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Abstract. We prove that any graph excluding Kr as a minor can be partitioned into clusters
of diameter at most \Delta while removing at most O(r/\Delta ) fraction of the edges. This improves over the
results of Fakcharoenphol and Talwar, who, building on the work of Klein, Plotkin, and Rao, gave
a partitioning that required removing O(r2/\Delta ) fraction of the edges. Our result is obtained by a
new approach that relates the topological properties (excluding a minor) of a graph to its geometric
properties (the induced shortest path metric). Specifically, we show that techniques used by Andreae
in his investigation of the cops and robbers game on graphs excluding a fixed minor can be used
to construct padded decompositions of the metrics induced by such graphs. In particular, we get
probabilistic partitions with padding parameter O(r) and strong-diameter partitions with padding
parameter O(r2) for Kr-minor-free graphs, O(k) for treewidth-k graphs, and O(log g) for graphs
with (Euler) genus g.
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1. Introduction. This paper considers the problem of constructing random par-
titioning schemes for minor-free graphs. Loosely speaking, the goal is to find a parti-
tion of the graph vertices so that each part (called a cluster) has small diameter, and
the probability of any local neighborhood being cut (and not being contained within
just one cluster) is small. There is a natural tradeoff between these two parameters
(the diameter, and the probability of being cut). Such random partitions have found
numerous applications in algorithm design, including flow/cut gaps, metric embed-
dings, and recently as core primitives for several near linear time algorithms. There-
fore improving the parameters of the partitions is a research program of considerable
interest.

Tight parameters for such partitions are known in several settings. However,
for the case of graphs that exclude some given graph H as a minor, the problem of
finding the optimal tradeoff remains open. Progress was made in the seminal work
of Klein, Plotkin, and Rao [KPR93], and improved by Fakcharoenphol and Talwar
[FT03]. Despite attracting the attention of several researchers (see, e.g., [Lee13]), the
KPR framework remained the only known approach to this problem for over 20 years.
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COPS, ROBBERS, AND THREATENING SKELETONS 1121

In this paper we make progress on this question and improve known parameters.
Equally important, we also introduce techniques and structural insights that we hope
will be useful for further improvements on this and related problems. In particular, we
observe that the result of Andreae [And86] can be reinterpreted as a structure theorem
for graphs excluding a fixed minor. It constructively gives a cop-decomposition of a
graph, which is a lot like a tree-decomposition except that instead of having r vertices
per bag, it guarantees having r shortest-like paths in each bag. The cop-decomposition
gives weaker structure than the beautiful work of Robertson and Seymour [RS03],
but has the benefit of significantly better dependence on r. We extend this cop-
decomposition framework to produce probabilistic partitions, and we believe that
this high level approach may be useful in getting better algorithms for other problems
involving excluded minor graphs.

We begin with some notation. For an undirected weighted graph G = (V,E) and
a subset C \subseteq V , denote by G[C] the induced subgraph on C. Let dG denote the
shortest path metric on G, and for v \in V and t \geq 0 define the ball BG(v, t) = \{ u \in 
V | dG(v, u) \leq t\} . The (weak-) diameter of a set S \subseteq V is maxx,y\in S dG(x, y), whereas
the strong-diameter of the set S is maxx,y\in S dG[S](x, y)---note that the latter distance
is being measured in the induced subgraph.

Definition 1 (\Delta -bounded partitions). A partition P = \{ C1, . . . , Ct\} of V is
\Delta -bounded if for all i, the weak-diameter diam(Ci) \leq \Delta . The partition P is strong-
diameter \Delta -bounded if the strong-diameter diam(G[Ci]) \leq \Delta for all i.

Given a partition P = \{ C1, . . . , Ct\} of V , let P (z) denote the unique cluster
containing z \in V .

Definition 2. A distribution \scrP over \Delta -bounded partitions is (\beta , \delta )-padded if for
any z \in V and any 0 \leq \gamma \leq \delta ,

Pr[BG(z, \gamma \Delta ) \subseteq P (z)] \geq 2 - \beta \gamma .

We call \scrP \beta -padded if it is (\beta , \delta )-padded where \delta is a universal constant that does not
depend on \beta , and efficient if it can be sampled in polynomial time.

Our definition of padded partitions is similar to the one in [ABN11], which gener-
alizes several definitions that appeared before, e.g., [KPR93, GKL03, AGMW10]. In
particular, our definition refers to cutting balls, and not only edges, and also allows
for \gamma > 1/\beta .

Our main result is the following theorem.

Theorem 3. Every Kr-minor-free graph G admits an efficient O(r)-padded par-
tition scheme.

It has long been known that for arbitrary graphs the best possible padding param-
eter is \Theta (log | V | ) [Bar96]. For special cases better bounds are known; e.g., for metrics
of doubling constant \lambda , the padding parameter is \Theta (log \lambda ) [GKL03]. For graphs that
can be drawn on an orientable surface of genus g, ideas developed in a recent sequence
of papers [IS07, BLS10, Sid10] have culminated in the optimal padding parameter of
\Theta (log g) [LS10].

The first bounds for Kr-minor-free graphs were due to the influential work of
Klein, Plotkin, and Rao [KPR93], who gave an (O(r3), 1/r)-padded partition scheme.
Fakcharoenphol and Talwar [FT03] improved this to an (O(r2), 1/r)-padded parti-
tion scheme. In this work, we improve the padding parameter from O(r2) to O(r);
moreover, we provide padding guarantees to larger balls---the previous guarantees
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1122 ABRAHAM, GAVOILLE, GUPTA, NEIMAN, AND TALWAR

give padding only for balls of diameter < O(\Delta /r), compared to O(\Delta ) for our re-
sult. The partitioning scheme in [KPR93] was motivated by bounding the maximum-
multicommodity-flow/sparsest-cut gap for Kr-minor-free graphs. Subsequently, it
found applications to metric embeddings [Rao99, Rab03] with its natural connections
to edge-cut problems [Mat02] and also to vertex-cut problems [FHL08], to bounding
higher eigenvalues and higher-order Cheeger inequalities for graphs [BLR10, KLPT09,
LGT12], to metric extension problems and approximation algorithms [CKR05, AFH+04,
LN05], and others. The quantitative improvements given by our results thus give im-
provement in all these settings.

Theorem 3 above gives us a weak-diameter guarantee. However, our techniques
are versatile, and can be extended to give strong-diameter partitions---in particular,
we obtain the following results.

Theorem 4. Let G be an undirected weighted graph.
1. If G is a Kr-minor-free graph, then it admits an efficient (O(r2), O(1/r2))-

padded strong-diameter partition scheme.
2. If G is a tree-width r graph, then it admits an efficient (O(r), O(1/r))-padded

strong-diameter partition scheme.
3. If G is an Euler-genus g graph, then it admits an efficient O(log g)-padded

strong-diameter partition scheme.

The first result in Theorem 4 is an exponential improvement over the strong-
diameter partitions of Abraham et. al. [AGMW10]. The third result strengthens
the result of Lee and Sidiropoulos [LS10] by providing the same asymptotic padding
guarantees while ensuring that clusters have a strong-diameter. It holds for graphs
embedded on orientable or nonorientable surfaces of Euler characteristic bounded by
2 - g (see more details in section 7). The second and the third results assume that the
embedding of the graph (into an optimal width tree-decomposition or optimal Euler
characteristic surface embedding) is given. Note that such embeddings when r or g
is bounded can be determined in polynomial time (see, for instance, [Ree92, BK96,
Moh99, KMR08]).

1.1. Discussion of techniques. How does one prove a property for a graph
that does not contain a Kr-minor? One approach relies on the beautiful results of
Robertson and Seymour that turn this negative property, namely not having a certain
minor, into a positive constructive one. This gives a complete structural character-
ization of how such graphs are built from simple building blocks by applying simple
rules to them. This structure theorem allows one to prove properties of excluded
minor graphs by structural induction on the constructive procedure. On the nega-
tive side this approach typically inherits the rather bad dependence on r from the
Robertson--Seymour structure theorem [RS03]. Nevertheless, this approach has been
highly successful and used to prove several results for such graphs.

The other, somewhat more mysterious, approach is to work more directly and
design an algorithm establishing the property, such that by failing it constructs a Kr-
minor. This approach is often problem-specific but usually leads to better dependence
on r. Examples of this approach include the work of Andreae [And86] for the cops
and robbers game, results of Alon, Seymour, and Thomas [AST90] on separators, and
the aforementioned work of Klein, Plotkin, and Rao [KPR93].

Let us now give a high-level description of some of the ideas and techniques used
to prove Theorems 3 and 4.
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COPS, ROBBERS, AND THREATENING SKELETONS 1123

The bounded threatener program and its probabilistic extension. A
well-studied approach to obtain \Delta -bounded \beta -padded probabilistic partitions is to
find a set of ``suitable"" centers S, and iteratively build balls around the points in S
with radii drawn from a truncated exponential distribution in the range [\Delta /4,\Delta /2]
with rate \beta . The memoryless property of the exponential distribution ensures that
balls of radius \approx \Delta /\beta around any vertex z avoid being cut with constant probability,
conditioned on the exponential distribution not being truncated. To handle the trun-
cation, we need to bound the number of centers at distance at most (1/2 + 1/\beta )\Delta 
from any vertex z. We will call such centers the threateners of z. If the number of
threateners is bounded by 2O(\beta ), then a trivial union bound implies that with constant
probability, none of them will reach diameter (1/2 - 1/\beta )\Delta and hence none of them
will intersect the ball B(z,\Delta /\beta ).

