concurrent setting in the BPK model, without clarifying the above
subtleties. For example, the running time of the knowledge-extractor E formulated in
[8] is w.r.t. the probability pi, but it is unclear how to handle the issue of p′i versus pi as
clarified above. In addition, the work [8] does not capture adaptive language selection
by the concurrent malicious prover, and does not capture the KEI issue (it is unclear
how about if the knowledge extracted by E is dependent on verifier’s secret-key that is
actually generated by E itself). As a consequence, the formulation approach of [8] may
be less convenient to use (particularly for analyzing complex cryptographic protocols
running concurrently with public-keys). To our knowledge, still no formal proofs in
accordance with the formulation approach of [8] are presented in existing works. In
comparison, we suggest our CKE formulation is of conceptual clarity and simplicity, is
easier to work with and can be efficiently achievable, and is well compatibility of the
normal simulation/extraction formulation approach for concurrent security of protocols.
We also remind that our CKE formulation implicitly assumes that verifier’s public-key
corresponds to multiple secret-keys (in the sense that protocols with unique secret-key
for the verifier may trivially not satisfy the CKE security), which however can typically
be achieved with the common key-pair trick [18]. In general, cryptography literature
should welcome diversified approaches for modeling and achieving security goals of
cryptographic systems, particularly witnessed by the evolution history of public-key
encryption.

4 Overview of Achieving CZK-CKE in the BPK Model

In this section, we present the high-level overview of achieving constant-round CZK-
CKE arguments in the BPK model, with details referred to the full paper [20].

The starting point is the basic and central Feige-Shamir ZK (FSZK) structure [10].
The FSZK structure is conceptually simple and is composed of two WIPOK sub-
protocols. In more details, let f be a OWF, in the first WIPOK sub-protocol with the
verifier V serving as the knowledge-prover, V computes (y0 = f(s0), y1 = f(s1))
for randomly chosen s0 and s1; then V proves to the prover P the knowledge of the
preimage of either y0 or y1. In the second WIPOK sub-protocol with P serving as
the knowledge-prover for an NP-language L, on common input x, P proves to V the
knowledge of either a valid NP-witness w for x ∈ L or the preimage of either y0 or
y1. FSZK is also argument of knowledge, and can be instantiated practically (without
going through generalNP-reductions) by the ΣOR technique [6,23].



Concurrent Knowledge Extraction in the Public-Key Model 711

Let (y0, y1) serve as the public-key of V and sb (for a random bit b) as the secret-
key, the public-key version of FSZK is CZK in the BPK model [23]. But, we show that
the public-key version of FSZK is not of concurrently soundness [21], needless to say
concurrent knowledge-extractability (indeed, FSZK was not designed for the public-
key model). We hope to add the CKE property to FSZK in the BPK model (and thus
get concurrent security both for the prover and for the verifier simultaneously), while
maintaining its conceptual simplicity and its suitability to be instantiated practically.

The subtle point is: we are actually dealing with a CMIM attacker who manages to
malleate, in a malicious and unpredictable way, the public-keys and knowledge-proof
interactions of the verifier in one session into the statements and knowledge-proof inter-
actions in another concurrent session. To add CKE security to FSZK in the BPK model,
some non-malleable tools seem to be required. Here, we show how to do so without
employing such tools.

The crucial idea behind achieving our goal is to strengthen the first sub-protocol to
be statistical WIPOK, and require the prover to first, before starting the second WIPOK
sub-protocol, commit to the supposed witness to cw by running a statistically-binding
commitment scheme. This guarantees that if the witness committed to cw is dependent
on the secret-key used by V , there are, in fact, certain differences between the inter-
action distribution when V uses SK = s0 and the one when V uses SK = s1. We
can, in turn, use such distribution differences to violate the statistical WI of the first
sub-protocol, which then implies statistical CKE. This solution, however, loses CZK
in general, since the second WI sub-protocol is run w.r.t. commitments to different val-
ues in real interactions and in the simulation. To deal with this problem we employ
a stronger second sub-protocol, i.e., strong WI argument/proof-of-knowledge (strong
WIPOK) [11]. Note that composing the commitment and the SWI yields a regular WI,
and thus the CZK property is salvaged.

Employing SWI complicates the protocol structure, and incurs protocol inefficiency.
It is, therefore, desirable to still use a regular WIPOK in the second sub-protocol, for
conceptual simplicity and efficiency. To bypass the subtleties of SWI for the CZK proof,
we employ a double-commitments technique. Specifically, we require the prover to
produce a double of statistically-binding commitments, cw and csk , before starting the
second WIPOK sub-protocol of FSZK, where cw is supposed to commit to a validNP-
witness for x ∈ L and csk is supposed to commit to the preimage of either y0 or y1.
Double commitments can bypass, by hybrid arguments, the subtleties of SWI for the
CZK proof. But, the provable CKE property with double commitments turns out to be
much subtler. Specifically, due to the double commitments used, the value extracted
can be either the value committed to cw or that to csk . If it is ensured that the valued
extracted is always the one committed to cw (i.e., satisfying the correct knowledge-
extraction property of Definition 1), we can get statistical CKE in the same way as
the SWI-based solution. By the one-wayness of f , the value extracted in polynomial
time cannot be the preimage of y1−b (recall the secret-key is sb). But, how about the
possibility that the value extracted is just the secret-key sb committed to csk? Consider
the following adversarial strategy:

With non-negligible probability p, P ∗ commits s0 (resp., s1) to csk in a session
(possibly by malleating verifier’s public-key into csk); Then, possibly by malleating the
first WIPOK sub-protocol concurrent interactions, P ∗ successfully finishes the second



712 A.C. Yao, M. Yung, and Y. Zhao

WIPOK sub-protocol of the session with s0 (resp., s1) as the witness, in case the verifier
V uses s0 (resp., s1) as the secret-key; However, with the same probability p, P ∗ com-
mits both a valid witness w to cw and s0 (resp. s1) to csk, and then successfully finishes
the second WIPOK sub-protocol with w as the witness in case V uses s1 (resp., s0) as
secret-key. Note that, for this adversarial strategy, with non-negligible probability p the
value extracted will just be the secret-key (that is also used by the extractor itself). But,
we do not know how to reach contradiction under standard polynomial assumptions in
this case. In particular, this adversarial strategy does not violate the statistical WI of
the first WIPOK sub-protocol: with probability 2p, the value committed to csk is sσ for
both σ ∈ {0, 1}, no matter which secret-key is used by the verifier.

To overcome this technical difficulty, we employ complexity leveraging in a novel
way. Specifically, on the system parameter n, we assume the OWF f is hard against sub-
exponential 2n

c

-time adversaries for some constant c, 0 < c < 1. But, the commitment
csk is generated on a relatively smaller security parameter nsk such that nsk and n are
polynomially related (i.e., any quantity that is a polynomial of n is also another polyno-
mial of nsk) but poly(n) ·2nsk 
 2n

c

. This complexity leveraging ensures that, with at
most negligible probability, the value extracted can be the secret-key sb committed to
csk, from which the correctness of knowledge-extraction (and then the statistical CKE
security) is established. The reasoning is as follows: For any i, 1 ≤ i ≤ s(n), suppose
with non-negligible probability p an s-concurrent malicious P ∗ can successfully finish
the i-th session with csk committing to sσ , σ ∈ {0, 1}, when the honest verifier (and
also the extractor) uses sσ as its secret-key; Then, by the statistical WI property of the
first WIPOK sub-protocol, with the same probability p, P ∗ successfully finishes the i-th
session with csk committing to sσ , when the honest verifier uses s1−σ as the secret-key.
In the later case, we can open csk to get sσ by brute force in poly(n) · 2nsk -time, which
however violates the sub-exponential hardness of yσ because poly(n) · 2nsk 
 2n

c

.

P V
PK : (f(s0), f(s1))

Statistical WIPOK(s0 ∨ s1)

Generic CZK-CKE:

x ∈ L
w: (x,w) ∈ RL

cw = C(w)

Strong WIPOK((x,w) ∈ RL ∨ w ∈ {s0, s1})

Efficient CZK-CKE (with leveraging: csk vs. PK):

cw = C(w), csk = C(v)

WIPOK((x,w) ∈ RL ∨ v ∈ {s0, s1})

Fig. 1. Depiction of CZK-CKE from FSZK
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We stress that complexity leveraging via the sub-exponential hardness assumption
on verifier’s public-key is only for provable security analysis to frustrate concurrent
man-in-the-middle. Both CZK simulation and CKE knowledge-extraction are still in
polynomial-time. We suggest that the use of complexity leveraging for frustrating CMIM
could be a useful paradigm, different from the uses of complexity leveraging in existing
works for protocols in the BPK model (e.g., [4]). The complexity-leveraging based effi-
cient and conceptually simple CZK-CKE solution can be further practically instantiated
for some common number-theoretic languages.

The CZK-CKE protocols from FSZK are roughly depicted in Figure 1. We also show
that all other FSZK possible component variants within the given protocol structure of
Figure 1, are essentially not provably (black-box) CZK-CKE secure in the BPK model,
which is, perhaps, somewhat puzzling.
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On the k-Independence Required by Linear
Probing and Minwise Independence

Mihai Pǎtraşcu and Mikkel Thorup
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Abstract. We show that linear probing requires 5-independent hash
functions for expected constant-time performance, matching an upper
bound of [Pagh et al. STOC’07]. For (1 + ε)-approximate minwise inde-
pendence, we show that Ω(lg 1

ε
)-independent hash functions are required,

matching an upper bound of [Indyk, SODA’99]. We also show that the
multiply-shift scheme of Dietzfelbinger, most commonly used in practice,
fails badly in both applications.

1 Introduction

The concept of k-wise independence was introduced by Wegman and Carter [19]
in FOCS’79 and has been the cornerstone of our understanding of hash func-
tions ever since. Formally, a family H = {h : [u] → [b]} of hash functions
is k-independent if (1) for any distinct keys x1, . . . , xk ∈ [u], the hash codes
h(x1), . . . , h(xk) are independent random variables; and (2) for any fixed x, h(x)
is uniformly distributed in [b].

As the concept of independence is fundamental to probabilistic analysis, k-
independent functions are both natural and powerful in algorithm analysis. They
allow us to replace the heuristic assumption of truly random hash functions
with real (implementable) hash functions that are still “independent enough” to
yield provable performance guarantees. We are then left with the natural goal
of understanding the independence required by algorithms.

The canonical construction of a k-independent family is based on polynomials
of degree k−1. Let p ≥ u be prime. Picking random a0, . . . , ak−1 ∈ {0, . . . , p−1},
the hash function is defined by:

h(x) =
((

ak−1x
k−1 + · · ·+ a1x + a0

)
mod p

)
mod b

For p� b, the hash function is statistically close to k-independent.
In simple cases, 2-independence suffices. For instance, if one implements a hash

table by chaining, the time it takes to query x is proportional to the number of
keys y colliding with x (i.e. h(x) = h(y)). Thus, pairwise independence of h(x)
and h(y) is all we need to understand the expected query time.

At the other end of the spectrum, O(lg n)-independence suffices in a vast
majority of applications. One reason for this is the Chernoff bounds of [14] for k-
independent events, whose probability bounds differ from the full-independence

S. Abramsky et al. (Eds.): ICALP 2010, Part I, LNCS 6198, pp. 715–726, 2010.
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Chernoff bound by 2−Ω(k). Another reason is that random graphs with O(lg n)-
independent edges [1] share many of the properties of truly random graphs.

In this paper, we study two compelling applications in which independence 2 <
k < lgn is currently needed: linear probing and minwise-independent hashing.
(The reader unfamiliar with these applications will find more details below.) For
linear probing, Pagh et al. [10] showed that 5-independence suffices, thus giving
the first realistic implementation of linear probing with formal guarantees. For
minwise-independence, Indyk [8] showed that ε approximation can be obtained
using O(lg 1

ε )-independence.
In both cases, it was known that 2-independence does not suffice [10,3], and,

indeed, the simplest family x 	→ (ax + b) mod p provides a counterexample.
However, a significant gap remained to the upper bounds.

