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ABSTRACT
The paper proposes a forbidden-set labeling scheme for the
family of graphs with doubling dimension bounded by α.
For an n-vertex graph G in this family, and for any desired
precision parameter ε > 0, the labeling scheme stores an
O(1+ε−1)2α log2 n-bit label at each vertex. Given the labels
of two end-vertices s and t, and the labels of a set F of
“forbidden” vertices and/or edges, our scheme can compute,
in time polynomial in the length of the labels, a 1+ε stretch
approximation for the distance between s and t in the graph
G\F . The labeling scheme can be extended into a forbidden-
set labeled routing scheme with stretch 1 + ε for graphs of
bounded doubling dimension.

Categories and Subject Descriptors: F.2.2 Analysis of
Algorithms and Problem Complexity: Nonnumerical Algo-
rithms and Problems

General Terms: Algorithms, Theory

Keywords: doubling dimension, forbidden sets, fault-
tolerance, distance labeling, compact routing

1. INTRODUCTION
A fundamental problem in networks concerns efficiently

representing the network so that queries of interest, notably
the distance between vertex pairs, can be answered quickly.
Beyond estimating distances, one may wish to actually route
on shortest paths in the network. Since the network is often
managed in a distributed manner, it is desirable to have a
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distributed structure for answering distance queries, without
having to resort to some central authority.

This motivation is captured by the distance labeling prob-
lem: given an n-vertex graph G, preprocess G so as to pro-
duce a collection of distance labels to be assigned to the
vertices. Then, a distance query involving two vertices u, v
should be answered using only the labels assigned to u and
v, using some decoder function. We are interested in bound-
ing the label length (i.e., the maximum length of a label) of
the scheme. One motivation for that is that if these distance
labels are sufficiently small, say of length polylogarithmic in
n, then they may be used as the “addresses” for vertices in
the network (see [12] for an overview). To perform routing,
one can extend the idea so that the labels for u and v con-
vey enough information so that u can determine its next hop
neighbour on a short path towards v. Again, it is hoped that
the labels are small; in general, if the label length is sublin-
ear in n, then the resulting scheme is said to be a compact
routing scheme. A recent survey on compact routing can be
found in [7], and in [15, 16] it is argued that compact rout-
ing schemes are highly applicable to the problem of Internet
routing. See also [10].

This paper considers a key extension of distance labeling
and routing, relevant to many network settings. Suppose
that from time to time, the network servers may learn that
some subset F of nodes or links has failed, or is simply “for-
bidden” (inaccessible). It is then required to answer queries
on the “surviving” graph G \ F , without having to recom-
pute the labels. This type of extension was suggested in [6,
26], which considered this problem for graphs with bounded
treewidth or cliquewidth.

In the concrete case of distance labeling, we are interested
in a label-based distributed data structures. First, prepro-
cess G and assign to each vertex v of G a label L(v). Now,
given the set of labels {L(f) : f ∈ F}, it is required to an-
swer queries involving distances on G\F . Specifically, given
additionally two labels L(u) and L(v), it should be possible
to answer a query concerning the distance between u and v
in G \ F .

Computing the exact distance (or shortest route) between
pairs of vertices may be costly in term of memory require-
ments. Typically, polynomial space is needed for exact dis-
tances in sparse graphs like planar graphs [13], whereas poly-
logarithmic labels are possible even for arbitrary graphs if a
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small error is tolerated (see, e.g., [19, 24, 25]). The situation

is similar for compact routing: Ω(n1/2)-bit routing tables are
required for shortest path routing in bounded growth net-
works [2] or planar graphs, whereas routing tables of size

(ε−1 log n)O(1) suffice for (1 + ε)-stretch routing scheme in
bounded doubling dimension graphs [2, 17, 18, 22, 23] or in
minor-free graphs [1], some much wider classes of networks.

The schemes presented herein demonstrate, somewhat
surprisingly, that similar bounds can be achieved even in
the (considerably harder) “forbidden-set” scenario.

Our contributions.
In this paper we consider undirected unweighted n-vertex

graphs. Our scheme applies to any unweighted graph G,
however, its efficiency depends exponentially on the dou-
bling dimension of G, defined as the smallest α > 0 such
that, for every r > 0, every ball of radius 2r can be covered
by 2α balls of radius r. A related notion widely used for
the design of Distributed Hash Tables [20] is the grid di-
mension1. However, the family of bounded grid dimension
graphs is strictly included in that of bounded doubling di-
mension. Concerning the issue of routing in real networks,
the reader is referred to [10] for further discussions about the
impact of the doubling dimension of the underlying graph.

We show the following results.

• Graphs of doubling dimension α have a forbidden-set
(1 + ε)-approximate distance labeling scheme of label
length2 O(1+ε−1)2α log2 n. All the labels can be com-
puted in polynomial time, and each query can be an-
swered in time polynomial in the length of the labels
occurring in the query.

• The scheme extends to a forbidden-set routing labeling
scheme with stretch 1 + ε and O(1 + ε−1)2α log2 n-bit
routing tables.

• The exponential term in α appearing in the label
length bound in our schemes is in fact necessary,
even for a connectivity labeling scheme (equivalent
to a (1 + ε)-approximate distance scheme with very
large ε). More precisely, we show that any forbidden-
set connectivity labeling scheme on the family of un-
weighted graphs of doubling dimension α requires la-
bels of length Ω(2α/2 + log n). This should be con-
trasted with the failure-free scenario, where dlog ne-bit
labels suffice to solve connectivity in arbitrary graphs.
Hence, the label length of our scheme is tight, up to a
polylogarithmic factor.

