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Abstract

We prove that any graph excluding Kr as a minor has can be partitioned into clusters of
diameter at most ∆ while removing at most O(r/∆) fraction of the edges. This improves over
the results of Fakcharoenphol and Talwar, who building on the work of Klein, Plotkin and Rao
gave a partitioning that required to remove O(r2/∆) fraction of the edges.

Our result is obtained by a new approach to relate the topological properties (excluding a
minor) of a graph to its geometric properties (the induced shortest path metric). Specifically,
we show that techniques used by Andreae in his investigation of the cops-and-robbers game on
excluded-minor graphs can be used to construct padded decompositions of the metrics induced
by such graphs. In particular, we get probabilistic partitions with padding parameter O(r) and
strong-diameter partitions with padding parameter O(r2) for Kr-free graphs, padding O(k) for
graphs with treewidth k, and padding O(log g) for graphs with genus g.
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1 Introduction

This paper considers the problem of constructing random partitioning schemes for minor-free
graphs. Loosely speaking, the goal is to find a partition of the graph vertices so that each part
(called a cluster) has small diameter, and the probability of any local neighborhood being cut (and
not lying within some cluster) is small. There is a natural tradeoff between these two parameters
(the diameter, and the probability of being cut). Such random partitions have found numerous
applications in algorithm design, including: flow/cut gaps, metric embeddings, and recently as
core primitives for several near linear time algorithms. Therefore improving the parameters of the
partitions is a research program of considerable interest.

While tight parameters for such partitions are known in several settings, for the case of graphs
that exclude some given graph H as a minor, the problem of finding the optimal tradeoff remains
open. Progress was made in the seminal work of Klein, Plotkin and Rao [KPR93], and improved
by Fakcharoenphol and Talwar [FT03]. Despite attracting the attention of several researchers (see,
e.g., [Lee13]), the KPR framework remained the only known approach to this problem for over 20
years.

In this paper we make progress on this question and improve known parameters. Equally im-
portantly, we also introduce techniques and structural insights that we hope will be useful for
further improvements on this and related problems. In particular, we observe that a result of An-
dreae [And86] can be reinterpreted as a structure theorem for graphs excluding a fixed minor.1 His
result constructively gives us a cop decomposition of a graph, which is a lot like a tree decomposition
except that instead of r vertices per bag, we have r shortest-paths (in some induced subgraph) in
each bag. While such a cop decomposition may give less insight into the graph structure than the
deep work of Robertson and Seymour [RS03], it has the benefit of a significantly better dependence
on r. We extend this cop decomposition framework to produce probabilistic partitions, and we
believe that this high level approach may be useful in getting better algorithms for other problems
involving excluded-minor graphs.

To formally state our results, let us recall some notation. For an undirected weighted graph
G = (V,E) and a subset C ⊆ V , denote by G[C] the induced subgraph on C. Let dG denote the
shortest path metric on G. The (weak) diameter of a set S ⊆ V is maxx,y∈S dG(x, y), whereas the
strong diameter of the set S is maxx,y∈S dG[S](x, y)—note that the latter distance is being measured
in the induced subgraph.

Definition 1 (∆-bounded partitions). A partition P = {C1, . . . , Ct} is ∆-bounded if for all i, the
weak-diameter diam(Ci) ≤ ∆. Partition P is strong-diameter ∆-bounded if the strong diameter
diam(G[Ci]) ≤ ∆ for all i.

Given a partition P = {C1, . . . , Ct} of V , let P (z) denote the unique cluster containing z.

Definition 2. A distribution P over ∆-bounded partitions is (β, δ)-padded if for any z ∈ V and
any 0 ≤ γ ≤ δ,

Pr[B(z, γ∆) ⊆ P (z)] ≥ 2−βγ .

We call P β-padded if it is (β, δ)-padded where δ is a universal constant that does not depend on
β, and efficient if it can be sampled in polynomial time.

Our main result is the following.

1For the rest of the discussion, we assume we are excluding a fixed graph of size r, say Kr.
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Theorem 3. Every Kr-minor-free graph G admits an efficient O(r)-padded partition scheme.

It has long been known that for arbitrary graphs the best possible padding parameter is Θ(log |V |).
For special cases better bounds are known, e.g., for metrics of doubling constant λ, the padding
parameter is Θ(log λ) [GKL03]. For graphs that can be drawn on a surface of genus g, ideas
developed in a recent sequence of papers [IS07, BLS10, Sid10] have culminated in the optimal
padding parameter of Θ(log g) [LS10].

The first bounds for Kr-minor-free graphs were due to the influential work of Klein, Plotkin,
and Rao [KPR93], who gave (O(r3), 1/r)-padded partition scheme. Fakcharoenphol and Talwar
[FT03] improved this to an (O(r2), 1/r)-padded partition scheme. In this work, we improve the
padding parameter from O(r2) to O(r); moreover, we provide padding guarantees to larger balls—
the previous guarantees give padding only for balls of diameter < O(∆/r), compared to O(∆)
for our result. The partitioning scheme in [KPR93] was motivated by bounding the maximum-
multicommodity-flow/sparsest-cut gap for Kr-free graphs. Subsequently, it found applications to
metric embeddings [Rao99, Rab03] with its natural connections to edge-cut problems [Mat02] and
also to vertex-cut problems [FHL08], to bounding higher eigenvalues and higher-order Cheeger
inequalities for graphs [BLR10, KLPT09, LGT12], to metric extension problems and approximation
algorithms [CKR05, AFH+04, LN05], and others. The quantitative improvements given by our
results thus give improvement in all these settings.

Theorem 3 above gives us a weak-diameter guarantee. However, our techniques are versatile, and
can be extended to give strong-diameter partitions—in particular, we obtain the following results.

Theorem 4. Let G = (V,E) be an undirected weighted graph.

1. If G is a Kr-free graph then it admits an efficient (O(r2), O(1/r2))-padded strong-diameter
decomposition scheme.

2. If G is a treewidth r graph then G admits an efficient (O(r), O(1/r))-padded strong-diameter
decomposition scheme.

3. If G is a genus g graph then G admits an efficient O(log g)-padded strong-diameter decompo-
sition scheme.

The first result in Theorem 4 is an exponential improvement over the strong-diameter partitions
of [AGMW10]. The third result strengthens the result of [LS10] by providing the same asymptotic
padding guarantees while ensuring that clusters have a strong-diameter.

1.1 Discussion of Techniques

How does one prove a property for a graph that does not contain a Kr minor? One approach relies
on the deep results of Robertson and Seymour that turn this “negative” property (namely, that
of not having a certain minor) into a “positive” constructive one, by giving a complete structural
characterization of how such graphs can be built from simple building blocks by applying simple
rules to them. This structure theorem allows one to prove properties of excluded-minor graphs
by structural induction on this construction procedure. Unfortunately, this approach typically
inherits the rather bad dependence on r from the Robertson-Seymour structure theorem [RS03].
Nevertheless, this approach has been highly successful and used to prove several results for excluded-
minor graphs.
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The other approach is to work more directly and design an algorithm establishing the property
we want to prove, with the guarantee that the failure of the algorithm constructs Kr as a minor.
This approach is usually problem-specific but usually leads to better dependence on r. Examples
of this approach include the work of Andreae [And86] for the cops-and-robbers game, results of
Alon, Seymour and Thomas [AST90] on separators, and the aforementioned work of Klein, Plotkin
and Rao [KPR93]. This is the approach we take.

Let us now give a high-level description of some of the ideas and techniques used to prove Theorem 3
and Theorem 4.

The Bounded Threatener Program. A natural approach to obtain ∆-bounded β-padded
probabilistic partitions is to find a set of “suitable” centers S, and iteratively build balls around
the points in S with radii drawn from a truncated exponential distribution in the range [∆/4,∆/2]
with rate β. The memoryless property of the exponential distribution ensures that balls of radius
≈ ∆/β avoid being cut with constant probability, conditioned on the exponential distribution not
being truncated. To handle the truncation, we need to bound the number of centers at distance
at most (1/2 + 1/β)∆ from some vertex z. We will call such centers the threateners of z. If the
number of threateners is bounded by 2O(β) then a trivial union bound implies that with constant
probability none of them will reach diameter (1/2 − 1/β)∆ and intersect the ball B(z,∆/β). A
contribution of this work is in extending the bounded threatener program and showing how a bound
on the expected number of threateners suffices.

