On Approximate Distance Labels and Routing Schemes with Affine Stretch

Ittai Abraham - Cyril Gavoille

Microsoft, Mountview - University of Bordeaux

> DISC '11 - Rome

September 2011

Topic

Given a graph G with n nodes compute an efficient data structure supporting approximate distance and/or routing queries in G.

- Efficient: fast pre-processing and low query time
- Approximate: guarantees on the distance \hat{d} or route length returned w.r.t. the shortest path in G.

$$
\text { Ex: } \quad d_{G}(u, v) \leqslant \hat{d}(u, v) \leqslant f\left(d_{G}(u, v)\right)
$$

Affine stretch if $f(d)=\alpha \cdot d+\beta$

Goals

- data structures of $o\left(n^{2}\right)$ space
- constant time query
- polynomial time pre-processing
- distributed data structure: split into n balanced labels

State-of-the-art

Thorup-Zwick distance oracle (J.ACM '05) Every weighted graph has a stretch $(2 k-1) d$ distance oracle of size $\tilde{O}\left(n^{1+1 / k}\right)$ with query time $O(k)$, and polynomial pre-processing. Moreover, the oracle can be represented as a distance labeling.

For $\mathbf{k}=2$:
\Rightarrow stretch $3 d$, space $n^{3 / 2}$, constant query time

Can we do better for unweighted graphs?

Pǎtrașcu-Roditty (FOCS '10) Every unweighted graph has stretch $2 d+1$ distance oracle of size $\tilde{O}\left(n^{5 / 3}\right)$ with constant query time. (Label approach fails because of use a global hash table of size $n^{5 / 3}$)

Can we do better for unweighted graphs?

Pǎtrașcu-Roditty (FOCS '10) Every unweighted graph has stretch $2 d+1$ distance oracle of size $\tilde{O}\left(n^{5 / 3}\right)$ with constant query time. (Label approach fails because of use a global hash table of size $n^{5 / 3}$)

Theorem (1st contribution)
 Let $k \geqslant 2$. Every unweighted graph has stretch $(2 k-2) d+1$ distance oracle of size $\tilde{O}\left(n^{1+2 /(2 k-1)}\right)$ with query time $O(k)$. Moreover it can be represented as a distance labeling.

For $\mathrm{k}=2$:
\Rightarrow stretch $2 d+1$, space $n^{1+2 / 3}=n^{5 / 3}$, constant query time

Different trade-offs

Different trade-offs

[TZ05][PR10]

Different trade-offs

[TZ05][PR10][us]

Different trade-offs

[TZ05][PR10][us]

The Best Solution depends on the question:

Different trade-offs

[TZ05][PR10][us]

The Best Solution depends on the question:
(1) What's the lowest space complexity with stretch $\leqslant 3 d$?

$$
\Rightarrow n^{3 / 2}[\text { TZO5] }
$$

Different trade-offs

[TZ05][PR10][us]

The Best Solution depends on the question:
(1) What's the lowest space complexity with stretch $\leqslant 3 d$?
$\Rightarrow n^{3 / 2}$ [TZO5]
(2) What is the smallest stretch with space complexity $o\left(n^{2}\right)$?
\Rightarrow at most $2 d+1$ [PR10][us]

Proof for $k=2$

(we want n labels of $\tilde{O}\left(n^{2 / 3}\right)$ bits and stretch $2 d+1$)

Proof for $k=2$

(we want n labels of $\tilde{O}\left(n^{2 / 3}\right)$ bits and stretch $2 d+1$)

Definitions: Given a set of landmarks $L \subset V$:
$B_{L}(u)=\{v \in V: d(u, v)<d(u, L)\}$

Proof for $k=2$

(we want n labels of $\tilde{O}\left(n^{2 / 3}\right)$ bits and stretch $2 d+1$)

Definitions: Given a set of landmarks $L \subset V$:
$B_{L}(u)=\{v \in V: d(u, v)<d(u, L)\}$
$C_{L}(v)=\{u \in V: d(u, v)<d(u, L)\}$

Proof for $k=2$

 (we want n labels of $\tilde{O}\left(n^{2 / 3}\right)$ bits and stretch $2 d+1$)Definitions: Given a set of landmarks $L \subset V$:

$$
\begin{array}{ll}
B_{L}(u)=\{v \in V: d(u, v)<d(u, L)\} & \Rightarrow u \in C_{L}(v) \\
C_{L}(v)=\{u \in V: d(u, v)<d(u, L)\} & \Rightarrow v \in B_{L}(u)
\end{array}
$$

Choosing the Landmarks

(Sampling Lemma from TZ [SPAA '01])

Select L such that
(1) $|L| \sim n^{2 / 3}$
(2) $\forall u,\left|B_{L}(u)\right| \&\left|C_{L}(u)\right| \sim n^{1 / 3}$