In this paper, we close this gap, showing that both upper bounds are, in
fact, tight. We do this by exhibiting carefully constructed families for which
these algorithms fail: for linear probing, we give a 4-independent family that
leads to Ω(lg n) query time; and for minwise independence, we give an Ω(lg 1

ε )-
independent family that leads to 2ε approximation.

Concrete schemes. Our results give a powerful understanding of a natural com-
binatorial resource (independence) for two important algorithmic questions. In
other words, they are limits on how far the paradigm of independence can bring
us. Note, however, that independence is only one property that concrete hash
schemes have. In a particular application, a hash scheme can behave much bet-
ter that its independence guarantees, if it has some other probabilistic property
unrelated to independence.

In practice, the most popular hash function is not x 	→
(
(ax+ b) mod p

)
mod

u, but Dietzfelbinger’s multiply-shift scheme [6], which can be twice as fast [16].
To hash w-bit integers to the range b = 2�, the scheme picks a random a of 2w
bits, and computes (ax) >> (2w − �), where >> denotes unsigned shift.

In the full version of this paper, we prove that linear probing with multiply-
shift hashing suffers from Ω(lg n) expected running times. Similarly, minwise in-
dependent hashing has a very large approximation, of ε = Ω(lg n). While these
results are not surprising, given the “moral similarity” of multiply-shift and ax+b
schemes, they do require rather involved arguments. We feel this effort is justified,
as it brings the theoretical lower bounds in line with programming reality.

In the same vein, one could ask to replace our lower bounds, which construct
artificial families of high independence, by a proof that the family of polyno-
mials fails. While this is an intriguing algebraic question, we do note that it is
far less pressing from a practical viewpoint. Even with the best known imple-
mentation tricks (such as computing modulo Mersenne primes), higher degree
polynomials make rather slow hash functions, and are not widely used. For in-
stance, the fastest known 5-independent family is tabulation based [17,18], and
it outperforms polynomials by a factor of 5 or more. In a recent manuscript, we
show [12] that tabulation-based hash functions do, in fact, behave better than
their independence would suggest: for instance, 3-independent tabulation yields
O(1) running times for linear probing.
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1.1 Technical Discussion: Linear Probing

Linear probing uses a hash function to map a set of keys into an array of size b.
When inserting x, if the desired location h(x) is already occupied, the algorithm
scans h(x)+1, h(x)+2, . . . until an empty location is found, and places x there.
The query algorithm starts at h(x) and scans either until it finds x, or runs into
an empty position, which certifies that x is not in the hash table. We assume
constant load of the hash table, e.g. the number of keys is n ≤ 2

3b.
This classic data structure is the most popular implementation of hash tables,

due to its unmatched simplicity and efficiency. On modern architectures, access
to memory is done in cache lines (of much more than one element), so inspect-
ing a few consecutive values typically translates into just one memory probe.
Even if the scan straddles a cache line, the behavior will still be better than
a second random memory access on architectures with prefetching. Empirical
evaluations [2,7,11] confirm the practical advantage of linear probing over other
known schemes, while cautioning [7,18] that it behaves quite unreliably with
weak hash functions (such as 2-independent). Taken together, these findings
form a strong motivation for theoretical analysis.

Linear probing was first shown to take expected constant time per operation
in 1963 by Knuth [9], in a report now considered the birth of algorithm analysis.
However, this required truly random hash functions.

A central open question of Wegman and Carter [19] was how linear probing
behaves with k-independence. Siegel and Schmidt [13,15] showed that O(lg n)-
independence suffices. Recently, Pagh et al. [10] showed that even 5-independent
hashing works. We now close this line of work, showing that 4-independence is
not enough.

Review of the 5-independence upper bound. To better situate our lower bounds,
we begin by reviewing the upper bound of [10]. The main probabilistic tool
featuring in this analysis is a 4th moment bound. Consider throwing n balls into
b bins uniformly. Let Xi be the probability that ball i lands in the first bin, and
X =

∑n
i=1 Xi the number of balls in the first bin. We have μ = E[X ] = n

b .
Then, the kth moment of X is defined as E[(X − μ)k].

As long as our placement of the balls is k-independent, the kth moment is
identical to the case of full independence. For instance, the 4th moment is:

E[(X−μ)4] = E
[(∑

i

(Xi− 1
b )
)4] = ∑

i,j,k,l

E
[
(Xi− 1

b )(Xj − 1
b )(Xk− 1

b )(Xl− 1
b )
]
.

The only question in calculating this quantity is the independence of sets of at
most 4 items. Thus, 4-independence preserves the 4th moment of full randomness.

Moments are a standard approach for bounding the probability of large de-
viations. Let’s say that we expect μ items in the bin, but have capacity 2μ;
what is the probability of overflow? A direct calculation shows that the 4th mo-
ment is E[(X − μ)4] = O(μ2). Then, by a Markov bound, the probability of
overflow is Pr[X ≥ 2μ] = Pr[(X − μ)4 ≥ μ4] = O(1/μ2). By contrast, if we
only have 2-independence, we can use the 2nd moment E[(X − μ)2] = O(μ) and
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obtain Pr[X ≥ 2μ] = O(1/μ). Observe that the 3rd moment is not useful for this
approach, since (X − μ)3 can be negative, so Markov does not apply.

To apply moments to linear probing, we consider a perfect binary tree span-
ning the array. For notational convenience, let us assume that the load is at most
n ≤ b/3. A node on level � has 2� array positions under it, and we expect 2�/3
keys to be hashed to one of them (but more or less keys may actually appear in
the subtree, since items are not always placed at their hash position). Call the
node dangerous if at least 2

32� keys hash to it.
In the first stage, we will bound the total time it takes to construct the hash

table (the cost of inserting n distinct items). If the table consists of runs of
k1, k2, . . . elements (

∑
ki = n), the cost of constructing it is bounded from

above by O(k2
1 + k2

2 + . . . ). To bound these runs, we make the following crucial
observation: if a run contains between 2� and 2�+1 elements, then some node at
level �− 2 above it is dangerous.

For a proof, assume the run goes from positions i to j. The interval [i, j] is
spanned by 4 to 9 nodes on level �− 2. Assume for contradiction that none are
dangerous. The first node, which is not completely contained in the interval,
contributes less than 2

32�−2 elements to the run (it the most extreme case, this
many elements hashed to the last location of that node). But the subsequent
nodes all have more than 2�−2/3 free locations in their subtree, so 2 more nodes
absorb all excess elements. Thus, the run cannot go on for 4 nodes, contradiction.

This observation gives an upper bound on the cost: add O(22�) for each dan-
gerous node at some level �. Denoting by p(�) the probability that a node on
level � is dangerous, the expected cost is thus

∑
�(n/2

�) ·p(�) ·22� =
∑

� n ·2�p(�).
Using the 2nd moment to bound p(�), one would obtain p(�) = O(2−�), so the
total cost would be O(n lg n). However, the 4th moment gives p(�) = O(2−2�),
so the cost at level � is now O(n/2�). In other words, the series starts to decay
geometrically and is bounded by O(n).

To bound the running time of one particular operation (query or insert q), we
actually use the stronger guarantee of 5-independence. If the query lands at a
uniform place conditioned on everything else in the table, then at each level it
will pay the “average cost” of O(1/2�), which sums up to O(1).

Our results. Two intriguing questions pop out of this analysis. First, is the
independence of the query really crucial? Perhaps one could argue that the query
behaves like an average operation, even if it is not completely independent of
everything else. Secondly, one has to wonder whether 3-independence suffices (by
using something other than 3rd moment): all that is needed is a bound slightly
stronger than 2nd moment in order to make the series decay geometrically!

We answer both questions in strong negative terms. The complete understand-
ing of linear probing with low independence is summarized in Table 1. Addressing
the first question, we show that 4-independence cannot give expected time per
operation better than Ω(lg n), even though n operations take O(n). Our proof
demonstrates an important phenomenon: even though most bins have low load, a
particular element’s hash code could be correlated with the (uniformly random)
choice of which bins have high load.
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Table 1. Expected time bounds with a bad family of k-independent hash functions.
Construction time refers to the total time over n different insertions.

Independence 2 3 4 ≥ 5
Query time Θ̃(

√
n) Θ(lg n) Θ(lg n) Θ(1)

Construction time Θ(n lg n) Θ(n lg n) Θ(n) Θ(n)

An even more striking illustration of this fact happens for 2-independence:
the query time blows up to Ω(

√
n) in expectation, since we are left with no

independence at all after conditioning on the query’s hash. This demonstrates a
very large separation between linear probing and collision chaining, which enjoys
O(1) query times even for 2-independent hash functions.

Addressing the second question, we show that 3-independence is not enough
to guarantee even a construction time of O(n). Thus, in some sense, the 4th

moment analysis is the best one can hope for.

1.2 Technical Discussion: Minwise Independence

This concept was introduced by two classic algorithms: detecting near-duplicate
documents [3,4] and approximating the size of the transitive closure [5]. The
basic step in these algorithms is estimating the size of the intersection of pairs
of sets, relative to their union: for A and B, we want to find |A∩B|

|A∪B| (the Jaccard
similarity coefficient). To do this efficiently, one can choose a hash function h
and maintain minh(A) as the sketch of an entire set A. If the hash function is
truly random, we have Pr[min h(A) = minh(B)] = |A∩B|

|A∪B| . Thus, by repeating
with several hash functions, or by keeping the bottom k elements with one hash
function, the Jaccard coefficient can be estimated up to a small approximation.

To make this idea work, the property that is required of the hash function is
minwise independence. Formally, a family of functions H = {h : [u] → [u]} is
said to be minwise independent if, for any set S ⊂ [u] and any x /∈ S, we have
Prh∈H[h(x) < minh(S)] = 1

|S|+1 . In other words, x is the minimum of S ∪ {x}
only with its “fair” probability 1

|S|+1 .
As good implementations of exact minwise independent functions are not

known, the definition is relaxed to ε-minwise independent, where Prh∈H[h(x) <
minh(S)] = 1±ε

|S|+1 . Using such a function, we will have Pr[minh(A) =

minh(B)] = (1± ε) |A∩B||A∪B| . Thus, the ε parameter of the minwise family dictates
the best approximation achievable in the algorithms (which cannot be improved
by repetition).

Indyk [8] gave the only implementation of minwise independence with prov-
able guarantees, showing that O(lg 1

ε )-independent functions are ε-minwise
independent.

His proof uses another tool enabled by k-independence: the inclusion-exclusion
principle. Say we want to bound the probability that at least one of n events
is “good.” We can define p(k) =

∑
S⊂[n],|S|=k Pr[all S are good]. Then, the
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probability that at least one event is good is, by inclusion-exclusion, p(1) −
p(2) + p(3)− p(4) + . . . . If we only have k-independence (k odd), we can upper
bound the series by p(1) − p(2) + · · · + O(p(k)). In the common scenario that
p(k) decays exponentially with k, the trimmed series will only differ from the
full independence case by 2−Ω(k). Thus, k-independence achieves bounds expo-
nentially close to full independence, whenever probabilities can be computed
by inclusion-exclusion. This turns out to be the case for minwise independence:
we can express the probability that at least some element in S is below x by
inclusion-exclusion.

In this paper, we show that, for any ε > 0, there exist Ω(lg 1
ε )-independent

hash functions that are no better than (2ε)-minwise independence. Thus, ε-
minwise independence requires Ω(lg 1

ε ) independence.

2 Time Θ(
√

n) with 2-Independence

We define a 2-independent hash family such that the expected query time is
Θ(
√
n). The main idea of the proof is that the query can play a special role:

even if most portions of the hash table are lightly loaded, the query can be
correlated with the portions that are loaded. We assume that b is a power of
two, and we store n = b/2 keys. We also assume that

√
n is a power of two.

We can think of the stored keys and the query key as fixed, and we want
to find bad ways of distributing them 2-independently into the range [b]. To
extend the hash function to the entire universe, all other keys are hashed totally
randomly. We consider unsuccessful searches, i.e. the search key q is not stored
in the hash table. The query time for q is the number of cells considered from
h(q) up to the first empty cell. If, for some d, the interval Q = (h(q) − d, h(q)]
has 2d keys, then the search time is Ω(d).