A contribution of this work is in extending the bounded threatener program and
showing how a bound on the expected number of threateners suffices for obtaining
probabilistic partitions.

Cop-decompositions. Andreae [And86] considered the following game: a set of
cops plays against a robber. At each round the robber can move across one edge, and
then each one of the cops can move across one edge. The cops win if they land on the
same vertex as the robber. A key observation: if the robber is limited to a subgraph
V \prime \subset V and P is a geodesic shortest path with respect to G[V \prime ], then eventually a
single cop can ``patrol"" P and prevent the robber from even stepping on P . Using
this observation, Andreae showed that if G is Kr-minor-free, then O(r2) cops have a
winning strategy. The cop strategy is simple: each cop controls one shortest path and
collectively they try to iteratively build a Kr-minor. The shortest paths controlled by
the cops induce a set of supernodes (disjoint connected subsets) and edges containing
a minor that is a subgraph of Kr. At each round one can fix a center for a new
supernode and use free cops to connect this center to all previous supernodes via
shortest paths. The new center and each new shortest path are fully contained in the
component containing the robber that is induced by removing the supernodes from
G (hence these new paths are disjoint from all previous supernodes).

We view Andreae's result as constructing a cop-decomposition of width O(r), as
we shall define now. First, recall that a tree-decomposition for G is a tree T whose
nodes, called bags, are subsets of V with the following properties: (1) \cup B\in V (T )B = V ;
(2) for every edge (u, v) of G, there is a bag of T containing u and v; and (3) for every
u \in V , the set of bags containing u induces a subtree of T .

Definition 5. A cop-decomposition of width k for graph G is a rooted tree T
that is a tree-decomposition for G satisfying the following property. For every bag B
of T , the set of vertices of B \setminus B\prime , where B\prime is the parent1 bag of B, is composed of
at most k shortest paths of G \setminus B\prime .

Note that the core difference between the width of a cop-decomposition and the
width of a tree-decomposition is that we count the number of shortest paths instead of
the number of vertices in each bag. The cop-width of G, denoted by cw(G), is the least
number k such that G admits a cop-decomposition of width k. Observe that trees have
cop-width 1. If G excludes a Kr as a minor, then Andreae shows that cw(G) \leq r - 1.
In fact, Andreae's cop algorithm constructively creates a cop-decomposition for G of
width r - 1; moreover, each bag B is actually a rooted shortest-path tree with at most
r  - 1 leaves and whose root is in B \setminus B\prime .

1If B is the root bag of T , then we set B\prime = \emptyset .
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1124 ABRAHAM, GAVOILLE, GUPTA, NEIMAN, AND TALWAR

From cop-decompositions to padded partitions via skeletons. The cop-
decomposition induces a partition of the vertices of the graph into bags that consist
of at most r  - 1 shortest paths. Note that the number of vertices in each bag in a
cop-decomposition may be large and depend on n. Why are these bags useful? Since
each bag B contains at most r  - 1 shortest paths in the induced subgraph B \setminus B\prime 

(where B\prime is the parent of B), one can choose a ``net"" of centers along each path so
that each node in the graph is threatened by O(r) centers from any one bag. Hence
it now suffices to bound the number of bags that get close enough to a vertex z so
that some centers from this bag may threaten z. (We call such a bag a ``threatening
skeleton"" for z.) As mentioned above, we do not bound the worst-case number of such
threatening skeletons; we prove it suffices to bound their expected number.

Bounding the expected number of threateners. How to bound the expected
number of threatening skeletons for some node z \in V ? We need a notion of progress.
The cop-decomposition ensures that in any given moment there are less than r bags
(a.k.a. threatening skeletons) that z can see on the boundaries of its component, where
each bag consists of a tree with at most r - 1 paths. We observe the following property
of the distances from z to these trees: if constructing a new tree Tnew in the induced
subgraph containing z causes some current tree Tcurr to become farther from z (or
even to be disconnected from z) because it cuts off some short path from z to Tcurr,
the distance from z to Tnew is strictly less than the distance from z to Tcurr. Indeed,
if this distance were to miraculously decrease (deterministically) by \Delta /k, then one
can prove a bound of O

\bigl( 
r+k
k

\bigr) 
on the number of threateners. But why should such a

large decrease happen? It doesn't, but we force this to happen in expectation. We
change the above construction and build a ``buffer"" of some random radius around
each skeleton we build. Note that the supernodes did not have to be trees in the
above arguments, and hence ``fattening"" them by growing buffers around the trees
would not change any of the preceding arguments. Now by choosing the buffer radius
from a truncated exponential with rate O(r), we may naively hope to decrease the
distance by \Delta /r with constant probability (assuming no truncation). The proof is
much more subtle, and requires overcoming the truncation of the buffer. We use a
potential function with delicately chosen parameters, such that for each new tree, this
potential increases in expectation by \approx r/2r. The potential starts at 0 and once it
reaches r, it means that z is at distance 0 from some buffered tree and will not be
threatened again. Finally, the optional stopping theorem helps us bound the expected
number of threateners by \approx 2r.

Bounding expected increase in potential. In order to bound the num-
ber of threateners for z, the potential function we use is a sum of exponentials\sum 

buffersB e - \alpha d(z,B) for some parameter \alpha ; the sum is over those buffered trees that
the node z can see. The main challenge is that in the worst case, one new buffered
tree can cause all the other current buffered trees to be disconnected from the com-
ponent containing z, hence losing r summands of the potential. To overcome this
we need to guarantee that the expected gain from the new tree is O(r) times more
than the expected loss of any single current tree, which is one of the technical cores
of the analysis. We note that obtaining any deterministic bound on the number of
threateners using a cop-decomposition, rather than only bounding the expectation,
remains an open question.

1.2. Other related work. The ideas of either finding a ``good"" decomposition
or else building a Kr-minor used by [KPR93, And86] also appear in ``shallow-minor
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COPS, ROBBERS, AND THREATENING SKELETONS 1125

theorems"" of Alon, Seymour, and Thomas [AST90], Plotkin, Rao, and Smith [PRS94],
and others. The parameters and run-times of these constructions have been consid-
erably improved; see the paper of Wulff--Nilsen [WN11] and the references therein.

Busch, LaFortune, and Tirthapura [BLT07] first suggested the idea of decompos-
ing a graph into paths and building balls around these paths; they considered this
in the context of strong-diameter covers. They give the best constants for covers of
planar graphs; for Kr-minor-free graphs, they give O(1)-padding and O(log | V | \cdot f(r))-
overlap, where f(r) depends on the Robertson--Seymour structure theorem.

In contrast to the weak-diameter partitions of Klein, Plotkin, and Rao and
Fakcharoenphol and Talwar [KPR93, FT03], the previously best strong-diameter par-
titions are due to Abraham et. al. [AGMW10], who guarantee strong-diameter \Delta and

that the probability of an edge \{ u, v\} being separated is O(6rr2 \cdot d(u,v)\Delta ). Abraham et.
al. [AGMW10] also present sparse covers with strong-diameter \Delta , padding of O(r2),
and overlap of 2O(r)r!.

The papers [IS07, BLS10, Sid10] give algorithms to probabilistically embed genus-
g graphs into planar graphs with 2O(g), O(g2), and O(log g) distortion, respectively.
The ideas developed in this line of work lead to an asymptotically optimal padding
parameter of O(log g) for genus-g graphs [LS10].

For general graphs, the decomposition schemes in, e.g., [Awe85, LS93, Bar96,
CKR05, FRT04] give asymptotically optimal O(log | V | )-padding. The best result
known for tree-width-r graphs was the same as for Kr-minor-free graphs, i.e., O(r2)-
padding partitions.

1.3. Organization of the paper. After a few preliminary definitions, we pro-
vide in section 3 a bound on the expected number of threateners for a wide range of
partition algorithms, and show how to use this to bound the padding probability. Our
main result, Theorem 3, is proved in section 4. The three assertions of Theorem 4 are
then proven in sections 5, 6, and 7.

2. Definitions and notation.

Graphs. We assume familiarity with graph-theoretic notions; see, e.g., [Die00]
for background. Here are some definitions we will use. Given a graph G = (V,E), a
ball around A \subseteq V of radius t \geq 0 is BG(A, t) = \{ u \in V | dG(A, u) \leq t\} . Also let
N(A) = \{ u \in V | \exists v \in A, \{ u, v\} \in E\} . For subsets A,B \subseteq V define a relation \sim 
where A \sim B iff A\cap N(B) \not = \emptyset , that is, iff there is an edge between a vertex of A and
a vertex of B.

A minor of G is a subgraph of a graph obtained from G by a sequence of edge
contractions. Equivalently, G\prime is a minor of G if there exists a map f : V (G)\rightarrow V (G\prime )
such that (a) for each u\prime \in V (G\prime ) the ``supernode"" f - 1(u\prime ) is connected in G, and
(b) for every edge \{ u\prime , v\prime \} \in E(G\prime ), there is at least one edge between f - 1(u\prime ) and
f - 1(v\prime ) in E(G). A graph G is H-minor-free (or excludes an H-minor) if G does
not contain a minor isomorphic to H. As is well known, planar graphs are exactly
the graphs excluding K3,3 and K5 as minors. In fact, Robertson and Seymour proved
that every graph family closed under taking minors is characterized by a finite set of
excluded minors.

