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Abstract. High Performance Computing (HPC) systems are rapidly
growing in size and complexity. As a result, transient and persistent
network failures can occur on the time scale of application run times,
reducing the productive utilization of these systems. The ubiquitous
network protocol used to deal with such failures is TCP/IP, however,
available implementations of this protocol provide unacceptable per-
formance for HPC system users, and do not provide the high band-
width, low latency communications of modern interconnects. This paper
describes methods used to provide protection against several network
errors such as dropped packets, corrupt packets, and loss of network
interfaces while maintaining high-performance communications. Micro-
benchmark experiments using vendor supplied TCP/IP and O/S bypass
low-level communications stacks over InfiniBand and Myrinet are used
to demonstrate the high-performance characteristics of our protocol. The
NAS Parallel Benchmarks are used to demonstrate the scalability and
the minimal performance impact of this protocol. Communication level
micro-benchmarks show that providing higher data reliability decreases
bandwidth by up to 30% relative to unprotected communications, but
provides performance improvements of a factor of four over TCP/IP
running over InfiniBand DDR. In addition, application level benchmarks
(communication/computation) show virtually no impact of the data re-
liability protocol on overall run-time.

1 Introduction

The ever increasing complexity and scale of HPC systems increases the likelihood
of hardware and software component failure in these systems. The use of com-
modity (or near commodity) off-the-shelf components to build many such sys-
tems further aggravates the problem, as these are often not engineered to provide
end-to-end hardware reliability; either ignoring such reliability issues or leaving
it to software layers to provide. The ubiquitous software solution for end-to-
end reliability is provided by TCP/IP communications stacks. The performance
provided by such commonly available stacks does not meet the requirements
of the HPC community, providing only a small fraction of the communications
performance afforded by the networking hardware.
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While HPC system failures occur in a variety of ways, this paper focuses on a
software architecture aimed at detecting and correcting failures in network data
transmission. The goal of this design is to provide end-to-end protection against
such failures, while providing communication performance commensurate with
that of the underlying hardware. These failures may occur in a number of layers
including software stacks, firmware or in hardware. They may include transient
failures, such as Network Interface Card (NIC) resets, or more permanent fail-
ures, such as failed NICs. These failures may result from the normal statistical
failure rate associated with large component counts, or may be the result of soft-
ware or hardware defects, which may be fixed over time. Therefore addressing
these issues is required for effective system utilization over the lifetime of these
systems.

As costs are incurred when providing these fault tolerant features, the Modular
Component Architecture (MCA) [1] of Open MPI is used to provide these as run-
time selectable options. When these features are not selected, there is no impact
on the the default high-performance configuration of Open MPI.

The remainder of this paper is organized as follows: Section 2 presents a brief
overview of previous work. Next, Section 3 discusses the network fault tolerance
architecture in Open MPI. Results are discussed in Section 4. Conclusions are
discussed in Section 5.

2 Background

There have been several previous efforts to deal with network failure in a man-
ner transparent to the calling application. The TCP/IP [2] stack deals with both
transient data corruption, as well as with transient and permanent network fail-
ures. However, since TCP/IP is a general purpose network stack, designed to deal
with a wide variety of network failures, including lossy data transmissions, flow
control, and congestion control issues, these implementations do not provide the
level of performance required by HPC applications. Network communication on
HPC systems is normally generated only by the applications using these systems,
and as such suffer little interference from system services or other applications.
In addition, the networks used in these systems often possess a high degree of
reliability with low error rates. These operating environments allow for relia-
bility protocols which provide higher overall performance than general purpose
reliability protocols which often provide unnecessary (often costly) features.

There have also been several attempts to provide different aspects of network
fault tolerance specific to HPC systems. One of the goals of the LA-MPI project
[3,4] was to provide reliable network communications. It uses timers on ACKs
to detect dropped packets and either the TCP/IP checksum or a Cyclic Redun-
dancy Check (CRC) to detect corrupted packets. The work presented in this
paper draws upon prior work in LA-MPI but is entirely new in terms of soft-
ware and protocol providing better performance while also adding new features
such as network fail-over and protocol tuning for specific operating environ-
ments. The VMI project [5] also provides a way to deal with network errors, and
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recently, the MVAPICH project implemented network fail-over using the uDAPL
interface [6].

3 Open MPI - Network Fault Tolerance

3.1 Open MPI’s Point-To-Point Architecture

Open MPI’s point-to-point architecture has been described in great detail else-
where [7], and will be described very briefly in this section. Figure 1 provides a
graphical depiction of this design.

