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Abstract

This paper studies compact routing schemes for net-
works with low doubling dimension. Two variants are ex-
plored, name-independent routing and labeled routing. The
key results obtained for this model are the following. First,
we provide the first name-independent solution. Specifi-
cally, we achieve constant stretch and polylogarithmic stor-
age. Second, we obtain the first truly scale-free solutions,
namely, the network’s aspect ratio is not a factor in the
stretch. Scale-free schemes are given for three problem
models: name-independent routing on graphs, labeled rout-
ing on metric spaces, and labeled routing on graphs. Third,
we prove a lower bound requiring linear storage for stretch
< 3 schemes. This has the important ramification of sep-
arating for the first time the name-independent problem
model from the labeled model for these networks, since
compact stretch-1+ ¢ labeled schemes are known to be pos-
sible.

Keywords: routing, doubling dimension, object loca-
tion.

1. Introduction

In this paper we study compact routing schemes for
graphs with bounded doubling dimension. The doubling
dimension of a metric space is the smallest « > 0 such
that every ball of radius 27 can be covered by 2¢ balls of ra-
dius r. This notion naturally extends to undirected weighted
graphs: a graph has doubling dimension « if the metric
space induced by the shortest path distances on the graph
has doubling dimension c.
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In compact routing schemes the goal is to achieve effi-
cient tradeoffs between the srorage, the maximal number of
bits per node, and stretch, the maximal ratio between the
route and the shortest path over all source destination pairs.
Two variants of the problem exists. In the labeled model,
the designer is allowed to assign nodes with short (typically
polylogarithmic) labels that can be used for routing. In the
name-independent model, the node labels are decided by an
adversary. While this model makes the routing task much
harder it also enables important network operations like lo-
cating nearby copies of replicated objects and tracking of
mobile objects [10, 7].

For example, consider the hyper-cube graph {0, 1}
In a labeled scheme, the designer may give each node
its natural logn-bit identifier and then stretch 1 routing
becomes trivial. The name-independent version is much
harder: Suppose an adversary maps nodes to names via a
random permutation of [1..n]. Intuitively, given a target la-
bel, a source node needs to discover the location of the tar-
get at a cost that is competitive with the distance between
the source and target (which is unknown in advance).

For arbitrary n node graphs, routing schemes with
stretch ~ k that require ~ n'/* bits per node are known, for
name-independent [10, 2] and labeled [29] models. These
results (for both models) are asymptotically tight up to poly-
logarithmic factors. We refer the reader to Peleg’s book [24]
and to the surveys of Gavoille and Peleg [13, 14] for more
detail and background. Although intuitively the name-
independent variant appears harder than the labeled one, un-
til now the same lower bounds hold for both problem mod-
els, and moreover the same upper bounds were known up
to polylogarithmic factors in storage and constant factors in
stretch.

logn

For tree networks however, the labeled problem is
known to be strictly easier (polylogarithmic storage stretch-
1 schemes are known [12, 29]) than the name-independent
variant. For this variant, it is been constructed some star net-
works of doubling dimension logn — O(1) where Q(v/n)
bits are required if the stretch is 3 or less [23], and more
generally, for every integer k& > 1, Q((nlogn)'/*) bits are
required if the stretch is < 2k + 1 [4].

An easier problem than that of routing on a graph is that
of routing on a metric space. A metric space is set V' and a



non-negative, symmetric distance functiond : V. x V — R
that obeys the triangle inequality. In this model the designer
needs first to choose for each node a set of outgoing links,
this then induces a directed overlay graph on which routing
must occur as in the graph model. In addition to minimiz-
ing the storage, the goal is also to minimize the number of
outgoing links. See [17, 5, 25] for routing schemes on this
model.

Another aspect of routing schemes is their dependance
on the scale of the network. Let the aspect ratio' A be the
ratio between the maximum distance between two nodes
and the minimum distance between to nodes, then many
schemes require memory that tends to infinity as A in-
creases. One would hope to remove the dependence on A
altogether. We will say that a routing scheme is scale-free if
its memory requirement is independent of the aspect ratio.
Obtaining scale-free schemes is a challenging goal: Until
now, scale-free compact routing schemes were known only
for a fairly restricted class of graphs [6] or with exponential
stretch [8, 9].

In recent years, several problems, whose input contains
a metric space, were shown to have considerably better so-
Iutions when the doubling dimension is low. For exam-
ple metric space embedding [16, 21], network decomposi-
tion, colorings, maximal independent sets [22], TSP, Steiner
tree, cover set [18], nearest neighbor [20], distance esti-
mation [27, 26], compact routing [25, 11]. Yet no name-
independent routing scheme on low dimensional spaces was
ever given, nor any labeled scale-free scheme provided for
low dimensional graphs. Independently, Konjevod et al [19]
have recently studied the name-independent non scale-free
model.

1.1. Our contribution

This paper provides a number of contributions on the
topic of compact routing in low-dimensional networks.
o In Section 2 we give the first results on name-independent
routing in graphs with low doubling dimension. Our ba-
sic scheme achieves constant stretch while requiring only
20(2) Jog A log n bits per node.
e We then extend this scheme in Section 3 to provide a con-
stant stretch scale-free version requiring only 2€(<) log4 n
bits. This is the first scale-free compact routing scheme for
low-dimensional networks.
e In Section 4, we prove that any name-independent scheme
with o(an) (sub-linear) bits of storage must have a stretch
of at least 3—¢. In particular, this implies that there is no 1+
€ name-independent scheme with sublinear storage. Thus,
we separate the name-independent and the labeled problem
models, since 1 + € compact labeled routing is achievable.

'When the minimal distance is 1, then the aspect ratio is simply the
weighted diameter.