Let d = 2
√
n; this is a power of two dividing b. In our construction, we first

pick the hash h(q) uniformly. We then divide the range into
√
n intervals of

length d, of the form (h(q) + i · d, h(q) + (i + 1)d], wrapping around modulo b.
One of these intervals is exactly Q.

We prescribe the distribution of keys between the intervals; the distribution
within each interval will be fully random. To place 2d = 4

√
n keys in the query

interval with constant probability, we mix among two strategies with constant
probabilities (to be determined):

S1: Spread keys evenly, with
√
n keys in each interval.

S2: Pick 4 intervals including the query interval, and gather all 4
√
n keys in a

random one of these. All other intervals get
√
n keys. With probability 1/4,

it is the query interval that gets overfilled, and the search time is Ω(
√
n).

To prove that the hash function is 2-independent, we need to consider pairs of
two stored keys, and pairs involving the query and one stored key. In either case,
we can just look at the distribution into intervals, since the position within an
interval is truly random. Furthermore, we only need to understand the probabil-
ity of the two keys landing in the same interval (which we call a “collision”). By



On the k-Independence Required by Linear Probing 721

the above process, if two keys do not collide, they will actually be in uniformly
random distinct intervals.

Since store keys are symmetric, the probability of q and x colliding is given by
the expected number of items in Q, which is exactly d/2. Thus h(q) and h(x) are
independent. To analyze pairs of the form (x, y), we will compute the expected
number of collisions among stored keys. This will turn out to be

(
n
2

)
/
√
n, proving

that x and y collide with probability 1/
√
n, and thus, are independent.

In strategy S1, we get the smallest possible number of collisions:
√
n
(√

n
2

)
=

1
2n

1.5− 1
2n. Compared to

(
n
2

)
/
√
n = 1

2n
1.5− 1

2
√
n, this is too few by almost n/2.

In S2, we get (
√
n− 4)

(√
n

2

)
+
(4√n

2

)
= 1

2n
1.5 + 11

2 n, which is too large by almost
5.5n. To get the right expected number of collisions, we use S2 with probability

5.5n+o(n)
(0.5+5.5)n+o(n) = 11

12 ± o(1).
It is not hard to prove an upper bound of O(

√
n) on the expected query cost:

a higher query time implies too many collisions for 2-independence. Formally,
divide into

√
n intervals of length d = 2

√
n. If the query cost is td, it must pass

at least (t−2)d keys in intervals filled with at least d keys. Also, if we have k keys
in such full intervals, the number of collisions is Ω(k

√
n) above the minimum

possible. Thus, if the expected query cost is ω(d), the the expected number of
extra collisions is ω(n), contradicting 2-universality.

3 Construction Time Ω(n lg n) with 3-Independence

We will now construct a 3-independent family of hash functions, such that the
time to insert n items into a hash table is Ω(n lg n). As before, we assume the
array size b is a power of two, and set n = $ 2

3b%. Since we are looking at the
total cost of n insertions, if some interval of length d gets d+ s keys (overflow of
s), then these d+ s insertions cost Ω(s2). We will add up such squared overflow
costs over disjoint intervals, and demonstrate a total cost of Ω(n lg n).

We imagine a perfect binary tree spanning the array. Our hash function will
recursively distribute keys from a node to its two children, starting at the root.
Nodes run independent random distribution processes. Then, if each node makes
a k-independent distribution, overall the function is k-independent.

For a node, we mix between two strategies:

S1: Distribute the keys evenly between the two children, breaking ties randomly.
S2: Give all the keys to one of the children, chosen randomly.

Our first goal is to determine the correct probability for the second strategy,
pS2, such that the distribution process is 3-independent. Then we will calculate
the cost it induces on linear probing.

3.1 Characterizing k-Independence

Our randomized procedure treats keys symmetrically, and ignores the distinction
between left/right children. We call such distributions fully symmetric. Say the
current node has to distribute 2m keys to its two children (m need not be
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integral). Let Xa be the indicator random variable for key a ending in the left
child, and X =

∑
a Xa. By symmetry of the children, E[Xa] = 1

2 , so E[X ] = m.
The kth moment is Fk = E[(X −m)k]. Also define pk = Pr[X1 = · · · = Xk = 1]
(by symmetry, any k distinct keys yield the same value).

Lemma 1. A fully symmetric distribution is k-independent iff pi = 2−i for all
i = 2, . . . , k.

Proof. We need to show that, for any (x1, . . . , xk) ∈ {0, 1}k, Pr[(X1 = x1) ∧
· · · ∧ (Xk = xk)] = 2−k. By symmetry of the keys, we can sort the vector to
x1 = · · · = xt = 1 and xt+1 = · · · = xk = 0. Let Pk,t be the probability that
such a vector is seen.

We use induction on k. In the base case, P1,0 = P1,1 = 1
2 by symmetry. For

k ≥ 2, we start with Pk,k = pk = 2−k. We then use induction for t = k−1 down to
t = 0. The induction step is simply: Pk,t = Pk−1,t−Pk,t+1 = 2−(k−1)−2−k = 2−k.
Indeed, Pr[X1..t = 1 ∧Xt+1..k = 0] can be computed as the difference between
Pr[X1..t = 1∧Xt+1..k−1 = 0] (measured by Pk−1,t) and Pr[X1..t = 1∧Xt+1..k−1 =
0 ∧Xk = 1] (measured by Pk,t+1).

Based on this lemma, we can also give a characterization based on moments.
First observe that any odd moment is necessarily zero, as Pr[X = m + δ] =
Pr[X = m− δ] by symmetry of the children.

Lemma 2. A fully symmetric distribution is k-independent iff its even moments
between F2 and Fk coincide with the moments of the truly random distribution.

Proof. We will show that p2, . . . , pk are determined by F2, . . . , Fk. Thus, any
distribution that has the same moments as a truly random distribution, will
have the same values p2, . . . , pk as the truly random distribution (pi = 2−i as in
Lemma 1).

Let nk̄ = n(n− 1) . . . (n− k + 1) be the falling factorial. We use induction on
k with the following formula:

pk = Fk/(2m)k̄ + fk(m,F2, .., Fk−1), for some function fk.

To see this, note that Fk = E[(X −m)k] = E[Xk] + f
(
m,E[X2], . . . ,E[Xk−1]

)
.

But E[Xk] = (2m)k̄pk + f1(m, k)pk−1 + f2(m, k)pk−2 + . . . . Here, the factors
fi(m, k) count the number of ways to select k out of 2m keys, with i duplicates.

��

3.2 The Cost of Linear Probing

By the above characterization, a mix of S1 and S2 is 3-independent iff it has the
correct 2nd moment F2 = m

2 . In strategy S1, X = m± 1 (due to rounding errors
if 2m is odd), so FS1

2 ≤ 1. In S2 (all to one child), |X −m| = m so FS2
2 = m2.

Hence, the proper balancing is pS2 = 2
m±O( 1

m2 ), yielding a 2nd moment of m/2.
We now calculate the cost in terms of squared overflows. As long as the recur-

sive steps spread the keys evenly, the load stays around 2/3. However, a first time
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we collect all keys into one child, that interval of the array will get a load of 4/3.
This is an overflow of Ω(m) keys, thus a cost of Ω(m2). Since pS2 = Θ(1/m),
the expected cost induced by the node is Θ(m).

However, to avoid double charging, we may only consider the node if there
has been not collection in one of his ancestors. As long as S1 applies, the number
of keys at depth i is 2m ≈ n/2i, so the probability of the collection strategy is
pS2 = Θ(1/m) = Θ(2i/n). The probability that a node at depth i is still relevant
(no collection among his ancestors) is at least 1−

∑i−1
j=0 Θ(2j/n) = 1−Θ(2i/n) ≥

1
2 for i
 lg n. We conclude that the expected cost of each node is linear in the
size of its subtree. Hence, the total expected cost is Ω(n lg n).

4 Expected Query Time Ω(lg n) with 4-Independence

Due to space limitations, the proof appears only in the full version of the paper.
The proof is a combination of the ideas for 2-independence and 3-independence,
plus the (severe) complications that arise. As for 2-independence, we will first
choose h(q) and then make the stored keys cluster preferentially around h(q).
This clustering will actually be the 3-independent type of clustering from before,
but done only (mostly) on the path from the root to h(q). Since this is used for
so few nodes, we can balance the 4th moment to give 4-independence, by doing
a slightly skewed distribution in the nodes off the query path.

5 Minwise Independence via k-Independence

We will show that it is limited how good minwise independence we can achieve
based on k-independent hashing. For a given k, our goal is to construct a k-
independent distribution over n regular keys and a query key q, such that the
probability that q gets the minimal hash value is 1

n+1

(
1 + 2−O(k)

)
.

We assume that k is even and divides n. Each hash value will be uniformly
distributed in the unit interval [0, 1). Discretizing this continuous interval does
not affect any of the calculations below, as long as precision 2 lgn or more is
used (making the probability of a non-unique minimum vanishingly small).

For our construction, we divide the unit interval into n
k subintervals of the

form
[
i kn , (i + 1) kn

)
. The regular keys are distributed totally randomly between

these subintervals. Each subinterval I gets k regular keys in expectation. We say
that I is exact if it gets exactly k regular keys. Whenenver I is not exact, the
regular keys are placed totally randomly within it.

The distribution inside an exact interval I is dictated by a parity parameter
P ∈ {0, 1}. We break I into two equal halves, and distribute the k keys into these
halves randomly, conditioned on the parity in the first half being P . Within its
half, each key gets an independent random value. If P is fixed, this process is
k − 1 independent. Indeed, one can always deduce the half of a key x based on
knowledge of k− 1 keys, but the location of x is totally uniform if we only know
about k − 2 keys. If the parity parameter P is uniform in {0, 1} (but possibly
dependent among exact intervals), the overall distribution is still k-independent.
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The query is generated independently and uniformly. For each exact interval
I, if the query is inside it, we set its parity parameter PI = 0. If I is exact
but the query is outside it, we toss a biased coin to determine the parity, with
Pr[PI = 0] = (1

2 −
k
n )/(1 − k

n ). Any fixed exact interval receives the query with
probability k

n , so overall the distribution of PI is uniform.
We claim that the overall process is k-independent. Uniformity of PI implies

that the distribution of regular keys is k-independent. In the case of q and k− 1
regular keys, we also have full independence, since the distribution in an interval
is (k − 1)-independent even conditioned on P .

It remains to calculate the probability of q being the minimum under this
distribution. First we assume that the query landed in an exact interval I, and
calculate pmin, the probability that q takes the minimum value within I. Define
the random variable X as the number of regular keys in the first half. By our
process, X is always even.

