
CS: a MuPAD Package for Counting and Randomly Generating

Combinatorial Structures

Alain Denise Isabelle Dutour Paul Zimmermann

LRI, Universit�e Paris-Sud LORIA, INRIA Lorraine LORIA, INRIA Lorraine

Alain.Denise@lri.fr Isabelle.Dutour@loria.fr Paul.Zimmermann@loria.fr

April 10, 1998

Abstract

We present a new computer algebra package which permits to count and to generate

combinatorial structures of various types, provided that these structures can be described

by a speci�cation, as de�ned in [7].

R�esum�e

Nous pr�esentons un nouveau module de calcul formel d�edi�e au d�enombrement et �a la

g�en�eration al�eatoire uniforme de structures combinatoires d�ecomposables.

1 What is CS ?

CS is a computer algebra package devoted to the handling of combinatorial structures. Its

main features are the following: given a combinatorial speci�cation of a class of decomposable

structures (in the sense of [7]), CS is able to count and uniformly draw at random the struc-

tures of any given size n. It can also give some properties of the associated generating series,

like recurrences and di�erential equations.

A speci�cation of a class of combinatorial structures, as de�ned in [7], is a set of productions

made from basic objects (atoms) (Epsilon and Z of size 0 and 1 respectively) and from

constructions (Union for disjoint unions, Prod for products, Sequence for sequences, Set for

sets (labelled case) or multisets (unlabelled case)). A class of structures is called decomposable

when it admits a speci�cation with a �nite number of basic objects and constructions. For

example, binary trees, ternary trees, permutations, surjections, functional graphs, integer or

set partitions, hierarchies, are all decomposable structures. An example of non-decomposable

structures is the class of general graphs, as cutting an edge in a graph does not usually divide

it into two subgraphs.

CS, like COMBSTRUCT (previously known as Ga��a [11]), another package developed by

one of the authors, is mainly based on the theory developed in [7] and [6]. But, in addition

to the fact that CS is a MuPAD package while COMBSTRUCT is a Maple package, CS

presents some more advanced features: at the present time, CS o�ers the same functionalities

than COMBSTRUCT o�ers concerning unlabelled structures (except for cycles and some

conditions on cardinality of sets), plus the following:

1

� Given any decomposable class, CS is able to automatically generate the source of a C

program for almost uniform random generation. Then this program can be compiled

and used totally independently from MuPAD. You are then able to get the approximate

counting or draw at random one or several of its elements of desired size, much more

e�ciently than with a Maple or a MuPAD procedure. This is the �rst implementation

of one of the algorithms given in [4].

� When the generating series of a decomposable class is holonomic, CS is able to compute,

using Gr�obner basis calculation and Gaussian elimination, a linear recurrence that its

coe�cients satisfy. This improves the complexity of counting and enables the generation

of larger structures.

At the present time, CS only deals with unlabelled structures. The CS package is currently

being developed and we plan to add the labelled case and several other new features; Section

6 describes some of them.

2 How to install CS on your computer

First, you must have installed the MuPAD computer algebra system on your computer. This

software is distributed for free (but not in public domain: a registration is required). It can

be downloaded at the following address:

http://www.mupad.de

MuPAD is available on several computer systems and the way to install it on each system is

precisely described.

Once you have MuPAD on your computer, you can download the CS package (cs.mu, one

ASCII �le) at the address:

http://www.loria.fr/~dutour/CS

Now you just have to run MuPAD and to read CS by typing, after the prompt \>>",

read("cs.mu"):

3 Counting and Generating

Here is the MuPAD instruction which creates the speci�cation of plane trees:

>> specPT:={T=Prod(Z,Sequence(T))};

{T = Prod(Z, Sequence(T))}

In other words, a plane tree is a product of a root vertex (the atom Z) and a sequence (possibly

empty) of plane subtrees. To count the number of plane trees of size, say 100, use the count

procedure of the CS package:

>> cs::count([T,specPT],size=100);

227508830794229349661819540395688853956041682601541047340

2

We can verify that the �rst coe�cients of the generating series correspond to the �rst

Catalan numbers:

>> cs::count([T,specPT],size=i)$i=1..10;

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862

Now let us draw a random plane tree with 10 vertices:

>> cs::draw([T,specPT],size=10);

Prod(Z, Sequence(Prod(Z, Epsilon), Prod(Z, Sequence(

Prod(Z, Sequence(Prod(Z, Sequence(Prod(Z, Epsilon))))), Prod(Z, Epsilon)

, Prod(Z, Sequence(Prod(Z, Epsilon))))), Prod(Z, Epsilon)))

This description corresponds to the following tree:

Remark: Such a �gure can be drawn almost directly from the output of the draw procedure

by using CalICo [3] or CGraph [2], two programs dedicated to the manipulation and visual-

ization of combinatorial structures. This �gure was drawn with CalICo.

