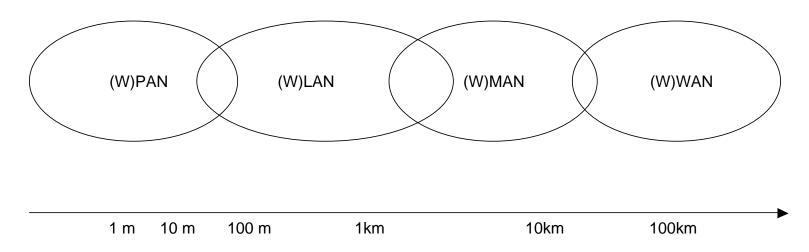


4. Réseaux locaux

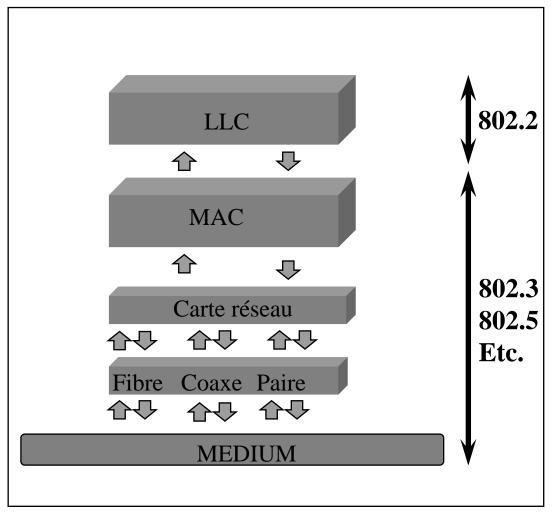


Réseau

- <u>Réseau</u>: ensemble d'ordinateurs/boîtiers reliés entre eux par des supports de transmission: ces éléments communiquent entre eux à partir de règles appelées **protocoles**.
- <u>Caractéristiques</u> : il n'existe pas de classification universelle des réseaux, mais deux critères importants les caractérisent :
 - La technologie de transmission utilisée :
 - Diffusion (canal partagé par toutes les machines)
 - Point à point (connexion entre machines 2 à 2)
 - La taille du réseau

Différentes catégories de réseaux

- •(W)PAN: (Wireless) Personal Area Network -> Réseaux personnels
- •(W)LAN: (Wireless) Local Area Network -> Réseaux locaux
- •(W)MAN: (Wireless) Metropolitan Area Network -> Réseaux métropolitains
- •(W)WAN: (Wireless) Wide Area Network Area Network -> Réseaux étendus

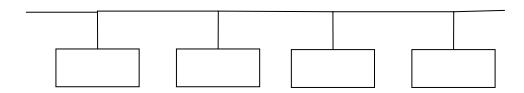

Le modèle OSI et les réseaux locaux

Application	7
Présentation	6
Session	5
Transport	4
Réseau	3
Liaison	2
Physique	1

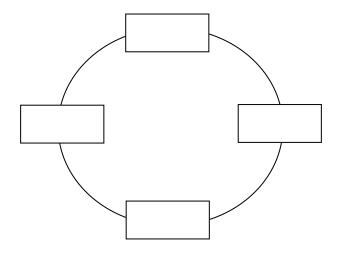
Support d'interconnexion matériel

Couches des réseaux locaux et normes

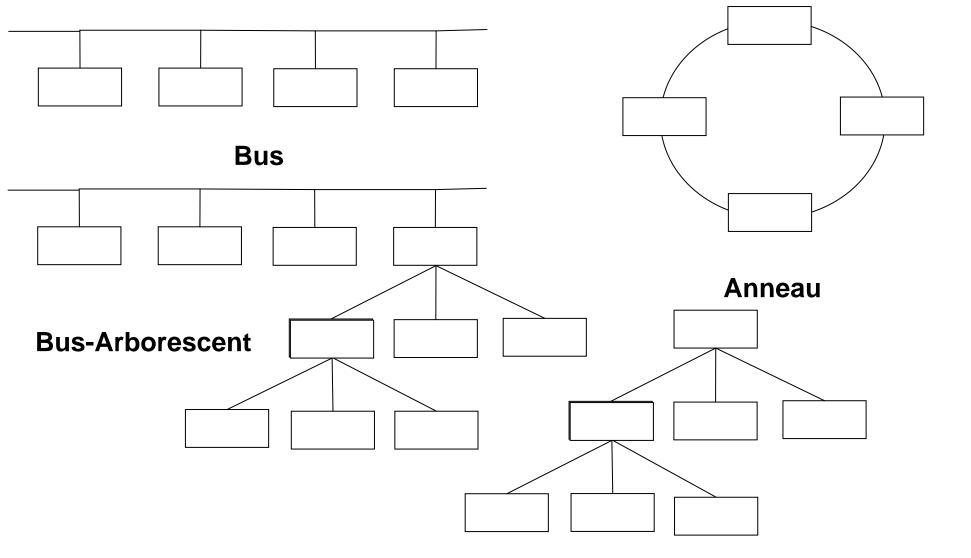
- LLC: Logical Link Control 802.2
- MAC: Medium Access Control 802.3, 802.5, etc.



