
Myrinet Express (MX):
A High-Performance, Low-Level,

Message-Passing Interface
for Myrinet

Version 1.0
July 01, 2005

Table of Contents
I OVERVIEW..1

I.1 UPCOMING FEATURES ..3

II CONCEPTS..4

II.1 N AMING SCHEME..4
II.2 ENDPOINTS ..4
II.3 ENDPOINT ADDRESSING...5
II.4 MATCHING ...5
II.5 UNEXPECTED MESSAGES..6
II.6 REQUESTS...7
II.7 REQUEST STATES..7

III INITIALIZATION...9

III.1 LIBRARY INITIALIZATION ...9
III.1.1 mx_init()..9
III.1.2 mx_finalize()..9

III.2 INFORMATION RETRIEVAL..11
III.2.1 mx_get_info()...11
III.2.2 MX_NIC_IDS..13
III.2.3 MX_COUNTERS_*...13

III.3 ENDPOINT OPENING AND CLOSING..15
III.3.1 mx_open_endpoint()..15
III.3.2 mx_close_endpoint()..18
III.3.3 mx_wakeup()...18

IV SPECIFYING ENDPOINTS...20

IV.1 H OSTNAMES AND NIC IDS...20
IV.1.1 mx_hostname_to_nic_id()..20
IV.1.2 mx_nic_id_to_hostname()..20

IV.2 BOARD NUMBERS AND NIC IDS...21
IV.2.1 mx_board_number_to_nic_id()..21
IV.2.2 mx_nic_id_to_board_number()..22

IV.3 ENDPOINT ADDRESSES..22
IV.3.1 mx_connect()...22
IV.3.2 mx_decompose_endpoint_addr()..23

IV.4 LOCAL ENDPOINT ADDRESS...25
IV.4.1 mx_get_endpoint_addr()..25

V POINT-TO-POINT COMMUNICATION..26

V.1 SEND OPERATIONS..26
V.1.1 mx_isend()..26
V.1.2 mx_issend()..28

© 2005 Myricom, Inc. i

V.2 RECEIVE OPERATIONS..31
V.2.1 mx_irecv()..31

VI REQUEST STATE FUNCTIONS ..34

VI.1 BUFFERED STATE..34
VI.1.1 mx_ibuffered()..34

VI.2 REQUEST COMPLETION...35
VI.2.1 mx_test()...35
VI.2.2 mx_wait()...37

VI.3 QUERYING FOR ANY COMPLETION...37
VI.3.1 mx_ipeek()..38
VI.3.2 mx_peek()..38

VI.4 OBTAINING THE CONTEXT...39

VII PROBING...41

VII.1.1 mx_iprobe()...41
VII.1.2 mx_probe()..42

VIII CANCELING MX REQUESTS...43

VIII.1.1 mx_cancel()...43

IX APPLICATION PROGRAMMING NOTES...43

IX.1 COMPLETING REQUESTS...43
IX.2 MULTI-THREADED APPLICATIONS ..44

X ERROR HANDLING...44

© 2005 Myricom, Inc. ii

I Overview

Myrinet Express (MX) is a high-performance, low-level, message-passing software
interface tailored for Myrinet. MX exploits the processing capabilities embedded in the
Myrinet NIC to provide exceptional performance for modern middleware interfaces such
as MPI or VI, enables low-overhead Ethernet emulation at link speed, and offers a
simple API for third-party Myrinet software developments.

The MX API package includes these design goals:

● Protected and independent access for user-level applications : MX endpoints
virtualize the network interfaces at the process level, providing OS-bypass
communication.

● Transparent memory registration : Most modern message-passing interfaces do
not require explicit memory-registration operations. In MX, explicit memory
registration by the application or middleware is avoided altogether by the use of
PIO or memory copies for small messages, and is made implicit and very low cost
for larger messages.

● Very low total latency for small messages : In order to minimize latency for small
messages, MX implements an extremely short critical path without intermediate
copies or memory registration.

● Fully asynchronous communication primitives : The initiation of any
communication is separated from its completion. Once an operation has been
initiated, the application is not involved until it checks or waits for it.

● Virtually unlimited number of pending sends and receives : While the number of
pending sends and receives natively supported by MX at the NIC level is large,
MX offers a multiplexing capability to provide an unlimited number of pending
sends and receives, bounded by the amount of available host resources (memory).

● Generic matching mechanism : MX provides an efficient matching mechanism
between incoming messages and posted receives. The matching field is large
enough (64 bits) to support the matching requirements of all modern message-
passing interfaces.

● Overlap of communication and computation, even for large messages : As the MX
communication primitives are fully asynchronous, it is possible for the
application to continue its execution between the initiation of an operation and
its completion. In the absence of unusual out-of-resource conditions, MX does not
require the user-level application to be involved in the progression of the protocol,
thus allowing overlap between communication and computation.