We stress that the independent lower bounds of [23] and
of [4] do not apply since in [23, 4] the counter-examples
have doubling dimension o = logn — O(1).

e For the labeled case in metric spaces, in Section 5 we
provide improvements over the best known stretch 1 + ¢
schemes. First, we achieve the optimal [logn] label size
for graphs while requiring lowest known memory. All
previous schemes required label sizes which depend on
a,log A, log(%). Second, we give the first truly scale-free
scheme on metrics, which also has optimal label size. The
best previous scheme still required a log log A storage fac-
tor and bigger labels.

o In Section 6 we present a stretch 1 + ¢ scale-free labeled
scheme for graphs. We are not aware of any previous scale-
free schemes for graphs. of bounded doubling dimension.
o Finally, in Section 7 we provide an additional lower bound
on exact (stretch-1) compact routing schemes. It proves that
even for the very restricted class of growth bounded graphs,
Q(y/n) memory is required at some nodes. This demon-
strates the benefits of allowing ¢ slack in the routing stretch.

Table 1 summarizes the best known bounds and this pa-
per’s contribution in the different models.

The results of sections Section 3 and Section 6 use a vari-
ation of the sparse-dense decomposition based on [4] that
combines scale-based partitions with node-count based par-
titions. Originally, [4] used these partitions in conjunction
with several other techniques to obtain scale-free results for
general graphs. In that sense the main technical contribution
of Section 3 and Section 6 is the novel way the sparse-dense
decomposition is used and the new routing algorithms built
on top of them.

1.2. Model and notation

Given is a weighted graph G = (V, E,w) of size n =
|V'| with a non-negative weight function w : £ — R™T. Let
the cost of a path be the sum of the weights of its edges.
For any u,v € V let d(u,v) be the cost of a minimum
cost path between u and v, observe that (V,d) is a metric
space. Let A denote the aspect ratio (normalized diame-
ter) of G, A = maxyz, d(u, v)/ minyz, d(u,v). In order
to avoid dragging a normalization constant, from here on
assume that min, ¢, d(u,v) = 1.

Define the radius r ball around node u, B(u, ), as the set
of nodes whose distance is at most r from u, B(u,r) = {v |
d(u,v) < r}. For any node u, let T'(«) denote a minimum
cost path spanning tree rooted at u. Given a lexicographic
order on the nodes, for any node u € V, set Z C V, and
integer m > 0 define N(u, m, Z) as the m closest nodes
from Z to node u, i.e., as the set N(u,m,Z) = N such
that N C Z, |N| =mandforallz € Nandy € Z\ N
either d(u, z) < d(u,y) or d(u,x) = d(u,y) and z is lexi-
cographically smaller than y. Let N (u,m) = N(u,m, V).




Reference Model | Stretch Memory (in bits) Label/Header (in bits) Out degree
Awerbuch & Peleg [10] | G,NI | O(logZn) | O(log Alog? n) O(logn)

Konjevod et al. [19] G,NI | 9+e¢ (24 1/)9@ 1og? Alogn O(alog(2+ 1/¢)log A + logn)

This paper (Thm. 1) G, NI O(1) 20(®) Jog Alogn O(logn)

This paper (Thm. 2) G,NI | O(1) 20() 1og?n 200 Jog3 n

Talwar [27] G L 1+e¢ O(i)o‘ log?To A O(alog A)

Chanetal. [11] G,L 1+e¢ (2)0() log Alogn O(alog Llog A)

Slivkins [25] (Thm. 2.1) | G,L 14¢ (f)0<a> log A logn O(alog 1 log A)

Slivkins [25] (Thm. 4.1) | G,L 1+¢ (i)o(o‘) log A log nloglogn 20(2) Jogn log(% log A)

This paper (Thm. 4) G,L 1+e (i)o("‘> log Alogn [logn]

Slivkins [25] (Thm. 4.2) | M,L | 1 +¢ (1)9@ lognloglognloglog A | O(alognlog(LlogA)) (Ho@ogn
This paper (Thm. 5) M,L 1+¢ (i)o("‘) log?n [logn] (i)o(") logn
This paper (Thm. 6) G,L 14+¢ (1H0@ 10g3 n 20(@) 1og® n

Table 1. Our results and comparison with previous results for routing schemes on n nodes of doubling dimension c, aspect ratio
A and constant € > 0. Model notation: G for graph, M for metric space, NI for name-independent, L for labeled

Let I denote the set I = {0, 1,..., [log A]}. Let K denote
the level set K = {0,1,2,..., [logn]}. Each node has an
arbitrary unique network identifier consisting of polylog(n)
bits. Using standard hashing techniques it is possible to
generalize the model and assume nodes have arbitrarily long
unique labels.

Given two sets U C V, we define the following. U is
an r-cover of V if Vv € V,3u € U such that d(u,v) < r.
U is a minimum r-cover of V if U is an r-cover of V' and
Ul < |W]|. U is r-independent
if Yu,o € U : d(u,v) > r. U is an r-net of V if U is
r-independent and is an r-cover of V.

2. A Simple Name-Independent Scheme

We begin by observing that low doubling dimension
spaces have efficient sparse covers.

Lemma 1. For every weighted undirected graph G =
(V, E,w), = n, with doubling dimension o and integer
p > 1, there exists a polynomial algorithm that constructs
a collection of sets C,(G) C 2V such that:

1. (Cover) For all v € V, there exists C € C,(G) such
that B(v, p) C C.
2.

o(G) lveC}] <
4«

3. (Small radius) For all C € C,(G), rad(C) < 2p,
where rad(C) = min {r | Ju € C’ C c B(u, )}

Proof. Let U be a p-net of G, choosing U can be done in a
simple greedy manner. Define C,(G) = {B(u,2p) | u €
U}. Property 1 follows since for any v fix u € U such that
d(u,v) < p, so B(v,p) C B(u,2p). Property 3 follows
by definition of C,(G). For Property 2, fix v € V, let W
be a minimum p/2-cover of B(v,2p), then |[W| < 4% and

|[U N B(v,2p)| < |W| because each ball in W contains at
most one point from the p-net U. O

Note that for general graphs [10] provide O(n'/*) spar-
sity with cover radius kp. Thus, low doubling dimension
allows us to substantially improve the partition parameters.

