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ABSTRACT
This paper considers fully dynamic (1 + ε) distance or-
acles and (1 + ε) forbidden-set labeling schemes for pla-
nar graphs. For a given n-vertex planar graph G with
edge weights drawn from [1, M ] and parameter ε > 0, our
forbidden-set labeling scheme uses labels of length λ =
O(ε−1 log2 n log (nM) · (ε−1 + log n)). Given the labels of
two vertices s and t and of a set F of faulty vertices/edges,
our scheme approximates the distance between s and t in
G \ F with stretch (1 + ε), in O(|F |2λ) time.

We then present a general method to transform (1 + ε)
forbidden-set labeling schemas into a fully dynamic (1 + ε)
distance oracle. Our fully dynamic (1 + ε) distance oracle
is of size O(n log n · (ε−1 + log n)) and has Õ(n1/2) query
and update time, both the query and the update time are
worst case. This improves on the best previously known
(1+ε) dynamic distance oracle for planar graphs, which has
worst case query time Õ(n2/3) and amortized update time
of Õ(n2/3).

Our (1 + ε) forbidden-set labeling scheme can also be
extended into a forbidden-set labeled routing scheme with
stretch (1 + ε).

Categories and Subject Descriptors: F.2.2 Analysis of
Algorithms and Problem Complexity: Nonnumerical Algo-
rithms and Problems

General Terms: Algorithms, Theory

Keywords: planar graphs, forbidden sets, fault-tolerance,
distance labeling, fully dynamic, distance oracles, compact
routing

1. INTRODUCTION
A dynamic distance oracle is a preprocessed data struc-

ture capable of handling an adversarial online sequence of
update and query operations. The objective is usually to
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minimize the query time, the update time and the space of
the data structure. Each distance query involves two ver-
tices s and t whose distance needs to be computed. Each
update operation involves inserting/deleting a vertex/edge
from the graph. A dynamic algorithm is said to be incre-
mental if it handles only insertion operations, decremental
if it handles only deleting operations and fully dynamic if it
handles both operations.

We say that the stretch of a distance oracle is k (or simply
write k-distance oracle) if the returned distance is at least
the real distance and at most k times the real distance.

A closely related notion is that of forbidden-set distance
oracles. A forbidden-set distance oracle for a given graph G
is a processed data structure capable of answering distance
queries of the form (s, t, F ) where F is a set of faulty vertices
(or edges) and s and t are vertices whose distance needs to
be computed in the graph G \ F .

A forbidden-set distance labeling scheme is a mechanism
that assigns each vertex a small label. We are then given
distance queries where each query involves a set of forbidden
vertices or edges F , and two vertices s and t, and the goal is
to approximate dist(s, t, G \ F ) using only the labels of s, t
and the elements of F (the label of an edge in F is given by
the pair of labels of its endpoints). Where dist(s, t, G \ F )
is the distance between s and t in the graph G \ F .

In this paper, we consider dynamic distance oracles and
forbidden-set distance labeling scheme for weighted planar
graphs. We present several results. The main technical re-
sult is an efficient forbidden-set distance labeling scheme
with stretch (1 + ε) that is capable of handling any num-
ber of vertex/edge failures.

Theorem 1. Given an n-vertex planar graph G with edge
weights in [1, M ] and a parameter ε > 0, one can construct
a forbidden-set (1+ε)-approximate distance labeling scheme
of label length λ = O(ε−1 log2 n log (nM) ·(ε−1 +log n)). All
the labels can be computed in O(nλ) time, and each query
can be answered in O(|F |2λ) time, where F is the set of
faulty vertices/edges.

We then show that our (1 + ε) forbidden-set labeling
scheme can be used to give a fully dynamic (1 + ε) distance
oracle with Õ(

√
n ) worst case cost:

Theorem 2. Given an n-vertex planar graph G with edge
weights in [1, M ] and a parameter ε > 0, one can con-
struct a fully dynamic (1 + ε)-approximate distance oracle
of size O(n log n · (ε−1 + log n)) that can be constructed in
O(ε−1n log2 n) time. Each query operation and each up-
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date operation takes O(ε−1n1/2 log2 n log (nM)·(ε−1+log n))
worst case time.

Our techniques for transforming the labeling scheme into a
fully dynamic approximate distance oracle is general and can
be used in other settings. Specifically, one can combine our
techniques with the forbidden labeling schemes presented
in [1] and [12] to get fully dynamic (1 + ε) distance oracle
for graphs of bounded doubling dimension and fully dynamic
exact distance oracle for graphs of bounded tree-width or
clique-width. Both these oracles are of size Õ(n) and with
worst case update and query time Õ(n1/2).

In addition, we show that we can easily transform our
forbidden-set labeling scheme to a forbidden-set distance or-
acle and a forbidden-set compact routing scheme:

Theorem 3. Given an n-vertex planar graph G with
edge weights in [1, M ] and a parameter ε > 0, one can
construct a centralized (1 + ε)-approximate distance or-
acle of size O(n log n · (ε−1 + log n)) that can be con-
structed in O(ε−1n log2 n) time that supports the follow-
ing operations. Given an update operation that involves
adding/removing an edge/node, the data structure can be
modified in O(ε−1|U | log2 n log (nM) · (ε−1 + log n)) time so
that distance queries in the modified graph can be answered
in O(ε−1|U | log2 n log (nM) · (ε−1 + log n)) time, where U is
the set of updates that occurred so far.

Theorem 4. Given an n-vertex planar graph G with edge
weights in [1, M ] and a parameter ε > 0, one can construct
a forbidden-set routing labeling scheme with stretch (1 + ε),
and o(ε−2 log4 n log (nM)) labels length, and o(ε−1 log3 n)
tables size.

All our sizes are measured in the number of words, like
in [29]. Where a word is a space unit big enough to contain
an ID of a vertex in the graph or a distance.

Related work.
Our result on forbidden-set distance labeling scheme fall

into the framework of algorithms that get ready for a number
of failures. As opposed to dynamic algorithms where the
assumption is that the network tends to change over time,
here the assumption is that the network is fixed and some
of the edges/verices may occasionally crash. Pǎtraşcu and
Thorup [27] considered the problem of connectivity oracle
in this framework. They showed that one can efficiently
construct a linear size data structure such that given a set
F of f edge failures and two nodes s and t, can determine
in Õ(f) time if s and t are still connected in the remaining
graph. In a similar spirit, we show that one can preprocess a
planar graph into a labeling scheme that supports a distance
query such that given a set of f failures in Õ(f2) time.

There is a vast literature on distance labeling schemes and
distance oracles in the failure-prone case, below we mention
only the most relevant ones.

The problem of fully dynamic approximate distance oracle
for planar graphs was considered by Klein and Subramanian
in [24]. Klein and Subramanian show how to construct a (1+
ε)-distance oracle for planar graphs with worst case query
time of Õ(n2/3) and amortized update time of Õ(n2/3). In
this paper, we break these long-standing bounds, showing a
fully dynamic distance oracle for planar graphs with worst
case query and update time of Õ(n1/2). Note that while the

update time in [24] is amortized, both our update time and
query time are worst case.

Dynamic distance oracles for general graphs have been
extensively studied. Many papers considered the incerem-
ntal/decremental/fully dynamic distance oracles with exact
distances and achieved different tradeoffs (e.g. [2, 19, 23,
3, 30, 13, 31, 14]). A major breakthrough for fully dy-
namic exact distance oracle was developed by Demetrescu
and Italiano [13]. Demetrescu and Italiano devise a fully
dynamic exact distance oracle for directed general graphs
with non negative edge weights, with amortized update time
Õ(n2). Thorup [30] later extended the result to negative
edge weights and slightly improved the update time. Tho-
rup [31] also presented an algorithm with worst case update
time Õ(n2.75). Baswana et al. [3] considered the decremental
case for unweighted directed graphs and obtained amortized
update time Õ(n3/m).

Approximate dynamic algorithms were also explored for
general graphs (e.g. [3, 4, 33, 6]). Roditty and Zwick [33]
devise efficient distance oracles for the only incremental and
for the only decremental cases, both with (1 + ε) stretch,
constant query time and amortized update time Õ(n).

Bernstein [6] considered the fully dynamic case and pre-
sented an algorithm for weighted, undirected graphs with
O(log log log n) query time and update time close to Õ(m)
and (2 + ε) stretch. Recently, Roditty and Bernstein [8]
present an only decremental distance oracle for unweighted
undirected graphs with (2k−1+ε) stretch, O(k) query time
and about Õ(n2+1/k/m) amortized update time.

Distance oracles supporting failures were also studied. A
distance oracle for answering exact distance queries with
a single edge fault for general directed graphs is presented
in [15]. The size of the data structure is O(n2 log n) and the
query time is O(log n). This was extended to handle single
vertex/edge failures [7], and recently to dual-failures [16].
Approximate distance oracle supporting multiple edge fail-
ures is presented in [10].

Routing scheme supporting failures for general graphs has
been explored in [22] for single vertex failure and in [10] for
two edge failures. Recently, a routing scheme for general
graphs supporting multiple edge failures has been presented
in [9].

A forbidden-set distance labeling scheme for graphs
of bounded treewidth or cliquewidth allowing multiple
edge/vertex failures is presented by Courcelle and Twigg [11,
12]. Their scheme uses O(k2 log2 n)-bits size for graphs of
treewidth or cliquewidth k. Their scheme is also extended
to forbidden-set routing scheme. Courcelle and Twigg [12]
raised as a main open problem the question of constructing
efficient forbidden-set distance labeling scheme for planar
graphs. In this paper we present a (1+ ε) stretch answer for
the open problem.

Later, [1] devise a forbidden-set distance labeling scheme
for unweighted graphs of bounded doubling dimension. For
stretch (1+ε), the scheme uses O(1+ε−1)2α log2 n-bit labels,
where α is the doubling dimension of the graph. This scheme
is also extended to forbidden-set routing scheme.

Distance oracles for planar graphs in the failure free set-
ting have been explored by Thorup [28, 29] and Klein [25].
They show how to construct a (1 + ε)-distance oracle
with O(ε−1n log n) space and O(ε−1) query time for pla-
nar undirected graphs. For planar directed graphs, Tho-
rup [29] shows how to construct (1 + ε)-distance oracle of
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O(ε−1n log n log (nM)) space (where the edge weights are
drawn from {1, . . . , M}). Recently, Kawarabayashi, Klein
and Sommer in [21], show how to construct a (1+ε)-distance
oracle for undirected planar graphs with linear size and
O(ε−2 log2 n) query time.

Very recently, Baswana, Lath and Mehta [5] construct
an exact distance oracle for directed planar graphs in the
presence of one failure. Their scheme is capable of han-
dling only a single edge/vertex failure and answers distance
queries where the source is fixed. More precisely, they show
how to construct a data structure for a given source s of
size Õ(n) with query time O(log n) that is capable of an-
swering queries of the form: given two vertices u and v,
report the distance from s to v in G \ {u}. Baswana et
al. [5] also consider one failure exact distance oracle of size
Õ(n

√
n ), the preprocessing time is Õ(n

√
n ) and the query

time is Õ(
√

n ). In comparison, we present a distance ora-
cle with significantly smaller size, faster preprocessing and
query time at the price of (1 + ε) stretch. For example, for
a single fault and fixed ε, our distance oracle is of size Õ(n),
the preprocessing time is Õ(n) and the query time is Õ(1).
In addition, we can handle any number of faults.

We note that the idea of transforming a decremental al-
gorithm into a fully dynamic algorithm was first suggested
by Henzinger and King in their result on dynamic minimum
spanning forest [20].

Techniques.
From a very high level the staring point of our forbidden-

set label approach is to combine the forbidden-set label ideas
of [11, 12] with the failure-free ideas of [29, 25]. Doing this
for planar graphs seems to raise several non-trivial difficul-
ties, our solution requires new planar decomposition prop-
erties and uses several new ideas.

A key enabler of our result is a new planar decomposition
theorem that provides more refined properties (see Prop-
erties 1,2). Roughly speaking, given a spanning tree T , it
shows one can recursively decompose a planar graph into
two ’small’ regions using two paths from T . A crucial prop-
erty of this decomposition is that in each region there are at
most O(log n) special vertices that we call apices. Moreover
we show that all non-apex vertices are ’well behaved’ in the
sense that they can store routing information for themselves
(apices can belong to too many regions and require special
care).

Our forbidden-set label scheme uses this property in a
non-trivial manner to store sufficient information to detour
around failed vertices and edges. This is done by having
the failed vertex label (denoted FL) store a set of O(log2 n)
vertex-region pairs (w, R) and their labels L(w, R). Roughly
speaking, in regions where there are faults, the FL labels of
the faults provide the L label of other failure-free vertex-
region pairs that allow finding an alternative path between
s and t that is (1+ε) close to the shortest path in the graph
with the failures.

An additional complication is when the fault is an apex
in a region. In this case the label of the fault cannot store
the required information (because a vertex can be an apex
in many regions). Our approach is to prepare for this type
of fault in advance by always computing the distance in a
region R as if all apices are faulty. This means we need
special care to deal with the case that some of the apices are
not faulty: Since each region has O(log n) apices, we store

labels for when the apices are not-fault and each vetrex that
stores information about a region R also stores these labels
for all the apices or R.

