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Abstract

We consider how to assign labels to any undirected graph with n nodes such that, given the labels
of two nodes and no other information regarding the graph, it is possible to determine the distance
between the two nodes. The challenge in such a distance labeling scheme is primarily to minimize
the maximum label lenght and secondarily to minimize the time needed to answer distance queries
(decoding). Previous schemes have offered different trade-offs between label lengths and query time.
This paper presents a simple algorithm with shorter labels and shorter query time than any previous
solution, thereby improving the state-of-the-art with respect to both label length and query time
in one single algorithm. Our solution addresses several open problems concerning label length and
decoding time and is the first improvement of label length for more than three decades.

More specifically, we present a distance labeling scheme with labels of length log 3

2
n+ o(n) bits1

and constant decoding time. This outperforms all existing results with respect to both size and
decoding time, including Winkler’s (Combinatorica 1983) decade-old result, which uses labels of size
(log 3)n and O(n/ logn) decoding time, and Gavoille et al. (SODA’01), which uses labels of size
11n+ o(n) and O(log logn) decoding time. In addition, our algorithm is simpler than the previous
ones. In the case of integral edge weights of size at most W , we present almost matching upper and
lower bounds for the label size ℓ: 1

2
(n− 1) log

⌈

W

2
+ 1

⌉

≤ ℓ ≤ 1
2
n log (2W + 1) +O(log n · log(nW )).

Furthermore, for r-additive approximation labeling schemes, where distances can be off by up to
an additive constant r, we present both upper and lower bounds. In particular, we present an
upper bound for 1-additive approximation schemes which, in the unweighted case, has the same size
(ignoring second order terms) as an adjacency labeling scheme, namely n/2. We also give results for
bipartite graphs as well as for exact and 1-additive distance oracles.
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1Throughout the paper, all logarithms are in base 2.
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1 Introduction

A distance labeling scheme for a given family of graphs assigns labels to the nodes of each graph from
the family such that, given the labels of two nodes in the graph and no other information, it is possible
to determine the shortest distance between the two nodes. The labels are assumed to be composed of
bits. The main goal is to make the worst-case label size as small as possible while, as a subgoal, keeping
query (decoding) time under control. The problem of finding implicit representations with small labels
for specific families of graphs was first introduced by Breuer [13, 14], and efficient labeling schemes were
introduced in [43, 51].

1.1 Distance labeling

For an undirected, unweighted graph, a näıve solution to the distance labeling problem is to let each
label be a table with the n − 1 distances to all the other nodes, giving labels of size around n log n
bits. For graphs with bounded degree ∆ it was shown [14] in the 1960s that labels of size 2n∆ can be
constructed such that two nodes are adjacent whenever the Hamming distance [41] of their labels is at
most 4∆ − 4. In the 1970s, Graham and Pollak [38] proposed to label each node with symbols from
{0, 1, ∗}, essentially representing nodes as corners in a “squashed cube”, such that the distance between
two nodes exactly equals the Hamming distance of their labels (the distance between ∗ and any other
symbol is set to 0). They conjectured the smallest dimension of such a squashed cube (the so-called
Squashed cube conjecture), and their conjecture was subsequently proven by Winkler [65] in the 1980s.
This reduced the label size to ⌈(n− 1) log 3⌉, but the solution requires O(n/ log n) query time to decode
distances. Combining [43] and [50] gives a lower bound of ⌈n/2⌉ bits. A different distance labeling
scheme of size of 11n+ o(n) and with O(log log n) decoding time was proposed in [36]. The article also
raised it as open problem to find the right label size. Later in [63] the algorithm from [36] was modified,
so that the decoding time was further reduced to O(log∗ n) with slightly larger labels, although still of
size O(n). This article raised it as an open problem whether the query time can be reduced to constant
time. Having distance labeling with short labels and simultaneous fast decoding time is a problem also
addressed in text books such as [58]. Some of our are solutions are simple enough to replace material
in text books.

Addressing the aforementioned open problems, we present a distance labeling scheme with labels of
size log 3

2 n+ o(n) bits and with constant decoding time. See Table 1 and Figure 1 for an overview.

Space Decoding time Year Reference

(log 3)n O(n/ log n) 1972/1983 [38, 65]

11n O(log log n) 2001 [36]

cn, c > 11 O(log∗ n) 2011 [63]
log 3
2 n O(1) 2015 this paper

Table 1: Unweighted undirected graphs. Space is listed presented without second order terms. A
graphical presentation of the results is given in Figure 1

Distance labeling schemes for various families of graphs exist, e.g., for trees [5, 55], bounded tree-
width [36], distance-hereditary [34], bounded clique-width [21], some non-positively curved plane [18],
interval [35] and permutation graphs [10]. In [36] it is proved that distance labels require Θ(log2 n)
bits for trees, O(

√
n log n) and Ω(n1/3) bits for planar graphs, and Ω(

√
n) bits for bounded degree

graphs. In an unweighted graph, two nodes are adjacent iff their distance is 1. Hence, lower bounds
for adjacency labeling apply to distance labeling as well, and adjacency lower bounds can be achieved
by reduction [43] to induced-universal graphs, e.g. giving n

2 and n
4 for general and bipartite graphs,

respectively. An overview of adjacency labeling can be found in [7].
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This paper

1972/1983

2001

2011

Time
O(1) O(log∗ n) O(log log n) O(n/ log n)

log 3
2 n

(log 3)n

11n

O(n)

Space

Figure 1: A graphical representation of the results from Table 1.

Various computability requirements are sometimes imposed on labeling schemes [2, 43, 45]. This
paper assumes the RAM model and mentions the time needed for decoding in addition to the label size.

1.2 Overview of results

For weighted graphs we assume integral edge weights from [1,W ]. Letting each node save the distance
to all other nodes would require a scheme with labels of size O(n log(nW )) bits. Let distG(x, y) denote
the shortest distance in G between nodes x and y. An r-additive approximation scheme returns a value
dist′G(x, y), where distG(x, y) ≤ dist′G(x, y) ≤ distG(x, y) + r.

Throughout this paper we will assume that logW = o(log n) since otherwise the näıve solution
mentioned above will be as good as our solution. Ignoring second order terms, we can for general
weighted graphs and constant decoding time achieve upper and lower bounds for label length as stated
in Table 2. For bipartite graphs we also show a lower bound of 1

4n log ⌊2W/3 + 5/3⌋ and an upper
bound of 1

2n whenever W = 1.

Problem Lower bound Upper bound

General graphs 1
2(n− 1) log ⌈W/2 + 1⌉ 1

2n log(2W + 1)

Table 2: General graphs with weights from [1,W ], where logW = o(log n). The upper bound has an
extra o(n) term, and decoding takes constant time.

We present, as stated in Table 3, several trade-offs between decoding time, edge weight W , and
space needed for the second order term.