Here is another example of a speci�cation, using an argument of cardinality; P represents

the integer partitions and N the integers greater or equal to 1:

>> specPART:={P=Set(N),N=Sequence(Z,card>=1)};

{N = Sequence(Z, 1 <= card), P = Set(N)}

>> cs::draw([P,specPART],size=5);

Set(Sequence(Z), Sequence(Z), Sequence(Z), Prod(Sequence(Z, Z))

The count and draw procedures both call the compile procedure. This last one produces,

given the speci�cation, the recurrences which will be used in order to count and generate the

3

structures. The variable HOLONOMIC, when switched to the value TRUE, tells CS to test, when

compiling a class of structures, if its generating function is holonomic or not. If yes, CS �nds

a simple linear recurrence to count the structures, so that the counting runs more quickly,

i.e. in linear instead of quadratic number of operations. (The default value of HOLONOMIC is

FALSE). To illustrate this, compare the time needed to count the number of Motzkin trees of

size 100, when compiling with HOLONOMIC equal to FALSE or TRUE (on a Sun Sparc 10, CPU

time in ms):

>> specMT:={M=Union(Z,Prod(Z,M),Prod(Z,M,M))};

{M = Union(Z, Prod(Z, M), Prod(Z, M, M))}

>> cs::HOLONOMIC:=FALSE:

>> st:=time(): cs::compile(specMT): time()-st;

6330

>> st:=time(): cs::count([M,specMT],size=100); time()-st;

249478578991224378680142561460010030467811580

36160

>> cs::HOLONOMIC:=TRUE:

>> st:=time(): cs::compile(specMT): time()-st;

19470

>> st:=time(): cs::count([M,specMT],size=100); time()-st;

249478578991224378680142561460010030467811580

1160

In the second case, the call to compile is longer, due to the computation using Gr�obner

basis and Gaussian elimination; but once �nished, the counting and random generation are

much more e�cient. The next section will detail what happens exactly when compiling with

HOLONOMIC=TRUE.

4 Equations and Recurrences

The CS package provides some procedures in order to handle generating series. They imple-

ment (in MuPAD) some functionalities of the GFUN Maple package [10]. These procedures

are used in compile (see the details below) but can also be called independently.

4

The procedure speciftoalgeq returns an algebraic equation that the generating series

associated to the given speci�cation satis�es, provided that such an equation exists:

>> eq:=cs::speciftoalgeq(specMT,M);

2

z - M + M z + M z

(At �rst glance, this does not look like an equation, but this is to be read as z �M +Mz +

M2z = 0.)

The procedure algeqtodiffeq converts this equation into a di�erential equation, while

diffeqtorec gives the recurrence on the coe�cients involved by the di�erential equation:

>> deq:=cs::algeqtodiffeq(eq,M(z));

2 3

2 z - M(z) + z M(z) - z D(M)(z) + 2 z D(M)(z) + 3 z D(M)(z)

>> r:=cs::diffeqtorec(deq, M(z), v(n));

v(n - 1) - v(n) - n v(n) + 2 (n - 1) v(n - 1) + 3 (n - 2) v(n - 2)

We can resume all these steps in one unique call:

>> r:=cs::speciftorec(specMT,M,v(n));

v(n - 1) - v(n) - n v(n) + 2 (n - 1) v(n - 1) + 3 (n - 2) v(n - 2)

The procedure rectoproc outputs a MuPAD procedure that gives the n-th term of the linear

recurrence given as input. The cs::LIM variable is set to the rank from which the recurrence

is valid. The user has to initialize himself the �rst values up to this rank.

>> m:=cs::rectoproc(r, v(n));

proc(n)

name m;

local nmax, j, g, ff;

begin

nmax:=max(op(map([op(op(level(procname), 5))], op, 1)));

for j from nmax + 1 to n do

ff:=level(procname);

g:=procname(j);

evalassign(g, (j*(-1) + (-1))^(-1)*(ff(j + (-1))*(j*2 + (-1)) + ff(j +\

(-2))*(j*3 + (-6)))*(-1), 1)

end_for

end_proc

>> cs::LIM;

2

>> m(0):=0: m(1):=1: m(2):=1:

>> m(100);

249478578991224378680142561460010030467811580

5

All these procedures are called by the compile function when the variable HOLONOMIC

is equal to TRUE. You can take again the last example of the previous section and, before

compiling with HOLONOMIC=TRUE, call the MuPAD function setuserinfo in order to see the

operations involved by the calculation of the linear recurrences:

>> cs::HOLONOMIC:=TRUE:

>> setuserinfo(Any,1):

>> cs::compile(specMT);

...