The main proof is constructed by three nested induction
statements. The outer induction statement (see Lemma 7)
is an induction on the length of the path and is quite stan-
dard. The two remaining nested induction statements (see
Lemma 6) are rather subtle statements on certain tuples of
four vertexes and two paths which we call legitimate tuples.
These tuples (see Definition 7) play a crucial role in the
proof. The induction statement on legitimate tuples is an
induction on the regions induced by the tree of separators
and in each region an inner induction is on the length of the
legitimate pairs.

Our construction of a fully dynamic (1 + ε) distance ora-
cle from a (1 + ε) forbidden-set labeling scheme with worst
case cost is quite general. Roughly speaking we keep two
forbidden-set distance oracles in each interval of Õ(

√
n )

rounds: the first copy is used for answering queries, the
second copy is gradually constructed each round for the first
half of the interval, and then gradually updated two updates
each round for the second half of the interval. At the end of
the stage, the second copy is ready to become the new first
copy and the new second copy is stared from scratch.

This reduction already provides additional new and non-
trivial fully dynamic distance oracles for graphs of bounded
tree-width (and clique-width) and unweighted graphs with
bounded doubling dimension (based on known exact and
(1 + ε) forbidden-set labeling schemes for these families).
Additionally, this approach may potentially lead to new fully
dynamic distance oracles for other families of graphs (or
even general graphs). We also note that our techniques and
the results concerning planar graphs (Theorems 1–5) can be
extended to graphs of bounded Euler-genus, i.e., the graphs
that can be embedded on surface (orientable or not) of given
genus.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the planar decomposition theorem used
in our construction, and introduce some preliminaries. In
Section 3 we present as a warm-up a simple distance label-
ing scheme for the failure-free case. Section 4 describes the
construction of the forbidden-set labels. Section 5 describes
the query algorithm. Finally, in Section 6, we outline the
stretch analysis. Our fully dynamic approximate distance
oracle is presented in Section 11. In addition, for simplic-
ity, we first present a construction for unweighted graphs,
that handles only vertex deletions and uses slightly larger
labels length. We later show how to extend these results for
weighted graphs, for other updates operations (edge dele-
tions, node insertions, edge insertions and weight changes)
and the modifications needed to slightly reduce the labels
length.

2. TREE OF SEPARATORS
Consider a planar graph G. Denote by V (G) and E(G)

respectively the sets of vertices and edges of G. Let T be
a shortest path tree rooted at some vertex root(T ), and let
G′ be the planar graph obtained by triangulating a plane
embedding of G. The root path of some vertex v of G,
denoted by Tv, is the path between root(T ) and v in the tree
T . Two nodes of a tree are relatives if one is the ancestor of
the other one.
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We will make the use of the well-known two-path separa-
tor for planar graphs [26][Lemma 2, p. 179].

Lemma 1. Given a subgraph C of G, one can find in lin-
ear time an edge (u, v) ∈ E(G′)\E(T ) such that C\(Tu∪Tv)
is divided into two subgraphs A, B of at most 2|C|/3 vertices
such that no edge of G links a vertex of A to a vertex of B.
Moreover, A and B lie on different faces of the plane graph
Tu ∪ Tv ∪ {(u, v)}.

We recursively apply Lemma 1 and we define a separator
hierarchy tree T as follows. The tree T is binary, each node µ
of T corresponds to an edge (u, v) of G′ induced by Lemma 1
applied on some subgraph C of G. The root of T is the edge
(u, v) of Lemma 1 in the case C = G. The two children of
(u, v) are then the two edges corresponding to the two path
separators when applying Lemma 1 to the subgraphs A and
B. The decomposition stops whenever we find (u, v) for C
such that C ⊆ Tu ∪ Tv, that is there is no more subgraphs
A and B.

Such a tree T has depth O(log n) and can be constructed
in O(n log n) time.

Let us introduce some definitions. Consider a node
µ = (u, v) of T. The cluster of a node µ (denoted by
Cluster(µ)) is the subgraph C of G on which we invoked
Lemma 1 to produce (u, v). The level of µ (denoted by
Level(µ)) is the number of edges in T from µ to the root
of T.

The cycle-separator of node µ is a subgraph of G′

defined recursively as follows. If µ is the root of T,
then Cycle-Sep(µ) = Tu ∪ Tv ∪ {(u, v)}, otherwise
Cycle-Sep(µ) = Cycle-Sep(µ′)∪Tu ∪Tv ∪{(u, v)}, where
µ′ is the parent of µ. The separator of µ (denoted by Sep(µ))
is simply the subgraph of Cycle-Sep induced by the edges
of T , i.e., Sep(µ) = Cycle-Sep(µ)∩E(T ). Note that Sep(µ)
is a subtree of T containing root(T ).

Consider a vertex x of G. The node µ of T of smallest
level such that x belongs to Sep(µ) is called the home of x,
and is denoted by Home(x). This definition is justified by
the fact that the set of nodes of T containing in its separator
any given vertex of G forms a non-empty subtree of T.

Note that if µ′ is the parent of µ then vertices of
Cycle-Sep(µ′) separate Cluster(µ) from the rest of the
graph. We would like to have all vertices of Cycle-Sep(µ′)
store information about Cluster(µ). Unfortunately, this
would cause some vertices to store too much information.
Our solution is to define a subset of Cycle-Sep(µ′) which
we call Frame(µ) and a set of special vertices in Frame(µ)
that we call RelApices(µ). Roughly speaking we will show
that (1) vertices in Frame(µ) separate Cluster(µ) from
the rest of the graph; (2) the size of RelApices(µ) is Õ(1);
(3) If vertices in Frame(µ) \ RelApices(µ) store informa-
tion about Cluster(µ) the total information each vertex
stores is Õ(1).

The apices of µ (denoted by Apices(µ)) are the vertices
of Cycle-Sep(µ) with degree ! 3 in Cycle-Sep(µ).

Observe the following useful property:

Property 1. For every node µ of T, |Apices(µ)| " 2 ·
Level(µ) + 1.

Proof. Consider the graph S obtained from
Cycle-Sep(µ) by cutting all edges of Cycle-Sep(µ)
not in T into two degree-1 vertices. In other words, we

delete each edge (u, v) of Cycle-Sep(µ) ∩ E(T ) not in
T and we add a pending degree-1 vertex to u and to v.
The graph S is a tree rooted at root(T ) whose number of
leaves is precisely twice the number of edges we have cut.
Moreover, the number of nodes of degree ! 3 in S is the
same as in Cycle-Sep(µ).

By induction on Level(µ), the number of leaves of S is
$ = 2 · (Level(µ) + 1). Note that the number of nodes of
degree ! 3 in any tree of $ leaves is " $− 1. It follows that
S contains at most 2 · Level(µ) + 1 vertices of degree ! 3,
and thus |Apices(µ)| " 2 · Level(µ) + 1.

The tails of µ, denoted by Tails(µ), is the subgraph in-
duced by the all the edges of Sep(µ) not in Sep(µ′), if µ has
a parent µ′, or simply induced by the edges of Sep(µ) if µ
is the root. In other words, Sep(µ) = Tails(µ) ∪ Sep(µ′).
Each one of the sub-paths Tails(µ)∩ Tu and Tails(µ)∩ Tv

is called tail. Let P be the set of all tails appearing in the
nodes of T.

The next crucial definition emphasizes that only some
parts of Sep(µ′), called the frame of µ, is needed for separat-
ing Cluster(µ) from the rest of the graph. Informally, one
can see tree Sep(µ′) as the union of internally disjoint paths
(called segments) meeting only in apices. Then, we keep in
Frame(µ) only segments touching Cluster(µ), i.e., hav-
ing at least a neighbor in Cluster(µ). Segments that are
in Tails(µ) are excluded from Frame(µ) and considered as
candidate for µ’s child frames.

More precisely, we define it as follows. If µ is the root of
T, Frame(µ) is the empty graph. Otherwise, let µ′ be the
parent of µ. Then, Frame(µ) is the subgraph of Sep(µ′)
induced by all the vertices x of Sep(µ′) for which there is
a vertex y with a neighbor in Cluster(µ) such that there
is a path from x to y in Sep(µ′) \ (Apices(µ′) \ {x}). Note
that Frame(µ) is in general a forest, and may contain some
component reduced to a single vertex (e.g., an apex x having
a neighbor in the cluster). By construction, a path linking
a vertex of Cluster(µ) to a vertex out the cluster has to
intersect Frame(µ).

The region of µ (denoted by Reg(µ)) is the subgraph of
G induced by all the vertices of Cluster(µ) ∪ Frame(µ).

The last crucial observation is about vertices that belong
to more than one frame. We say that a vertex v ∈ Frame(µ)
is singular in µ if each node µ̃ with v ∈ Frame(µ̃) is a rela-
tive of µ, i.e., either is an ancestor or a descendant of µ. The
intuition behind this concept is that singular vertices in the
frame of µ can only be adjacent to vertices of a single clus-
ter, namely Cluster(µ) or some of its descendant (all de-
scendant clusters being included in Cluster(µ)). Whereas
non-singular vertices can be adjacent to disjoint clusters.

We will extensively use the following property about non-
singular vertices:

Property 2. If v ∈ Frame(µ) \ Apices(µ) is non-
singular in µ, then at most one child of µ can contain v
in its region.

Proof. As preliminaries of the proof, we need to show
the following three observations:

The first observation is that the set of nodes of T con-
taining a given vertex v in its frame induced a subtree of
T, hereafter denoted by F (v). For that, consider three
nodes µ1, µ2, µ3 of T such that µ1 is the parent of µ2,
and µ2 is some ancestor of µ3. We show that if a vertex
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v ∈ Frame(µ1) \ Frame(µ2), then v /∈ Frame(µ3). Be-
cause on one side Cluster(µ3) ⊂ Cluster(µ2) and on the
other side v /∈ Frame(µ2) implies that v is not part of a
segment touching Cluster(µ2). So, v cannot be part of a
segment touching Cluster(µ3) and is not in Frame(µ3).

The second observation is that for every non-root node µ,
the plane graph Cycle-Sep(µ′) has a face where the sub-
graph Cluster(µ) lies and such that its face-walk, hereafter
denoted by W (µ), includes Frame(µ). Recall that the face-
walk of a face f in a plane graph is the subgraph composed
of all vertices and edges lying on the border of f . This can
be shown as follows by induction on the level of the parent
µ′ of µ. Let C = Cluster(µ′), and let A = Cluster(µ).

Let us first assume that µ′ = (u′, v′) is the root of T.
Then, by Lemma 1 applied on C, subgraph A lies on one of
the two faces of Tu′ ∪Tv′ ∪{(u′, v′)} = Sep(µ′), say fA. The
face-walk of fA, W (µA), clearly contains Frame(µ).

Let us assume now that µ′ is not the root of T, and
denote by µ′′ the parent of µ′. By induction hypothesis,
C lies on some face of Cycle-Sep(µ′′), say fC . We re-
marque that Tails(µ′) ∪ {(u′, v′)} must be a part of C,
and thus lies on fC . Otherwise either A would be empty,
or one of the root path Tu′ or Tv′ would intersect the
tree Sep(µ′), creating by this way a cycle in T . In both
cases, this is a contradiction. So, Tails(µ′) ∪ {(u′, v′)}
lies on fC . It follows that adding Tails(µ′) ∪ {(u′, v′)} to
Cycle-Sep(µ′′) splits face fC into two faces, say fA and
fB , containing respectively the clusters A and B. Since
Cycle-Sep(µ′) = Cycle-Sep(µ′′) ∪ Tails(µ′) ∪ {(u′, v′)},
we have proved that fA and fB are faces of Cycle-Sep(µ′).
By the Jordan’s Curve, only the segments included in the
face-walk of fA can touch A. It follows that Frame(µ) is
included in the face-walk W (µA) of fA, concluding the proof
of the second observation.

The last observation is that if v is non-singular in µ,
then the subgraph Cycle-Sep(µ′) contains a face-walk W (=
W (µ) that contains v, where µ′ is the parent of µ. Note that
the nodes of tree F (v) are singular or non-singular, the root
of F (v) being necessarily singular. Define µ̃ as the node of
F (v) with the largest level such that v is singular, and let µ̃A

and µ̃B be the children of µ̃. All descendants of µ̃A and µ̃B

must be non-singular. W.l.o.g. assume that µ is a descen-
dant of µ̃A. By the second observation, there are two faces
fA and fB of Cycle-Sep(µ̃) whose face-walks W (µ̃A) and
W (µ̃B) both contains v. In Cycle-Sep(µ′) face fB exists,
whereas Cluster(µ) lies on face fA. The face-walk W (µ̃B)
of face fB is precisely the face-walk W we are looking for.

We are now ready to prove Property 2. Let µA, µB

be the two children of µ, and let C = Cluster(µ),
A = Cluster(µA), and let B = Cluster(µB). We
have v ∈ Frame(µ), so it implies that v /∈ Cluster(µ)
and v /∈ Cluster(µA) since Cluster(µA) ⊂ Cluster(µ).
Moreover, if for a child µA we have v /∈ Frame(µA), then
v /∈ Reg(µA) and we are done because the vertices of
Reg(µA) are, by definition, either in the cluster or in the
frame of µA.