For each i € I let Cyi(G) be a set of clusters as in
Lemma 1. For each i € T and C' € Cy:(G) we construct a
low degree, low diameter tree T'(C') and a low stretch rout-
ing scheme for this tree. Note that T'(C') is not necessarily
a subgraph of G it may use edges that are not in G.

Lemma 2. Given a set C C V with rad(C) < p, there
exists a weighted tree T(C) whose nodes are C' with the
following two properties:

1. Each node has out degree at most 4.
2. Let the weight of edge (u,v) be dg(u,v).
weighted diameter of T(C') is at most 2p.

Then the

Proof. Let Uy = {r} be a set containing the center of the
cluster C. Fori = 1 to [logp] let U; be a (27%p)-net of
C \ Up<j<iU;. The tree is formed by connecting each v €
Ui to the closest node in U;_1, denoted p(v). Note that no
cycles are created since if u € U; it will never be in U; for
Jj >

For any v € U;_1 if p(v) = w then v €
B(u, 270~V p) N U;. Since U is a subset of an (277 p)-net
then | B(u, 2~ Y p) N U;| < |W| where W is a minimum
(2= p)-cover of B(u,2~ =Y p). Hence |{v | p(v) =
u}| < |W| < 4% For the diameter of the tree note that any
path from the root is bounded by >, _, 27 < 2p. O

Lemma 3. Given a weighted undirected tree T = (V, E,w)
with root r, = n, diameter p and maximum out-degree
k, there exists a name-independent tree-routing scheme
on T with error-reporting that routes on paths of length
bounded by 4p, each node requires O(klogn) memory bits




and headers are of length O(log n). Moreover, routing for a
non-existent name in T also incurs a (closed) path of length
4p until a negative result is reported back to the source.

Proof. Let d(v) be a depth-first search post-order enumer-
ation of the nodes in 7" starting from the root. Let w; <
wy < --- < wy, be a sorted sequence of the node names
(lexicographical order). For any node, let M (v) denote
the sequence (d(v), wq(.)). Each node v stores M (v) and
M (u) for all w that are direct children of v. In addition each
node v stores d(wq(,). Observe that this storage requires
O(klogn) bits. Given a name w = wj, it costs at most p to
get to the root. Then, using M (-) information stored at each
node, it is possible to navigate down the tree to the node v
such that d(v) = i, this costs at most p. Specifically, navi-
gation is done by comparing for each child ¢ its stored wgy)
to w; and proceed to the child with largest wg(;) which does
not surpass w.

Since v will store d(w;) it is possible to return to the root
(at cost p) and route to w using d(v) with an additional cost
of p. If the name does no exist then it will cost 2p to reach
the root and back to the source. O

The remaining obstacle is that T'(C') is not a subgraph
of G. So each node v € T'(C) needs to be able to route to
its parent and each of its children in 7'(C). This is done by
storing for each such connection the label of a labeled (1 +
g)-stretch routing scheme for a fixed ¢ < 1. This requires
a node in a tree to store routing information for at most 4
of its children. For the labeled scheme we can employ the
(14¢)-stretch scheme due to Slivkins [25], or the improved
labeled scheme we introduce later in this paper in Section 5.

Storage. The storage per node is as follows. For each
1 € I, a node belongs to at most 4% clusters. For each
cluster a node maintains 4% connections. Each connection
requires labels of size O(logn) for maintaining M (-). The
total is (log A)4%2*O(logn). In addition each node partic-
ipates in a labeled routing scheme with ¢ = 1/4 at cost
20(@) Jog A log n. The total is 29(®) log A log n.

Routing. Given a source s, for each i € I, let C; €
Cy: (G) be the cluster such that B(s,2") C C;. Routing for
a target ¢ is done iteratively by searching for ¢ on C; using
the scheme of Lemma 3 on the tree of Lemma 2 that spans
Ci.

Stretch. For the index i such that 271 < d(s,t) < 2¢,
s will find ¢ at the 7*" phase. The cost of a phase j is as
follows: It cost at most 27 to reach the tree root of C;j. The
diameter of C; is bounded by 2/*! and the diameter of the
spanning tree of Lemma 2 is bounded by 29+2. Searching
for t from the cluster root costs stretch 5/4 < 2 for labeled
routing times 2772 until the label of the target is found, for
a total cost of at most 2773, Then, a factor of 5/4 < 2

for labeled routing and distance at most 27+ due to cluster
diameter for reaching the source or target. The total path is
203 427 4 29%2 < 274 Summing on all levels from 0 to
iwe get Y 52T =275 —1 < 20d(s,t). So the stretch
is at most 26 = 64.

Theorem 1. For each weighted n-node graph with dou-
bling dimension o and aspect ratio A, there is a polyno-
mial time constructible name-independent routing scheme
with stretch factor 64 that uses 2°(®) log nlog A-bit rout-
ing tables per node.

3. A Scale-Free Name-Independent Scheme

We begin with some modifications to Lemma 2 and
Lemma 3 in order to make the construction scale-free. For
Lemma 2, instead of building the tree by iterating ¢ from 1
to [log p] we iterate only to min{[p], [3logn]}. Observe
that some nodes may not belong to the tree yet. For each
u € Uslogn let C(u) be the set of nodes in B(u,2°~31°8m)
whose closest node from Us g5, is u. Hence G[C/(u)], the
subgraph induced by C'(u), is connected so we build a span-
ning tree of C(u) rooted at u. Note that now a node can
belong to at most one U; and to at most one C'(u), hence a
real node simulates two nodes in the tree.