Time Second order term W

N/A O(log n · log(nW )) Any value

O(n) O(log2 n) O(1)

O(1) O( n
logn log(2W + 1)(log log n+ logW )) 2o(log n)

Table 3: Second order term for the upper bound for general graphs (in Table 2). The results also hold
for the n/2 labels in the unweighted, bipartite case. It may be possible to relax the restriction W = O(1)
if the word ”finite” in Lemma 2.2 below from [24] does not mean “constant”.

We also show that, for any k,D ≥ 0 with log k = o(log n) and D ≤ 2(k + 1)W − 1, there exists a

(2kW +
⌈

D
2(k+1)W−D

⌉

)-additive distance scheme using labels of size 1
2(k+1)n log(2(k + 1)W + 1−D) +

O(log n · log(nW )) bits.

3



Finally, we present lower bounds for approximation schemes. In particular, for r < 2W we prove
that labels of Ω(n log (W/(r + 1))) bits are required for an r-additive distance labeling scheme.

1.3 Approximate distance labeling schemes and oracles

Approximate distance labeling schemes are well studied; see e.g., [36, 39, 40, 55, 62]. For instance,
graphs of doubling dimension [59] and planar graphs [60] both enjoy schemes with polylogarithmic label
length which return approximate distances below a 1 + ε factor of the exact distance. Approximate
schemes that return a small additive error have also been investigated, e.g. in [17, 33, 48]. In [32], lower
and upper bounds for r-additive schemes, r ≤ 2, are given for chordal, AT, permutation and interval
graphs. For general graphs the current best lower bound [32] for r ≥ 2-additive scheme is Ω(

√

n/r).
For r = 1, one needs 1

4n bits since a 1-additive scheme can answer adjacency queries in bipartite graphs.
Using our approximative result, we achieve, by setting k = 0 and D = W = 1, a 1-additive distance
labeling scheme which, ignoring second order terms, has the same size (namely 1

2n bits) as an optimal
adjacency labeling scheme. Somehow related, [11] studies labeling schemes that preserve exact distances
between nodes with minimum distance P , giving an O((n/P ) log2 n) bit solution.

Approximate distance oracles introduced in [62] use a global table (not necessarily labels) from
which approximate distance queries can be answered quickly. One can näıvely use the n labels in a
labeling scheme as a distance oracle (but not vice versa). For unweighted graphs, we achieve constant
query time for 1-additive distance oracles using 1

2n
2 + o(n2) bits in total, matching (ignoring second

order terms) the space needed to represent a graph. Other techniques only reduce space for r-additive
errors for r > 1. For exact distances in weighted graphs, our solution achieves 1

2n
2 log (2W + 1)+ o(n2)

bits for logW = o(log n). This relaxes the requirement of W = O(1) in [28] (and slightly improves the
space usage in that paper).

1.4 Second order terms are important

Chung’s solution in [19] gives labels of size log n + O(log log n) for adjacency labeling in trees, which
was improved to log n+O(log∗ n) in [9] and in [12, 29, 30, 44] to log n+O(1) for various special cases.
A recent STOC’15 paper [7] improves label size for adjacency in generel graphs from n/2 + O(log n)
to n/2 + O(1). Likewise, the second order term for ancestor relationship is improved in a sequence of
STOC/SODA papers [2, 8, 4, 30, 31] (and [1]) to Θ(log log n), giving labels of size log n+Θ(log log n).

Somewhat related, succinct data structures (see, e.g., [24, 26, 27, 52, 53]) focus on the space used
in addition to the information theoretic lower bound, which is often a lower order term with respect to
the overall space used.

1.5 Labeling schemes in various settings and applications

By using labeling schemes, it is possible to avoid costly access to large global tables, computing instead
locally and distributed. Such properties are used, e.g., in XML search engines [2], network routing and
distributed algorithms [22, 25, 61, 62], dynamic and parallel settings [20, 47], graph representations [43],
and other applications [45, 46, 54, 55, 56]. From the SIGMOD, we see labeling schemes used in [3, 42]
for shortest path queries and in [16] for reachability queries. Finally, we observe that compact 2-hop
labeling (a specific distance labeling scheme) is central for computing exact distances on real-world
networks with millions of arcs in real-time [23].

1.6 Outline of the paper

Section 3 illustrates some of our basic techniques. Sections 4 and 5 present our upper bounds for
exact distance labeling schemes for general graphs. Section 6 presents upper bounds for approximate
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distances. Our lower bounds are rather simple counting arguments with reduction to adjacency and
have been placed in Appendix A.

2 Preliminaries

Trees. Given a rooted tree T and a node u of T , denote by Tu be the subtree of T consisting of all
the descendants of u (including itself). The depth of u is the number of edges on the unique simple
path from u to the root of T . For any rooted subtree A of T , denote by root(A) the root of A, as the
node of A with smallest depth. Denote by A∗ = A \ {root(A)} the forest obtained from A by removing
its root. Denote by |A| the number of nodes of A: hence, |A∗| represents its number of edges. Denote
by parentT (u) the parent of the node u in T . Let T [u, v] denote the nodes on the simple path from
u to v in T . The variants T (u, v] and T [u, v) denote the same path without the first and last node,
respectively.

Graphs. Throughout we assume graphs to be connected. If a graph is not connected, we can add
O(log n) bits to each label, indicating the connected component of the node, and then handle components
separately. We denote by distG(u, v) the minimum distance (counted with edge weights) of a path in
G connecting the nodes u and v.

Representing numbers and accessing them. We will need to encode numbers with base different
from 2 and sometimes compute prefix sums on a sequence of numbers. We apply some existing results:

Lemma 2.1 ([49]). A table with n integral entries in [−k, k] can be represented in a data structure of
O(n log k) bits to support prefix sums in constant time.

Lemma 2.2 ([24]). A table with n elements from a finite alphabet σ can be represented in a data
structure of ⌈n log |σ|⌉ bits, such that any element of the table can be read or written in constant time.
The data structure requires O(log n) precomputed word constants.

Lemma 2.3 (simple arithmetic coding). A table with n elements from an alphabet σ can be represented
in a data structure of ⌈n log |σ|⌉ bits.

3 Warm-up

This section presents, as a warm-up, a distance labeling scheme which does not achieve the strongest
combination of label size and decoding time, but which uses some of the techniques that we will employ
later to achieve our results. For nodes x, u, v, define

δx(u, v) = distG(x, v) − distG(x, u).

Note that the triangle inequailty entails that

− distG(u, v) ≤ δx(u, v) ≤ distG(u, v).

In particular, δx(u, v) ∈ [−W,W ] whenever u, v are adjacent.
Given a a path v0, . . . , vt of nodes in G, the telescoping property of δx-values means that

δx(v0, vt) =
t

∑

i=1

δx(vi−1, vi).