Many one-way implications are also known: if we can show that a class G of graphs
is closed under taking minors, and H \not \in G , then G contains only H-minor-free-graphs.
Hence, graphs with tree-width at most r are Kr+2-minor-free (since tree-width of a
clique is one smaller than its size, and the tree-width of a graph does not increase
under taking minors); graphs with genus g exclude Kr as a minor for some r = \Theta (

\surd 
g),
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1126 ABRAHAM, GAVOILLE, GUPTA, NEIMAN, AND TALWAR

since the genus of Kr is \Theta (r2).

Truncated exponential distributions. We will extensively use the following
probability distribution over positive reals. The [\theta 1, \theta 2]-truncated exponential distri-
bution with parameter b is denoted by Texp[\theta 1,\theta 2](b), and the density function is

(2.1) ftexp;b;\theta 1,\theta 2(y) :=
b e - b\cdot y

e - b\cdot \theta 1  - e - b\cdot \theta 2
for y \in [\theta 1, \theta 2].

For the [0, 1]-truncated exponential distribution we drop the subscripts and denote it
by Texp(b); the density function is

(2.2) ftexp;b(y) :=
b e - b\cdot y

1 - e - b
for y \in [0, 1].

Note that if Y \propto Texp(b), then u \cdot Y \propto Texp[0,u](b/u).

3. Analysis. Our algorithms induce an iterative process that creates ``skeletons""
(e.g., trees, paths, or vertices) and remove their neighborhoods (a buffer), defined
according to some truncated exponential distribution, from the graph. Once we have
these skeletons, our algorithms define a second iterative process that creates clusters
from the skeletons.

Let us abstract out the properties needed from our first and second processes.

Definition 6 (skeleton-process). Given a graph G and parameters 0 \leq l <
u \leq 1 and b > 0, any process which generates a sequence of graphs G = G0, G1, . . . ,
skeletons A0, A1, . . . , and vertex sets K0,K1, . . . , that satisfies the following property
is a skeleton-process:

\bullet For any i \geq 0, Ai \subseteq V (Gi) and Ki = BGi(Ai, Ri\Delta ), where Ri \propto Texp[l,u](b/(u
 - l)).

The process is threatening if the graph sequence satisfies Gi+1 = Gi \setminus Ki, and the
process is cutting if the graph sequence satisfies Gi+1 \supseteq G0 \setminus (\cup j\leq iKj).

The first process is a threatening process which creates buffers around the trees
of the cop-decomposition. The second process is a cutting process that creates the
actual clusters centered at net-points of the trees. For the strong-diameter results, we
will have a single process that satisfies both definitions.

3.1. Analysis of the threatening process: Bounding the expected threats.
A crucial property of all of our algorithms is that any vertex z can ``see"" at most s
buffers (the Ki sets) at any time, for some parameter s (in the weak-diameter par-
tition we will have s = r). By this we mean that for any connected component C
in one of the remaining graphs (after some buffers were removed), there are at most
s buffers that are connected to C by an edge of G. This property will enable us to
prove that z is expected to be ``threatened"" by a small number of skeletons, that is,
we expect a few skeletons that are sufficiently close to cut a certain ball around z.

Consider a threatening skeleton-process with parameters l = 0, u \in (0, 1], and
b = 2s. We prove a bound on the expected number of threateners for a ball around
any vertex z of G with padding parameter \gamma > 0. For some u \leq u\prime \leq 1, let \scrJ z =
\{ Ai | dGi(z,Ai) \leq (u\prime + \gamma )\Delta \} be the set of vertex sets whose subset Ki may intersect
Bz = BG(z, \gamma \Delta ). Observe that once z \in Kj for some index j, then it is removed from
the graph, and \scrJ z cannot increase anymore. For a connected component Ci \in Gi let
\scrK | Ci

= \{ Kj | j < i \wedge Ci \sim Kj\} . (Recall that A \sim B if there exists an edge from a
node in A to some node in B.)
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Lemma 7. Suppose that in a threatening skeleton-process we have the property
that for every i \in \BbbN and every connected component Ci \in Gi, we are guaranteed that
| \scrK | Ci

| \leq s, then

\BbbE [| \scrJ z| ] \leq 3e(2s+1)\cdot (u\prime +\gamma )/u .

Proof. Fix any i \in \BbbN . Without loss of generality (w.l.o.g.), we may assume that
the process always picks the set Ai in the connected component Ci of Gi that contains
z (the other components do not affect \scrJ z). Let x = x(i) be a vector of the ``normalized
distances"" from z to \scrK | Ci

. More formally, if \scrK | Ci
= \{ Ki1 , . . .Kil\} (with l \leq s by the

assumption of the lemma), then for j \in [l] define

xj :=
dGi\cup Kij

(z,Aij ) - Rij\Delta 

u\Delta 
.

Intuitively, xj should have been the distance from z to Kij , normalized by u\Delta . Note
that by the definition of Kij we have that dGi\cup Kij

(z,Kij ) \geq dGi\cup Kij
(z,Aij ) - Rij\Delta .

Define the potential function for the vector x := (x1, . . . , xl) as

(3.1) \Phi (x) =

l\sum 
j=1

e - (2s+1)\cdot xj .

We would like to analyze the change to x over time. Assume w.l.o.g. that x1 \leq 
\cdot \cdot \cdot \leq xl. Let h :=

dGi
(z,Ai)

u\Delta \geq 0 be the normalized distance of z from the set Ai, and
let y = h  - Ri/u. Observe that if xj \leq y, then the shortest path from Kij to z is
completely disjoint from Ki; seeking contradiction, assume a \in Ki lies on the shortest
path in Gi from z to Kij . Since every vertex of distance Rij\Delta from Aij is in Kij

and thus was removed from the graph, it must be that dGi\cup Kij
(a,Aij ) > Rij\Delta . We

conclude that

dGi(z, a) < dGi\cup Kij
(z,Aij ) - Rij\Delta = xj/(u\Delta ) \leq y/(u\Delta )

= dGi
(z,Ai) - Ri\Delta \leq dGi

(z,Ki) \leq dGi
(z, a) ,

a contradiction.
We get that if j\ast is the maximal index such that xj\ast \leq y, then the first j\ast entries

of x will not change. The new set Ki will always be in \scrK | Ci+1
(recall that Ci+1 is

the component containing z in Gi+1 = Gi \setminus Ki), so we have that the j\ast + 1 entry in
x(i+ 1) will be xj\ast +1 = y. For j\ast < j \leq l, it could be the case that Ki intersects the
shortest path from Kij to z, in which case the distance may increase or Kij can even
be disconnected from z. Note that if l = s, then it must be that at least one Kij is
disconnected from z, because we assume that | \scrK | Ci+1

| \leq s.
Next, we attempt to bound the expected change to the potential function \Phi in

any single step. To this end, it suffices to consider the worst scenario, in which all the
Kij for j\ast < j \leq l become disconnected from z by Ki (in such a case the potential
decreases the most). Define the ``filtered subsequence"" x \downarrow y to be the sequence
obtained by dropping all the coordinates of x which are strictly larger than y, and
adding in y (e.g., ( - 0.4, - 0.3, 0.7, 5, 6.9) \downarrow 1.42 = ( - 0.4, - 0.3, 0.7, 1.42)).

Lemma 8. Let \Phi be a function defined as in (3.1). Fix any nondecreasing se-
quence x of length at most s, and a random variable Y \propto Texp(2s) as in (2.2). Then,
for any h \geq 0

\BbbE Y [\Phi (x \downarrow (h - Y )) - \Phi (x)] \geq s(e - 2) \cdot e - (2s+1)h

1 - e - 2s
.
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1128 ABRAHAM, GAVOILLE, GUPTA, NEIMAN, AND TALWAR

Proof of Lemma 8. Let b = 2s and a =  - (b + 1). The increase of the potential
due to the new coordinate y = h - Y is ea\cdot (h - Y ), so the expected gain is

\BbbE [ea(h - Y )] = eah \cdot 
\int 1

0

e - aw ftexp;b(w) dw(3.2)

= eah \cdot 
\int 1

0

b

1 - e - b
e - (a+b)w dw =

b(e - 1) \cdot eah

1 - e - b
.

Next, we analyze the loss in \Phi for the coordinates xj that are dropped. Recall
that a coordinate xj is dropped exactly when xj > h  - Y . Since Y \in [0, 1] the only
interesting case is when xj = h - \gamma for some \gamma \in [0, 1], which is dropped when Y > \gamma ,
so the maximum loss is

max
\gamma \in [0,1]

ea(h - \gamma ) Pr[Y > \gamma ] = eah \cdot max
\gamma \in [0,1]

e - a\gamma 

\int 1

\gamma 

ftexp;b(w) dw

= eah \cdot max
\gamma \in [0,1]

e - a\gamma e - b\gamma  - e - b

1 - e - b

=
eah

1 - e - b
\cdot max
\gamma \in [0,1]

e\gamma  - e - a\gamma  - b

\leq eah

1 - e - b
\cdot e .

Since x has only s coordinates, the total expected loss incurred on \Phi is thus at
most

(3.3)
s \cdot e \cdot eah

1 - e - b
.

Finally, using (3.3) and (3.3) we see that

\BbbE [\Phi (x \downarrow (h - Y )) - \Phi (x)] \geq b(e - 1) \cdot eah

1 - e - b
 - s \cdot eah+1

1 - e - b

=
(e(b - s) - b) \cdot e - (b+1)h

1 - e - b
.

