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1. INTRODUCTION

A fundamental problem in networks concerns efficiently representing the network so
that queries of interest, notably the distance between vertex pairs, can be answered
quickly and efficiently. In many large networks, failures are common, and it is often
desirable to quickly compute distances given some set of failures. Beyond estimating
distances, one may wish to actually route on shortest paths in the network. Since the
network is often managed in a distributed manner, it is desirable to have a distributed
structure for answering distance queries, without having to resort to some central
authority. In many large networks, it may be desirable to answer distance queries
using a small amount of information. For example, a hand-held device may need to
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compute distance queries related to its local region. It would be desirable not to force
the device to download a data structure whose size is proportional to the whole graph
of the world but only to the relevant region. A similar requirement seems natural for
failures. It would be desirable to download only information proportional to the failures
relevant to region and query of the hand-held device.

This motivation is captured by the distance labeling problem: Given an n-vertex
graph G, preprocess G so as to produce a collection of distance labels to be assigned
to the vertices. Then, a distance query involving two vertices u, v should be answered
using only the labels assigned to uand v, using some decoder function. We are interested
in bounding the label length (i.e., the maximum length of a label) of the scheme. One
motivation for this is that if these distance labels are sufficiently small, say of length
polylogarithmic in n, then they may be used as the “addresses” for vertices in the
network (see Gavoille and Peleg [2003] for an overview). To perform routing, one can
extend the idea so that the labels for u and v convey enough information so that u
can determine its next hop neighbour on a short path toward v. Again, it is hoped
that the labels are small; in general, if the label length is sublinear in n, then the
resulting scheme is said to be a compact routing scheme. A recent survey on compact
routing can be found in Dom [2007], and in Krioukov et al. [2004, 2007] it is argued
that compact routing schemes are highly applicable to the problem of Internet routing.
See also Fraigniaud et al. [2008], Thorup and Zwick [2001], and Chechik [2013].

This article considers a key extension of distance labeling and routing relevant to
many network settings. Suppose that, from time to time, the network servers learn
that some subset F of nodes or links has failed or is simply “forbidden” (inaccessible).
It is then required to answer queries on the “surviving” graph G \ F without having
to recompute the labels. This type of extension was suggested in Courcelle and Twigg
[2007] and Twigg [2006], which considered this problem for graphs with bounded
treewidth or cliquewidth.

In the concrete case of distance labeling, we are interested in label-based distributed
data structures. First, preprocess G and assign to each vertex v of G a label L(v). Now,
given the set of labels {L( f ) : f ∈ F}, we must answer queries involving distances on
G \ F. Specifically, given additionally two labels L(u) and L(v), it should be possible to
answer a query concerning the distance between u and v in G \ F.

Computing the exact distance (or shortest route) between pairs of vertices may be
costly in term of memory requirements. Typically, polynomial space is needed for exact
distances in sparse graphs like planar graphs [Gavoille et al. 2004], whereas poly-
logarithmic labels are possible even for arbitrary graphs if a small error is tolerated
(see, e.g., Peleg [1999], Talwar [2004], and Thorup [2004]). The situation is similar for
compact routing: �(n1/2)-bit routing tables are required for shortest path routing in
bounded growth networks [Abraham et al. 2006] or planar graphs, whereas routing ta-
bles of size (ε−1 log n)O(1) suffice for (1 + ε)-stretch routing scheme in bounded doubling
dimension graphs [Abraham et al. 2006; Konjevod et al. 2007, 2008; Slivkins 2005,
2007] or in minor-free graphs [Abraham and Gavoille 2006], some much wider classes
of networks.

The schemes presented herein demonstrate, somewhat surprisingly, that similar
bounds can be achieved even in the (considerably harder) “forbidden-set” scenario.

Our Contributions. In this article, we extend the forbidden-set distance label
paradigm from exact distances in bounded tree-width graph to approximate distances
in bounded doubling dimension graphs. Consider undirected unweighted n-vertex
graphs. Our scheme applies to any unweighted graph G; however, its efficiency de-
pends exponentially on the doubling dimension of G, defined as the smallest α such
that, for every r > 0, every ball of radius 2r can be covered by 2α balls of radius r.
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We show the following results.

—Graphs of doubling dimension α have a forbidden-set (1 + ε)-approximate distance
labeling scheme of label length1O(1 + ε−1)2α log2 n. All the labels can be computed in
polynomial time, and each query can be answered in O(1 + ε−1)2α · |F|2 log n time.

—The scheme extends to a forbidden-set routing labeling scheme with stretch 1 + ε

and O(1 + ε−1)2α log2 n-bit routing tables.
—The exponential term in α appearing in the label length bound in our schemes

is in fact necessary even for a connectivity labeling scheme (equivalent to a (1 +
ε)-approximate distance scheme with very large ε). More precisely, we show that
any forbidden-set connectivity labeling scheme on the family of unweighted graphs
of doubling dimension α requires labels of length �(2α/2 + log n). This should be
contrasted with the failure-free scenario, where �log n�-bit labels suffice to solve
connectivity in arbitrary graphs. Hence, the label length of our scheme is tight, up
to a polylogarithmic factor.

An attractive feature of our solution is that the label and routing tables are not
affected by the size of forbidden sets. Since our scheme is based on labels of polyloga-
rithmic length associated with each vertex of the input graph, as a byproduct, we obtain
for bounded doubling dimension graphs an (1 + ε)-approximate distance oracle of size
O(ε−1n log n), which is independent of the number of faults it is required to tolerate.

From a technical perspective, the main contribution of this article is to distill the core
algorithmic ideas of Courcelle and Twigg [2007] and Twigg [2006] that were tailored
to exact distances and bounded tree-width graphs and adapt them to approximate
distances and bounded doubling dimension graphs. At a high level, our construction
has similarities to the approach of Courcelle and Twigg [2007]’s distance query: Take
the required labels, algorithmically build a sketch-graph from them, and then run a
shortest path algorithm on the sketch graph. On the other hand, the content of our
labels and the algorithm that builds our sketch graph is tailored to bounded doubling
dimension. These algorithms bear almost no resemblance to the bounded tree-width
case. At first sight, our label construction seems to use a standard hierarchical net-
point construction (which is quite common in many algorithms for bounded doubling
dimension). However, the nontrivial part of our work is in designing the algorithm
that constructs the sketch graph from the labels given the faults. To the best of our
knowledge, our work is the first result showing that one can concisely capture the
shortest path structure after a node failure using a small label. Showing that the
required stretch bound of 1+ε is nontrivial and requires carefully bounding the stretch
loss accumulation over multiple phases. In fact, before our work, it was not clear if the
approach of Courcelle and Twigg [2007] could be extended to approximate stretch
bounds (the approach of Courcelle and Twigg [2007] is based on monadic second-order
logic and does not seem amendable to approximations).