Since vi−1 and vi are adjacent, we can encode the δx-values above as a table with t entries, in which
each entry is a an element from the alphabet [−W,W ] with 2W + 1 values. Using Lemma 2.3 we can
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encode this table with ⌈t log(2W + 1)⌉ bits. Note that we can compute distG(x, vt) from distG(x, v0) by
adding a prefix sum of the sequence of δx-values:

distG(x, vt) = distG(x, v0) +
t

∑

i=1

δx(vi−1, vi).

The Hamiltonian number of G is the number h(G) of edges of a Hamiltonian walk in G, i.e. a closed
walk of minimal length (counted without weights) that visits every node in G. It is well-known that
n ≤ h(G) ≤ 2n− 2, the first inequality being an equality iff G is Hamiltonian, and the latter being an
equality iff G is a tree (in which case the Hamiltonian walk is an Euler tour); see [15, 37].

Consider a Hamiltonian walk v0, . . . , vh−1 of length h = h(G). Given nodes x, y from G, we can find
i, j such that x = vi and y = vj . Without loss of generality we can assume that i ≤ j. If j ≤ i+ h/2,
we can compute distG(x, y) as the sum of at most ⌊h/2⌋ δx-values:

distG(x, y) = distG(vi, vj) =

j−1
∑

k=i

δx(vk, vk+1).

If, on the other hand, j > i + h/2, then we can compute distG(x, y) as the sum of at most ⌊h/2⌋
δy-values:

distG(x, y) = distG(vj , vi) =

i−1
∑

k=j

δy(vk, vk+1),

where we have counted indices modulo h in the last expression. This leads to the following distance
labeling scheme. For each node x in G, assign a label ℓ(x) consisting of

• a number i ∈ [0, h− 1] such that x = vi; and

• the ⌊h/2⌋ values δx(vk, vk+1) for k = i, . . . , i+ ⌊h/2⌋ − 1 (mod h).

From the above discussion it follows that the labels ℓ(x) and ℓ(y) for any two nodes x, y are sufficient
to compute distG(x, y).

We can encode ℓ(x) with
⌈

1
2h log(2W + 1)

⌉

+ ⌈log h⌉ bits using Lemma 2.3. If G is Hamiltonian,
this immediately gives a labeling scheme of size

⌈

1
2n log(2W + 1)

⌉

+ ⌈log n⌉. In the general case, we get
size ⌈(n− 1) log(2W + 1)⌉+ ⌈log n⌉, which for W = 1 matches Winkler’s [65] result when disregarding
second order terms. Theorem 4.1 in the next section shows that it is possible to obtain labels of size
1
2n log(2W + 1) +O(log n · log(nW )) even in the general case. Theorem 5.3 in the section that follows
shows that we can obtain constant time decoding with o(n) extra space.

4 A scheme of size 1
2
n log(2W + 1)

We now show how to construct a distance labeling scheme of size 1
2n log(2W +1) +O(log n · log(nW )).

First, we recall the heavy-light decomposition of trees [57]. Let T be a rooted tree. The nodes of T
are classified as either heavy or light as follows. The root r of T is light. For each non-leaf node v, pick
one child w where |Tw| is maximal among the children of v and classify it as heavy; classify the other
children of v as light. The apex of a node v is the nearest light ancestor of v. By removing the edges
between light nodes and their parents, T is divided into a collection of heavy paths. Any given node v
has at most log n light ancestors (see [57]), so the path from the root to v goes through at most log n
heavy paths.

Now, enumerate the nodes in T in a depth-first manner where heavy children are visited first. Denote
the number of a node v by dfs(v). Note that nodes on a heavy path will have numbers in consecutive
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order; in particular, the root node r will have number dfs(r) = 0, and the nodes on its heavy path will
have numbers 0, 1, . . . . Assign to each node v a label ℓT (v) consisting of the sequence of dfs-values of
its first and last ancestor on each heavy path, ordered from the top of the tree and down to v. Note
that the first ancestor on a heavy path will be the apex of that heavy path and will be light, whereas
the last ancestor on a heavy path will be the parent of the apex of the subsequent heavy path. This
construction is similar to the one used in [6] for nearest common ancestor (NCA) labeling schemes,
although with larger sublabels. Indeed, the label ℓT (v) is a sequence of at most 2 log n numbers from
[0, n[. We can encode this sequence with O(log2 n) bits.

Suppose that the node v has label ℓT (v) = (l1, h1, . . . , lt, ht), where l1 = dfs(r) = 0 and ht = dfs(v)
and where li, hi are the numbers of the first and last ancestor, respectively, on the i’th heavy path
visited on the path from the root to v. Since nodes on heavy paths are consecutively enumerated, it
follows that the nodes on the path from the root to v are enumerated

0 = l1, . . . , h1, l2, . . . , h2, . . . , lt, . . . , ht,

where duplicates may occur in the cases where li = hi, which happens when the first and last ancestor
on a heavy path coincide.

In addition to the label ℓT (v), we also store the label ℓ′T (v) consisting of the sequence of distances
distG(li, v) and distG(hi, v). This label is a sequence of at most 2 log n numbers smaller than nW , and
hence we can encode ℓ′T (v) with O(log n · log(nW )) bits. Combined, ℓT (v) and ℓ′T (v) can be encoded
with O(log n · log(nW )) bits.

Now consider a connected graph G with shortest-path tree T rooted at some node r. Using the
above enumeration of nodes, we can construct a distance labeling scheme in the same manner as in
Section 3, except that instead of using a Hamiltonian path, we use the dfs-enumeration of nodes in T
from above, and we save only δx-value between nodes and their parents, using

⌈

1
2n log(2W + 1)

⌉

bits
due to Lemma 2.3. More specifically, for each node x, we assign a label ℓ(x) consisting of

• the labels ℓT (x) and ℓ′T (x) as described above; and

• the ⌊n/2⌋ values δx(parent(v), v) for all v with dfs(x) < dfs(v) ≤ dfs(x) + ⌊n/2⌋ (mod n).

We can encode the above with 1
2n log(2W + 1) +O(log n · log(nW )) bits.

Given nodes x 6= y, either ℓ(x) will contain δx(parent(y), y) or ℓ(y) will contain δy(parent(x), x).
Without loss of generality, we may assume that ℓ(x) contains δx(parent(y), y). Let z denote the nearest
common ancestor of x and y. Note that z must be the last ancestor of either x or y on some heavy path,
meaning that dfs(z) appears in either ℓT (x) or ℓT (y). By construction of depth-first-search, a node v
on the path from (but not including) z to (and including) y will have a dfs-number dfs(v) that satisfies
the requirements to be stored in ℓ(x). Thus, ℓ(x) must, in fact, contain δx-values for all nodes in T(z,y].