So let us assume that v ∈ Frame(µA) ∩ Frame(µB).
In particular, v ∈ W (µA) ∩ W (µB), the face-walks in
Cycle-Sep(µ) containing the frames of µA and µB . By the
third observation applied to µA, there is a face-walk W (=
W (µA) in Cycle-Sep(µ) containing v. Similarly, there is
a face-walk W ′ (= W (µB) in Cycle-Sep(µ) containing v.
We have possibly W = W ′, however W (µA) (= W (µB). It

follows that v belongs to at least three different face-walks
of Cycle-Sep(µ), or equivalently, belongs to the border of
at least three different faces of Cycle-Sep(µ). This contra-
dict the fact v /∈ Apices(µ) and must be of degree " 2 in
Cycle-Sep(µ). Therefore, we have prove that, for at least
one of the two children of µ, say µA, v /∈ W (µA) and thus
v /∈ Frame(µA) as required.

Let NewApices(µ) = Apices(µ)\Apices(µ′) be the new
apices of node µ w.r.t. its parent µ′. The relevant apices
of µ (denoted by RelApices(µ)) is the set of vertices in
(Apices(µ) ∩ Frame(µ)) \ NewApices(µ). Note that by
Property 1, |NewApices(µ)| " 2.

An important corollary of Property 2 is that as long as
a vertex v does not become a relevant apex then the set of
regions it belongs to forms two paths in T. More precisely:

Property 3. For every vertex v, the set of nodes µ of T
such that v ∈ Reg(µ) \ RelApices(µ) induces at most two
root paths in T.

Proof. Consider the subgraph F (v) (resp. C(v)) in-
duced by all the nodes of T such that v ∈ Frame(µ) (resp.
v ∈ Cluster(µ)). Recall that the vertices of each re-
gion Reg(µ) belongs either to Cluster(µ) or to Frame(µ).
So, the subset X of nodes of T we are looking for verifies
X ⊆ C(v) ∪ F (u).

From the construction of T, C(v) is a root path of T since
sibling clusters are disjoint. And, from the first observation
of the proof of Property 2, F (v) is a tree. Let r be the root
of F (v). Note that once v ∈ Frame(µ), then no descendents
of µ can contain v in its cluster. It follows that path C(v)
ends at r.

By definition of singularity, all the nodes of F (v) where v
is singular form a path in F (v) that starts from r and that
ends to some singular node, say µ. Then, from that node,
each proper descendent of µ is non-singular. Let µ1, µ2 be
the children of µ, if they exist in F (v).

If v ∈ Apices(µi) for some i ∈ {1, 2}, then v is also an
apex in all descendents of µi in F (v). Thus none of µi and
its descendents can belong to X. So, v /∈ Apices(µi). Now,
as long as v is not an apex in a non-singular node µi one
can apply Property 2 and conclude that µi has at most one
child in X. This forms at most one path for each child of µ.
Overall, vertex v is contained in at most two root paths of
T.

The last usefull property is the following.

Property 4.
P

µ∈T |V (Reg(µ))| = O(n log n).

Proof. Let h " log3/2 n+O(1) be the maximum level of
a node in T. We use a double counting depending whether
a given vertex v is a relevant apex of a node µ or not.

From Property 3, each vertex v contributes to at most
2h + 1 regions of T as non relevant apices. So, in total, the
number of non relevant apices in the regions sums to at most
(2h + 1) · n = O(n log n).

From Property 1, each region of level i contains at most
2i + 1 " 2h + 1 relevant apices. The tree T contains at
most |E(G′)| − (n − 1) < 2n nodes, since each node of T
corresponds to a distinct non-tree edge of the triangulated
plane graph G′ with 3n− 6 edges. Therefore, the number of
relevant apices in all the regions sums to (2h + 1) · 2n.

All together, the sum of vertices in all the regions of the
nodes of T is (2h + 1) · 3n = O(n log n).
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The notions of apices, tails and illustration of Property 2
are presented in Figure 1.

We observe that all definitions we have presented in this
section and all technical results we prove further in the pa-
per, but those of Lemma 1 and of Property 2, are purely
combinatorial. They are independent on the topology of the
surface on which G is embedded. In fact, our results extend
to graphs of Euler-genus g by slightly enhanced the tree de-
composition T. It can be shown that in such graphs there
are at most 2g root paths of tree T whose removal leaves the
graph planar (see [17, 21]). We create therefore a new root
node on the top of T composed of these 2g root paths. For
bounded g, the analysis remains essentially the same.

Denote by Ancestors(µ) be the set of proper ancestor
nodes of µ in T, and let Ancestors[µ] = Ancestors(µ) ∪
{µ}.

In the remaining, we will mainly focus on the regions
of the nodes of T, a notion which is more convenient to
use. We extend all the definitions we saw so far about a
node µ of T to its region R = Reg(µ). This mainly con-
cerns Tails, RelApices, Ancestors, Level. For instance,
RelApices(R) is just a short for RelApices(µ) such that
R = Reg(µ).

3. FAILURE FREE DISTANCE LABELS
As a warm-up we describe a simple distance labeling

scheme for the failure-free case. This scheme will later be
modified (quite substantially) to handle failures.

Consider an Euler tour of T .

Definition 1 (Euler Tour Labels). For each ver-
tex v of G, let ET(v) = 〈a, b,dist(v, root(T ), T )〉 where a
and b are respectively the entering and leaving time of v in
the Euler tour of T .

Observe that given ET(u), ET(v) it is possible to compute
if one of them is an ancestor of the other in the tree T . Since
T is a shortest path spanning tree of G, in case one is an
ancestor of the other, it is possible to compute their distance
in G.

For a subgraph H of G and a subset of vertices X of G, we
denote by H + X the subgraph composed of H , the vertices
of X, and of all the edges of G linking a vertex of H to
a vertex of X. For a set S of nodes in T, let Regions(S)
be the set of corresponding regions, namely, Regions(S) =S

µ∈S Reg(µ). Finally, let R = Regions(V (T)) be the set
of all the regions of T. For a tail P ∈ P, let Reg(P ) ∈ R be
the region of minimum level such that P ⊂ Tails(R).

Recall that a ρ-net in a given graph is a ρ-dominating
subset of vertices that are pairwise at distance at least ρ.
A ρ-dominating set is a subset S of vertices such that every
vertex is at distance at most ρ from S. For all path P , vertex
c ∈ P , and reals ρ1, ρ2 ! 0, denote by N (P, c,ρ 1, ρ2) any
ρ1-net of the sub-path composed of all the vertices of P at
distance at most ρ2 from c in P . Note that |N (P, c,ρ 1, ρ2)| =
O(ρ2/(ρ1 + 1)).

Definition 2 (Failure-Free Geometric Net-Points).
For all region R and vertex v ∈ R, and for each tail P of R,
let cv ∈ P be the closest vertex to v in R, i.e., any vertex
cv ∈ P such that dist(v, cv, R) = minx∈P dist(v, x, R).
Let FFN(v, R) = {x ∈ N (P, cv, 2iε/8, 2i) : P tail of R,
0 " i " log (nM)}.

We now define the failure-free label of a vertex v of G.

Definition 3 (Failure-Free Label). The failure-
free label FFL(v) of a vertex v is defined as follows:

FFL(v) = {E0(v, R) : R ∈ Regions(Ancestors[Home(v)])}

where E0(v, R) is:

E0(v, R) = {I0(v, x, R) : x ∈ FFN(v,R)}

where I0(v, x, R) = 〈ET(v), ET(x),dist(v, x, R)〉 is a tuple
that stores the ET label of the endpoints v, x and their dis-
tance in R.

This concludes the construction of the labels. Note that
the label FFL(v) of each vertex v stores E0(v, R) for
O(log n) regions. The size of E0(v, R) is O(ε−1 log (nM))
as there are O(ε−1 log (nM)) net-points in FFN(v, R).
We thus get, that the label size for FFL(v) is
O(ε−1 log n log (nM)).

Let us now turn to the query phase.
In the query phase, we get the labels FFL(s) and FFL(t)

of two vertices s and t, whose distance needs to be estimated.
The query phase is schematically done as follows:

1. Compute a weighted sketch graph H = H(s, t).

2. Compute a shortest path distance from s to t in H and
return it.

We compute the graph H as follows. The set of vertices
in H is the set of vertices that are stored in FFL(s) and
FFL(t). For every I0(v, x,R) that is stored in FFL(s) or
FFL(t), add an edge (v, x) with weight dist(v, x, R). For
every two vertices x1 and x2 of H that are relatives in T ,
we also add an edge between them of weight the distance in
G between them, using ET(x1) and ET(x2).

This concludes the construction of the graph H . The next
step is to invoke a shortest path algorithm between s and t
in H and return that distance.

We now show that the returned distance is (1+ε) approx-
imated.

Lemma 2. dist(s, t, H) " (1 + ε) · dist(s, t, G).

Proof. Let Q = Q(s, t) be a shortest path from s to
t in G, and let R be the region with minimal Level(R)
such that Tails(R) ∩ Q (= ∅. Since the tails of all proper
ancestors of R do not intersect Q, the entire path Q be-
longs to R. Let Rs = Reg(Home(s)). Note also that
R ∈ Regions(Ancestors[Rs]), since Rs itself satisfies
Tails(Rs) ∩ Q (= ∅. Therefore, E0(s, R) appears in the
label of s. Similarly, E0(t, R) appears in the label of t.

Let x be a vertex in Tails(R)∩Q, and let P be a tail of R
containing x. Let d1 = dist(s, x, Q) and d2 = dist(x, t, Q),
so d1 + d2 = dist(s, t, Q). Let i be the integer such that
2i " d1 < 2i+1. Let cs be the closest vertex to s on P . The
distance in R from s to cs is at most d1, so the distance on
P from cs to x is at most 2d1 < 2i+2. By construction of the
label of s, there is in FFL(s) a net-point x1 ∈ P at distance
at most 2i+2 ·ε/8 " d1 ·ε/2 from x. So, the edge (s, x1) is in
H whose length is dist(s, x1, R) " d1 + d1 · ε/2. Similarly,
in the label FFL(t) there is a net-point x2 ∈ P close to x,
so that the edge (t, x2) is in H with length dist(t, x2, R) "
d2 + d2 · ε/2. And, the distance between x1 and x2 on P
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Figure 1: Illustration of the notion of apices. Assume (Tv1 , Tu1) is the separator of the root of T. The separator
(Tv1 , Tu1) separates the plane into two parts, the interior and exterior. Let R be the region of the interior
part. Assume (Tv2 , Tu2) is the separator of region R. The vertices z1 and z2 are the apices of R, and the red
paths the tails of R. The frame of R is the subgraph colored blue. Note that all vertices in the first separator
(Tv1 , Tu1) but the apices belong to only one of R1 and R2.

is dist(x1, x2, P ) " (d1 + d2) · ε/2. Note that (x1, x2) are
relatives in T , so the edge (x1, x2) is in H .

Therefore, the graph H contains the edges (s, x1), (x2, t)
whose lengths are with respect to R, and the edge (x1, x2)
whose length is with respect to P , a shortest path in G.
We get that dist(s, t,H) " dist(s, x1, R)+dist(x1, x2, P )+
dist(x2, t, R) " [d1+d1 ·ε/2]+[(d1+d2)·ε/2]+[d2+d2 ·ε/2] =
(1 + ε) · (d1 + d2) = (1 + ε) · dist(s, t, Q), as required.

4. FORBIDDEN-SET DISTANCE LABELS
In this section we describe the labels of the vertices.
Observe that given ET(u), ET(v) and ET(f) it is possible

to compute if the faulty vertex f is on the path in T between
u and v, in the case u, v are relatives in T .

In the failure-free case each vertex stops storing informa-
tion once it becomes part of one of the separator paths.
For the failure-prone setting, we continue storing informa-
tion about the vertex even after it becomes part of one of
the separator paths. We would like to store for each vertex
v information on all the regions it belongs to. However, a
vertex may belong to many regions. So the idea is to store
information about a vertex as long as it does not become
an apex. If a vertex becomes an apex in a region R, then
we use the fact that each region has few apices hence any
vertex that stores information about region R will also store
the fault-labels of all the apices of R and apices in the child
regions R1, R2 of R.

Definition 4 (Relevant Regions). For every vertex
v, let RR(v) = {R ∈ R : v ∈ R \ RelApices(R)} be the set
of all regions R where v is not a relevant apex.

Note that by Property 3, |RR(v)| = O(log n).
In the following, we denote by Arn(R) = RelApices(R)∪

NewApices(R) the apices of R that are relevant or new. We
now define for every v ∈ R a set of net-points N(v, R). This

set will contain all the relevant and new apices Arn(R) and
a sufficiently fine net of points from each tails P of R.

Definition 5 (Geometric Net-Points). Let R be a
region, and let R̃ = R \ RelApices(R). For every path P
of R, and for every vertex v ∈ R, let cv ∈ P be the closest
vertex to v in R̃ + {v}, i.e., any vertex cv ∈ P such that
dist(v, cv, R̃ + {v}) = minx∈P dist(v, x, R̃ + {v}).