Caractéristiques d'une technologie 'réseau local'


- Topologie (ou topologie logique)
- Câblage (ou topologie physique)
- Méthode d'accès au médium

Topologie (ou topologie logique)


Bus

Anneau

Câblage (ou topologie physique)

Arborescent

Exemples de topologie/câblage

- Starlan (préhistoire...)
 - topologie physique : arborescent
 - topologie logique : bus
- Ethernet
 - topologie physique : bus ou arborescent
 - topologie logique : bus

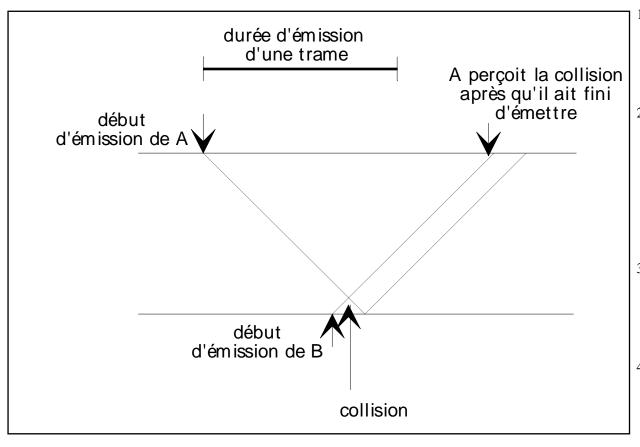
Méthodes d'accès au support

- But : gérer l'accès au médium
- Normalisées
 - IEEE (Institute of Electrical and Electronic Engineers)
 - ISO
- Réalisées par la couche MAC

Méthodes d'accès au support

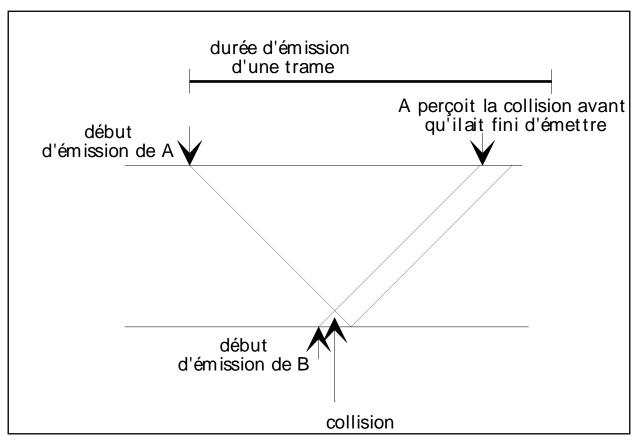
- Deux approches :
 - accès par élection (centralisée ou distribuée)
 - accès par compétition (résolution des collisions)

- Différentes méthodes :
 - CSMA/CD (Carrier Sense Multiple Access / Collission Detection)
 - Anneau à jeton
 - Bus à jeton



Méthodes d'accès au support CSMA/CD

- Norme: IEEE 802.3, ISO 8802.3
- Topologie logique : bus
- Principes
 - Carrier Sense : chaque station est à l'écoute pour détecter la présence d'un signal
 - Multiple Access : plusieurs stations peuvent émettre en même temps
 - Collision Detection : chaque station sait si elle a provoqué une collision


CSMA/CD : Durée minimale d'émission

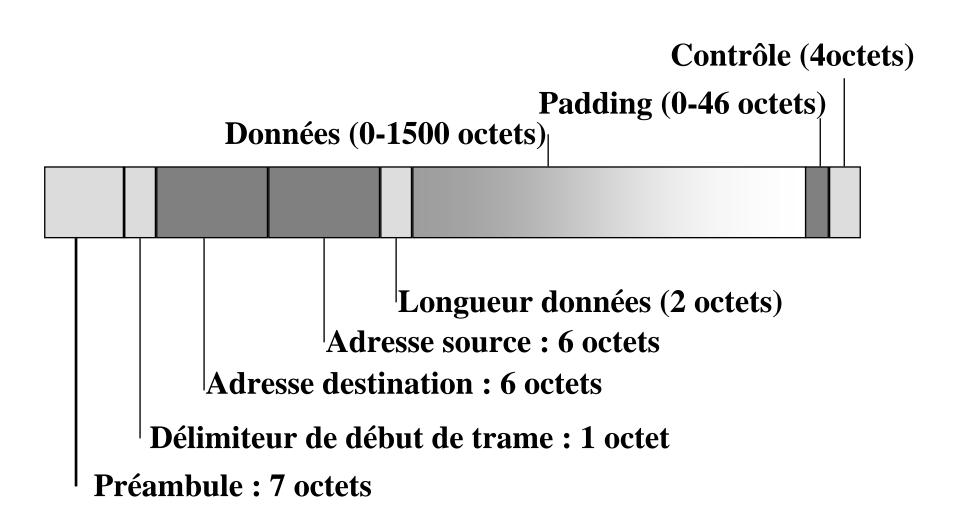
- A regarde si le câble est libre avant d'émettre
- 2. Le délai de propagation n'est pas nul => B peut émettre alors que A a déjà commencé son émission
- Les 2 trames se percutent : c'est la collision
- 4. Avec une durée d'émission 'trop courte', A ne peut pas savoir que son message a provoqué une collision...