An attractive feature of our solution is that the label and
routing tables are not affected by the size of forbidden sets.
Since our scheme is based on labels of polylogarithmic length
associated with each vertex of the input graph, as a byprod-
uct we obtain for bounded doubling dimension graphs an
(1 + ε)-approximate distance oracle of size O(ε−1n log n),
which is independent of the number of faults it is required
to tolerate.

1The maximum ratio of the volumes of radius-2r balls over
radius-r balls centered at the same vertex.
2Logarithms are in base two.

Applications.
Our motivating scenario is a network where, whenever

a failure has occurred, we wish to recover without delay.
After a failure of some collection of routers (vertices) or links
(edges), network traffic must be quickly rerouted without
loss, and without having to wait for the recomputation of
the routing tables. Such a recomputation of the routes may
be performed in the background, but during this time we
still wish to ensure good performance, which means being
able to route along short paths in G \ F , rather than just
any paths that avoid the failed set F .

One way in which such a forbidden-set routing scheme
may be used for fast recovery from failures is as follows: each
router keeps track of a set F of “failed” routers, and it makes
distance queries with respect to the surviving graph G \ F .
Routers are routinely updated about the operational status
(failures and recoveries) of other routers, either directly (by
probing the neighbouring routers), or through other routers.
As soon as a router u discovers a failure (respectively, recov-
ery) of some router v, it adds v to (resp., removes it from)
its set own set Fu and propagates this information to other
routers. The propagation may be done using some flooding
mechanism, or piggybacked onto data sent on some routes
(and thus all routers on this path will learn about the failure
of v). Clearly, it is possible for a router to begin routing on
a path that is going to be cut by a failed set, but as soon
as the packet reaches a router that is aware of the failure,
it can make a new query and the packet can be rerouted
back again on a new shortest path, without waiting for the
update time incurred by a route maintenance algorithm.

Another important scenario is when a router decides to
change its own routing policy. For example, for economic or
security reasons, a part of the network may become forbid-
den. The local forbidden-set of the router can be accordingly
modified, and it can update its route immediately without
having to invoke a global route maintenance mechanism.
(This application may require including information on the
policy in the message header.)

Related work.
There is a vast literature on labeling schemes and infor-

mation oracles in the classical (failure-free) setting, and it
covers many aspects: distance, routing, exact queries, ap-
proximation, global or localized data-structures.

Data-structures supporting limited failures exist. A
scheme for answering distance queries when a single edge
may fail, a.k.a. the distance sensitivity problem, is presented
in [9]. In this model, the failed edge e is specified at query
time, along with two vertices u, v, and it is desired to com-
pute the distance between u, v in G\{e}. They showed how
to construct an oracle for such queries of size O(n2 log n)
and query time O(log n), for general directed graphs. This
has been extended to a single edge and/or vertex failure [3],
and only recently to dual-failure [8] and to multiple edge
failures [5]. The routing issue has been explored in [14] for
single vertex failure and in [5] for two edge failures. Extend-
ing these solutions to three or more failures, particularly in a
distributed representation, is clearly a challenging problem.

A scheme for the forbidden-set distance labeling problem
that allows for the failure (or forbidding) of arbitrary sub-
graphs is given in [6, 26]. The scheme depends on the
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treewidth or the cliquewidth3 of the graph, and can be dis-
tributed in the form of labels assigned to vertices. For graphs
of treewidth or cliquewidth k, the label length is O(k2 log2 n)
bits, and k 6 n for every graph.

On a related note, the problem of answering forbidden-set
connectivity queries (answering whether the vertices u and
v are connected in G \F ) has also been considered. For the
case of planar graphs, it has recently been shown how to con-
struct Θ(log n) bit labels so that queries about connectivity
of the graph G\F can be answered in time O(|F | log |F |) [4].
A non-distributed solution for arbitrary graphs with a linear
size data-structure has been given in [21]. The distribution
of the representation is an open problem.

Preliminaries.
Denote the distance between u and v in the graph G by

dG(u, v). A forbidden-set distance oracle is a data-structure
designed for a graph G that supports distance queries in the
graph G \ F for every subset F ⊂ V (G) ∪ E(G). In other
words, such an oracle OG(u, v, F ) must return dG\F (u, v) for
all u, v, F .

In this paper we are interested in oracles that can be dis-
tributed over the vertices of the graph itself, so that a query
involving, say, vertices x, y and z, can be answered using the
parts of the oracle stored at x, y and z, without accessing
any other source of information.

More formally, a forbidden-set distance labeling scheme
for a graph family F is a pair (L, f), where L is called the
labeling or marker and f the decoder, such that for every
graph G of the family F,

• the marker associates with each vertex u of G a binary
label L(u, G) (we simply write L(u) when G is clear
from the context); and

• for any u, v ∈ V (G) and any subset F ⊂ V (G)∪E(G),
the decoder returns dG\F (u, v) given the labels of u
and v and the labels of all vertices and edges of F .
(The label of an edge (a, b) of F is specified by the
pair (L(a), L(b)).)

The label length of a labeling scheme is the length (in bits)
of the largest label it assigns to a vertex of a graph of F.
Observe that one can construct an oracle OG for G from the
labeling scheme by storing in some table T the label of each
vertex u, i.e., T [u] = L(u, G). Hence the size of the oracle is
at most n times the label length of the labeling scheme. A
forbidden-set distance query (u, v, F ) is answered by loading
from T all the required labels and running the decoder f on
those labels. The required labels are T [u], T [v], T [x] for all
vertices x of F , and (T [a], T [b]) for all edges (a, b) of F .

