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Abstract

In the area of cluster computing, InfiniBand is becoming
increasingly popular due to its open standard and high per-
formance. However, even with InfiniBand, network band-
width can still become the performance bottleneck for some
of today’s most demanding applications.

In this paper, we study the problem of how to overcome
the bandwidth bottleneck by using multirail networks. We
present different ways of setting up multirail networks with
InfiniBand and propose a unified MPI design that can sup-
port all these approaches. We have also discussed various
important design issues and provided in-depth discussions
of different policies of using multirail networks, including
an adaptive striping scheme that can dynamically change
the striping parameters based on current system condition.

We have implemented our design and evaluated it us-
ing both microbenchmarks and applications. Our perfor-
mance results show that multirail networks can significant
improve MPI communication performance. With a two rail
InfiniBand cluster, we have achieved almost twice the band-
width and half the latency for large messages compared
with the original MPI. At the application level, the multirail
MPI can significantly reduce communication time as well
as running time depending on the communication pattern.
We have also shown that the adaptive striping scheme can
achieve excellent performance without a priori knowledge
of the bandwidth of each rail.
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0204429 and #CCR-0311542, and a grant from Mellanox Technologies.
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1 Introduction

In the past few years, the computational power of
commodity PCs has been doubling about every eighteen
months. At the same time, network interconnects that
provide low latency and high bandwidth are also emerg-
ing. This trend makes it very promising to build high per-
formance computing environments by cluster computing,
which combines the computational power of commodity
PCs and the communication performance of high speed net-
work interconnects. In this area, Message Passing Interface
(MPI) [10] has become the de facto standard for writing
parallel applications.

Recently, InfiniBand Architecture [11] has been pro-
posed as the next generation interconnect for I/O and inter-
process communication. Due to its open standard and high
performance, InfiniBand is becoming increasingly popular
for cluster computing. High performance MPI implementa-
tions over InfiniBand have also become available [19, 18].
One of the notable features of InfiniBand is its high band-
width. Currently, InfiniBand 4x links support a peak band-
width of 1GB/s in each direction. (Note that unless other-
wise stated, the unit MB in this paper is an abbreviation for
106 bytes and GB is an abbreviation for 109 bytes.) How-
ever, even with InfiniBand, network bandwidth can still be-
come the performance bottleneck for some of today’s most
demanding applications. This is especially the case for clus-
ters built with SMP machines, in which multiple processes
may run on a single node and must share the node band-
width.

One important way to overcome the bandwidth bottle-
neck is to use multirail networks [4]. The basic idea is to
have multiple independent networks (rails) to connect nodes
in a cluster. With multirail networks, communication traffic
can be distributed to different rails. There are two ways of
distributing communication traffic. In multiplexing1, mes-

1Also called reverse multiplexing in the networking community.
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sages are sent through different rails in a round robin fash-
ion. In striping, messages are divided into several chunks
and sent out simultaneously using multiple rails. By using
these techniques, the bandwidth bottleneck can be avoided
or alleviated.

In this paper, we present a detailed study of designing
high performance multirail InfiniBand clusters. We discuss
various ways of setting up multirail networks with Infini-
Band and propose a unified MPI design that can support
all these approaches. Our design achieves low overhead by
taking advantage of RDMA operations in InfiniBand and in-
tegrating the multirail design with MPI communication pro-
tocols. Our design also features a very flexible architecture
that supports different policies of using multiple rails. We
have provided in-depth discussions of different policies and
also proposed an adaptive striping policy that can dynam-
ically change the striping parameters based on the current
available bandwidth of different rails.

We have implemented our design and evaluated it using
both microbenchmarks and applications using an 8-node In-
finiBand testbed. Our performance results show that multi-
rail networks can significantly improve MPI communica-
tion performance. With a two rail InfiniBand network, we
have achieved almost twice the bandwidth and half the la-
tency for large messages compared with the original MPI.
The peak unidirectional bandwidth and bidirectional band-
width we have achieved are 1723 MB/s and 1877 MB/s, re-
spectively. Depending on the communication pattern, mul-
tirail MPI can significantly reduce communication time as
well as running time for certain applications. We have also
shown that for rails with different bandwidth, the adaptive
striping scheme can achieve excellent performance without
a priori knowledge of the bandwidth of each rail. It can
even outperform static schemes with a priori knowledge of
rail bandwidth in certain cases.

The remaining part of the paper is organized as follows:
In Section 2, we provide background information of this
work. We discuss different ways of setting up InfiniBand
multirail networks in Section 3. Our multirail MPI design
is presented in Section 4. We discuss some of the details
design issues in Section 5. In Section 6, we present per-
formance results of our multirail MPI. Related work is de-
scribed in Section 7. In Section 8, we conclude and discuss
our future directions.

2 Background

In this section, we provide background information for
our work. First, we provide a brief introduction of Infini-
Band. Then, we discuss the internal communication proto-
cols used by MPI and their implementation over InfiniBand.

2.1 Overview of InfiniBand

The InfiniBand Architecture (IBA) [11] defines a
switched network fabric for interconnecting processing
nodes and I/O nodes. It provides a communication and man-
agement infrastructure for inter-processor communication
and I/O. In an InfiniBand network, processing nodes and
I/O nodes are connected to the fabric by Channel Adapters
(CA). Host Channel Adapters (HCAs) sit on processing
nodes.