CSMA/CD : Durée minimale d'émission

- 1. Si une station en train d'émettre détecte une collision, elle s'arrête d'émettre.
- Une station détecte une collision lorsqu'elle reçoit une trame 'accidentée'.

CSMA/CD : Durée minimale d'émission

- Durée minimale d'émission
 - D : débit
 - P : durée maximale de propagation
 - Durée d'émission >= 2*P


Durée d'émission minimale : 2*P

 Ce qui revient à dire que la trame doit avoir une longueur >= 2*P*D

Longueur minimale de la trame : 2*P*D

CSMA/CD : La trame

CSMA/CD : La trame

- **Préambule**: 56 bits = 7 X (1010101010), permet la 'synchronisation bit'.
- **Délimiteur de début de trame** (Start Frame Delimiter) : 8 bits = 10101011; permet la 'synchronisation trame/caractère'.
- Adresse (6octets) individuelle/multicast/broadcast.
- Longueur du champ de données : valeur comprise entre 1 et 1500, indique le nombre d'octets des données (compatibilité avec Ethernet...).
- **Padding** : contenu sans signification complétant une trame dont la longueur des données est inférieure à 46 octets.
- Contrôle : séquence de contrôle basée sur un CRC polynomial de degré 32.

Méthodes d'accès au support : Anneau à jeton

- structure : anneau unidirectionnel
- normalisé (IEEE 802.5, ISO 8802.5)
- principe:
 - une unique trame circule en permanence
 - 1bit (jeton) indique si la trame est pleine ou libre
 - une trame pleine est lue par la station réceptrice
 - une trame pleine est vidée par la station émettrice

CSMA/CD: Ethernet, une implémentation

- 1980 (DEC, INTEL et XEROX)
- Topologie logique / physique
 - Bus / Bus+Arborescent
- Méthode d'accès : CSMA/CD
 - Une implémentation de la norme 802.3
 - Adresse Ethernet
 - codée sur 6 octets (0:40:7:3:4:2b)
 - adresses particulières.
 Ex: FF:FF:FF:FF:FF (broadcast address)
- Câblage
 - support de transmission XBaseY

Rôle de la couche physique

- Détecter l'émission d'une autre station sur le médium (Carrier Sense), alors que la station est en écoute
- Transmettre et recevoir des bits sur le médium
- Détecter l'émission d'une autre station pendant que la station émet (Collision Detect)

Taille minimale de trame

- Vitesse de propagation : 200 000 km/s
- Distance maximale entre 2 stations : 2,5 km
- Délai maximal de propagation
 - $P = 2.5/200\ 000 = 12.5\ \mu s$
- Tranche canal (Time Slot)
 - $TC = 2xP = 25 \mu s$.
 - on prend TC = 51,2 μs
- Taille de trame minimale
 - D x TC = 10Mbps x 51,2µs
 = 512 bits soit 64 octets.

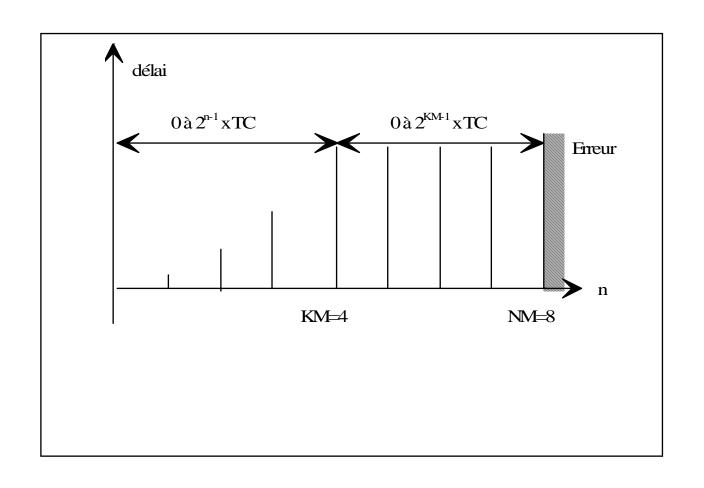
Ce « Time Slot» d'acquisition du canal est égal à 51.2 µs : ce délai passé, aucune collision ne peut plus arriver!
Par conséquent, une station doit donc écouter le signal « Collision Detection » pendant 51.2 µs à partir du début d'émission de la trame.