A forbidden-set distance oracle (or labeling scheme) is s-
approximate if the value δ(u, v, F ) it returns for a query
(u, v, F ) satisfies dG\F (u, v) 6 δ(u, v, F ) 6 s · dG\F (u, v).

2. FORBIDDEN-SET LABELING SCHEME
In this section we describe our forbidden-set distance and

routing labeling schemes.

2.1 Distance labeling scheme

Theorem 1. Unweighted n-vertex graphs of doubling di-
mension α have a forbidden-set (1+ε)-approximate distance

3A graph measure generalizing treewidth.

labeling scheme O(1 + ε−1)2α log2 n-bit labels. All the labels
can be computed in polynomial time, and each query can be
answered in time polynomial in the label length of the query.

Section 2.1 is devoted to the proof of Theorem 1. Let G
be an unweighted n-vertex graph of doubling dimension α.
For a vertex x and a set W ⊆ V (G), denote by dG(x, W )
the distance between x and the closest w ∈ W . For every
vertex v and radius r, let B(v, r, G) denote the ball of radius
r in G centered at v. We say that a subset N ⊆ V (G) is
an r-dominating set of G if for every vertex v ∈ V (G) there
exists a vertex v′ ∈ N such that dG(v, v′) 6 r.

Define a hierarchy of nets, namely, vertex sets in G, de-
noted by Ni, one for each level i ∈ {0, . . . , dlog ne}, with the
following properties:

(1) N0 = V (G);

(2) Ni ⊂ Ni−1, for all i > 0;

(3) Ni is a 2i-dominating set for G.

For every vertex v, let Mi(v) be the net-point in Ni closest
to v. Note that dG(v, Mi(v)) 6 2i.

For bounding the label length, we use the following fact
while constructing the hierarchy of nets (see [11]).

Fact 1. For a graph with doubling dimension α, there
is an efficiently constructible r-dominating set W (r), such
that for every vertex v ∈ V (G) and radius R > r, the set
B(v, R, G) ∩W (r) has size at most (4R/r)α.

We set Ndlog ne := W (2dlog ne) and Ni = W (2i)∪Ni+1 for
0 6 i 6 dlog ne − 1. It’s not hard to see that this hierarchy
of nets indeed satisfy properties (1) − (3). Using Fact 1 we
have the following:

Lemma 1. For a graph with doubling dimension α > 1,
there is an efficiently constructible hierarchy of nets Ni, one
for each level i ∈ {0, . . . , dlog ne}, satisfying properties (1)−
(3) such that for every vertex v ∈ V (G) and radius R > r,
the set B(v, R, G) ∩Ni has size at most (8R/2i)α.

Overview of the failure-free case.
Consider first the problem of constructing a distance ora-

cle for graphs of bounded doubling dimension in the failures
free setting (F = ∅). We now describe, on a high level, a
variant of a distance oracle for this class based on labeling
scheme, that is close to our scheme in the fault-tolerant set-
ting. The idea is to give for each vertex v a short label L(v),
such that given the labels L(s) and L(t) of two vertices s
and t, it is possible to approximate the distance between
them with a stretch of at most 1 + ε. Let I = {c, . . . , β} be
the range of levels where c = c(ε) is some constant integer
to be fixed later on and β = dlog ne. The label L(v) of each
vertex v consists of the distances from v to all vertices in
B(v, 2i+2, G)∩Ni−c for every i ∈ I. Note that for the lowest
level, L(v) contains all the vertices of the ball B(v, 2c+2, G)
since N0 contains all vertices. Now, when getting the labels
L(s) and L(t) of two vertices s and t, whose distance needs
to be estimated, do the following. Find the smallest index
i such that Mi−c(t) is in B(s, 2i+2, G) (extracting Mi−c(t)
from L(t) and performing the check in L(s)). We then return
d′ = dG(s, Mi−c(t)) + dG(t, Mi−c(t)).

194



We now claim that setting c = max {dlog (2/ε)e , 0} yields
the desired stretch of 1 + ε. To see this, let d′ be the dis-
tance estimate returned by the oracle and let d = dG(s, t).
Let j be the index such that 2j 6 d 6 2j+1. Note that
dG(s, Mj−c(t)) 6 dG(s, t) + dG(t, Mj−c(t)) 6 2j+1 + 2j−c <
2j+2. We get that for this index j, Mj−c(t) ∈ B(s, 2j+2, G).
Hence the index i returned by the oracle satisfies i 6 j, so
the distance estimate d′ satisfies

d′ 6 dG(s, Mj−c(t)) + dG(Mj−c(t), t)

6 dG(s, t) + dG(t, Mj−c(t)) + dG(t, Mj−c(t))

= d + 2 · 2j−c 6 d + 2j+1−log (2/ε)

= d + ε/2 · 2j+1 = d + ε · 2j

6 (1 + ε)d

Finally, let us bound the label length. Consider the la-
bel L(v) of some vertex v. Using Lemma 1, for each in-
dex c 6 i 6 log n, the number of net-points added to
L(v) is at most (8 · 2i+2/2i−c)α = (25+max{dlog (2/ε)e,0})α =

max
{

25α, 2(6+log (2/ε))α
}

= max
{
25α, (128/ε)α

}
, so the to-

tal label length is at most log2 n · max
{
25α, (128/ε)α

}
=

O(1 + ε−1)2α · log2 n bits (where one log n factor is due to
the number of levels and one due to the fact that it takes
log n bits to store each vertex).

The case of non-empty forbidden-set.
We now turn to the general case, where F is non-empty.