The InfiniBand communication stack consists of differ-
ent layers. The interface presented by Channel adapters
to consumers belongs to the transport layer. A queue-pair
based model is used in this interface. A Queue Pair in In-
finiBand Architecture consists of two queues: a send queue
and a receive queue. The send queue holds instructions
to transmit data and the receive queue holds instructions
that describe where received data is to be placed. Com-
munication operations are described in Work Queue Re-
quests (WQR), or descriptors, and submitted to the work
queue. The completion of WQRs is reported through Com-
pletion Queues (CQs). InfiniBand supports different classes
of transport services. In this paper, we focus on the Re-
liable Connection (RC) service. InfiniBand Architecture
supports both channel and memory semantics. In chan-
nel semantics, send/receive operations are used for commu-
nication. In memory semantics, InfiniBand supports Re-
mote Direct Memory Access (RDMA) operations, includ-
ing RDMA write and RDMA read. RDMA operations are
one-sided and do not incur software overhead at the remote
side. In these operations, the sender (initiator) can directly
access remote memory by posting RDMA descriptors. The
operation is transparent to the software layer at the receiver
(target) side.

At the physical layer, InfiniBand supports different link
speeds. Most HCAs in the current market support 4x links,
which can potentially achieve a peak bandwidth of 1 GB/s.
12x links are also available. However, currently they are
used to interconnected switches rather than end nodes.

2.2 Overview of MPI Protocols

MPI defines four different communication modes: Stan-
dard, Synchronous, Buffered, and Ready. Two internal pro-
tocols, Eager and Rendezvous, are usually used to imple-
ment these four communication modes. These protocols are
handled by a component in the MPI implementation called
progress engine. In Eager protocol, the message is pushed
to the receiver side regardless of its state. In Rendezvous
protocol, a handshake happens between the sender and the
receiver via control messages before the data is sent to the
receiver side. Usually, Eager protocol is used for small mes-
sages and Rendezvous protocol is used for large messages.
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In Figure 1, we show examples of typical Eager and Ren-
dezvous protocols.
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Figure 1. MPI Eager and Rendezvous Protocols

When we are transferring large data buffers, it is bene-
ficial to avoid extra data copies. A zero-copy Rendezvous
protocol implementation can be achieved by using RDMA
write. In this implementation, the buffers are pinned down
in memory and the buffer addresses are exchanged via the
control messages. After that, the data can be written directly
from the source buffer to the destination buffer by doing
RDMA write. This approach has been widely used for im-
plementing MPI over different interconnects [19, 12, 2].

For small data transfer in Eager protocol and control
messages, the overhead of data copies is small. Therefore,
we need to push messages eagerly toward the other side to
achieve better latency. This requirement matches well with
the properties of InfiniBand send/receive operations. How-
ever, send/receive operations have their disadvantages such
as lower performance and higher overhead. Therefore, our
previous work in [13] proposed a scheme that uses RDMA
operations also for small data and control messages. This
scheme improves both latency and bandwidth of small mes-
sage transfers in MPI.

3 InfiniBand Multirail Network Configura-
tions

InfiniBand multirail networks can be set up in different
ways. In this section, we discuss three types of possible
multirail network configurations and their respective bene-
fits. In the first approach, multiple HCAs are used in each
node. The second approach exploits multiple ports in a sin-
gle HCA. Finally, we describe how to set up virtual multi-
rail networks with only a single port by using the LID mask
control (LMC) mechanism in InfiniBand.

3.1 Multiple HCAs

Although InfiniBand Architecture specifies 12x links,
current InfiniBand HCAs in the market can support only up

to 4x speed. A straightforward way to alleviate the band-
width bottleneck is to use multiple HCAs in each node and
connect them to the InfiniBand switch fabric. Through the
support of communication software, users can take advan-
tage of the aggregated bandwidth of all HCAs in each node
without modifying applications. Another advantage of us-
ing multiple HCAs per node is that possible bandwidth bot-
tlenecks in local I/O buses can also be avoided. For exam-
ple, the PCI-X 133 MHz/64 bit bus (used by most 4x HCAs
in the current market) can only support around 1 GB/s ag-
gregated bandwidth. Although a 4x HCA has a peak ag-
gregated bandwidth of 2 GB/s for both link directions, its
performance is limited by the PCI-X bus. These problems
can be alleviated by connecting multiple HCAs to different
I/O buses in a system.

A multirail InfiniBand setup using multiple HCAs per
node can connect each of HCAs in a node to a separate
switch. If a larger switch is available, all HCAs can also
be connected to this single physical network. Through the
use of appropriate switch configurations and routing algo-
rithms, using a single network can be equivalent to a multi-
rail setup.

3.2 Multiple Ports

Currently, many InfiniBand HCAs in the market have
multiple ports. For example, InfiniHost HCAs [14] from
Mellanox have two ports in each card. Therefore, multirail
InfiniBand networks can also be constructed by taking ad-
vantage of multiple ports in a single HCA. This approach
can be very attractive because compared with using multi-
ple HCAs, it only requires one HCA per node. Hence, the
total cost of multirail networks can be significantly reduced.