Define N(v, R) = {x ∈ N(v, P ) : P tail of R} ∪ Arn(R),
where N(v, P ) is the set composed of the vertices of
N (P, cv , 2iε/384, 2i) for each 0 " i " log (nM).

We are now ready to define the forbidden-set distance la-
bel of a node v. Intuitively, it is composed of the fault-labels
of a node v in all its relevant regions, where the fault-label
of v in region R is a set of failure-free labels for all net-points
w of tails of R plus the fault-labels of all the apices of R in
the child regions R1, R2 of R.

Definition 6 (Forbidden-Set Distance Labels).
The fault-label FL(v) of a vertex v is defined as follows:

FL(v) = {FL(v, R) : R ∈ RR(v)} ∪ L(v)

where FL(v, R) is defined as:

FL(v, R) = {L(w, R) : w ∈ N(v, R)}
∪ {L(w, R1), L(w, R2) : w ∈ Arn(R)}

where R1, R2 are the child regions of region R (if exists).
The label L(w, R) is defined as:

L(w, R) = {E(w, R)} ∪ L(w)

where L(w) is:

L(w) =
˘
E(w, R′) : R′ ∈ RR(w)

¯
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where E(w, R′) is:

E(w, R′) =
˘
I(w, x,R′) : x ∈ N(w, R′)

¯

where I(w,x, R′) = 〈ET(w), ET(x),dist(w, x, R̃′),1(w, x)〉,
with R̃′ = (R′ \ RelApices(R′)) + {w, x}, is a tuple that
stores the ET label of the endpoints w, x, their distance in R̃′,
and a binary indicator 1(w, x) that is 1 iff (w, x) ∈ E(G).

The label L(w, R) is reminiscent of the failure-free labels
of the previous section. The main difference is that distances
are computed in R̃ (the region R minus the relevant apices).
The idea is that a fault f needs to store all the possible
detours (up to a 1+ε approximation), this is done by having
each fault store a fault-label FL(v). The fault-label contains
a set of vertex-region pairs (w, R) and their labels L(w, R).
Roughly speaking, in regions where there are faults, the FL
labels of the faults provide the L label of other vertex-regions
that allows to find an alternative path between s and t that
is close to their shortest path in the graph with the failures.

An additional complication is when the fault is an apex
in a region. In this case the label of the fault cannot store
the required information (because a vertex can be an apex
in many regions). Our approach is to prepare of this type
of fault in advance by always computing the distance in a
region R as if all apices are faulty. This is done by consid-
ering only the subgraph R̃ (the region without the relevant
apices). Obviously, this means we need to deal with the
case that some of the apices may be not faulty - this is done
by having FL(v, R) store the L labels in the child regions
R1, R2 for the new apices of R. This allows f to provide the
L labels of the apices that are not faulty if they are needed.

Consider the labels L(v, R) and L(v, R′) such that R′ is
a descendant region of R. If the vertex v is not a relevant
apex of R′ then observe that L(v, R′) = L(v, R).

Lemma 3. For every vertex v, the size of the label FL(v)
is O(log2 n log2(nM)/ε2).

Proof. The number of net-points in N(v, R) is
O(log(nM)/ε), thus the size of N(v, R) is O(log(nM)/ε).

The label L(v, R): there are O(log n) regions in RR(v), for
each such region O(log(nM)/ε) data size is stored. Hence,
the size of L(v, R) is O(log n log(nM)/ε).

The label FL(v, R): there are O(log(nM)/ε) net-points
in N(v, R), for each such net-point w the size of L(w, R)
is O(log n log(nM)/ε). In addition, there are at most log n
vertices in Arn(R), for each such vertex O(log n log(nM)/ε)
data size is stored. Therefore the total size of FL(v,R) is
O(log n log2(nM)/ε2).

The label FL(v): there are O(log n) regions in RR(v),
for each such region FL(v, R) is stored, which is of
size O(log n log2(nM)/ε2). Therefore the total size is
O(log2 n log2(nM)/ε2).

We say that a label L contains a label L′, or simply write
L′ ∈ L, if the label L′ is explicitly stored in the label of L.

5. DISTANCE QUERIES
A distance query (s, t, F ) involves a source s, a target t and

a subset F of faulty (or forbidden) vertices. Its input consists
of the labels {FL(s), FL(t)} ∪ {FL(v) : v ∈ F}. Answering
a query (s, t, F ) based on the given labels, namely, finding an
approximate distance from s to t in the graph G\F , is done

as in the fault-free case, namely, first compute a weighted
sketch graph H = H(s, t, F ) and then compute a shortest
path distance from s to t in H and return it.

Next, we show how to construct the weighted graph H .
The general idea is that only “safe” edges are added to H ,
where an edge is safe if the path it represents also occurs in
G \ F . In fact, for our purposes, it suffices to consider only
the labels {L(s), L(t)} ∪ {FL(v) : v ∈ F}. Hereafter, when
we say that a label or edge-set appear in the query, we mean
that it appears in {L(s), L(t)} ∪ {FL(v) : v ∈ F}.

Building the sketch graph H.
We compute the graph H as follows.

1. For every edge-set E(v, R) that appears in the query
we do the following: For each tuple I(v, x,R) stored
in E(v,R), we add the edge (v, x) to H with weight
ω̃(v, x) if it is safe.

2. In addition, for every two net-points that belong to the
same tail P ∈ P we also add an edge between them
whose weight is the distance between them, if there is
no fault between them in P .

Specifically, for every two net-points x1 ∈ E(w1, R)
and x2 ∈ E(w2, R) such that x1, x2 are relatives in T ,
we add an edge between x1 and x2 (whose weight is
the distance between them) if there is no fault on the
path in T between x1 and x2. Checking if the edge
(x1, x2) should be added is simply done by the Euler
tour labels ET(x1), ET(x2) and {ET(f) : f ∈ F}.

We now explain how to determine if the edge (v, x) is safe.
Let R̃ = R\RelApices(R) and let Q be a tail of Tails(R)

such that x ∈ Q.
For the safety check we need the following observation.

By construction a faulty vertex f satisfies f ∈ R and f is
not a relevant apex of R if and only if E(f,R) ∈ L(f). Thus,
having the labels of the faulty vertices, we can easily find all
faulty vertices f such that f ∈ R and f is not a relevant
apex of R.

Safety of an edge (v, x) ∈ E(v,R).

1. If either v or x are faulty then set safe(v, x) := False;

2. Otherwise, if 1(v, x) = 1, namely (v, x) ∈ E(G), then
set safe(v, x) := True;

3. Otherwise, for every faulty vertex f such that f ∈ R
and f is not a relevant apex of R do the following: Use
E(f, R) to approximate dist(f, x, R̃ + {x}) (by con-
sidering all net-points x1 in N(f, Q) and taking the
edge that gives the minimal ω̃(f, x1) + dist(x1, x, Q)).
Let ˜dist(f, x, R̃ + {x}) be the approximation. Check
if ˜dist(f, x, R̃ + {x}) " (1 + ε/48) · ω̃(v, x), if the in-
equality holds, then set safe(v, x) := False. Otherwise
if the inequality does not hold for all f ∈ R that are
not a relevant apex of R then set safe(v, x) := True.

We next show that the sketch graph H distance preserver
of G\F , namely, the distances in H are greater equal to the
distances in G \ F .

Lemma 4. For every pair of nodes x1, x2,
dist(x1, x2, H) ! dist(x1, x2, G \ F ).
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Proof. Note that is enough to show the claim for only
edges in H . Consider an edge (v, x) that was added to H .
It is not hard to verify that edges from the second type that
are added to H are indeed safe, that is do not contain a
faulty vertex on the path they represent. We now show if
safe(v, x) is True for (v, x) ∈ E(v, R), then there is no fault
on the path (v, x) represents.

Recall that the edge (v, x) represents a path in the sub-
graph R̃ + {v, x} and thus does not contain any relevant
apex of R, except maybe v or x itself, but we already
checked that v and x are not faulty. Hence, we only need
to check the safety of the edge (v, x) against faulty ver-
tices in R that are not relevant apices of R. Consider a
faulty vertex f ∈ R̃. Using E(f, R) ∈ L(f) ∈ FL(f), we
can find ˜dist(f, x, R̃ + {x}) such that dist(f, x, R̃ + {x}) "

˜dist(f, x, R̃ + {x}) " (1 + ε/48) · dist(f, x, R̃ + {x}). This
is by straightforward calculations and due to the fact that
the net-points N(f, Q) contains a net-point on Q at distance
at most ε/96 · dist(f, x, R̃ + {x}) from x (again by straight
forward calculations). Note that if safe(v, x) is True then

˜dist(f, x, R̃+{x}) > (1+ε/48)·ω̃(v, x). Thus, dist(f, x, R̃+
{x}) > ω̃(v, x). It is not hard to see that f cannot be on the
path (v, x) represents. Note also that if safe(v, x) is False
then dist(f, x, R̃ + {x}) " (1 + ε/48) · ω̃(v, x).

We get that only safe edges are added to H , it is left to
show that indeed H contains a short path between s and t.

6. ANALYSIS
In this section, we prove the existence of a path from s

to t in H of length at most (1 + ε) · dist(s, t, G \ F ) by
Lemma 6 (the more involved part of the analysis) and by
Lemma 7. The very high level of the analysis is as follows.
Lemma 7 is derived from Lemma 6 almost trivially. Loosely
speaking, Lemma 6 shows the following (with some more
technical details to handle apices). Consider a shortest path
Q(y1, y2, G \ F ) between two vertices y1 and y2 in G \ F
and assume the query contains the labels L(x1) and L(x2)
of two net-points x1 and x2 that are “close” (with respect
to the distance from y1 to y2) to y1 and y2 respectively and
consider the tail P with minimal Level(P ) such that P
contains some vertex r in the path from x1 to x2. Then using
similar arguments as in the failure-free case, there exists two
net-points r1 and r2 on P such that the path obtained by
the concatenation of the paths from x1 to r1, from r1 to r2

and from r2 to x2 is of length roughly the distance from y1

to y2 in G \ F . Therefore if these paths are safe, then we
have a path from x1 to x2 in the graph H that is “close”
to the path from y1 to y2 in G \ F . In case one of these
paths is not safe then using the labels of the faulty vertices
it is possible to find two other net-points z1 and z2 that are
“close” to the path from y1 to y2 in G\F , z1 is close to some
vertex w1 on that path and z2 is close to some other vertex
w2 on that path and the graph H contains a path from z1

to z2 of length close to dist(w1, w2, G \ F ).
Now, Lemma 7 is derived easily from Lemma 6. Con-

sider the path from s to t in G \ F , by Lemma 6 there
exist four vertices z1, z2, w1, w2 such that w1 and w2 are on
the path Q(s, t, G \ F ) and z1 and z2 are “close” to w1 and
w2. Moreover, there exists a path in H of length roughly
dist(w1, w2, G \ F ). Now using induction on the length
of a path, we get that there is also a path from s to z1

of length roughly dist(s, z1, G \ F ) which is also roughly
dist(s, w1, G \ F ). Similarly, there exists a path from z1 to
t of length roughly dist(z2, t, G \ F ) which is also roughly
dist(w2, t,G \ F ). Concatenating these three paths we get
a path from s to t of length roughly dist(s, t, G \ F ).

We now introduce some definitions that would be helpful
for the following lemmas.

Definition 7 (Legitimate Tuple). Consider some
region R, we say that the tuple (y1, y2, x1, x2, Q1, Q2) is
legitimate for the region R if the following properties are
satisfied.

(1) For i = 1 and i = 2, we have either the vertices xi and
yi belong to some tail Q ⊂ Tails(Ancestors[R]) or
(xi = yi and Q = ∅). In addition, if xi (= yi then all
vertices on the subpath Q(xi, yi)\{xi} are not relevant
apices of R.

(2) Q(y1, y2, G \ F ) ∪ {x1, x2} ⊆ R and (Q(y1, y2, G \ F ) \
{y1, y2}) ∩ Tails(Ancestors(R)) = ∅.

(3) The labels L(x1, R) and L(x2, R) appear in the query.

(4) dist(x1, y1, Q1 \ F ) + dist(x2, y2, Q2 \ F ) " ε/8 ·
dist(y1, y2, G \ F ).

An illustration of the notion legitimate tuple is presented
in Figure 2.

Note that Property (4) implies that the paths from x1 to
y1 on Q1 and from x2 to y2 on Q2 are free from faults, since
otherwise assume w.l.o.g that the path from x1 to y1 on Q1

contains a fault then dist(x1, y1, Q1 \ F ) = ∞.
The next lemma shows that for every region R and le-

gitimate tuple (y1, y2, x1, x2, Q1, Q2) for R, one of the two
cases must hold. Either there is a path from x1 to x2

of length “close” to the distance between y1 and y2 in
G \ F or there exists a fault that is “close” to the path
Q(y1, y2, G \ F ) and that FL(f, R′) appear in the query for
every R′ ∈ Regions(Ancestors[R]).

Lemma 5. For every region R, a legitimate tuple
(y1, y2, x1, x2, Q1, Q2) for R and a vertex r of (Tails(R) ∩
Q(y1, y2, G \ F )) \ {y1, y2}, one of the two cases must hold.