Since the diameter of each C(u) is smaller than n=2p we
modify Lemma 3 as follows: while searching for the label
of the target, if we reach a node in U3jog,, that has some
subtree we will simply visit all nodes in that subtree. For
this we use the following scheme on the tree.

Lemma 4. [12, 29] For every weighted tree T with n nodes
there exists a labeled routing scheme that, given any desti-
nation label, routes optimally on T from any source to the
destination. The storage per node in T, the label size, and
the header size are O(log® n/loglogn) bits.

Given an enumeration of the nodes in C'(u) each node
stores the label of the next node in the enumeration, hence
it is possible to visit all nodes in C(u) at cost of at most
p, while requiring each node to store O(log® n/loglogn)
bits.

Finally we replace the non scale-free labeled scheme
used to route between nodes in the virtual tree with the
scale-free version described in Section 6 with € = 1/4.

Summing up the changes, for each tree, a nodes needs to
store 20(*) log3 n bits per cluster it belongs to.

3.1. Sparse-dense decomposition

We use the decomposition into dense and sparse neigh-
borhoods from [4] with parameter k& = [logn]. Let K =
{0,1,2,...,[logn]}. Forallu € V and i € K define the



range a(u,i) as follows. Define a(u,0) = 0. Then, re-
cursively define a(u, i + 1) as the smallest positive integer
j > a(u,i) such that | B(u,27)| > 2|B(u, 2*%)| (or let
a(u,i + 1) = log A if there does not exist such an inte-
ger). Forall w € V and ¢ € K denote the neighborhood
ball A(u, ) as the ball of radius 2¢(*-*) around . Formally,
A(u,i) = {u} fori = 0 and A(u,i) = B(u,2*®9)) for
1> 0.

Let ® be a integer parameter. For this section, let & = 5.

Definition 1 (Dense level). For v € V and i € K, we say
that i is a dense level for node v if a(u,i) < a(u,i+ 1) <
a(u,i) + P.

We say that i is a sparse level for node u if it is not a
dense level. In words, in a dense level, we find at least
twice as many nodes as the current level by looking at a
ball whose radius is at most 2% times the current level.

The high level view of the routing scheme a simple it-
erative protocol. For phases ¢ = 1 to k, search for v as
follows: If A(u,i) is sparse, use the sparse neighborhood
routing strategy. If A(u,?) is dense, use the dense neigh-
borhood routing strategy.

3.2. Dense levels

For every w € V define the range set of node
u, denoted L(u), as L(u) = {a(u,i) | ¢ € K}
and define the extended range set R(u) as, R(u) =
{jel|JaeL(u)st. —1<a—j<P+1}. Define
F(u,i) = B(u,2%(“% /2). The main property of dense lev-
els is captured in the following lemma from [4].

Lemma 5 (Dense neighborhoods). [4] If i is a dense level
forwandv € F(u,i) then a(u,i) € R(v).

For every i € I define G; = (V;, E;) as the subgraph
induced by the nodes V; = {u | i € R(u)}. For each G;
we construct the routing scheme for scale 2¢ of Section 2.
Specifically we build the sparse cover of Lemma 1 of scale
2% and on each cluster we build the virtual tree and routing
scheme as detailed in the beginning of Section 3. Note that
(; may have several connected components, in which case
we construct the routing scheme for each such component
separately.

Storage. Each node u stores routing scheme for scale 2°
for each ¢ € R(u). For each such scale, a node stores
20(2) 1og® n bits.

Routing and Cost. Routing on a dense level ¢ of node w is
done by searching for the target on the virtual tree spanning
the cluster that contains the ball Bg, , , (u,2%*“"). The

cost of searching on this cluster is bounded by O(2%(%9)).

3.3. Sparse levels

For sparse levels we construct a collection of landmarks
{C; CV |i€e K} due to Slivkins [25]. The following
lemma follows from [25](Lemma 3.1). For any v € V' and
i € K let 7(u, i) be the radius of N (v, 2°).

Lemma 6. For every i € K there exists a set of landmarks
C; C V such that:

(1) d(u, C;) < 5r(u, i), for every node .

(2) If | B(u,7)| < 27 then |B(u,r/2) N C;| < 229+i—i 41

For every u € V and ¢« € K define the nearby land-
marks S(u,i) to be the 22+2 + 1 closest nodes in C;.
Let S(u,i) = N(u,22**? + 1,C;) and define S(u) =
Uick S(u,i). Define the center c(u, i) as the closest node
to u from C;. and define C(u) = ;¢ c(u, 7). LetT' = 4.
Let F(u,i) = B(u,2*®**)=T) " The main property of
sparse levels is captured in the following Lemma. The proof
appears in [1].

Lemma 7. Let i be a sparse level for u, i.e., a(u,i+ 1) >
a(u, i) + @. If v € E(u,i) then C(u) N S(v) # @.

So if a(u,4) is a sparse level let J(i) be the index
such that 27() < |B(u,2¢)| < 270)+1  The routing
scheme uses the following single source scheme that ex-
tends Lemma 3 to give constant stretch with polylogarith-
mic memory bound. We actually need a stronger result that
gives either constant stretch or a predetermined error cost.
The proof appears in [1].

