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ABSTRACT
We study a novel separator property called k-path separa-
ble. Roughly speaking, a k-path separable graph can be re-
cursively separated into smaller components by sequentially
removing k shortest paths. Our main result is that every
minor free weighted graph is k-path separable. We then
show that k-path separable graphs can be used to solve sev-
eral object location problems: (1) a small-worldization with
an average poly-logarithmic number of hops; (2) an (1 + ε)-
approximate distance labeling scheme with O(log n) space
labels; (3) a stretch-(1 + ε) compact routing scheme with
tables of poly-logarithmic space; (4) an (1+ ε)-approximate
distance oracle with O(n log n) space and O(log n) query
time. Our results generalizes to much wider classes of
weighted graphs, namely to bounded-dimension isometric
sparable graphs.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign – Distributed networks; G.2.2 [Discrete Mathematics]:
Graph Theory – Network problems, Graph labeling.

General Terms: Algorithms, Theory.

Keywords: Compact Routing, Excluded Minor, Separator.

1. INTRODUCTION
Divide-and-conquer is a widely used paradigm in Com-

puter Science. Typically, finding a good separator is a chal-
lenging algorithmic problem. A celebrated example is the
Lipton and Tarjan O(

√
n )-separator for planar graphs [33].

In this paper we study a novel separator property called
k-path separable. Unlike most separators that bound the
number of vertices, our new separator property only guar-
antees that the separator is composed, roughly speaking, of
a sequence of at most k shortest paths (see Definition 1).
We show that this property is sufficient to efficiently solve
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many object location problems like small-woldization, dis-
tance oracles, distance labeling and compact routing.

A graph H is a minor of G if H is a subgraph of a
graph obtained by a series of edge contractions1 of G. The
main theorem of this paper states that every H-minor free
weighted graph is k-path separable for some k = k(H).

1.1 Related work
The study of graphs excluding a fixed minor has lead to

fundamental graph theory results. In the context of rout-
ing, decentralized search, and object location, several nat-
ural classes of networks can be defined by their forbidden
minor. Among them are trees [20, 32] (excluding K3), out-
erplanar [21] (excluding K4 and K2,3) and series-parallel
networks [18] (excluding K4) that capture many network
backbone structures, and planar graphs [22, 28] (excluding
K5 and K3,3) that capture the structure of two dimensional
maps.

Most relevant to out work is that of Thorup [44]. Moti-
vated by the problem of reachability in directed graphs, the
author studies object location problems, namely reachability
and (1+ε)-approximate distance oracles, (1+ε)-approximate
distance labels, and stretch-(1+ ε) labeled routing schemes,
for planar graphs (both directed and undirected). His (1+ε)-
approximate distance oracles require O(1/ε · n log n) space
and can be distributed into O(1/ε · log n) space (1 + ε)-
approximate distance labels2. The labels can be transformed
into a stretch-(1 + ε) labeled routing scheme. For distance
and routing label based solutions, it is required that the dis-
tance or the first edge of the route must be answered by
inspecting only the labels of the two endpoints vertices. For
a formal definition of all the above problems, we refer to [44].

Motivated by the “small world” phenomena in social net-
works, Kleinberg [29], suggested a new probabilistic network
model. Specifically, Kleinberg studies the random graph
obtained by taking a two-dimensional grid and augment-
ing it by adding for each vertex a random edge. This model
leads to new algorithmic and graph theoretic questions. One
such question studies the complexity of greedy routing on
these random graphs. Kleinberg gives a certain distribution
of long range contacts that augments the grid and obtains

1The contraction of the edge e with endpoints u, v is the
replacement of u and v with a single vertex whose incident
edges are the edges other than e that were incident to u or v.
2In this model, one unit of space consists of a block of Ω(ω+
log n) bits of memory, where ω is the number of bits to
represent an edge-weight. In particular, for integral edge-
weights, a block has length Ω(log ∆) bits where ∆ is the
weighted diameter of the graph.
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O(log2 n) expected greedy hop count. Fraigniaud [19] and
Duchon et al. [15, 16] suggest to consider the generalized
question of finding distributions that augment larger fami-
lies of graphs and obtain poly-logarithmic expected greedy
hop count. Specifically, Fraigniaud obtains O(k log2 n) com-
plexity for graphs with treewidth k and Duchon et al. obtain
poly-logarithmic complexity for growth bounded graphs.
Slivkins [41], considers graphs with doubling dimension α

and obtains O(2O(α) log ∆ log n) expected greedy hop com-
plexity. Obtaining poly-logarithmic results for larger fam-
ilies of graphs is an open question recently highlighted by
Kleinberg [30].

Finding small separators of a graph (or computing its
treewidth) is an active field of research. The best polynomial
time algorithm to date yields an O(

√
log k )-approximation

for treewidth-k graphs [17]. Bounds on the size of the small-
est separators are known for planar and bounded genus
graphs [33, 26, 7, 14] (see [5, Table 1 p. 813] for the best
current bounds), and more generally for graphs excluding a
fixed minor [6, 12, 27, 35, 36]. See also [23] for separators in
geometric objects. However, the smallest separator in these
graphs may be large, namely of size Ω(

√
n ), for a regular n-

vertex mesh for instance, whereas object location problems
in regular meshes are obvious.

Object location solutions were studied originally by Awer-
buch and Peleg for arbitrary graphs [8, 9]. The general
approach was based on sparse covers. However, for ev-
ery stretch s < 3, there are unweighted n-vertex graphs
for which every stretch-s routing scheme requires Ω(n)-bit
labels [24], or for which every stretch-s distance labeling
scheme requires Ω(n)-bit labels [25, 45]. Upper bounds can
be greatly improved to 1+ε stretch for any ε > 0 for graphs
whose induced metric space has constant doubling dimen-
sion [10, 41, 2]. However even binary trees have unbounded
doubling dimension. Moreover the techniques used in all the
above papers are not separator based.

Recently [3] proposed a poly-log memory routing scheme
for graphs excluding a minor. The scheme is name-
independent, has constant stretch, and is limited to un-
weighted graphs. This limitation is inherent to name-
independent schemes since there is a polynomial space lower
bound for name-independent routing for weighted trees [4].
We stress that the stretch of the name-independent scheme
is at least 3 and depends on the excluded minor, so it cannot
be fixed arbitrary close to 1.

For graphs excluding a fixed minor, the structure theorem
of Robertson and Seymour [37, 39] already has several im-
portant algorithmic applications by Demaine et al. [11, 12].
Specifically, they develop sub-exponential fixed-parameter
algorithms for dominating set, vertex cover, and set cover in
any class of graphs excluding a fixed minor.