Cop Decompositions. Andreae [And86] considered the following game, a set of cops plays
against a robber. At each round the robber can move across one edge and then each one of the
cops can move across one edge. The cops win if they land on the same vertex as the robber.
Andreae showed that if G is Kr-free then O(r2) cops have a winning strategy. The cop strategy
is simple: each cop can control one shortest path and together they try to build a Kr minor. The
shortest paths controlled by the cops induce a set of supernodes (disjoint connected subsets) and
edges containing a minor that is a subgraph of Kr. At each round one can fix a center for a new
supernode and use free cops to connect the center to all previous supernodes via shortest paths.
The new center and each new shortest path is fully contained in the component containing the
robber that is induced by removing the supernodes from G (hence this new path is disjoint from
all previous supernodes). We can interpret Andreae’s result as constructing a cop-decomposition of
width r, which is similar to a tree-decomposition; the difference being that in a tree-decomposition
each bag B contains at most width+1 vertices while in a cop-decomposition each bag B contains a
tree with at most width+1 leaves and each root-leaf path p ∈ B is a shortest path in the subgraph
induced by the bag B and its subtree in the cop-decomposition.

From Cop Decompositions to Padded Partitions via Skeletons. The cop decomposition
induces a partition of the vertices of the graph into trees. Note that the number of vertices in each
tree in a cop decomposition may be large, and depend on n. Why are these trees useful? Since
each tree contains at most r shortest paths in the induced subgraph, one can choose a “net” of
centers along each path so that each node in the graph is threatened by O(r) centers from any one
tree. Hence it now suffices to bound the number of trees that get close enough to a vertex z so that
some centers from this tree may threaten z. (We call such a tree a “threatening skeleton” for z.) As
mentioned above, we do not bound the worst-case number of such threatening skeletons; we prove
it suffices to bound their expected number.
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Bounding the Expected Number of Threateners. How to bound the expected number of
threatening skeletons for some node z ∈ V ? We need a notion of progress. The cop-decomposition
ensures that in any given moment there are at most r trees (a.k.a. threatening skeletons) that z can
see on the boundaries of its component, where each tree consists of at most r paths. We observe
the following property of the distances from z to these trees: if constructing a new tree Tnew in
the induced subgraph containing z causes some current tree Tcurr to become farther from z (or
even to be disconnected from z) because it cuts off some short path from z to Tcurr, the distance
from z to Tnew is strictly less than the distance from z to Tcurr. Indeed, if this distance were to
miraculously decrease (deterministically) by ∆/k then one can prove a bound of O

(
r+k
k

)
on the

number of threateners. But why should such a large decrease happen? It doesn’t, but we force this
to happen. We change the above construction and build a “buffer” of some random radius around
each skeleton we build. Note that the supernodes did not have to be trees in the above arguments,
and hence “fattening” them by growing buffers around the trees would not change any of the
preceding arguments. Now by choosing the buffer radius from a truncated exponential with rate
O(r), we may näıvely hope to decrease the distance by ∆/r with constant probability (assuming
no truncation). The proof is much more subtle, and requires to overcome the truncation of the
buffer. We use a potential function with delicately chosen parameters, such that for each new tree,
this potential increases in expectation by ≈ r/2r. The potential starts at 0 and once it reaches r,
it means that z is at distance 0 from some buffered tree and will not be threatened again. Finally,
the optional stopping theorem helps us bound the expected number of threateners by ≈ 2r.

Bounding Expected Drift in Potential. In order to bound the number of threateners for z,
the potential function we use is a sum of exponentials

∑
buffersB e

−αd(z,B) for some parameter α; the
sum is over those buffered trees that the node z can see. The main challenge is that in the worst
case, one new buffered tree can cause all the other current buffered trees to be disconnected from
the component containing z, hence losing r summands of the potential. To overcome this we need
to guarantee that the expected gain from the new tree is O(r) times more than the expected loss of
any single current tree, which is one of the technical cores of the analysis. We note that obtaining
any deterministic bound on the number of threateners using a cop decomposition remains an open
question.

1.2 Other Related Work

The ideas of either finding a “good” decomposition or else building a Kr-minor used by [KPR93,
And86] also appear in “shallow-minor theorems” of Alon, Seymour, and Thomas [AST90], Plotkin,
Rao, and Smith [PRS94], and others. The parameters and run-times of these constructions have
been considerably improved, see the paper of Wulff-Nilsen [WN11] and the references therein.

Busch, LaFortune, and Tirthapura [BLT07] first suggested the idea of decomposing a graph into
paths and building balls around these paths; they considered this in the context of strong-diameter
covers. They give the best constants for covers of planar graphs; for Kr-free graphs, they give O(1)-
padding and O(log |V | · f(r))-overlap, where f(r) depends on the Robertson-Seymour structure
theorem.

In contrast to the weak-diameter partitions of [KPR93, FT03], the previously best strong-diameter
partitions are due to [AGMW10], who guarantee strong diameter ∆ and probability of an edge {u, v}
being separated is O(6rr2 · d(u,v)

∆ ). [AGMW10] also present sparse covers with strong-diameter ∆,

padding of O(r2) and overlap of 2O(r)r!.
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The papers [IS07, BLS10, Sid10] give algorithms to probabilistically embed genus-g graphs into
planar graphs with 2O(g), O(g2) and O(log g) distortion respectively. The ideas developed in this line
of work lead to an asymptotically optimal padding parameter of O(log g) for genus-g graphs [LS10].

For general graphs, the decomposition schemes in, e.g., [Awe85, LS93, Bar96, CKR05, FRT04] give
asymptotically optimal O(log |V |) padding. The best result known for treewidth-r graphs was the
same as for Kr-free graphs, i.e., O(r2)-padding partitions.

1.3 Organization of the Paper

After a few preliminary definitions, we provide in Section 3 a bound on the expected number of
threateners for a wide range of partition algorithms. We then show how to use this to bound the
padding probability. Our main result Theorem 3 is proved is Section 4. The three assertions of
Theorem 4 are then proven in Sections 5, 6 and 7.

2 Definitions and Notation

Graphs. We assume familiarity with graph-theoretic notions; see, e.g., [Die00] for background.
Here are some definitions we will use. Given a graph G = (V,E), a ball around v ∈ V of radius
r ≥ 0 is BG(v, r) = {u ∈ V | dG(v, u) ≤ r}, and similarly for a subset A ⊆ V , B(A, r) = {u ∈ V |
dG(A, u) ≤ r}. Also let N(A) = {u ∈ V | ∃v ∈ A, {u, v} ∈ E}. For subsets A,B ⊆ V define a
relation ∼ where A ∼ B iff A ∩N(B) 6= ∅, that is, iff there is an edge between A and B.

A minor of G is a graph G′ obtained by deleting and contracting edges. Equivalently, G′ is a minor
of G if there exists a map f : V (G) → V (G′) such that (a) for each u′ ∈ V (G′) the “supernode”
f−1(u′) is connected in G, and (b) for every edge {u′, v′} ∈ E(G′), there is at least one edge between
f−1(u′) and f−1(v′) in E(G). A graph G is H-free (or excludes an H-minor) if G does not contain
a subgraph isomorphic to H as a minor. As is well-known, planar graphs are exactly the graphs
excluding K3,3 and K5 as minors. In fact, Robertson and Seymour proved that every graph family
closed under taking minors is characterized by a set of excluded minors.

Many one-way implications are also known: if we can show that a class G of graphs is closed under
taking minors, and H 6∈ G , then G contains only H-free-graphs. Hence, graphs with treewidth at
most r are Kr+2-free (since treewidth of a clique is one smaller than its size, and the treewidth of
a graph does not increase under edge deletions and contractions); graphs with genus g exclude Kr

as a minor for some r = Θ(g2), since the genus of Kr is Θ(g2).