Applications. Our motivating scenario is a network where, whenever a failure has
occurred, we wish to recover without delay. After a failure of some collection of routers
(vertices) or links (edges), network traffic must be quickly rerouted without loss and
without having to wait for the recomputation of the routing tables. Such a recomputa-
tion of the routes may be performed in the background, but, during this time, we still
wish to ensure good performance, which means being able to route along short paths
in G \ F, rather than just any paths that avoid the failed set F.

One way in which such a forbidden-set routing scheme may be used for fast recovery
from failures is as follows: Each router keeps track of a set F of “failed” routers, and it

1Logarithms are in base two.
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makes distance queries with respect to the surviving graph G\ F. Routers are routinely
updated about the operational status (failures and recoveries) of other routers, either
directly (by probing the neighbouring routers) or through other routers. As soon as a
router u discovers a failure (recovery) of some router v, it adds v to (removes it from)
its own set Fu and propagates this information to other routers. The propagation may
be done using some flooding mechanism or piggybacked onto data sent on some routes
(and thus all routers on this path will learn about the failure of v). Clearly, it is possible
for a router to begin routing on a path that is going to be cut by a failed set, but as soon
as the packet reaches a router that is aware of the failure, it can make a new query
and the packet can be rerouted back again on a new shortest path without waiting for
the update time incurred by a route maintenance algorithm.

Another important scenario is when a router decides to change its own routing policy.
For example, for economic or security reasons, a part of the network may become
forbidden. The local forbidden-set of the router can be accordingly modified, and it can
update its route immediately without having to invoke a global route maintenance
mechanism. (This application may require including information on the policy in the
message header.)

The ability to quickly compute distances from short labels has many practical ad-
vantages. The distance labeling approach has recently been implemented to solve real-
world large-scale route planning problems [Abraham et al. 2011, 2014]. Due to their
data locality, labels are currently the fastest way to compute distances on content-scale
road networks. These road networks seem to have low highway dimension [Abraham
et al. 2010], which implies low doubling dimension. We believe the ideas in this work
can contribute to extend the notion of hub labels to allow dynamic and forbidden-set
distance labels. Allowing users to compute distances in road networks given a set of
failures (road closures, accidents, etc) could be an important feature of new practical
labeling schemes.

Related Work. There is a vast literature on labeling schemes and information oracles
in the classical (failure-free) setting, and it covers many aspects: distance, routing,
exact queries, approximation, and global or localized data structures.

Data structures supporting limited failures exist. A scheme for answering distance
queries when a single edge may fail (a.k.a. the distance sensitivity problem) is presented
in Demetrescu and Thorup [2002]. In this model, the failed edge e is specified at query
time, along with two vertices u, v, and it is desired to compute the distance between u, v
in G \ {e}. They showed how to construct an oracle for such queries of size O(n2 log n)
and query time O(log n) for general directed graphs. This has been extended to a single
edge and/or vertex failure [Bernstein and Karger 2009] and only recently to dual-
failure [Duan and Pettie 2009] and to multiple-edge failures [Chechik et al. 2010].
The routing issue has been explored in Khanna and Baswana [2010] for single-vertex
failure and in Chechik [2011] for multiple-edge failures.

A scheme for the forbidden-set distance labeling problem that allows for the failure
(or forbidding) of arbitrary subgraphs is given in Courcelle and Twigg [2007] and Twigg
[2006]. The scheme depends on the treewidth or the cliquewidth2 of the graph and can
be distributed in the form of labels assigned to vertices. For graphs of treewidth or
cliquewidth k, the label length is O(k2 log2 n) bits and k � n for every graph.

Recently, an efficient construction for forbidden-set distance labeling scheme for
planar graphs was presented in Abraham et al. [2012]. More specifically, it was shown
how to construct, for a given n-vertex planar graph with edge weights in [1, M] and a
parameter ε > 0, a forbidden-set (1 + ε)-approximate distance labeling scheme of label

2A graph measure generalizing treewidth.
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length λ = O(ε−1 log2 n log (nM) · (ε−1 + log n)). The query time is O(|F|2λ) time, where
F is the set of faulty vertices/edges and all the labels can be computed in O(nλ) time.
Moreover, a general method to transform (1 + ε) forbidden-set labeling schemas into a
fully dynamic (1+ε) distance oracle was presented in Abraham et al. [2012]. Combining
this method with the results of our work presented here, one can construct for a given
n-vertex unweighted graph of doubling dimension α a fully dynamic (1+ε) approximate
distance oracle of size Õ((1 + ε−1)2αn), where each query and update operations takes
Õ(n1/2) worst-case time.

On a related note, the problem of answering forbidden-set connectivity queries (an-
swering whether the vertices u and v are connected in G \ F) has also been considered.
For the case of planar graphs, it has recently been shown how to construct �(log n) bit
labels so that queries about connectivity of the graph G \ F can be answered in time
O(|F| log |F|) [Courcelle et al. 2008]. A nondistributed solution for arbitrary graphs
with a linear size data structure has been given in Pǎtraşcu and Thorup [2007]. The
distribution of the representation is an open problem.

Preliminaries. Denote the distance between u and v in the graph G by dG(u, v). A
forbidden-set distance oracle is a data structure designed for a graph G that supports
distance queries in the graph G \ F for every subset F ⊂ V (G) ∪ E(G). In other words,
such an oracle OG(u, v, F) must return dG\F(u, v) for all u, v, F.

In this article, we are interested in oracles that can be distributed over the vertices
of the graph itself, so that a query involving, say, vertices x, y, and z, can be answered
using the parts of the oracle stored at x, y, and z, without accessing any other source
of information.