1.2 Our contributions
Our algorithmic results are a non-trivial generalization

of [44] to all graphs excluding a fixed minor. This solves an
open question raised by Thorup [44]. These results are based
on a new separator theorem whose proof uses the structure
theorem of Robertson and Seymour [37, 39]. Our small word
result significantly extends the result of [19] to weighted pla-
nar graphs and, in general, to all weighted graphs excluding
a fixed minor.

Given a weighted graph G and u, v ∈ V (G), let dG(u, v)
denote the distance between u and v in G, i.e., the cost

of a minimum cost path in G between u and v, the cost
of a path being the sum of its edge weights. We omit the
subscript G when it is clear from the context. We extended
sets operators like ∪, ∩, or \ to graphs in a natural way
as follows: for two graphs (or subgraphs) A and B, A ⋆ B,
for any operator ⋆ ∈ {∪,∩, \}, is the graph G defined by
V (G) = V (A) ⋆V (B) and E(G) = E(A) ⋆E(B), being clear
that an edge e is kept in G only if both endpoints are in
V (G). In particular, the union Q1 ∪· · ·∪Qk of k paths of G
represents a subgraph of G composed of k subgraphs of G.

The following new definition is central to our paper.

Definition 1. A weighted graph G with n vertices is k-
path separable is there exists a subgraph S, called k-path
separator, such that:

(P1) S = P0 ∪P1 ∪ · · · , where each subgraph Pi is the union
of ki minimum cost paths in G \

S
j<i Pj;

(P2)
P

i ki 6 k; and
(P3) either G \S is empty, or each connected component of

G\S is k-path separable and has at most n/2 vertices.

Intuitively, a k-path separable graph G can be halved by
repetitively removing a small set of minimum cost paths
(actually a sequence of unions of minimum cost paths). The
total number of paths in order to halve G is at most k,
however there is no restriction on the number of vertices
contained in each path.

We observe that Pi’s are pairwise disjoint, however two
paths in the same Pi may intersect. Each path used to define
S is not necessarily a minimum cost path in G (except all
of those in P0), but in some subgraphs of G.

For instance, any unweighted rectangular mesh is 1-path
separable taking S as the middle row. Trees (excluding K3)
are 1-path separable as well, taking S as the center vertex
of the tree — a single vertex being a trivial minimum cost
path. Series-parallel graphs (excluding K4) are 3-path sep-
arable because these graphs are of treewidth two and thus
have a set of three vertices whose removal halves the graph.
More generally, Thorup [44] showed that the union of three
minimum cost paths suffices to halve any weighted planar
graph (excluding K5), and thus all these graphs are 3-path
separable.

One may conjecture that graphs excluding Kr can be
halved by a single union of f(r) minimum cost paths for
some suitable function f . Unfortunately, this is wrong for
K6-free-minor graphs (cf. Section 5.2) for which a sequence
of unions of minimum costs paths is required to form a k-
path separator. The following is our main result.

Theorem 1 (Main). Every H-minor-free weighted
connected graph is k-path separable, for k = k(H), and a
k-path separator can be computed in polynomial time.

One may wonder how this result can be used to solve
“object location problems”. While the number of paths is
bounded, the number of vertices of each path is unbounded.
The key fact is that the paths are shortest paths in some
subgraph. Specifically, given any shortest path R from s to
t in G, the above result implies that there exists some path
Q of some Pi in the k-path separator S and some subgraph
G′ = G \Sj<i Pj such that R and Q are shortest paths in

G′ and the two paths intersect. Informally, we show that s
can choose a small set of landmarks from Q so that one of
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these landmarks will be close to R ∩ Q. Indeed, using the
k-path separability property one can show:

Theorem 2. For every n-vertex k-path separable
weighted graph G, and for every ε > 0, there exists
an (1 + ε)-approximate distance labeling scheme with
O(k/ε · log n) space labels. Moreover, the labels are con-
structible in polynomial time, and form a distance oracle
of O(k/ε · n log n) space supporting (1 + ε)-approximate
distance queries in O(k/ε · log n) time.

The aspect ratio of G is the value ∆ =
maxu 6=v d(u, v)/ min d(u, v). To avoid dragging a nor-
malization constant we assume minu 6=v d(u, v) = 1.

Theorem 3. For every connected n-vertex k-path separa-
ble weighted graph G with aspect ratio ∆ there exists a distri-
bution of long-range edges, computable in polynomial time,
such that the greedy routing performs in O(k2 log2 n log2 ∆)
expected number of hops.

1.3 Outline of techniques
Theorem 1 is the main result of this paper. Indeed, once

the decomposition of the k-path separable graph is given,
then many object location problems can be solved based on
a generalization of the arguments of [44]. For the small-
world problem we use a novel potential function argument.

Let us now sketch the heart of this paper, the decomposi-
tion theorem for H-minor-free graphs stated by Theorem 1.
The main ingredient is the use of the tree structure of H-
minor-free graphs by Robertson and Seymour [37, 39].

Roughly speaking a H-minor-free graph has a tree-
decomposition in “almost” embeddable subgraphs on some
surfaces where H cannot be embedded. “Almost” means
that each subgraph of the tree is embedded up to a constant
number of vertices (called apices), and up to a constant num-
ber of disjoint non-embeddable parts (called vortices) that
have bounded pathwidth and are associated with a single
face. The constants depend only on H.

A general paradigm for solving problems on these graphs,
for example see [11], is to first solve the problem on planar
graphs, then to extend it on bounded genus, and then to
extend to bounded genus graphs having vortices and apices.

There are however many technical problems due to our
specific k-path property. For instance, we cannot con-
centrate our attention only to one subgraph of the tree-
decomposition without paying attention to the whole graph,
because we are looking for a set of shortest paths that poten-
tially expand to everywhere in the (weighted) graph, even
if we can effectively control the extremities of the paths.
Another difficulty is to adapt known planar techniques to
bounded genus graphs having vortices, remarking that the
underlying surface can be orientable (a sphere, a torus, a
double-torus, etc) or nonorientable (for instance a Klein
bottle), and that vortices may create nontrivial path cross-
ings on the surface (see Fig. 1(a) for instance). We over-
come the problems with a novel generalization of surface
curves for embedded graphs with vortices: vortex-paths (cf.
Definition 2).