Truncated Exponential Distributions. We will extensively use the following probability dis-
tribution over positive reals. The [θ1, θ2]-truncated exponential distribution with parameter b is
denoted by Texp[θ1,θ2](b), and has the probability density function:

ftexp;b;θ1,θ2(y) :=
b e−b·y

e−b·θ1 − e−b·θ2
for y ∈ [θ1, θ2]. (2.1)

For the [0, 1]-truncated exponential distribution we drop the subscripts and denote it by Texp(b);
the density function is

ftexp;b(y) :=
b e−b·y

1− e−b
for y ∈ [0, 1]. (2.2)

Note that if Y ∼ Texp(b) then u · Y ∼ Texp[0,u](b/u).
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3 Analysis

Our algorithms induce an iterative process that creates “skeletons” (e.g., trees, paths, or vertices)
and remove their neighborhoods (a buffer), defined according to some truncated exponential dis-
tribution, from the graph. Once we have these skeletons, our algorithms define a second iterative
process that creates clusters from the skeletons2.

Let us abstract out the properties needed from our first and second processes.

Definition 5. [Skeleton-Process] Given a graph G, parameters 0 ≤ l < u ≤ 1 and b > 0, any
process which generates a sequence of graphs G = G0, G1, . . . , skeletons A0, A1, . . . and vertex sets
K0,K1, . . . , that satisfies the following property is a skeleton-process:

• For any i ≥ 0 we are given some Ai ⊆ V (Gi), and define Ki = BGi(Ai, Ri∆), where Ri ∼
Texp[l,u](b/(u− l)).

The process is threatening if the graph sequence satisfies Gi+1 = Gi \Ki, and the process is cutting
if the graph sequence satisfies Gi+1 ⊇ G0 \ (∪j≤iKj).

The first process is a threatening process which creates buffers around the trees of the cop-
decomposition. The second process is a cutting process that creates the actual clusters centered at
net-points of the trees. For the strong-diameter results, we will have a single process that satisfies
both definitions.

3.1 Analysis of the threatening process: Bounding the expected threats

A crucial property of all of our algorithms is that any point z can “see” at most s buffers (the Ki

sets) at any time, for some parameter s (in the weak-diameter partition we will have s = r). By this
we mean that for any connected component C in one of the remaining graphs (after some buffers
were removed), there are at most s buffers that are connected to C by an edge. This property will
enable us to prove that any vertex z is expected to be “threatened” by a small number of skeletons,
that is, we expect a few skeletons that are sufficiently close to cut a certain ball around z.

Consider a threatening skeleton-process with parameters l = 0, u ∈ [0, 1] and b = 2s. We prove
a bound on the expected number of threateners for a ball around any vertex z ∈ V (G) with
padding parameter γ > 0. Let Jz = {Ai | dGi(z,Ai) ≤ (u + γ)∆} be the set of vertex sets whose
subset Ki may intersect Bz = BG(z, γ∆). Observe that once z ∈ Kt for some integer t then it is
removed from the graph, and Jz cannot increase anymore. For a connected component Ci ∈ Gi let
K|Ci

= {Kj | j < i ∧ Ci ∼ Kj}. (Recall that A ∼ B if there exists an edge from a node in A to
some node in B.)

Lemma 6. Suppose that in a threatening skeleton-process we have the property that for every i ∈ N
and every connected component Ci ∈ Gi, we are guaranteed that |K|Ci

| ≤ s, then

E[|Jz|] ≤ 3e(2s+1)·(1+γ/u) .

We defer the proof to Appendix A.

2For our strong-diameter results we have a single process that extracts skeletons and clusters in one sweep.

7



3.2 Analysis of the cutting process: Bounding the probability of cutting a ball

In this section we give a bound on the probability that a ball is cut by a cutting skeleton-process,
which depends on the expected number of threateners.

Consider a cutting skeleton-process as in Definition 5 with parameters 0 ≤ l < u ≤ 1, b > 0. Fix
z ∈ V (G), a parameter γ > 0 and set Bz = BG(z, γ∆). Let Tz = {Ai | dGi(z,Ai) ≤ (u + γ)∆} be
the set of vertex sets whose subset Ki may intersect Bz. Let N := |Tz| be a random variable with
τ = E[N ]. We say that Bz is cut by the skeleton-process if it intersects more than a single Ki.

Lemma 7. For δ = e−2bγ/(u−l), the probability that Bz = BG(z, γ∆) is cut by a cutting skeleton-
process with the property that τ = E[|Tz|], is at most

(1− δ)
(

1 +
τ

eb − 1

)
.

We defer the proof to Appendix B.

4 A Weak-Diameter Partition

In this section, we show how to construct a weak-diameter partition for Kr+1-free graphs which
is O(r)-padded (with constant δ = 1/40). The ideas here will later extend to the case of strong-
diameter partitions with a weaker (O(r2), O(1/r2))-padding.

4.1 The Algorithm

At a high level, the algorithm works as follows: in each step, pick a connected component of the
remaining graph, and find (in a specific way) a shortest-path tree T in this component. Delete a
random neighborhood of T from the graph, and recurse on each connected component of the graph,
if any. We then construct a net of points on each tree, and from these net points grow “balls” of
random radius to form the small-diameter regions of the partition. A key property to ensure the
padding guarantee is that each node is expected to be close to few of these paths. We show that
this property holds, otherwise we can construct a Kr+1-minor in G.

More specifically, the algorithm maintains a set of trees Ti and supernodes Si that will be used in the
construction, each tree and supernode have a “center” vertex associated with them. Let us describe
a generic i-th iteration of the algorithm. Let S be the set containing all the supernodes created
so far, initially this will be empty. Let C be a connected component in the graph Gi = G \ (∪S),
where ∪S is the set of all vertices lying in the supernodes in S, initially this will be the entire
graph. Let S|C = {S ∈ S : S ∼ C} be the set of supernodes that have a neighbor in component C.
Say S|C = {S′1, S′2, . . . , S′k}, and consider the nodes Fj = N(S′j) ∩ C for each supernode, which are
vertices in C neighbors of these “adjacent” supernodes. (These Fj ’s may intersect.) We pick an
arbitrary vertex ui from C and build a tree Ti rooted at ui, which is comprised of shortest paths
from ui to each of the sets Fj . Define the next supernode

Si := BGi(Ti, Ri∆),

where Ri ∼ Texp[0,1/8](16r). (Recall the definition of the truncated exponential distribution from
(2.1).)

In order to create the random partition, choose a ∆/8-net Ni over Ti, and enumerate Ni =
{v1, . . . , v|Ni|}. For each 1 ≤ j ≤ |Ni|, create a cluster BGi(vj , αj∆) ∩ Uj (where Uj is the set
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of points which have no cluster yet), where each αj ∼ Texp[1/4,1/2](20r). This completes the
description of the algorithm; it is also given as Algorithm 1 and 2.

Algorithm 1 Weak-Random-Partition(G,∆,r)

1: Let G0 ← G, i← 0.
2: Let S ← ∅.
3: Let T ← ∅.
4: while Gi is non-empty do
5: Let Ci be a connected component of Gi.
6: Pick ui ∈ Ci. Let Ti be a tree rooted at ui that consists of shortest paths (in Gi) from ui to

the closest vertex of N(S) for each supernode S ∈ S|Ci
.

7: Let Ri be a random variable drawn independently from the distribution Texp[0,1/8](16r).
8: Let Si ← BGi(Ti, Ri∆) be a neighborhood of Ti.
9: Add Si to S.

10: Add Ti to T .
11: Gi+1 ← Gi \ Si.
12: i← i+ 1.
13: end while
14: return Create-Balls(G,T ,∆,r).