Lemma 8. For any graph G = (V, E,w) with doubling
dimension «, |V| = n, and for any designated root r €
V, there exists a name-independent error-reporting single-
source routing scheme with the following properties:

1. Each node stores 2°(®) log3 n bits of information.

2. There exist O(logn) sub-clusters X; C --- C X, =
V' such that the following holds for every i: G[X;] is
connected, contains r, diam(X;) > 2diam(X;_;),

3. For any j € {0,...,y}, the root can perform a j-
bounded search for destination v. A j-bounded search
for v has the following properties: If v € X, then
it reaches v with stretch O(1); Otherwise it returns
a negative response to the root incurring a cost of at
most O(diam(X;_1)).

Storage. The storage used per node for sparse level rout-
ing is as follows. Each node maintains the routing scheme
of Lemma 8 for all the centers v such that v € S(u).

In addition each node v maintains for each sparse level
i the minimal index bound(i) such A(u,i) C Xpound(i),



where Xpouna(q) 18 the set in Lemma 8 for the closest center
of level J(4).

So the amount of memory per sparse level is 222 cen-
ters times 20(®) log3 n bits for Lemma 8, for a total of
20(2) 1og®  bits.

Routing and Cost. On sparse level a(u, %) node u routes
to the closest center ¢ from C;(;) and uses the single
source routing scheme with bounding parameter bound(i)
for Lemma 8 to shortest path tree rooted at ¢ that contains
all the nodes v that maintain ¢ € S(v). If the target is not
found then the cost is bounded by O(2(4(%:1)) this follows
from the definition of bound(i) and Lemma 8. If the target
is found during the search then by Lemma 8 the stretch is

O(1).
3.4. The routing scheme

Combing both the sparse and dense routing schemas we
prove in [1]:

Theorem 2. For each weighted n-node graph with
doubling dimension « and aspect ratio /A, there
is a polynomial time constructible name-independent
routing scheme with stretch factor O(1l) that uses
20(2) Jog n min{log3 n, log A}-bit routing tables per node.

4. Lower Bounds for Shortest-Path Single-
Source Routing Schemes

A (d,m,e)-star, for integers d,m > 1 and e € [0,1),
is a subdivision G of K 4, each edge of K 4 being subdi-
vided into exactly m nodes. It has a total of n = md + 1
nodes and the degree-d node of K 4 is called the center of
G. The edges of G receive weights such that the distances
from the center to all the nodes of a same branch range in
[1—¢, 1]. Finally, the nodes of G have (unique) names taken
from {1,...,md + 1}, the center being labeled md + 1.

We observe that an (n — 1, 1, 0)-star is an unweighted n-
node planar graph (it is actually a tree isomorphic to K7 ,,_1
with uniform weights 1 — ¢ = 1 on all its edges), and that
a (d, m, e)-star has doubling dimension o = log(d + 1) €
[1,logn].

Theorem 3. There is an (d,m,e)-star for which ev-
ery single-source name-independent routing scheme with
stretch factor < 3(1 — €) has memory requirements at least
mdlogd — dlog \/Tm bits.

In particular, for unweighted n-node trees, the stretch
factor must be at least 3 if less than Q(n log n) bits are used,
and for n-node graphs of doubling dimension «, the stretch
must be at least 3 — ¢, for any € > 0, if less than Q(an) bits
are used.

Proof. Consider any single-source routing scheme R on an
(d,m,e)-star G. Assume that the stretch factor of R is
s < 3(1—¢) and the source of R is the center of G. The cen-
ter must route to any destination y € {1,..., md} (whose
distance from the center ranges from [1—¢, 1]) on the branch
containing node y, since otherwise the stretch would be at
least 3(1 —¢)/1.

With each possible labeling of the destinations, let us as-
sociate the routing table of the center, say 1T'. More pre-
cisely, T is a table of md entries such that T'[y] € {1,...,d}
returns the port number of R applied on y. From the above
discussion, T'[y] must return the branch number to which y
belongs.

In the fixed-port model, the number f(d,m) of dis-
tinct routing tables 7' used for all labelings of G, is:
fld,m) = EZ,CI)); since there are (md)! labelings for the
destinations, and since there are m! possible permutations
for each branch (each such permutation given the same ta-
ble). At least one such destination labeling forces the rout-
ing table of the center of G to store at least log f(d, m) bits,
since any coding of length at most k bits can represent no
more than 2°T1 — 1 distinct objects.

For every n > 1, we have nlog(n/e) < log(n!) <
nlog(n/e) +log/Tn, because, forn > 1, (n/e)"v/2mn <
nl < (n/e)” /QWnel/1271/360+1/1260 < (n/e)”m
(cf. formula (9.91) of [15][pp. 481]). Therefore the number
of bits required by the center of G is at least:

log f(d,m) > mdlog(md/e) — d(mlog(m/e) -+ log v Tm)
= mdlogd — dlogvTm
that completes the proof. O

5. Labeled Routing Schemes

In this section we study labeled routing schemes for met-
ric spaces. Routing with stretch 1 is trivial using labels with
O(n?log n) bits that encode the whole graph. Hence an im-
portant factor is the label size. Typically this is bounded by
a polylogarithmic number of bits.

In all previous labeled stretch 1+ ¢ schemes [27, 11, 25],
nodes labels depend on the doubling dimension « and the
aspect ratio A. Except for [27], they also depend on the
stretch €. Here we provide a scheme with optimal labels
of only [logn] bits. Furthermore, the storage is scale-free:
The storage in our scheme is (1)©() log® n, independent
of the aspect ratio A.

5.1. Optimal label size
In this section, we explain the method for obtaining

[log n]-bit label sizes. Let 1+-¢ be the desired stretch factor.
Assume 0 < ¢ < 2.