(1) 2·dist(x1, y1, H)+2·dist(x2, y2, H)+dist(x1, x2, H) "
(1 + ε) · dist(y1, y2, G \ F )

(2) There exists a faulty vertex f ∈ F such that
FL(f, R′) appear in the query for every R′ ∈
Regions(Ancestors[R]) and:
dist(f, r, R̃) " 3 · dist(y1, y2, G \ F ),
dist(f, y1, R̃ + {y1}) " 3 · dist(y1, y2, G \ F ), and
dist(f, y2, R̃ + {y2}) " 3 · dist(y1, y2, G \ F ), where
R̃ = R \ RelApices(R).

Proof. Let S1 ⊂ Tails(R) be the tail such that r ∈ S1.
Observe that r ∈ R̃. To see this, recall that by def-

inition of legitimate tuple, we have (Q(y1, y2, G \ F ) \
{y1, y2}) ∩ Tails(Ancestors(R)) = ∅. Hence, r ∩
Tails(Ancestors(R)) = ∅, so clearly r is not a relevant
apex of R.

Note that for every two vertices x ∈ S1 and y ∈ R, the set
N(y, R) contains a net-point on S1 at distance at most ε/96·
dist(y, x, R̃+{y}) from x. Specifically, the closest vertex r1

to r in N(x1, R) is at distance at most ε/96 ·dist(x1, r, R̃ +
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Figure 2: Illustration for legitimate tuple. Assume (Tv1 , Tu1) is the separator of the root of T. The separator
(Tv1 , Tu1) separates the plane into two parts, the interior and exterior. Let R be the region of the interior
part. Assume (Tv2 , Tu2) is the separator of region R. Let Q1 = Tv1 and Q2 = Tv2 (notice that since (v1, u1) is
the first separator then the entire separator paths are the tails). Let the blue dashed path be the shortest
path from y1 to y2 in G \ F . Notice that the entire dashed path belongs to the cluster of R1, that is, it does
not intersect with ancestors separators of R1. Assume the label L(x1, R1) and L(x2, R1) appear in the query.
Assume also that x1 and x2 are “close” enough to y1 and y2 resp. The tuple (y1, y2, x1, x2, Q1, Q2) is legitimate
in R1.

{x1}) from r and the closest vertex r2 to r in N(x2, R) is
at distance at most ε/96 · dist(x2, r, R̃ + {x2}) from r. (it
could be that r1 = r2) We now consider two cases. The first
case is when all edges (x1, r1), (r1, r2) and (r2, x2) are safe.
The second case is when at least one edge among (x1, r1),
(r1, r2) and (r2, x2) is not safe.

Consider the first case, namely, all edges (x1, r1), (r1, r2)
and (r2, x2) are safe. Consider the path Q̃1 = Q(x1, y1, Q1)◦
Q(y1, r, G \ F ) ◦ Q(r, r1, S1) and let Q̃2 = Q(x2, y2, Q1) ◦
Q(y2, r, G \ F ) ◦ Q(r, r2, S1). Note that Q̃1 ⊆ R̃ + {x1}
and that Q̃2 ⊆ R̃ + {x2}. We thus get, dist(x1, r1, H) "
ω̃(x1, r1) " ω(Q̃1), dist(r1, r2, H) " dist(r1, r2, S1) =
dist(r1, r2, G) and dist(r2, x2, H) " ω̃(x2, r2) " ω(Q̃2),
where ω(Q′) is the length (the sum of its edge weight) of
the path Q′. Using straight forward calculations, we get
that dist(x1, x2, H)+2·dist(x1, y1, H)+2·dist(x2, y2, H) "
(1 + ε) · dist(y1, y2, G \ F ) and the lemma follows.

Consider the second case, namely, one of the edges
(x1, r1), (r1, r2) and (r2, x2) is not safe, we next show that
there is a fault f that is not a relevant apex of R and that
is “close” to these edges. Let d = dist(y1, y2, G \ F ) and let
d1 = dist(y1, r, G \ F ) and d2 = dist(r, y2, G \ F ).

We assume that one of the edges (x1, r1), (r1, r2), (r2, x2)
is not safe.

We consider two subcases. The first subcase is when the
edge (r1, r2) is not safe. The second subcase is when at least
one of the edges (x1, r1) and (r2, x2) is not safe. Consider
the first subcase, namely, the edge (r1, r2) is not safe. Notice
that in this case both r1 and r2 belong to S1, namely, one
of them is an ancestor of the other in the tree T . Moreover,
the edge (r1, r2) is not safe only in the case where there is a
fault f on the shortest path from r1 to r2 in the tree T . In

addition, note that by construction f is not a relevant apex
of R (recall that the tail S1 does not intersect with ancestor
separators).

Since f is not a relevant apex of R and therefore also not
a relevant apex of any R′ ∈ Regions(Ancestors(R)), by
definition FL(f, R′) appear in FL(f) and thus appear in the
query for every R′ ∈ Regions(Ancestors[R]).

Moreover, dist(y1, f, R̃ + {y1}) " dist(y1, r, R̃ + {y1})
+dist(r, f, R̃) " d1 + ε/96 · max{dist(x1, r, S1),
dist(x2, r, S1)} " d1 + εd. The exact same
analysis shows that dist(y2, f, R̃ + {y2}) <
d2 + εd. We also have dist(r, f, R̃) " (ε/96) ·
max{dist(x1, r, S1),dist(x2, r, S1)} < ε d. The lemma
follows.

We left with the second subcase, where one of the edges
(x1, r1), (r2, x2) is not safe. Assume the edge (x1, r1) is not
safe, the other case where (r2, x2) is not safe is symmetric.

Since the edge (x1, r1) is not safe, there exists a faulty
vertex f such that f is not a relevant apex of R and in
addition dist(f, r1, R̃) " (1 + ε/48) · dist(x1, r1, R̃ + {x1}).

Since f is not a relevant apex of R and therefore also not
a relevant apex of any R′ ∈ Regions(Ancestors(R)), by
definition FL(f, R′) appear in FL(f) and thus appear in the
query for every R′ ∈ Regions(Ancestors[R]).

Next, we show that f is at distance at most 3d from all
y1, y2 and r.

We have, dist(y1, f, R̃ + {y1}) " dist(y1, r, R̃ + {y1}) +
dist(r, r1, R̃) + dist(r1, f, R̃) " d1 + ε/96 · d1 + (1 + ε/48) ·
dist(x1, r1, R̃ + {x1}) " d1 + ε/96 · d1 + (1 + ε/48) · (ε/8 ·
d1 + d1 + ε/96 · d1) " 2d1 + εd1 " 3d1 " 3d,

dist(y2, f, R̃ + {y2}) " dist(y2, r, R̃ + {y2}) +
dist(r, r1, R̃) + dist(r1, f, R̃) " d2 + ε/96 · d1 + (1 +
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ε/48) · dist(x1, r1, R̃ + {x1}) " d2 + ε/96d1 + (1 + ε/48) ·
(ε/8 · d1 + d1 + ε/96 · d1) " d1 + d2 + εd1 " d + εd1 " 3d.

Finally, dist(r, f, R̃) " dist(r, r1, R̃) + dist(r1, f, R̃) "
ε/96 · d1 + (1 + ε/48) · dist(x1, r1, R̃ + {x1}) " ε/96 · d1 +
(1 + ε/48) · (ε/8 · d1 + d1 + ε/96 · d1) " d1 + εd1 " 3d.

The lemma follows.

The following is the main technical lemma, the proof has
several cases, one of the main cases requires the use of
Lemma 5.

Lemma 6. For every region R and legitimate tuple
(y1, y2, x1, x2, Q1, Q2) for R the following holds. There ex-
ist four vertices z1, z2, w1, w2 such that w1 and w2 are ver-
tices on the sub-path of Q(y1, y2, G \ F ), the labels of L(z1)
and L(z2) appear in the query and 2 · dist(z1, w1, H) + 2 ·
dist(z2, w2, H)+dist(z1, z2, H) " (1+ε)·dist(w1, w2, G\F ).

Proof. The proof is by induction on the level of R and
then by the number of edges on the subpath from y1 to y2 in
G \F . For simplicity, we assume uniqueness on the shortest
paths in G \ F .

First, consider the base case where the number of edges
in Q(y1, y2, G \ F ) is 1. Assume w.l.o.g. that ε < 1 we thus
have x1 = y1 and x2 = y2.

Consider the region R′ with minimum Level(R′) having
a tail P̃ such that {x1, x2} ∩ P̃ (= ∅. Assume w.l.o.g that
x1 ∈ P̃ , the label L(x2) contains E(x2, R′) that contains the
edge (x1, x2) since ε < 1, and we are done (note that this
is the only place in the proof where we use the fact that
the graph is unweighted, later, in Section 7, we show how to
deal with the weighted case).

We now assume that the lemma holds for every re-
gion R′ of level $′ for $′ > $ and legitimate tuple
(y1, y2, x1, x2, Q1, Q2) and also for every region R′ of level $
and legitimate tuple (y′

1, y
′
2, x

′
1, x

′
2, Q

′
1, Q

′
2) of R′ such that

the number of edges on the subpath from y′
1 to y′

2 in G \ F
is less than k.

Next, we prove the lemma for some region R of level $
and a legitimate tuple (y1, y2, x1, x2, Q1, Q2) such that the
number of edges on the subpath from y1 to y2 in G \ F is
k > 1. Note that it could be that R belongs to a leaf in T.

To ease notation, if x1 = y1 then we set Q1 = {y1}.
Similarly, if x2 = y2 then we set Q2 = {y2}. Consider the
path Q = Q(x1, y1, Q1)◦Q(y1, y2, G\F )◦Q(x2, y2, Q2). Let
d = dist(y1, y2, G \ F ). Let R̃ = R \ RelApices(R).

We consider two cases. Case (1) is when Tails(R) ∩
(Q(y1, y2, G\F )\{y1, y2}) = ∅. Case (2) is when Tails(R)∩
(Q(y1, y2, G \ F ) \ {y1, y2}) (= ∅.

Consider case (1), where Tails(R) ∩ (Q(y1, y2, G \ F ) \
{y1, y2}) = ∅.

Observe that in this case R cannot be a leaf in T. To
see this, note that all internal vertices in Q(y1, y2, G \ F )
do not appear in the current separator and in all ancestor
separators. As all vertices belong to some separator of T,
it follows that R cannot be a leaf in T. Let R1 and R2

be the two child regions of R. Note that the entire path
Q(y1, y2, G \ F ) is contained in one of the child regions of
R, assume w.l.o.g. that Q(y1, y2, G \ F ) ⊆ R1. We consider
two subcases. Subcase (1.1) is when R̃ does not contain a
faulty vertex and subcase (1.2) is when R̃ contains a faulty
vertex f . Consider subcase (1.1). There are two subcases
in subcase (1.1). Subcase (1.1.1) is when there is a vertex
r ∈ Arn(R) such that r ∈ Q(x1, y1, Q1) ∪ Q(x2, y2, Q2).

(Recall that Arn(R) = RelApices(R) ∪ NewApices(R).)
Subcase (1.1.2) is when there is no vertex r ∈ Arn(R) such
that r ∈ Q(x1, y1, Q1) ∪ Q(x2, y2, Q2).

Consider subcase (1.1.1). Assume w.l.o.g. that r ∈
Q(x1, y1, Q1). Note that N(x2, R)(⊆ L(x2, R)) contains the
net-point r. There are no faulty vertices in R̃, thus the
edges (x1, r), (x2, r) are safe. We get that, dist(x1, x2, H) "
dist(x1, r, Q1)+dist(x2, r, R̃+{x2}). It is not hard to verify
that 2·dist(x1, y1, H)+2·dist(x2, y2, H)+dist(y1, y2, H) "
(1+ε)·dist(y1, y2, G\F ). The lemma follows where w1 = y1,
w2 = y2, z1 = x1 and z2 = x2.

Consider subcase (1.1.2). There is no vertex in Arn(R)∩
(Q(x1, y1, Q1) ∪ Q(x2, y2, Q2)). Specifically, x1 and x2 are
not in Arn(R). Therefore, L(x1, R) = L(x1, R1) and
L(x2, R) = L(x2, R1) and it is not hard to show that
the tuple (y1, y2, x1, x2, Q1, Q2) is legitimate for R1. The
claim follows by the induction hypothesis on R1 and on
(y1, y2, x1, x2, Q1, Q2).

Consider subcase (1.2). If Q(x1, y1, Q1) ∩ Arn(R) (= ∅,
then set x′

1 to be the closest vertex to y1 in Arn(R) ∩
Q(x1, y1, Q1). Note that FL(f, R) ⊆ FL(f) contains
L(x′

1, R1). If Q(x1, y1, Q1) ∩ Arn(R) = ∅, then set x′
1 to

be x1. Note that in this case L(x1, R) = L(x1, R1). Simi-
larly, we find a vertex x′

2 on the path Q(x2, y2, Q2) such that
L(x2, R1) appears in the query and that (Q(x′

2, y2, Q2) \
{x′

2}) ∩ Arn(R) = ∅. It is not hard to verify that
the tuple (y1, y2, x

′
1, x

′
2, Q1, Q2) is legitimate for R1. The

claim follows by the induction hypothesis on R1 and on
(y1, y2, x1, x2, Q1, Q2).