Algorithm 2 Create-Balls(G,T ,∆,r)

1: P = ∅.
2: for i = 1, . . . , |T | do
3: Let Ni = {v1, . . . , v|Ni|} be a ∆/8-net of Ti.
4: for j = 1, . . . , |Ni| do
5: Let αj be a random variable drawn independently from the distribution Texp[1/4,1/2](20r)
6: Add BGi(vj , αj∆) \ ∪P as a cluster to the partition P .
7: end for
8: end for
9: return P .

4.2 The Analysis

The following invariant holds for each time step i:

Invariant 1. For every i ≥ 0, every connected component C of Gi satisfies that if S, S′ ∈ S|C then
S ∼ S′.

Proof. The proof is by induction; the base case is trivial as there are no supernodes in S|C . Now
by induction, assume that the invariant holds in Gi. Let Ti and Si be the tree and supernode
constructed in step i in the component Ci. Let C be some connected component of Gi+1, and
S, S′ ∈ S|C . If C ∩ Ci = ∅ then C is a component of Gi as well; moreover, as Si ⊆ Ci it must be
that Si � C so neither of S, S′ can be Si, and hence we can use the induction hypothesis to infer
that S ∼ S′. On the other hand, suppose that C ⊆ Ci. There are two cases: if Si /∈ {S, S′} we have
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uS1

S2

S3

uS1

S2

S3

uS1

S2

S3

Figure 4.1: An iteration of the algorithm. On the left, there are three supernodes S1, S2, S3 neigh-
boring the current component with u as a root. In the middle, we have a tree T4 comprised of three
shortest path from u. On the right, the new supernode S4 which is a 1-neighborhood of T4 (observe
that this neighborhood is taken in the connected component containing u).

S ∼ S′ by the induction hypothesis on Ci. On the other hand, suppose Si = S (w.l.o.g.). Recall
that Ti was chosen so that it contains a neighbor of every supernode in S|Ci

and Ti ⊆ Si, we have
that Si ∼ S′.

Invariant 1 implies that for each connected component C, contracting the supernodes of S|C yields
a K|S|C | minor, so we obtain the following corollary.

Corollary 8. If G excludes Kr+1 as a minor, then for every time step i, the connected component
Ci has |S|Ci

| ≤ r. In particular, the tree Ti is made up of at most r shortest paths in Gi.

Claim 9. The algorithm above generates a ∆-bounded partition of G.

Proof. First we prove that we generate a partition. Indeed, we delete supernodes from the graph,
and recurse on the remaining components, so we need to show that vertices within the supernodes
are contained in some cluster. Consider a vertex x in supernode Si. By definition, dGi(x, Ti) ≤ ∆/8.
Since Ni is a ∆/8-net in Ti, some net point vj ∈ Ni satisfies dGi(x, vj) ≤ ∆/4. And since αj ≥ 1/4,
the ball BGi(vj , αj∆) contains x. Hence each node within the deleted supernode is contained in
some cluster, and we get a partition of G. Moreover, each cluster is a ball of radius at most
αj∆ ≤ ∆/2 (and hence diameter at most ∆) in Gi. Finally, distances in Gi are no smaller than
those in G.

Lemma 10. For r ≥ 4, and any γ ≤ 1/40, the probability that a ball Bz of radius γ∆ is cut by the
above process is

Pr[Bz cut] ≤ 1− e−80rγ .

Proof. First observe that the process defined in Algorithm 1. is a threatening skeleton-process,
with the sequence of graphs G0, G1, . . . as defined in the algorithm and with Ai = Ti, Ki = Si,
l = 0, u = 1/8, s = r and b = 2s. Recall that Bz = BG(z, γ∆) and Jz = {Ti | dGi(z, Ti) ≤ (u+γ)∆}.
By Invariant 1 we get that for all i ∈ N, |S|Ci

| ≤ r, so by Lemma 6 (using that γ ≤ 1/40),

E[|Jz|] ≤ 3e(2r+1)·(1+γ/u) ≤ 10e5r/2 . (4.3)

For each i such that Ti ∈ Jz, let Ui = {v ∈ Ni | dGi(v, z) ≤ (1/2+γ)∆} be the net points in Ni that
are sufficiently close to threaten Bz, and denote Tz = ∪i|Ti∈JzUi. By Corollary 8, Ti is comprised of
at most r shortest paths, and we claim that on each shortest path there can be at most 10 points
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that are in Ui. This is because the distance between any two consecutive net points on a path is
at least ∆/8, and if there are q > 10 points, because this is a shortest path, the distance from the
first point to the last is at least (q − 1) ·∆/8 > (1 + 2γ)∆. The triangle inequality implies that it
can’t be that both are within (1/2 +γ)∆ from z. We conclude that for all i (with Ti ∈ Jz) we have
|Ui| ≤ 10r, thus by (4.3)

τ := E[|Tz|] ≤ 10r · 10e5r/2 = 100r · e5r/2 . (4.4)

Next, we show that our Create-Balls algorithm generates a cutting skeleton-process. Simply
take the sequence G0, . . . , G0, G1, . . . , G1, G2, . . . , where each Gi is taken |Ni| times. Then the
skeleton sets A are in fact singletons: for each i we will take |Ni| sets - the points of Ni, to be these
singletons. The parameters for the exponential distribution are l = 1/4, u = 1/2 and b = 5r. To see
the cutting property of Definition 5, note that once we move from the graph Gi to Gi+1, Gi+1 will
contain all the points yet uncovered by clusters, because we already observed in Claim 9 that once
all the points of Ni create a cluster, the supernode Si is completely covered (recall Gi+1 = Gi \Si).
Finally, applying Lemma 7, we obtain that the probability that Bz is cut is at most

(1− e−2bγ/(u−l))

(
1 +

τ

eb − 1

)
= (1− e−40rγ)

(
1 +

100r · e5r/2

e5r − 1

)
.

The expression 100r·e5r/2
e5r−1

≤ e−r for r ≥ 4, and this completes the proof as

(1− e−40rγ) · (1 + e−r) ≤ (1− e−40rγ) · (1 + e−40rγ) = 1− e−80rγ ,

using that γ ≤ 1/40.

5 A Strong Diameter Partition

In the previous section, we saw how to get a weak-diameter partition for minor-free graphs. In
this section, we give a strong-diameter guarantee with a slightly weaker padding parameter of
(O(r2), O(1/r2)) instead of O(r). However, this is still an exponential improvement over the best
previous padding for such strong-diameter partitions of minor-free graphs.

5.1 The Algorithm

The algorithm for strong-diameter partitions is similar in spirit to that of Section 4.1 for weak-
diameter partitions, but there are some crucial differences that we highlight here.

At a high level, the algorithm works as follows: in each step, pick a connected component of the
remaining graph, and find (in a specific way) a shortest path P in this component. Delete a random
neighborhood of P from the graph, and recurse on each connected component of the graph, if any.
Each such random neighborhood is decomposed into small diameter regions using cones centered at
some of P ’s points. A key property to ensure the padding guarantee is that each node is expected
to be close to few of these paths. We show that this property holds, otherwise we can construct a
Kr+1-minor in G.

The algorithm again maintains a set of paths (instead of trees), and associated supernodes that
will be used in the construction. These will be denoted as Pij and Si respectively, and supernode
Si will consist of the union of neighborhoods of the paths Pij . The main difference from the weak-
diameter construction is that instead of building a shortest-path tree all at once, we build a “tree”
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one path at a time, and remove a neighborhood of the path from the graph before constructing the
subsequent paths.

Let us describe the i-th iteration of the algorithm. Let S ⊆ V be the set containing all the
supernodes created so far. Let Ci be a connected component in the graph Gi = G \ (∪S). Let
S|Ci

= {S ∈ S : S ∼ Ci} be the set of supernodes that have a neighbor in component Ci. We pick an
arbitrary vertex ui from Ci and build a supernode Si. Again, the intuition behind the construction
is that we wish for the new supernode to “touch” every supernode S ∈ S|Ci

(i.e., Si ∼ S). However,
this is done slightly differently from Section 4.1, one path at a time. At the first iteration (j = 1) we
create a shortest path Pij from ui to some supernode S ∈ S|Ci

, and remove a random neighborhood
Sij from the graph to obtain Gi(j+1). This neighborhood Sij is defined as all the vertices within
distance Rij · ∆ of Pij (in the current component Cij), where Rij ∼ Texp[0,1/4](8(r2 + r)). We
increase the iteration counter j and continue in this manner on every connected component of Gij
that is contained in Ci, until the new supernode Si = ∪jSij touches every supernode S ∈ S|C for
every connected component C ⊆ Ci in the remaining graph Gij .