However, as we have discussed, the local I/O bus can be
the performance bottleneck in such a configuration because
all ports of a HCA have to share the I/O bus. Hence, this
approach will not achieve any performance benefit by us-
ing 4x HCAs with PCI-X buses. However, benefits can be
achieved by using future HCAs that support PCI-X Dou-
ble Data Rate (DDR) or Quad Data Rate (QDR) interfaces.
Recently, PCI Express [21] has been introduced as the next
generation local I/O interconnect. PCI Express uses a serial,
point-to-point interface. It can deliver scalable bandwidth
by using multiple lanes in each point-to-point link. For ex-
ample, an 8x PCI Express link can achieve 2 GB/s band-
width in each direction (4 GB/s total). Multiple port Infini-
Band HCAs that support PCI Express are already available
in the market [15]. Therefore, this approach can be very
useful in constructing multirail networks using systems that
have PCI Express interfaces.

3



3.3 Single Port with LID Mask Control (LMC)

In this subsection, we discuss another approach of setting
up multirail InfiniBand networks which does not require
multiple ports or HCAs for each node. The basic idea of
this approach is to set up different paths between two ports
on two nodes. By using appropriate routing algorithms, it
is possible to make the paths independent of each other. Al-
though a single network is used in this approach, we have
multiple logical networks (or logical rails). If the logical
networks are independent of each other, conceptually they
are very similar to multirail networks. Therefore, we call
this approach as virtual multirail networks.

In InfiniBand, each port has a local identifier (LID). Usu-
ally, a path is determined by the destination LID. Therefore,
multiple LIDs need to be used in order to have different
paths. To address this issue, InfiniBand provides a mecha-
nism called LID Mask Control (LMC). Basically, LMC pro-
vides a way to associate multiple logical LIDs with a single
physical port. Hence, multiple paths can be constructed by
using LMC.

It should be noted that in virtual multirail networks, a
port is shared by all the logical rails. Hence, if the port link
bandwidth or the local I/O bus is the performance bottle-
neck, this approach cannot bring any performance benefit.
It can only be used for fault tolerance in this case. How-
ever, if the performance bottleneck is inside the network,
virtual multirail networks can improve communication per-
formance by utilizing multiple paths.

4 Multirail MPI Design

In this section, we present various high level design is-
sues involved in supporting multirail networks in MPI over
InfiniBand. We first present the basic architecture of our
design. After that, we discuss how we can have a unified
design to support multirail networks using multiple HCAs,
multiple ports, multiple connections for a single port, or
any combination of the above. Then we describe how we
can achieve low overhead by integrating our design with
MPI and taking advantage of InfiniBand RDMA operations.
One important component in our architecture is Scheduling
Policies. In the last part of this section, we discuss several
policies supported by our architecture and also present an
adaptive striping scheme that can dynamically adjust strip-
ing parameters based on current system conditions.

4.1 Basic Architecture

The basic architecture of our design to support multirail
networks is shown in Figure 2. We focus on the architecture
of the sender side. In the figure, we can see that besides MPI
Protocol Layer and InfiniBand Layer, our design consists

of three important components: Communication Scheduler,
Scheduling Policies, and Completion Filter.

InfiniBand Layer

MPI Protocol Layer

Virtual
Subchannels

Eager
Protocol
Messages

Rendezvous
Protocol
Messages

Input from other system components
Completion
Notification

Completion
Notification

Communication

Scheduler

Scheduling

Policies

Completion

Filter

Figure 2. Basic Architecture of Multirail MPI Design

The Communication Scheduler is the central part of
our design. Basically, it accepts protocol messages from
the MPI Protocol Layer, and stripes (or multiplexes) them
across multiple virtual subchannels. (Details of virtual sub-
channels will be described later.) In order to decide how to
do striping or multiplexing, the Communication Scheduler
uses information provided by the Scheduling Policies com-
ponent. Scheduling Policies can be static schemes that are
determined at initialization time. They can also be dynamic
schemes that adjust themselves based on input from other
components of the system.

Since a single message may be striped and sent as mul-
tiple messages through the InfiniBand Layer, we use the
Completion Filter to filter completion notifications and to
inform the MPI Protocol Layer about completions only
when necessary. The Completion Filter can also gather in-
formation based on the completion notifications and use it
as input to adjust dynamic scheduling policies.

4.2 Virtual Subchannel Abstraction

As we have discussed, multirail networks can be built by
using multiple HCAs in a single node, or by using multi-
ple ports in a single HCA. We have also seen that even with
a single port, it is possible to achieve performance benefits
by allowing multiple paths to be set up between two end-
points. Therefore, it is desirable to have a single implemen-
tation to handle all these cases instead of dealing with them
separately.

In MPI applications, every two processes can commu-
nicate with each other. This is implemented in many MPI
designs by a data structure called virtual channel (or vir-
tual connection). A virtual channel can be regarded as an
abstract communication channel between two processes. It
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does not have to correspond to a physical connection of the
underlying communication layer.

In this paper, we use an enhanced virtual channel ab-
straction to provide a unified solution to support multiple
HCAs, multiple ports, and multiple paths for a single port.
In our design, a virtual channel can consist of multiple vir-
tual subchannels (called subchannels later). Since our MPI
implementation mainly takes advantage of the InfiniBand
Reliable Connection (RC) service, each subchannel corre-
sponds to a reliable connection at the InfiniBand Layer. At
the virtual channel level, we maintain various data struc-
tures to coordinate all the subchannels.