If X = x > 0, q is the minimum only if it lands in the first half (probability
1
2 ) and is smaller than the x keys already there (probability 1

x+1 ). If X = 0, q is
the minimum either if it lands in the first half (probability 1

2 ), or if it lands in
the second half, but is smaller than everybody there (probability 1

2(k+1) ). Thus,

pmin = Pr[X = 0] ·
( 1

2 + 1
2(k+1)

)
+
∑

x=2,4,..,k

Pr[X = x] · 1
2(x+1)

To compute Pr[X = x], we can think of the distribution into halves as a two
step process: first k−1 keys are distributed randomly; then, the last key is placed
to make the parity of the first half even. Thus, X = x if either x or x− 1 of the
first k − 1 keys landed in the first half. In other words:

Pr[X = x] =
(
k−1
x

)
/2k−1 +

(
k−1
x−1

)
/2k−1 =

(
k
x

)
/2k−1

No keys are placed in the first half iff none of the first k − 1 keys land there;
thus Pr[X = 0] = 1/2k−1. We obtain:

pmin =
1

2k(k + 1)
+

1
2k
∑

x=0,2,..,k

1
x + 1

(
k

x

)

But 1
x+1

(
k
x

)
= 1

k+1

(
k+1
x+1

)
. Since k + 1 is odd, the sum over all odd binomial coef-

ficients is exactly 2k+1/2 (it is equal to the sum over even binomial coefficients,
and half the total). Thus, pmin = 1

2k(k+1) + 1
k+1 , i.e. q is the minimum with a

probability that is too large by a factor of 1 + 2−k.
We are now almost done. For q to be the minimum of all keys, it has to be

in the minimum non-empty interval. If this interval is exact, our distribution
increases the chance that q is minimum by a factor 1 + 2−k; otherwise, our
distribution is completely random in the interval, so q is minimum with its fair
probability. Let Z be the number of regular keys in q’s interval, and let E be the
event that q’s interval is the minimum non-empty interval. If the distribution
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were truly random, then q would be minimum with probability:

1
n + 1

=
∑
z

Pr[Z = z] · Pr[E | Z = z] · 1
z + 1

In our tweaked distribution, q is minimum with probability:∑
z �=k

Pr[Z = z] · Pr[E | Z = z] · 1
z + 1

+ Pr[Z = k] · Pr[E | Z = k] · 1 + 2−k

k + 1

=
1

n + 1
+ Pr[Z = k] · Pr[E | Z = k] · 2−k

k + 1

But Z is a binomial distribution with n trials and mean k; thus Pr[Z = k] =
Ω(1/

√
k). Furthermore, Pr[E | Z = k] ≥ k

n , since q’s interval is the very first
with probability k

n (and there is also a nonzero chance that it is not the first,
but all interval before are empty). Thus, the probability is off by an additive
term Ω(2−k/

√
k)

n . This translates into a multiplicate factor of 1 + 2−O(k).
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10. Pagh, A., Pagh, R., Ružić, M.: Linear probing with constant independence. SIAM
Journal on Computing 39(3), 1107–1120 (2009); See also STOC 2007

11. Pagh, R., Rodler, F.F.: Cuckoo hashing. Journal of Algorithms 51(2), 122–144
(2004); See also ESA 2001
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Abstract. Given a family of subsets of an n-element universe, the k-
cover problem asks whether there are k sets in the family whose union
contains the universe; in the k-packing problem the sets are required to
be pairwise disjoint and their union contained in the universe. When the
size of the family is exponential in n, the fastest known algorithms for
these problems use inclusion–exclusion and fast zeta transform, taking
time and space 2n, up to a factor polynomial in n. Can one improve
these bounds to only linear in the size of the family? Here, we answer
the question in the affirmative regarding the space requirement, while
not increasing the time requirement. Our key contribution is a new fast
zeta transform that adapts its space usage to the support of the function
to be transformed. Thus, for instance, the chromatic or domatic number
of an n-vertex graph can be found in time within a polynomial factor of
2n and space proportional to the number of maximal independent sets,
O(1.442n), or minimal dominating sets, O(1.716n), respectively. More-
over, by exploiting some properties of independent sets, we reduce the
space requirement for computing the chromatic polynomial to O(1.292n).
Our algorithms also parallelize efficiently.

1 Introduction

Brute-force algorithms typically use lots of time but only little space. For in-
stance, a straightforward algorithm for the traveling salesman problem (TSP)
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visits every possible permutation of the n cities, requiring about n! computa-
tional steps and a storage for about n cities and two real numbers (in addition
to the input). Designing faster algorithms is sometimes possible by trading space
against time. Indeed, this is precisely what Bellman’s [1,2] and Held and Karp’s
[7] dynamic programming treatment of TSP does by tabulating partial solutions
across all subsets of the n cities: both the runtime and the space requirement
grow as 2n. A similar story can be told about coloring n-vertex graphs, or set
covering more generally, albeit the 2n bounds were discovered only quite recently
[3]. Reducing the space requirement for these problems appears challenging, and
has been so far achieved only at the cost of increasing the running time [5,9].

In this paper, we provide an input-sensitive characterization of the space–
time tradeoff for the set cover problem. Regarding the time requirement, the
best one can hope for is an upper bound linear in the size of the input, for all
input must be read in the worst case. While no such lower bound is obvious
for the space requirement, one may, again, regard a linear upper bound as a
plausible goal. Since a set family over an n-set universe may contain an order
of 2n members, the known upper bounds are optimal in the worst case. For the
current techniques, however, the O∗(2n) time and space bounds are tight even
if the given set family is much smaller; throughout the paper the O∗ notation
hides a factor polynomial in n. Here, we show that the set cover problem can be
solved in time O∗(2n) using space only about linear in the size of the set family.
Applications to graph coloring and domatic partitioning yield space bounds of
the form O(Cn) with C < 2, as outlined in the sequel.

When making these claims we assume the general case where the set family is
given explicitly in the input. It goes without saying that in many concrete prob-
lems, such as graph coloring or domatic partitioning, the set family is represented
implicitly, for example in terms of a graph.

Our study actually concerns the counting variant of the set cover problem.
A k-cover over a family F of subsets of an n-element universe U is a tuple of k
members of F whose union contains U . Given F and k, the counting problem asks
the number of k-covers over F, denoted by ck(F). We start with the inclusion–
exclusion formula [3],

ck(F) =
∑
X⊆U

(−1)|U\X|a(X)k , (1)

where a(X) is the number of subsets Y ⊆ X that belong to F. The key obser-
vation is that given F, the numbers a(X), for all X ⊆ U , can be listed (in some
order) in time O∗(2n) and space O∗(|F|).

It is useful to formulate this result slightly more generally in terms of the zeta
transform on the subset lattice, as follows. If f is a function from the subsets of
U to a ring R, then the zeta transform of f , denoted as fζ, is defined by

fζ(X) =
∑
Y⊆X

f(Y ), X ⊆ U .

See Fig. 1 for an illustration of the zeta transform.
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Theorem 1. Suppose f vanishes outside F and the members of F can be listed
in time O∗(2n) and space O∗(|F|). Then the values fζ(X), for X ⊆ U , can be
listed in time O∗(2n) and space O∗(|F|).

This result, which we will prove in Sect. 3, allows us to easily extend the result
for set covers to an analogous result for set partitions and set packings; a k-
partition (k-packing) over F is a tuple of k pairwise disjoint member of F whose
union equals (is contained in) the universe U . Thus, given Theorem 1, we have
the following.

Theorem 2. Let F be a family of subsets of an n-element universe U , and let
k be an integer. Suppose F can be listed in time O∗(2n) and space O∗(|F|). Then
the k-covers, k-packings, and k-partitions over F can be counted in time O∗(2n)
and space O∗(|F|).

We illustrate this result with some immediate implications to graph coloring and
domatic partitioning. The chromatic number of a graph is the smallest integer k
such that there exists a proper k-coloring of the graph, that is, a mapping σ from
the vertices of the graph to {1, 2, . . . , k} such that σ(u) �= σ(v) if u and v are
adjacent in the graph. To test if the chromatic number is k or smaller, it clearly
suffices to count the covers of the vertices by k independent sets of the graph;
a subset of vertices is an independent set if it does not contain two adjacent
vertices. In fact, it suffices to count the covers of the vertices by k maximal
independent sets; an independent set is maximal if it is not a subset of any other
independent set. The maximal independent sets can be trivially listed in time
O∗(2n) and space linear in their number. Because a graph with n vertices can
have at most 3n/3 ≈ 1.44225n maximal independent sets [10], Theorem 2 gives
us the following.

Corollary 1. The chromatic number of a given n-vertex graph can be found in
time O∗(2n) and space O(1.443n).

Analogous reasoning applies to domatic partitioning. The domatic number of a
graph is the largest integer k such that the vertices of the graph be partitioned
into k pairwise disjoint dominating sets; a subset of vertices D is a dominating
set if every vertex not in D is adjacent to at least one vertex in D. To test if
the domatic number is k or larger, it suffices to count the k-packings over the
dominating sets of the graph. Again, it actually suffices to count the k-packings
over the minimal dominating sets; a dominating set is minimal if it contains no
other dominating set. Because a graph with n vertices can have at most 1.716n

minimal dominating sets, which can be listed in time O(1.716n) [6], we have the
following.

Corollary 2. The domatic number of a given n-vertex graph can be found in
time O∗(2n) and space O(1.716n).

It should be noted that the computation of the chromatic or domatic number are,
in essence, decision problems, even though the counting approach is crucial for
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obtaining the reduced space requirement. If Theorem 2 is applied, for example,
to the computation of the chromatic polynomial, which at k evaluates to the
number of proper k-colorings, then the space bound O∗(2n) is tight, since it does
not suffice to consider only maximal independent sets. In this light, we find it
somewhat surprising that the chromatic polynomial can, however, be computed
in much less space by using a variant of the linear-space zeta transform that
exploits the special structure of independent sets. Indeed, in Sect. 5 we prove
the following bound, which improves upon Corollary 1.

Theorem 3. The chromatic polynomial of a given n-vertex graph can be found
in time O∗(2n) and space O(1.292n).

However, the algorithm behind Corollary 1 remains interesting for finding the
chromatic number, as most graphs have a lot fewer maximal independent sets
than the Moon–Moser bound 3n/3 predicts.

Apart from the space savings, our algorithms have also another feature that
should be relevant for practical implementations: they admit efficient paralleliza-
tion. It will be immediate from the descriptions in Sects. 3 and 4 that the algo-
rithms can be executed in parallel on O∗(2n/S) processors, each using time and
space O∗(S), where S varies as given in the space bounds of Theorems 1 and 2
and Corollaries 1 and 2 ; for the chromatic polynomial some extra space is needed
compared to Theorem 3: O∗(2n/2) = O(1.415n) processors, each using time and
space O∗(2n/2). This capability for parallel computation is in sharp contrast to
the previous algorithms [3], for which efficient parallelization to exponentially
many processors seems not possible.

Remark. In the statements above and their proofs in the remainder sections,
we ignore the polynomial factors for simplicity. We note, however, that the hid-
den factors are relatively small. For instance, in Theorem 1 the actual storage
requirement is O(|F|n) bits and ring elements, assuming each member of F is
represented naturally by n bits. Likewise, in Theorem 2 O(|F|n) bits suffice if
we resort to space-efficient manipulation of the involved polynomials, that is,
evaluation–interpolation, each evaluation modulo small relative primes and us-
ing the Chinese Remainder Theorem. We omit a more detailed consideration of
these standard techniques in this paper.

2 Preliminaries

We adopt the following conventions. Let U be a universe of n elements. Denote
by 2U the set of all subsets of U . Let R be an algebraic ring. Let f : 2U → R
be a function. The (down-)zeta transform of f is the function fζ : 2U → R,
defined for all X ⊆ U by fζ(X) =

∑
Y⊆X f(Y ). The up-zeta transform of f is

the function fζ′ : 2U → R, defined for all X ⊆ U by fζ′(X) =
∑

X⊆Y f(Y ).
We employ Iverson’s bracket notation, that is, for a logical proposition P , we

write [P ] to indicate a 1 if P is true and a 0 if P is false.
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We recall that there is an algorithm, the fast zeta transform [8,4], that com-
putes the function fζ from the function f in time and space O∗(2n), where we
assume that the arithmetic operations in the ring R take time O∗(1) and each
ring element takes O∗(1) space.

The Fast Zeta Transform. Let the universe be U = {1, 2, . . . , n} and let
f : 2U → R be given as input. The algorithm pseudocode is as follows:

1. Set f0 ← f .
2. For each j = 1, 2, . . . , n do:

(a) For each X ⊆ U , set fj(X) ← [j ∈ X ]fj−1(X \ {j}) + fj−1(X).
3. Give the output fζ ← fn.

An analogous algorithm is easy to derive for the up-zeta transform.

3 The Zeta Transform in Linear Space and O∗(2n) Time

This section proves Theorem 1.
Let us fix a bipartition of the universe U ,

U = U1 ∪ U2, U1 ∩ U2 = ∅, |U1| = n1, |U2| = n2 , (2)

for integers n1 and n2 yet to be fixed. We now execute the following algorithm;
see Fig. 2.

The Linear-Space Fast Zeta Transform. Let a family F ⊆ 2U and a function
f : 2U → R that vanishes outside F be given as input. We execute the following
algorithm to output fζ(X) for each X ⊆ U , with comments delimited by double
braces “{{” and “}}”:

1. For each X1 ⊆ U1 do:
(a) For each Y2 ⊆ U2, set g(Y2) ← 0.

{{ This step takes O∗(2n2) time and space. }}
(b) For each Y ∈ F , if Y ∩U1 ⊆ X1 then set g(Y ∩U2) ← g(Y ∩U2)+ f(Y ).