Finally, each such neighborhood Sij is partitioned to “cones”. Each cone B, centered at some
(yet uncovered) point c ∈ Pij , consists of the (yet uncovered) points in Sij whose distance to c is
not “much larger” than their distance to Pij . The notion of being “much larger” is determined
by a random variable α drawn independently and uniformly from [∆/8,∆/4]. The algorithms are
formally presented as Algorithms 3 and 4 respectively. Observe that the subroutine Create-Cones

is invoked in line 13 of Strong-Random-Partition.

Algorithm 3 Strong-Random-Partition(G,∆,r)

1: Let G0 ← G, i← 0.
2: Let S ← ∅.
3: Let C ← ∅.
4: while Gi is non-empty do
5: Select a connected component Ci of Gi, and pick ui ∈ Ci.
6: Let W = {ui}.
7: Let j = 1 and Gij = Gi \W .
8: while there exist a connected component Cij in Gij and a supernode S ∈ S|Cij

such that
Cij ∼ S and Cij ∼W but W � S do

9: Choose u ∈ N(W ) ∩ Cij .
10: Let Pij be a shortest path (in Gij) from u to N(S).
11: Let Rij be a random variable drawn independently from the distribution Texp[0,1/4](8(r2 +

r)).
12: Let Sij ← BGij (Pij , Rij∆) be a neighborhood of Pij .
13: Create-Cones(Sij ,Pij).
14: W ←W ∪ Sij .
15: Gi(j+1) ← Gij \ Sij .
16: j ← j + 1.
17: end while
18: Set Si = W , and add Si to S.
19: Gi+1 ← Gi \ Si.
20: i← i+ 1.
21: end while
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Algorithm 4 Create-Cones(S,P )

1: while P 6= ∅ do
2: Choose c ∈ P .
3: Choose α ∈ [1/8, 1/4] uniformly at random.
4: Let B = {u ∈ S | dS(u, c)− dS(u, P ) ≤ α∆}. Add B to C.
5: Set S ← S \B.
6: Set P ← P \B.
7: end while

5.2 The Analysis

We begin by arguing that the algorithm creates a partition C with strong diameter ∆. The following
properties will be useful.

Proposition 11. For any S and P obtained during the run of the algorithm Create-Cones:

• If u, v ∈ S are such that a shortest path from u to P contains v, and v ∈ B for a cone B,
then also u ∈ B.

• If u, v ∈ S are such that a shortest path from u to c contains v, and u ∈ B for a cone B
centered at c, then also v ∈ B.

Proof. Let c ∈ P be the center of the cone B. We begin by proving the first item: Since v ∈ B
we have that dS(v, c) − dS(v, P ) ≤ α∆. Since v is on the shortest path from u to P , dS(u, P ) =
dS(u, v) + dS(v, P ) and thus

dS(u, c)− dS(u, P ) ≤ (dS(u, v) + dS(v, c))− (dS(u, v) + dS(v, P )) = dS(v, c)− dS(v, P ) ≤ α∆ ,

which implies that u ∈ B.

The second item is proved in a similar manner: Since u ∈ B we have that dS(u, c)−dS(u, P ) ≤ α∆.
Since v is on the shortest path from u to c, dS(v, c) = dS(u, c)− dS(u, v) and thus

dS(v, c)− dS(v, P ) ≤ (dS(u, c)− dS(u, v))− (dS(u, P )− dS(u, v)) = dS(u, c)− dS(u, P ) ≤ α∆ ,

which implies that v ∈ B.

Lemma 12. Each cone B created in the algorithm has diam(G[B]) ≤ ∆.

Proof. Recall that each neighborhood S of a shortest path P contains points within distance at
most ∆/4 from P . Let S be the remaining part after some cones have been created, and P is the
remaining path. The first property in Proposition 11 implies that the shortest path from any u ∈ S
to P is fully contained in S, and thus

dS(u, P ) ≤ ∆/4 . (5.5)

Consider a certain cone B centered at c ∈ P , and by definition of B, for each u ∈ B,

dS(u, c) ≤ α∆ + dS(u, P )
(5.5)

≤ ∆/4 + ∆/4 = ∆/2 . (5.6)
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By the second property of Proposition 11, if u ∈ B then surely any v ∈ S on the shortest path
from u to c will also be in B, so dB(u, c) ≤ ∆/2 as well, and thus diam(G[B]) ≤ ∆.

Finally, it remains to see that cut-cones is indeed a partition of S (i.e. that it covers S), and this
can be verified by the first property of Proposition 11. If for u ∈ S there is a shortest path from
u to P ending at v ∈ P , then whenever v is covered by a cone, u must be covered as well (the
algorithm does not stop until P = ∅).

For a time step i, we say that W is the working supernode, and at the end of this step it will become
the supernode Si. Note that W induces a connected subgraph, because we always choose a node u
in N(W ) to be a start of the next path. We denote by Gi0 = Gi. The following invariant holds for
each time step i:

Invariant 2. For every i, j ≥ 0, every connected component C of Gij satisfies that if S, S′ ∈ S|C
then S ∼ S′.

Proof. Assume inductively that the invariant holds until time step i at iteration j. First consider
the case j > 0, then as Gij is obtained from Gi(j−1) by removing some vertices, and the set of
supernodes remains unchanged, the invariant will still hold: Every connected component C of Gij
is a subset of a connected component D of Gi(j−1), in particular S|C ⊆ S|D, and so any pair of
supernodes S, S′ ∈ S|C is also in S|D and thus S ∼ S′.
For the case j = 0, a new supernode Si−1 was just introduced, but the termination condition of
line 9. guarantees that for any connected component C in Gi, any supernode S ∈ S|C must have
S ∼ Si−1.

Corollary 13. If G excludes Kr+1 as a minor, then for every time step i and iteration j, the
connected component Cij has |S|Cij

| ≤ r. Moreover, fix some z ∈ V . If Pi1, . . . , Pil are the shortest
paths chosen while creating Si in the components containing z, then l ≤ r.

Proof. If |S|Cij
| = q, then using Invariant 2, contracting each supernode in S|Cij

will yield a Kq

minor, so it must be that q ≤ r. To see the second part of the assertion, note that each Pij will
connect the component containing z with some supernode S ∈ S|Cij

, so that Sij ∼ S. Finally, as
|S|Cij

| ≤ r, there can be at most r such paths.

Lemma 14. For γ ≤ 1/r2, the probability that a ball Bz of radius γ∆ is cut by the above process
is

Pr[Bz cut] ≤ O(γr2) .

Proof. First observe that our algorithm is a threatening skeleton-process with parameters l = 0,
u = 1/4, s = r2 + r, b = 2s and the Gi (respectively Ai, Ki) are the Gij (resp. Pij , Sij) ordered
lexicographically. By Invariant 2 we get that for all i, j ∈ N, |S|Cij

| ≤ r. By Corollary 13, each of
these supernodes S ∈ S|Cij

can have at most r paths that were built in a component containing

Cij , so it may contribute at most r to the number of sets in K|Cij
, to a total of r2. We must also

add in the (at most) r paths of the current working supernode, to obtain that |K|Cij
| ≤ s. Recall

that Tz = {Pij | dGij (Pij , z) ≤ (u + γ)∆}, and let τ = E[|Tz|]. With this we may apply Lemma 6
to infer that

τ ≤ 3e(2s+1)·(1+γ/u) .