It is easy to see how this enhanced abstraction can deal
with all the multirail configurations we have discussed. In
the case of each node having multiple HCAs, subchan-
nels for a virtual channel correspond to connections that go
through different HCAs. If we would like to use multiple
ports of the HCAs, we can set up subchannels so that there
is one connection for each port. Similarly, different sub-
channels/connections can be set up in a single port that fol-
low different paths. Once all the connections are initialized,
the same subchannel abstraction is used for communication
in all cases. Therefore, there is essentially no difference
for all the configurations except for the initialization phase.
The subchannel abstraction can also easily deal with cases
in which we have a combination of multiple HCAs, multi-
ple ports, and multiple paths for a single port. This idea is
further illustrated in Figure 3.
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HCA
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Figure 3. Virtual Subchannel Abstraction

4.3 Integration with MPI protocols

In some MPI implementations, functionalities such as
striping messages across multiple network interfaces are
part of a messaging layer. This messaging layer provides an
interface to upper layer software such as MPI. One advan-
tage of this approach is high portability, as other upper layer

software can also be benefited from multirail networks. Our
design is different because we have chosen to integrate these
functionalities more tightly with the MPI communication
protocols. Instead of focusing on portability, we aim to
achieve high efficiency and flexibility in our implementa-
tion. Since multirail support is integrated with MPI proto-
cols, we can specifically tailor its design to MPI to reduce
overhead. This tightly coupled structure also gives us more
flexibility in controlling how messages are striped or multi-
plexed in different MPI protocols.

One key design decision we have made is to allow mes-
sage striping only for RDMA messages, although all mes-
sages, including RDMA and send/receive, can use multi-
plexing. This is not a serious restriction for MPI because
MPI implementations over InfiniBand usually only use
RDMA operations to transfer large messages. Send/receive
operations are often used only for transferring small mes-
sages. By using striping with RDMA, there is almost no
overhead to reassemble messages because data is directly
put into the destination buffer. Zero-copy protocols in MPI,
which usually take advantage of RDMA, can be supported
in a straightforward manner.

As an example, let’s take a look at the Eager and the
Rendezvous protocols shown in Figure 1. In the Eager pro-
tocol, the data message can be sent using either RDMA
or send/receive operations. However, since this message
is small, striping is not necessary and only multiplexing is
used. In the Rendezvous protocol, control messages are not
striped. However, data messages can be striped since they
can be very large.

4.4 Scheduling Policies

Different scheduling policies can be used by the Com-
munication Scheduler to decide which subchannels to use
for transferring messages. We categorize different policies
into two classes: static schemes and dynamic schemes. In a
static scheme, the policy and its parameters are determined
at initialization time and stay unchanged during the execu-
tion of MPI applications. On the other hand, a dynamic
scheme can switch between different policies or change its
parameters.

In our design, scheduling policies can also be classified
into multiplexing schemes and striping schemes. Multi-
plexing schemes are used for send/receive operations and
RDMA operations with small data, in which messages are
not striped. Striping schemes are used for large RDMA
messages.

For multiplexing schemes, a simple solution is binding,
in which only one subchannel is used for all messages. This
scheme has the least overhead. It can take advantage of mul-
tiple subchannels if there are multiple processes in a single
node. For utilizing multiple subchannels with a single pro-
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cess per node, schemes similar to Weighted Fair Queuing
(WFQ) and Generalized Processor Scheduling (GPS) have
been proposed in the networking area [1]. These schemes
take into consideration the length of a message. In Infini-
Band, the per operation cost usually dominates for small
messages. Therefore, we choose to ignore the message size
for small messages. As a result, simple round robin or
weighted round robin schemes can be used for multiplexing.
In some cases, different subchannels may have different la-
tencies. This will result in many out-of-order messages for
round robin schemes. A variation of round robin called win-
dow based round robin can be used to address this issue. In
this scheme, a window size W is given and a subchannel is
used to sent W messages before the Communication Sched-
uler switches to another subchannel. Since W consecutive
messages travels the same subchannel, the number of out-
of-order messages can be greatly reduced for subchannels
with different latencies.

For striping schemes, the most important factor we need
to consider is the bandwidth of each subchannel. It should
be noted that we should consider path bandwidth instead of
link bandwidth, although they can sometimes be the same
depending on the switch configuration and the communi-
cation pattern. Even striping can be used for subchannels
with equal bandwidth, while weighted striping can be used
for subchannels with different bandwidths. Similar to mul-
tiplexing, binding can be used when there are multiple pro-
cesses in a single node.

4.5 Adaptive Striping

As we have discussed in the previous subsection, it is im-
portant to take into consideration path bandwidth for strip-
ing schemes. A simple solution is to use weighted strip-
ing and set the weights of different subchannels to their
respective link bandwidths. However, this method fails to
address the following problems: First, sometimes informa-
tion such as link bandwidth is not available directly to MPI
implementations. Second, in some cases, bottlenecks in the
network or switches may make the path bandwidth smaller
than the link bandwidth. Finally, path bandwidth can also
be affected by other ongoing communication. Therefore, it
may change over time. A partial solution to these problems
is to carry out small tests during the initialization phase of
MPI applications to determine the path bandwidth. How-
ever, in addition to its high overhead (tests need to be done
for every subchannel between every pair of nodes), it still
fails to solve the last problem.