Délai d'attente avant retransmission

La station attend R * 51.2 µs tel que

$$0 \le R \le 2^{i-1}$$

- R étant un entier « Random » et i = min(n, KM)
- n = nombre de retransmissions déjà effectuées
- λ le nombre de réémissions est limité à NM


Généralement :

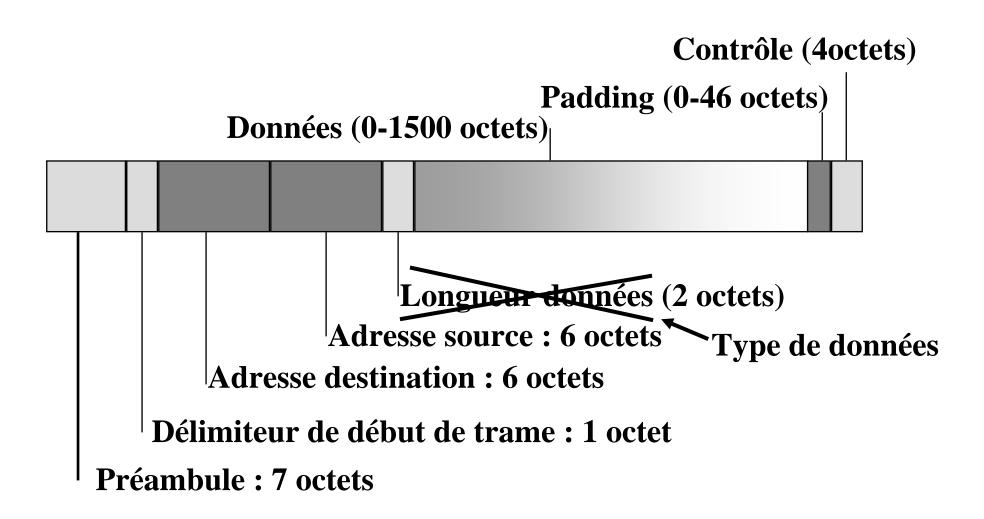
KM=10

NM=15

Délai d'attente avant retransmission (suite)

Format d'une trame Ethernet

- Identique à la trame 802.3 sauf le champ **type** indiquant le type de protocole véhiculé dans le trame :
 - 2 octets représentés sous la forme hexadécimale XX-YY ou XXYY.
 - Quelques exemples de valeurs :


• **0806**: ARP

• **0800** : IP

• ...

Format d'une trame Ethernet

Câblage Ethernet

- Classes de transmission
 - Norme IEEE 802.3, ISO 8802.3
 - Câblage : (bus) ou arborescent
- Support : (câble coaxial), paire torsadée, fibre optique.
- Désignation: XType-Y
 - X: le débit en Mbps
 - *Type :* le type de transmission (Base = bande de base)
 - Y: la nature du support (avec la longueur max du brin)

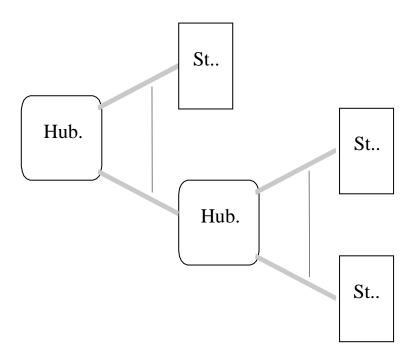
Câblage Ethernet

Ethernet

Fast Ethernet

Gigabit Ethernet

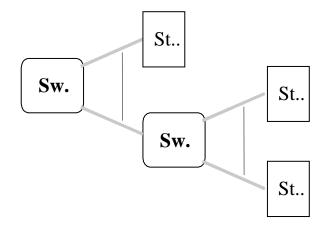
XBase-Y	Débit	Support	Long maxi
10Base-T	10 Mbps	Paire torsadée	100m
100Base-TX	100 Mbps	Paire torsadée	100m
100Base-FX	100 Mbps	Fibre optique	200m
1000Base-SX	1 Gbps	Fibre optique	550m
1000Base-LX	1 Gbps	Fibre optique	5000m
1000Base-CX	1 Gbps	Paire torsadée blindée	25m



Exemple de câblage

- Cas du 100Base-TX
 - Au plus 100m
 - Câble de catégorie 5 (paire torsadée)
 - Boitiers : hub et/ou switch

Boîtier: Hub



Boîtier: Commutateur Ethernet

- Appelé aussi:
 - hub commuté
 - pont multiport
 - **switch** Ethernet

domaine de collision restreint