MPI

PML - OB1/DR

BML - R2
BTL - 
GM

MPool-
GM

Rcache

BTL -
OpenIB 

MPool-
  OpenIB
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Fig. 1. Open MPI’s Layered Architecture

Open MPI uses a layered design, with the aid of the the Modular Component
Architecture, to achieve the flexibility in the features this code base offers. The
MPI layer interfaces with the point-to-point communications implementation of
Open MPI via the Point-To-Point Management Layer (PML). Currently, there
are multiple PMLs supported, such as the OB1 PML [8] and the Data Reliability
PML (DR), described in this paper.

The OB1 PML is aimed at providing the best point-to-point communications
performance possible making use of all available communications resources, and
the DR PML provides fault tolerance for this type of communications. Both
PML’s use the Byte Transfer Layer (BTL), the BTL-Mangement-Layer (BML), the
Memory Pool (MPool), and optionally the Registration Cache (RCache) compo-
nents in implementing these communications protocols.

3.2 Data Reliability DR Overview

Open MPI provides transparent user-level reliability over a variety of networks
and network APIs. This user-level reliability is encapsulated in a single Modular
Component Architecture component, PML DR or just DR. DR implements the
point-to-point semantics of MPI while providing several network fault tolerance
features. DR provides protection from a number of failure scenarios:
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– Dropped Data
– Corrupted Data
– Catastrophic NIC Failure (Fail-over When other Communication Paths

Exist)
– Network Agnostic Protection via Local Completion Watchdog Timers and

ACK based Timeouts
– Network Specific Protection via Registered Error Handlers

Similar in functionality to PML OB1 [8], DR also makes use of the BTL (byte
transfer layer) which abstracts the underlying network API in a uniform manner.
This uniform network abstraction API allows DR to provide network fault tol-
erance in a network agnostic fashion without relying on other network abstrac-
tion libraries. The BTL abstraction is high-performance by design and when used
with PML OB1 performance is similar to other MPI libraries. In using the high-
performance BTLs the additional costs of reliability are isolated to the PML DR
component.

3.3 VFRAG Protocol

A unique feature of PML DR is its user-level reliability protocol. A key component
of the protocol is the Vector of Fragments (VFRAG). The VFRAG acts as a
unit of acknowledgment and allows selective retransmission in a straight forward
manner. Each MPI message is divided into N virtual fragments. Each virtual
fragment is made up of 64 smaller fragments. The total size of the VFRAG is
therefore 64 ∗ Smax where Smax is runtime configurable. For example, given a
MPI level message of size 4MB and Smax = 16K the number of VFRAGS would
be 4MB/(16K ∗ 64) = 4. Figure 2 illustrates the VFRAG structure.

...VFRAG 1...0 1 62 63

MPI Message

...VFRAG N...0 1 62 63...................

Fig. 2. VFRAG Layout

This reliability protocol begins by allocating (via a free-list) a VFRAG de-
scriptor. The VFRAG descriptor contains two timers, a local completion timer
and a remote ACK timer. Upon scheduling fragment 0 of the current VFRAG
the local completion timer is initialized and started and the number of pending
fragments within the VFRAG is set to 1. Subsequent fragments within the same
VFRAG are also scheduled and the number of pending fragments is incremented.
As notification is received from the BTL that the fragment was sent and local
completion occurred, the number of pending fragments is decremented and the
timer is reset with a new timeout (as long as there are pending fragments).
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The local completion timer gives some indication of VFRAG progression
though it is not definitive. Relying solely on local completion as indication of
message progression places reliability of completion semantics with the network
interface. In order to protect the VFRAG from unreliable network completion
semantics an ACK timer is set when the last fragment of the VFRAG is sched-
uled for transmission. The ACK message from the receiver contains a bit-mask
indicating which of the 64 fragments of the VFRAG were delivered success-
fully. This two-stage timeout reduces the overhead of reliability by aggregating
acknowledgments. In addition, recovery is optimized through local completion
timeouts and selective retransmission via the bit-mask ACK.

In addition to the local watchdog timer and the remote ACK timer PML DR
can also recover from asynchronous errors from the BTL. During initialization
DR registers an asynchronous error handler with the BTL. This error handler
can take appropriate action such as failing over traffic to another BTL. Fail-over
can also occur based on tunable retransmit levels on a per VFRAG basis. This is
allowing fail-overs to occur either as a result of a network reported error or time-
outs of the local watchdog timer or remote ACK timer. This is a major difference
in contrast of relying solely on network reported errors as described in [6].