Next, note that, since T is a shortest-path tree, distG(x, z) = distT (x, z). Now, if z appears in ℓT (x),
we can obtain distT (x, z) directly from ℓ′T (x); else, z must appear in ℓT (y), and we can then obtain
distT (z, y) from ℓ′T (y) and compute distT (x, z) = distT (x, r) − distT (r, y) + distT (z, y). In either case,
we can now compute the distance in G between x and y as

distG(x, y) = distG(x, z) +
∑

v∈T (z,y]

δx(parent(v), v).

The label of x contains all the needed δx-values, and ℓT (x) and ℓT (y) combined allows us to determine
the dfs-numbers of the nodes on T (z, y], so that we know exactly which δx-values from x’s label to pick
out. Thus we have proved:

Theorem 4.1. There exists a distance labeling scheme for graphs with label size 1
2n log(2W + 1) +

O(log n · log(nW )).
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This gives us the first row of Table 3. To obtain the second row, we encode the δx values with
Lemma 2.2. Doing this we can access each value in constant time and simply traverse in O(n) time
the path from y to z, adding δx values along the way. Note, however, that Lemma 2.2 only applies for
W = O(1). Saving the δx-values in a prefix sum structure as described in Lemma 2.1, we can compute
the sum using log n look-ups. The next section describes how we can avoid spending O(log n) time (or
more) on this, while still keeping the same label size.

For unweighted (W = 1), bipartite graphs, δx-values between adjacent nodes can never be 0, which
means that we only need to consider two rather than three possible values. Thus, we get label size
1
2n+O(log2 n) instead in this case. We shall give no further mention to this in the following.

5 Constant query time

Let T be any rooted spanning tree of the connected graph G with n nodes. We create an edge-partition
T = {T1, T2, . . .} of T into rooted subtrees, called micro trees. Each micro tree has at most β edges, and
the number of micro trees is |T| = O(n/β). We later choose the value of β. For completeness we give a
proof (Lemma B.1) in the appendix of the existence of such a construction. Observe that the collection
{T ∗

i }i≥1 forms a partition of the nodes of T ∗. As the parent relationship in Ti coincides with the one of
T , we have parentTi

(u) = parentT (u) for all u ∈ T ∗
i .

For every node u ∈ T ∗, we denote by i(u) the unique index i such that u ∈ T ∗
i . For a node u of T ∗

we let MicroRoot(u) = root(Ti(u)), and for r = root(T ) let MicroRoot(r) = r.
Define the macro tree M to have node set {MicroRoot(u) | u ∈ G} and an edge between

MicroRoot(u) and MicroRoot(MicroRoot(u)) for all u 6= r.
By construction, M has O(n/β) nodes.
Our labeling scheme will compute the distance from x to y as

distG(x, y) = distG(x, r) + δx(r,MicroRoot(y)) + δx(MicroRoot(y), y).

The first addend, distG(x, r), is saved as part of x’s label using log n+ logW bits. The second addend
can be computed as a sum of δx-values for nodes in the macro tree and is hence referred to as the macro
sum. The third addend can be computed as a sum of δx-values for nodes inside y’s micro tree and is
hence referred to as the micro sum. The next two sections explain how to create data structures that
allow us to compute these values in constant time.

5.1 Macro sum

Consider the macro tree M with O(n/β) nodes. As mentioned in Section 3 there exists a Hamiltonian
walk v0, . . . , vh−1 of length h = O(n/β), where we can assume that v0 = r. Given nodes x, y ∈ G,
consider a path in M along such a Hamiltonian walk from r to MicroRoot(y). This is a subpath
v0, . . . , vt of the Hamiltonian walk, where t is chosen such that vt = MicroRoot(y). Note that

δx(r,MicroRoot(y)) = δx(v0, vt) =

t−1
∑

i=0

δx(vi, vi+1).

Since each edge in M connects two nodes that belong to the same micro tree, and the distance within
each micro tree is a most βW , we have that δx(vi, vi+1) ∈ [−βW, βW ] for all i. Using Lemma 2.1 we can
store these δx-values in a data structure, PreFixx, of size O((n/β) log(2βW + 1)) = O(n log(βW )/β)
such that prefix sums can be computed in constant time. This data structure is stored in x’s label.
An index t with vt = MicroRoot(y) is stored in y’s label using O(log(n/β)) bits. These two pieces of
information combined allow allows us to compute δx(r,MicroRoot(y)) for all y.

Label summary: For a (pre-selected) Hamiltonian walk v0, . . . , vh−1 in M , we store in the label
of each node x a datastructure PreFixx of size O(n log(βW )/β) such that prefix sums in the form
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∑t−1
i=0 δx(vi, vi+1) can be computed in constant time. In addition, we store in the label of x an index

m(x) such that vm(x) = MicroRoot(x), which requires O(log(n/β)) bits.

5.2 Micro sum

For any node v 6= r, define
δx(v) = δx(parentT (v), v)

Note that, for a node y ∈ T ∗
i , δx(MicroRoot(y), y) is the sum of the values δx(vj) for all nodes vj ∈ T ∗

i

lying on the path from MicroRoot(y) to y. Each of these δx-values is a number in [−W,W ].
For each i, order the nodes in T ∗

i in any order. For each node x and index i, let δx(T
∗
i ) =

(δx(v1), . . . , δx(v|T ∗
i
|)), where v1, . . . , v|T ∗

i
| is the ordered sequence of nodes from T ∗

i . We will construct
our labels such that x’s label stores δx(T

∗
i ) for half of the total set of delta values (we will see how

in the next section), and such that y’s label stores information about for which j’s the node vj lies
on the path between MicroRoot(y) and y. With these two pieces of information, we can compute
δx(MicroRoot(y), y) as described above.

We define f(W ) = 2W + 1. The sequence δx(T
∗
i ) consists of |T ∗

i | values from [−W,W ] can be
encoded with |T ∗

i | ⌈log f(W )⌉ bits. To store this more compactly, we will use an injective function, as
described in Lemma 2.3 that maps every sequence of t integers from [−W,W ] into a bit string of length
⌈t log f(W )⌉. Denote by code(δx(T

∗
i )) such an encoding of the sequence δx(T

∗
i ) to a bit string oflength

⌈|T ∗
i | log f(W )⌉ ≤ ⌈β log f(W )⌉, as |T ∗

i | ≤ β
In order to decode the encoded version of δx(T

∗
i ) in constant time, we construct a tabulated inverse

function code−1. From the input and output sizes, we see that we need a table with 2⌈β log (f(W ))⌉ entries,
for each of the β possible micro tree sizes, and each result entry having β ⌈log f(W )⌉ bits, giving a total
space of β2⌈β log f(W )⌉β ⌈log f(W )⌉ bits.