To identify our k-path separator in G, we proceed in three
steps. In Step one, a large separating subgraph (center) of
the graph is identified and some vertices (called apices) are
removed. The remaining subgraph will be the place where
all the shortest paths start from. In Step two, the subgraph

obtained from step one, is processed in an iterative man-
ner, each time extracting vortex-paths, reducing the Euler
genus of the embedded part, until the resulting subgraph
has an embedded part that is planar. To bound the number
of paths, technical care is taken to use vortex-paths that in-
tersect each vortex in a bounded number of vertices. Step
three takes the nearly planar subgraph (planar with constant
number of vortices) and gives a clique-weight that captures
the separation of the subgraph in the original graph. This
weighting scheme generalizes the regular vertex weighting to
capture the connectivity between the center subgraph and
the remaining of the graph. Using this clique-weighting, it
finds vortex-paths that separate the graph into components
of size less than half. The two last parts of the proof are
technically complicated by the requirement to deal with vor-
tices, which are non-embeddable regions in the graph that
break the traditional tools used for embeddable graphs, e.g.
the Jordan’s Curve Theorem. We believe one of our main
technical contributions is our notion of vortex-path which
plays a central role in the proof. We believe this notion has
applications to other problems in H-minor-free graphs. We
note that the above description is an oversimplification that
hides several subtle difficulties.

The plan of this paper is as follows. Section 2 presents
preliminaries to the Robertson and Seymour Theorem about
the structure of H-minor-free graphs. The main proof is in
Section 3 and the small world result is in Section 4. For
the presentation of the main theorem and due to space
limitation most of the proofs appear in [1]. In Section 5
we extended our result on path separators to doubling di-
mension isometric separators, and show some lower bounds.
In particular, we show that the approach of [44], the tree-
separator of planar graphs, cannot be extended to K6-minor-
free graphs. Distance labels and oracles are discussed in [1].
We conclude in Section 6 where we leave open the object
location problem for bounded degree graphs.

2. PRELIMINARIES

2.1 The tree structure ofH -minor-free graphs
A tree-decomposition of a graph G is a tree T whose ver-

tices, called bags, are subsets of vertices of G such that:

1. for every vertex u of G, there exists a bag X of T such
that u ∈ X;

2. for every edge {u, v} of G, there exists a bag X of T

such that u, v ∈ X; and
3. for every vertex u of G, the set of bags containing u

induces a subtree of T.

An important property following from the last two points
is that every path between u ∈ X and v ∈ Y in G has
to intersect all the bags on the path from X and Y in T.
Therefore, every bag X disconnects G provided that T \ X
is composed of more than one subtree.

The width of a tree-decomposition T is maxX∈T |X| − 1.
A path-decomposition of G is a tree-decomposition T where
T is a path. The treewidth of G (resp. pathwidth) is the
minimum of the width, over all tree-decompositions (resp.
path-decompositions) of G.

A joint set in a graph having a tree-decomposition T is
X ∩ Y for some bags X, Y of T. The torso of G w.r.t. T is
the graph denoted by G̃ where each joint set of T is filled-in
by a complete graph.
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For a graph G and a subset of vertices X, G[X] denotes
the subgraph of G induced by X. We denote by T ∩ X,
the graph obtained by intersecting each bag of T with X,
and by taking the subgraph of T induced by the resulting
nonempty bags. If G[X] is connected, then T ∩ X is a tree-
decomposition of G[X].

A graph G is a vortex if there is a sequence of dis-
tinct vertices u1, . . . , ut of G, called perimeter, and a path-
decomposition of G whose bags are X1, . . . , Xt ordered such
that the edges of the path are the pairs {Xi, Xi+1} and
ui ∈ Xi for all i. The width of a vortex is the width of its
path-decomposition.

The following are standard terminologies about graphs on
surfaces, we refer to [34] for an introduction. A surface is a
non-null compact connected 2-manifold without boundary.
A face of a graph embedded on a surface is cellular if its is
homeomorphic to an open disc.

A graph G is h-almost embeddable on a surface Σ if there
exists a set X of at most h vertices, called apices, such that
G \ X = GΣ ∪ W1 ∪ · · · ∪ Wt, t 6 h such that:

1. the graph GΣ has an embedding on Σ;
2. the graphs Wi’s are pairwise disjoint vortices of width

at most h;
3. the perimeter of each vortex is the border of some cel-

lular face of GΣ.

An h-nearly planar graph is a graph that is h-almost em-
beddable on the sphere with no apices.

It is known that every graph excluding a planar minor H
has bounded treewidth [37]. Actually, a much more general
result, due to [39], gives us the structure of H-minor-free
graphs for any graph H, that can be expressed as follows
(see also [13, 27]):

Theorem 4 (Robertson & Seymour [37, 39]). For
every H-minor-free graph G, there is a number h = h(H)
and a tree-decomposition T such that for every bag X of T,
either |X| 6 h, or G̃[X] is h-almost embeddable on some
surface on which H is not embeddable.

A tree-decomposition T and the embeddings satisfying
Theorem 4 can be constructed in polynomial time for fixed
H, where the exponent depends on the number h. The algo-
rithm comes directly from [38] (cf. [27, Lemma 15]). More
recently, another algorithm has been presented in [11]. Note
that the so constructed tree-decompositions have size linear
in G, and the faces of all the embeddings are cellular.

3. FINDING A K -PATH SEPARATOR
In this section we assume that G is a weighted connected

H-minor-free graph with n vertices, and that T is a linear
size tree-decomposition for G satisfying Theorem 4. Let h
be the constant, depending on the fixed graph H, involved
in Theorem 4.

The family of graphs excluding a fixed minor is closed un-
der minor taking, and thus under induced subgraph. There-
fore, to prove Theorem 1 it suffices to prove that G has a
k-path separator S without proving that the small (6 n/2
vertices) connected components of G \ S are k-path separa-
ble.

To find such a separator S = P0 ∪ P1 ∪ . . . , we proceed
iteratively in several steps. At a given step s, we compute a
set of minimum cost paths Ps in the current graph Gs, and

we keep the largest connected component Gs+1 of Gs \ Ps,
until all of them have 6 n/2 vertices.

The process is split into three main steps detailed below.
Initially, we set s = 0, and G0 = G, T0 = T.

Step 1: Remove the center apices
The next classical result holds for every tree-decomposition
of any graph G and any tree-decomposition T of G.

Lemma 1. There is a bag C of T, called center, such that
the connected components of G\C have at most n/2 vertices.