For illustrations of subcase (1.2) see Figures 3 and 4.
Consider case (2), where Tails(R) ∩ (Q(y1, y2, G \ F ) \

{y1, y2}) (= ∅.
Pick r to be an arbitrary vertex in Tails(R)∩(Q(y1, y2, G\

F )) \ {y1, y2}. Let S1 ⊂ Tails(R) be the tail of R such that
r ∈ S1.

By Lemma 5 one of the following two subcases occurs. Ei-
ther dist(x1, x2, H)+2·dist(x1, y1, H)+2·dist(x2, y2, H) "
(1 + ε) · dist(y1, y2, G \ F ), we call this subcase (2.1). Or
otherwise, there exists a fault f ∈ R such that FL(f, R′)
for every R′ ∈ Regions(Ancestors[R]) exists in the query
and f is at distance at most 3d from y1, y2 and r in R, we
call this subcase (2.2).

In the first subcase (2.1) the lemma immediately follows
where w1 = y1, w2 = y2, z1 = x1 and z2 = x2.

Consider subcase (2.2). Using the labels FL(f, R′) for
R′ ∈ Regions(Ancestors[R]) we can find the labels
L(x′

1, R) and L(x′
2, R) of two possibly other net-points x′

1

and x′
2 and conclude the claim using the induction hypoth-

esis.
Let d1 = dist(y1, r,G \F ) and d2 = dist(r, y2, G \F ) and

d = d1 + d2. Assume w.l.o.g. that d1 ! d2. The faulty
vertex f is at distance at most 3d " 6d1 from both r and
y1 and FL(f, R′) for every R′ ∈ Regions(Ancestors[R])
exists in the query. Thus, FL(f, R) appears in the query.
The set N(f, R) contains a vertex x′

2 ∈ R on S1 such that
dist(r, x′

2, S1) " ε/96 · dist(f, r, R̃) " ε/96 · 6d1 = ε/16 · d1.
By construction, we get that the label L(x′

2, R) ∈ FL(f, R)
and thus appears in the query. If x1 = y1 then set x′

1 =
x1. Otherwise FL(f,Reg(Q1)) also appears in the query
as Reg(Q1) ∈ Regions(Ancestors[R]). The set N(f, R)
contains a vertex x′

1 ∈ R on Q1 such that dist(y1, x
′
1, Q1) "

ε/96·dist(f, y1, R̃) " ε/96·6d1 = ε/16·d1. By construction,
we get that the label L(x′

1, R) ∈ FL(f,Reg(Q1))) and thus

1209



root

1
2

1
2
2

2

1

2
2

1

x1
1y R

x
y

z
u
R

v

v

z

u

(T)

Figure 3: Illustration for case (1.2). Let R be the interior region induced by the separator (Tv1 , Tu1). The
regions R1 and R2 are the child regions of R obtained by the separator (Tv2 , Tu2). Note that the entire path
Q belongs to R1. In this case L(x1, R) = L(x1, R1) and L(x2, R) = L(x2, R1) and the claim follows by induction
hypothesis on R1 and on (y1, y2, x1, x2, Q1, Q2).

appears in the query. If x1 is closer to y1 than x′
1 then set

x′
1 = x1, this is done in order to make sure that x′

1 ∈ R.
We get that, dist(y1, x

′
1, Q1) + dist(r, x′

2, S1) " ε/8 · d1 =
ε/8 · dist(y1, r, G \ F ). Moreover, if the path from x′

2 to r
is not free from faults, namely, it contains a fault f , then
using similar arguments as claimed above f is not a relevant
apex of R. Therefore we may use the label FL(f, R) to get
a closer net-point on the path from x′

2 to r and continue this
process until finding a net-point x such that the path from
x to r is failure-free (or until x = r and clearly r /∈ F as r
belongs to a path in G \ F ), set x′

2 to that net-point. Note
that, the number of edges on the shortest path from y1 to
r in G \ F is strictly less than on the path Q(y1, y2, G \ F ).
Therefore, the claim follows by induction hypothesis on R
and on (y1, r, x

′
1, x

′
2, Q1, S1).

For illustration of subcase (2.2) see Figure 5.

Lemma 7. For every two vertices u and v such that the
labels L(u) and L(v) appear in the query, the graph H con-
tains a path from u to v with stretch at most 1 + ε.

Proof. The proof is by induction on dist(u, v, G \
F ). Assume correctness for all pairs u′, v′ such that
dist(u′, v′, G \ F ) < d and let u and v be a pair of vertices
such that dist(u, v, G \F ) = d and that the labels L(u) and
L(v) appear in the query. Let Q be the shortest path from
u to v in G \ F .

Note that the tuple (y1 = u, y2 = v, x1 = u, x2 = v, ∅, ∅)
is legitimate for the region G (the entire graph). Property
1 is satisfied trivially as x1 = y1 and x2 = y2. Property
(2) is satisfied as all vertices belong to G. Property (3) is
satisfied by the assumption the labels L(u) and L(v) appear
in the query. Finally, Property (4) is satisfied again triv-
ially as x1 = y1 and x2 = y2. By invoking Lemma 6 on the
region G (the entire graph) and on (u, v, u, v, ∅, ∅) we get
that there exist four vertices z1, z2, w1, w2 such that w1 and
w2 are vertices on the sub-path of Q, the labels of L(z1) and
L(z2) appear in the query and 2 · dist(z1, w1, G \ F ) + 2 ·

dist(z2, w2, G\F )+dist(z1, z2, H) " (1+ε) ·ω(Q(w1, w2)).
Note that dist(u, z1, G \ F ) < dist(u, v, G \ F ) and that
dist(v, z2, G \ F ) < dist(u, v, G \ F ). By induction hy-
pothesis dist(u, z1, H) " (1 + ε) · dist(u, z1, G \ F ) "
(1 + ε)(dist(u, w1, G \ F ) + dist(w1, z1, G \ F )) < (1 + ε) ·
dist(u, w1, G \ F ) + 2dist(w1, z1, G \ F ). We also get that
dist(v, z2, H) < (1+ε) ·dist(v, w2, G\F )+2dist(w2, z2, G\
F ). We conclude that, dist(u, v, H) < (1+ ε) ·dist(x, y, G\
F ) are required.

By Lemma 7 we conclude the following desired corollary.

Corollary 1. The graph H contains a shortest path
from s to t of length at most (1 + ε) · dist(s, t, G \ F ).

7. WEIGHTED CASE
In this section we describe the modifications needed to

handle weighted graphs. In the preprocessing time, before
constructing the separators hierarchy tree T add in the mid-
dle of every edge a dummy vertex. The ID of the dummy
vertex is set to be the ID of the edge. Now construct the
separators hierarchy tree T on the new graph.

If the net-points N(v, P ) for some vertex v ∈ V and a tail
P ∈ P contains some dummy vertex that represents an edge
(x, y) then add both x and y to N(v, P ) and also store the
edge (x, y). The rest of the preprocessing phase is the same.

In addition, we slightly modify the definition of legitimate
tuple so that the nodes y1, y2, x1 and x2 are real nodes and
not dummy ones.

The query phase is also similar to the unweighted case
with a slight modification. If one of the labels contain a
dummy vertex that represents an edge (x, y) such that both
x and y are non-faulty then add the edge (x, y).

Note that the only place in the proof where we use the fact
that the graph is unweighed is in the base case in Lemma 6.
Instead of considering the base case, we add another case (3)
in the induction step.
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Figure 4: Illustration for case (1.2). Let R be the interior region induced by the separator (v1, u1). The
regions R1 and R2 are the child regions of R obtained by the separator (v2, u2). Note that the entire path
Q(y1, y2, G \ F ) belongs to R1. The vertex x′

1 is a new apex of R. Notice that since the (internal) path from x1

to y1 does not contain any relevant apex of R, then clearly the (internal) path from x′
1 to y1 does not contain

any relevant apex of R. In addition, the internal path from x′
1 to y1 does not contain any new apex of R,

hence the (internal) path from x′
1 to y1 does not contain any relevant apex of R1.

Namely, in the induction step we have the following cases.
Case (1) is when Tails(R)∩ (Q(y1, y2, G\F )\{y1, y2}) =

∅. Case (2) is when Tails(R)∩(Q(y1, y2, G\F )\{y1, y2}) (=
∅ and k > 1. Case (3) is when Tails(R) ∩ (Q(y1, y2, G \
F ) \ {y1, y2}) (= ∅ and k = 1.

Cases (1) and (2) are similar to the unweighted case, where
in case (2) we pick r to be a real vertex in (Tails(R) ∩
(Q(y1, y2, G\F ))\{y1, y2}) and not a dummy vertex, the rest
of the analysis of this case is the same. Now consider the new
case (3), where Tails(R)∩ (Q(y1, y2, G \ F ) \ {y1, y2}) (= ∅
and k = 1. Note that here unlike the unweighted case, it is
not necessarily the case that x1 = y1 and that x2 = y2. No-
tice also that in this case the tails of R contains the dummy
vertex ỹ on the edge (y1, y2). Let S1 ⊂ Tails(R) be the tail
of R such that ỹ ∈ S1. Notice that either the vertices y1 and
x1 belong to S1 or the vertices y2 and x2. Assume w.l.o.g
that x1, y1 ∈ V (S1). The net-points N(x1, S1) contains the
dummy vertex ỹ and thus also the vertices y1, y2 and the
edge (y1, y2). We get that the edge (y1, y2) is added to H .
Moreover, the edges (y1, x1) and (y2, x2) are safe and thus
are also added to H . We get that, 2 · dist(x1, y1, H) + 2 ·
dist(x2, y2, H)+dist(y1, y2, H) " 2ε/8 ·dist(y1, y2, G\F )+
dist(y1, y2, G\F ) < (1+ε)·dist(y1, y2, G\F ), and the claim
follows where z1 = x1, z2 = x2, w1 = y1, w2 = y2.

8. OTHER UPDATES
To simplify notations, the construction we describe han-

dles only vertex faults. In this section we explain the slight
modifications needed to handle edge failures, edge insertions,
vertex insertions and weight changes. Note that a change of
edge weight is similar to two consecutive changes: a deletion
of the edge and then an insertion of the edge (u, v) with the
new weight. We thus focus on edge failures, edge insertions
and vertex insertions.

The query now involves two vertices s and t, a set of faulty
vertices FV , a set of faulty edges FE, a set of new vertices
NV and a set of new edges NE . The goal is to estimate the
distance between s and t in the graph after the updates.

The label of an edge (x, y) is the concatenation of the
labels of its endpoints, (FL(x), FL(y)).

The safety check of an edge (x, y) with respect to the
faulty edge (u, v) in a region R is similar to the check against
a faulty vertex and is done as follows. We check the safety
of the edge (x, y) against both u and v. We determine that
the edge (x, y) is unsafe if it is unsafe against both u and v,
otherwise safe. It is not hard to verify that if the edge (x, y)
is safe against the faulty edge (u, v) then the path (x, y)
represents does not contain the edge (u, v).

To handle an insertion of an edge (u, v), add all safe edges
in L(u) and L(v) to H and in addition add the edge (u, v)
itself to H . The only change in the analysis is as follows.
Let Q be the shortest path from s to t in G \F . If the edge
(u, v) is not part of the path Q then clearly the insertion of
the edge (u, v) does not affect our analysis. Otherwise, if
the edge (u, v) is part of the path Q then using induction
(on the length of the path) we can claim that the graph H
contains a path Q1 from s to u with stretch 1 + ε and a
path Q2 from v to t with stretch 1 + ε. Consider the path
Q̃ = Q1 ◦ (u, v) ◦ Q2 that is obtained by concatenating the
path Q1, the edge (u, v) and the path Q2. The path Q̃ is a
path from s to t in H with stretch at most 1 + ε.

To handle a vertex insertion do the following. Let x be the
new vertex. In the query phase, simply add the vertex to the
sketch graph H . We then treat each incident edge insertion
as a separate operation and simply invoke the method for
edge insertion described above.
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Figure 5: Illustration for case (2). Let R be the interior region induced by the separator (Tv1 , Tu1). The
regions R1 and R2 are the child regions of R obtained by the separator (Tv2 , Tu2). The separator of R intersects
with Q(y1, y2, G \ F ) \ {y1, y2}.

9. REDUCING THE LABEL SIZE
In this section we show how to slightly reduce the labels

size to O(ε−1 log2 n log (nM) · (ε−1 + log n)).
Recall that the set N(v, P ) contains O(ε−1 log(nM)) net-

points on the path P ∈ P. Using these labels, we show
in Section 3 a variant of distance labeling scheme that re-
quires labels of length O(ε−1 log n log(nM)). Thorup [29]
shows that it possible to reduce the length of the label to
O(ε−1 log n). More specifically, he shows that it possible to
use only O(ε−1) net-points rather than the construction of
the O(ε−1 log(nM)) net-points described in Section 3.