More formally, a forbidden-set distance labeling scheme for a graph family F is a pair
(L, f ), where L is called the labeling or marker and f the decoder, such that for every
graph G of the family F,

—the marker associates with each vertex u of G a binary label L(u, G) (we simply write
L(u) when G is clear from the context); and

—for any u, v ∈ V (G) and any subset F ⊂ V (G) ∪ E(G), the decoder returns dG\F(u, v)
given the labels of u and v and the labels of all vertices and edges of F. (The label of
an edge (a, b) of F is specified by the pair (L(a), L(b)).)

The label length of a labeling scheme is the length (in bits) of the largest label it
assigns to a vertex of a graph of F. Observe that one can construct an oracle OG for
G from the labeling scheme by storing in some table T the label of each vertex u (i.e.,
T [u] = L(u, G)). Hence, the size of the oracle is at most n times the label length of the
labeling scheme. A forbidden-set distance query (u, v, F) is answered by loading from T
all the required labels and running the decoder f on those labels. The required labels
are T [u], T [v], T [x] for all vertices x of F and (T [a], T [b]) for all edges (a, b) of F.

A forbidden-set distance oracle (or labeling scheme) is s-approximate if the value
δ(u, v, F) it returns for a query (u, v, F) satisfies dG\F(u, v) � δ(u, v, F) � s · dG\F(u, v).

2. FORBIDDEN-SET LABELING SCHEME

In this section, we describe our forbidden-set distance and routing labeling schemes.

2.1. Distance Labeling Scheme

THEOREM 2.1. Unweighted n-vertex graphs of doubling dimension α � 1 have a
forbidden-set (1 + ε)-approximate distance labeling scheme with O(1 + ε−1)2α log2 n-
bit labels. All the labels can be computed in polynomial time, and each query can be
answered in time polynomial in the label length of the query.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 22, Publication date: February 2016.
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Section 2.1 is devoted to the proof of Theorem 2.1. Let G be an unweighted n-vertex
graph of doubling dimension α � 1. For a vertex x and a set W ⊆ V (G), denote by
dG(x, W) the distance between x and the closest w ∈ W . For every vertex v and radius r,
let B(v, r) denote the ball of radius r in G centered at v. We say that a subset N ⊆ V (G)
is an r-dominating set of G if for every vertex v of G such that dG(v, N) � r.

Define a hierarchy of nets, namely, vertex sets in G, denoted by Ni, one for each level
i ∈ {0, . . . , �log n�}, withthe following properties:

(1) Ni is a (2i − 1)-dominating set for G for each level i � 0.
(2) Ni ⊆ Ni−1, for each level i � 1;

Note that N0 = V (G) is the unique 0-dominating set for G. For every vertex v, let Mi(v)
be the net-point in Ni closest to v. Note that M0(v) = v and dG(v, Mi(v)) = dG(v, Ni) < 2i

for each i � 0.
For bounding the label length, we use the following fact while constructing the

hierarchy of nets (see Gupta et al. [2003]).

FACT 1. For a graph G with doubling dimension α � 1, there is an efficiently con-
structible r-dominating set W(r) such that, for every vertex v of G and radius R � r > 0,
the set B (v, R) ∩ W(r) has size at most (4R/r)α. If G is unweighted and integral r � 1,
W(r) is a (r − 1)-dominating set.

Such a set W(r) can be constructed by iteratively selecting for W(r) any not yet
covered vertex v and by marking as covered all vertices u such that dG(u, v) < r. At
the end of the process, W(r) is an r-dominating set. For unweighted graph and integral
r � 1, it is even an (r − 1)-dominating set. Note that, by this process, vertices in W(r)
are pairwise at distance at least r. Let k be the integer such that r/4 � R/2k < r/2,
which is the smallest number of halving R to get a radius <r/2. Since G has doubling
dimension α, applying recursively k times the definition, we have that B (v, R) can be
covered by at most (2α)k balls of radius R/2k. Since the radius is <r/2 and the vertices of
W(r) are pairwise at distance at least r, each B (v, R) contains no more than one vertex
in W(r) and thus |B (v, R)∩W(r)| � (2k)α. Now, r/4 � R/2k implies that (2k)α � (4R/r)α,
completing the proof of Fact 1.

We set Ni = ⋃�log n�
j=i W(2 j) for each i ∈ {0, . . . , �log n�}. It is not hard to see that this

hierarchy of nets we have constructed indeed satisfies properties (1)&(2). Using Fact 1,
we have the following:

LEMMA 2.2. For a graph G with doubling dimension α � 1, there is an efficiently
constructible hierarchy of nets Ni satisfying properties (1)&(2) such that, for every vertex
v of G, radius R > 0, and level i � 0, the set B (v, R) ∩ Ni has size at most 2 · (4R/2i)α.

Overview of the Failure-Free Case. Consider first the problem of constructing a dis-
tance oracle for graphs of bounded doubling dimension in the failures-free setting
(F = ∅). We now describe, on a high level, a variant of a distance oracle for this class
based on a labeling scheme that is close to our scheme in the fault-tolerant setting.
The idea is to give for each vertex v a short label L (v) such that, given the labels L (s)
and L (t) of two vertices s and t, it is possible to approximate the distance between
them with a stretch of at most 1 + ε. Let I = {c, . . . , �log n�} be the range of levels
where c = c(ε) is some constant integer to be fixed later. The label L (v) of each vertex
v consists of all the vertices in B (v, 2i+1 − 1) ∩ Ni−c and their distance from v, for each
i ∈ I. Note that for the lowest level i = c, L (v) contains all the vertices of B (v, 2c+1 − 1)
since Ni−c = N0 = V (G).

Now, when getting the labels L (s) and L (t) of two vertices s and t whose dis-
tance needs to be estimated, do the following. Find the smallest index i � c such that
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Mi−c(t) ∈ B (s, 2i+1 −1) (extracting Mi−c(t) from L (t) and performing the check in L (s)).
We then return the distance estimate δ(s, t) = dG(s, Mi−c(t)) + dG(t, Mi−c(t)).