In this subsection, we propose a dynamic scheme for
striping large messages. Our scheme, called adaptive strip-
ing scheme, is based on the weighted striping scheme. How-
ever, instead of using a set of fixed weights that are set at
initialization time, we constantly monitor the progress of

different stripes in each subchannel and exploit feedback in-
formation from the InfiniBand Layer to adjust the weights
to their optimal values.

In designing the adaptive striping scheme, we assume
the latencies of all subchannels are about the same and fo-
cus on their bandwidth. In order to achieve optimal perfor-
mance for striping, a key insight is that the message must be
striped in such a way that transmission of each stripe will
finish at about the same time. This results in perfect load
balancing and minimum message delivering time. There-
fore, our scheme constantly monitors the time each stripe
spent in each subchannel and use this information to adjust
the weight so that striping distribution becomes more and
more balanced and eventually reaches optimum. This feed-
back based control mechanism is illustrated in Figure 4.

InfiniBand Layer

Striped
Messages

Rendezvous
RDMA Data
Messages

Completion of
Different Stripes

Communication

Scheduler

Scheduling

Policies

Completion

Filter
AdjustmentsPolicy

WeightStriping
Weighted

Figure 4. Feedback Loop in Adaptive Striping

In InfiniBand, a completion notification will be gener-
ated after each message is delivered to the destination and
an acknowledgment is received. With the help of Comple-
tion Filter, the progress engine of our MPI implementation
uses polling to check any new completion notification and
take appropriate actions. In order to calculate the deliv-
ering time of each stripe, we first record the start time of
each stripe when it is handed over to the InfiniBand Layer
for transmission. When the delivery is finished, a comple-
tion notification will be generated by the InfiniBand Layer.
The Completion Filter component will then record the fin-
ish time and derive the delivering time by subtracting the
start time from it. After delivering times for all stripes of a
message are collected, adjustment of weights is calculated
and sent to the Scheduling Policies component to adjust the
policy. Later, the Communication Scheduler will use the
new policy for striping.

Next we will discuss the details of weight adjustment.
Our basic idea is to have a fixed number of total weights
and redistribute it based on feedback information obtained
from different stripes of a single message. Suppose the total
weight is Wtotal, the current weight of subchannel i is Wi,
the path bandwidth of subchannel i is BW i, the message
size is S, and the stripe delivering time for subchannel i is

6



ti, we then have the following:

BW i =
S · Wi

Wtotal

ti
=

S · Wi

ti · Wtotal
(1)

Since Wtotal and S are the same for all subchannels, we
have the following:

BW i ∝ Wi

ti
(2)

Therefore, new weight distributions can be done based
on Equation 2. Suppose W ′

i is the new weight for subchan-
nel i, the following can be used to calculate W ′

i :

W ′
i = Wtotal ·

Wi

ti∑
k∈subchannels

Wk

tk

(3)

In Equation 3, weights are completely redistributed
based on the feedback information. To make our scheme
more robust to fluctuations in the system, we can preserve
part of the historical information. Suppose α is a constant
between 0 and 1, we can have the following equation:

W ′
i = (1−α) ·Wi +α ·Wtotal ·

Wi

ti∑
k∈subchannels

Wk

tk

(4)

In our implementation, the start times of all stripes are
almost the same and can be accurately measured. How-
ever, completion notification are generated by the Infini-
Band Layer asynchronously and we only record the finish
time of a stripe as we have found its completion notifica-
tion. Since MPI progress engine processing can be delayed
due to application computation, we can only obtain an upper
bound of the actual finish time and the resulting delivering
ti is also an upper bound. Therefore, one question is how
accurately we can estimate the delivering time ti for each
subchannel. To address this question, we consider three
cases:

1. Progress engine is not delayed. In this case, accurate
delivering time can be obtained.

2. Progress engine is delayed and some of the delivering
times are overestimated. Based on Equation 4, in this
case, weight redistribution will not be optimal, but it
will still improve performance compared with the orig-
inal weight distribution.

3. Progress engine is delayed for a long time and we find
all completion notifications at about the same time.
Based on Equation 4, this will essentially result in no
change in the weight distribution.

We can see that in no case will the redistribution result
in worse performance than the original distribution. In prac-
tice, case 1 is the most common and accurate estimation can
be expected most of the time.

5 Detailed Design Issues

Our multirail MPI is based on MVAPICH [19, 13], our
MPI implementation over InfiniBand. MVAPICH is de-
rived from MPICH [9], which was developed at Argonne
National Laboratory and is currently one of the most pop-
ular MPI implementations. MVAPICH is also derived
from MVICH [12], which is an ADI2 implementation for
VIA [5].

In this section, we discuss some of the detailed design is-
sues in our multirail design. These issues include some spe-
cial cases for multiple HCAs, handling out-of-order mes-
sages, and RDMA completion notification.

5.1 Handling Multiple HCAs

In Section 4, we have described how we can provide a
unified design for multiple HCAs, multiple ports, and mul-
tiple connections in a single port. The key idea is to use the
subchannel abstraction. Once subchannels are established,
there is essentially no difference in dealing with all the dif-
ferent cases.