In this setting F fails and it is desired to approximate the
distance between s and t in the surviving graph G\F , given
the labels of the vertices s and t as well as the labels of all
faulty vertices in the set F (for the sake of simplicity, we
first consider forbidden vertex-set only).

The label L(v) represents a sparse subgraph with virtual
edges whose lengths are part of the label. In the failure free
setting, L(v) contains only edges that touch v, i.e., edges
from v to some net-points in the ball around v. In con-
trast, in the fault-tolerant setting the label L(v) contains
also edges that do not touch v, but rather connect pairs of
net-points in the ball around v.

In the failure-free setting we look for a net-point M rela-
tively close to t (relative in perspective to the distance be-
tween s and t), such that the virtual edges (s, M) and (M, t)
are contained in the label L(s) and L(t) respectively. Each
of these virtual edges represents a shortest path in the orig-
inal graph G. In the fault-tolerant setting, complications
may arise when these paths contain some faulty vertices.
To overcome this problem, instead of looking for one long
edge (long in the sense that the path it represents is long),
where this edge may represent a path that contain faulty
vertices, we rather construct a virtual graph H that con-
tains a small number of edges, where the idea is that in
regions where there are no faulty vertices nearby we add a
few long edges and in regions where there are faulty vertices
nearby we add many shorter edges. Eventually, this virtual
graph will contain a virtual path from s to t that represents
a path in G\F . Only“safe”edges will be added to H, safe in
the sense that the path they represent is guaranteed not to
contain a faulty vertex. After building this graph, we invoke
a shortest path algorithm from s to t in order to estimate
the distance dG\F (s, t).

As in the failure free setting, the label L(v) of each vertex
v contains distances between low-level net-points in the re-

gion close to v, and distances between high level net-points
in more remote regions.

Using the labels L(s) and L(t), we construct the graph H,
by adding long edges as long as these edges are far away from
every faulty vertex. It could be that some of the edges we
wanted to add to the graph H are too close to some faulty
vertices. In that case we can use the labels of the faulty
vertices to replace these long edges with shorter ones, where
in the regions that are very close to faulty vertices we add
many very short edges.

We now dive into the details of the algorithm, explaining
the label structure of each vertex v and showing how to
construct the graph H given the labels of the vertices of
{s, t} ∪ F .

Let I = {c + 1, . . . , β} be the range of levels where c = c(ε)
is some constant integer to be fixed later on and β = dlog ne.

Labels.
The label L(v) of each vertex v consists of a list of its level-

i labels Li(v), where each Li(v) encodes an edge-weighted
graph Hi(v), for every i ∈ I.

For each level i ∈ I, we store some net-points (and some
edges between them) in the label L(v) of each vertex v. For
each vertex v and for each level i, the label L(v) stores all
net-points of Ni−c−1 that are inside a ball of radius ri around
v. Denote the domination radius of the net-points Ni−c by
ρi = 2i−c. The net-points stored on level i are taken from
a ρi−1-dominating set for G, for reasons that will become
clearer later on. Denote the ball of radius ri around v by
Bi(v) = B(v, ri, G). Denote by λi the maximum length of
the edges added to the labels on level i. In other words,
for every vertex v and level i, the label L(v) stores all net-
points Ni−c−1 and all short edges between every pair of the
net-points and also between v and the net-points, where an
edge is considered to be short if its length is at most λi. On
the lowest level c + 1, L(v) stores all edges in the original
graph G that are in Bc+1(v).

Formally, the graph Hi(v) is defined as follows:

• Vertex-set:

V (Hi(v)) = Ni−c−1 ∩Bi(v) ∀i ∈ I.

• Edge-set:

E(Hi(v)) =

{(x, y) : dG(x, y) 6 λi and x, y ∈ V (Hi(v))}
∀i ∈ I.

• Edge weights:

ω(x, y) = dG(x, y) for every (x, y) ∈ E(Hi(v)).

Distance queries.
A distance query (s, t, F ) involves a source s, a target t and

a subset F of faulty (or forbidden) vertices. Its input con-
sists of the labels {L(s), L(t)} ∪ {L(v) : v ∈ F}. Answering
a query (s, t, F ) based on the given labels, namely, finding
an approximate distance from s to t in the graph G \ F , is
schematically done as follows:

1. Compute a weighted graph H = H(s, t, F ).

2. Compute a shortest path distance from s to t in H and
return it.
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More specifically, let us consider a query (s, t, F ), and let
F̄ = F ∪ {s, t}. Define the level-i protected ball of radius λi

around v as Pi(v) = B(v, λi, G). This definition is used in
the query phase, where on level i we take only edges e in the
labels of every v ∈ {s, t} ∪ F such that e is not inside any
protected ball Pi(f) for any f ∈ F . (We say that an edge is
not inside a ball if at least one of its endpoints is outside the
ball.) Notice that by taking to H, on level i, only edges of
length at most λi that are not inside some protected ball, we
get that these edges are far enough from every faulty vertex
f ∈ F . Thus all edges added to H are safe in the sense that
they represent paths that do not contain a faulty vertex.

Note that the data stored at the label of a vertex v is
sufficient for checking if a vertex x ∈ Ni−c−1 is in the pro-
tected ball Pi(v). The label Li(v) contains all edges (v, y)
such that y ∈ Ni−c−1 and dG(v, y) 6 λi. Therefore, if the
label Li(v) does not contain the edge (v, x), then x is not
on the protected ball Pi(v).

Formally, define the graph H as follows:

• Vertex-set: V (H) =
⋃

v∈F̄

⋃
i∈I V (Hi(v)).

