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Topic

Given a graph G with n nodes compute an efficient data
structure supporting approximate distance and/or routing
queries in G.

Efficient: fast pre-processing and low query time

Approximate: guarantees on the distance d̂ or route
length returned w.r.t. the shortest path in G.

Ex: dG(u, v) 6 d̂(u, v) 6 f(dG(u, v))

Affine stretch if f(d) = α · d+ β



Goals

data structures of o(n2) space

constant time query

polynomial time pre-processing

• distributed data structure: split into n balanced labels



State-of-the-art

Thorup-Zwick distance oracle (J.ACM ’05) Every
weighted graph has a stretch (2k − 1)d distance oracle of size
Õ(n1+1/k) with query time O(k), and polynomial
pre-processing. Moreover, the oracle can be represented as a
distance labeling.

For k=2:
⇒ stretch 3d, space n3/2, constant query time



Can we do better for unweighted graphs?

Pǎtraşcu-Roditty (FOCS ’10) Every unweighted graph has
stretch 2d+ 1 distance oracle of size Õ(n5/3) with constant
query time. (Label approach fails because of use a global hash

table of size n5/3)

Theorem (1st contribution)

Let k > 2. Every unweighted graph has stretch (2k − 2)d+ 1
distance oracle of size Õ(n1+2/(2k−1)) with query time O(k).
Moreover it can be represented as a distance labeling.

For k=2:
⇒ stretch 2d+ 1, space n1+2/3 = n5/3, constant query time
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Different trade-offs

[TZ05]
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The Best Solution depends on the question:

1 What’s the lowest space complexity with stretch 6 3d?
⇒ n3/2 [TZ05]

2 What is the smallest stretch with space complexity o(n2)?
⇒ at most 2d + 1 [PR10][us]
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Proof for k = 2
(we want n labels of Õ(n2/3) bits and stretch 2d+ 1)

Definitions: Given a set of landmarks L ⊂ V :

BL(u) = {v ∈ V : d(u, v) < d(u, L)}

⇒ u ∈ CL(v)
CL(v) = {u ∈ V : d(u, v) < d(u, L)}

⇒ v ∈ BL(u)

+ v ∈ BL(u) iff u ∈ CL(v)
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Choosing the Landmarks
(Sampling Lemma from TZ [SPAA ’01])

Select L such that

1 |L| ∼ n2/3

2 ∀u, |BL(u)| & |CL(u)| ∼ n1/3



Storage

u

S(u) := L ∪BL(u) ∪

 ⋃
v∈BL(u)

CL(v)


Storage for u: S(u) and the distance from u to every
v ∈ S(u), plus its closest landmarks lv.

[ |S(u)| = Õ(n2/3), storage 4]



Querying between s and t

s t

If t ∈ S(s), then returns d(s, t)

else returns min {d(s, ls) + d(ls), t), d(t, lt) + d(lt, t)}

+ If t /∈ S(s), then BL(s) ∩BL(t) = ∅

[otherwise ∃w ∈ BL(t) ∩BL(s)⇒ t ∈ CL(w) and
w ∈ BL(s)⇒ t ∈ S(s)]
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else returns min {d(s, ls) + d(ls), t), d(t, lt) + d(lt, t)}

[stretch 2d+ 1?]
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If t /∈ S(s), i.e., BL(s) ∩BL(t) = ∅
W.l.o.g. d(s, ls) 6 d(t, lt)

s t

ls lt

d

+ [d(s, ls)− 1] + 1 + [d(t, lt)− 1] 6 d

⇒ 2d(s, ls) 6 d+ 1

⇒ d̂ 6 2d(s, ls) + d 6 2d+ 1
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Observation

Routing with n2/3-bit routing tables, polylog addresses and
stretch < 3d is not known. Routing query is not symetric!

t

ls

lt

s

The route ls → t is space consuming: either ls’s table or t’s
address is large.



What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA ’01)]
achieves stretch (4k − 5)d and routing tables of size Õ(n1/k).

[TZ01]
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Theorem (2nd contribution)

Let k > 2. Every unweighted graph has a routing scheme with
tables of size Õ(n3/(3k−2)), stretch (4k − 6)d+ 1, and polylog
addresses.
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Theorem (2nd contribution)

Let k > 2. Every unweighted graph has a routing scheme with
tables of size Õ(n3/(3k−2)), stretch (4k − 6)d+ 1, and polylog
addresses.



Conclusion

Not clear if same space-stretch trade-offs can be achieved for
both problems, even for k = 2.

stretch size

Distance Labeling 2d+ 1 Õ(n2/3)

Compact Routing 2d+ 1 Õ(n3/4)
d + O(1) Ω̃(n)

Thank You!



Conclusion

Not clear if same space-stretch trade-offs can be achieved for
both problems, even for k = 2.

stretch size

Distance Labeling 2d+ 1 Õ(n2/3)
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