{{ This step takes O∗(|F|) time and O∗(2n2) space. }}
(c) Compute h← gζ using the fast zeta transform on 2U2 .

{{ This step takes O∗(2n2) time and space. }}
(d) For each X2 ⊆ U2, output the value h(X2) as the value fζ(X1 ∪X2).

Note that the algorithm evaluates f only at F. Moreover, we can iterate over
the elements of F in arbitrary order.

We establish the correctness of the algorithm by analyzing the contents of the
array h during each iteration of the loop over X1 ⊆ U1:

Lemma 1. For each fixed X1 ⊆ U1, we have h(X2) = fζ(X1 ∪ X2) for all
X2 ⊆ U2.
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Fig. 1. Left: a set family F over U = {1, 2, . . . , 7}, and values f(Y ) �= 0 for every
Y ∈ F. Right: For X = {1, 2, 4, 5, 6}, the value fζ(X) is the sum over its subsets,
4 + 1 + 1 + 5 = 11.
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Fig. 2. The linear space zeta transform. U is partitioned into U1 and U2 with |U2| =
log |F|. We iterate over all X1 ⊆ U1; here we show X1 = {1, 2, 4}. Left: We consider
only the sets Y ∈ F with Y ∩ U1 ⊆ X1. Middle: For each of these sets, add its value
f(Y ) to g(Y ∩ U2). Right: Compute the zeta transform gζ on U2. The result contains
the values of fζ for all X for which X ∩ U1 = X1. For example, fζ({1, 2, 4, 5, 6}) =
11. The central point of the analysis is that the most space-expensive operation, the
exponential-space fast zeta transform, operates only on U2, so the whole algorithm
runs in space 2|U2| = |F|.
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Proof. Expanding the assignments in the algorithm, we have

h(X2) =
∑

Y2⊆X2

g(Y2)

=
∑

Y2⊆X2

∑
Y ∈F

[Y ∩ U1 ⊆ X1][Y ∩ U2 = Y2]f(Y )

=
∑
Y ∈F

[Y ∩ U1 ⊆ X1][Y ∩ U2 ⊆ X2]f(Y )

=
∑
Y ∈F

Y⊆X1∪X2

f(Y )

=
∑

Y⊆X1∪X2

f(Y )

= fζ(X1 ∪X2) .

��
Observe that the algorithm runs in O∗(2n1(2n2 + |F|)) time and O∗(2n2) space.
We now fix the values n1 and n2 to n2 = $log2 |F|% and n1 = n − n2. The
algorithm thus runs in O∗(2n) time and O∗(|F|) space. Note also that because
the computations are independent for each X1 ⊆ U1, they can be executed in
parallel on O∗(2n/|F|) processors.

4 Coverings, Packings, and Partitions

This section proves Theorem 2.
To compute thenumber ofk-coveringsweneed to evaluate (1).Note thata equals

fζ, where f is F’s characteristic function, f(Y ) = [Y ∈ F]. By Theorem 1 we can
list all values a(X) for X ⊆ U in some order within the desired time and space
bounds; while doing so we accumulate their kth powers with the sign given by (1).

We turn to counting the k-partitions. The idea is to modify the function a
above so that it controls the size of the counted members of the set family [3].
This can be handily formulated [4] by replacing a(X) by a polynomial over an
indeterminate z:

dk(F) =
∑
X⊆U

(−1)|U\X|
(
a0(X) + a1(X)z + · · ·+ an(X)zn

)k
,

where the coefficient aj(X) is the number of subsets Y ⊆ X that belong to F

and are of size j. Now dk(F) is a polynomial whose coefficient of the monomial
zn is the number of k-partitions [4]. To evaluate this expression, we note that
the polynomial a(X) equals gζ(X), where g(Y ) = [Y ∈ F]z|Y |. Now, the linear-
space fast zeta transform (Theorem 1, Sect. 3) operates in a ring of polynomials
and lists the polynomials a(X) for all X ⊆ U in the desired time and space.1

1 To save some polynomial factors in both time and space, the arithmetic should
actually not be carried out directly with polynomials. Instead, the polynomials can
be evaluated at sufficiently many small integers, and finally the coefficients of dk(F)
are recovered via interpolation and the Chinese Remainder Theorem.
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Finally, the number of k-packings can be viewed as the number of (k + 1)-
partitions with k members from F, the (k + 1)th member being an arbirary
subset of U . The expression corresponding to (1) becomes

pk(F) =
∑
X⊆U

(−1)|U\X|(1 + z)|X|
( n∑

j=0

aj(X)zj
)k

,

and the coefficient of zn gives the number of k-packings.

5 The Chromatic Polynomial in Time O∗(2n) and Space
O(1.2916n)

This section proves Theorem 3.
Let G be a graph with vertex set V , |V | = n. For a positive integer k, denote by

χG(k) the number of proper k-colorings of the vertices of G, that is, the number
of mappings σ from V to {1, 2, . . . , k} so that σ(u) �= σ(v) holds whenever u
and v are adjacent in G. It is well known that the integer function χG(t) admits
representation as a polynomial of degree n with integer coefficients. In particular,
χG(t) is called the chromatic polynomial of G.

To compute χG(t) from a given G, it suffices to evaluate χG(k) for n+1 distinct
positive integers k and then recover the polynomial in t by interpolation.

Thus, our task reduces to counting the number of proper k-coloring of G.
Equivalently, our task is to count the number of ordered partitions (with empty
parts permitted) of the vertices of G into k independent sets. Put otherwise, it
suffices to compute for every X ⊆ V the z-polynomial

i(X) =
∑
Y⊆X

z|Y |[Y is independent in G] ,

which enables us to recover the number of k-colorings of G as the coefficient of
zn in the polynomial

r =
∑
X⊆V

(−1)n−|X|i(X)k .

Our improved space requirement stems from an algorithm that evaluates the
polynomials i(X) in two parts. To this end, partition the vertex set V into two
disjoint sets, V1 and V2, with |V1| = n1 and |V2| = n2. Let n1 = $n(log 2)/(log 3)%
and n2 = n− n1. Observe that 2n2 = O(1.29153n).

For a set Y ⊆ V , denote by N(Y ) ⊆ V the set of vertices that are adjacent
to at least one vertex in Y .

Our strategy is to count each independent set Y via its parts Y ∩ V1 and
Y ∩ V2 using the following elementary observation:

Lemma 2. A set of vertices Y ⊆ V is independent in G if and only if Y ∩V2 ⊆
V2 \N(Y ∩ V1) and both Y ∩ V1 and Y ∩ V2 are independent in G.
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V1 V2

YN(Y ∩ V1)

In particular, we observe that Y ∩ V2 is oblivious to Y ∩ V1 except for the
requirement Y ∩V2 ⊆ V2\N(Y ∩V1). Thus, in terms of space usage, we can collect
together all eligible independent sets Y1 ⊆ V1 that share the set Z2 = V2 \N(Y1).
The function h in the following algorithm collects such sets Y1 by their size
|Y1| into the coefficients of the polynomial h(Z2). The function h requires only
O∗(2n2) space, which in effect enables us to compute i(X) for all X ⊆ V in time
O∗(2n) and less space than the number of independent sets in G. That is, using
Lemma 2 we can beat the bound in Theorem 1.

In precise terms, we execute the following algorithm to obtain the number of
proper k-colorings of G:

1. Set r ← 0.
2. For each X1 ⊆ V1 do:

(a) For each Z2 ⊆ V2, set h(Z2) ← 0.
{{ The array h takes space O∗(2n2). }}

(b) For each Y1 ⊆ X1, set

h(V2 \N(Y1)) ← h(V2 \N(Y1)) + z|Y1|[Y1 is independent in G].

{{ This loop takes time O∗(2|X1|). }}
(c) For each Y2 ⊆ V2, set �(Y2) ← z|Y2|[Y2 is independent in G].

{{ The array � takes space O∗(2n2). }}
(d) Set g ← (hζ′) · �.

{{ Here “·” denotes the elementwise product of two arrays.
Time and space O∗(2n2) using the fast up-zeta transform on 2V2 . }}

(e) Set j ← gζ.
{{ Time and space O∗(2n2) using the fast zeta transform on 2V2 . }}

(f) For each X2 ⊆ V2, set r ← r + (−1)n−|X1|−|X2|j(X2)k.

3. Return the coefficient of zn in r.

We establish the correctness of the algorithm by analyzing the contents of the
array i during each iteration of the loop over X1 ⊆ V1:

Lemma 3. For each fixed X1 ⊆ V1, we have j(X2) = i(X1∪X2) for all X2 ⊆ V2.
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Proof. Expanding the assignments in the algorithm and using Lemma 2, we have

j(X2) =
∑

Y2⊆X2

g(Y2)

=
∑

Y2⊆X2

hζ′(Y2)�(Y2)

=
∑

Y2⊆X2

∑
Y2⊆Z2

h(Z2)�(Y2)

=
∑

Y2⊆X2

∑
Y2⊆Z2

∑
Y1⊆X1

z|Y1|[Y1 is independent in G and Z2 = V2 \N(Y1)]

× z|Y2|[Y2 is independent in G]

=
∑

Y1⊆X1

∑
Y2⊆X2

z|Y1∪Y2|[Y1 ∪ Y2 is independent in G]

= i(X1 ∪X2) .

��

To analyze the running time, we observe that the total running time (over all
iterations X1 ⊆ V1) spent in Step 2(b) of the algorithm is within a polynomial
factor of ∑

X1⊆V1

2|X1| =
n1∑
j=0

(
n1

j

)
2j = 3n1 = O(2n) .

Thus, the total running time is O∗(2n), using space O∗(2n2) = O(1.2916n).
Because the computations are independent for each X1 ⊆ V1, they can be ex-

ecuted in parallel on O∗(2n1) = O(1.5486n) processors. While the space require-
ment per processor is O(1.2916n) and the total running time remains O∗(2n), the
time requirement per processor varies, ranging from O(1.5486n) to O(1.2916n).
This bottleneck can be removed by taking a more balanced scheme with n1
and n2 about equal, yielding time and space O∗(2n/2) for each of the O∗(2n/2)
processors.
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Abstract. We present an O(m+n)-time algorithm that tests if a given
directed graph is 2-vertex connected, where m is the number of arcs and
n is the number of vertices. Based on this result we design an O(n)-
space data structure that can compute in O(log2 n) time two internally
vertex-disjoint paths from s to t, for any pair of query vertices s and t
of a 2-vertex connected directed graph. The two paths can be reported
in additional O(k) time, where k is their total length.

1 Introduction

A directed (undirected) graph is k-vertex connected if it has at least k+1 vertices
and the removal of any set of at most k − 1 vertices leaves the graph strongly
connected (connected). The vertex connectivity κ ≡ κ(G) of a graph G is the
maximum k such that G is k-vertex connected. Graph connectivity is one of
the most fundamental concepts in graph theory with numerous practical appli-
cations [3]. Currently, the fastest known algorithm for computing κ is due to
Gabow [12], with O((n+min{κ5/2, κn3/4})m) running time. In [12], Gabow also
showed how to test αδ-vertex connectivity in O((κ +

√
n)
√
nm) time, where δ

is the minimum degree of the given graph and α is an arbitrary fixed constant
less than one. Henzinger et al. [18] showed how to test k-vertex connectivity in
time O(min{k3 + n, kn}m). They also gave a randomized algorithm for com-
puting κ with error probability 1/2 in time O(nm). For an undirected graph,
a result of Nagamochi and Ibaraki [21] allows m to be replaced by κn or kn
in the above bounds. Cheriyan and Reif [9] showed how to test k-vertex con-
nectivity in a directed graph with a Monte Carlo algorithm with running time
O((M(n) + nM(k)) logn) and error probability < 1/n, and with a Las Vegas
algorithm with expected running time O((M(n) + nM(k))k). In these bounds,
M(n) is the time to multiply two n× n matrices, which is O(n2.376) [10].