Applying Lemma 8 with the vector x (whose length is indeed at most s) and
Y = Ri/u, noting that Y \propto Texp(2s) by a property of the exponential distribution
mentioned in section 2, we get that

(3.4) \BbbE Y [\Phi (x \downarrow y) - \Phi (x)] \geq (e - 2)s \cdot e - (2s+1)h

1 - e - 2s
\geq 2s \cdot e - (2s+1)h/3 .

It will be more convenient to analyze a slightly different potential function

\Phi \prime (x) =

\biggl\{ 
2s, \exists j, xj \leq 0,
\Phi (x) otherwise.

We claim that (3.4) still holds for \Phi \prime (as long as z \in Gi). This is because it is
the same as \Phi as long as x > 0, and if x(i + 1) is the first to have a nonpositive
coordinate, then \Phi \prime (x(i)) = \Phi (x(i)) < s and \Phi \prime (x(i + 1)) = 2s, but since h \geq 0 the
claimed expected increase in (3.4) is never more than s.
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Denote by \Phi i = \Phi \prime (x(i)). Recall that for every Ai \in \scrJ z we have that dGi
(z,Ai) \leq 

(u\prime +\gamma )\Delta and thus h = dGi
(z,Ai)/(u\Delta ) \leq (u\prime +\gamma )/u. Observe that the expectation of

(3.4) is taken only over the current choice of Y , and since Y is chosen independently
we can condition on any other event that depends on previous steps, and obtain the
same bound. In particular, for Ai \in \scrJ z,

(3.5) \BbbE [\Phi i+1 | \Phi i] \geq \Phi i + 2s \cdot e - (2s+1)h/3 \geq \Phi i + 2s \cdot e - (2s+1)\cdot (u\prime +\gamma )/u/3 ,

and we define \zeta = 2s \cdot e - (2s+1)\cdot (u\prime +\gamma )/u/3. Also note that the bound of (3.4) is always
positive, so even if Ai /\in \scrJ z, we still have

(3.6) \BbbE [\Phi i+1 | \Phi i] \geq \Phi i .

For t \in \BbbN let jt = | \{ i : Ai \in \scrJ z and i \leq t\} | be the number of time steps until t in
which z is threatened. We claim that the process X0, X1, . . . , where Xt = \Phi t  - \zeta \cdot jt,
is a submartingale. To prove this consider two cases: If At+1 \in \scrJ z, then jt+1 = jt+1,
and by (3.5) we get \BbbE [\Phi t+1 | \Phi t, jt] \geq \Phi t + \zeta , and so

\BbbE [Xt+1 | X1, . . . , Xt] = \BbbE [\Phi t+1 - \zeta \cdot jt+1 | \Phi t, jt] \geq \Phi t+\zeta  - \zeta \cdot jt+1 = \Phi t+\zeta  - \zeta \cdot (jt+1) = Xt .

If it is the case that At+1 /\in \scrJ z, then jt+1 = jt and

\BbbE [\Phi t+1  - \zeta \cdot jt+1 | \Phi t, jt] \geq \Phi t  - \zeta \cdot jt = Xt .

The stopping time of a (sub)martingale X0, X1, . . . is a random variable \tau that
has support in \BbbN , and such that the event \tau = t depends only on X0, . . . , Xt. Define
\tau as the first time in which \Phi \tau = 2s. Observe that if t is the time where z \in Kt,
then it must be that dGt

(z,At) \leq Rt\Delta , and so we get a nonpositive coordinate in
x(t) which implies that \tau = t. Since the stopping time is bounded by | V | (there can
be at most | V | rounds, because at least one vertex is removed every round), we can
apply Doob's optional stopping time theorem [GS01, section 12.5] and obtain that

\BbbE [\Phi \tau ] - \zeta \cdot \BbbE [j\tau ] = \BbbE [X\tau ] \geq \BbbE [X0] = 0 .

Finally, as \Phi \tau = 2s, we obtain that

\BbbE [| \scrJ z| ] = \BbbE [j\tau ] \leq 2s/\zeta = 3e(2s+1)\cdot (u\prime +\gamma )/u .

This completes the proof of Lemma 7.

3.2. Analysis of the cutting process: Bounding the probability of cut-
ting a ball. In this section we give a bound on the probability that a ball is cut by
a cutting skeleton-process, which depends on the expected number of threateners.

Consider a cutting skeleton-process as in Definition 6 with parameters 0 \leq l <
u \leq 1, b > 0. Fix z \in V (G), a parameter \gamma > 0, and set Bz = BG(z, \gamma \Delta ). Let
\scrT z = \{ Ai | dGi

(z,Ai) \leq (u + \gamma )\Delta \} be the set of vertex sets whose subset Ki may
intersect Bz. Let N := | \scrT z| be a random variable with \tau = \BbbE [N ]. We say that Bz is
cut by the skeleton-process if it intersects more than a single Ki.

Lemma 9. For \delta = e - 2b\gamma /(u - l), the probability that Bz = BG(z, \gamma \Delta ) is cut by a
cutting skeleton-process with the property that \tau = \BbbE [| \scrT z| ], is at most

(1 - \delta )

\biggl( 
1 +

\tau 

eb  - 1

\biggr) 
.
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1130 ABRAHAM, GAVOILLE, GUPTA, NEIMAN, AND TALWAR

Let us introduce some more notation and properties before proving this lemma.
Define the following events:

\scrC i = \{ Bz \cap Ki /\in \{ \emptyset , Bz\} \} ``Bz cut in round i (by Ai),""

\scrF i = \{ Bz \cap Ki = \emptyset \} ``i was a no-op round,""

\scrE i =
\biggl\{ 
\scrC i \wedge 

\bigwedge 
j<i

\scrF j

\biggr\} 
``Bz first cut in round i.""

Denote by \scrF (<i) the event
\bigwedge 

j<i \scrF j , so that \scrE i = (\scrC i \wedge \scrF (<i)). Denote by \scrF i the

complement of \scrF i. Observe that \scrC i (resp., \scrF i) implies that Ai \in \scrT z, so

Pr[\scrC i] = Pr[\scrC i \wedge Ai \in \scrT z] = Pr[Ai \in \scrT z] \cdot Pr[\scrC i | Ai \in \scrT z] ,(3.7)

Pr[\scrF i] = Pr[Ai \in \scrT z] \cdot Pr[\scrF i | Ai \in \scrT z] ,(3.8)

and the same holds also when conditioning on any other event. We have the following
claim.

Claim 10. For each i \in \BbbN ,

Pr[\scrC i | \scrF (<i), Ai \in \scrT z] \leq (1 - \delta ) \cdot 
\biggl( 
Pr[\scrF i | \scrF (<i), Ai \in \scrT z] +

1

eb  - 1

\biggr) 
.

Proof. Fix any graph Gi and any set Ai \subseteq V (Gi) that agree with the conditioning
on \scrF 0, . . . ,\scrF i - 1 and so that Ai \in \scrT z. Denote \rho = dGi

(Ai, Bz), \=b = b/(u - l), and let
m = max\{ l, \rho \} . Recall that Ri is chosen independently, so

Pr[\scrF i | \scrF 0, . . . ,\scrF i - 1, Ai \in \scrT z, Ai] =

\int u

m

\=be - 
\=by

e - \=bl  - e - \=bu
dy

=
e - 

\=bm  - e - 
\=bu

e - \=bl  - e - \=bu
.

Since \scrF 0, . . . ,\scrF i - 1 occurred and Gi \supseteq G0 \setminus (\cup j<iKj), we have that Bz \subseteq Gi. Now, if
Ri \geq \rho + 2\gamma , then by the triangle inequality Bz \subseteq Ki, and the ball is ``saved."" This
bounds the cut probability; thus

Pr[\scrC i | \scrF (<i), Ai \in \scrT z, Ai] \leq 
\int \rho +2\gamma 

m

\=be - 
\=by

e - \=bl  - e - \=bu
dy

\leq e - 
\=bm  - e - 

\=b(m+2\gamma )

e - \=bl  - e - \=bu

=
e - 

\=bm(1 - \delta )

e - \=bl  - e - \=bu

= (1 - \delta ) \cdot Pr[\scrF i | \scrF (<i), Ai \in \scrT z, Ai] + (1 - \delta )
e - 

\=bu

e - \=bl  - e - \=bu

= (1 - \delta ) \cdot 
\biggl( 
Pr[\scrF i | \scrF (<i), Ai \in \scrT z, Ai] +

1

eb  - 1

\biggr) 
.

Finally, because the bound holds for any Ai, it holds without conditioning on it.
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Proof of Lemma 9. Observe that for each i \in [N ], the events
\bigl\{ 
\scrF i \wedge \scrF (<i)

\bigr\} 
are

pairwise disjoint (this is the event that Bz is either cut or contained in Ki for the first
time); thus by the law of total probability,

(3.9)
\sum 
i\in \BbbN 

Pr
\bigl[ 
\scrF i \wedge \scrF (<i)

\bigr] 
\leq 1 .

Also, by linearity of expectation

(3.10) \tau =
\sum 
i\in \BbbN 

Pr[Ai \in \scrT z] .