standard form is: , {T1 = Prod(Z, M), T3 = ProdPrd(M, M), T2 = Prod(Z, T3)\

, Z = Atom(Z), M = Union(Z, T1, T2)}

...

polynomials are: , [T1*(-1) + M*z, T3*(-1) + M^2, T2*(-1) + z*T3, M*(-1) +\

z + T1 + T2]

auto reduces list of 4 polynomials

groebner basis is: , [M^2 + M*z^(-1)*(z + (-1)) + 1, T1 + M*z*(-1), T3 + M\

z^(-1)(z + (-1)) + 1, z + T2 + M*(z + (-1))]

...

perform (ordinary) Gaussian elimination

algeq is: , T3*(-1) + z*T3*2 + z^2 + z^2*T3 + z^2*T3^2

perform (ordinary) Gaussian elimination

diffeq is: , T3(z)*2 + z*T3(z)*(-4) + z*D(T3)(z) + z^2*(-4) + z^2*T3(z)*(-\

2) + z^2*D(T3)(z)*(-3) + z^3*D(T3)(z)*(-1) + z^4*D(T3)(z)*3

recurrence for , T3, is: , u(n)*2 + n*u(n) + u(n + (-1))*(-1) + u(n + (-3\

))*(-9) + n*u(n + (-1))*(-3) + n*u(n + (-2))*(-1) + n*u(n + (-3))*3

...

TRUE

(In the computation above, some parts of the outpout are missing, because the full output

would be too long for this presentation ; we just kept some signi�cative extracts.)

What happens with cs::HOLONOMIC:=TRUE is the following. Firstly, CS translates the

standard form of the user speci�cation into a set of polynomial equations for the corresponding

generating functions. Here, the nonterminals are M;T1; T2; T3 and the equations are

zM � T1 = 0;M2
� T3 = 0; zT3 � T2 = 0; z + T1 + T2 �M = 0:

Secondly a Gr�obner basis for this system of polynomials is computed, with coe�cients which

are rational functions in z. This basis is here:

M2 +
z � 1

z
M + 1; T1 � zM; T3 +

z � 1

z
M + 1; z + T2 + (z � 1)M:

Then for each nonterminal T | only the case of T3 is shown above | one reduces 1; T; T 2; : : :

with respect to the Gr�obner basis, until a linear dependency is found, with coe�cients being

rational functions in z. Such a dependency necessarily exists because the number of possible

monomials arising in the reductions is �nite, as the corresponding ideal is zero-dimensional.

The dependency found for T3 is

z2T 2
3 + (z2 + 2z � 1)T3 + z2 = 0:

6

It follows from the theory of holonomic functions that every algebraic function satis�es a

linear di�erential equation with polynomial coe�cients. Such a di�erential equation for T3,

which can be computed by the algeqtodiffeq function, is:

(3z4 � z3 � 3z2 + z)T 0

3(z) + (�2z2 � 4z + 2)T3(z)� 4z2 = 0:

This di�erential equation leads in turn to a linear recurrence for the Taylor coe�cients of

T3(z):

(n+ 2)un � (3n+ 1)un�1 � nun�2 + (3n� 9)un�3 = 0:

This recurrence, together with the initial coe�cients, enables one to compute all coe�cients

up to order n in O(n) operations.

5 Generation of C code

The Schr�oder trees are taken as example in this section. Each internal node of theses trees

has at least two subtrees. Their enumeration according to their number of leaves leads to the

Schr�oder numbers. Here all the nodes are counted:

>> specST:={S=Union(Z,Prod(Z,Sequence(S,card>=2)))}:

The compile procedure allows additional arguments in order to create the source �le of

a C program that can generate more quickly one or several structures of a given size. This

program can be compiled and run either from or out of MuPAD. The following example shows

how to process the �rst possibility.

>> cs::compile(specST,target=C,file="SchroederTree.c",main=S);

TRUE

>> system("cc -Dsun4 SchroederTree.c -lm; a.out 5");

Prod(Z,Sequence(Z,Z,Z,Z))

1

The binary �le a.out can take two arguments. The �rst is the size of the structure (n) and

the second is the number of structures you want to generate. If this second argument is

not present, the program generates only one structure, and if it is equal to 0, it gives the

approximate number of structures of size n:

>> system("a.out 1000 0");

5.1077756867799034*10^471..5.1077756867845379*10^471

1

In fact, the result consists in an interval; we can guarantee that the exact number of structures

lies in this interval, because the program does respect the IEEE speci�cations concerning

oating-point calculations. This can be easily veri�ed for our example:

7

>> cs::count([S,specST],size=1000);

51077756867821111314107471883520487646459962939615212132140562283586531550\

85712531917972151855853338148428884854040708738499122927307310995223206972\

46647726596273843155464894031285558286190795796393695165581530434292537730\

59361751753258007702832280113282117601364859322363650398274479548733624782\

45018768527999752095954909173205985617348262129533441008570673176572255375\

47121689339885351209588801649129568970987115615063798368477104478098170599\

5549956379942013897484633052

>> length(%);

472

The C program allows to manipulate very large numbers (see above). Normally, it can be

compiled on all machines. Presently, the supported architectures are SunOs (-Dsunos), Solaris

(-Dsun4), DecAlpha (-Dalpha), IRIX (-DIRIX64), HP (-Dhp700).