However, due to some restrictions in InfiniBand, there
are two situations that must be handled differently for mul-
tiple HCAs: completion queue (CQ) polling and buffer reg-
istration.

Our MPI implementation uses mostly RDMA to trans-
fer messages and we have designed special mechanisms at
the receiver to detect incoming messages [13]. However,
CQs are still used at the sender side. Although multiple
connections can be associated with a single CQ, InfiniBand
requires all these connections to be from a single HCA.
Therefore, in the case of multiple HCAs, we need to uses
multiple CQs. This results in slightly higher overhead due
to the extra polling of CQs.

Buffer registration also needs different handling for mul-
tiple HCAs. In InfiniBand, buffer registration serves two
purposes. First, it ensures the buffer will be pinned down
in physical memory so that it can be safely accessed by In-
finiBand hardware using DMA. Second, it provides the In-
finiBand HCA with address translation information so that
buffers can be accessed through virtual addresses. Hence, if
a buffer is to be sent through multiple HCAs, it must be reg-
istered with each of them. Currently, we have used a sim-
ple approach of registering the whole buffer with all HCAs.
Although this approach increases the registration overhead,
this overhead can be largely avoided by using a registration
cache. In future, we plan to investigate schemes that only
register part of the buffer with each HCAs.
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5.2 Out-of-Order Message Processing

Due to the requirement of MPI, it is desirable to process
messages in order in our multirail implementation. Since
we use Reliable Connection (RC) service provided by In-
finiBand for each subchannel, messages will not be lost and
they are delivered in order in a single subchannel. How-
ever, there is no ordering guarantee for multiple subchan-
nels of the same virtual channel. To address this problem,
we introduce a Packet Sequence Number (PSN) variable
for each virtual channel. Every message sent through this
virtual channel will carry current PSN and also increment
it. Each receiver maintains an Expected Sequence Number
(ESN) for every virtual channel. When an out-of-order mes-
sage arrives, it is put into an out-of-order queue associated
with this virtual channel and its processing is deferred. This
queue is checked at proper times when a message in the
queue may be the next expected packet.

The basic operations on the out-of-order queue are en-
queue, dequeue, and search. To improve performance, it
is desirable to optimize these operations. In practice we
have found that when appropriate communication schedul-
ing policies are used, out-of-order messages are very rare.
As a result, very little overhead is spent in out-of-order mes-
sage handling.

5.3 RDMA Completion Notification

In our design, large RDMA messages such as data mes-
sages in the Rendezvous protocol can be striped into mul-
tiple smaller messages. Hence, multiple completion notifi-
cations may be generated for a single message at the sender
side. The Completion Filter component in our design will
notify the MPI Protocol Layer only after it has collected all
the notifications.

At the receiver, the MPI protocol Layer also needs to
know when the data message has been put into the desti-
nation buffer. In our original design, this is achieved by
using a Rendezvous finish control message. This message
will only be received after the Rendezvous data messages,
since ordering is guaranteed for a single InfiniBand con-
nection. However, this scheme is not enough for multiple
subchannels. In this case, we have to use multiple Ren-
dezvous finish messages – one per each subchannel where
Rendezvous data is sent. The receiver will notify the MPI
Protocol Layer only after it has received all the Rendezvous
finish messages. It should be noted that these Rendezvous
finish messages are sent in parallel and their transfer times
are overlapped. Therefore, in general they have very small
extra overhead.

6 Performance Evaluation

In this section, we evaluate the performance of our mul-
tirail MPI design over InfiniBand. Our evaluation consists
of two parts. In the first part, we show the performance
benefit we can achieve compared with the original MPI im-
plementation. In the second part, we provide an evaluation
of our adaptive striping scheme. Due to the limitation of
our testbed, we focus on multirail networks with multiple
HCAs in the section.

6.1 Experimental Testbed

Our testbed cluster of 8 SuperMicro SUPER X5DL8-
GG nodes with ServerWorks GC LE chipsets. Each node
has dual Intel Xeon 3.0 GHz processors, 512 KB L2 cache,
and PCI-X 64-bit 133 MHz bus. We have used InfiniHost
MT23108 DualPort 4x HCAs from Mellanox. If both ports
of an HCA are used, we can potentially achieve one way
peak bandwidth of 2 GB/s. However, the PCI-X bus can
only support around 1 GB/s maximum bandwidth. There-
fore, for each node we have used two HCAs and only one
port of each HCA is connected to the switch. The Server-
Works GC LE chipsets have two separate I/O bridges. To
reduce the impact of I/O bus, the two HCAs are connected
to PCI-X buses connected to different I/O bridges. All
nodes are connected to a single Mellanox InfiniScale 24 port
switch (MTS 2400), which supports all 24 ports running at
full 4x speed. Therefore, our configuration is equivalent to a
two-rail InfiniBand network built from multiple HCAs. The
kernel version we used is Linux 2.4.22smp. The InfiniHost
SDK version is 3.0.1 and HCA firmware version is 3.0.1.
The Front Side Bus (FSB) of each node runs at 533MHz.
The physical memory is 1 GB of PC2100 DDR-SDRAM.