• Edge-set:

E(H) = {e = (x, y) | ∃i ∈ I such that:

e ∈ Hi(v) for some v ∈ F̄ , and

{x, y} 6⊆ Pi(f) for every f ∈ F}
∪ {e = (x, y) | e ∈ Hc+1(v) for some

v ∈ F̄ , ω(x, y) = 1 and x, y /∈ F}.

• Edge weights - unchanged: ω(x, y) = dG(x, y).

The intuition behind our parameter setting is as follows.
We later look at a path P from s to t in G \ F and claim
that the computed graph H contains a path“close”to P . We
construct a path P ′ corresponding to P by choosing some
nodes in P and determining, for each chosen node v, some
net-point “relatively” close to it. We later show that this
chosen net-point appears either in the label of s or t or one
of the failed vertices. Both the level of the net-point and
the next chosen node v′ on the path P are determined by
the distance from v to F . The idea is that the net-points
of v and v′ must satisfy two requirements. First, they need
to be far enough from any failed node, in order to allow us
to claim that the edge connecting v and v′ is “safe”, in the
sense that the path it represents is in G \ F . Second, the
net-points need to be on a sufficiently high level, so the node
f ∈ F closest to v will contain these net-points and the edge
connecting them in its label. Another constraint is that the
distance from v to its net-point needs to be small compared
to the distance from v to the next chosen node v′ in P , in
order to ensure the desired stretch. The distance from a
node v on the path P to F is captured by the parameter µi.
More specifically, let i be the maximum index such that the
ball of radius µi around v is free of faults. The next node
in the path P is chosen at distance 2i from v. Therefore
the parameter ρi is fixed to be significantly smaller than 2i.
We now consider the net-point of v′ (the next chosen node
on the path P ). We later show that as the distance from
v to v′ is 2i and the distance from v to F is at most µi+1,
the distance from v′ to F is less than µi+2, which implies
that the net-point of v′ is on level at most i + 1. Additional
necessary constraints are that µi be sufficiently large so that
the edge between the net-points of v and v′ is “safe”, i.e., far

enough from every node in F , and thus represents a path in
G \ F , and that ri be large enough, so that the node of F
closest to v contains in its label both the net-points of v and
v′ and the edge connecting them.

We thus set the parameters as follows: ρi = 2i−c, λi =
2i+1, µi = ρi + λi, ri = µi+1 + 2i + ρi+1.

Analysis.
As explained above, we later look at a path P from s to

t in G \ F and construct a corresponding path P ′ to P in
H. Towards proving the existence of such a path P ′, we
prove Claim 1. As discussed above, on each level i we add
to H edges of length at most λi. The first part of the claim is
essential for showing that the length of the edge between two
consecutive net-points on the constructed path P ′ is at most
λi. The purpose of the second part of the claim is to handle
the case where there are some nodes on the path P that are
very far from F . In this case we show that the net-points
corresponding to these nodes are contained in the labels of
s or t. It is not hard to verify that the chosen parameters
satisfy the following claim for every 2 6 c < β.

Claim 1. (a) λi > ρi + ρi+1 + 2i, and (b) Nβ−c−1 ⊆
Bβ(v) for all v ∈ V (G).

We now prove the correctness of this query algorithm.
The following lemma proves that all edges added to H are
“safe”, in other words, for every edge e = (u, v) in H there
is a corresponding path from u to v in G \F of length ω(e).

Lemma 2. If (x, y) is an edge of H, then x and y are
connected in G\F and their distance in G\F is dG\F (x, y) =
ω(x, y).

Proof. Consider an edge (x, y) ∈ E(H). Note that
(x, y) ∈ Hi(v) for some i and v. If ω(x, y) = 1, then x
and y are neighbors in G and both x and y are not in F ,
therefore there is a path of length 1 from x to y in G \ F .
Now suppose ω(x, y) > 1. Then the graph G contains a
shortest path P (x, y) from x to y of length dG(x, y) 6 λi,
and for every f ∈ F , either x or y are not in the level-i
protected ball Pi(f). Consider a vertex f ∈ F . Without
loss of generality, assume that x /∈ Pi(f), i.e., dG(x, f) > λi.
Assume, towards contradiction, that f ∈ P (x, y). There-
fore, dG(x, y) > dG(x, f) > λi, a contradiction. We get that
f /∈ P (x, y) for every f ∈ F , and therefore P (x, y) exists in
G \ F .

For every vertex v, let i(v) be the largest index i ∈ I
such that there is no f ∈ F at distance µi from v in G,
i.e., B(v, µi, G) ∩ F = ∅. If no such index exists, then set
i(v) = c. Denote the nearest net point to v on that level by

M̂(v) = Mi(v)−c(v). Note that for i(v) = c, M̂(v) is v itself.
The next lemma establishes that the label scheme de-

scribed above is a forbidden-set distance scheme.

Lemma 3. Given ε > 0, fix c = dlog (6/ε)e. Consider two
vertices s, t ∈ V (G). If s and t are connected in G \ F by a
path of length d then they are connected by a path of length
(1 + ε)d in H.

Proof. Consider s, t ∈ V (G) and let d = dG\F (s, t). Let
Q = (s = v1, . . . , vd = t) be some shortest-path from s to
t in G \ F . In order to show that there exists a path from
s to t in H of length close to the length of Q, we show the
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existence of an edge between M̂j and M̂j+x for sufficiently

large x, where we denote M̂(vj) by M̂j for every 1 6 j 6 d.