Our scheme builds a hierarchical net in the following in-
tuitive manner. Start with a singleton 2'°¢ 2-net Xjogn =
{r}, for an arbitrary choice of » € V. Then recursively
construct a 2¢-net X; out of X;+1 by expanding X;; with
nodes (greedily) to obtain a 2¢-net. Thus,V 1 < i <
IOgA : Xi,1 2 Xz

The hierarchical {X;} net naturally induces a tree T" as
follows: The rootis r € Xjog A. For consistency, we count
the tree levels from top (log A) to bottom (1). Now iterate
on ¢ to connect every node in X to the closest node in X, 1.
Note that some nodes of V' appear multiple times in 7". In
order to distinguish V' members from tree nodes we will
call the latter tnodes. Also note that, for any node x € X; N
X1, the closest node to x from X is x itself. Therefore,
the tnode in 7" that corresponds to x at level ¢ + 1 connects
to a tnode that corresponds to x at level i.

The important property maintained by this construction
is the follows. Since every tnode s at level j has distance at
most 27 to its parent (at level j + 1), then a sub-tree rooted
at level j has radius 271! around its root.

Let D(v) be a DFS enumeration of 7' that skips dupli-
cate nodes. More precisely, if a node x appears in several
levels of T then it is counted the first time it is visited in
the DFS order; on further visits, it is skipped and the DFS
enumeration continues with the next tnode in the DFS order.

A range of a tnode is the range of the DFS enumeration
of its subtree. For a node v, let L;(v) be the range of the
tnode corresponding to v at level ¢ of 7' (L if none), observe
that L;(v) requires 2[log n] bits. The label of a node v is
defined simply as D(v) and requires [logn] bits.

Forevery i € I and node z, letY;(z) = B(z, 271N X;.
Then we have the following.

Claim 9. For every i € I and node x either © € Y;(x) or
there exists { € Y;(x) such that the range L;({) contains
D(z).

This follows directly from the structure of DFS enumer-
ations and the fact that if z does not belong to X; then it has
aparentin ¢ € X; with d(z,¢) < 2¢+1.

From the above labeling scheme one can easily obtain
a (1 + e)-stretch labeled routing scheme with [log n]-bit
labels as follows.

A node v maintains (L;(z), D(z)) for every z €
(B(v,2"*)NX,_.) and i € I. The parameter ¢ =
[log 2| + 3 guarantees that if 2 < d(v,u) < 2'*!, then
using the labels, v finds a net point x € X;_. at distance at
most 2/t < £d(v, u) from u.

Claim 10. Stretchis 1+ e.

Proof. Suppose the path of landmarks is u =
To,%1,...,Ly = o then each time we route from
r;—1 towards v through a node x; we will show

d(x;—1,24 t
m S 1 4+ . Hence ZiZI d(xifl,xi) S

(1 + ) X (d(mi,0) — d(ziv)) < (1+ e)d(u,v)
It remains to observe that d(z;,v) < $d(xi—1,v) so

d(xi—1,7;) (14+£)d(z;—1,v) .
T d) S G haw o S 1+ ¢ using
e <2. O

For storage, note that for each ¢, the number of nodes for
which label information is maintained is at most (2¢)T2 =
20(alog(1/2)) - The total storage per node is therefore
(%)O(a) log nlog A bits.

Theorem 4. For any n point undirected weighted graph
with doubling dimension o, aspect ratio A, and for any
e < 1/2 there exists a polynomial time constructible la-
beled routing scheme that assigns [log n-bit labels, routes
on paths of stretch 14-¢, and requires each node to maintain
(%)O(a) log n log A bits of routing information.

5.2. Scale-free labeled routing for metric
spaces

Our next goal is to remove the scale factor from the stor-
age in the metric space model. The construction uses the
concept of the component tree of Thorup [28].

Let G(i) be the subgraph of G containing all edges e
for which w(e) < 2. Note that G(i) is not necessarily
connected. For a graph G, let C'(G) be the number of con-
nected components of G. We recursively define the com-
ponent tree, a rooted tree S = (W, p). The nodes W of S
are connected subgraphs of G. The root node is G and the
leafs are all the singleton subgraphs. For a node H € W
let cal(H ), the caliber of H, be the maximum integer ¢ such
that C(H(i)) > 1. Let F1,..., Fo(r(cal(m)) be the con-
nected components of H(cal(H)), then the children of H
in the tree S will be the nodes F1, ..., Fo (g (cai(m))- This
completes the definition of the component tree. The parent
function p : W — W maps each child to its parent in S,
such that H is a child of p(H) forany H € W.

Claim 11. For any subgraph H € W, the length of any
simple path in H is < 2°2/(H) (n — 1)

Let W C W be the non-leaf nodes of S. We now pro-
ceed to assign to each H € W anode v € H such that each
node in V is assigned at most one node in W. Initially all
nodes are unassigned. We build the assignment from leaves
to the root, while maintaining the following invariant for a
node H € W: If p(H) has no assignment yet, then H con-
tains an unassigned node v € H. Given a node H with
children F1, ..., F}, for some t > 2, each child is either a
single node, in which case this node is unassigned or by the
induction assumption has an unassigned node. Hence we
assign a previously unassigned node to handle H and there
remains at least one more unassigned node. We denote by
v(H) the node assigned to H. The assignment induces a



tree R on a subset of the nodes of V': For anode v = v(H),
fix its parent p(v) to be the node assigned to its parent in the
component tree S, i.e., v(p(H)).

Let ring(u,i,c) = B(u,2+?) N X;_.. Each node
u maintains at most two sets of rings. The first set is
ring(u, i, c) for all cal(u) < ¢ < cal(u) + 3logn + 5+
log(1/e). If u is assigned to some H € W then it also
maintains a second set: ring(u, i, c) for all cal(H) < i <
cal(H) + 3logn + 5+ log(1/¢). In addition, node « main-
tains p(u).