6.2 Performance Benefits of Multirail Design

To evaluate the performance benefit of using multirail
networks, we compare our new multirail MPI with our
original MPI implementation. In the multirail MPI de-
sign, unless otherwise stated, even striping is used for large
messages and round robin scheme is used for small mes-
sages. We first present performance comparisons using
micro-benchmarks, including latency, bandwidth and bi-
directional bandwidth. We then present results for collec-
tive communication by using Pallas MPI benchmarks [20].
Finally, we carry out application level evaluation by using
some of the NAS Parallel Benchmarks [17] and a visual-
ization application. In many of the experiments, we have
considered two cases: UP mode (each node running one
process) and SMP mode (each node running two processes).

In Figures 5, 7 and 8, we show the latency, bandwidth
and bidirectional bandwidth results in UP mode. We also
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Messages, UP mode)
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Figure 7. MPI Bandwidth (UP

mode)
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Figure 8. MPI Bidirectional
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Figure 9. MPI Bandwidth (SMP

mode)
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Figure 10. MPI Bidirectional

Bandwidth (SMP mode)

show bandwidth results for small messages in Figure 6.
(Note that in the x axis of the figures, unit K is an abbre-
viation for 210 and M is an abbreviation for 220.) From Fig-
ure 5 we can see that for small messages, the original design
and the multirail design perform comparably. The small-
est latency is around 6 µs for both. However, as message
size increases, the multirail design outperforms the original
design. For large messages, it achieves about half the la-
tency of the original design. In Figure 7, we can observe
that multirail design can achieve significantly higher band-
width. The peak bandwidth for the original design is around
884 MB/s. With the multirail design, we can achieve around
1723 MB/s bandwidth, which is almost twice the bandwidth
obtained with the original design. Bidirectional bandwidth
results in Figure 8 show a similar trend. The peak bidirec-
tional bandwidth is around 943 MB/s for the original de-
sign and 1877 MB/s for the multirail design. In Figure 6 we
can see that the round robin scheme can slightly improve
bandwidth for small messages compared with the original
scheme.

For Figures 9 and 10, we have used two processes on
each node, each of them sending or receiving data from a
process on the other node. It should be noted that in the
bandwidth test, the two senders are on separate nodes. For
the multirail design, we have shown results using both even
striping policy and binding policy for large messages. Fig-

ure 9 shows that both striping and binding performs signif-
icantly better than the original design. We can also see that
striping does better than binding. The reason is that striping
can utilize both HCAs in both directions while binding only
uses one direction in each HCA. Since in the bidirectional
bandwidth test in SMP mode, both HCAs are utilized for
both directions, striping and binding perform comparably,
as can be seen from Figure 10.

In Figures 11, 12, 13 and 14 we show results for
MPI Bcast and MPI Alltoall for 8 processes (UP mode) and
16 processes (SMP mode) using Pallas Benchmarks. The
trend is very similar to what we have observed in previous
tests. With multirail design, we can achieve significant per-
formance improvement for large messages compared with
the original design.

In Figures 15 and 16 we show application results. We
have chosen the IS and FT applications (Class A and Class
B) in the NAS Parallel Benchmarks because compared with
other applications, they are more bandwidth-bound. We
have also used a visualization application. This application
is a modified version of the program described in [7]. We
show performance numbers for both UP and SMP modes.
However, due to the large data set size in the visualization
application, we can only run it in UP mode.

From the figures we can see that multirail design results
in significant reduction in communication time for all appli-
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Figure 11. MPI Bcast Latency (UP mode)
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Figure 12. MPI Alltoall Latency (UP mode)
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Figure 13. MPI Bcast Latency (SMP mode)
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Figure 14. MPI Alltoall Latency (SMP mode)

cations in both UP and SMP modes. For FT, the communi-
cation time is reduced almost by half. For IS, the commu-
nication time is reduce by up to 38%, which results in up to
22% reduction in application running time. For the visual-
ization application, the communication time is reduced by
43% and the application running time is reduced by 16%.
Overall, we can see that multirail design can bring signifi-
cant performance improvement to bandwidth-bound appli-
cations.

Figure 15. Application

Results (8 processes,

UP mode)

Figure 16. Application

Results (16 processes,

SMP mode)

6.3 Evaluating the Adaptive Striping Scheme

In this subsection, we show how our proposed adap-
tive striping scheme can provide good performance in cases
each rail has different bandwidth. To simulate this envi-
ronment, for most of our experiments, we have forced the
second HCA on each node to run at 1x speed with a peak
bandwidth of 250 MB/s. The first HCA on each node still
operates at the normal 4x speed (1 GB/s peak bandwidth).
Without a priori knowledge of this environment, our mul-
tirail MPI implementation will use even striping. With this
knowledge, it will use weighted striping and set the weights
to 4 and 1 respectively for each subchannel. We compare
both of them with the adaptive striping scheme, which as-
signs equal weights to both subchannels initially. We focus
on microbenchmarks and UP mode in this subsection.