We show that the distance from M̂j to M̂j+x is “close” to
the distance from vj to vj+x. Loosely speaking the analysis

is as follows. We show that the distance from s to M̂z1 and

from M̂z1 to M̂z2 and so on are close to their corresponding
distances in the path Q (i.e., to the paths: v1 to vz1 , vz1 to
vz2 and so on). For the last zk, we show that the distance

from M̂zk to t is relatively very short. Therefore we get
a path from s to t in H of length “close” to their actual
distance in G. Fig. 1 illustrates this path.

Claim 2. Given ε > 0, fix c = dlog (6/ε)e. Consider a
vertex vj on the path Q and let i(vj) = `. If 1 6 j 6 d− 2`

then H contains an edge between M̂j and M̂j+2` and its

weight is at most (1 + ε/2) · 2`.

Proof. Let τ be the distance from vj to F , i.e., τ =
dG(vj , F ) and let τ ′ = dG(vj+2` , F ). Let `′ = i(vj+2`). By

definition of i(vj), µ` < τ 6 µ`+1. As dG(vj , vj+2`) = 2`,

we get that τ − 2` 6 τ ′ 6 τ + 2`. This implies that `− 1 6
`′ 6 ` + 1, as µ`−1 = ρ`−1 + λ`−1 = 2`−c−1 + 2` < µ` − 2` <
τ ′ 6 µ`+1 + 2` 6 ρ`+1 + λ`+1 + 2` < µ`+2.

We now prove the claim by case analysis. First assume
that ` = c, i.e., there exists a vertex f ′ ∈ F such that
dG(vj , f

′) 6 µc+1.
The label L(f) of every vertex f ∈ F stores all edges (x, y)

such that x and y are at distance at most rc+1 from f . Of
those edges, we add to H all those whose endpoints are not
in F .

First note that all edges in the path (vj = M̂j , . . . , vj+2c)
are added to H. To see this, observe that for all j 6 r <
j + 2c, both vr and vr+1 are in B(f ′, rc+1) as dG(vr, f

′) 6
µc+1 + 2c < rc < rc+1 and also dG(vr+1, f

′) 6 µc+1 + 2c <
rc < rc+1, and in addition none of them belong to F .

We now consider two subcases. The first is when `′ = c. In
this subcase M̂j+2c = vj+2c , hence H contains a path from

M̂j to M̂j+2c of length 2c, namely, the path (vj , . . . , vj+2c)
itself.

The second subcase is when `′ = c + 1. In this subcase,
there is no vertex f ∈ F at distance µc+1 from vj+2c . As

dG(vj+2c , M̂j+2c) is at most ρc+1 < µc+1, all edges in the

path connecting vj+2c to M̂j+2c are nonfaulty. In addition,
this path belongs to B(f ′, rc+1), as the distance from every
vertex on that path to f ′ is at most µc+1 + 2c + ρc+1 = rc

(see Fig. 2). Moreover, as already shown all edges in the

path (vj = M̂j , . . . , vj+2c) are added to H. We get a path

from M̂j to M̂j+2c of length at most 2c + ρc+1. Note that,
by setting c to be any integer such that c > log(4/ε), we get

that d(M̂j , M̂j+2c) 6 (1 + ε/2)d(vj , vj+2c) = (1 + ε/2) · 2`.
Now assume that ` > c and that j + 2` 6 d. Note that

dG(M̂j , M̂j+2`) 6 dG(M̂j , vj) + dG(vj , vj+2`) +

dG(vj+2` , M̂j+2`)

6 ρ` + 2` + ρ`′ 6 ρ` + ρ`+1 + 2`

6 λ` ,

where the last inequality follows from Claim 1(a).

In order to show that the edge (M̂j , M̂j+2`) is in H, it
suffices to show that both of these points belong to B`(v)
for some v ∈ F̄ and that for every f ∈ F , one of these points

does not belong to the protective ball P`(f). Note that

dG(vj , F ) > µ`, and therefore dG(M̂j , F ) > µ` − ρ` = λ`.

It follows that M̂j and the edge (M̂j , M̂j+2`) are not in the

protective ball P`(f) for all f ∈ F . For showing that M̂j

and M̂j+1 belong to B`(v) for some v ∈ F̄ , we need to
consider two cases. The first case is when ` = β. In that
case, both M̂j and M̂j+2` belong to Bβ(s). To see this, note

that ` = β and `′ > β − 1, so both M̂j and M̂j+2` belong to
Nβ−c−1 ⊆ Bβ(s), by Claim 1(b).

The second case is when c < ` < β. Note that by the
maximality of ` = i(vj), it must be that there exists a vertex
f ∈ F such that dG(vj , f) 6 µ`+1. As r` = µ`+1 + 2` +

ρ`+1, we get that both M̂j and M̂j+2` belong to B`(f). In
addition, both these points belong to N`−c−1. To see this,
recall that M̂j is a net-point of N`−c and as `′ > ` − 1,

then M̂j+2` is a net-point of N`−c−1, in addition N`−c ⊆
N`−c−1. Therefore the edge (M̂j , M̂j+2`) is in H. By setting

c > log (6/ε), we get dH(M̂j , M̂j+2`) 6 2` + ρ` + ρ`+1 =

2` + 2`−c + 2`−c+1 = 2` + 2` · 3 · 2−c = (1 + ε/2)2`.

To ensure the existence of a path from s to t in H, we also
need to show that there is a path from s to some M̂z1 and

from some M̂z2 to t, where we explain later how to choose
z1 and z2. We then bound the length of this path using a
careful analysis.

Let ` = i(v1) and let `′ = i(vd). We consider several cases.