The following table compares the CPU time (in seconds on an IRIX machine) needed for

all computations. The two columns \count" give the average time required for the preprocess-

ing, without or with linear recurrences (quadratic and linear respectively), while the column

\draw" gives the average time for one random generation (over 100 generations, except for

the size 1000000 for which just one generation was processed), which is quasi-linear.

n count (without rec.) count (with rec.) draw

100 0:037 0:007 0:002

1000 4:158 0:036 0:027

10000 499:210 0:358 0:346

100000 � 4:054 4:364

1000000 � 45:219 57:352

Remark: in the current version of CS, the C program only performs almost uniform ran-

dom generation, because the coe�cients used in the generation procedures are computed in

oating-point arithmetic. (However, since the procedures are numerically stable, the round-

ing errors involved by
oating-point arithmetic do not strongly a�ect the quasi-uniformity of

generation; for details, see [4]). A future version of CS will allow to produce exactly uniform

generators in C language (see Section 6).

6 Future Features

The CS package is presently at the beginning of its development (the current version number

is 1.0). Our aim is to add, within the next few months, several new features. Here are some

of them.

� A future version of CS will handle labelled structures as well as unlabelled ones, and

the cycle constructor.

� When a speci�cation is not context-free, CS can not compute linear recurrences to

count the objects (in linear number of operations), and the countings runs in quadratic

number of operations (due to the products). In this case, we want to use the fast lazy

8

multiplication algorithm of formal power series designed by Joris van der Hoeven [9].

We are implementing it by using Karatsuba's algorithm as sub-algorithm, and we obtain

an arithmetic complexity | i.e. the number of operations on the series coe�cients |

of O(nlog3= log 2), with respect to O(n2) with the classical algorithm.

� One of the authors has developed a Maple package, named qAlGO, mainly based on the

notion of object grammars [5], and that leads to enumeration and random generation

of objects according to non algebraic parameters. The packages qAlGO and COMB-

STRUCT complement each other. We plan to integrate also the qAlGO technics in

CS.

� Recently, two of the authors investigated a method, based on a strategy of \lazy eval-

uation", which fairly improves the average complexity of the exactly uniform random

generation of decomposable structures [4]. We plan to use this method in CS in order

to get more e�cient generation procedures.

� In the current version of CS, the C programs written by the draw procedure only perform

almost uniform random generation. We intend to use a multiprecision mathematical

library, like PARI [1] or GMP [8], so that CS can write true random generators in C

language.

References

[1] C. Batut, D. Bernardi, H. Cohen, and M. Olivier. User's Guide to PARI-GP, January

1995. URL ftp://megrez.math.u-bordeaux.fr/pub/pari.

[2] F. Bertault. G�en�eration et trac�e de structures d�ecomposables. PhD thesis, Universit�e

Henri Poincar�e Nancy 1, September 1997.

[3] M. Delest, J.M. F�edou, G. Melan�con, and N. Rouillon. Computation and images in

combinatorics. In RIACA Amsterdam, editor, HISC book. Springer Verlag, To appear.

[4] A. Denise and P. Zimmermann. Uniform random generation of decomposable structures

using
oating-point arithmetic. Technical Report 3242, INRIA, 1997. To appear in

Theoretical Computer Science.

[5] I. Dutour and J.M. F�edou. Object grammars and random generation. Technical Report

1165-97, LaBRI, Universit�e Bordeaux I, 1997. To appear in Discrete Mathematics and

Theoretical Computer Science.

[6] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus of random generation:

Unlabelled structures. In preparation.

[7] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random generation

of labelled combinatorial structures. Theoretical Computer Science, 132:1{35, 1994.

[8] T. Granlund. GNU MP: The GNU Multiple Precision Arithmetic Library, 2.0.2 edition,

June 1996.

[9] J. van der Hoeven. Lazy multiplication of formal power series. In W. W. K�uchlin, editor,

Proc. ISSAC'97, pages 17{20, Maui, Hawaii, July 1997.

9

[10] B. Salvy and P. Zimmermann. Gfun: A Maple package for the manipulation of generating

and holonomic functions in one variable. ACM Transactions on Mathematical Software,

20(2):163{177, June 1994.

[11] P. Zimmermann. Ga��a: a package for the random generation of combinatorial structures.

MapleTech, 1(1):38{46, 1994.

10