Clearly, by the triangle inequality, δ(s, t) � dG(s, t). We now claim that setting c =
max{0, �log (2/ε)�} yields the desired stretch of 1 + ε; that is, δ(s, t) � (1 + ε) · dG(s, t).
To see this, let j be the index such that 2 j−1 < d � 2 j . Note that dG(s, Mj−c(t)) �
dG(s, t)+dG(t, Mj−c(t)) � 2 j +2 j−c −1 � 2 j+1 −1. We get that, for this index j, Mj−c(t) ∈
B (s, 2 j+1 − 1). In particular, the index i returned by the oracle satisfies i � j. By
property (2), Nj ⊆ Ni, and thus dG(s, Mi−c(t)) � dG(s, Mj−c(t)) and dG(t, Mi−c(t)) �
dG(t, Mj−c(t)). Therefore, the distance estimate δ(s, t) satisfies:

dG(s, t) � δ(s, t) = dG(s, Mi−c(t)) + dG(t, Mi−c(t))
� dG(s, Mj−c(t)) + dG(t, Mj−c(t))
� [dG(s, t) + dG(t, Mj−c(t))] + dG(t, Mj−c(t))

< dG(s, t) + 2 · 2 j−c � dG(s, t) + 2 j+1−log (2/ε)

� dG(s, t) + (ε/2) · 2 j+1 = dG(s, t) + ε · 2 j

� (1 + ε) · dG(s, t).

Finally, let us bound the label length. Consider the label L(v) of some vertex v. Using
Lemma 2.2, for each index i ∈ I, the number of net-points added to L (v) is at most
2 · (4R/2i−c)α where R < 2i+1. This is less than 2 · (23+c)α = 23α+1 · 2αc = 23α+1 ·
2α max{0,�log (2/ε)�} � 23α+1 · max{20, 2log (2/ε)+1}α � 23α+1 · (1 + (2/ε)α) = 2O(α) · (1 + 1/ε)α.
So the total label length is at most 2O(α) · (1 + 1/ε)α · log2 n = (O(1 + ε−1))α · log2 n bits,
where one log n factor is due to the number |I| of levels and one is due to the fact that
it takes O(log n) bits to store each net-point and distance.

The Case of Non-Empty Forbidden-Set. We now turn to the general case, where F is
non-empty. In this setting, F fails and we wish to approximate the distance between
s and t in the surviving graph G \ F given the labels of the vertices s and t as well as
the labels of all faulty vertices in the set F (for the sake of simplicity, we first consider
forbidden vertex-set only).

The label L (v) represents a sparse subgraph with virtual edges whose lengths are
part of the label. In the failure-free setting, L (v) contains only edges that touch v (i.e.,
edges from v to some net-points in the ball around v). In contrast, in the fault-tolerant
setting, the label L (v) also contains edges that do not touch v but instead connect pairs
of net-points in the ball around v.

In the failure-free setting, we look for a net-point M relatively close to t (relative
in perspective to the distance between s and t), such that the virtual edges (s, M) and
(M, t) are contained in the label L (s) and L (t), respectively. Each of these virtual
edges represents a shortest path in the original graph G. In the fault-tolerant setting,
complications may arise when these paths contain some faulty vertices. To overcome
this problem, instead of looking for one long edge (long in the sense that the path it
represents is long), where this edge may represent a path that contains faulty vertices,
we instead construct a virtual graph H that contains a small number of edges, where
the idea is that, in regions where there are no faulty vertices nearby, we add a few long
edges, and, in regions where there are faulty vertices nearby, we add many shorter
edges. Eventually, this virtual graph will contain a virtual path from s to t that repre-
sents a path in G \ F. Only “safe” edges will be added to H (safe in the sense that the
path they represent is guaranteed not to contain a faulty vertex). After building this
graph, we invoke a shortest path algorithm from s to t in order to estimate the distance
dG\F(s, t).

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 22, Publication date: February 2016.
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As in the failure-free setting, the label L (v) of each vertex v contains distances
between low-level net-points in the region close to v and distances between high-level
net-points in more remote regions.

Using the labels L (s) and L (t), we construct the graph H by adding long edges as
long as these edges are far away from every faulty vertex. It could be that some of the
edges we wanted to add to the graph H are too close to some faulty vertices. In that
case, we can use the labels of the faulty vertices to replace these long edges with shorter
ones, whereas, in the regions that are very close to faulty vertices, we add many very
short edges.

We now dive into the details of the algorithm, explaining the label structure of each
vertex v and showing how to construct the graph H given the labels of the vertices of
{s, t} ∪ F.

Let I = {c + 1, . . . , �log n�} be the range of levels where c = c(ε) is some constant
integer to be fixed later.

Labels. The label L (v) of each vertex v consists of a list of its level-i labels Li(v),
where each Li(v) encodes an edge-weighted graph Hi(v) for every i ∈ I.

For each level i ∈ I, we store some net-points (and some edges between them) in the
label L (v) of each vertex v. For each vertex v and for each level i, the label L (v) stores
all net-points of Ni−c−1 that are inside a ball of some parameter radius ri (to be fixed
later) around v. Denote the domination radius of the net-points Ni−c by ρi = 2i−c. The
net-points stored on level i are taken from a ρi−1-dominating set for G, for reasons that
will become clearer later. Denote the ball of radius ri around v by Bi(v) = B (v, ri). λi
is a parameter (to be fixed later on) for the maximum length of the edges added to the
labels on level i. In other words, for every vertex v and level i, the label L (v) stores all
net-points Ni−c−1 ∩ Bi(v) and all short edges between every pair of the net-points and
also between v and the net-points, where an edge is considered to be short if its length
is at most λi. On the lowest level c + 1, L (v) stores all edges in the original graph G
that are in Bc+1(v).

Formally, the graph Hi(v) is defined as follows:

—Vertex-set:

V (Hi(v)) = Ni−c−1 ∩ Bi(v) ∀i ∈ I.

—Edge-set:

E(Hi(v)) =
{(x, y) : dG(x, y) � λi and x, y ∈ V (Hi(v))}
∀i ∈ I.

—Edge weights:

ω(x, y) = dG(x, y) for every (x, y) ∈ E(Hi(v)).

Distance Queries. A distance query (s, t, F) involves a source s, a target t, and a
subset F of faulty (or forbidden) vertices. Its input consists of the labels {L(s), L(t)} ∪
{L(v) : v ∈ F}. Answering a query (s, t, F) based on the given labels—namely, finding an
approximate distance from s to t in the graph G\ F—is schematically done as follows:

(1) Compute a weighted graph H = H(s, t, F).
(2) Compute a shortest path distance from s to t in H and return it.