Consider a subgraph H and let P be some shortest path
in H . For a given ε̃ > 0, the connection (b, v) is said to
ε̃-cover the connection (a, v) in H for vertices a, b ∈ P and
v ∈ H if dist(b, v, H)+dist(b, a, P ) " (1+ ε̃) ·dist(a, v, H).
A set of connections C(v, P ) is an ε̃-cover set for the vertex
v with respect to P and H if for every vertex a ∈ P , there
exists a connection (b, v) ∈ C(v, P ) such that (b, v) ε̃-covers
(a, v) in H .

Thorup shows how to construct ε̃-cover sets C(v, P ) of size
O(1/ε̃) for every vertex v ∈ H in time O((1/ε̃)|V (H)| log n)
([29] Lemma 3.18 together with Lemma 3.11).

For the purpose of handling failures we cannot just sub-
stitute the net-points stored in N(v, P ) with the improved
net-points of [29]. To see the difficulty, consider a shortest
path Q from s to t in G \ F and let P be the first tail that
crosses Q, that is Q ∩ P (= ∅. Let x be a vertex in Q ∩ P
and let (b, s) be a connection that ε̃-covers (x, s). Namely,
dist(b, s, G)+dist(b, x, G) " (1+ε̃)·dist(s, x, G). Note that
it could be that b is relatively far away from x. For example,
assume that there are two disjoint shortest paths from s to
x, one is the subpath Q(s, x) of Q between s and x and the
second shortest path Q̃(s, x) go through b and assume that
dist(b, s, G),dist(b, x,G) = 1/2 · dist(s, x, G). Note that in
this case (b, s) indeed ε̃-cover (x, s). Now assume that the
path from x to b is faulty. If we indeed replace the net-
points stored in N(f, P ) with improved net-points of [29],

then using the label FL(f,Reg(P )), we could get the la-
bel L(b,Reg(P )). However the distance between s and b in
G \ F could be 1.5 · dist(s, x,G) since it could be that the
only path between s and b in G \ F goes through x. Thus
the label L(b,Reg(P )) could not help us to approximate the
distance between s and x in G \ F . In other words, in the
failure-prone setting we need that the net-point that covers
some vertex x ∈ P be “close” to x on the path P .

Therefore, simply replacing all our net-points with Tho-
rup’s improved net-points seems challenging in our setting.

However, we show that replacing only the net-points of
N(v, P ) in the label of L(v, R) with Thorup’s improved net-
points does work and it replace a factor of ε−1 log(nM) with
the factor ε−1+log n. Recall that there are two places where
we use the net-points of N(v, P ). First, in the construction
of the labels L(v, R) and second in the construction of the
labels FL(v, R). The labels L(v, R) are only used to ap-
proximate distances between vertices in R (as if there are
no faults). In case some of these edges are not safe, we use
the FL labels of the faulty vertices to get the L labels of
other vertices “close” to the path between s and t in G \ F .
Therefore in the construction of the labels L(v, R) we can use
Thorup’s improved net-points. Recall that we also add to
the net-set N(v, R) all relevant and new apices of R. Thus,
using Thorup’s improved net-points, we can replace a factor
of ε−1 log(nM) with a factor of O(ε−1 + log n).

Formally the labels are defined as follows. The definition
of the net-points N(v, P ) is unchanged. In addition, we also
introduce another set of net-points Ñ(v, P ) where Ñ(v, P ) is
the cover set obtained by Thorup’s construction on P and R,
together with the relevant apices of R. The edge-set Ẽ(v, R)
is exactly as E(v, R) with using Ñ(v, P ) instead of N(v, P ).

The label L(v, R) for some region R is defined as before
but with using Ẽ(v, R′) instead of E(v, R′).

The labels FL(v, R) and FL(v) are unchanged. It is
not hard to verify that the new labels length are of size
O(ε−1 log2 n log(nM) · (ε−1 + log n)).
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10. CONSTRUCTION AND QUERY TIME

Construction Time.
We now show that our data structure can be constructed

in O(ε−1n log2 n log (nM) · (ε−1 + log n)) time.
The tree decomposition T can be constructed in O(n log n)

time. It is not hard to verify that finding the regions and the
relevant apices of the regions can be done in

P
R∈R |R| =

O(n log n) by Property 4.
The edge-sets Ẽ(v, R) for every vertex v ∈ R can be con-

structed as shown in [29] in O(ε−1|R| log n) time. One thing
to notice it that in our construction we also add to Ẽ(v, R),
all the relevant and new apices of R. However, we can first
invoke Thorup construction and then for the relevant apices
we can simply invoke a shortest path algorithm in R (to find
the distances from all vertices in R to the relevant apices).
As there are O(log n) relevant apices, this can be done in
O(|R| log n) time. We thus get that the total construction
time for all Ẽ(v, R) for every region R and vertex v ∈ R is
O(ε−1n log2 n).

Let R̃ = R \ RelApices(R). One thing to notice is that,
as opposed to Thorup’s construction where the distances are
with respect to the region R, our distances for a vertex x
are with respect to R̃ + {x}. This is only a minor technical
issue. The only slight change in Thorup’s construction is
the following. While calculating the distances from some
net-point x ∈ Tails(R) to a set of vertices S, we first find
the distances in the induced graph R̃∩S and for every vertex
u in (R \ R̃)∩ S we find the vertex v in R̃ ∩S such that the
length of the path obtained by concatenating the edge (v, u)
with the shortest path from u to x is minimal. The analysis
and running time are unchanged.

Consider a region R of T and a tail P of Tails(R). We
now show that it possible to find the net-points N(v, P ) for
every vertex v ∈ R in time O(ε−1|R| log(nM) log log M).
Finding for every vertex v ∈ R the closest (with respect
to distances in R) vertex cv on P can be done in O(|R|),
by for example contracting the path P into a single vertex,
invoking Dijkstra algorithm and then expanding the path P
back. Once having the closest vertex cv on P for a vertex v,
the set of net-points N(v, P ) can be constructed trivially in
O(ε−1 log(nM) log log M) time, by numbering the vertices in
P so that we can get the next vertex at distance d′ from some
vertex x′ in P in O(log log M) (using predecessor queries).

We get that the sets of net-points N(v, P ) for ev-
ery vertex v ∈ R can be constructed in time
O(ε−1|R| log(nM) log log M). Thus, all sets of net-points
N(v, P ) for every vertex v ∈ R and tail P of R can be con-
structed in time O(ε−1n log n log(nM) log log M).

The label L(v, R) is just the concatenation of some edge-
sets Ẽ(v, R′) and thus can be constructed in time propor-
tional to the size of L(v, R). This is also the case for the
labels FL(v, R) and FL(v).

We conclude that the labels can be constructed in
O(ε−1n log2 n log (nM) · (ε−1 + log n)) time.

Query time.
Consider a source s, a target t and a subset U of updates.
There are O(ε−1|U | log2 n log (nM) · (ε−1 + log n)) edges

and O(|U |) vertices in the query.
In order to keep the number of edges that are added to H ,

O(ε−1|U | log2 n log (nM)·(ε−1+log n)), we do the following.
For every tail P ∈ P we first number the net-points in P

that appear in the query, according to their appearance in
P . Second, instead of adding the safe edges between all pairs
of net-points in P , we add only safe edges between pairs of
consecutive net-points. It is not hard to verify that this does
not change the analysis and that the number of potential
edges stays O(ε−1|U | log2 n log (nM) · (ε−1 + log n)).

For each such edge we need to check the safety of the edge
against all faulty vertices and edges.

In order to check if the edge (u, v) in some region R
is safe with respect to some faulty vertex f (or an edge
(f1, f2)), we need to approximate the distance dist(f, v, R)
(dist(f1, v, R) and dist(f2, v, R)) using Ẽ(f, R). This can
be done in O(ε−1) time. In fact, rather than approximating
the distances dist(f, v, R) with ε-factor, we instead can set-
tle for a constant approximation and save a 1/ε factor from
the query time. Namely, we construct the labels for both
ε̃ = ε and ε̃ = 1 and store both labels. This requires adjust-
ing the net-points in N(f, P ) by a constant factor, in order
to get the same analysis. Thus the total time for construct-
ing the graph H is O(ε−1|U |2 log2 n log (nM) ·(ε−1 +log n)).
There are O(ε−1|U | log2 n log (nM) ·(ε−1 +log n)) edges and
O(|U |) vertices in H , thus invoking Dijkstra on H takes
O(ε−1|U | log2 n log (nM) · (ε−1 + log n)) time.

We thus conclude that the query time is
O(ε−1|U |2 log2 n log (nM) · (ε−1 + log n)).

11. FULLY DYNAMIC APPROXIMATE
DISTANCE ORACLE FOR PLANAR
GRAPHS

In this section we prove Theorem 2, namely, we show that
our labeling scheme can be tweaked to give fully dynamic
approximate distance oracle of size O(n log2 n ·(ε−1+log n))
with worst case query and update time of Õ(n1/2). This im-
proves on the previously known fully dynamic approximate
distance oracle, which has worst case query time of Õ(n2/3)
and amortized update time of Õ(n2/3).

Our data structure supports vertex removal, edge removal,
vertex insertion, edge insertion and edge weight change.
Where the assumption is that during all these updates the
graph stays planar.

Centralized Forbidden-Sequence Approximate
Distance Oracles
In this subsection we prove Theorem 3. We show how
to transform our forbidden-set labeling scheme to a cen-
tralized dynamic approximate distance oracle (FADO) of size
O(n log2 n · (ε−1 + log n)) with worst case update time and
query time Õ(|U |), where U is the sequence of updates
that occurred since the construction of this data structure.
Denote by DFADO(G̃) the FADO data structure that is con-
structed on the graph G̃.

We later see how to use this data structure to get a fully
dynamic approximate distance oracle of size O(n log2 n ·
(ε−1 + log n)) with worst case query time and update time
of Õ(n1/2).

The Data Structure.
Our data structure is basically a data structure capable

of answering distance queries in the failure-free setting with
some slight additions. Most of the data stored in the labels
of our labeling scheme can be constructed (using the stored
failure-free distance oracle) in time proportional to the size
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of the data, and thus there is no reason to store it in our
centralized data structure.

Recall that as opposed to the failure-free setting, in the
failure-prone setting it is essential that the length of an edge
(v, u) ∈ Ẽ(v, R) reflects the distance between v and u in
R̃ + {v, u} rather than its distance in G. This is essential
due to the following scenario. It could be that the distance
between u and v is very short in G, relative to their distance
in R̃ + {v, u}, but the short path goes through some faulty
vertex f ∈ F . Also assume that f is not in R and thus
cannot provides us additional information that can indicates
an alternative path between u and v in R.

We now formally described our data structure. Construct
the tree decomposition T. Next, for every region R ∈ R
construct the edge-sets Ẽ(v, R) for every v ∈ R.

For every vertex v ∈ R and every tail P of R, store the
closest vertex to v on P with respect to the distances in the
subgraph of R \ RelApices(R).

In addition, we store the set U of the updates that oc-
curred from the beginning of this data structure. Finally,
since it is too “costly” to construct the sketch graph H in
the query phase, we rather gradually construct the graph H
during the updates and store it as part of our data structure.
For every edge (u, v) ∈ Ẽ(v, R) that is added to H , we store
an indication that the source of the edge (u, v) is Ẽ(v, R).

The Update Phase.
We now explain how to modify the sketch graph H given

an additional update.
The update phase for a vertex deletion is as follows. Let f

be the deleted vertex. The first stage is to check the safety
of all edges in H with respect to the new fault f .

In the second stage, construct FL(f) and add to H all
safe edges stored in FL(f).

The update phase for adding an edge (u, v) is done as
follows. Add all safe edges in L(u) and L(v) and in addition
add the edge (u, v) to the graph H .

Removing an edge (x, y) is similar to a vertex deletion and
is done as follows. Notice that if one of x and y is already
faulty then there is no need to do anything, so assume both
x and y are not faulty. The first stage is to check the safety
of all edges in H with respect to the new faulty edge (x, y).

In the second step, construct FL(u) and FL(v) and add
to H all safe edges stored in FL(u) and FL(v).

The update phase for adding a new vertex is done simply
by adding the vertex to the graph H .

Changing the weight of an edge (u, v) is done as follows.
We first remove the edge (u, v) and then add the edge (u, v)
back to H (with the new weight).

The Query Phase.
In the query phase we are given two non-faulty vertices s

and t whose distance needs to be approximated in G′, where
G′ is the graph G̃ after the sequence of updates U .

The query phase is done as follows. Construct the labels
L(s) and L(t). Add all safe edges from L(s) and L(t) to
H , compute the shortest path from s to t in H and return
dist(s, t, H). In the end of the query phase, delete the edges
added to H from L(s) and L(t).

Correctness.
We need to show that the approximate distance returned

in the query phase is indeed at least the real distance and at
most 1+ε the real distance. The correctness of the algorithm
is similar to the one presented in Section 5. It is not hard to

verify that constructed graph H is exactly the same graph
constructed by the labeling-scheme for the query (s, t, U) as
described in Section 5. Thus the correctness is derived from
the correctness of Section 5.

Analysis.
We now analyze the construction time, update time and

query time.
The construction time of the data structure: Construct-

ing the tree decomposition can be done in O(n log n) time.
Consider a region R ∈ R.