Let Ti = Ti(y). Let & be the bitwise AND operator. In node y’s label we save the bit string mask(y)
such that mask(y) & δx(T

∗
i ) gives an integer sequence S identical to δx(T

∗
i ), except that the integer

δx(v) has been replaced by 0 for all v that are not an ancestor of y. Given S we can now compute the
micro sum δx(MicroRoot(y), y) as the sum of integers in the sequence S. We will create a tabulated
function that sums these integers, SumIntegers. SumIntegers is given a sequence of up to β values in
[−W,W ], and the output is a number in [−βW, βW ]. We can thus tabulate SumIntegers as a table with
β2β⌈log f(W )⌉ entries each of size ⌈log f(βW )⌉, giving a total space of β2β⌈log f(W )⌉ ⌈log f(βW )⌉.

Both functions, code−1 and SumIntegers, have been tabulated in the above. A lookup in a tabulated
function can be done in constant time on the RAM as long as both input and output can be represented
by O(log n) bits. We can achieve this by setting

β ≤ c log n

⌈log f(W )⌉

for a constant c. To see this, note that the maximum of the four input and output values above is
⌈log β⌉+ β ⌈log f(W )⌉. Using the above inequality then gives log log n+ c log n = O(log n).

The tables for the tabulated functions are the same for all nodes. Hence, in principle, assuming an
upper bound for n is known, we could encode the two tables in global memory, not using space in the
labels. However, as we will see, the tables take no more space than the prefix table PreFixx, so we can
just as well encode them into the labels. Doing that we use an additional β2⌈β log (f(W ))⌉β ⌈log f(W )⌉
for the code−1 table and β2β⌈log f(W )⌉ ⌈log f(Wβ)⌉ for the SumIntegers table. Using that W = o(n) and
substituting β for the above expression then gives, after a few reductions, that the extra space used is
no more than O((log n)4nc) bits. Since the prefix table uses at least O(n log logn

logn ) bits, we see that the
added space does not (asymptotically) change the total space usage, as long as we choose c < 1.

Label summary: We will construct the labels such that either x’s label contains δx(T
∗
i (y)) or vice

versa (we shall see how in the next section). Using the tabulated function code−1, the bits in δx(T
∗
i (y))
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can be extracted in constant time from x’s label. Using mask(y) from y’s label and the tabulated
function SumIntegers, we can then compute δx(MicroRoot(y), y) in constant time. The total space used
for all this is no more than O(n log logn

logn ).

5.3 Storing and extracting the deltas

Let the micro trees in T bee given in a specific order: T1, . . . , T|T|. Let D(x) =
code(δx(T

∗
1 )) · · · code(δx(T ∗

|T|)) denote the binary string composed of the concatenation of each string

code(δx(T
∗
i )) in the order i = 1, 2, . . . , |T|.

Let L = |D(x)| be the length in bits of D(x). Let pi ∈ [0, L) be the position in the string D(x) where
the substring code(δx(T

∗
i )) starts. E.g., D(x)[0] = D(x)[p1] is the first bit of code(δx(T

∗
1 )), D(x)[p2]

the first bit of code(δx(T
∗
2 )), and so on. According to Lemma 2.3 we have pi =

∑

j<i

⌈

|T ∗
j | log f(W )

⌉

.

Observe that the position pi only depends on i and W and not on x.
We denote by a(y) and a′(y) the starting and ending positions of the substring code(δx(T

∗
i(y))) in

D(x). More precisely, a(y) = pi(y) and a′(y) = pi(y)+1 − 1, so that |code(δx(T ∗
i(y)))| = a′(y)− a(y) + 1.

For each node y we use O(log n) bits to store a(y) and a′(y) in its label.
For a node x we will only save approximate half of D(x), in a table H(x). H(x) will start

with code(δx(T
∗
i(x))) and the code for the following micro trees in the given circular order un-

til H(x) in total has at least n/2 δx values, but as few a possible. In other words H(x) =
code(δx(T

∗
i(x))) · · · code(δx(T ∗

j(x))) where the indexes i(x), i(x)+1, . . . , j(x) may wrap to 1 after reaching

the largest index |T| if j(x) < i(x). Let b(x) = pj(x)+1.
In a node x’s label we save a(x), a′(x), b(x) and L using O(log n) bits. Having those values we know

which δx values from D(x) are saved in x’s label as well as the position of them in H(x). Furthermore
we know the position of the δx-values of x’s own micro tree in D(x). We will need to extract at most
⌈β log f(W )⌉ = O(log n) consecutive bits from H(x) in one query. On the word-RAM this can be done
in constant time.

Proposition 5.1. Let x, y be two nodes of G. Then,

(i) |H(x)| = 1
2n log f(W ) +O( n

logn log f(W )); and
(ii) either code(δx(T

∗
i(y))) is part of H(x) or code(δy(T

∗
i(x))) is part of H(y).

Proof. Let T′ be the subset of T encoded in H(x). We have:

|H(x)| =
∑

Ti∈T′

⌈|T ∗
i | log f(W )⌉ <

∑

Ti∈T′

(|T ∗
i | log f(W ) + 1)

<
1

2
n log f(W ) + |T|+ ⌈β log f(W )⌉ <

1

2
n log f(W ) +O(n/β + β log f(W ))

<
1

2
n log f(W ) +O(

n

log n
log f(W ))

which proves (i). Part (ii) follows from the fact that x saves at least half of the δx’s in a cyclic order.
If y not is include here, x must be included in the δy-values saved by y.

5.4 Summary

The label of x is composed of the follows items.

1. The values a(x), a′(x), mask(x), m(x), distG(x, r), L and b(x): O(log n).

2. A prefix table, PreFixx, for the values in the macro tree: O( n
logn((log f(W ))2+log log n log f(W ))).

10



3. The table H(x): 1
2n log f(W ) +O( n

logn log f(W )).

4. Global tables, code−1 and SumIntegers of size O(n log logn
logn ).

Note that L and the global tables are common to all the nodes. In addition we may need to use
O(log n) bits to save the start position in the label for the above constant number of sublabels.

Lemma 5.2. Every label has length at most 1
2n log f(W ) +O( n

logn(log
2 W + log log n log f(W ))) bits.

Let Decode(ℓ(x,G), ℓ(y,G)) denote the distance returned by the decoder given the labels of x and
of y in G. It is defined by:

Decode(ℓ(x,G), ℓ(y,G)):

1. If (a(x) ≤ a(y) < b(x))∨ (b(x) < a(x) ≤ a(y))∨ (a(y) < b(x) < a(x)) then s = a(y)−a(x)
(mod L) and e = a′(y)− a(x) (mod L)

2. Else return Decode(ℓ(y,G), ℓ(x,G))
3. MacroSum = PreFixx(m(y))
4. S = code−1(Hx[s, . . . , e]) & mask(y)
5. MicroSum = SumIntegers(S)
6. Return distG(x, r) +MicroSum +MacroSum

Theorem 5.3. There exists a distance labeling scheme for graphs with edge weights in [1,W ] using
labels of length 1

2n log (2W + 1) + O( n
logn log(2W + 1)(logW + log log n)) bits and constant decoding

time.