More specifically, let us consider a query (s, t, F), and let F̄ = F ∪ {s, t}. Define the
level-i protected ball of radius λi around v as PBi(v) = B(v, λi). This definition is used
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in the query phase, where on level i we take into H only edges e in the labels of every
v ∈ {s, t} ∪ F such that e is not inside any protected ball PBi( f ) for any f ∈ F. (We
say that an edge is not inside a ball if at least one of its endpoints is outside the ball.)
Notice that by taking to H on level i only edges of length at most λi that are not inside
some protected ball, we get that these edges are far enough from every faulty vertex
f ∈ F. Thus, all edges added to H are safe in the sense that they represent paths that
do not contain a faulty vertex.

Note that the data stored at the label of a vertex v are sufficient for checking if a
vertex x ∈ Ni−c−1 is in the protected ball PBi(v). The label Li(v) contains all edges (v, y)
such that y ∈ Ni−c−1 and dG(v, y) � λi. Therefore, if the label Li(v) does not contain the
edge (v, x), then x is not on the protected ball PBi(v).

Formally, define the graph H as follows:

—Vertex-set: V (H) = ⋃
v∈F̄

⋃
i∈I V (Hi(v)).

—Edge-set:

E(H) = {e = (x, y) | ∃i ∈ I such that:
e ∈ Hi(v) for some v ∈ F̄, and
{x, y} �⊆ PBi( f ) for every f ∈ F}

∪ {e = (x, y) | e ∈ Hc+1(v) for some
v ∈ F̄, ω(x, y) = 1 and x, y /∈ F}.

—Edge weights (unchanged): ω(x, y) = dG(x, y).

The intuition behind our parameter setting is as follows. We later look at a path
P from s to t in G \ F and claim that the computed graph H contains a path “close”
to P. We construct a path P ′ corresponding to P by choosing some nodes in P and
determining, for each chosen node v, some net-point “relatively” close to it. We later
show that this chosen net-point appears either in the label of s or t or in one of the
failed vertices. Both the level of the net-point and the next chosen node v′ on the path
P are determined by the distance from v to F. The idea is that the net-points of v and v′
must satisfy two requirements. First, they need to be far enough from any failed node
to allow us to claim that the edge connecting v and v′ is “safe” in the sense that the path
it represents is in G \ F. Second, the net-points need to be on a sufficiently high level
so the node f ∈ F closest to v will contain these net-points and the edge connecting
them in its label. Another constraint is that the distance from v to its net-point needs
to be small compared to the distance from v to the next chosen node v′ in P in order to
ensure the desired stretch. The distance from a node v on the path P to F is captured
by the parameter μi (to be fixed later). More specifically, let i be the maximum index
such that the ball of radius μi around v is free of faults. The next node in the path P
is chosen at distance 2i from v. Therefore, the parameter ρi is fixed to be significantly
smaller than 2i. We now consider the net-point of v′ (the next chosen node on the path
P). We later show that because the distance from v to v′ is 2i and the distance from v
to F is at most μi+1, the distance from v′ to F is less than μi+2, which implies that the
net-point of v′ is on level at most i + 1. Additional necessary constraints are that μi be
sufficiently large so that the edge between the net-points of v and v′ is “safe” (i.e., far
enough from every node in F) and thus represents a path in G \ F and that ri be large
enough so that the node of F closest to v contains in its label both the net-points of v
and v′ and the edge connecting them.

We thus set the parameters as follows: ρi = 2i−c, λi = 2i+1, μi = ρi + λi, ri =
μi+1 + 2i + ρi+1.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 22, Publication date: February 2016.



22:10 I. Abraham et al.

Analysis. As explained earlier, we later look at a path P from s to t in G \ F and
construct a corresponding path P ′ to P in H. Toward proving the existence of such a
path P ′, we prove Claim 1. As discussed earlier, on each level i, we add to H edges of
length at most λi. The first part of the claim is essential for showing that the length of
the edge between two consecutive net-points on the constructed path P ′ is at most λi.
The purpose of the second part of the claim is to handle the case where there are some
nodes on the path P that are very far from F. In this case, we show that the net-points
corresponding to these nodes are contained in the labels of s or t. It is not hard to verify
that the chosen parameters satisfy the following claim for every 2 � c < �log n�.

CLAIM 1. (a) λi � ρi + ρi+1 + 2i , and (b) N�log n�−c−1 ⊆ B�log n�(v) for all v ∈ V (G).

We now prove the correctness of this query algorithm. The following lemma proves
that all edges added to H are “safe”; in other words, for every edge e = (u, v) in H there
is a corresponding path from u to v in G \ F of length ω(e).

LEMMA 2.3. If (x, y) is an edge of H, then x and y are connected in G \ F and their
distance in G \ F is dG\F(x, y) = ω(x, y).

PROOF. Consider an edge (x, y) ∈ E(H). Note that (x, y) ∈ Hi(v) for some i and v. If
ω(x, y) = 1, then x and y are neighbors in G and both x and y are not in F; therefore,
there is a path of length 1 from x to y in G\ F. Now suppose ω(x, y) > 1. Then the graph
G contains a shortest path P(x, y) from x to y of length dG(x, y) � λi, and, for every
f ∈ F, either x or y is not in the level-i protected ball PBi( f ). Consider a vertex f ∈ F.
Without loss of generality, assume that x /∈ PBi( f ) (i.e., dG(x, f ) > λi). Assume, toward
contradiction, that f ∈ P(x, y). Therefore, dG(x, y) > dG(x, f ) > λi, a contradiction. We
get that f /∈ P(x, y) for every f ∈ F, and therefore P(x, y) exists in G \ F.

For every vertex v, let i(v) be the largest index i ∈ I such that there is no f ∈ F
at distance μi from v in G (i.e., B (v, μi) ∩ F = ∅). If no such index exists, then set
i(v) = c. Denote the nearest net point to v on that level by M̂(v) = Mi(v)−c(v). Note that
for i(v) = c, M̂(v) is v itself.

The next lemma establishes that the label scheme just described is a forbidden-set
distance scheme.