The construction time for all Ẽ(v, R) for every region
R ∈ R and vertex v ∈ R is O(ε−1n log2 n) as shown in
Section 10. In addition, for every tail P of R, the closest
vertex cv to v on P with respect to the distances in the
subgraph R can be done in time O(

P
R∈R |R|) = O(n log n)

from Property 4. We conclude that the total construction
time is O(ε−1n log2 n).

We now analyze the update phase for a vertex deletion.
In the first step, we check the safety of edges in H with

respect to the new fault f . In order to check if the edge
(u, v) is safe with respect to some faulty vertex f , we need to
approximate the distance dist(f, v, R). This can be done in
O(1) time (as mentioned earlier it is enough to approximate
dist(f, v, R) with a constant factor by adjusting the net-
points in N(f, R) by some constant factor).

There are O(ε−1|U | log2 n log (nM) · (ε−1 + log n)) edges
in H . For each such edge the safety check against the new
fault f takes O(1) time. Thus the total time for this part is
O(ε−1|U | log2 n log (nM) · (ε−1 + log n)).

In addition, we add all safe edges in the label FL(f).
It is not hard to verify that constructing FL(f) can be
done in time proportional to the size of FL(f). There
are O(ε−1 log2 n log (nM) · (ε−1 + log n)) edges in FL(f),
for each such edge we need to check its safety against
all faulty vertices and edges. This can be done in
O(ε−1|U | log2 n log (nM) · (ε−1 + log n)) time.

The analysis for edge deletion/insertion are similar for
vertex deletion. We thus conclude the total time for the
update phase is O(ε−1|U | log2 n log (nM) · (ε−1 + log n)).

We turn turn to analyze the query phase. We are given
two vertices s and t and add all safe edges in L(s) and L(t).
The number of edges in L(s) and L(t) is O(log n · (ε−1 +
log n)). The safety of each such edge can be done in O(|U |)
time. Thus the total time for this part is O(|U |(ε−1+log n)).
In addition, we invoke a shortest path algorithm from s to
t that takes O(|E(H)|) = O(ε−1|U | log2 n log (nM) · (ε−1 +
log n)) time.

We conclude that the query phase takes
O(ε−1|U | log2 n log (nM) · (ε−1 + log n)) time.

We now turn to bound the size of the data structure. We
have,

P
R∈R |R| = O(n log n) by Property 4. For each region

R and node v ∈ R, we store Ẽ(v,R), which is of size O(ε−1+
log n). We thus conclude that the size of the data structure
is O(n log n · (ε−1 + log n)).

We thus conclude Theorem 3.

Fully Dynamic Approximate Distance Oracles
for Planar Graphs
We now show how to transform the FADO data structure to a
fully dynamic approximate distance oracle of size O(n log2 n·
(ε−1 + log n)) with worst case query and update time of
Õ(n1/2).
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Notice that using the FADO data structure, we can eas-
ily get a fully dynamic approximate distance oracle with
worst case query time Õ(n1/2) and amortized update time
of Õ(n1/2). We simply construct the FADO data structure
DFADO(G), where G is the current graph and after every
n1/2 updates we simply reconstruct the FADO data structure
for the updated graph.

Note that in order to get worst case update time of
Õ(n1/2) it is not enough to simply reconstruct the new FADO

data structure during the next n1/2 updates and use it once
we finish to construct it, since during the construction of the
data structure, some new updates accumulated and should
appear in the sketch graph H .

We prove the following general theorem.

Theorem 5. Consider an oracle for n-vertex m-edge
graphs that has size s, construction time c, update time
u(|U |), and query time q(|U |), where U is the sequence of
at most O(

√
n + m ) updates that occurred since the con-

struction of the oracle. One can transform the oracle into
dynamic oracle of size O(s+n+m), with worst case update
time O(u(r)+(c+n+m)/r) and worst case query time q(r)
for every integer r.

Consider an oracle of size s, construction time c, update
time u(|U |) and query time q(|U |) and let r " |U | be some
non-negative integer. Denote by O(G̃) the oracle that is
constructed on the graph G̃. And by O(G̃, U) the oracle
O(G̃) after handling the sequence of updates U .

We maintain two different such oracles. For the sake of
analysis partition the sequence of |U | updates into intervals
of r′ = r/2 each. Let I1, I2, . . . be the set of intervals. Let
Gi be the graph at the beginning of the interval Ii.

During the interval Ii we maintain two oracles, for i > 1.
The first oracle D1 is constructed on the graph Gi−1 and
contains all updates of Ii−1 and the updates of Ii occurring
so far. The second oracle D2 is constructed on the graph
Gi during the first half of the interval Ii. More precisely,
in the beginning of the interval Ii, we have the graph Gi−1

and the list of r′ updates of the interval Ii−1. During the
first half of the interval Ii we construct the graph Gi and
afterwards the oracle D2 = O(Gi). During the second half
of the interval Ii we add to D2 all updates occurring in Ii

(by adding to D2 two updates each time).
In addition we store all updates occurring in the current

interval Ii. Finally, we keep the graph G̃ = Gi.
Given an n-vertex m-edge graph, and given a set of r′

updates, clearly one can construct the updated graph in
O(n + m + r′) time. Namely, one can construct the up-
dated graph together with the new oracle on the updated
graph in time at most c0 · (c+n+m+ r′) for some constant
c0 > 0. Let t = c0 · (c + n + m + r′)/r′.

The Update Phase.
Formally, during the j’th update in the interval Ii we do

the following.

(1) If i > 1 and j " r′/2: make the next 2t steps for
constructing the updated graph G̃ (= Gi) and the data
structure D2 (= O(Gi)) according to the graph G̃.

(2) If i > 1 and j > r′/2: add to D2 (= O(Gi)) the (2(j −
r′) − 1)-th and 2(j − r′)-th updates of the interval Ii.

(3) Add the j’th update to D1 (= O(Gi−1)).

In the end of interval i for any i > 1: we set D1 = D2,
D2 = ⊥.

We say that an oracle O is ready if it contains all updates
that occurred since the construction of it.

We now state some important observations of the update
phase. In the end of the interval Ii, the oracle D2 satisfies
D2 = O(Gi, Ii), namely, the oracle D2 is ready.

Let Ij
i be the first j updates in the interval Ii. In the

end of the j’th update of the interval Ii we have, D1 =
O(Gi−1, Ii−1 ∪ Ij

i ), namely, the oracle D1 is ready.

The Query Phase.
In the query phase we simply invoke the query algorithm

of D1 and return the value.

Correctness.
As stated above D1 is ready, namely, the data structure

D1 contains all updates that occurred since its construction.
The correctness is thus obvious from the correctness of the
oracle.

Analysis.
In is not hard to verify that each of the steps make in the

updates phase takes O(u(2r′) + t) time. Thus, the update
phase takes O(u(r) + (c + n + m)/r) time. The size of the
dynamic oracle is O(s+n+m) due to the storage of the two
oracles and the graph G̃.

In the query phase we simply invoke the query algorithm
of D1. Note that there are at most 2r′ = r updates in D1.
Therefore the query phase takes at most q(r) time.

Combining Theorems 3 and 5 (with r =
√

n + m and
m = O(n)) we conclude Theorem 2.

We note that one can combine our techniques presented in
this section with the forbidden labeling schemes presented
in [1] and [12] to get the following theorems (we omit the
details).

Theorem 6. Given an n-vertex of tree-width or clique-
width Õ(1), one can construct a fully dynamic exact distance
oracle of size Õ(n). Each query operation and each update
operation takes Õ(n1/2) worst case time.

Theorem 7. For all fixed α and ε > 0, and given an n-
vertex unweighted graph of doubling dimension α, one can
construct a fully dynamic (1+ε) approximate distance oracle
of size Õ((1 + ε−1)2αn). Each query operation and each
update operation takes Õ(n1/2) worst case time.

12. ROUTING SCHEME
We can easily transform our forbidden-set labeling scheme

to a forbidden-set compact routing scheme resulting with
Theorem 4.

We now describe our routing scheme. In this setting, we
assume that all vertices are familiar with the labels of the
faulty nodes/edges. In addition, we attach the labels L(s)
and L(t) of the source s and destination t to the header of the
message. Thus, any vertex that receives the message during
the routing process is familiar with the labels {L(s), L(t)}∪
{FL(v) : v ∈ F}. We later, consider the somewhat more
natural setting, where the vertices are not familiar with the
labels of the faulty vertices.

For the sake of routing, we need an additional property
from the ε̃-cover set described earlier. Namely, for every
connection (v, a) in Ẽ(v, R), consider the shortest path Q in
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R̃ + {v, a} between v and a, where R̃ = R \RelApices(R).
Then, for every vertex x of Q the connection (x, a) belongs
to Ẽ(x, R). We call this property the continuous property.
Thorup [29] shows that it possible to construct set covers of
size O(ε−1 log n) with this additional property. When con-
structing the edge-sets Ẽ(u, R) we thus use these set cov-
ers with the continuous property. This blows-up the labels
length by a factor of log n.

We now describe the modifications in the preprocessing
phase.

For every vertex v of any tail P of a region R, we construct
a shortest path tree Troute(v, R) rooted at v spanning the set
B(v, R) = {x ∈ R : v ∈ Ñ(x,P )} of vertices x of R such that
v is a net-point in Ñ(x,P ). Note that due to the continuous
property, it is possible to form a shortest path tree from the
set B(v, R). During the routing process we may need to
route a message from some vertex in B(v, R) to v or from
v to some vertex in B(v, R). For that purpose we use the
labeled based tree routing scheme [32, 18]. That scheme uses
o(log n) labels and routing tables size. Let λ(x, Troute(v,R))
and RT (x, Troute(v, R)) be the label and routing table (resp.)
given to the vertex x ∈ B(v, R) by this tree routing scheme
based on Troute(v, R). Now, for every edge (u, v) ∈ Ẽ(u, R),
we add to I(u, v, R) the labels of both λ(u, Troute(v,R)) and
λ(v, Troute(v, R)), allowing routing to both directions, that
is from u to v and from v to u in Troute(v, R). This blows-up
the labels length by a factor of o(log n). In addition, if u is
a relevant apex of R, we also add to I(u, v, R) the routing
table RT (x, Troute(v, R)). In addition, for every vertex x of
Troute(v, R) that is not a relevant apex of R we store at x
the routing table RT (x,Troute(v, R)).

During the routing process on the tree Troute(v, R) either
from v to some vertex x or from some vertex x to v, the label
of the destination is attached to the header of the message.
Note that for every edge (u, v) ∈ Ẽ(u, R), all vertices along
the shortest path the edge (u, v) represents, are not relevant
apices of R, except maybe u itself. Therefore, every vertex
x on that path contains RT (x, Troute(v, R)) and can thus
forward the message to the right port, for the vertex u itself
we store its routing table RT (u, Troute(v, R)) in I(u, v, R)
hence u can use it to forward the message.

Consider a vertex x. There are O(log n) regions in RR(x),
for each such region R, there are O(log n/ε) net-points
in Ñ(x, R), for each such net-point v, the routing table
RT (x, Troute(v, R)) is of o(log n) size. All in all, we get that
the routing table at a vertex x is of size o(log3 n/ε).

It is not hard to verify that given that routing information
and the labels of s, t, F , for any edge (u, v) in H (constructed
according to the query (s, t, F )) stored in some region R, one
can route on the shortest path from u to v in the subgraph
R. This implies that the stretch obtained by this routing
scheme is exactly the same stretch of our distance labeling
scheme. We thus have Theorem 4.

Our routing scheme can be tweaked to handle setting
where the vertices do not know in advance which vertices
are faulty and only discover the faulty vertices during the
routing process at the price of an additional factor of O(|F |)
in the stretch. This requires an additional modification –
every vertex needs to be familiar with the labels of its neigh-
bors. We attach to the header of the message the set of the
discovered faulty vertices along with a copy of the current
graph H . In each step an attempt is made to route to the

destination according to graph H , if no additional fault is
encountered then the message will be delivered to the des-
tination (assuming the source and the destination are still
connected). Otherwise, if a new faulty vertex is encoun-
tered, we attach the label of the faulty vertex and update H
accordingly. Notice that the latter can happen at most |F |
times. This gives the following .

Theorem 8. Given an n-vertex planar graph G with edge
weights in [1, M ], one can efficiently construct a routing
scheme that given a source vertex s and a target vertex t,
in the presence of a set of failures F (unknown to s), can
route a message from s to t in a distributed manner over a
path of length at most O(|F | ·dist(s, t, G \F )). The scheme
assigns each vertex v a label of length o(log4 n log (nM)) and
routing table of o(deg(v)·log3 n log (nM)) size, where deg(v)
is the degree of v in G. The message header passed during
the routing process is of size o(|F | · log3 n log (nM)).

We note that the factor of |F | appearing in the stretch
is in fact necessary. To see this, consider a source vertex
s and a target t and assume the graph G is composed of
|F |+ 1 disjoint shortest paths from s to t. Now, pick |F | of
these shortest path and assume the last vertex (the vertex
adjacent to t) in each of these shortest paths fail. Since the
source do not know in advance which vertices fail it might
try to route the message through the faulty paths first. This
yields a stretch of ≈ 2|F |.
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