This protocol provides several benefits. CRC/Checksum size is configurable
based on Smax. That is each fragment of size Smax carries an associated CRC/
Checksum in its fragment header. ACK aggregation is tunable based on the total
size of the VFRAG. Selective retransmission is provided by the bit-mask ACK.
Along with these benefits there are additional costs including:

1. Latency increased due to specific acknowledgment
2. Bandwidth decreased due to additional protocol overhead
3. CPU Availability decreased due to additional protocol overhead

In recognition of these costs, DR takes advantage of various MPI semantics
to limit protocol impact. For example, DR can mark MPI completion of a mes-
sage as soon as it is buffered instead of waiting for remote ACK of the message
thereby hiding some of the additional protocol costs of reliability. In addition,
the performance impact can be tuned by selecting the recovery cost/performance
ratio appropriate to a given operating environment. For example, if the operat-
ing environment includes a highly reliable network with few failures Smax can be
increased such that each ACK protects a larger amount of data. This increases
recovery costs while decreasing the cost of reliability. CSUM/CRCs can be en-
abled/disabled on a per BTL or global basis thereby allowing the user or system
administrator to choose Main-memory to Main-memory protection at a fine or
coarse granularity.

While PML DR provides protection from a number of different network failure
scenarios, it does not protect against every eventuality. DMA operations initiated
by the NIC which corrupt the target address cannot be protected against with
DR as the DMA may corrupt random memory locations on the host. Network
stack/driver errors can sometimes result in kernel panics or processes hanging
in uninterruptible sleep from which the user level process cannot recover.
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3.4 Data-Type Engine

The responsibility to pack, unpack and compute the checksum belongs to the
Open MPI data-type engine. A full description of the internals of the data-type
engine is out of the scope of this paper, thus we will give only a brief description
of the data-type engine mechanisms involved in DR.

In order to allow the PML to fragment a message the data-type engine has
been modified to work on segments, using another entity called convertor. All
operations (packing and unpacking) are limited by the number of bytes requested
by the PML. In order to satisfy this requirement, the data-type engine keeps track
of the last state of the current operation (pack or unpack). Once an operation
is completed, the current internal state of the convertor is saved. The next
operation will continue from this saved position. Therefore, in Open MPI, there
is no need to pack the full user data before a send, nor to unpack it in one
operation on the receiver side. This approach allows Open MPI to apply different
optimization to the packing and unpacking process, as well as to the checksum
computation. As an example, we can limit any operation to the amount of data
that is cache friendly on the current architecture. Another optimization, is the
pipeline that is created using the pack, unpack and the network communication
for each of the fragments as illustrated in Figure 3.

pack

communication

unpack

pack

communication

unpack

pack

communication

unpack

Fig. 3. Overlapping packing/unpacking with the communications using the data-type
engine

The default checksum computation is a fast 32 bit algorithm. This algorithm
has been modified to work on the same principle as the data-type engine, i.e. in a
segmented way. When the checksum is enabled and the network device requires
memory copies, the memory copies and the checksum computations are inter-
leaved in order to reduce cache pollution. If there is no need for memory copies
the checksum is computed directly on the user buffer.

4 Results

4.1 Experimental Setup

The NAS Parallel benchmark (NPB) [9] were run on a 1290 node cluster (4 seg-
ments of 258 nodes). Each node has 2 Single Core AMD Opteron 252 processors,
8 GBytes of memory, 1 Mellanox InfiniBand MT25204 InfiniHost III Ex adaptors
connected via a Voltaire SDR switch. All other experiments were performed on a
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4 Node test cluster. Each node has 2 Dual Core AMD Opteron 270 processors, 4
GBytes of memory, 2 Mellanox InfiniBand MT25208 InfiniHost III Ex adaptors
each on a dedicated PCI-Express 16X bus and 1 Myricom Myrinet 2000 PCI-X
“D card” NIC on a 133 MHz PCI-X bus. Myricom adaptors are connected via
a Myricom 2000 switch. Mellanox adaptors are connected via a DDR (double
data rate) Silverstorm switch. Each node was installed with Fedora Core 5, Open
MPI Trunk Revision 12736, OFED 1.1, and GM 2.1.26.