Note that for constant κ or k the above bounds are O(nm) for deterministic
algorithms and O(M(n)) for randomized algorithms. To the best of our knowl-
edge, these are also the best previously known bounds for testing k = 2 for a
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tion. The sole responsibility for the content of this paper lies with its author.
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directed graph. In Section 2 we present a linear-time algorithm for this prob-
lem. In the undirected case, linear-time algorithms were given by Tarjan [23] for
testing k = 2, and by Hopcroft and Tarjan [19] for testing k = 3. Our algorithm
is based on a new characterization of 2-vertex connected directed graphs, which
utilizes the concept of dominators in flowgraphs. A flowgraph G(s) = (V,A, s)
is a directed graph with a distinguished source vertex s ∈ V such that every
vertex is reachable from s. The dominance relation in G(s) is defined as follows:
A vertex w dominates a vertex v if every path from s to v includes w. We de-
note by dom(v) the set of vertices that dominate v. Obviously, dom(s) = {s}
and dom(v) ⊇ {s, v}, for any v �= s; s and v are the trivial dominators of v. The
dominance relation is transitive and its transitive reduction is the dominator
tree D, which is rooted at s and satisfies the following property: For any two
vertices v and w, w dominates v if and only if w is an ancestor of v in D [1].
For any vertex v �= s, the immediate dominator of v is the parent of v in D.
It is the unique vertex that dominates v and is dominated by all vertices in
dom(v) \ {v}. The computation of dominators appears in several application ar-
eas, such as program optimization and code generation, constraint programming,
circuit testing, and theoretical biology [17]. Lengauer and Tarjan [20] presented
an O(mα(m,n))-time algorithm for computing dominators, where α(m,n) is a
very slow-growing functional inverse of Ackermann’s function. This algorithm
also works very well in practice [17], even though it has some conceptual com-
plexities. There are even more complicated truly linear-time algorithms that run
on random-access machines [2,6] and on pointer machines [15,14,5]. Our 2-vertex
connectivity algorithm needs to test whether certain flowgraphs, derived from
the input directed graph, have trivial dominators only (i.e., the immediate dom-
inator of all vertices is the source vertex of the flowgraph). This can be done
by computing the dominators of the flowgraph, but for our purpose a simpler
alternative is to use a dominator-verification algorithm [16]. The algorithm given
in [16] requires a linear-time solution to a special case of the disjoint set union
problem [13] in order to achieve linear running time. With a standard disjoint set
union structure the algorithm has running time O(mα(m,n)) [24], and avoids
the complexities of the Lengauer-Tarjan algorithm for computing dominators.

The second part of the paper (Section 3) deals with the task of computing two
internally vertex-disjoint s-t paths (i.e., paths directed from s to t) in a 2-vertex
connected directed graph, for any given source vertex s and target vertex t. This
problem can be reduced to computing two edge-disjoint paths (by applying a
standard vertex splitting procedure), which in turn can be carried out in O(m)
time by computing two flow-augmenting paths [3]. In Section 3 we present a
faster algorithm for 2-vertex connected directed graphs. First we note that our
linear-time algorithm for testing 2-vertex connectivity allows us to find, in linear
time, a 2-vertex connected spanning subgraph of the input directed graph with
O(n) arcs. Hence, the flow-augmenting algorithm can compute two internally
vertex-disjoint s-t paths in O(n) time. We can improve this further with the
use of independent branchings. A branching of a directed graph G is a rooted
spanning tree of G such that all vertices other than the root have in-degree one,
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whereas the root has in-degree zero. Two branchings of G are independent if for
each vertex v, the two root-to-v paths are internally vertex-disjoint. In [16], a
linear-time algorithm that constructs two independent branchings rooted at the
same vertex was presented. Based on this result, we construct an O(n)-space
data structure that can compute two internally vertex-disjoint s-t paths, for any
s and t, in O(log2 n) time, so that the two paths can be reported in constant
time per vertex.

2 Testing 2-Vertex Connectivity

Let G = (V,A) be the input directed graph (digraph). For any vertex s ∈ V ,
we denote by G(s) = (V,A, s) the corresponding flowgraph with source vertex s.
We can assume that G is strongly connected, which implies that all vertices are
reachable from s and reach s. We also let Gr(s) be the flowgraph derived from
G(s) after reversing all arc directions. For any u, v ∈ V , the local connectivity
κ(u, v) of G is defined as the maximum number of internally vertex-disjoint paths
from u to v. By Menger’s theorem (see, e.g., [3]) this is equal to the minimum
number of cut vertices in an u-v separator if (u, v) �∈ A. The next lemma relates
local and global connectivity.

Lemma 1. (See, e.g., [3]) κ(G) = minu,v∈V κ(u, v).

Thus, a 2-vertex connected digraph G = (V,A) satisfies the following property.

Lemma 2. Let G = (V,A) be a 2-vertex connected digraph. Then, for any vertex
s ∈ V , both flowgraphs G(s) and Gr(s) have trivial dominators only.

Proof. Lemma 1 and the fact that κ(G) ≥ 2 imply that, for any vertex v ∈ V −s,
there are at least two internally vertex-disjoint paths from s to v. Hence s is the
immediate dominator of v in G(s). Similarly, there are at least two internally
vertex-disjoint paths from v to s. Hence s is also the immediate dominator of v
in Gr(s). ��

Our goal is to prove that the following property characterizes 2-vertex connected
digraphs.

Property 1. Let a and b be two distinct vertices of a digraph G. Then, all four
flowgraphs G(a), G(b), Gr(a) and Gr(b) have trivial dominators only.

2.1 Dominators and 2-Vertex Connectivity

Lemma 2 implies that Property 1 is necessary for a digraph to be 2-vertex
connected. Therefore, it remains to show that Property 1 is also sufficient. First
we introduce some additional notation. We denote by P [a, b] a simple path (i.e.,
a path with no repeated vertices) from a to b, and let P (a, b] denote this path
excluding a. Similarly, P [a, b) excludes b, and P (a, b) excludes both a and b.
We define the rank of a vertex c ∈ P [a, b] as the number of vertices in P [a, c].
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(There is no ambiguity in this definition since P [a, b] is a simple path.) Let P [x, y]
and Q[y, z] be two simple paths. We denote by P [x, y] · Q[y, z] the catenation
of these two paths (which is not necessarily a simple path). Furthermore, let
R = P [x, y] · Q[y, z]. We denote by R[x, z] a simple path from x to z that can
be formed from R. One way to accomplish this is as follows. We find the vertex
w ∈ P [x, y] ∩ Q[y, z] with the highest rank in Q[y, z]. Then we let R[x, z] =
P [x,w] ·Q[w, z].

For our construction we will need a series of technical lemmas.

Lemma 3. ([16]) Consider the flowgraph G(s) = (V,A, s) and a vertex v �= s,
such that s is the immediate dominator of v in G(s). If (s, v) �∈ A then there are
two internally vertex-disjoint paths from s to v.

Lemma 4. Let G = (V,A) be a digraph such that for each (u, v) �∈ A there are
two internally vertex-disjoint paths from u to v. Then G is 2-vertex connected.

Proof. By Lemma 1 we need to show that there is a pair of vertex-disjoint paths
between any pair u, v ∈ V , so we consider the case (u, v) ∈ A. Observe that for
any w ∈ V \ {u, v} there is a path P [u,w] that does not contain v. This is clear
when (u,w) ∈ A. If (u,w) �∈ A then there are two vertex-disjoint paths from
u to w, so they cannot both contain v. Similarly, we have a path Q[w, v] that
does not contain u. Therefore (u, v) and P [u,w] · Q[w, v] is a pair of internally
vertex-disjoint paths from u to v. ��

Lemma 5. Consider three distinct vertices a,c and d such that the following two
pairs of internally vertex-disjoint paths exist: P1[a, c] and P2[a, c], and P3[d, a]
and P4[d, a]. If P3[d, a)∩P1(a, c] �= ∅ then there are two internally vertex-disjoint
paths from d to c.

Proof. Let x be the vertex with the lowest rank in P3[d, a] such that x ∈
P3[d, a) ∩

(
P1(a, c] ∪ P2(a, c]

)
. (The premises of the lemma imply that x exists.)

Furthermore, we can assume that x ∈ P3[d, a) ∩ P1(a, c], since we can alternate
the role of P1[a, c] and P2[a, c] if x �∈ P1(a, c]. This also implies that d �∈ P2[a, c].
We distinguish the following cases:

a) P4(d, a)∩P1(a, c) = ∅ and P4(d, a)∩P2(a, c) = ∅. Let R = P4[d, a] ·P2[a, c].
Then the paths P3[d, x] · P1[x, c] and R[d, c] are internally vertex-disjoint.1

b) P3(d, a) ∩ P2(a, c) = ∅ and P4(d, a) ∩ P2(a, c) = ∅. Suppose P4(d, a) ∩
P1(a, c) �= ∅, otherwise we have case (a). Let e be the vertex with the highest rank
in P1[a, c] such that e ∈ P3[d, a)∩P1(a, c]. Also let f be the vertex with the highest
rank in P1[a, c] such that f ∈ P4(d, a) ∩ P1(a, c]. Since P3[d, a) and P4(d, a) are
vertex-disjoint we have e �= f . If e has higher rank in P1[a, c] than f then the paths
P3[d, e] ·P1[e, c] and P4[d, a] ·P2[a, c] are internally vertex-disjoint. Otherwise, the
paths P4[d, f ] · P1[f, c] and P3[d, a] · P2[a, c] are internally vertex-disjoint.

c) P3(d, a) ∩P2(a, c) �= ∅ and P4(d, a)∩ P2(a, c) = ∅. If P4(d, a) ∩ P1(a, c) = ∅
then we have case (a), so suppose P4(d, a) ∩ P1(a, c) �= ∅. Let g be the vertex
with the lowest rank in P3[d, a] such that g ∈ P3(d, a)∩P2(a, c]. Also, let e be the
1 Note that we can have c ∈ P4(d, a), in which case R is not a simple path.
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vertex with the highest rank in P1[a, c] such that e ∈ P3[d, g]∩P1(a, c], and let f
be the vertex with the highest rank in P1[a, c] such that f ∈ P4(d, a) ∩ P1(a, c].
Suppose the rank of e in P1[a, c] is lower than that of f . Then the paths P3[d, g] ·
P2[g, c] and P4[d, f ] ·P1[f, c] are internally vertex-disjoint. If, on the other hand,
the rank of e in P1[a, c] is higher than that of f , then the paths P3[d, e] · P1[e, c]
and P4[d, a] · P2[a, c] are internally vertex-disjoint.

d) P3(d, a)∩P2(a, c) �= ∅ and P4(d, a)∩P2(a, c) �= ∅. Let y be the vertex with
the lowest rank in P4[d, a] such that y ∈ P4[d, a) ∩

(
P1(a, c] ∪ P2(a, c]

)
. First

suppose that y ∈ P2(a, c]. Then the paths P3[d, x] · P1[x, c] and P4[d, y] · P2[y, c]
are internally vertex-disjoint.

Now consider that y ∈ P1(a, c). Let g be the vertex with the lowest rank in
P3[d, a] such that g ∈ P3(d, a)∩ P2(a, c], and let h be the vertex with the lowest
rank in P4[d, a] such that h ∈ P4(d, a)∩P2(a, c]. Also, let e be the vertex with the
highest rank in P1[a, c] such that e ∈ P3[d, g] ∩ P1(a, c], and let f be the vertex
with the highest rank in P1[a, c] such that f ∈ P4(d, h] ∩ P1(a, c]. Since P3[d, a)
and P4(d, a) are vertex-disjoint we have e �= f . If the rank of e in P1[a, c] is lower
than that of f then the paths P3[d, g] ·P2[g, c] and P4[d, f ] ·P1[f, c] are internally
vertex-disjoint. Otherwise, the paths P3[d, e] · P1[e, c] and P4[d, h] · P2[h, c] are
internally vertex-disjoint. ��

Lemma 6. Consider three distinct vertices a,b and c such that the following two
pairs of internally vertex-disjoint paths exist: P1[a, c] and P2[a, c], and P3[b, c] and
P4[b, c]. Then there are two internally vertex-disjoint paths Q[a, c] and Q′[b, c].