To bound the probability of the ball being cut, we start off with the trivial union
bound:

Pr

\Biggl[ \bigcup 
i\in \BbbN 
\scrE i

\Biggr] 
\leq 

\sum 
i

Pr[\scrE i] =
\sum 
i

Pr
\bigl[ 
\scrC i \wedge \scrF (<i)

\bigr] 
=

\sum 
i

Pr[\scrC i | \scrF (<i)] \cdot Pr[\scrF (<i)]

(3.7)
=

\sum 
i

Pr[\scrC i | \scrF (<i), Ai \in \scrT z] \cdot Pr[Ai \in \scrT z | \scrF (<i)] \cdot Pr[\scrF (<i)]

Claim 10
\leq 

\sum 
i

(1 - \delta )

\biggl( 
Pr[\scrF i | \scrF (<i), Ai \in \scrT z] +

1

eb  - 1

\biggr) 
\cdot Pr[Ai \in \scrT z | \scrF (<i)] \cdot Pr[\scrF (<i)]

(3.8)
= (1 - \delta ) \cdot 

\sum 
i

Pr
\bigl[ 
\scrF i \wedge \scrF (<i)

\bigr] 
+

\sum 
i

Pr
\bigl[ 
Ai \in \scrT z \wedge \scrF (<i)

\bigr] 
\cdot 1 - \delta 

eb  - 1

(3.9)

\leq (1 - \delta ) +
1 - \delta 

eb  - 1
\cdot 
\sum 
i

Pr[Ai \in \scrT z]

(3.10)
= (1 - \delta )

\biggl( 
1 +

\tau 

eb  - 1

\biggr) 
.

This completes the proof.

4. A weak-diameter partition. In this section, we show how to construct
a weak-diameter partition for Kr+1-minor-free graphs which is O(r)-padded (with
constant \delta = 1/160). The ideas here will later extend to the case of strong-diameter
partitions with a weaker (O(r2), O(1/r2))-padding.

4.1. The algorithm. At a high level, the algorithm works as follows: in each
step, pick a connected component of the remaining graph, and find (in a specific way)
a shortest-path tree T in this component. Delete a random neighborhood of T from
the graph, and recurse on each connected component of the graph, if any. We then
construct a net of points on each tree, and from these net points grow ``balls"" of
random radius to form the small-diameter regions of the partition. A key property to
ensure the padding guarantee is that each vertex is expected to be close to few of these
paths. We show that this property holds; otherwise we can construct a Kr+1-minor
in G.

More specifically, the algorithm maintains a set of trees Ti and supernodes Si that
will be used in the construction, where each tree and supernode has a ``center"" vertex
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associated with it. Let us describe a generic ith iteration of the algorithm. Let \scrS be
the set containing all the supernodes created so far; initially this will be empty. Let
C be a connected component in the graph Gi = G \setminus (\cup \scrS ), where \cup \scrS is the set of all
vertices lying in the supernodes in \scrS ; initially G \setminus (\cup \scrS ) will be the entire graph. Let
\scrS | C = \{ S \in \scrS : S \sim C\} be the set of supernodes that have a neighbor in component
C. Say \scrS | C = \{ S\prime 

1, S
\prime 
2, . . . , S

\prime 
k\} , and consider the vertices Fj = N(S\prime 

j) \cap C for each
supernode, which are vertices in C neighbors of these ``adjacent"" supernodes. (These
Fj 's may intersect.) We pick an arbitrary vertex ui from C and build a tree Ti rooted
at ui, which is comprised of shortest paths from ui to each of the sets Fj (that is,
for each j take a shortest path from ui to the nearest vertex in Fj). Define the next
supernode

Si := BGi
(Ti, Ri\Delta ),

where Ri \propto Texp[0,1/8](16r). (Recall the definition of the truncated exponential
distribution from (2.1).)

In order to create the random partition, choose a \Delta /8-net Ni over Ti, and enu-
merate Ni = \{ v1, . . . , v| Ni| \} . For each 1 \leq j \leq | Ni| , create a cluster BGi(vj , \alpha j\Delta ) \cap 
Uj (where Uj is the set of points which have no cluster yet), where each \alpha j \propto 
Texp[1/4,1/2](160r). This completes the description of the algorithm; it is also given
as Algorithms 1 and 2; see, for example, Figure 4.1.

Algorithm 1. Weak-Random-Partition(G,\Delta ,r).

1: Let G0 \leftarrow G, i\leftarrow 0.
2: Let \scrS \leftarrow \emptyset .
3: Let \scrT \leftarrow \emptyset .
4: while Gi is nonempty do
5: Let Ci be a connected component of Gi.
6: Pick ui \in Ci. Let Ti be a tree rooted at ui that consists of shortest paths (in

Gi) from ui to the closest vertex of N(S) for each supernode S \in \scrS | Ci
.

7: Let Ri be a random variable drawn independently from the distribution
Texp[0,1/8](16r).

8: Let Si \leftarrow BGi
(Ti, Ri\Delta ) be a neighborhood of Ti.

9: Add Si to \scrS .
10: Add Ti to \scrT .
11: Gi+1 \leftarrow Gi \setminus Si.
12: i\leftarrow i+ 1.
13: end while
14: return Create-Balls(G,\scrT ,\scrS ,\Delta ,r).

4.2. The analysis. The following invariant holds for each time step i.

Invariant 1. For every i \geq 0, every connected component C of Gi satisfies that
if S, S\prime \in \scrS | C , then S \sim S\prime .

Proof. The proof is by induction; the base case is trivial as there are no supernodes
in \scrS | C . Now by induction, assume that the invariant holds in Gi. Let Ti and Si be
the tree and supernode constructed in step i in the component Ci. Let C be some
connected component of Gi+1, and S, S\prime \in \scrS | C . If C \cap Ci = \emptyset , then C is a component
of Gi as well; moreover, as Si \subseteq Ci it must be that Si \nsim C so neither of S, S\prime can be
Si, and hence we can use the induction hypothesis to infer that S \sim S\prime . On the other
hand, suppose that C \subseteq Ci. There are two cases: if Si /\in \{ S, S\prime \} , we have S \sim S\prime 
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Algorithm 2. Create-Balls(G,\scrT ,\scrS ,\Delta ,r).

1: P = \emptyset .
2: for i = 1, . . . , | \scrT | do
3: Let Ni = \{ v1, . . . , v| Ni| \} be a \Delta /8-net of Ti.
4: for j = 1, . . . , | Ni| do
5: Let \alpha j be a random variable drawn independently from distribution

Texp[1/4,1/2](80r).
6: Add BGi

(vj , \alpha j\Delta ) \setminus \cup P as a cluster to the partition P .
7: end for
8: end for
9: return P .

uS1

S2

S3

uS1

S2

S3

uS1

S2

S3

Fig. 4.1. An iteration of the algorithm. On the left, there are three supernodes S1, S2, S3

neighboring the current component with u as a root. In the middle, we have a tree T4 comprised of
three shortest paths from u. On the right, the new supernode S4 which is a 1-neighborhood of T4

(observe that this neighborhood is taken in the connected component containing u).

by the induction hypothesis on Ci. On the other hand, suppose Si = S (w.l.o.g.).
Recalling that Ti was chosen so that it contains a neighbor of every supernode in \scrS | Ci

and Ti \subseteq Si, we have that Si \sim S\prime .

Invariant 1 implies that for each connected component C, contracting the super-
nodes of \scrS | C yields a K| \scrS | C | -minor, so we obtain the following corollary.

Corollary 11. If G excludes Kr+1 as a minor, then for every time step i, the
connected component Ci has | \scrS | Ci

| \leq r. In particular, the tree Ti is made up of at
most r shortest paths in Gi.

Claim 12. The algorithm above generates a \Delta -bounded partition of G.

Proof. First, we prove that we generate a partition. Indeed, we delete supernodes
from the graph, and recurse on the remaining components, so we need to show that
vertices within the supernodes are contained in some cluster. Consider a vertex x in
supernode Si. By definition, dGi

(x, Ti) \leq \Delta /8. Since Ni is a \Delta /8-net in Ti, some net
point vj \in Ni satisfies dGi

(x, vj) \leq \Delta /4. And since \alpha j \geq 1/4, the ball BGi
(vj , \alpha j\Delta )

contains x. Hence each vertex within the deleted supernode is contained in some
cluster, and we get a partition of G. Moreover, each cluster is a ball of radius at most
\alpha j\Delta \leq \Delta /2 (and hence diameter at most \Delta ) in Gi. Finally, distances in Gi are no
smaller than those in G.

Lemma 13. For r \geq 4, and any \gamma \leq 1/160, the probability that a ball Bz of radius
\gamma \Delta is cut by the above process is

Pr[Bz cut] \leq 1 - e - 320r\gamma .
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Proof. First, observe that the process defined in Algorithm 1 is a threatening
skeleton-process, with the sequence of graphs G0, G1, . . . as defined in the algorithm
and with Ai = Ti, Ki = Si, l = 0, u = 1/8, s = r, and b = 2s. Recall that
Bz = BG(z, \gamma \Delta ), and set u\prime = 1/2 so that \scrJ z = \{ Ti | dGi(z, Ti) \leq (u\prime + \gamma )\Delta \} (we
choose this u\prime to accommodate the cutting process which will be conducted with this
parameter). By Invariant 1 we get that for all i \in \BbbN , | \scrS | Ci

| \leq r, so by Lemma 7 (using
that \gamma \leq 1/160),

(4.1) \BbbE [| \scrJ z| ] \leq 3e(2r+1)\cdot (u\prime +\gamma )/u \leq 10e10r .