Let C0 be the bag given by Lemma 1 applied on G0 and
T0. C0 can be found in polynomial time, since T0 has linear
size. If |C0| 6 h, then we set S = P0 = C0, and we have
proved that S is a h-path separator for G0. Otherwise, let P0

be the set of apices of C0, and let G1 be a largest connected
component of G0 \ P0. Since only G1 can have more than
n/2 vertices, it suffices to concentrate our attention on G1,
and to complete P0 with some sequence of minimum cost
paths P1, P2, . . . to form the wanted separator S for G0.

Let T1 = T0 ∩ G1, and C1 = G1 ∩ C0. T1 is a tree-
decomposition for G1, and C1 is a bag of T1 such that its
torso, C̃1, is h-almost embeddable with no apices.

Step 2: Make the center nearly planar
The goal of this step is to transform C̃1 into a nearly planar
graph by removing iteratively some set of minimum cost
paths. For that we need some terminologies and definitions.
For an introduction to topological graph theory we refer
to [34].

Let Σ0 be the surface on which C̃0 is h-almost embed-
ded, denote by CΣ0 = C̃0 ∩ Σ0 the part of C̃0 embedded on
Σ0, and let g be the Euler genus of Σ0 we define hereafter.
The Surface Classification Theorem states that every sur-
face is homeomorphic to a space obtained from the sphere
by adding handles or crosscaps. The Euler genus of Σ0 is
either λ if Σ0 was obtained by adding λ > 0 handles (ori-
entable surface), or 2µ if Σ0 was obtained by adding µ > 1
crosscaps (nonorientable surface).

Note that in general there is no upper bound of the Euler
genus of Σ0 in terms of h. However, an important obser-
vation is that g < |E(H)|, because every graph X with a
cellular embedding on Σ satisfies g 6 |E(X)| − |V (X)| + 1
from Euler’s Formula.

A graph is (h, p, g)-embeddable if it is h-almost embed-
dable with no apices on a surface Σ of Euler genus at most
g, and if the width of its vortices is at most p 6 h. So C̃1 is
(h, h, g)-embeddable, and h-nearly planar graphs are exactly
the (h, h, 0)-embeddable graphs.

Definition 2. Let G be an (h, p, g)-embeddable graph on
Σ, and let GΣ denote its embedded part. A vortex-path is a
subgraph V of G that can be decomposed in V = Q0 ∪ X1 ∪
Y1∪Q1∪· · ·∪Xt ∪Yt ∪Qt such that for every i ∈ {0, . . . , t}:

1. Qi, called segment of V, is a path wholly contained in
GΣ;

2. there are t distinct vortices W1, . . . , Wt in G such that
Xi and Yi are bags of Wi; and

3. one extremity of Qi is the perimeter vertex of Yi (for
i > 0) and the other one is the perimeter vertex of
Xi+1 (for i < t), and no other vertices of Qi is a
perimeter vertex.
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The projection of a vortex-path V, denoted by V̄, is the path
formed by Q0 ∪ e1 ∪Q1 ∪ · · · ∪ et ∪Qt where ei, i > 0, is an
extra edge added to G between the perimeter vertex of Xi

and the perimeter vertex of Yi, and embedded on the face
(which is cellular) of the vortex Wi. We observe that V is
not necessarily a path of G, but its projection V̄ is a curve
of Σ as depicted on Fig. 1(b).

With every path P of G whose extremities are in GΣ, one
can associate a vortex-path Q0∪X1∪Y1∪· · ·∪Qt defined as
follows (see Fig. 1): Start a walk on P from one extremity
until encountering the first perimeter vertex, say x1. This
first part of P forms the segment Q0, and the vortex bag
corresponding to x1 is X1. Then, continue the walk on P
and select y1 to be the last perimeter vertex on P belonging
to the same vortex that x1 belongs to. This forms Y1, the
bag whose perimeter vertex is y1. Then, continue along
P up to the next perimeter vertex, forming segment Q1,
and so on. Observe that the part of P between x1 and y1

may enter and leave many vortices, each one several times.
However, by construction, the vortex-path of P enters and
leaves pairwise distinct vortices.

The path from u to v in a rooted tree T is denoted by
T (u, v), and T (u, v) is said to be monotone if u and v are
relatives, i.e., u is ancestor of v or v is ancestor of u.

We have the following result which is the key of Step 2:

Lemma 2. Let G be a (h, p, g)-embedded graph for g > 0,
and let T be a spanning tree of G rooted in the embedded part
of G. Then, there exist two vortex-paths V1, V2 such that
each segment is a monotone path of T , and each connected
component of G \ (V1 ∪ V2) is (h + 1, p, g − 1)-embedded.
Moreover, V1, V2 and the embeddings can be computed in
polynomial time.

Let us sketch the proof of this key lemma. The idea is to
select a suitable nontree edge {u, v} of T , and to consider
the two vortex-paths of the paths T (u, r) and T (v, r), where
r is the root of T . Intuitively, in classical graphs on sur-
face theory, we want that the fundamental cycle induced by
{u, v} in T reduces the Euler genus of Σ. Unfortunately, this
fundamental cycle is not wholly embedded on Σ (due to vor-
tices), and the use of the vortex-paths instead of the paths
is required. Note that the vortex-path of T (u, r) is not nec-
essarily a path, it does not include all the vertices of T (u, r).
However, its projection is a path of Σ, and each segment is
a monotone path of T . In fact, it is possible to reorganize
the segments of the two vortex-paths such that the two pro-
jections plus the nontree edge form a closed curve C of Σ.
(Indeed, the projections of the vortex-paths might intersect
in some common vortex, but this can be avoid via exchang-
ing segments between the two vortex-paths). Now, two cases
occur. Case 1: If the removal of C reduces the Euler genus
of Σ, then one can replace each side of C with a disc (it
may happen that C has only one side if Σ is nonorientable).
This disc forms the face of a new vortex by grouping all the
vortices C intersects. This new embedding decreases by one
g and increases the number of vortices h by one in the worst-
case (this occurs, for instance, if C intersects one vortex and
has two sides). Case 2: If the removal of C does not reduce
the Euler genus of Σ, then one region of Σ \C, say R, must
be planar. We can then construct a new cycle C′ thanks to
a new vortex-path that either reduces the Euler genus of Σ
(Case 1), or provides a planar region strictly including R (by
at least one edge). By finiteness of G, Case 1 always occurs,

and so an (h + 1, p, g − 1)-embedding of G can always be
constructed by removing two vortex-paths.

We will now carefully apply iteratively Lemma 2 to the
graph C̃1 in order to get a (h + g)-nearly planar graph. For
that we assume the following:

1. Gs is connected;
2. Ts is tree-decomposition of Gs;
3. Cs is a bag of Ts; and
4. C̃s is (h − 1 + s, h, g + 1 − s)-embedded (the torso is

w.r.t. Ts).