Proof. If P1[a, c) ∩ P3[b, c) = ∅ then, clearly, the lemma holds with Q[a, c] =
P1[a, c] and Q′[b, c] = P3[b, c]. Now suppose that P3[b, c) intersects P1[a, c). Let
e be the vertex with the lowest rank in P3[b, c] such that e ∈ P3[b, c)∩

(
P1[a, c)∪

P2[a, c)
)
. We can assume, with no loss of generality, that e ∈ P1[a, c). If e = a

then the paths Q[a, c] = P3[a, c] and Q′[b, c] = P4[b, c] are internally vertex-
disjoint. Otherwise, if e �= a, the paths Q[a, c] = P2[a, c] and Q′[b, c] = P3[b, e] ·
P1[e, c] are internally vertex-disjoint. ��

Lemma 7. Let a, b be any two distinct vertices of a digraph G = (V,A) that
satisfy Property 1. Then for any vertex c �∈ {a, b} there are two internally vertex-
disjoint paths Q[a, c] and Q′[b, c].

Proof. Property 1 and Lemma 3 imply that for any c �= a, if (a, c) �∈ A then
there are two internally vertex-disjoint paths from a and c. Similarly, for any
c �= b, if (b, c) �∈ A then there are two internally vertex-disjoint paths from b and
c. It is clear that the lemma holds when G contains both arcs (a, c) and (b, c).
Next consider that G contains the arc (a, c) but not (b, c). Then there are two
internally vertex-disjoint paths from b and c, therefore they cannot both contain
a and the lemma follows. The case (a, c) �∈ A and (b, c) ∈ A is symmetric. Finally,
assume that (a, c) �∈ A and (b, c) �∈ A. Now we have two internally vertex-disjoint
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paths from a to c and two internally vertex-disjoint paths from b to c, hence the
result follows from Lemma 6. ��

Symmetrically, we have the next two statements regarding paths entering a and b.

Lemma 8. Consider three distinct vertices a,b and d such that the following two
pairs of internally vertex-disjoint paths exist: P1[d, a] and P2[d, a], and P3[d, b]
and P4[d, b]. Then there are two internally vertex-disjoint paths Q[d, a] and
Q′[d, b].

Lemma 9. Let a, b be any two distinct vertices of a digraph G = (V,A) that
satisfy Property 1. Then for any vertex d �∈ {a, b} there are two internally vertex-
disjoint paths Q[d, a] and Q′[d, b].

Before proceeding to our main lemma we make the following observation. Our
goal is to show that for any pair of vertices d and c there are two internally
vertex-disjoint paths from d to c. Unfortunately we cannot obtain the desired
result immediately by applying Lemmas 7 and 9; Lemma 7 gives us two paths,
from a and b to c, that only meet at c. Lemma 9 gives us two paths, from d to
a and b, that only meet at d. These paths, however, do not suffice to construct
two internally vertex-disjoint paths from d to c. Therefore our arguments need
to be more subtle.

Lemma 10. Let a, b be any two distinct vertices of a digraph G = (V,A) that
satisfy Property 1. Then G is 2-vertex connected.

Proof. In light of Lemma 4 it suffices to show that for any pair c, d ∈ V , G
contains the arc (d, c) or two internally vertex-disjoint paths from d to c. This
follows immediately from Lemma 3 when d ∈ {a, b} or c ∈ {a, b}. Now consider
d �∈ {a, b} and c �∈ {a, b}. We will exhibit two internally vertex-disjoint paths
from d to c. To that end, we distinguish the following cases:

a) Suppose (a, c) ∈ A. By Lemma 9 we have two internally vertex-disjoint
paths Q[d, a] and Q′[d, b], i.e., Q(d, a] ∩ Q′(d, b] = ∅. In particular, note that
a �∈ Q′[d, b] and b �∈ Q[d, a]. First consider that also (b, c) ∈ A. If none of the
paths Q[d, a] and Q′[d, b] contains c then Q[d, a] · (a, c) and Q′[d, b] · (b, c) are
internally vertex-disjoint. If Q[d, a] contains c then Q′[d, b] does not, so Q[d, c]
and Q′[d, b]·(b, c) are internally vertex-disjoint. The case c ∈ Q′[d, b] is symmetric.

If (b, c) �∈ A then there are two internally vertex-disjoint paths P1[b, c] and
P2[b, c]. Suppose Q[d, a] ∩ P1[b, c] = ∅. Let R = Q[d, a] · (a, c) and R′ = Q′[d, b] ·
P1[b, c]. Then R[d, c](= R) and R′[d, c] are internally vertex-disjoint. Now con-
sider Q[d, a] ∩ P1[b, c] �= ∅. We would like to apply Lemma 5 for vertices d, b
and c but we need two internally vertex-disjoint paths from d to b. To that end,
let us assume that (a, b) ∈ A and set Q′′[d, b] = Q[d, a] · (a, b). Then Lemma 5
provides two internally vertex-disjoint paths R[d, c] and R′[d, c]. If none of these
paths uses the arc (a, b) then we have found two internally vertex-disjoint paths
from d to c in G. Otherwise, suppose that R[d, c] contains (a, b). Then the paths
R[d, a] · (a, c) and R′[d, c] are internally vertex-disjoint.
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The case (b, c) ∈ A is symmetric.
b) The case (d, a) ∈ A can be analyzed similarly to case (a) but we provide the

details for completeness. From Lemma 7 we have two internally vertex-disjoint
paths Q[a, c] and Q′[b, c], i.e., Q[a, c) ∩ Q′[b, c) = ∅. In particular, note that
a �∈ Q′[b, c] and b �∈ Q[a, c]. First consider that also (d, b) ∈ A. If none of the
paths Q[a, c] and Q′[b, c] contains d then (d, a) · Q[a, c] and (d, b) · Q′[b, c] are
internally vertex-disjoint. If Q[a, c] contains d then Q′[b, c] does not, so Q[d, c]
and (d, b)·Q′[b, c] are internally vertex-disjoint. The case d ∈ Q′[b, c] is symmetric.

If (d, b) �∈ A then there are two internally vertex-disjoint paths P1[d, b] and
P2[d, b]. Suppose Q[a, c] ∩ P1[d, b] = ∅. Let R = (d, a) ·Q[a, c] and R′ = P1[d, b] ·
Q′[b, c]. Then R[d, c](= R) and R′[d, c] are internally vertex-disjoint. Now con-
sider Q[a, c]∩P1[d, b] �= ∅. We apply Lemma 5 for vertices d, b and c as in case (a).
We assume at first that (b, a) ∈ A and set Q′′[b, c] = (b, a) ·Q[a, c]. Then Lemma
5 gives us two internally vertex-disjoint paths R[d, c] and R′[d, c]. If none of these
paths uses the arc (b, a) then we have found two internally vertex-disjoint paths
from d to c in G. Otherwise, suppose that R[d, c] contains (b, a). Then the paths
(d, a) ·R[a, c] and R′[d, c] are internally vertex-disjoint.

The case (d, b) ∈ A is symmetric.
c) It remains to examine the case where none of the arcs (a, c), (d, a), (b, c) and

(d, b) is present. By Lemma 3 we have the following pairs of internally vertex-
disjoint paths: P1[d, a] and P2[d, a], P3[a, c] and P4[a, c], P5[d, b] and P6[d, b],
and P7[b, c] and P8[b, c]. If P1[d, a) or P2[d, a) intersects P3(a, c] or P4(a, c] then
Lemma 5 gives us two internally vertex-disjoint paths from d to c. Similarly,
if P5[d, b) or P6[d, b) intersects P7(b, c] or P8(b, c] then Lemma 5 gives us two
internally vertex-disjoint paths from d to c. Now we suppose that P1[d, a) and
P2[d, a) do not intersect P3(a, c] and P4(a, c], and also that P5[d, b) and P6[d, b)
do not intersect P7(b, c] and P8(b, c].

First we consider that P5[d, b] intersects P3[a, c]∪P4[a, c]. Let f be the vertex
with the lowest rank in P5[d, b] such that f ∈ P5[d, b] ∩

(
P3[a, c] ∪ P4[a, c]

)
.

Without loss of generality we can assume that f ∈ P3[a, c]. Suppose f = a.
Then a �∈ P6[d, b]. If P6[d, b] intersects P3[a, c] ∪ P4[a, c] then we can alternate
the role of P5[d, b] and P6[d, b] and consider the case f �= a. So now let P6[d, b]∩(
P3[a, c] ∪ P4[a, c]

)
= ∅. Let h be the vertex with the lowest rank in P7[b, c]

such that h ∈ P7[b, c] ∩
(
P3[a, c] ∪ P4[a, c]

)
. Without loss of generality, suppose

h ∈ P3[a, c]. Then the paths P5[d, a] · P4[a, c] and P6[d, b] · P7[b, h] · P3[h, c] are
internally vertex-disjoint. Next, consider f �= a. Let e be the vertex with the
highest rank in P5[d, f ] such that e ∈ P5[d, f ] ∩

(
P1[d, a] ∪ P2[d, a]

)
. Note that

e �= a. (Also e �= f). Without loss of generality, suppose e ∈ P1[d, a]. Then
P1[d, e] · P5[e, f ] · P3[f, c] and P2[d, a] · P4[a, c] are internally vertex-disjoint.

The cases P6[d, b] ∩
(
P3[a, c] ∪ P4[a, c]

)
�= ∅, P1[d, a] ∩

(
P7[b, c] ∪ P8[b, c]

)
�= ∅,

and P2[d, a] ∩
(
P7[b, c] ∪ P8[b, c]

)
�= ∅ are treated similarly.

Finally suppose that P5[d, b] and P6[d, b] do not intersect P3[a, c] and P4[a, c],
and also that P1[d, a] and P2[d, a] do not intersect P7[b, c] and P8[b, c]. We apply
Lemma 8 for a, b, and d and get two internally vertex-disjoint paths Q1[d, a] and
Q2[d, b]. Then we apply Lemma 6 for a, b, and c get two internally vertex-disjoint
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paths Q3[a, c] and Q4[b, c]. Since
(
P1[d, a] ∪ P2[d, a]

)
∩
(
P7[b, c] ∪ P8[b, c]

)
= ∅

and
(
P5[d, b] ∪ P6[d, b]

)
∩
(
P3[a, c] ∪ P4[a, c]

)
= ∅, we have Q1[d, a] ∩

(
Q3(a, c] ∪

Q4[b, c]
)

= ∅ and Q2[d, b] ∩
(
Q3[a, c] ∪Q4(b, c]

)
= ∅.Thus Q1[d, a] · Q3[a, c] and

Q2[d, b] ·Q4[b, c] are internally vertex-disjoint. ��

Combining Lemmas 2 and 10 we have:

Theorem 1. Let a, b be two arbitrary but distinct vertices of a digraph G. Then
G is 2-vertex connected if and only if it satisfies Property 1 for a and b.

2.2 Linear-Time Algorithm

Based on Theorem 1 we propose the following algorithm for testing 2-vertex
connectivity: Given the input digraph G = (V,A), we first compute the reverse
graph Gr = (V,Ar), where Ar = {(x, y) | (y, x) ∈ A}. Then we pick two distinct
vertices a, b ∈ V and verify that for each s ∈ {a, b} the flowgraphs G(s) and
Gr(s) have trivial dominators only; we report that G is 2-vertex connected if
and only if this is true. If the input graph is strongly connected but not 2-
vertex connected, then we would like to report a cut vertex, i.e., a vertex whose
removal increases the number of strongly connected components, as a certificate
of < 2-vertex connectivity. To that end, we can use another property of the
trivial-dominator-verification algorithm in [16]. Namely, if a flowgraph G(s) has
non-trivial dominators then the verification algorithm reports two vertices x �= s
and y, such that x is the immediate dominator of y in G(s). Thus, the removal
of x destroys all paths from s to y, which implies that x is a cut vertex.2

The correctness of the above algorithm follows immediately from Theorem
1. We now turn to the running time. Computing Gr in O(m + n) time is easy.
Furthermore, we can test if a flowgraph has only trivial dominators in O(m +
n) time using the algorithm in [16]. (Alternatively, we can use a linear-time
algorithm for computing the dominators of the flowgraph but this computation
is more complicated [5].) Since our 2-vertex-connectivity algorithm uses four
such tests, the total running time is O(m+n). In practice, we can use a simpler
O(mα(m,n))-time version of the trivial-dominator-verification algorithm in [16],
which uses a standard disjoint set union data structure [13] instead of the linear-
time algorithm of Gabow and Tarjan [13].

