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Topic

Given a graph G with n nodes compute an efficient data
structure supporting approximate distance and/or routing
queries in G.

o Efficient: fast pre-processing and low query time

@ Approximate: guarantees on the distance d or route
length returned w.r.t. the shortest path in G.

A

Ex: dg(u,v) < d(u,v) < f(dg(u,v))

Affine stretch if f(d) =a-d+f



Goals

@ data structures of o(n?) space
@ constant time query
@ polynomial time pre-processing

e distributed data structure: split into n balanced labels




State-of-the-art

Thorup-Zwick distance oracle (J.ACM ’05) Every
weighted graph has a stretch (2k — 1)d distance oracle of size
O(n'*/%) with query time O(k), and polynomial
pre-processing. Moreover, the oracle can be represented as a
distance labeling.

For k=2:
= stretch 3d, space n%/?, constant query time



Can we do better for unweighted graphs?

Patrascu-Roditty (FOCS "10) Every unweighted graph has
stretch 2d + 1 distance oracle of size O(n®/3) with constant
query time. (Label approach fails because of use a global hash

. /2
table of size n°/°)



Can we do better for unweighted graphs?

Patrascu-Roditty (FOCS ’'10) Every unweighted graph has
stretch 2d + 1 distance oracle of size O(n®/?) with constant
query time. (Label approach fails because of use a global hash
table of size n°/3)

Theorem (1st contribution)

Let k > 2. Every unweighted graph has stretch (2k — 2)d + 1
distance oracle of size O(n'+*/*=1) with query time O(k).
Moreover it can be represented as a distance labeling.

For k=2:
= stretch 2d + 1, space n'*%/? = n%?3, constant query time
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= n3/2 [TZ05]



Different trade-offs

[TZ05][PR10][us]

2 n/3 n3/2 /s ni/3 nd/7 ns/4 e
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d 2d +1 3d 4d+1 5d 6d +1 7d stretch

The Best Solution depends on the question:
© What's the lowest space complexity with stretch < 3d?
= n3/2 [TZ05]

@ What is the smallest stretch with space complexity o(n?)?
= at most 2d + 1 [PR10][us]



Proof for k = 2

(we want 7 labels of O(n?/) bits and stretch 2d + 1)
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Proof for k = 2

(we want 7 labels of O(n?/?) bits and stretch 2d + 1)

Definitions: Given a set of landmarks L C V:
Br(u) ={v eV :d(u,v) <d(u,L)}
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Proof for k = 2

(we want 7 labels of O(n?/?) bits and stretch 2d + 1)

Definitions: Given a set of landmarks L C V:

Br(u) ={v eV :d(u,v) <d(u,L)} = ueCL(v)
Cr(v) ={u eV :du,v) <du,L)} = vée Br(u)

=" vy € Br(u) iffu € Cr(v)



Choosing the Landmarks
(Sampling Lemma from TZ [SPAA '01])

Select L such that
o |L| ~ n2/3
Q Vu, |Br(u)| & |CL(u)| ~ nl/3



Storage . .

S(u) == LUBL(u (U Cr(v )

vEB (u)

Storage for u: S(u) and the distance from u to every
v € S(u), plus its closest landmarks 1,,.

[ 1S(u)| = O(n?/3), storage /]
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Querying between s and t
([ J

I, o L

—

([ ]
If ¢t € S(s), then returns d(s,t)
else returns min {d(s, l5) + d(ls),t),d(t,l;) + d(l;,t)}

[dictionary and 2-level hash table, query time v/|



Querying between s and t
([ J

I, o L

—

[ J
([ ]
If ¢t € S(s), then returns d(s,t)
else returns min {d(s, l5) + d(l5),t),d(t,l;) + d(l;, 1)}

[stretch 2d + 17]

e If t ¢ S(s), then By(s) N BL(t) = &

[otherwise Jw € Br(t) N Br(s) =t € C(w) and
w € Br(s) =t e S(s)]



If t ¢ S(s), i.e., Br(s) N Br(t) =@




If t ¢ S(s),i.e, Br(s) N BL(t) =@

w [d(s,l,) — 1] + 1+ [d(t, ;) — 1] < d




If t ¢ S(s),i.e, Br(s) N BL(t) =@
W.lo.g. d(s,ls) < d(t,1})

w [d(s,l,) — 1] + 1+ [d(t, ;) — 1] < d

= 2d(s,1,) <d+1



If t ¢ S(s),i.e, Br(s) N BL(t) =@

w [d(s,l,) — 1] + 1+ [d(t, ;) — 1] < d

= 2d(s,1,) <d+1
= d < 2d(s,l,) +d < 2d+1



Observation

Routing with n%/3-bit routing tables, polylog addresses and
stretch < 3d is not known. Routing query is not symetric!

The route [, — t is space consuming: either [,'s table or t's
address is large.



What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)]
achieves stretch (4k — 5)d and routing tables of size O(n'/*).

[TZ01]
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What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)]
achieves stretch (4k — 5)d and routing tables of size O(n'/¥).

[TZ01][us]
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Theorem (2nd contribution)

Let k > 2. Every unweighted graph has a routing scheme with
tables of size O(n® ®¢=2)), stretch (4k — 6)d + 1, and polylog
addresses.




Conclusion

Not clear if same space-stretch trade-offs can be achieved for
both problems, even for k = 2.

stretch size

Distance Labeling | 2d 4+ 1 | O(n??)

Compact Routing | 2d+1 | O(n?/)
d+0(1) | Q(n)




Conclusion

Not clear if same space-stretch trade-offs can be achieved for
both problems, even for k = 2.

stretch size

Distance Labeling | 2d 4+ 1 | O(n??)

Compact Routing | 2d+1 | O(n?/)
d+0(1) | Q(n)

Thank You!