● Reliable in-order matching : MX provides an ordered matching protocol. Two
messages sent from one endpoint in-order will match posted receives in-order, but
may be delivered out-of-order, or their completion may be notified out-of-order.
The in-order matching is sufficient to support all of the modern message-passing
interfaces, and the out-of-order delivery allows MX to use multiple routes
between NIC ports and multiple ports per NIC.

© 2005 Myricom, Inc. 1

● Efficient support for unexpected messages : An unexpected message is one for
which a matching receive request has not yet been posted. Unexpected messages
are processed by receiving the entire message eagerly in an unexpected queue if it
is small, and by receiving only its header if it is too large. The size threshold
distinguishing the handling methods can be controlled by the application. MX
guarantees in-order matching, even if unexpected messages have been buffered.

● Transient network fault recovery and high-availability support : No network
fabric is perfect, and transient errors (corruption, loss of packets) may occur,
although not frequently in Myrinet fabrics. MX automatically recovers from
any faults where recovery is possible through means such as retransmitting
packets or routing around dead links. Catastrophic or unrecoverable errors due
to hardware or software failure will be communicated to the application for
handling by a higher-level recovery strategy.

● Basic per-message authentication mechanism : Messages in MX include a user-
supplied identifier (called a filter) that provides a basic authentication
mechanism between the source and the destination endpoints. Messages sent
with a filter value that does not match that of the destination endpoint will be
rejected at the NIC level.

● Per-message or per-endpoint polling or blocking completion functions : MX
provides functions to check the completion of a specific pending operation or the
completion of any of the pending operations related to an endpoint. Similarly,
there are functions to block waiting for completion of a specific pending operation
or the completion of all of the pending operations related to an endpoint. These
blocking semantics release the processor for other application computation.

● Per-call timeouts on blocking completion functions : MX functions used to block
on a specific operation or on all operations of an endpoint take a timeout as an
argument. The granularity of this timeout is one millisecond.

● Efficient support for multiple links per NIC : MX does segmentation and re-
assembly of large messages at the NIC level, and does not ensure in-order
delivery or notification, only in-order matching. Support is provided to ensure
reliability for a large number of out-of-order fragments (packets) without
requiring retransmission, leading to high efficiency on all links. Intentional
dropping of out-of-order packets and reliance on retransmission is used only
when the number of out-of-order packets exceeds available buffering resources.

● Support for route dispersion : Multiple routes are computed for each destination.
When necessary, different routes are chosen to avoid hot spots on the network
fabric, and to achieve resistance to individual link failures.

● Integrated Myrinet fabric mapping : Network topology discovery and route
computation is performed automatically as soon as the MX driver is loaded, and
the network is automatically remapped as necessary when a network connectivity
issue is detected.

● Support for cancellation of pending requests : Pending operations can be cancelled
in MX. The cancel operation will fail gracefully if the pending request has
completed asynchronously while its cancel is attempted.

© 2005 Myricom, Inc. 2

● Single-threaded and thread-safe libraries : MX provides both thread-safe and
single-threaded libraries to allow users to select which is most appropriate for the
application. There is no API difference between the two libraries; they are
completely source and binary compatible. Thread safety is transparent to the
application; many threads can initiate sends or receives, or even wait on different
handles at the same time. The single-threaded MX library is provided so that
applications may avoid the overhead of thread-safe operations if they are not
needed.

I.1 Upcoming Features

Future releases of MX will include support for:

● One-sided communication and collective operations such as barrier, broadcast and
all reduce.

● A recovery mechanism from the majority of SRAM parity errors: The MX
software will have the capability of transparently reinitializing the NIC firmware
and data structures. When an SRAM parity error occurs, in many cases it is
recoverable. In a few cases, however, it will not be possible to recover and a reboot
of the host will still be required for security purposes.

● Native support for non-contiguous sends and receives : All MX communication
primitives involving user-level data will accept scatter-gather lists with a
reasonable limit on the number of contiguous segments. Different mappings can be
used on the sender and receiver sides for the same communication, allowing spatial
data transformations to be an implicit part of the communication.

© 2005 Myricom, Inc. 3

I I Concepts

This section describes the terms used in the MX API and how they relate to each other.

Host and process have their usual meanings as in UNIX and Windows parlance. MX
provides a mechanism for processes on the same or different hosts to communicate with
each other through a Myrinet communication fabric. Each individual Myrinet card in a
host is called a physical NIC, or just NIC . Processes communicate using MX by
opening endpoints that are associated with NICs.

All messages in MX contain matching information. This information is used to match
incoming sends to receive requests. In order to receive a message, a receive request is
posted. To send a message, a send request is posted. Both are MX calls that specify
matching information, a destination endpoint, and a list of user memory segments and
their respective lengths.

Specific code examples will follow, but the typical flow of a process wishing to
communicate with another is thus: initialize the library, open an endpoint, connect to
your target host(s), start sending and receiving messages commingled with calls to
collect status on these operations, close the endpoint, and finalize the library.