4.2 Results and Analysis

To examine the performance impact of our data reliability protocol we used
the NetPipe [10] benchmark as illustrated in Figure 4(a) and Figure 4(b). Four
different protocols were examined, Single RDMA GET with registration cache,
PML OB1 Copy In/Out using send/recv, PML DR with checksums and PML DR
without checksums. On both InfiniBand and Myrinet 2000, the highest perfor-
mance was obtained using the Single RDMA protocol due to buffer reuse in the
NetPipe benchmark and the high performance of RDMA. On InfiniBand PML
DR bandwidth performance is substantially lower than the single RDMA proto-
col although most of this performance difference is a result of using copy in/out
protocols, this is not as apparent over Myrinet as the memory bandwidth sur-
passes the network bandwidth. When we compare the performance of PML DR
with the high-performance PML OB1 using copy in/out we see that DR incurs a
small overhead due to protocol processing and a slightly higher overhead due to
checksum costs on both InfiniBand and Myrinet 2000. The small relative impact
of checksums can be attributed to an integration of the checksum/crc with the
data-type engine. Of note in the InfiniBand results is the performance degrada-
tion at larger message sizes, this is a result of a memory bandwidth bottleneck
on this particular architecture/network. When compared to TCP/IP over Infini-
Band (using the high-performance IPoIB stack), PML DR provides a substantial
performance increase throughout the bandwidth curve. Even in the bandwidth
limited Myrinet 2000 the performance of PML DR surpasses TCP/IP over this
interconnect.

As discussed earlier PML DR performance can be adapted for a given operating
environment. One such adaptation is varying the size of each fragment. Larger
fragments provide better performance (to a point) while smaller fragments are
better protected by their associated checksum. Figures 5(a) and 5(b) demon-
strates the effect of changing the fragment size. While a fragment size of 4096
is better protected by its checksum, the performance degrades over InfiniBand
as the upper layer cannot effectively keep the network pipe full. Performance in-
creases as the fragment size increases up to 16K which gives the best performance
on InfiniBand in this environment at the expense of a less effective checksum.
Recovery costs are also higher at 16K fragment sizes as the retransmission of
dropped or corrupted fragments is on entire fragments. Changing the size of the
fragments when running over Myrinet 2000 has little impact, again due to the
network bottleneck relative to memory bandwidth.
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Fig. 5. Variable Fragment Size - Performance Impact

In order to better assess the performance impact of DR in medium scale
clusters the NAS Parallel benchmark (NPB) were used. The BT, CG, MG and
SP benchmarks were run with 16 and 64 processors with a problem size of
class C (second to largest) and 256 processors with a problem size of class D
(the largest). The IS benchmark was only run at 16 and 64 processors with a
problem size of class C because class D is not available for IS. Each benchmark
was run 3 times and the average runtime is shown as a bar with an additional
error bar centered at the top indicating the standard deviation. As illustrated
in Figure 6(a) the additional protocol overhead of DR has very little impact
on more realistic benchmarks at the class C size with a very small standard
deviation (almost not visible in this Figure). Figure 6(b) illustrates the impact
on class D size with 256 processors. For each of these runs the performance
differences between the 3 protocols is within the standard deviation. The higher
standard deviation is expected as the runtime and problem size of class D is
more likely to be impacted by memory caching effects and network congestion.
These benchmarks indicate that added benefits of DR may come at little or no
cost to a wide variety of parallel problems.
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In addition to network retransmission of dropped and corrupted fragments,
PML DR provides network fail-over when more than one path exists to a given
peer. In this experiment Myrinet and InfiniBand are both used for message
scheduling. Each fragment of the message can be scheduled on either intercon-
nect with the number of fragments scheduled to each based on its relative band-
width. In Figure 7 we demonstrate the effect of failover on bandwidth. After the
Myrinet network on one of the hosts is disconnected from the switch, bandwidth
becomes more sporadic as data is rescheduled on timeouts over the InfiniBand
interface. Once the number of retransmissions exceeds a configurable thresh-
old, Myrinet BTL is disabled and from that point on all data is scheduled over
the InfiniBand interface. Similar results occur when InfiniBand is disconnected.
The mechanism is somehow different as InfiniBand will deliver an asynchronous
error to PML DR from the OpenIB BTL as a result of a completion queue er-
ror. DR responds to the asynchronous error rather than waiting for the exceeding
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of the retransmission threshold. The ability to detect network failure outside of
asynchronous errors allows DR to respond to failure of a variety of networks and
network API semantics.

5 Conclusion

As the use of commodity or “near commodity” networks continues to increase in
large scale HPC systems, and the size of these systems continues to grow, robust
user level libraries can enhance the reliability of network communication. While
theoretical error rates remain relatively low for virtually all high-performance
networking technologies, some larger scale installations have also shown that
hardware, software, or firmware bugs are often long lived and transient. Facili-
tating useful science throughout the lifetime of these systems is important and
may benefit from reliable high-performance network techniques. In this work
we have described methods of dealing with network errors that help improve
the reliability of network communications, with minimal impact on application
performance, thus providing a means to improve the effectiveness of HPC scale
simulation clusters.
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