LEMMA 2.4. Given ε > 0, fix c = max{�log (6/ε)�, 2}. Consider two vertices s, t ∈ V (G).
If s and t are connected in G\ F by a path of length d, then they are connected by a path
of length (1 + ε)d in H.

PROOF. Consider s, t ∈ V (G) and let d = dG\F(s, t). Let Q = (s = v1, . . . , vd = t) be
some shortest-path from s to t in G \ F. To show that there exists a path from s to t in
H of length close to the length of Q, we show the existence of an edge between M̂j and
M̂j+x( j) for sufficiently large x( j), where we denote M̂(v j) by M̂j for every 1 � j � d. We
show that the distance from M̂j to M̂j+x( j) is “close” to the distance from v j to v j+x( j). We
then show that by concatenating all these subpaths we get a path from s to t of length
“close” to their actual distance in G. We also show that all these subpaths also exist in
H. Therefore, we have a path from s to t in H of length “close” to their actual distance
in G. Figure 1 illustrates this path.

CLAIM 2. Given ε > 0, fix c = max{�log (6/ε)�, 2}. Consider a vertex v j on the path Q
and let i(v j) = 
. If 1 � j � d − 2
, then H contains an edge between M̂j and M̂j+2
, and
its weight is at most (1 + ε/2) · 2
.
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Fig. 1. Illustration of the path from s to t in H whose existence is asserted in the proof of Lemma 2.4. Here
x1 = x( j) and x2 = x( j + x1).

Fig. 2. The case 
 = c and 
′ = c + 1.

PROOF. Let τ be the distance from v j to F (i.e., τ = dG(v j, F)) and let τ ′ = dG(v j+2
 , F).
Let 
′ = i(v j+2
 ). By definition of i(v j), μ
 < τ � μ
+1. As dG(v j, v j+2
 ) = 2
, we get that
τ − 2
 � τ ′ � τ + 2
. This implies that 
 − 1 � 
′ � 
 + 1, as μ
−1 = ρ
−1 + λ
−1 =
2
−c−1 + 2
 < μ
 − 2
 < τ ′ � μ
+1 + 2
 � ρ
+1 + λ
+1 + 2
 < μ
+2.

We now prove the claim by case analysis. First assume that 
 = c (i.e., there exists a
vertex f ′ ∈ F such that dG(v j, f ′) � μc+1).

The label L ( f ) of every vertex f ∈ F stores all edges (x, y) such that x and y are at
distance at most rc+1 from f . Of those edges, we add to H all those whose endpoints
are not in F.

First note that in this case M̂j = v j . To see this, recall that for nodes v that satisfy
i(v) = c, M̂(v) is v itself. Since 
 = i(v j) = c, we get that M̂j = M̂(v j) = v j .

Moreover, note that all edges in the path (v j = M̂j, . . . , v j+2c ) are added to H. To
see this, observe that for all j � r < j + 2c, both vr and vr+1 are in B ( f ′, rc+1) as
dG(vr, f ′) � μc+1 + 2c < rc < rc+1 and also dG(vr+1, f ′) � μc+1 + 2c < rc < rc+1, and in
addition none of them belongs to F.

We now consider two subcases. The first is when 
′ = c. In this subcase, M̂j+2c = v j+2c ;
hence, H contains a path from M̂j to M̂j+2c of length 2c—namely, the path (v j, . . . , v j+2c )
itself.

The second subcase is when 
′ = c + 1. In this subcase, there is no vertex f ∈ F
at distance μc+1 from v j+2c . Because dG(v j+2c , M̂j+2c ) is at most ρc+1 < μc+1, all edges
in the path connecting v j+2c to M̂j+2c are nonfaulty. In addition, this path belongs
to B ( f ′, rc+1) because the distance from every vertex on that path to f ′ is at most
μc+1 + 2c + ρc+1 = rc (see Figure 2). Moreover, as already shown, all edges in the path
(v j = M̂j, . . . , v j+2c ) are added to H. We get a path from M̂j to M̂j+2c of length at most
2c + ρc+1. Note that, by setting c to be any integer such that c � log(4/ε), we get that
d(M̂j, M̂j+2c ) � (1 + ε/2)d(v j, v j+2c ) = (1 + ε/2) · 2
.
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Now assume that 
 > c and that j + 2
 � d. Note that

dG(M̂j, M̂j+2
 ) � dG(M̂j, v j) + dG(v j, v j+2
 )

+ dG(v j+2
 , M̂j+2
 )

� ρ
 + 2
 + ρ
′ � ρ
 + ρ
+1 + 2


� λ
,

where the last inequality follows from Claim 1(a).
To show that the edge (M̂j, M̂j+2
 ) is in H, it suffices to show that both of these

points belong to B
(v) for some v ∈ F̄ and that for every f ∈ F, one of these points
does not belong to the protective ball PB
( f ). Note that dG(v j, F) > μ
, and therefore
dG(M̂j, F) > μ
 − ρ
 = λ
. It follows that M̂j and the edge (M̂j, M̂j+2
 ) are not in the
protective ball PB
( f ) for all f ∈ F. To show that M̂j and M̂j+1 belong to B
(v) for
some v ∈ F̄, we need to consider two cases. The first case is when 
 = �log n�. In that
case, both M̂j and M̂j+2
 belong to B�log n�(s). To see this, note that 
 = �log n� and

′ � �log n� − 1, so both M̂j and M̂j+2
 belong to N�log n�−c−1 ⊆ B�log n�(s), by Claim 1(b).

The second case is when c < 
 < �log n�. Note that by the maximality of 
 = i(v j),
it must be that there exists a vertex f ∈ F such that dG(v j, f ) � μ
+1. Because r
 =
μ
+1 + 2
 + ρ
+1, we get that both M̂j and M̂j+2
 belong to B
( f ). In addition, both these
points belong to N
−c−1. To see this, recall that M̂j is a net-point of N
−c, and, because

′ � 
−1, then M̂j+2
 is a net-point of N
−c−1; in addition, N
−c ⊆ N
−c−1. Therefore, the
edge (M̂j, M̂j+2
 ) is in H. By setting c � log (6/ε), we get dH(M̂j, M̂j+2
 ) � 2
+ρ
+ρ
+1 =
2
 + 2
−c + 2
−c+1 = 2
 + 2
 · 3 · 2−c = (1 + ε/2) · 2
.