Routing: The idea is to climb up the component tree to
the root until the target is found. First look for the target in
the first ring-set, if it is not found go to the parent. Given a
node assigned to a component, use its second set of rings.
If the target is not found then move to the parent.

Memory: Each ring requires at most (1)(®) log n bits.
A node maintains up to 2(3logn + 5+ log(1/¢)) rings, for
a total memory of (é)o(o‘) log? n bits.

Stretch: From a node u, if d(u,t) < n32¢2!(H) %, then
some ring in the first set contains a net point that cuts the
distance and maintains stretch 1 + 5 (this is the usual argu-
ment as in Claim 10).

Otherwise, each time we go from u to a node p(u) we
know that d(u,t) > n32¢1(H) % Since the cost of going
from u to p(u) is at most n2°*'(*1) then we can repeat this n
times and still spend at most d(s, t) 55~ until the right ring
is found. This process can occur at most n times so the total
cost of routing up the component tree to find the appropriate
ring is at most 55d(s, ).

Theorem 5. For any n point metric space with dou-
bling dimension o and aspect ratio A, and for any
e < 1/2 there exists a polynomial time constructible
labeled routing scheme that assigns [logn] bit labels,
routes on paths of stretch 1 + €, and requires each node
to maintain (%)O(a) min{logn,log A} outgoing links and
(%)O(D‘) log n min{log n,log A} bits of routing informa-
tion.

6. A Scale-Free Labeled Scheme for Graphs

The following scale-free scheme is applicable for the
graph model. We use the sparse-dense decomposition of
Section 3.1 with parameter ® = log(1) + 6.

We use the same hierarchical net creation {X;} as
in Section 5.1 and use rings defined as ring(u,i,¢) =
B(u,272) N X;_. as in Section 5.2. Let ¢ = ® + 6. Each
node maintains ring(u, i, ¢) for each 7 such that there exists
alevel j € K with =6 < i — a(u,j) < ® + 3. For each
¢ € ring(u, i, c) that v maintains, node u stores a O(logn)
bit range L;(¢) and label D(¢) as described in Section 5.1,

and the port of the next hop on a shortest path from w to /.

We build the same centers C; of Section 3.3. Each node
also maintains labeled tree routing scheme of [12, 29] (see
Lemma 4) for a shortest path tree routed at each node in
N(u,22°T3 +1,C;) foralli € K.

The label A(u) of a node u will consist of two parts: (1)
The O(log® n) bit label for the labeled tree routing scheme
of Lemma 4 for each tree whose root is in N (u, 223 +
1,C;) forall i € K. (2) The O(logn) DFS identifier d(u)
as defined in Section 5.1. The label’s length is dominated
by the first part and requires 2°(*) log3 n bits.

Given a current node v and destination ¢ let ¢ be the
maximal index such that 2%(*%) < d(u,t). Denote by
d = d(u,t). There are several cases to consider.

1. Sparse case: If 2a(“’i)§ < d < 20w+ D=T then § must
be a sparse level for u.> Suppose 2/ < |A(u,i)| < 277!
then by Lemma 6 there exists { € C; such that d(u,¢) <
5-20(4%) By Lemma 7, for any node v € B(u, 2¢(%#+1-T)
we have that £ € N(v,22*"3 + 1,C}) hence all the nodes
on the path from ¢ to ¢ maintain the tree routing scheme of
the tree rooted at ¢ and A(t) will contain the label of ¢ on
0’s tree. Hence given t’s label A(t) we can reach the root ¢
and then the target at a cost of at most (§ + 1+ £)d.

2. Otherwise: If d < 2“(“*")2; or 20(wit)=I'" < g <
20(ui+1) then by the definition of which rings are stored,
u maintains ring(u, j, c) where 2/ < d < 2771, Hence u
can infer from ¢’s label d(t) € A(t) and from the labels and
ranges of the rings it maintains, a node ¢ € ring(u, j, c)
such that d(¢,t) < £d. But for a graph this is not enough
since we need the nodes on the shortest path from w to ¢
to maintain routing information to reach ¢. Let P be this
path, let v € P be the first node such that d/2 < d(u,v).
Actually all we need is that the nodes of P from u up to, and
excluding, v will all maintain the required ring and hence
maintain ¢. There are two cases:

2.A. Dense case: If indeed each node on the path P from
up to, and excluding, v maintains £ in its ring set then once
we reach v we continue to route recursively. We prove that
d(u,v)/(d — d(v,t)) < 1+ ¢ as in Claim 10. This will
guarantee 1 + ¢ stretch for the whole path.

Claim 12. If d/2 < d(u,v) and d((,t) < 5d then
d(u,v)/(d —d(v,t)) <1+e.

Proof. Using the triangle inequality on v, ¢,! and on u, ¢,
we get d(v,t) < d(1 +25) — d(u,v). So d(u,v)/(d —
d(v,t)) < d(u,v)/(d(u,v)—25d) and using d/2 < d(u,v)
weget§1+8§when5§1. O
2.B. Back to sparse: Let w be the first node on the
path from u to v (excluding v) that does not maintain
ring(w, j,c) that contains ¢. Hence d(u,w) < d/2 so
d(w,t) > d/2 —ed > d/4. Therefore, 2072 < d(w, t). Let
a(w,7) be the maximal level such that 2¢(*:) < d(w,t).
Since w does not maintain the ring of distance 2’ then by

2 Recall that I" has been defined after Lemma 6.



the definition of what rings are stored due to a(w, %) it must
be that 2‘1(“”“% < d(w,t) using 2972 < d(w,t). Since
the rings due to a(w,i + 1) do not store scale 27 then
d(w,t) < 20w H+D-T  Therefore we are back to case 1,
and we can reach t directly using tree routing as detailed
above.