For s = 1 we check all the conditions hold. Here is the
main loop:
Main loop:

1. If Cs ∩CΣ0 = ∅ or C̃s is (h−1+s, h, 0)-embedded, we
jump directly to Step 3. The former case may occur
if, for instance, Cs is a subgraph of C0’s vortices.

2. Choose a root rs ∈ Cs ∩ CΣ0 , and perform from rs a
minimum cost path tree As in Gs spanning the vertices
of Cs.

3. Let Ts be the graph As∩Cs augmented with the edges
between any two vertices u, v satisfying the two con-
ditions:

(a) u and v are both in the same joint set of Cs; and
(b) As(u, v) is monotone and As(u, v) ∩ Cs = {u, v}.

Lemma 3. Ts is a spanning tree of C̃s.

Note that by construction, for any pair u, v ∈ Cs,
V (Ts(u, v)) ⊆ V (As(u, v)), and that if Ts(u, v) is
monotone, then so is As(u, v).

4. We now apply Lemma 2 to the graph C̃s with the
spanning tree Ts, and we obtain the vortex-paths
Vj = Qj

0 ∪ Xj
1 ∪ Y j

1 ∪ · · · ∪ Qj
tj

for j ∈ {1, 2}. As-

sume that each segment Qj
i is a path going from uj

i to

vj
i . By Lemma 2, Qj

i = Ts(u
j
i , v

j
i ) is monotone.

5. Finally, we update S = S ∪ Ps where:

Ps =
[

j∈{1,2}

0�As(u
j
0, v

j
0) ∪

tj[
i=1

�
Xj

i ∪ Y j
i ∪ As(u

j
i , v

j
i )
�1A

6. It is clear that V1 ∪ V2 ⊆ Ps, since As(u
j
i , v

j
i ) in-

cludes the segment Ts(u
j
i , v

j
i ) = Qi for all i, j. There-

fore, according Lemma 2, each connected components
of Gs \Ps is (h− 1 + s + 1, h, g + 1− s− 1)-embedded,
i.e., (h − 1 + (s + 1), h, g + 1 − (s + 1))-embedded.

7. Observe that Ps is a set of minimum cost paths in Gs.
Indeed, As(u

j
i , v

j
i ) is monotone in As (by monotonicity

of Ts(u
j
i , v

j
i )), and thus is a minimum cost path. The

number of paths in Ps is at most 2+ (t1 + t2) · (2p+1)
because each vortex bag has at most p+1 vertices (we
count only p vertices since the perimeter vertex is a
part of an entering or leaving segment). In a vortex-
path, the number of segments cannot exceed the total
number of vortices, so by assumption tj 6 h − 1 + s.
We have also that p 6 h, therefore ks 6 2 + 2(h − 1 +
s)·(2h+1), where ki denotes the number of paths used
to defined Pi.
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Figure 1: (a) A path P intersecting three vortices; (b) its vortex-path V = Q0 ∪ X1 ∪ Y1 ∪ · · · ∪ Q2, and its
projection.

8. Let Gs+1 be the largest connected component of Gs \
Ps. Let Ts+1 = Ts∩Gs+1, and Cs+1 = Gs+1∩Cs. Ts+1

is a tree-decomposition for Gs+1, and Cs+1 is a bag of
Ts+1. An important observation is that the joint sets
of C̃s+1 are included in those of C̃s since cliques of C̃s

were not split by the removal of Ps. Therefore C̃s+1

corresponds to a component of the graph computed
from C̃s by Lemma 2. Therefore, C̃s+1 is (h− 1+(s+
1), h, g + 1 − (s + 1))-embedded as required.

All the pre-conditions of the main loop are satisfied,
and we continue with s = s + 1.

Step 3: Split the nearly planar center
At this stage s 6 g + 1, and S = P0 ∪ · · · ∪ Ps−1. Currently
the total number of minimum cost paths in S is bounded by

h+

s−1X
i=1

ki 6 h+

gX
s=1

(2 + 2(h − 1 + s) · (2h + 1)) = O(hg(h+g)) .

Moreover, either Cs ∩ CΣ0 = ∅, or C̃s is (h + g, h, 0)-

embeddable, i.e., C̃s is (h + g)-nearly planar. We eliminate
the former case.

Lemma 4. If Cs ∩ CΣ0 = ∅, then there was a vortex bag
X of C0 such that the connected components of Gs \X have
at most n/2 vertices.

According to Lemma 4, if Cs ∩ CΣ0 = ∅, we can find in
polynomial time the vortex bag X, and set Ps = X ∩ Gs.
As X ∩Gs is a proper subset of the vortex bag X — indeed
the perimeter vertex of X was belonging to CΣ0 and thus
is missing from Cs — we get ks = |X ∩ Gs| 6 h. Thus we
have proved that S = P0 ∪ · · · ∪Ps is a k-path separator for
G for k = O(hg(h + g)) which is bounded by some function
depending only on H since we have seen that g < |E(H)|.

Our goal now is to find a separator in Cs that also splits
Gs in small components. For that we need some definitions
and the use of two lemmas.

A clique-weight for a graph G is a pair (K, ω) where K is
a set of cliques of G, and ω a function associating with each
clique K ∈ K a real ω(K) > 0. For every subgraph A of G
having a clique-weight (K, ω), we define the weight of A as:

f(A) =
X

K∩A6=∅

K∈K

ω(K) .

A clique-weight for G is a non-trivial generalization of a
vertex-weight function. This can be seen by setting K as

the collection of cliques each one composed of one single
vertex of G. So that ω({u}) is the weight of vertex u, and
f(A) equals the sum over the vertices of A of the function ω.
Unlike vertex-weight functions, observe that if A ∪ B ⊆ G
and A∩B 6= ∅, then f(A)+f(B) 66 f(G) for general clique-
weights (for instance if there is a clique intersecting A and
B). However, f(A) + f(B) 6 f(G) whenever A and B are
connected components of G \ S for any S.

A half-size separator for G with clique-weight (K, ω) is a
set of vertices whose removal leaves connected components
of weight at most half the weight of G, i.e., of weight at most
f(G)/2.

The motivation for this generalization is the following sim-
ple result, that states that every half-separator, for a suit-
able clique-weight, is actually the wanted separator for the
whole graph.

Lemma 5. Let C be a center of tree-decomposition of an
n-vertex graph G. Then, in polynomial time, one can con-
struct a clique-weight (K, ω) for the torso C̃ such that, given

any half-size separator S of C̃, the connected components of
G \ S have at most n/2 vertices.