To ensure the existence of a path from s to t in H, we also need to show that there
is a path from s to some M̂z1 and from some M̂z2 to t, where we explain later how to
choose z1 and z2. We then bound the length of this path using a careful analysis.

Let 
 = i(v1) and let 
′ = i(vd). We consider several cases.
The first case is when d < 2
 or when d < 2
′

. Handling this case is similar
to the failure-free setting. In this case, the region around the path connecting s and t
in the graph G\ F is free from faults; therefore, we can handle it as a distance query in
the failure-free setting. More specifically, assume without loss of generality that d < 2


and that 
 � 
′, and let i be such that 2i−1 � d � 2i. Note that i � 
. Let z ∈ Ni−c
be the closest net point to t in Ni−c. Because ri = μi+1 + 2i + ρi+1, we get that z is in
the ball Bi(s). In addition, dG(s, F) > μ
 � μi = ρi + λi. We get that the vertex s and
the edge between s and z are not in the protective ball PBi( f ) for all f ∈ F. Moreover,
dG(s, z) � ρi + d � λi. Therefore, the edge between s and z is added to H. By a similar
reasoning, the edge from t to z is also added to H. We get a path from s to t of length
2ρi + d. As in the failure-free setting, taking any c � log (6/ε) yields the desired 1 + ε
stretch.

The next case to consider is when d > 2
 and d > 2
′
. In this case, using the same

arguments as before, we get a path from s = v1 to M̂1+2
 of length at most ρ
 + 2
. Note
that by taking again c � log (6/ε), we get dH(s, M̂1+2
 ) � (1 + ε/2) · 2
. By Claim 2, H
contains a path from M̂1+2
 to M̂1+2
+2z1 , and from that vertex to M̂1+2
+2z1 +2z2 , and so
on, where z1 = i(v1+2
 ) and z2 = i(v1+2
+2z1 ). This continues until the route reaches a
vertex M̂j corresponding to a vertex v j such that dG(v j, t) < 2i(v j ).

Let dG(s, v j) = d′ and dG(v j, t) = d′′. We get that dH(s, M̂j) � (1 + ε/2)d′.
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Note that, using similar arguments as before, we get that H contains an edge between
M̂j to t of weight dH(M̂j, t) � d′′ + ρ
′+1 (where 
′ − 1 � i(v j) � 
′ + 1 again by similar
arguments as before).

By setting c = max{�log (6/ε)�, 2} and concatenating all these paths together, we
get that H contains a path from s to t of length dH(s, t) � dH(s, M̂j) + dH(M̂j, t) �
(1 + ε/2)d′ + d′′ + ρ
′+1 � ρ
′+1 + (1 + ε/2)d � (1 + ε)d.

We finally bound the label length.

LEMMA 2.5. The label length is O(1 + ε−1)2α · log2 n.

PROOF. By Lemma 2.2, for each index c � i � log n, the number of net-points added
to L(v) is at most (8ri/2i−c−1)α < (8 · 2i+3/2i−c−1)α = (8 · 24+c)α = max{512α, (1536/ε)α},
where the first inequality is due to the fact that ri = μi+1 +2i +ρi+1 = 2ρi+1 +λi+1 +2i =
2i−c+2 +2i+2 +2i < 2i+3 as c � 2. Therefore, for a specific index i, the total length added
to L(v) is at most max{5122α, (1536/ε)2α}, because for each pair of vertices we might
store an edge. Hence, the label length is at most log2 n · max{O(1)2α, (O(1)/ε)2α} =
O(1 + ε−1)2α · log2 n.

We now bound the query time.

LEMMA 2.6. The query time is O(1 + ε−1)2α · |F|2 log n.

PROOF. By the analysis of Lemma 2.5, the number of edges stored in every label is
O(1+ ε−1)2α · log n. Thus, the number of edges in all labels of F̄ is O(1+ ε−1)2α · |F| log n.
For each such edge e, the algorithm checks if it is safe by checking if the edge e is not
inside any protected ball PBi( f ) for any f ∈ F. For every f ∈ F, this can be done in
O(1) time (by using perfect hashing). Hence, checking if an edge is safe takes O(|F|)
time, and constructing the graph H takes O(1 + ε−1)2α · |F|2 log n time. The shortest
path distance from s to t in H can be computed in time O(1 + ε−1)2α · |F| log n. Hence,
the total query time is O(1 + ε−1)2α · |F|2 log n.

Edge Faults. To simplify notations, the construction we describe handles only vertex
faults. However, it’s not hard to see that only small modifications are needed for this
construction to handle both vertex and edge failures together. The only modification
needed is in the query phase: In the low level, instead of adding all edges of G that
are in Hc+1(v) whose both endpoints are not faulty, just add all edges of G where both
endpoints are not faulty and also the edge itself is not faulty (where we assume that,
for a faulty edge (x, y), we get the labels (L(x), L(y))).

2.2. Routing Scheme

We can easily transform our forbidden-set labeling scheme to a forbidden-set compact
routing scheme. Each vertex u stores its label L (u), and, for each vertex x of G contained
in L(u), vertex u stores the port of the out-going edge on a shortest path that leads to x
from u.

The total storage is O(|V (H)| log n), where |V (H)| is the number of vertices of H in
L (u)’s label. From the previous section, |V (H)| = O(1 + ε−1)2α log n, and so the label
length complexity is not affected by the routing extension. Note that the vertex names
are preserved. The headers have length at most O(|V (H)|) times the maximum length
of a vertex name, which is usually O(|V (H)| log n) (the standard assumption is that the
vertex names are of size O(log n)). (If the method is used by a router v for implementing
a private routing policy, by forbidding the use of certain set Fv, then the header size
will have to include a description of the policy, increasing it accordingly.)

It is easy to see that, given this routing information and given the labels of s, t, F,
then for any edge (x, y) in H, from any vertex along the shortest path between x and
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y one can route to x or to y with stretch 1. This is due to the fact that every vertex z
on a shortest path from x to y in G (assuming that (x, y) is an edge of H) contains x
and y in its label. This implies that the stretch of the forbidden-set compact routing
scheme is exactly the stretch of the forbidden-set label scheme. Therefore, we have
shown:

THEOREM 2.7. Unweighted n-vertex graphs of doubling dimension α � 1 have
a forbidden-set routing labeling scheme with stretch 1 + ε and O(1 + ε−1)2α log2 n-
bit routing tables. All the labels and routing tables can be computed in polynomial
time, and each query can be answered in time polynomial in the label length of the
query.