For each i such that Ti \in \scrJ z, let Ui = \{ v \in Ni | dGi
(v, z) \leq (1/2 + \gamma )\Delta \} be the

net points in Ni that are sufficiently close to threaten Bz (note that by the choice
of u\prime this is indeed the case), and denote \scrT z = \cup i| Ti\in \scrJ z

Ui. By Corollary 11, Ti is
comprised of at most r shortest paths, and we claim that on each shortest path there
can be at most ten points that are in Ui. This is because the distance between any
two consecutive net points on a path is at least \Delta /8, and if there are q > 10 points,
because this is a shortest path, the distance from the first point to the last is at least
(q  - 1) \cdot \Delta /8 > (1 + 2\gamma )\Delta . The triangle inequality implies that it can't be that both
are within (1/2 + \gamma )\Delta from z. We conclude that for all i (with Ti \in \scrJ z) we have
| Ui| \leq 10r; thus by (4.1)

(4.2) \tau := \BbbE [| \scrT z| ] \leq 10r \cdot 10e10r = 100r \cdot e10r .

Next, we show that our Create-Balls algorithm generates a cutting skeleton-process.
Simply take the sequence G0, . . . , G0, G1, . . . , G1, G2, . . . , where each Gi is taken | Ni| 
times. Then the skeleton sets A are in fact singletons: for each i we will take | Ni| 
sets---the points of Ni---to be these singletons. The parameters for the exponential
distribution are l = 1/4, u = 1/2, and b = 20r. To see the cutting property of
Definition 6, note that once we move from the graph Gi to Gi+1, Gi+1 will contain
all the points yet uncovered by clusters, because we already observed in Claim 12
that once all the points of Ni create a cluster, the supernode Si is completely covered
(recall Gi+1 = Gi \setminus Si). Finally, applying Lemma 9, we obtain that the probability
that Bz is cut is at most

(1 - e - 2b\gamma /(u - l))

\biggl( 
1+

\tau 

eb  - 1

\biggr) 
= (1 - e - 160r\gamma )

\biggl( 
1+

100r \cdot e10r

e20r  - 1

\biggr) 
.

It holds that 100r\cdot e10r
e20r - 1 \leq e - r for r \geq 4, and this completes the proof as

(1 - e - 160r\gamma ) \cdot (1 + e - r) \leq (1 - e - 160r\gamma ) \cdot (1 + e - 160r\gamma ) = 1 - e - 320r\gamma ,

using that \gamma \leq 1/160.

5. A strong-diameter partition. In the previous section, we saw how to get
a weak-diameter partition for minor-free graphs. In this section, we give a strong-
diameter guarantee with a slightly weaker padding parameter of (O(r2), O(1/r2))
instead of O(r). However, this is still an exponential improvement over the best
previous padding for such strong-diameter partitions of minor-free graphs.

5.1. The algorithm. The algorithm for strong-diameter partitions is similar in
spirit to that of section 4.1 for weak-diameter partitions, but there are some crucial
differences that we highlight here.
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At a high level, the algorithm works as follows: in each step, pick a connected
component of the remaining graph, and find (in a specific way) a shortest path P in
this component. Delete a random neighborhood of P from the graph, and recurse on
each connected component of the graph, if any. Each such random neighborhood is
decomposed into small diameter regions using cones centered at some of P 's points. A
key property to ensure the padding guarantee is that each node is expected to be close
to few of these paths. We show that this property holds; otherwise we can construct
a Kr+1-minor in G.

The algorithm again maintains a set of paths (instead of trees) and associated
supernodes that will be used in the construction. These will be denoted as Pij and Si,
respectively, and supernode Si consists of the union of neighborhoods of the paths Pij .
The main difference from the weak-diameter construction is that instead of building
a shortest-path tree all at once, we build a ``tree"" one path at a time, and remove a
neighborhood of the path from the graph before constructing the subsequent paths.

Let us describe the ith iteration of the algorithm. Let \scrS \subseteq V be the set containing
all the supernodes created so far. Let Ci be a connected component in the graph
Gi = G \setminus (\cup \scrS ). Let \scrS | Ci

= \{ S \in \scrS : S \sim Ci\} be the set of supernodes that have
a neighbor in component Ci. We pick an arbitrary vertex ui from Ci and build a
supernode Si. Again, the intuition behind the construction is that we wish for the
new supernode to ``touch"" every supernode S \in \scrS | Ci

(i.e., Si \sim S). However, this
is done slightly differently from section 4.1. At the first iteration (j = 1) we create
a shortest path Pij from ui to some supernode S \in \scrS | Ci

, and remove a random
neighborhood Sij from the graph to obtain Gi(j+1). This neighborhood Sij is defined
as all the vertices within distance Rij \cdot \Delta of Pij (in the current component Cij),
where Rij \propto Texp[0,1/4](8(r

2 + r)). We increase the iteration counter j and continue
in this manner on every connected component of Gij that is contained in Ci, until
the new supernode Si = \cup jSij touches every supernode S \in \scrS | C for every connected
component C \subseteq Ci in the remaining graph Gij .

Finally, each such neighborhood Sij is partitioned into ``cones."" Each cone B,
centered at some (yet uncovered) point c \in Pij , consists of the (yet uncovered) points
in Sij whose distance to c is not ``much larger"" than their distance to Pij . The notion
of being ``much larger"" is determined by a random variable \alpha drawn independently and
uniformly from [\Delta /8,\Delta /4]. The algorithms are formally presented as Algorithms 3
and 4, respectively. Observe that the subroutine Create-Cones is invoked in line 13
of Strong-Random-Partition.

5.2. The analysis. We begin by arguing that the algorithm creates a partition
\scrC with strong-diameter \Delta . The following properties will be useful.

Proposition 14. For any S and P obtained during the run of the algorithm
Create-Cones the following hold:

\bullet If u, v \in S are such that a shortest path from u to P contains v, and v \in B
for a cone B, then also u \in B.

\bullet If u, v \in S are such that a shortest path from u to c contains v, and u \in B
for a cone B centered at c, then also v \in B.

Proof. Let c \in P be the center of the cone B. We begin by proving the first item.
Since v \in B we have that dS(v, c)  - dS(v, P ) \leq \alpha \Delta . Since v is on the shortest path
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Algorithm 3. Strong-Random-Partition(G,\Delta ,r).

1: Let G0 \leftarrow G, i\leftarrow 0.
2: Let \scrS \leftarrow \emptyset .
3: Let \scrC \leftarrow \emptyset .
4: while Gi is nonempty do
5: Select a connected component Ci of Gi, and pick ui \in Ci.
6: Let W = \{ ui\} .
7: Let j = 1 and Gij = Gi \setminus W .
8: while there exist a connected component Cij in Gij and a supernode S \in \scrS | Cij

such that Cij \sim S and Cij \sim W but W \nsim S do
9: Choose u \in N(W ) \cap Cij .

10: Let Pij be a shortest path (in Gij) from u to N(S).
11: Let Rij be a random variable drawn independently from the distribution

Texp[0,1/4](8(r
2 + r)).

12: Let Sij \leftarrow BGij
(Pij , Rij\Delta ) be a neighborhood of Pij .

13: Create-Cones(Sij ,Pij ,\scrC ).
14: W \leftarrow W \cup Sij .
15: Gi(j+1) \leftarrow Gij \setminus Sij .
16: j \leftarrow j + 1.
17: end while
18: Set Si = W , and add Si to \scrS .
19: Gi+1 \leftarrow Gi \setminus Si.
20: i\leftarrow i+ 1.
21: end while
22: return \scrC 

Algorithm 4. Create-Cones(S,P ,\scrC ).
1: while P \not = \emptyset do
2: Choose c \in P .
3: Choose \alpha \in [1/8, 1/4] uniformly at random.
4: Let B = \{ u \in S | dS(u, c) - dS(u, P ) \leq \alpha \Delta \} .
5: Add B to \scrC .
6: Set S \leftarrow S \setminus B.
7: Set P \leftarrow P \setminus B.
8: end while

from u to P , dS(u, P ) = dS(u, v) + dS(v, P ) and thus

dS(u, c) - dS(u, P ) \leq (dS(u, v) + dS(v, c)) - (dS(u, v) + dS(v, P ))

= dS(v, c) - dS(v, P )

\leq \alpha \Delta ,

which implies that u \in B.
The second item is proved in a similar manner. Since u \in B we have that

dS(u, c)  - dS(u, P ) \leq \alpha \Delta . Since v is on the shortest path from u to c, dS(v, c) =
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dS(u, c) - dS(u, v) and thus

dS(v, c) - dS(v, P ) \leq (dS(u, c) - dS(u, v)) - (dS(u, P ) - dS(u, v))

= dS(u, c) - dS(u, P )

\leq \alpha \Delta ,

which implies that v \in B.

Lemma 15. Each cone B created in the algorithm has diam(G[B]) \leq \Delta .

Proof. Recall that each neighborhood S of a shortest path P contains points
within distance at most \Delta /4 from P . Let S be the remaining part after some cones
have been created, and P is the remaining path. The first property in Proposition 14
implies that the shortest path from any u \in S to P is fully contained in S, and thus

(5.1) dS(u, P ) \leq \Delta /4 .

Consider a certain cone B centered at c \in P , and by definition of B, for each u \in B,

(5.2) dS(u, c) \leq \alpha \Delta + dS(u, P )
(5.1)

\leq \Delta /4 + \Delta /4 = \Delta /2 .

By the second property of Proposition 14, if u \in B, then surely any v \in S on the
shortest path from u to c will also be in B, so dB(u, c) \leq \Delta /2 as well, and thus
diam(G[B]) \leq \Delta .

Finally, it remains to see that Create-Cones generates a partition of S (i.e.,
that the clusters it creates cover S), and this can be verified by the first property of
Proposition 14. If for u \in S there is a shortest path from u to P ending at v \in P ,
then whenever v is covered by a cone, u must be covered as well (the algorithm does
not stop until P = \emptyset ).