So virtually, we can forget for a while about the small con-
nected components joining C and concentrate our attention
on half-size separators of C̃.

The following result is non-trivial variant of the Lipton-
Tarjan planar separator [33], and is a generalization of the
three-leaves tree separator of Thorup [44]. It applies to a
more general graph (a planar graph is just a 0-nearly planar
graph) and with a more general vertex-weight function (a
vertex-weight function is just a particular clique-weighting).

Lemma 6. Let G be a nearly planar graph with a clique-
weight and a spanning tree T rooted in the planar part of G.
In polynomial time, one can construct a half-size separator
for G composed of at most three vortex-paths whose segments
consist of monotone paths of T .

Final construction:
At this step Cs ∩ CΣ0 6= ∅. So, we went out from Step 2

because C̃s is (h + g)-nearly planar. Let As and Ts be the
trees constructed as in Point 2 and Point 3 of the main loop
of Step 2. As is a minimum cost tree rooted at some vertex
of the planar part of Gs, and by Lemma 3, Ts is a spanning
tree of C̃s.

We now construct the clique-weight (K, ω) for C̃s in Gs

(with tree-decomposition Ts) as done in Lemma 5, and we
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apply Lemma 6 to the (h + g)-nearly planar graph C̃s and
its spanning tree Ts.

Let V1, V2, V3 be the vortex-paths constructed in
Lemma 6, where Vj = Qj

0 ∪ Xj
1 ∪ Y j

1 ∪ · · · ∪ Qtj with

Qj
i = Ts(u

j
i , v

j
i ) for all i, j. Similarly to Point 5 of Step 2,

we update the separator S = S ∪ Ps with:

Ps =
[

j∈{1,2,3}

0�As(u
j
0, v

j
0) ∪

tj[
i=1

�
Xj

i ∪ Y j
i ∪ As(u

j
i , v

j
i )
�1A

Note that V1 ∪ V2 ∪ V3 ⊆ Ps, since As(u
j
i , v

j
i ) includes

the segment Ts(u
j
i , v

j
i ) = Qi for all i, j. Therefore, ac-

cording to Lemma 6, Ps is a half-size separator of C̃s. By
Lemma 5, all the connected components of Gs \ Ps have at
most |V (Gs)|/2 6 n/2 vertices.

We complete the proof by observing that Ps is a set of
minimum cost paths in Gs, as As(u

j
i , v

j
i ) is monotone and

thus is a minimum cost path in Gs for all i, j. The number
of paths in Ps is at most 3 + (t1 + t2 + t3) · (2(h + g) + 1) 6

3 + 3(h + g) · (2(h + g) + 1) = O(hg(h + g)).
In all the cases we have proved that S = P0 ∪ · · · ∪Ps is a

k-path separator for G0 for k = O(hg(h+g)) = O(h|E(H)| ·
(h + |E(H)|)), which is bounded by some function of H as
claimed. This completes the proof of Theorem 1.
Note. The above proof of Theorem 1 can be strengthened
to construct a k-path vertex-weighted separator, that is a
separator S that splits G (having edge and vertex-weights)
in components of vertex-weight at most half of the total
vertex-weight of G, S still composed of minimum cost paths
as defined by property (P1). For that, lemmas 1 and 5 can
be easily adapted.

4. SMALL-WORLDS

Definition 3 (Augmentation distribution). An
augmentation distribution of a graph G = (V, E) is a
function D : V × V → R

+ such that for any v ∈ V
the function D(v, ·) is a distribution function on V , i.e.,
∀v ∈ V ,

P
u∈V D(v, u) = 1.

Definition 4 (Augmenting a graph). Given a
weighted graph G = (V, E, ω) and an augmentation distri-
bution D, let 〈G,D〉 be a distribution on graphs with vertex
set V formed by adding to E, for each v ∈ V one directed
edge e = (v, u) where u is independently chosen via D(v, ·)
and setting the weight of the edge to be ω(e) = dG(v, u).

Let G be a weighted undirected n-vertex k-path sepa-
rable graph with aspect ratio ∆. Distance is extended
naturally to sets, given sets U, V ⊆ V (G), let d(U, V ) =
min {d(u, v) | u ∈ U, v ∈ V }. For any subgraph H of G, let
S(H) be the k-path separator of H that separates H in to
small components, i.e., of size at most 1

2
|V (H)|.

We build a rooted tree T called the decomposition tree of
G as follows. The vertices of T are subgraphs of G. The
root of T is G. For any H ∈ V (T ), its children J1, . . . , Jt are
the connected components induced by H \ S(H). Observe
that the depth of T is at most log n.
The augmentation distribution. Fix a vertex v ∈ G,
let H1(v), H2(v), . . . , Hr(v) be the path in T starting from
the root G containing all the vertices H ∈ V (T ) such that
v ∈ H. Let τ ∈ {1, . . . , r} be a uniformly random variable.

Given τ let Q be a uniformly random path out of the paths
in S(Hτ (v)). Given the path Q of Pi ∈ S(Hτ (v)) and the
graph J = H \ Sj<i Pj we define the following landmarks

L = L(Q) ⊆ Q.
Let Q = x1, . . . , xt be the vertices on the path. Let xc ∈ Q

be a vertex such that dJ(v, xc) = dJ(v, Q), and let d =
dJ(v, xc). Now we consider separately the paths Q(−1) =
x1, . . . , xc and Q(+1) = xc, . . . , xt. For each j ∈ {−1, 1}:
(1) For each i ∈ {0, 1, 2, 3, . . . , 10} add to L the first vertex
in Q(j) such that dQ(j)

(xc, x) > (i/2) · d. (2) For each i ∈
{0, 1, 2, 3, . . . , ⌈log ∆⌉} add to L the first vertex in Q(j) such

that dQ(j)
(xc, x) > 2i · d.

Observe that |L| = O(min {t, log ∆}). After vertex v
chooses a component index τ and chooses a path Q, it
chooses uniformly at random a landmark ℓ in L = L(Q).
This completes the distribution for v.

Claim 1. Let L be the set of landmarks chosen by v in
graph J in respect to path Q. For any x ∈ Q, there exists
ℓ ∈ L such that dQ(ℓ, x) 6

3
4
dJ(v, x).

Proof. Let d = dJ(v, xc). There are two cases to con-
sider. If dJ(v, x) 6 4d then dQ(xc, x) 6 5d since Q is a
shortest path in J . Therefore there exists 0 6 i 6 10 such
that ℓ ∈ L is the first vertex on Q with dQ(xc, ℓ) > id/2 and
dQ(ℓ, x) 6 d/2 6 dJ(v, x)/2 since dJ(v, x) > d.