Next, we show that our process is also a cutting skeleton-process, with the graph sequence Gij
and the skeletons are the Pij , ordered lexicographically. The parameters are the same as before:
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l = 0, u = 1/4 and b = 2s (this is the exact same process, after all). The condition that the graph
sequence contains every uncovered point is trivial by definition of Gij . By Lemma 7 we obtain that
the probability that Bz is cut is at most

(1− e−2bγ/(u−l))

(
1 +

τ

eb − 1

)
≤ (1− e−20r2γ) · (1 + 9e10r2γ) = O(γr2) , (5.7)

where the last equality follows as γ ≤ 1/r2. In what follows we bound the probability of event
Econe, which is the event that the ball Bz is cut in the cut-cones procedure, while conditioning
that it was not cut while creating the Sij . Let S = Sij be the set that contains Bz, which was built
around the path P = Pij . Let c1, . . . , ck be the centers chosen in cut-cones(S,P ). We claim that
there can be at most 9 of them that may cut Bz. To see this, observe that each cone contains a
ball of radius at least ∆/8, and since P is a shortest path, in any set of 10 centers there are two
centers cg, ch such that dS(cg, ch) ≥ 9∆/8 > 2(1/2 + γ)∆. By the triangle inequality it must be
that at least one of them is more than (1/2 + γ)∆ away from z. Finally, by Lemma 12 any cone
centered at c may only contain points at distance at most ∆/2 from c (see (5.6)), so it may not be
the first to cut Bz. As α is chosen uniformly from an interval of size ∆/8, the probability that a
ball of radius γ∆ will be cut is at most 2γ∆/(∆/8) = 16γ. By a simple union bound,

Pr[Econe | Bz ⊆ S] < 144γ ,

which is dominated by (5.7), thus the final bound is

Pr[Bz is cut] ≤ O(γr2) .

6 Bounded Treewidth Graphs

Since graphs of treewidth r are Kr+2-free, the result of Section 4 already implies a (weak diameter)
probabilistic partition which is O(r)-padded. The purpose of this section is to show a strong
diameter (O(r), O(1/r))-padded partition for graphs of bounded treewidth. We will use the same
framework as the previous sections, and exploit the special structure of bounded treewidth graphs.

Definition 15. A graph G = (V,E) has treewidth r if there exists a collection of sets I =
{X1, . . . , Xk} with each Xi ⊆ V , and a tree T = (I, F ), such that the following conditions hold:

• ∪i∈[k]Xi = V ,

• For all i ∈ [k], |Xi| ≤ r + 1,

• For all {u, v} ∈ E, there exists i ∈ [k] such that u, v ∈ Xi,

• For all u ∈ V , the tree nodes containing u form a connected subtree of T .

Corollary 16. Let U be a bag in the tree decomposition T = (I, F ) of G = (V,E). Then if
U1, U2 ∈ I lie in different connected components of T \ {U}, and x1 ∈ U1 \ U , x2 ∈ U2 \ U , then
x1, x2 are in different connected components of G \ U .
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6.1 The Algorithm

Let G = (V,E) be a graph of treewidth r − 1, and let T be its tree decomposition, where T has
an arbitrary root R. The height of a tree node U , h(U), is its distance in T from the root R.
For a vertex u ∈ V let h(v) denote the minimal height of a tree node U containing u, and denote
by b(u) = U the node achieving this minimum. Order the vertices of the graph (v1, . . . vn) such
that for all 1 ≤ i < j ≤ n, h(vi) ≤ h(vj). In the i-th iteration of the algorithm we will have a
graph Gi (initially G1 = G), and if vi ∈ Gi we shall create a cluster Si = BGi(vi, Ri∆), where
Ri ∼ Texp[0,1/2](8r). Then set Gi+1 = Gi \ Si and continue. If vi /∈ Gi then we do nothing in this
iteration.

Algorithm 5 Treewidth-Partition(G,∆,r)

1: Let G1 ← G.
2: Let P ← ∅.
3: for i = 1, . . . n do
4: if vi ∈ Gi then
5: Let Ri ∼ Texp[0,1/2](8r).
6: Let Si = BGi(vi, Ri∆).
7: Set Gi+1 ← Gi \ Si.
8: else
9: Set Gi+1 ← Gi.

10: end if
11: end for

6.2 The Analysis

Fix some z ∈ V , γ = O(1/r) and Bz = BG(z, γ∆). Let U = b(z) ∈ I be the tree node containing z
such that h(z) = h(U). The first observation is that when analyzing the probability that Bz is cut,
we may restrict our attention to vertices v ∈ V whose b(v) lies on the path from R to U in T . The
reason is that if b(vi) is not on this path, then if C ∈ I is the least common ancestor of U and b(vi)
in T , we claim that Gi does not contain any vertex from C. To see this, note that by the choice of
ordering all vertices in C appear before vi, and thus either created a cluster or were removed from
the graph. By Corollary 16 z and vi are in different component of Gi, so Si cannot be the first to
cut Bz.

Consider then the process restricted to the vertices contained in bags on the path from R to U
(we may assume w.l.o.g that these appear first in the ordering). For any i ∈ [n], denote by Ci the
connected component in Gi that contains z, and let S|Ci

= {Sj | Sj ∼ Ci}.

Claim 17. For any i ∈ [n], |S|Ci
| ≤ 2r.

Proof. Let R = U1, . . . , Uk = U be the sequence of bags from the root to U in the tree decompo-
sition. For any j ∈ [k], let ij ∈ [n] be the minimal such that Uj ∩ V (Gij ) = ∅. We prove that
|S|Cij

| ≤ r, by noting that there are at most r supernodes that can intersect Uj (as |Uj | ≤ r). If

a supernode Sh does not intersect Uj , then since this supernode is not centered at some vertex of
Uj′ for j′ > j (using the ordering and the minimality of ij), then by Corollary 16 there is no path
from z to N(Sh) in Gij . Since there are at most r new supernodes created between time ij to ij+1

(as each bag is covered after at most r clusters are formed), the claim follows.
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Observe that the algorithm generates a threatening skeleton-process with the sequence G1, . . . , the
skeletons are Ai = {vi}, Ki = Si, l = 0, u = 1/2, s = 2r and b = 4r. Let Jz = {vi | dGi(z, vi) ≤
(u+ γ)∆}. By Claim 17 we may apply Lemma 6 and obtain that

τ ≤ 3e(4r+1)·(1+γ/u) . (6.8)

Finally, as our process can also be made to be a cutting skeleton-process, as long as we omit the
steps in which vi /∈ Gi (note that the next i for which vi ∈ Gi may depend on previous random
choices of Rj for j < i, but this is allowed), and with l = 0, u = 1/2 and b = 4r. Applying
Lemma 7, we obtain that the probability that Bz is cut is at most

(1− e−2bγ)

(
1 +

τ

eb − 1

)
≤ (1− e−8rγ) · 9e8rγ = O(γr),

using that γ ≤ 1/r.

7 Bounded Genus Graphs

For g ≥ 0, a graph G = (V,E) has genus at most g if it can be drawn on the surface of a sphere
with g “handles” without any edges crossing. The following result is folklore (see, e.g., [IS07])

Lemma 18. If G is a genus g graph, there exists a cycle A comprised of two shortest paths
emanating at a common root, such that G \A has genus at most g − 1.

This fits nicely in the bounded threateners program: Our algorithm will iteratively take such a
cycle A, create a random buffer S around it, and recurse on the connected components of G \ S.
The base case is when the component is planar, then we may apply our strong-diameter padding
algorithm. Formally, in iteration i take a connected component Ci in Gi, if Ci is not planar, find a
cycle Ai as in Lemma 18. Let Si = BGi(Ai, Ri∆) where Ri ∼ Texp[0,1/4](8 log g), set Gi+1 = Gi\Si.
Each Si is partitioned to clusters by iteratively taking cones centered at some of the points of Ai.
If Ci is planar, invoke the decomposition scheme of Section 5.

We now turn to analyzing the algorithm. The fact that the resulting partition is strong-diameter
∆-bounded follows from the fact that Strong-Random-Partition generates strong-diameter ∆-
bounded clusters, and by Lemma 12, the cones are also strong-diameter ∆-bounded (the proof
of that lemma never used that P is a shortest path, we only need that any point in Si is within
distance ∆/4 from Ai).