Theorem 2. There is a linear-time algorithm for testing 2-vertex connectivity
of a digraph G. If G is strongly connected but not 2-vertex connected then the
algorithm returns a cut vertex.

3 Computing Two Vertex-Disjoint s-t Paths

We now consider the problem of preprocessing a 2-vertex connected digraph
G = (V,A) into a data structure that can efficiently compute two internally
2 We remark that by using an algorithm for computing dominators (instead of just

verifying) we can compute all the cut vertices of a strongly connected digraph.
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vertex-disjoint paths from d to c, for any pair of distinct vertices d, c ∈ V . Our
data structure is based on the proof of Theorem 1 and on a linear-time algorithm
of [16], which computes two branchings T1 and T2 of a flowgraph G(s) = (V,A, s).
These are (directed) spanning trees of G, which are rooted at s and have the
following property: For any vertex v ∈ V , the two directed paths from s to
v in T1 and T2, denoted by T1[s, v] and T2[s, v] respectively, meet only at the
dominators of v in G(s). Therefore, if G = (V,A) is 2-vertex connected then, by
Lemma 2, T1[s, v] and T2[s, v] are internally vertex-disjoint; two branchings that
have this property are called independent. We begin by computing the following
pairs of independent branchings: T1 and T2 of Gr(a), T3 and T4 of G(a), T5 and
T6 of Gr(b), and T7 and T8 of G(b), where a and b are two arbitrary but distinct
vertices of G. Let A′ be the set of arcs in these eight trees. Then, Theorem 1
implies that the digraph G′ = (V,A′) is a 2-vertex connected spanning subgraph
of G. Therefore, we can compute a pair of internally vertex-disjoint d-c paths in
G′. This computation takes O(n) time with a flow-augmenting algorithm (see,
e.g., [3]), since A′ has O(n) arcs.

Next, we describe how to compute these paths in O(log2 n) time, so that we
can report them in additional O(k) time, where k is the total length of the two
paths. The proof of Theorem 1 finds two internally vertex-disjoint paths from
d to c, using the following four pairs of internally vertex-disjoint paths: P1[d, a]
and P2[d, a], P3[a, c] and P4[a, c], P5[d, b] and P6[d, b], and P7[b, c] and P8[b, c].
In order to answer a query for two internally vertex-disjoint paths from d to c,
we can use the corresponding paths on the branchings T1, . . . , T8, i.e., we set
P1[d, a] = (T1[a, d])r, P2[d, a] = (T2[a, d])r, P3[a, c] = T3[a, c], P4[a, c] = T4[a, c],
P5[d, b] = (T5[b, d])r, P6[d, a] = (T6[a, d])r, P7[a, c] = T7[a, c], P8[a, c] = T8[a, c].

Let S1 and S2 be any two rooted trees on the same set of vertices. We define
a set of operations on S1 and S2 that enable an efficient implementation of the
construction given in Section 2.1. Consider four vertices x1, y1, x2 and y2, such
that x1 is an ancestor of y1 in S1 and x2 is an ancestor of y2 in S2. We need a
data structure that supports the following set of operations:

(i) Test if S1[x1, y1] contains x2.
(ii) Return the topmost vertex in S1(x1, y1].
(iii) Test if S1[x1, y1] and S2[x2, y2] contain a common vertex.
(iv) Find the lowest ancestor of y2 in S2[x2, y2] that is contained in S1[x1, y1].
(v) Find the highest ancestor of y2 in S2[x2, y2] that is contained in S1[x1, y1].

By examining the construction of Section 2.1 we can verify that the above oper-
ations suffice for our needs. (We need a constant number of these operations per
query.) For instance, we can find the vertex e with the highest rank in P5[d, f ]
such that e ∈ P5[d, f ] ∩ P1[d, a] (refer to case (c) in the proof of Lemma 10) by
applying operation (v) with S1 = T1, S2 = T5, x1 = a, y1 = d, x2 = f and
y2 = d. Operation (ii) is useful when we want to exclude the first vertex of a
path in some computation. Excluding the last vertex on a path of Sj (j ∈ {1, 2})
is straightforward if we maintain a pointer from a node to its parent in Sj .

We develop an O(n)-space data structure that supports operations (i)-(v)
efficiently. First note that operation (i) can be answered from (iii) if we set
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y2 = x2. Furthermore, operation (iii) can be answered from (iv) or (v); if
S1[x1, y1] ∩ S2[x2, y2] = ∅ then these operations return null. Now it remains
to implement operations (ii), (iv) and (v). We begin by assigning a depth-first
search interval (as in [11]) to each vertex in S1. Let I1(x) = [s1(x), t1(x)] be the
interval of a vertex x in S1; s1(x) is the time of the first visit to x (during the
depth-first search) and t1(x) is the time of the last visit to x. (These times are
computed by incrementing a counter after visiting or leaving a vertex during the
search.) This way all the assigned s1() and t1() values are distinct, and for any
vertex x we have 1 ≤ s1(x) < t1(x) ≤ 2n. Moreover, by well-known properties
of depth-first search, we have that x is an ancestor of y in S1 if and only if
I1(y) ⊆ I(x); if x and y are unrelated in S1 then I1(x) and I1(y) are disjoint.
Now, for operation (ii) we simply need to locate the child z of x1 in S1 such that
s1(y1) ∈ I1(z). This is a static predecessor search problem that can be solved
in O(log n) time with binary search (which suffices here) or in O(log logn) time
with more advanced structures [4].

In order to support operations (iii)-(v) efficiently we also assign a depth-first
search interval I2(x) = [s2(x), t2(x)] to each vertex x in S2. Next, we map each
vertex x to an axis-parallel rectangle R(x) = I1(x) × I2(x). Let R be the set of
all axis-parallel rectangles R(x). We implement operations (iv) and (v) as ray
shooting queries in the subdivision induced by R. For any two vertices x and y,
we define R(x, y) = I1(x) × I2(y). Then, R(x) ≡ R(x, x). Consider two rectan-
gles R(x1, x2) and R(y1, y2). If I1(x1) ∩ I1(y1) = ∅ or I2(x2) ∩ I2(y2) = ∅, then
R(x1, x2) and R(y1, y2) do not intersect. Now suppose that both I1(x1)∩I1(y1) �=
∅ and I2(x2) ∩ I2(y2) �= ∅. Let I1(y1) ⊆ I1(x1). If also I2(y2) ⊆ I2(x2) then
R(y1, y2) is contained in R(x1, x2); we denote this by R(y1, y2) ⊆ R(x1, x2).
Otherwise, if I2(x2) ⊆ I2(y2) then both vertical edges of R(y1, y2) intersect
both horizontal edges of R(x1, x2). Next, consider a rectangle R(x1, x2) and let
R(x1, x2) = {R(z) ∈ R : R(x1, x2) ⊆ R(z)}, i.e., the rectangles in R containing
R(x1, x2). The properties of the intervals I1() and I2() imply that we can order
the rectangles in R(x1, x2) with respect to their vertical distance from R(x1, x2).
More formally, let R(z1), R(z2), . . . , R(zξ) be the rectangles in R(x1, x2) or-
dered by increasing t2(zj) (the height of the upper horizontal edge). Also, let
R(zi1), R(zi2), . . . , R(ziξ) be the rectangles in R(x1, x2) ordered by decreasing
s2(zij ) (the height of the lower horizontal edge). Then ij = j, j = 1, . . . , ξ. Now
let Q = R(y1, y2) and let Q′ = R(x1, x2). To perform operation (iv) we locate
the rectangle R(z) ∈ R(y1, y2) with minimum t2(z) (and maximum s2(z)). For
operation (v) we locate the rectangle R(z) ∈ R(y1, y2) with maximum t2(z)
(and minimum s2(z)) such that R(z) ⊆ Q′. We can perform these operations
efficiently by adapting a data structure of Chazelle [8]. The data structure con-
sists of a binary search tree T on the vertical coordinates s2() and t2() of the
vertices, and is constructed as follows. Let � be an infinite horizontal line with
|R| horizontal rectangle edges on each side. This line partitions R into three
subsets: R↑ contains the rectangles completely above �, R↓ contains the rect-
angles completely bellow �, and R� contains the rectangles intersecting �. We
associate with the root r of T the set R�. The left (resp. right) subtree of r is
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defined recursively for the set R↓ (resp. R↑). Clearly, T has O(log n) height. For
any node v ∈ T , we let R(v) denote the set of rectangles associated with v.

Let q = (s1(y1), s2(y2)), i.e., the lower left corner of Q. (Any corner of Q will do
as well.) We implement operation (iv) as a ray shooting query in the subdivision
induced byR(vi), for each node vi ∈ T on the path (v0, v1, . . . , vh) from r = v0 to
the leaf vh that corresponds to the vertical coordinate s2(y2). Suppose that the
horizontal line �(vi) associated with node vi is above q. Then, we locate the first
rectangle Ri

q ∈ R(vi) that is intersected by the vertical ray [q, (s1(y1),−∞)]. If
�(vi) is below q then we locate the first rectangle Ri

q ∈ R(vi) that is intersected
by the vertical ray [q, (s1(y1),+∞)]. In either case, Ri

q can be found in O(log n)
time using a planar point location data structure [22]. The answer to query
(iv) is the rectangle R(z) ∈ {R0

q, R
1
q , . . . , R

h
q } with minimum t2(z), therefore it

can be found in total O(h log n) = O(log2 n) time. Operation (v) is carried out
similarly. Let q′s = (s1(y1), s2(x2)) and q′t = (s1(y1), t2(x2)), respectively, be the
projection of q on the lower and upper edge of Q′. Again we perform a ray
shooting query in the subdivision induced by R(vi), for each node vi ∈ T on the
path (v0, v1, . . . , vh) from r = v0 to the leaf vh that corresponds to the vertical
coordinate s2(y2). Suppose that the horizontal line �(vi) associated with node
vi is above q. Then, we locate the first rectangle Ri

q ∈ R(vi) that is intersected
by the vertical ray [q′s, (s1(y1),+∞)]. If �(vi) is below q then we locate the first
rectangle Ri

q ∈ R(vi) that is intersected by the vertical ray [q′t, (s1(y1),−∞)].
The answer to query (v) is the rectangle R(z) ∈ {R0

q , R
1
q , . . . , R

h
q } with maximum

t2(z) such that Q ⊆ R(z) ⊆ Q′. Therefore, it can be found in total O(log2 n)
time. It is easy to verify that the space bound for the above data structure is
O(n). For the construction of Section 2.1 we actually need such a data structure
for several pairs of the branchings T1, . . . , T8, but the total space is still O(n).

Theorem 3. Let G = (V,A) be a 2-vertex connected digraph G = (V,A) with n
vertices. We can construct an O(n)-space data structure that can compute two
internally vertex-disjoint paths from d to c in O(log2 n) time, for any two distinct
vertices d, c ∈ V . The two paths can be reported in additional O(k) time, where
k is their total length.

Finally, we remark that the query time can be reduced toO(log n
√

logn/ log logn)
by applying the result of [7].
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Pin, Jean-Éric II-151
Popat, Preyas I-617
Porat, Ely I-43
Pous, Damien II-454
Pruhs, Kirk I-312
Puppis, Gabriele II-345
Pyrga, Evangelia II-430

Ramachandran, Vijaya I-226
Raman, Rajeev I-678
Ranzato, Francesco II-211
Ravi, R. I-262, I-690
Rensink, Arend II-309
Rink, Michael I-213
Roland, Jérémie I-540
Rosenberg, Adin II-76
Rothvoß, Thomas I-490
Rubinfeld, Ronitt I-565
Rudra, Atri I-629
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