Otherwise if dJ(v, x) > 4d then 3
4
dJ(v, x) 6 dJ(v, x) −

d 6 dQ(xc, x) 6 dJ(v, x) + d 6
5
4
dJ(v, x). Let i ∈

{0, 1, 2, 3, . . . , ⌈log ∆⌉} be the index such that dJ(v, x)/2 <
2id 6 dJ(v, x) then for the corresponding ℓ ∈ L with
dQ(xc, ℓ) > 2id we have dQ(ℓ, x) 6

3
4
dJ(v, x).

Theorem 3. For every connected n-vertex k-path separa-
ble weighted graph G with aspect ratio ∆ there exists a distri-
bution of long-range edges, computable in polynomial time,
such that the greedy routing performs in O(k2 log2 n log2 ∆)
expected number of hops.

Proof. Consider any target t ∈ V (G). Let T be the
decomposition tree of G. Let H1, H2, . . . , Hr be the path
in T starting from the root G containing all the vertices
H ∈ V (T ) such that t ∈ H. For each Hi, let Qi

1, . . . , Q
i
k be

the paths (possibly empty or one vertex paths) of S(Hi).
Let P =

�
Qi

j | 1 6 i 6 r, 1 6 j 6 k
	
, observe that |P| =

O(k log n) and P 6= ∅.
For any Q ∈ P, let x(Q) ∈ Q be a vertex such that

d(x(Q), t) = miny∈Q d(y, t). Let Φ : V × P → R be the
function:

Φ(u, Q) = max {d(u, t) − d(x(Q), t), 0} .

The following is immediate from the definition of Φ.

Claim 2.
(1) If d(v, t) 6 d(u, t) then Φ(v, Q) 6 Φ(u, Q) for all Q ∈ P.
(2) If ∀Q ∈ P : Φ(v, Q) = 0 then p = t.

Consider a current vertex u that wants to reach t 6= u.
Let R be a shortest path on G from u to t, let R′ = R \{u}.
Let Q ∈ P be the first path that intersects R′, formally
Q = argminQ∈P {dR′(u, Q)}. Observe that Φ(u, Q) > 0.

We will now show that with probability O(k log n log ∆)−1

we reach a vertex v such that Φ(v, Q) 6
3
4
Φ(u, Q).

Let i, τ be the indexes such that Q ∈ Pi ∈ S(Hτ (u)). Let
J = Hτ (u) \

S
j<i Pj . Since Q is the first path to intersect

R then d(u, x(Q)) = dJ(u, x(Q)).
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Hence with probability O(k log n log ∆)−1 vertex u
chooses τ ∈ O(log n) and Q ∈ O(k) and the landmark
ℓ ∈ O(log ∆) from Claim 1 that covers x(Q). If this
happens then u has an edge to some vertex ℓ such that
d(ℓ, x(Q)) 6 dQ(ℓ, x(Q)) 6

3
4
dJ(u, x(Q)) = 3

4
d(u, x(Q)).

Hence, given such an ℓ, any greedy step that u performs
will lead to a vertex v such that Φ(v, Q) 6 Φ(ℓ, Q) 6
3
4
Φ(u, Q).
Since such an event can happen at most O(log ∆) times

for each of the O(k log n) paths in P then by linearity the
expected greedy diameter is at most O(k2 log2 n log2 ∆).

Note 1: when all separator paths are actually one vertex
(as in the case of bounded treewidth graphs) then the greedy
diameter can be reduced to O(k2 log2 n) by setting L(Q) to
simply be the single vertex of Q = {q}.
Note 2: if all separator paths form a graph with diameter
δ and additionally the graph is unweighted then the greedy
diameter reduces to O(log2 n + δ log n). After u chooses τ ,
instead of randomly choosing one of the vertices in S(Hτ (u))
it chooses the closest vertex from S(Hτ (u)). Now consider
a target t and a current vertex u and let H be the minimal
component of T that contains both. If dH(u, S(H)) 6 2δ
then u will cross S(H) after O(δ) steps. Otherwise, with
probability O(log n)−1, vertex u will have a long range con-
tact to x the closest vertex in S(H). Since dH(u, S(H)) > 2δ
then dH(x, t) 6 δ + dH(S(H), t). Hence if this event occurs
then this level of the hierarchy will be crossed in O(δ) steps.
Hence the expected number of hops to cross a separator is
O(log n + δ).
Note 3: if G is not k-path separable but is (k, α)-doubling
separable (see Section 5) then instead of choosing O(log ∆)

landmarks we choose O(2O(α) log ∆) landmarks using the
construction of Slivkins [41]. The expected greedy diameter

becomes O(2O(α)k2 log2 n log2 ∆).

Corollary 1. For any n-vertex graph G there exists a
long range link augmentation D such that the expected hop
count of greedy routing on 〈G,D〉 is

1. O(k2 log2 n), if G is a weighted treewidth-k graph;

2. O(2O(α)k2 log2 n log2 ∆), if G is a weighted (k, α)-
doubling separable graph with aspect ratio ∆.

5. ABOUT K -PATH SEPARABILITY

5.1 Lower bounds for sparse graphs
Although our results applies to a large family of sparse

graphs, graphs excluding Kr have O(r
√

log r · n) edges [43],
no techniques can achieve similar performances for general
sparse graphs. More precisely:

Theorem 5. For every fixed 0 6 ε < 2, there are un-
weighted graphs with at most n vertices and with O(n)
edges on which every stretch-(1+ε) distance labeling scheme
with L-bit labels, or on which every stretch-(1 + ε) labeled
routing scheme with L-bit labels and routing tables implies
L = Ω(

√
n ). In particular such sparse graphs are not k-path

separable for k = o(
√

n/ log2 n).

Proof. Plug the classical lower bounds into a graph of
N = ⌈√n ⌉ vertices and so with less than N2 = O(n) edges.

It is known that, for every stretch s < 3, there are un-
weighted N -vertex graphs for which every stretch-s rout-
ing scheme requires Ω(N)-bit labels [24], or for which ev-
ery stretch-s distance labeling scheme requires Ω(N)-bit la-
bels [25, 45].

Let us fix ε = 1 (or any value 0 < ε < 2). From Theo-
rem 2, every k-separable graph supports a 2-approximate
distance labeling scheme with L-bit labels where L =
O(k log2 n). So for the above sparse graph, L = Ω(

√
n), and

thus it cannot be k-separable for k = o(
√

n/ log2 n).