For a time step i, we say that W is the working supernode, and at the end of this
step it will become the supernode Si. Note that W induces a connected subgraph,
because we always choose a vertex u in N(W ) to be a start of the next path. We
denote by Gi0 = Gi. The following invariant holds for each time step i.

Invariant 2. For every i, j \geq 0, every connected component C of Gij satisfies
that if S, S\prime \in \scrS | C , then S \sim S\prime .

Proof. Assume inductively that the invariant holds until time step i at iteration
j. First, consider the case j > 0; then as Gij is obtained from Gi(j - 1) by removing
some vertices, and the set of supernodes remains unchanged, the invariant will still
hold. Every connected component C of Gij is a subset of a connected component D
of Gi(j - 1), in particular \scrS | C \subseteq \scrS | D, and so any pair of supernodes S, S\prime \in \scrS | C is also
in \scrS | D and thus S \sim S\prime .

For the case j = 0, a new supernode Si - 1 was just introduced, but the termination
condition of line 8 of Algorithm 3 guarantees that for any connected component C in
Gi, any supernode S \in \scrS | C must have S \sim Si - 1.

Corollary 16. If G excludes Kr+1 as a minor, then for every time step i and
iteration j, the connected component Cij has | \scrS | Cij

| \leq r. Moreover, fix some z \in 
V . If Pi1, . . . , Pil are the shortest paths chosen while creating Si in the components
containing z, then l \leq r.

Proof. If | \scrS | Cij
| = q, then using Invariant 2, contracting each supernode in \scrS | Cij

will yield a Kq-minor, so it must be that q \leq r. To see the second part of the
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1138 ABRAHAM, GAVOILLE, GUPTA, NEIMAN, AND TALWAR

assertion, note that each Pij will connect the component containing z with some
supernode S \in \scrS | Cij

, so that Sij \sim S. Finally, as | \scrS | Cij
| \leq r, there can be at most r

such paths.

Lemma 17. For \gamma \leq 1/r2, the probability that a ball Bz of radius \gamma \Delta is cut by
the above process is

Pr[Bz is cut] \leq O(\gamma r2) .

Proof. First, observe that our algorithm is a threatening skeleton-process with
parameters l = 0, u = 1/4, s = r2 + r, b = 2s, and the Gi (resp., Ai, Ki) are the Gij

(resp., Pij , Sij) ordered lexicographically. By Invariant 2 we get that for all i, j \in \BbbN ,
| \scrS | Cij

| \leq r. By Corollary 16, each of these supernodes S \in \scrS | Cij
can have at most r

paths that were built in a component containing Cij , so it may contribute at most r
to the number of sets in \scrK | Cij

, to a total of r2. We must also add in the (at most) r
paths of the current working supernode, to obtain that | \scrK | Cij

| \leq s. For u\prime = u, we
set \scrT z = \{ Pij | dGij

(Pij , z) \leq (u+ \gamma )\Delta \} , and let \tau = \BbbE [| \scrT z| ]. With this we may apply
Lemma 7 to infer that

\tau \leq 3e(2s+1)\cdot (u\prime +\gamma )/u = 3e(2s+1)\cdot (1+\gamma /u) .

Next, we show that our process is also a cutting skeleton-process, with the graph
sequence Gij and the skeletons Pij , ordered lexicographically. The parameters are
the same as before: l = 0, u = 1/4, and b = 2s (this is the exact same process, after
all). The condition that the graph sequence contains every uncovered point is trivial
by definition of Gij . By Lemma 9 we obtain that the probability that Bz is cut is at
most

(1 - e - 2b\gamma /(u - l))

\biggl( 
1 +

\tau 

eb  - 1

\biggr) 
\leq (1 - e - 20r2\gamma ) \cdot (1 + 9e10r

2\gamma )

= O(\gamma r2) ,(5.3)

where the last equality follows as \gamma \leq 1/r2. In what follows we bound the probability
of event \scrE cone, which is the event that the ball Bz is cut in the Create-Cones proce-
dure, while conditioning that it was not cut while creating the Sij . Let S = Sij be
the set that contains Bz, which was built around the path P = Pij . Let c1, . . . , ck
be the centers chosen in Create-Cones(S,P ,\scrC ). We claim that there can be at most
nine of them that may cut Bz. To see this, observe that each cone contains a ball of
radius at least \Delta /8, and since P is a shortest path, in any set of ten centers there
are two centers cg, ch such that dS(cg, ch) \geq 9\Delta /8 > 2(1/2 + \gamma )\Delta . By the triangle
inequality it must be that at least one of them is more than (1/2 + \gamma )\Delta away from
z. Finally, by Lemma 15 any cone centered at c may only contain points at distance
at most \Delta /2 from c (see (5.2)), so it may not be the first to cut Bz. As \alpha is chosen
uniformly from an interval of size \Delta /8, the probability that a ball of radius \gamma \Delta will
be cut is at most 2\gamma \Delta /(\Delta /8) = 16\gamma . By a simple union bound,

Pr[\scrE cone | Bz \subseteq S] < 144\gamma ,

which is dominated by (5.3); thus the final bound is

Pr[Bz is cut] \leq O(\gamma r2) .
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6. Bounded tree-width graphs. In this section we prove the second part of
Theorem 4, that any graph with tree-width at most r admits an efficient (O(r), O(1/r))-
padded strong-diameter partition scheme.

Since graphs of tree-width r are Kr+2-minor-free, the result of section 4 already
implies a (weak-diameter) probabilistic partition which is O(r)-padded. The purpose
of this section is to show a strong-diameter (O(r), O(1/r))-padded partition for graphs
of bounded tree-width. We will use the same framework as the previous sections, and
exploit the special structure of bounded tree-width graphs.

Definition 18. A graph G = (V,E) has tree-width r if there exist a collection
of sets I = \{ X1, . . . , Xk\} , with each Xi \subseteq V , and a tree T = (I, F ), such that the
following conditions hold:

\bullet \cup i\in [k]Xi = V ,
\bullet for all i \in [k], | Xi| \leq r + 1,
\bullet for all \{ u, v\} \in E, there exists i \in [k] such that u, v \in Xi,
\bullet for all u \in V , the tree nodes containing u form a connected subtree of T .

Corollary 19. Let U be a bag in the tree-decomposition T = (I, F ) of G =
(V,E). Then if U1, U2 \in I lie in different connected components of T \setminus \{ U\} , and
x1 \in U1 \setminus U , x2 \in U2 \setminus U , then x1, x2 are in different connected components of G \setminus U .

6.1. The algorithm. Let G = (V,E) be a graph of tree-width r  - 1, and let
T be its tree-decomposition so that each bag has at most r vertices, and T has an
arbitrary root R. The height of a tree node U , h(U), is its distance in T from the root
R. For a vertex u \in V let h(v) denote the minimal height of a tree node U containing
u, and denote by b(u) = U the node achieving this minimum. Order the vertices of
the graph (v1, . . . , vn) such that for all 1 \leq i < j \leq n, h(vi) \leq h(vj). In the ith
iteration of the algorithm we will have a graph Gi (initially G1 = G), and if vi \in Gi,
we shall create a cluster Si = BGi(vi, Ri\Delta ), where Ri \propto Texp[0,1/2](8r). Then set
Gi+1 = Gi \setminus Si and continue. If vi /\in Gi, then we do nothing in this iteration.

Algorithm 5. Tree-width-Partition(G,\Delta ,r).

1: Set \scrS = \emptyset .
2: Let G1 \leftarrow G.
3: for i = 1, . . . , n do
4: if vi \in Gi, then
5: Let Ri \propto Texp[0,1/2](8r).
6: Let Si = BGi

(vi, Ri\Delta ).
7: Add Si to \scrS .
8: Set Gi+1 \leftarrow Gi \setminus Si.
9: else

10: Set Gi+1 \leftarrow Gi.
11: end if
12: end for
13: return \scrS .

6.2. The analysis. Fix some z \in V , \gamma = O(1/r), and Bz = BG(z, \gamma \Delta ). Let
U = b(z) \in I be the tree node containing z such that h(z) = h(U). The first
observation is that when analyzing the probability that Bz is cut, we may restrict our
attention to vertices v \in V whose b(v) lies on the path from R to U in T . The reason
is that if b(vi) is not on this path, then if C \in I is the least common ancestor of U
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and b(vi) in T , we claim that Gi does not contain any vertex from C. To see this,
note that by the choice of ordering all vertices in C appear before vi, and thus either
created a cluster or were removed from the graph. By Corollary 19, z and vi are in
different components of Gi, so Si cannot be the first to cut Bz.

Consider then the process restricted to the vertices contained in bags on the path
from R to U (we may assume w.l.o.g. that these appear first in the ordering). For
any i \in [n], denote by Ci the connected component in Gi that contains z, and let
\scrS | Ci

= \{ Sj : Sj \sim Ci\} .
Claim 20. For any i \in [n], | \scrS | Ci

| \leq 2r.

Proof. Let R = U1, . . . , Uk = U be the sequence of bags from the root to U
in the tree-decomposition. For any j \in [k], let ij \in [n] be the minimal such that
Uj \cap V (Gij ) = \emptyset . We prove that | \scrS | Cij

| \leq r, by noting that there are at most r

supernodes that can intersect Uj (as | Uj | \leq r). If a supernode Sh does not intersect
Uj , then since this supernode is not centered at some vertex of Uj\prime for j

\prime > j (using
the ordering and the minimality of ij), then by Corollary 19 there is no path from
z to N(Sh) in Gij . Since there are at most r new supernodes created between time
ij to ij+1 (as each bag is covered after at most r clusters are formed), the claim
follows.