6 Approximate distances

By considering only a subset of nodes from G and using the previous techniques, it is possible to create
an approximation scheme where the label size is determined by a smaller number of nodes but with
larger weights between adjacent nodes. We leave the details for Appendix C.1 and present here only
the result.

Theorem 6.1. There exists a (2kW )-additive distance labeling scheme for graphs with n nodes and
edge weights in [1,W ] using labels of size 1

2(k+1)n log(2(k + 1)W + 1) +O(log n · log(nW )).

Another way to achieve an approximation scheme is to use a smaller set of weights while keeping
the accumulated error under control. This leads to the following result whose proof can be seen in
Appendix C.2.

Theorem 6.2. For any D ≤ 2W−1 there exists a
⌈

D
2W−D

⌉

-additive distance labeling scheme for graphs

with n nodes and edge weights in [1,W ] using labels of size 1
2n log(2W + 1−D) +O(log n · log(nW )).

One instance of Theorem 6.2 is D = W , which gives a 1-additive distance labeling scheme of size
1
2n log(W + 1) + o(n). For D = 2W − 1 we get a (2W − 1)-additive distance labeling scheme of size
1
2n + o(n). For constant r the above technique also applies to our constant time decoding results. For
unweighted graphs this implies that we can have labels of size 1

2n + o(n) with a 1-additive error and
constant decoding time.

By combining the above two theorems, we obtain the theorem below; see Appendix C.3.

Theorem 6.3. For any k ≥ 0 and D ≤ 2(k + 1)W − 1 there exists a (2kW +
⌈

D
2(k+1)W−D

⌉

)-

additive distance labeling scheme for graphs with n nodes and edge weights in [1,W ] using labels of
size 1

2(k+1)n log(2(k + 1)W + 1−D) +O(log n · log(nW )) bits.
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APPENDIX

A Lower bounds

Our lower bound technique can be seen as a generalization of the classical counting argument for
adjacency labeling schemes. Indeed, for r = 0 and W = 1, our formula yields (n − 1)/2 bits, which is
exactly the number of bits needed for adjacency. The lower bound we develop here is well-suited for
small additive errors r. In particular, when r < 2W we prove that labels of Ω(n log (W/(r + 1))) bits
are required for an r-additive distance labeling scheme.

Given an unweighted graph B and an integer W ≥ 1, denote by FW (B) be the family of all subgraphs
of B whose edges are weighted by values taken from [1,W ].

Theorem A.1. Let B be an unweighted graph with n vertices, m edges and girth at least g, and let r,W
be integers such that r ∈ [0, (g−2)W ). Then, every r-additive approximate distance labeling scheme for
FW (B) requires a total label length of at least m log (k + 1), and thus a label of at least (m/n) log (k + 1)
bits, where

k =

⌊

g − 2

g − 1
·
(

W

r + 1
+ 1

)⌋

.

Proof. An r-approximate distance matrix for a weighted graph G with vertex-set [1, n] is an n × n
matrix M such that distG(x, y) ≤ M [x, y] ≤ distG(x, y) + r for all vertices x, y of G.

The basic idea of our lower bound technique is to show that FW (B) contains a large set G of weighted
graphs for which no two graphs can have the same r-approximate distance matrix. A crude observation
is that an r-approximate distance matrix for each graph of G can be generated from the ordered list of
all the labels provided by any r-additive approximate labeling scheme for G. So, it turns out that, by
a simple counting argument, the total label length must be at least log |G|. In particular, the labeling
scheme must assign, for some vertex of some graph of G, a label of at least (log |G|)/n bits. We now
construct such a set G with |G| = (k + 1)m.

For the shake of the presentation, define Wi = W − (k− i− 1)(r+1) for i = 0, . . . , k. Note that the
Wis increase with i, and more precisely that Wi+1 = Wi + r + 1. Moreover, we observe that:

Claim A.2. The following hold: k ≥ 1, W0, . . . ,Wk−1 ∈ [1,W ], and Wk ≤ (g − 1)W0.

Before we give a formal proof of Claim A.2 (which is a basic calculation), we explain how to derive
our lower bound.

Consider the set C of all edge-colorings of B into k+1 colors. More precisely, an edge-coloring c ∈ C

is simply a function c : E(B) → [0, k] mapping to each edge e of B some integer c(e) ∈ [0, k]. Clearly,
|C| = (k + 1)m since each of the m edges of B can receive k + 1 distinct values.

With each coloring c ∈ C, we associate a weighted graph G with edge-weight function w obtained
from graph B by testing the color of each edge xy of B. If c(xy) = k, the edge is deleted. And, if
c(xy) = i < k, we keep xy in the graph and set w(xy) = Wi. We denote by G the family of graphs
constructed by this process from all the colorings of C. It is clear that, given B, one can recover from
G and w the initial coloring c (just scan all the possible edges of B, check if they exist in G and look
at their weights). In other words the construction is bijective and thus |G| = |C| = (k + 1)m.

By construction, each graph of G is a subgraph of B. Moreover, by Claim A.2, each weight is some
integer Wi ∈ [1,W ] as i ∈ [0, k − 1] (edges of color k have been removed). In other words, G ⊆ FW (B).
It remains to prove that any two graphs of G cannot have the same r-approximate distance matrix. The
intuition is that two graphs of G differ only when there is an edge xy in B whose color is different in the
two graphs. Because of the choice of the edge-weights, the distance between x and y in the two graphs
must, as we shall see, differ by at least r + 1.

Let G,G′ be two distinct weighted graphs of G. Denote by w,w′ their respective edge-weighting
functions, and by M,M ′ any r-approximate distance matrices for G and G′ respectively. As we will
show, if G and G′ are different, there must exist an edge xy of B, and two colors i, j ∈ [0, k], i < j,
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such that distG(x, y) ≤ Wi and distG′(x, y) ≥ Wj (the case distG′(x, y) ≤ Wi and distG(x, y) ≥ Wj is
symmetric). For this purpose, we consider two cases:

(i) The graphs G,G′ are different because there is an edge xy of B which is in G but not in G′.
We have xy ∈ E(G), which implies that distG(x, y) ≤ w(xy) ≤ Wk−1, since the color of xy in G is
< k. Further, xy /∈ E(G′) implies that distG′(x, y) ≥ (g − 1)W0, since any path from x to y in G′

contains at least g−1 edges (G′ is a subgraph of B which has girth at least g), and the minimum weight
assigned to any edge is W0. (Note that this holds, in particular, when x and y are unconnected and
distG(x, y) = ∞.) Thus from Claim A.2, distG′(x, y) ≥ Wk. So the claim holds for i = k− 1 and j = k.