Storage

$$
S(u):=L \cup B_{L}(u) \cup\left(\bigcup_{v \in B_{L}(u)} C_{L}(v)\right)
$$

Storage for $u: S(u)$ and the distance from u to every $v \in S(u)$, plus its closest landmarks l_{v}.
$\left[|S(u)|=\tilde{O}\left(n^{2 / 3}\right)\right.$, storage \boldsymbol{V}]

Querying between s and t

\bullet

If $t \in S(s)$, then returns $d(s, t)$

Querying between s and t

If $t \in S(s)$, then returns $d(s, t)$

Querying between s and t

If $t \in S(s)$, then returns $d(s, t)$
else returns $\left.\min \left\{d\left(s, l_{s}\right)+d\left(l_{s}\right), t\right), d\left(t, l_{t}\right)+d\left(l_{t}, t\right)\right\}$

Querying between s and t

If $t \in S(s)$, then returns $d(s, t)$
else returns $\left.\min \left\{d\left(s, l_{s}\right)+d\left(l_{s}\right), t\right), d\left(t, l_{t}\right)+d\left(l_{t}, t\right)\right\}$
[dictionary and 2-level hash table, query time \boldsymbol{V}]

Querying between s and t

If $t \in S(s)$, then returns $d(s, t)$
else returns $\left.\min \left\{d\left(s, l_{s}\right)+d\left(l_{s}\right), t\right), d\left(t, l_{t}\right)+d\left(l_{t}, t\right)\right\}$
[stretch $2 d+1$?]
If $t \notin S(s)$, then $B_{L}(s) \cap B_{L}(t)=\varnothing$ [otherwise $\exists w \in B_{L}(t) \cap B_{L}(s) \Rightarrow t \in C_{L}(w)$ and $\left.w \in B_{L}(s) \Rightarrow t \in S(s)\right]$

If $t \notin S(s)$, i.e., $B_{L}(s) \cap B_{L}(t)=\varnothing$ W.I.o.g. $d\left(s, l_{s}\right) \leqslant d\left(t, l_{t}\right)$

If $t \notin S(s)$, i.e., $B_{L}(s) \cap B_{L}(t)=\varnothing$ W.I.o.g. $d\left(s, l_{s}\right) \leqslant d\left(t, l_{t}\right)$

$$
\operatorname{I\sim }\left[d\left(s, l_{s}\right)-1\right]+1+\left[d\left(t, l_{t}\right)-1\right] \leqslant d
$$

If $t \notin S(s)$, i.e., $B_{L}(s) \cap B_{L}(t)=\varnothing$ W.I.o.g. $d\left(s, l_{s}\right) \leqslant d\left(t, l_{t}\right)$

$$
\operatorname{I\sim }\left[d\left(s, l_{s}\right)-1\right]+1+\left[d\left(t, l_{t}\right)-1\right] \leqslant d
$$

$$
\Rightarrow 2 d\left(s, l_{s}\right) \leqslant d+1
$$

If $t \notin S(s)$, i.e., $B_{L}(s) \cap B_{L}(t)=\varnothing$ W.I.o.g. $d\left(s, l_{s}\right) \leqslant d\left(t, l_{t}\right)$

$$
\left[d\left(s, l_{s}\right)-1\right]+1+\left[d\left(t, l_{t}\right)-1\right] \leqslant d
$$

$$
\Rightarrow 2 d\left(s, l_{s}\right) \leqslant d+1
$$

$$
\Rightarrow \hat{d} \leqslant 2 d\left(s, l_{s}\right)+d \leqslant 2 d+1
$$

Observation

Routing with $n^{2 / 3}$-bit routing tables, polylog addresses and stretch $<3 d$ is not known. Routing query is not symetric!

The route $l_{s} \rightarrow t$ is space consuming: either l_{s} 's table or t 's address is large.

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)] achieves stretch $(4 k-5) d$ and routing tables of size $\tilde{O}\left(n^{1 / k}\right)$.
[TZ01]

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)] achieves stretch $(4 k-5) d$ and routing tables of size $O\left(n^{1 / k}\right)$.
[TZ01][us]

Theorem (2nd contribution)

Let $k \geqslant 2$. Every unweighted graph has a routing scheme with tables of size $\tilde{O}\left(n^{3 /(3 k-2)}\right)$, stretch $(4 k-6) d+1$, and polylog addresses.

Conclusion

Not clear if same space-stretch trade-offs can be achieved for both problems, even for $k=2$.

	stretch	size
Distance Labeling	$2 d+1$	$\tilde{O}\left(n^{2 / 3}\right)$
Compact Routing	$2 d+1$	$\tilde{O}\left(n^{3 / 4}\right)$
	$d+O(1)$	$\tilde{\Omega}(n)$

Conclusion

Not clear if same space-stretch trade-offs can be achieved for both problems, even for $k=2$.

	stretch	size
Distance Labeling	$2 d+1$	$\tilde{O}\left(n^{2 / 3}\right)$
Compact Routing	$2 d+1$	$\tilde{O}\left(n^{3 / 4}\right)$
	$d+O(1)$	$\tilde{\Omega}(n)$

Thank You!