5.2 Strongly separable graphs
Let us first observe that the graph composed of a path of

n/2 vertices and of a stable set of n/2 vertices with all edges
between the path and stable vertices, contains Kn/2,n/2 as
minor and is a 1-path separable (the whole path) if the path
edges have weight 1 and the other edges weight n/2. Thus
the family of O(1)-path separable graphs does not reduce to
KO(1)-minor-free graphs.

A k-path separator S for G is said strong if S = P0, i.e.,
S reduces to the union of at most k minimum cost paths
in G. Although [44] proved that planar graphs are strongly
3-path separable, we stress that for a fixed k this natural def-
inition actually captures much less graphs. For instance, we
construct some K6-minor-free graphs that are not strongly√

n-path separable, in contrast Theorem 1 implies that they
are O(1)-path separable.

Unless explicitly expressed, graphs are weighted con-
nected graphs.

Theorem 6.

1. Every planar graph is strongly 3-path separable [44].
2. Every H-minor-free graph with n vertices is strongly

O(
√

n )-separable.
3. There are unweighted K6-minor-free graphs with n ver-

tices for which every strong k-path separator requires
k = Ω(

√
n ).

Proof. It is known that Kr-minor-free graphs with n
vertices have treewidth O(r3/2√n ) [6]. By Theorem 7, we
conclude that the graphs excluding a fixed minor of at most
r vertices are strongly O(

√
n )-separable.

Let G be the graph composed of a t × t mesh augmented
with a universal vertex, i.e., a vertex that neighbors all the
vertices of the mesh. Since the mesh is K5-minor-free, G is
K6-minor free. Let n = t2 + 1 be the number of vertices of
G.

Let S be any strong k-path separator for G. We remark
that, since G has diameter two, any union of k shortest
paths in G contains at most 3k vertices. In other words,
|V (S)| 6 3k.

Assume that k < t/3. Then, |V (S)| < t, and thus S can-
not intersect all the rows or all the columns of the underlying
t×t mesh of G. It follows that their must exists a connected
component in G \ S with at least

Pt
i=1 i = t(t + 1)/2 ver-

tices. Indeed, we can check that, for every c 6 t, the largest
connected component in a t × t mesh in which c vertices
have been removed, has at least

Pt
i=t−c max {i, t} vertices,

obtained by removing the diagonal vertices from coordinates
(c + 1, 1) to (t, c).

Note that t(t + 1)/2 > (t2 + 1)/2 = n/2 for t > 1. This is
a contradiction with the fact that all connected components
of G \ S must have at most n/2 vertices. Therefore, k >

t/3 = Ω(
√

n ).
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Theorem 7. Every treewidth-r graph is Kr+2-minor-free
and is strongly (r + 1)-path separable. Moreover, there are
unweighted treewidth-r graphs for which every k-path sepa-
rator requires k > r/2.

Proof. Using Lemma 1, every connected graph having a
tree-decomposition T of width w has a strong (w + 1)-path
separator. So, it suffices to consider a tree-decomposition of
optimal width r for treewidth-r graphs.

Consider now the graph G = Kr,n−r with n > 2r. Its
treewidth is r (cf. [31]), and every set of r − 1 vertices does
not disconnect G. Moreover, every shortest path in G in-
cludes at most two vertices of each stable. Thus, if n > 2r,
in order to obtain connected components of size at most n/2
we need to disconnect G. And, to disconnect G we need to
delete at least r/2 shortest paths.

5.3 More general separators
Observe that a 3D mesh has no k-path separators for

bounded k, whereas there exists a “2D mesh separator”.
And this graph appears to be an easy graph for solving ob-
ject location problem. This leads to the following natural
extension of the k-path separability definition.

Recall that a subgraph H of G is isometric if dH(x, y) =
dG(x, y) for all x, y ∈ H. H is of doubling dimension α if
for every radius r and vertex x ∈ H, the radius-2r ball in
H centered at x can be covered by at most 2α radius-r balls
of H.

A weighted graph G with n vertices is (k, α)-doubling sep-
arable is there exists a subgraph S, called (k, α)-doubling
separator, satisfying conditions P2 and P3 of the previous
definition and where condition P1 is replaced by:

(P1’) S = P0 ∪ P1 ∪ · · · , where each subgraph Pi is the
union of ki isometric subgraphs of doubling dimension
at most α in G \Sj<i Pj.

So a k-path separator is nothing else than a (k, 1)-

doubling separator. Based on O((α/ε)O(α) log ∆)-bit (1+ε)-
approximate labels [42], we can actually show the following:

Theorem 8. For every n-vertex (k, α)-doubling separa-
ble weighted graph G, and for every ε > 0, there exists
a data-structure of O(τ · n log n) space supporting (1 + ε)-
approximate distance queries in O(τ log n) time, where τ 6

k(α/ε)O(α). Moreover, the data-structure is polynomial time
constructible, and can be distributed as a (1+ε)-approximate
distance labeling with O(τ · log n) space labels.

6. CONCLUSION
We showed that weighted graphs excluding a fixed minor

have a k-path separator for some constant k, i.e., a recur-
sive pruning decomposition in k minimum cost paths. Our
scheme is polynomial time constructible, and the associated
data-structures have optimal size up to a log n factor, and
allow us to solve several object location problems: 1) ap-
proximate compact distance oracle, 2) distance labeling, 3)
compact routing, and 4) small-worldization. The approxi-
mation factor is 1 + ε for any fixed ε > 0.

We generalized our decomposition to separator isometric
subgraphs of low doubling dimension in order to capture
more sparse graphs. Unfortunately, we have showed that
efficient distance oracles cannot be achieved on the class of
all sparse n-vertex graphs (even unweighted graphs).

We leave open several questions:
1) Proves or disprove that Kr-minor-free graphs are k-

path separable for k = rO(1). By Theorem 7, k > r/2.
A stronger lower bound would be interesting. Currently,
an upper bound on k (actually an upper bound on the
treewidth) is known only for graphs excluding a planar mi-

nor H: k 6 202(2|V (H|+4|E(H)|)5 . Note that this is poten-

tially greater than 20106r5

for a maximal planar graph H on

r vertices! If H is an r × r grid, then k 6 202r5

. This latter
value is conjectured to be only O(r2 log r) [40].

2) Is there is a constant c > 0 such that every weighted
bounded degree graph is (logc n, c log log n/ log log log n)-
doubling separable? By Theorem 8, this would imply (1+ε)-
approximate solutions with distributed data-structures (la-
bels) of poly-log space for these graphs.
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