(ii) The graphs G,G′ are different because there is an edge xy in G and G′ with different weights.
Assuming that w(xy) < w′(xy), there must exist i, j such that w(xy) = Wi and w′(xy) = Wj. Note
that i < j < k. We have distG(x, y) = Wi and distG′(x, y) = Wj since we have seen in the previous
case that every path from x to y and excluding the edge xy has cost at least (g− 1)W0. By Claim A.2,
Wi < Wj < Wk ≤ (g − 1)W0.

In both cases we have found i, j ∈ [0, k], i < j, such that distG(x, y) ≤ Wi and distG′(x, y) ≥ Wj .
Now, by definition of M and M ′, M [x, y] ≤ distG(x, y) + r ≤ Wi + r and Wj ≤ distG′(x, y) ≤ M ′[x, y].
Since Wj ≥ Wi+1 = Wi + r + 1, we conclude that M [x, y] < M ′[x, y] proving that no two different
graphs of G can have the same r-approximate distance matrix.

To complete the proof, it remains to prove Claim A.2. Let us first show that k ≥ 1 (which is required
since in the proof we use for instance that W0 ≤ Wk−1). Recall that r ≤ (g − 2)W − 1,

k =

⌊

g − 2

g − 1

(

W

r + 1
+ 1

)⌋

≥
⌊

g − 2

g − 1

(

W

(g − 2)W
+ 1

)⌋

=

⌊

g − 2

g − 1

(

1

g − 2
+ 1

)⌋

= 1.

Let us show that W0 ≥ 1. Since W0 = W −(k−1)(r+1), it suffices to check that (k−1)(r+1) < W .
We have,

(k − 1)(r + 1) =

(⌊

g − 2

g − 1

(

W

r + 1
+ 1

)⌋

− 1

)

· (r + 1) ≤ g − 2

g − 1
· W

r + 1
· (r + 1) < W

since the girth g is always at least three.
Now we have W0, . . . ,Wk−1 ∈ [1,W ], since the Wi’s are non-decreasing, W0 ≥ 1, and Wk−1 =

W − (k − (k − 1)− 1)(r + 1) = W .
Let us show that Wk ≤ (g−1)W0. We have Wk = W+r+1 and W0 = W−(k−1)(r+1). Therefore,

Wk ≤ (g − 1)W0 ⇔ W + r + 1 ≤ (g − 1)(W − (k − 1)(r + 1))

⇔ r + 1 + (g − 1)(k − 1)(r + 1) ≤ (g − 2)W

⇔ (g − 1)(k − 1) ≤ (g − 2)
W

r + 1
− 1

⇔ k ≤ g − 2

g − 1
· W

r + 1
− 1

g − 1
+ 1 =

g − 2

g − 1
·
(

W

r + 1
+ 1

)

.

The latter equation is true by the choice of k. This completes the proof of Claim A.2 and of Theorem A.1.

A collection of corollaries to Theorem A.1 can be seen in Table 4.
The case r ≥ 2 and W = 1 is out of the range of our lower bound, as long as we choose for B a

graph with m = Θ(n2) edges. Our lower bound still applies for r = 2, 3 and W = 1, but using girth-6
graphs B that are known to exists with m = Θ(n3/2) edges. There are several constructions, based on
finite projective geometries, of graphs with Ω(n3/2) edges and girth at least 6 (see for instance [64]).
So, Theorem A.1 can also prove the Ω(

√
n ) lower bound for r = 2, 3 and W = 1. The case of larger r

can be captured by the more general lower bound of [32], that uses a subdivision technique, and shows
that Ω(

√

n/(r + 1) ) bit labels are required for any r ≥ 2.
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Graphs r = 0,W ≥ 1 r = 1,W ≥ 2 r = 0,W = 1 r = (g − 2)W − 1

General 1
2(n − 1) log

⌈

W
2 + 1

⌉

1
2 (n− 1) log

⌊

W
4 + 3

2

⌋

1
2(n − 1)

Bipartite 1
4n log

⌊

2W
3 + 5

3

⌋

1
4n log

⌊

W
3 + 5

3

⌋

1
4n

Table 4: Lower bounds derived from Theorem A.1. For “general graphs” we use the family FW (Kn),
where Kn denotes the complete graph on n vertices, so m = n(n − 1)/2 and g = 3. For “Bipartite
graphs” we use the family FW (Kn/2,n/2), where Kn/2,n/2 denotes the complete bipartite graph on n
vertices (assuming n even) so m = n2/4 and g = 4. Note that the case r = W = 1 and the case
r = 2W − 1 is captured by the last column of the last line, and so the lower bound is n/4.

B Constructing micro trees

Lemma B.1. Let k be a positive integer. Every m-edge tree has an edge partition into at most ⌈m/k⌉
trees of at most 2k edges.

Proof. Consider a tree T with m edges. If T has fewer than k edges, then the partition is T itself and
we are done.

Otherwise, we will construct a subtree A of T with at least k and at most 2k edges such that T −A
is still connected. (By T −A we mean the forest induced by all the edges in E(T )−E(A).) Once such
an A is constructed, we can repeat the process on the remaining tree T − A until having a tree with
less than k edges. Since each subtree A has at least k edges, the process stop after we have constructed
at most ⌈m/k⌉ trees.

C Approximate distances

C.1 Approximation using fewer nodes

Lemma C.1. Given a graph G with n nodes, edge weights in [1,W ] and a rooted spanning tree T , we
can, for integers k ≥ 0, construct a tree T (k) whose node set is a subset of T and with the following
properties.

• |T (k)| ≤ 1 + n
k+1 .

• For any node v ∈ T (k)∗, distG(v, parentT (k)(v)) ≤ (k + 1)W .

• For any node w ∈ G, there exists a node v ∈ T (k) with distG(v,w) ≤ kW .

Proof. Partition the nodes in T into k + 1 equivalence classes according to their depth in T modulo
k + 1. One of these equivalence classes must contain ⌊n/(k + 1)⌋ or fewer nodes. Select such a subset
of nodes and denote it T (k). Also include the root of T in T (k), giving that |T (k)| ≤ 1 + n/(k + 1). In
T (k) construct an edge between two nodes iff no other nodes from T (k) are on the simple path between
the nodes in T . Then, for any v ∈ T (k)∗, distG(v,parentT (k)(v)) ≤ (k+1)W since the number of edges
between v and parentT (k)(v) in T is at most k + 1. Similarly, for any w ∈ T , its nearest ancestor v,
which also in T (k) (could be w itself) is at most k edges up in T , giving distG(v,w) ≤ kW

Roughly speaking, the approximation scheme presented here applies the previous techniques to
create an exact distance labeling scheme for T (k), which has fewer nodes but larger weights between
adjacent nodes. For a node x that is not in T (k), we find its nearest ancestor x′ in T (k) and give x the
same label as x′. We then approximate distG(x, y) by 2kW + distG(x

′, y′). This will at most give us
an error in [0, 4kW ], meaning that we now have a (4kW )-additive labeling scheme with labels of size
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n
2(k+1) log(2(k + 1)W + 1), ignoring second order terms. It is possible to optimize this approach and

obtain a (2kW )-additive scheme, by only using approximate distance for either x or y to their nearest
ancestors x′ or y′. Here, we show how to do it for the heavy path approach. A similar result holds for
the micro tree approach.