Observe that the algorithm generates a threatening skeleton-process with the
sequence G1, . . . , and the skeletons are Ai = \{ vi\} , Ki = Si, l = 0, u = 1/2, s = 2r,
and b = 4r. Let u\prime = u and \scrJ z = \{ vi | dGi(z, vi) \leq (u+ \gamma )\Delta \} . By Claim 20 we may
apply Lemma 7 and obtain that

(6.1) \tau \leq 3e(4r+1)\cdot (1+\gamma /u) .

Finally, our process can also be made to be a cutting skeleton-process, as long as we
omit the steps in which vi /\in Gi (note that the next i for which vi \in Gi may depend
on previous random choices of Rj for j < i, but this is allowed), and l = 0, u = 1/2,
and b = 4r. Applying Lemma 9, we obtain that the probability that Bz is cut is at
most

(1 - e - 2b\gamma )

\biggl( 
1 +

\tau 

eb  - 1

\biggr) 
\leq (1 - e - 8r\gamma ) \cdot 9e8r\gamma = O(\gamma r),

using that \gamma \leq 1/r.

6.3. Bounded pathwidth graphs. A graph has path-width r if it has a tree-
decomposition of width r such that the tree is a path. The following result was
communicated to us by James R. Lee and Anastasios Sidiropoulos.

\bullet Any graph G on n vertices and path-width r admits an efficient O(log r)-
padded strong-diameter partition scheme.

We provide a sketch of the proof. First, decompose the graph into shortest paths
as follows: as long as the graph is not empty, in each connected component, pick a
shortest path between a vertex in the first bag and a vertex in the last bag. Remove
this path from the graph, and continue on the connected components that remain.
Since any such path must use some vertex in every bag, it follows that the path-width
decreases by at least 1 in each iteration. We thus obtain a cop-decomposition of width
1 and depth r. We now apply our method, and the number of threateners is only
O(r), which implies the result.

Note that every graph G on n vertices and tree-width r has path-width at most
O(r log n) (this follows because it has a tree-decomposition of depth O(log n); see, e.g.,
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[GTW13]). An immediate corollary is an O(log r+ log log n)-padded strong-diameter
partition for graphs of tree-width r.

7. Bounded Euler-genus graphs. In this section we prove the third part of
Theorem 4, that any graph with Euler-genus at most g admits an efficient O(log g)-
padded strong-diameter partition scheme. We assume here that the graph G is em-
bedded without any edge crossing on some closed surface \Sigma (compact and without
boundary), which can be orientable or nonorientable, of Euler characteristic 2 - g.

The Euler characteristic is the value \chi (\Sigma ) = n - e+ f , where n, e, f are, respec-
tively, the number of nodes, edges, and faces of the embedding of G on \Sigma . If \Sigma is
orientable, then g must be even and \Sigma homeomorphic to a sphere with g/2 ``handles,""
And if \Sigma is nonorientable, then it is homeomorphic to a sphere with g ``cross-caps.""
The Euler-genus of G is the smallest g such that it can be embedded on a surface of
Euler characteristic 2  - g. So, it generalizes the classical notion of genus of a graph
(for orientable surfaces) and the non-orientable genus of a graph. Planar graphs have
Euler-genus 0.

Using the Fundamental Cycle Method based on Breadth First Search trees (see
[MT01, Lemma 4.2.4 and Theorem 4.3.2]), we have the following lemma (see also [IS07,
CdV10]).

Lemma 21. If G is a Euler-genus g graph, there exists a cycle A comprised of
two shortest paths emanating at a common root, such that G \setminus A has Euler-genus at
most g  - 1 (this is at most g  - 2 if A is two-sided).

This fits nicely in the bounded threateners program: Our algorithm will iteratively
take such a cycle A, create a random buffer S around it, and recurse on the connected
components of G \setminus S. The base case is when the component is planar; then we
may apply our strong-diameter padding algorithm. Formally, in iteration i take a
connected component Ci in Gi, and if Ci is not planar, find a cycle Ai as in Lemma 21.
Let Si = BGi(Ai, Ri\Delta ), where Ri \propto Texp[0,1/4](8 log g), and set Gi+1 = Gi \setminus Si. Each
Si is partitioned into clusters by iteratively taking cones centered at some of the points
of Ai. If Ci is planar, invoke the decomposition scheme of section 5.

We now turn to analyzing the algorithm. The fact that the resulting partition
is strong-diameter \Delta -bounded follows from the fact that Strong-Random-Partition
generates strong-diameter \Delta -bounded clusters, and by Lemma 15, the cones are also
strong-diameter \Delta -bounded (the proof of that lemma never used that P is a shortest
path, we only need that any point in Si is within distance \Delta /4 from Ai).

Fix some z \in V , \gamma \leq \delta for sufficiently small constant \delta (which is independent of
g), and set Bz = BG(z, \gamma \Delta ).

Lemma 22. The probability that the ball Bz is cut by the above process is

Pr[Bz is cut ] \leq 1 - e - O(\gamma log g) .

Proof. Let \scrE genus be the event that Bz is first cut by some set Si. Divide the
event \neg \scrE genus into \scrF cone = \{ \exists i, Bz \subseteq Si\} and \scrF planar = \{ \exists i, Bz \subseteq Ci\wedge Ci is planar\} .
Let \scrE cone be the event that \scrF cone holds and also Bz is first cut by a cone in the
Create-Cones(Si, Ai, \scrC ), and finally let \scrE planar be the event that \scrF planar holds and also
Bz is cut while calling Strong-Random-Partition on a planar component containing
Bz. We will bound each of the \scrE events separately.

Assume w.l.o.g. that nonplanar components are chosen first; then the process
until time T (where all components are planar) is a cutting skeleton-process, with
the graph sequence G1, . . . , the skeletons Ai and Ki = Si, and the parameters l = 0,
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Algorithm 6. Genus-Partition(G,\Delta ,g).

1: Let G0 \leftarrow G, i = 0.
2: Let \scrC \leftarrow \emptyset .
3: while Gi is nonempty do
4: Let Ci be a connected component of Gi.
5: if Ci is planar, then
6: Let Pi be a partition obtained by invoking Strong-Random-

Partition(Ci,\Delta , 5). Add the clusters of Pi to \scrC .
7: Set Gi+1 \leftarrow Gi \setminus \cup Pi.
8: else
9: Let Ai be cycle as in Lemma 21.

10: Let Ri \propto Texp[0,1/4](8 log g).
11: Let Si = BGi

(Ai, Ri\Delta ).
12: Create-Cones(Si, Ai, \scrC ). Add the resulting clusters to \scrC .
13: Set Gi+1 \leftarrow Gi \setminus Si.
14: end if
15: i\leftarrow i+ 1.
16: end while
17: return \scrC .

u = 1/4, and b = 2 log g. Let \scrT z = \{ Ai : i \in [T ], dGi
(Ai, z) \leq (1/4 + \gamma )\Delta \} . Note

that by Lemma 21 there can be at most g iterations (on components containing z) in
which z lies in a nonplanar component, so | \scrT z| \leq g. By Lemma 9

Pr[\scrE genus] \leq (1 - e - 16\gamma log g) \cdot (1 + g/(e2 log g  - 1)) \leq 1 - e - 32\gamma log g ,

using that \gamma \leq 1/32. If Pr[\neg \scrE genus] = p, then p \geq e - 32\gamma log g and if pcone = Pr[\scrF cone]
and pplanar = Pr[\scrF planar], then since the events \scrF cone, \scrF planar are disjoint, we have
that

(7.1) p = pcone + pplanar .

By the first assertion of Theorem 4, there is a large constant C such that

Pr[\scrE planar] = pplanar \cdot O(\gamma ) = pplanar(1 - e - C\gamma ) ,

since \gamma is sufficiently small.
Finally, we bound the probability of event \scrE cone. Conditioning on Bz \subseteq Si for

some i, we use a similar argument as in the proof of Lemma 17, here we claim that
there can be at most 18 centers whose cone may intersect Bz. This is because if there
are more, at least ten of them lie on one of the two shortest paths Ai is comprised
of, and using the argument appearing in the proof of Lemma 17, it cannot be that
all of them threaten Bz. Since \alpha is chosen uniformly from an interval of length \Delta /8,
the probability that any cone cuts Bz is at most 2\gamma \Delta /(\Delta /8); thus by a union bound,
using that C is large enough,

Pr[\scrE cone] = pcone \cdot O(\gamma ) = pcone(1 - e - C\gamma ) .

Combining the three bounds, we obtain that the probability that Bz is cut is at
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most

Pr[\scrE genus] + Pr[\scrE cone] + Pr[\scrE planar] \leq 1 - p+ pcone(1 - e - C\gamma ) + pplanar(1 - e - C\gamma )

(7.1)
= 1 - p \cdot e - C\gamma 

\leq 1 - e - 32\gamma log g \cdot e - C\gamma 

= 1 - e - O(\gamma log g) .

8. Further directions. A clear open problem is to improve the O(r)-padded
partition scheme for Kr-minor-free graphs to the optimal O(log r). A first step might
be proving such a result for graphs of tree-width r (recall that such graphs have a
strong-diameter O(log r + log log n)-padded partition).
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