Theorem 6. For any n point undirected weighted graph
with doubling dimension «, and for any € < 1/2 there exists
a polynomial time constructible labeled routing scheme that
assigns 29 log® n-bit labels, routes on paths of stretch
1 + €, and requires each node to maintain (1)°(®) log* n
bits of routing information.

7. A Lower Bound for Labeled Shortest Path
Routing

A graph (or a metric) has growth « (also called grid di-

mension) if | B(u, 2r)|/|B(u,r)| < « for all node u and ra-
dius r. Graphs (or metric) of bounded growth have bounded
doubling dimension, but the reverse is false in general. In
particular the next lower bound holds for labelled stretch-
1 routing on bounded doubling dimension metric. The
counter-example is a slight modification on the planar con-
struction presented in [3].
Theorem 7. There are bounded growth graphs with n
nodes and with non-negative integral edge-weights bounded
by O(\/n), for which every labelled stretch-1 routing
scheme requires Q(\/n) bits for some local routing tables
or some node labels.

Proof. The counter-example depends on an integer k =
k(n) = O(v/n). Let M be a (k + 1) x (k + 1) weighted
mesh whose each edge of the i-th row has weight 2¢ and
each edge of the j-th column has edge 25,1 <1i,j < k+ 1.

Let us check that A has bounded growth. Indeed, let
us consider a node © = (4,7) and a radius r. A shortest
path from w to any v can be decomposed in a maximal hori-
zontal segment and a maximal vertical segment. Hence, the
ball B(u,r) is composed of the points of the mesh located
inside the quadriangle defined by the four points around
u=(4,7): (¢,5+9;), (1—0:,7), (3, j—9;), (¢+0d;,7), where
§; = |r/(2j)] and 6; = |r/(2¢)]. Summing up the area
of the four triangles composing the quadriangle, it follows
that | B(u, )| ranges between 20;5; and 20;6; +4(6; +9;),
where the term 4(d; + ;) denotes the perimeter of the
quadriangle (some points of the perimeter must possibly
be counted twice). Bounding §; + d; < 26;6;, we obtain
that |B(u,r)| € [20;0;,100;0;], and thus that |B(u,r)| =
©(r2/(ij)). Therefore, |B(u,2r)|/|B(u,r)| = O(1) as
claimed.

We construct a graph H obtained from M in which every
edge is subdivided in two edges with the following weight
updating (we assume that the point (1, 1) is the left-up point
of M and (k + 1,k + 1) the right-down point): around the

point (¢,7) of the mesh, the weight 1 is assigned to the
downward incident edge and to the right incident edge (if
any), whereas the upward incident edge and the left incident
edge (if any) have weights 25 — 1 and 2¢ — 1 respectively.
Finally, we add a diagonal edge with weight 1 between the
downward and right neighbors of (i, 7). This edge is called
the diagonal edge of (i,j). In H, it follows that the dis-
tance between the points (i + 1,5) and (i, + 1) (using the
diagonal edge of (i, 7)) is 2i 4+ 2j — 1, whereas the distance
between (¢, 7) and (¢ + 1,5 + 1) remains 2¢ 4 2j as in M.
More generally, one can show that in H the shortest path be-
tween a left-down to a right-up point is unique and consists
of only one vertical up segment, a diagonal edge, followed
by a horizontal segment. This corresponds to the distance in
M minus 1, whereas the shortest paths between a left-up to
a right-down point remains the same than in M. It follows
that B(u,r) in H is some neighborhood of B(u,r) in M
(i.e., is a quadriangle where some neighbors on the perime-
ter are added). As H is of bounded degree, H has bounded
growth as well. We observe that every graph obtained from
H by removing some diagonal edges has bounded growth
as well.

Consider a graph A obtained from H by removing inde-

pendently with probability 1/2 each diagonal edge, and let
B be the graph obtained from H by removing the diagonal
edges of A. So, the diagonal edge of every point (i, j) is
eitherin A orin B. For4,j € {1,..., k}, let u; be the point
(¢, k + 1) and let v; be the point (j + 1, j).
Claim 13. Forall1 < i < j <k, the distance in A from u;
to v; (i.e., from a right-up to left-down point) is 2i(k + 1 —
7)+24(j — i+ 1) if and only if the diagonal edge of (i, j)
is missing in A, and otherwise the distance is one less.

As already said before, A and B have bounded growth.
Finally we consider the graph G composed of A and B
where each pair of corresponding points of A and B are
connected by a path of length two (with weight 1 on each
edge), so forming a kind of flat 3D mesh. We check that G
has still a bounded growth (the degree is still bounded, and
the eccentricity of each node increases by at most two). We
note that the graph G has O(n) nodes.

Consider any shortest path routing scheme from some
to some v;- in G, where v/ denotes the middle node of the
length-2 path connecting the A’s copy of u; to the B’s copy
of u; (similarly for v}). By Claim 13 the shortest path from
u} to v}, with 1 < ¢ < j < k, is unique and goes to u;
in A if and only if the diagonal edge of (7, ) exists in A.
Otherwise the shortest path goes thru B. So, the diagonal
edge of (i,7) can be tested by routing a message along a
shortest path in G between u), and v;». The graph A contains
k? random bits (one bit for each diagonal edge), and half
of them can be recovered given the routing tables of all the
u}’s and given the label nodes of all the v]’s. It follows
that at least one node has a routing table or a label node of



Q(k)

Q(+/n) bits. This completes the proof.

Observe that this also proves that any distance label-
ing for bounded growth graphs requires €2(y/n )-bit labels
(for polynomial weighted graphs), and Q(n!/3)-bit labels
for unweighted bounded growth graphs (by replacing each

weight-w edge of G by a length-w unweighted path).

O
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