As described in Section 4, the label ℓ(x) includes the sublabels ℓT (x) and ℓ′T (x) using O(log n ·
log(nW )) bits. Our new label for approximate distance will include those sublabels as well. For a node
v in T let v′ be its nearest ancestor in T (k). In x’s label we also save ℓT (x

′) and ℓ′T (x
′). In addition,

we include a label ℓ′′T (x) containing the distances from x to w′ for all w that appear in ℓ(x); this label
also uses O(log n · log(nW )) bits.

Now. if x or x′ is an ancestor to y in T , we compute distG(x, y) as kW plus the distance in T from
x or x′ to y. This will at most give an additive error of 2kW . Similarly for y and y′ and x. Those
computation can be done as explained in Section 4 using the labels defined so far. If we cannot compute
the distance in this way, then, consider the nearest common ancestor z of x and y in T . The node z′

must then be the nearest common ancestor of x′ and y′ in T (k). Let nk = |T (k)|. We will save ⌊nk/2⌋ of
the values δx(parentT (k)(v), v) for all v from T (k) with dfs(x′) < dfs(v) ≤ dfs(x′)+⌊nk/2⌋ (mod nk). As

δx(parentT (k)(v), v) ∈ [−(k+1)W, (k+1)W ] we can encode all these δ-values using
⌈

1
2nk log f((k + 1)W )

⌉

bits. We can now compute distG(x, y) = kW + distG(x, z
′) +

∑

v∈T (k)(z′,y′] δx(parentT (k)(v), v), where

distG(x, z
′) can be computed from ℓ′′T (x). This will at most give an additive error of 2kW . We have

now proved the following theorem.

Theorem C.2. There exists a (2kW )-additive distance labeling scheme for graphs with n nodes and
edge weights in [1,W ] with labels of size 1

2(k+1)n log f((k + 1)W ) +O(log n · log(nW )).

C.2 Approximation using fewer weights

With edge weights in [1,W ] we have been encoding 1
2n numbers from the interval I = [−W,W ] of size

|I| = 2W +1 using 1
2n log(2W +1) bits. The theorem below uses an approximation technique where we

use integers from a smaller set I ′ ⊆ I, which will reduce the space consumption but introduce an error
when computing δx-values. As we shall see, the error can be capped even when we are summing many
δx-values.

Theorem C.3. For any D ≤ 2W − 1 there exists a
⌈

D
2W−D

⌉

-additive distance labeling scheme for

graphs with edge weights in [1,W ] using labels of size 1
2n log(2W + 1−D) +O(log n · log(nW )) bits.

Proof. Let us create a subset I ′ ⊆ I with |I ′| = |I| − D. In I ′ we always include the maximum and
minimum from I, and hence we require D ≤ |I| − 2 = 2W − 1. In addition we minimize the maximum
number Q of consecutive numbers from I − I ′. Hence, for i1 ∈ I ′ (excluding maximum) there exists
a number i2 ∈ I ′ such that i2 ≤ i1 + Q + 1. Since |I ′| = |I| − D = 2W + 1 − D, we have 2W − D
pair of neighbors in I ′, where we by “neighbors” mean two numbers in I ′ with no other number from I ′

between them. By equally spreading the D missing numbers between the 2W −D pairs, we can obtain

Q =
⌈

D
2W−D

⌉

. By substituting values in I ′ for values in I, we can now encode t values from I with

⌈t log(2W + 1−D)⌉ bits. This will introduce an error, but in the case of δx-values, the accumulated
error can be kept below Q as described below.

Let T be a tree and consider the δx-values δx(v) = δx(parent(v), v) for nodes v ∈ T ∗. Each δx-value is
a number in I = [−W,W ]. We will visit the nodes top down starting from (but not including) the root r
and assigning to each node y a new approximate value: δ̃x(y) ∈ I ′. (For the root r we implicitly associate
the value 0. Implicitly, since it may not be a value in I ′.) Recall that δx(r, y) =

∑

v∈T [y,r) δx(v), and

define δ̃x(r, y) =
∑

v∈T [y,r) δ̃x(v). We will assign the values such that δx(r, y) ≤ δ̃x(r, y) ≤ δx(r, y) +Q.

For y ∈ T ∗, let A(y) = δ̃x(r, y) − δx(r, y). We prove by induction that A(y) ∈ [0, Q]. So assume
inductively that A(parent(y)) ∈ [0, Q]. If δx(y) ∈ I ′, we can define δ̃x(y) = δx(y), and we then have
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A(y) = A(parent(y)) ∈ [0, Q] as desired. If this is not the case, let i1, i2 ∈ I ′ be the largest and
smallest numbers from I ′, respectively, with i1 < δx(y) < i2. By assumption, i2 − i1 ≤ Q + 1. If
A(parent(y)) + i1 − δx(y) ≥ 0, we can set δ̃x(y) = i1 and obtain A(y) ∈ [0, Q]. If not, then we must
have A(parent(y)) + i2 − δx(y) < i2 − i1 ≤ Q + 1, so we can set δ̃x(y) = i2 and obtain A(y) ∈ [0, Q].
This concludes the theorem.

Above we have been changing all δx-values top-down from the root. In the constant time solution,
we could instead change the values top-down for each micro tree Ti, keeping exact distances to the root
and in the macro tree.

C.3 Final approximation

We can combine the above two approaches by, for a k ≥ 0, first using Appendix C.1 to obtain a (2kW )-
additive distance labeling scheme with labels of size n

2(k+1) log f((k + 1)W ) + O(log n · log(nW )). The

approximate scheme will use edge weights in [1, (k + 1)W ] to which then can apply the technique from
Appendix C.2, finally getting:

Theorem C.4. For any k ≥ 0 and D ≤ 2(k + 1)W − 1 there exists a (2kW +
⌈

D
2(k+1)W−D

⌉

)-

additive distance labeling scheme for graphs with n nodes and edge weights in [1,W ] using labels of
size n

2(k+1) log(2(k + 1)W + 1−D) +O(log n · log(nW )) bits.

20