Figures 17 and 18 show the latency and bandwidth re-
sults. We can see that the adaptive striping scheme signif-
icantly outperforms even striping and achieves comparable
performance with weighted striping. In Figure 19, we show
bidirectional bandwidth results for the three schemes. An
important finding is that our adaptive scheme can signifi-
cantly outperform weighted striping in this case. This is
because in the test, the communication traffic is assigned
to the two subchannels as 4:1 based on the link speed (4x
vs. 1x). With bidirectional traffic, the aggregate link speeds
would be 8x and 2x respectively for each subchannel. How-
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ever, the PCI-X bus can only sustain a peak bandwidth of 1
GB/s, which is equivalent to 4x speed. Therefore, if we take
into account the I/O bus bottleneck, the speed should be 4x
and 2x for the two subchannels, respectively. Hence, the op-
timal weighted scheme should use 2:1 instead of 4:1. This
also shows that even with a priori knowledge of link speed,
static schemes may fail to achieve optimal performance be-
cause of impact from other system components and pattern
of communication traffic. In contrast, the adaptive striping
scheme can easily adjust the policy to achieve optimal strip-
ing.

In the following bandwidth tests, we let both HCAs op-
erate at 4x speed. A bandwidth program runs on the two
nodes and prints out the peak bandwidth results every one
second. During the execution of the bandwidth program,
we start another program on the two nodes which use the
second HCA to transfer large messages. This program runs
for around 10 seconds. We compare the adaptive striping
scheme and even striping in Figure 20. We can see that
at the beginning both schemes perform comparably. How-
ever, when the second program starts, one of the HCAs has
to be shared by both programs. Hence, even striping is no
longer optimal. As we can see, the adaptive scheme can
achieve better performance by adjusting the weight of each
subchannel accordingly. After the second program finishes,

the adaptive striping scheme can again adjust the weights to
achieve peak performance.

7 Related Work

Using multirail networks to build high performance clus-
ters is discussed in [4]. The paper proposed different allo-
cation schemes in order to eliminate conflicts at end points
or I/O buses. However, the main interconnect focused in
the paper was Quadrics [22] and the performance evalua-
tion was done using simulation. In this paper, we focus on
software support at the end points to build InfiniBand mul-
tirail networks and present experimental performance data.

VMI2 [23] is a messaging layer developed by re-
searchers at NCSA. An MPI implementation over VMI2
is also available [18]. VMI2 runs over multiple intercon-
nects. [23] briefly mentions VMI2’s ability to striping large
messages across different network interconnects. Instead of
using a separate messaging layer, our design has integrated
the multirail support with MPI protocols.

LA-MPI [8] is an MPI implementation developed at Los
Alamos National Labs. LA-MPI was designed with the
ability to stripe message across several network paths. LA-
MPI design includes a path scheduler, which determines
which path a message will travel. This design bears some
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similarity with our approach. However, in this paper we
focus on InfiniBand architecture and discuss different de-
sign issues and policies. We have also proposed an adaptive
striping scheme.

IBM has supported using multirail networks for its
SP switches and adapters [6]. SGI’s Message Passing
Toolkit [24] and Sun’s MPI implementation over its SUN
Fire Link [25] also support the ability of striping mes-
sage across multiple links. However, details about how
striping is implemented are not available in the literature.
Recently, Myricom announced its message passing layers
called Myrinet Express and GM2 [16]. Both can stripe mes-
sages across two different ports on a single Myrinet NIC and
overcome the limitation of Myrinet link bandwidth. GM2 is
now available. However, Myrinet Express has not been re-
leased and its internal design are not yet available.

Striping in the network systems have been used for many
years. [3] provides a survey of how striping is used at differ-
ent layers in the network subsystems. Work done in [1] pro-
poses an architecture to stripe packets across multiple links
in order to achieve fair load sharing. Striping across multi-
ple TCP/IP connections has also been studied in the litera-
ture. One example is PSockets [26]. PSockets presents to
the application layer the same socket interface as that used
in TCP/IP. It transparently stripes a message across multiple
TCP/IP connections.

8 Conclusions and Future Work

In this paper, we present an in-depth study of designing
high performance multirail InfiniBand clusters. We discuss
various ways of setting up multirail networks with Infini-
Band and propose a unified MPI design that can support all
these approaches. By taking advantage of RDMA opera-
tions in InfiniBand and integrating the multirail design with
MPI communication protocols, our design supports multi-
rail networks with very low overhead. Our design also sup-
ports different policies of using multiple rails. Another con-
tribution of this paper is an adaptive striping scheme that
can dynamically change the striping parameters based on
the current available bandwidths of different rails.

We have implemented our design and carried out detailed
performance evaluation. Our performance results show that
the multirail MPI can significant improve MPI communica-
tion performance. With a two rail InfiniBand network, we
can achieve almost twice the bandwidth and half the latency
for large messages compared with the original MPI. The
multirail MPI design can also significantly reduce commu-
nication time as well as running time for bandwidth-bound
applications. We have also shown that the adaptive striping
scheme can achieve excellent performance without a priori
knowledge of the bandwidth of each rail.

In future, we plan to carry out experiments on larger

scale testbeds and study the impact of our design and dif-
ferent policies on other applications. We would also like to
evaluate our design using PCI Express systems by setting up
multirail networks using multiple HCA ports. Another di-
rection we are currently working on is to optimize collective
communication by taking advantage of multirail networks.
In this paper, we have focused on how to use multirail In-
finiBand networks to achieve high performance. Another
important usage of multirail networks is to achieve network
fault tolerance. We also plan to investigate this direction.
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