Fix some z ∈ V , γ ≤ δ for sufficiently small constant δ (which is independent of g), and set
Bz = BG(z, γ∆).

Lemma 19. The probability that the ball Bz is cut by the above process is

Pr[Bz cut] ≤ 1− e−O(γ log g) .

Proof. Let Egenus be the event that Bz is first cut by some set Si. Divide the event ¬Egenus into
Fcone = {∃i, Bz ⊆ Si} and Fplanar = {∃i, Bz ⊆ Ci ∧ Ci is planar}. Let Econe be the event that
Fcone holds and also Bz is first cut by a cone in the Create-Cones(Si, Ai), and finally let Eplanar

be the event that Fplanar holds and also Bz is cut while calling Strong-Random-Partition on a
planar component containing Bz. We will bound each of the E events separately.
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Algorithm 6 Genus-Partition(G,∆,g)

1: Let G0 ← G, i = 0.
2: Let P ← ∅.
3: while Gi is non-empty do
4: Let Ci be a connected component of Gi.
5: if Ci is planar then
6: Let Pi be a partition obtained by invoking Strong-Random-Partition(Ci,∆, 5). Add the

clusters of Pi to P .
7: Set Gi+1 ← Gi \ ∪Pi.
8: else
9: Let Ai be cycle as in Lemma 18.

10: Let Ri ∼ Texp[0,1/4](8 log g).
11: Add Si = BGi(Ai, Ri∆) as a cluster to P .
12: Create-Cones(Si, Ai). Add the resulting clusters to P .
13: Set Gi+1 ← Gi \ Si.
14: end if
15: i← i+ 1.
16: end while

Assume w.l.o.g that non-planar components are chosen first, then the process until time T (where
all components are planar) is a cutting skeleton-process, with the graph sequence G1, . . . , the
skeletons Ai and Ki = Si, the parameters are l = 0, u = 1/2 and b = 2 log g. Let Tz = {Ai |
i ∈ [T ], dGi(Ai, z) ≤ (1/2 + γ)∆}. Note that by Lemma 18 there can be at most g iterations (on
components containing z) in which z lies in a non-planar component, so |Tz| ≤ g. By Lemma 7

Pr[Egenus] ≤ (1− e−8γ log g) · (1 + g/(e2 log g − 1)) ≤ 1− e−16γ log g ,

using that γ ≤ 1/20, say. If Pr[¬Egenus] = p, then p ≥ e−16γ log g and if pcone = Pr[Fcone] and
pplanar = Pr[Fplanar] then

p = pcone + pplanar . (7.9)

By the first assertion of Theorem 4, there is a large constant C such that

Pr[Eplanar] = pplanar ·O(γ) = pplanar(1− e−Cγ) ,

since γ is sufficiently small.

Finally, we bound the probability of event Econe. Conditioning on Bz ⊆ Si for some i, we use a
similar argument as in the proof of Lemma 14, here we claim that there can be at most 18 centers
whose cone may intersect Bz. This is because if there are more, at least 10 of them lie on one of the
two shortest path Ai is comprised of, and using the argument appearing in the proof of Lemma 14,
it cannot be that all of them threaten Bz. Since α is chosen uniformly from an interval of length
∆/8, the probability that any cone cuts Bz is at most 2γ∆/(∆/8), thus by a union bound, using
that C is large enough,

Pr[Econe] = pcone ·O(γ) = pcone(1− e−Cγ) .

Combining the three bounds, we obtain that the probability that Bz is cut is at most
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Pr[Egenus] + Pr[Econe] + Pr[Eplanar] ≤ 1− p+ pcone(1− e−Cγ) + pplanar(1− e−Cγ)

(7.9)
= 1− p · e−Cγ

≤ 1− e−16γ log g · e−Cγ

= 1− e−O(γ log g) .

We note that this result can also be extended to generate a sparse cover with strong diameter ∆,
such that for each vertex, its ball of radius O(∆) is contained in some cluster and each node belongs
to at most O(log g) clusters.
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A Proof of Lemma 6

Fix any i ∈ N. W.l.o.g., we may assume that the process always picks the set Ai in the connected
component Ci of Gi that contains z. Let x = x(i) be a vector of the “normalized distances” from z
to K|Ci

. More formally, if K|Ci
= {Ki1 , . . .Kil} (with l ≤ s by the assumption of the lemma), then

for j ∈ [l] define xj :=
dGi∪Kij

(z,Aij
)−Rij

∆

u∆ . Intuitively, xj should have been the distance from z to
Kij , normalized by u∆. Observe that dGi∪Kij

(z,Kij ) ≥ dGi∪Kij
(z,Aij )−Rij∆.

Define the potential function for the vector x := (x1, . . . , xl) as

Φ(x) =

l∑
j=1

e−(2s+1)·xj . (A.10)

We would like to analyze the change to x over time. Assume w.l.o.g that x1 ≤ · · · ≤ xl. Let

h :=
dGi

(z,Ai)

u∆ ≥ 0 be the normalized distance of z from the set Ai, and let y = h−Ri/u. Observe
that if xj ≤ y then the shortest path from Kij to z is completely disjoint from Ki; indeed, if there
was an intersection, then the distance from z to Ki would be smaller, a contradiction. We get that
if j∗ is the maximal index such that xj∗ ≤ y, then the first j∗ entries of x will not change. The new
set Ki will always be in K|Ci+1

(recall that Ci+1 is the component containing z in Gi+1 = Gi \Ki),
so we have that the j∗ + 1 entry in x(i + 1) will be xj∗+1 = y. For j∗ < j ≤ l, it could be the
case that Ki intersects the shortest path from Kij to z, in which case the distance may increase or
Kij can even be disconnected from z. Note that if l = s, then it must be that at least one Kij is
disconnected from z, because we assume that |K|Ci+1

| ≤ s.
Next we attempt to bound the expected change to the potential function Φ in any single step. To
this end, it suffices to consider the worst scenario, in which all the Kij for j∗ < j ≤ l become
disconnected from z by Ki (in such a case the potential decreases the most). To this end, define
the “filtered subsequence” x ↓ y to be the sequence obtained by dropping all the coordinates of x
which are strictly larger than y, and adding in y. 3

Lemma 20. Let Φ be a function defined as in (A.10). Fix any non-decreasing sequence x of length
at most s, and a random variable Y ∼ Texp(2s) as in (2.2). Then for any h ≥ 0:

EY [Φ(x ↓ (h− Y ))− Φ(x)] ≥ s(e− 2) · e−(2s+1)h

1− e−2s
.

Proof of Lemma 20. Let b = 2s and a = −(b + 1). The increase of the potential due to the new
coordinate y = h− Y is ea·(h−Y ), so the expected gain is

E[ea(h−Y )] = eah ·
∫ 1

0
e−aw ftexp;b(w) dw = eah ·

∫ 1

0

b

1− e−b
e−(a+b)w dw =

b(e− 1) · eah

1− e−b
. (A.11)

Next we analyze the loss in Φ for the coordinates xj that are dropped. Recall that a coordinate xj
is dropped exactly when xj > h− Y . Since Y ∈ [0, 1] the only interesting case is when xj = h− γ
for some γ ∈ [0, 1], which is dropped when Y > γ, so the maximum loss is

max
γ∈[0,1]

ea(h−γ) Pr[Y > γ] = eah · max
γ∈[0,1]

e−aγ
∫ 1

γ
ftexp;b(w) dw

3E.g., (−0.4,−0.3, 0.7, 5, 6.9) ↓ 1.42 = (−0.4,−0.3, 0.7, 1.42).
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= eah · max
γ∈[0,1]

e−aγ
e−bγ − e−b

1− e−b

=
eah

1− e−b
· max
γ∈[0,1]

eγ − e−aγ−b

≤ eah

1− e−b
· e .