The first case is when d < 2` or when d < 2`′ . Handling
this case is similar to the failure-free setting. In this case the
region around the path connecting s and t in the graph G\F
is free from faults, therefore we can handle it as handling a
distance query in the failure-free setting. More specifically,
assume w.l.o.g that d < 2` and that ` 6 `′, and let i be such
that 2i−1 6 d 6 2i. Note that i 6 `. Let z ∈ Ni−c be the
closest net point to t in Ni−c. As ri = µi+1 + 2i + ρi+1,
we get that z is in the ball Bi(s). In addition, dG(s, F ) >
µ` > µi = ρi + λi. We get that the vertex s and the edge
between s and z are not in the protective ball Pi(f) for all
f ∈ F . Moreover dG(s, z) 6 ρi + d 6 λi . Therefore the
edge between s and z is added to H. By a similar reasoning,
the edge from t to z is also added to H. We get a path from
s to t of length 2ρi + d. As in the failure-free setting, taking
any c > log (2/ε) yields the desired 1 + ε stretch.

The next case to consider is when d > 2` and d > 2`′ .
In this case, using the same arguments as before we get a
path from s = v1 to M̂1+2` of length at most ρ` + 2`. Note

that by taking again c > log (6/ε), we get dH(s, M̂1+2`) 6
(1 + ε/2)2`. By Claim 2, H contains a path from M̂1+2`

to M̂1+2`+2z1 and from that vertex to M̂1+2`+2z1+2z2 and
so on, where z1 = i(v1+2`) and z2 = i(v1+2`+2z1 ). This

continues until the route reaches a vertex M̂j corresponding
to a vertex vj such that dG(vj , t) < 2i(vj).

Let dG(s, vj) = d′ and dG(vj , t) = d′′. We get that

dH(s, M̂j) 6 (1 + ε/2)d′.
Note that using similar arguments as before, we get that

H contains an edge between M̂j to t of weight dH(M̂j , t) 6
d′′ + ρ`′+1 (where `′ − 1 6 i(vj) 6 `′ + 1 again by similar
arguments as before).

By setting c = max {dlog (6/ε)e , 2} and concatenating all
these paths together, we get that H contains a path from
s to t of length dH(s, t) 6 dH(s, M̂j) + dH(M̂j , t) 6 (1 +
ε/2)d′ + d′′ + ρ`′+1 6 ρ`′+1 + (1 + ε/2)d 6 (1 + ε)d.
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We finally bound the label length.

Lemma 4. The label length is O(1 + ε−1)2α · log2 n.

Proof. By Lemma 1, for each index c 6 i 6 log n,
the number of net-points added to L(v) is at most
(8ri/2i−c−1)α < (8 · 2i+3/2i−c−1)α = (8 · 24+c)α =
max{512α, (1536/ε)α}, where the first inequality is due to
the fact that ri = µi+1 + 2i + ρi+1 = 2ρi+1 + λi+1 +
2i = 2i−c+2 + 2i+2 + 2i < 2i+3. Therefore, for a spe-
cific index i, the total length added to L(v) is at most
max{5122α, (1536/ε)2α}, as for each pair of vertices we
might store an edge. Hence the label length is at most
log2 n ·max{O(1)2α, (O(1)/ε)2α} = O(1+ε−1)2α · log2 n.

Edge Faults.
To simplify notations, the construction we describe han-

dle only vertex faults. However, it’s not hard to see that
only small modifications are needed for this construction to
handle both vertex and edge failures together. The only
modification needed is in the query phase, in the low level
instead of adding all edges of G that are in Hc+1(v) whose
both endpoints are not faulty, rather just add all edges of G
where both endpoints are not faulty and also the edge itself
is not faulty (where we assume that for a faulty edge (x, y)
we get the labels (L(x), L(y))).

2.2 Routing scheme
We can easily transform our forbidden-set labeling scheme

to a forbidden-set compact routing scheme. Each vertex u
stores its label L(u), and for each vertex x of G contained
in L(u), vertex u stores the port of the out-going edge on a
shortest path that leads to x from u.

The total storage is O(|V (H)| log n), where |V (H)| is the
number of vertices of H in L(u)’s label. From the previous
section, |V (H)| = O(1+ε−1)2α log n, and so the label length
complexity is not affected by the routing extension. Note
that the vertex names are preserved, so on dlog ne bits, and
headers have length at most O(|V (H)| log n). (If the method

is used by a router v for implementing a private routing pol-
icy, by forbidding the use of certain set Fv, then the header
size will have to include a description of the policy, increas-
ing it accordingly.)

Is it easy to see that given this routing information, and
given the labels of s, t, F , then for any edge (x, y) in H, from
any vertex along the shortest path between x and y one can
route to x or to y with stretch 1. This is due to the fact that
every vertex z on a shortest path from x to y in G, assuming
that (x, y) is an edge of H, contains x and y in its label.
This implies that the stretch of the forbidden-set compact
routing scheme is exactly the stretch of the forbidden-set
label scheme. Therefore, we have showed:

Theorem 2. Unweighted n-vertex graphs of doubling di-
mension α have a forbidden-set routing labeling scheme with
stretch 1 + ε and O(1 + ε−1)2α log2 n-bit routing tables. All
the labels and routing tables can be computed in polynomial
time, and each query can be answered in time polynomial in
the label length of the query.

3. LOWER BOUND
In this section we provide a lower bound on the size

(namely, total number of bits) of a (distance or connectiv-
ity) oracle. The bound tells us that the exponential term
in α appearing in the label length bound in our scheme
is in fact necessary, even for connectivity oracles, for the
class of graphs of doubling dimension α. Note that a lower
bound on the size of a connectivity oracle implies the same
lower bound on the size of any approximate distance oracle,
and thus also on its label length. Observe also that in the
failure-free case, connectivity queries can be supported with
dlog ce-bit labels, where c 6 n is the number of connected
components of the graph.