3. LOWER BOUND

In this section, we provide a lower bound on the size (namely, total number of bits)
of a (distance or connectivity) oracle. The bound tells us that the exponential term
in α appearing in the label length bound in our scheme is in fact necessary, even for
connectivity oracles, for the class of graphs of doubling dimension α. Note that a lower
bound on the size of a connectivity oracle implies the same lower bound on the size of
any approximate distance oracle and thus also on its label length. Observe also that,
in the failure-free case, connectivity queries can be supported with �log c�-bit labels,
where c � n is the number of connected components of the graph.

THEOREM 3.1. Every forbidden-set connectivity labeling scheme for unweighted n-
vertex graphs of doubling dimension α � 1 requires labels of length �(2α/2 + log n).

PROOF. Consider a graph family F. For each graph G of F, we consider any forbidden-
set connectivity oracle OG for G. Formally, OG(i, j, F) = true if i and j belong to the
same connected component of G \ F and false otherwise, where i, j are vertices of G
and F ⊂ V (G) ∪ E(G).

We claim that there is a graph G0 such that its connectivity oracle OG0 has size log |F|.
Consider a graph G ∈ F. For given endpoints i and j, denote the “everywhere failure” set
of G outside i and j by F(i, j) = V (G) \ {i, j}. For every two vertices i, j, OG(i, j, F(i, j))
is true if and only if i is adjacent to j in G. Indeed, the graph G \ F(i, j) consists of
either the edge (i, j) (in case i and j are neighbors in G) or the isolated vertices i and j
(in case i and j are not adjacent). It follows that invoking the connectivity oracle and
testing connectivity OG(i, j, F(i, j)) for all pairs of vertices determines the structure of
the graph G. Consequently, the number of distinct connectivity oracles for F (i.e., the
cardinality of {OG : G ∈ F}) is at least the number of elements of |F|. Therefore, for at
least one graph G0 ∈ F, the size of the oracle OG0 is at least log |F|.

We have seen that every labeling scheme using k-bit labels has a corresponding
oracle of length nk. Thus, there must exist a label of length at least 1

n log |F| in every
forbidden-set connectivity labeling scheme for the family F. We shall consider now a
specific family F.

Let d, p be two integers. We assume that d is even and d, p � 2. We consider
the graphs Gp,d and Hp,d, two variants of the d-dimensional grid of p × · · · × p ver-
tices. The vertices of Gp,d and Hp,d are sequences (x1, . . . , xd) where xi ∈ {0, . . . , p − 1}.
Two vertices x = (x1, . . . , xd) and y = (y1, . . . , yd) are adjacent in Gp,d if and only
if maxi |xi − yi| = 1. They are adjacent in Hp,d if and only if maxi |xi − yi| = 1 and∑

i |xi − yi| � d/2. The number of edges of Gp,d is mp,d = �(2d pd), its minimum degree
being 2d − 1. The number of edges of Hp,d is |E(Hp,d)| � 1

2 mp,d.
The doubling dimension of Gp,d is � d because any ball of radius 2r, for any r > 0,

centered at (x1, . . . , xd), can be covered by no more than 2d balls of radius r centered

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 22, Publication date: February 2016.



Forbidden-Set Distance Labels for Graphs of Bounded Doubling Dimension 22:15

at the vertices (|x1 + c1|, . . . , |xd + cd|), where ci ∈ {−r,+r}. Note also that Hp,d is a
2-spanner of Gp,d (i.e., a spanning subgraph in which any pair of neighbor vertices in
Gp,d are at distance at most two in Hp,d).

We consider the family Fn,α of n-vertex graphs composed of all the subgraphs of Gp,d
containing Hp,d, where n = pα and α = 2d (with d an even integer). Let G be a graph of
Fn,α.

Consider a ball B of radius 2r in G centered at vertex v. Let B′ be the ball of radius
2r in Gp,d centered at vertex v. Note that B is contained in B′. Using the doubling
dimension of Gp,d, ball B (and so ball B′) can be covered by at most (2d) · (2d) balls of
radius r/2 of Gp,d. Since G contains Hp,d, G is a s-spanner of Gp,d for some s � 2. In
particular, any ball of radius r/2 in Gp,d is contained in a ball of radius rs � r of G.
It follows that B (and even the ball B′) is covered by at most (2d) · (2d) = 22d = 2α

balls of radius r in G. Thus G, and all the graphs of Fn,α, have n vertices and doubling
dimension � α. The number of graphs in the family Fn,α is

|Fn,α| = 2|E(Gp,d)|−|E(Hp,d)|

= 2
1
2 mp,d � 2�(2d pd) = 2�(2α/2n).

By the preceding discussion, every forbidden-set connectivity labeling scheme for Fn,α

requires labels of length 1
n log |Fn,α| = �(2α/2).

To conclude, let us show that any forbidden-set connectivity labeling scheme on Fn,α

requires at least n− 2 different labels. Assume the scheme assigns at most n− 3 labels
to the vertices of all graphs of Fn,α. Consider the n-vertex path Pn where n � 4. Observe
that Pn ∈ Fn,α since Pn = Gn,1. Among the vertices of Pn receiving the same label (there
are at least three such vertices), we select two non-neighboring vertices x, y, one of
which is not an end-vertex of Pn. Let Pn(x, y) be the subpath of Pn going from x to
y, excluding x and y. Without loss of generality, assume that y is not an endpoint of
Pn, and let z be the neighbor of y that is not in Pn(x, y). Note that Pn(x, y) contains
at least one vertex, say w, and w /∈ {x, y, z}. If w is faulty, then z and x are not in the
same component, whereas z and y are. This implies that testing connectivity queries
(z, x, {w}) and (z, y, {w}) should lead to different results. However, the input labels given
to the decoder are the same since L (x) = L (y): a contradiction. Hence, there are at least
n − 2 labels.

Therefore, every forbidden-set connectivity labeling scheme requires labels of length
at least max{�(2α/2), log (n − 2)} = �(2α/2 + log n).
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