Since x has only s coordinates, the total expected loss incurred on Φ is thus at most

s · e · eah

1− e−b
. (A.12)

Finally using (A.11) and (A.12) we see that

E[Φ(x ↓ (h− Y ))− Φ(x)] ≥ b(e− 1) · eah

1− e−b
− s · eah+1

1− e−b

=
(e(b− s)− b) · e−(b+1)h

1− e−b
.

Applying Lemma 20 with the vector x (whose length is indeed at most s) and Y = Ri/u, noting
that Y ∼ Texp(2s) by a property of the exponential distribution mentioned in Section 2, we get
that

EY [Φ(x ↓ y)− Φ(x)] ≥ (e− 2)s · e−(2s+1)h

1− e−2s
≥ 2s · e−(2s+1)h/3 . (A.13)

It will be more convenient to analyze a slightly different potential function

Φ′(x) =

{
2s ∃j, xj ≤ 0

Φ(x) otherwise

We claim that (A.13) still holds for Φ′. This is because it is the same as Φ as long as x > 0,
and if x(i + 1) is the first to have a non-positive coordinate, then Φ′(x(i)) = Φ(x(i)) < s and
Φ′(x(i+ 1)) = 2s, but since h ≥ 0 the claimed expected increase in (A.13) is never more than s.

Denote by Φi = Φ′(x(i)). Recall that for every i ∈ Jz we have that dGi(z,Ai) ≤ (u + γ)∆ and
thus h = dGi(z,Ai)/(u∆) ≤ 1 + γ/u. Observe that the expectation of (A.13) is taken only over the
current choice of Y , and since Y is chosen independently we can condition on any other event that
depends on previous steps, and obtain the same bound. In particular, for i ∈ Jz,

E[Φi+1 | Φi] ≥ Φi + 2s · e−(2s+1)h/3 ≥ Φi + 2s · e−(2s+1)·(1+γ/u)/3 , (A.14)

and define ζ = 2s · e−(2s+1)·(1+γ/u)/3. Also note that the bound of (A.13) is always positive, so
even if i /∈ Jz we still have

E[Φi+1 | Φi] ≥ Φi . (A.15)

For t ∈ N let jt = |{i ∈ Jz | i ≤ t}| be the number of time steps until t in which z is threatened.
We claim that the process X0, X1, . . . where Xt = Φt − ζ · jt, is a submartingale. To prove this
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consider two cases: If t+ 1 ∈ Jz then jt+1 = jt + 1, and by (A.14) we get E[Φt+1 | Φt, jt] ≥ Φt + ζ,
and so

E[Xt+1 | X1, . . . Xt] = E[Φt+1− ζ · jt+1 | Φt, jt] ≥ Φt+ ζ− ζ · jt+1 = Φt+ ζ− ζ · (jt+ 1) = Φt− ζ · jt .

If it is the case that t+ 1 /∈ Jz, then jt+1 = jt and

E[Φt+1 − ζ · jt+1 | Φt, jt] ≥ Φt − ζ · jt .

The stopping time of a (sub)martingale X0, X1, . . . is a random variable τ that has support in N,
and such that the event τ = t depends only on X0, . . . , Xt. Define τ as the first time in which
Φτ = 2s. Observe that if t is the time where z ∈ Kt, then it must be that dGt(z,At) ≤ Rt∆, and
so we get a non-positive coordinate in x(t) which implies that τ = t. Since the stopping time is
bounded by |V | (there can be at most |V | rounds, because at least one vertex is removed every
round), we can apply Doob’s optional stopping time Theorem [GS01, Section 12.5] and obtain that

E[Φτ ]− ζ · E[jτ ] = E[Xτ ] ≥ E[X0] = 0 .

Finally, as Φτ = 2s, we obtain that

E[|Jz|] = E[jτ ] ≤ 2s/ζ = 3e(2s+1)·(1+γ/u) .

This completes the proof.

B Proof of Lemma 7

Let us introduce some more notation and properties before proving this lemma. Define the following
events:

Ci = {Bz ∩Ki /∈ {∅, Bz}} “Bz cut in round i (by Ai)”,

Fi = {Bz ∩Ki = ∅} “i was a no-op round”,

Ei =

{
Ci ∧

∧
j<i

Fj
}

“Bz first cut in round i”.

Denote by F(<i) the event
∧
j<iFj , so that Ei = (Ci ∧ F(<i)). Denote by F i the complement of Fi.

Observe that Ci (respectively F i) implies that i ∈ Tz, so

Pr[Ci] = Pr[Ci ∧ i ∈ Tz] = Pr[i ∈ Tz] · Pr[Ci | i ∈ Tz] , (B.16)

Pr[F i] = Pr[i ∈ Tz] · Pr[F i | i ∈ Tz] . (B.17)

and the same holds also when conditioning on any other event. We have the following claim:

Claim 21. For each i ∈ N,

Pr[Ci | F(<i), i ∈ Tz] ≤ (1− δ) ·
(

Pr[F i | F(<i), i ∈ Tz] +
1

eb − 1

)
.
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Proof. Fix any graph Gi and any set Ai ⊆ V (Gi) that agree with the conditioning on F0, . . .Fi−1

and so that i ∈ Tz. Denote by ρ = dGi(Ai, Bz), b̄ = b/(u− l), and let m = max{l, ρ} . Recall that
Ri is chosen independently, so

Pr[F i | F0, . . . ,Fi−1, i ∈ Tz, Ai] =

∫ u

m

b̄e−b̄y

e−b̄l − e−b̄u
dy

=
e−b̄m − e−b̄u

e−b̄l − e−b̄u
.

Since F0, . . . ,Fi−1 occurred and Gi ⊇ G0 \ (∪j<iKj), we have that Bz ⊆ Gi. Now if Ri ≥ ρ + 2γ
then by the triangle inequality Bz ⊆ Ki, and the ball is “saved”. This bounds the cut probability
thus:

Pr[Ci | F(<i), i ∈ Tz, Ai] ≤
∫ ρ+2γ

m

b̄e−b̄y

e−b̄l − e−b̄u
dy

≤ e−b̄m − e−b̄(m+2γ)

e−b̄l − e−b̄u

=
e−b̄m(1− δ)
e−b̄l − e−b̄u

= (1− δ) · Pr[F i | F(<i), i ∈ Tz, Ai] + (1− δ) e−b̄u

e−b̄l − e−b̄u

= (1− δ) ·
(

Pr[F i | F(<i), i ∈ Tz, Ai] +
1

eb − 1

)
.

Finally, because the bound holds for any Ai, it holds without conditioning on it.

Proof of Lemma 7. Observe that for each i ∈ [N ], the events
{
F i ∧ F(<i)

}
are pairwise disjoint

(this is the event that Bz is either cut or contained in Ki for the first time), thus by the law of
total probability, ∑

i∈N
Pr
[
F i ∧ F(<i)

]
≤ 1 . (B.18)

Also, by linearity of expectation

τ =
∑
i∈N

Pr[i ∈ Tz] . (B.19)

To bound the probability of the ball being cut, we start off with the trivial union bound:

Pr

[⋃
i∈N
Ei

]
≤
∑
i

Pr[Ei] =
∑
i

Pr
[
Ci ∧ F(<i)

]
=
∑
i

Pr[Ci | F(<i)] · Pr[F(<i)]

(B.16)
=

∑
i

Pr[Ci | F(<i), i ∈ Tz] · Pr[i ∈ Tz | F(<i)] · Pr[F(<i)]

Claim 21
≤

∑
i

(1− δ)
(

Pr[F i | F(<i), i ∈ Tz] +
1

eb − 1

)
· Pr[i ∈ Tz | F(<i)] · Pr[F(<i)]
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(B.17)
= (1− δ) ·

∑
i

Pr
[
F i ∧ F(<i)

]
+
∑
i

Pr
[
i ∈ Tz ∧ F(<i)

]
· 1− δ
eb − 1

(B.18)

≤ (1− δ) +
1− δ
eb − 1

·
∑
i

Pr[i ∈ Tz]

(B.19)
= (1− δ)

(
1 +

τ

eb − 1

)
.

This completes the proof.
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