Theorem 3. Every forbidden-set connectivity labeling
scheme for unweighted n-vertex graphs of doubling dimen-
sion α requires labels of length Ω(2α/2 + log n).

Proof. Consider a graph family F. For each graph G of
F, we consider any forbidden-set connectivity oracle OG for
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G. Formally, OG(i, j, F ) = true if i and j belong to the same
connected component of G \ F , and false otherwise, where
i, j are vertices of G and F ⊂ V (G) ∪ E(G).

We claim that there is a graph G0 such that its connec-
tivity oracle OG0 has size log |F|. Consider a graph G ∈ F.
For given endpoints i and j, denote the “everywhere failure”
set of G outside i and j by F (i, j) = V (G)\{i, j}. For every
two vertices i, j, OG(i, j, F (i, j)) is true if and only if i is
adjacent to j in G. Indeed, the graph G \ F (i, j) consists of
either the edge (i, j) (in case i and j are neighbors in G) or
the isolated vertices i and j (in case i and j are not adja-
cent). It follows that invoking the connectivity oracle and
testing connectivity OG(i, j, F (i, j)) for all pairs of vertices
determines the structure of the graph G. Consequently, the
number of distinct connectivity oracles for F, i.e., the car-
dinality of {OG : G ∈ F}, is at least the number of elements
of |F|. Therefore, for at least one graph G0 ∈ F, the size of
the oracle OG0 is at least log |F|.

We have seen that every labeling scheme using k-bit labels
has a corresponding oracle of length nk. Thus, there must
exist a label of length at least 1

n
log |F| in every forbidden-

set connectivity labeling scheme for the family F. We shall
consider now a specific family F.

Let d, p be two positive integers. For simplicity, we as-
sume that d is even and p > 2. We consider the graphs
Gp,d and Hp,d, two variants of the d-dimensional grid of
p × · · · × p vertices. The vertices of Gp,d and Hp,d are se-
quence (x1, . . . , xd) where xi ∈ {0, . . . , p− 1}. Two vertices
x = (x1, . . . , xd) and y = (y1, . . . , yd) are adjacent in Gp,d

if and only if maxi |xi − yi| = 1. They are adjacent in Hp,d

if and only if maxi |xi − yi| = 1 and
∑

i |xi − yi| 6 d/2.

The number of edges of Gp,d is mp,d = Ω(2dpd), its mini-
mum degree being 2d − 1. The number of edges of Hp,d is
|E(Hp,d)| = 1

2
mp,d.

The doubling dimension of Gp,d is 6 2d, because any ball
of radius 2r, for any r > 0, centered at (x1, . . . , xd), can
be covered by no more than 2d balls of radius r centered at
the vertices (|x1 + c1|, . . . , |xα + cα|), where ci ∈ {−r, +r}.
Note also that Hp,d is a 2-spanner of Gp,α, i.e., a spanning
subgraph in which any pair of neighbor vertices in Gp,d are
at distance at most two in Hp,d.

We consider the family Fn,α of n-vertex graphs composed
of all the subgraphs of Gp,d containing Hp,d, where n = pα

and α = 2d (with d an even integer). Let G be a graph of
Fn,α. Since G contains Hp,d, G is a s-spanner of Gp,d for
some s 6 2. In particular, any ball B of radius 2r in G is
contained in a ball B′ of radius 2rs 6 4r of Gp,d. Using
the doubling dimension of Gp,d, ball B′ (and so ball B) can
be covered by at most (2d) · (2d) balls of radius r of Gp,d.
Each ball of radius r in Gp,d is included in some ball of
radius r in G, G is a subgraph of Gp,d. It follows that ball
B can be covered by no more than 22d = 2α balls of radius
r of G. Thus G, and all the graphs of Fn,α, have n vertices
and doubling dimension 6 α. The number of graphs in the
family Fn,α is

|Fn,α| = 2|E(Gp,d)|−|E(Hp,d)|

= 2
1
2 mp,d > 2Ω(2dpd) = 2Ω(2α/2n) .

By the above discussion, every forbidden-set connectiv-
ity labeling scheme for Fn,α requires labels of length
1
n

log |Fn,α| = Ω(2α/2).
To conclude, let us show that any forbidden-set connectiv-

ity labeling scheme on Fn,α requires at least n− 2 different
labels. Assume the scheme assigns at most n − 3 labels to
the vertices of all graphs of Fn,α. Consider the n-vertex path
Pn where n > 4. Observe that Pn ∈ Fn,α since Pn = Gn,1.
Among the vertices of Pn receiving the same label (there are
at least three such vertices), we select two non-neighboring
vertices x, y, one of which is not an end-vertex of Pn. Let
Pn(x, y) be the subpath of Pn going from x to y, exclud-
ing x and y. Without loss of generality assume y is not an
endpoint of Pn, and let z be the neighbor of y that is not
in Pn(x, y). Note that Pn(x, y) contains at least one vertex,
say w, and w /∈ {x, y, z}. If w is faulty, then z and x are not
in the same component, whereas z and y are. This implies
that testing connectivity queries (z, x, {w}) and (z, y, {w})
should lead to different results. However, the input labels
given to the decoder are the same since L(x) = L(y); con-
tradiction. Hence there are at least n− 2 labels.

Therefore, every forbidden-set connectivity la-
beling scheme requires labels of length at least
max{Ω(2α/2), log (n− 2)} = Ω(2α/2 + log n).
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