II.1 Naming Scheme

Many MX functions have both a blocking and a non-blocking variant. The naming
scheme of the MX functions strongly reflects the MPI naming scheme in order to
facilitate the ease of understanding of the semantics of the functions. As in the MPI
standard, the letter ‘i’ prefixed in the function name denotes a non-blocking operation,
which returns immediately. The blocking counterparts of these function names do not
contain the letter ‘i’ and will block until completion or expiration of a timeout, effectively
suspending the execution of the current process. As an example, mx_iprobe() is a non-
blocking function whereas mx_probe() is its blocking counterpart. However, the
blocking variant of a function is not always defined in the MX API. For example,
mx_isend() is the non-blocking sending function, but mx_send() is not provided by MX.

II.2 Endpoints

An MX endpoint is a virtualization of a network interface at the process level. A
process is defined from the UNIX point of view as a collection of execution threads
sharing the same virtual address space. An endpoint provides an entry point to the
interconnect hardware, protected from other processes, with fairness relative to the other
endpoints opened on the same NIC or collection of NICs.

© 2005 Myricom, Inc. 4

An endpoint is also an instance of a software interface. It is referenced by a variable of
type mx_endpoint_t, used by many of the MX operations. All operations on an open
endpoint are restricted to this endpoint. MX objects, such as send and receive request
handles, are relative to a specific endpoint and have no meaning to another endpoint,
even opened by the same process.

Nothing prevents a process from simultaneously opening several endpoints on the same
network interface.

An endpoint is created by a call to mx_open_endpoint(), which returns a handle for
referencing the endpoint in an mx_endpoint_t. If mx_open_endpoint() does not return
MX_SUCCESS, then the mx_endpoint_t passed in will remain unmodified.

A value of NULL is guaranteed never to be a valid endpoint.

II.3 Endpoint Addressing

In order to communicate with a remote endpoint, an application must have the endpoint
address of that remote endpoint, represented by an mx_endpoint_addr_t. An endpoint
address can be constructed from three pieces of information, the NIC ID of a NIC on the
remote host (which may be the same as the local host), an endpoint ID, and an endpoint
filter value. An mx_endpoint_addr_t is created by a call to mx_connect(), and can only
be used with the local endpoint used in the mx_connect() call

Each NIC has a unique 64-bit NIC ID (for Myrinet NICs, this is the MAC Address
encoded as a 64-bit number), and it is this NIC ID that is used to create an endpoint
address. The IDs of the NICs within a given host can be queried from any application
on the Myrinet using mx_board_number_to_nic_id().

The endpoint ID is an integer associated with each open endpoint that can be assigned
either by the application that opens it, or by the MX library. This value is an index and
must be within the range [0...(MX_MAX_ENDPOINTS-1)].

The endpoint filter is an integer that is assigned by the application to distinguish
between different instances of the application. Through careful use of this parameter, the
application can “filter out” MX messages from lingering or zombie processes attempting
to communicate with the previous owner of a particular endpoint ID.

II.4 Matching

The matching in MX is the process of associating an incoming message to a pending
receive. Each message-passing interface defines its own matching rules based on

© 2005 Myricom, Inc. 5

elements provided by the sending side and/or the receiving side. A rich matching
capability is required to build a complex message-passing interface on top of a low-level
interface, or directly implement applications on top of it.

MX provides a flexible yet powerful matching interface. Each message in MX contains
64 bits of matching information. The sender specifies this information, match_send, as
part of the sending operation, and the receiving side provides match_recv and a
match_mask when posting a receive. An incoming message will be associated with a
pending receive if and only if the incoming match_send data masked with the
match_mask matches the match_recv information of the posted receive.

II.5 Unexpected Messages

A sub-optimal yet common occurrence in message passing is to send a message before a
matching receive is posted on the receive side. This occurrence can be due to a slight
timing drift or, more simply, to poor application programming methods. A message that
arrives on the receive side without a matching receive is, in many low-level interfaces,
dropped and retransmitted later.

In MX, a buffer is allocated at endpoint opening time to handle such unexpected
messages. Inasmuch as it is often the case that the receive operation might be a little bit
late and be posted just after the incoming message arrives, it is appropriate to copy the
unexpected message into a temporary area. Then, when a matching receive is posted by
the application, the message can be delivered immediately.

This unexpected buffer is limited in size, so only small messages will be buffered in this
way. Larger messages will leave their matching information along with information
about the sending endpoint. The threshold in message size between a full copy in the
unexpected buffer and a copy of only the header (matching information and sender
endpoint address) is specified by the application when the endpoint is opened.

Unexpected message handling is transparent at the MX API level. When a receive is
posted, the application does not need to know if the incoming matching send has already
been saved in the unexpected queue. If this is the case and if the message was small
enough to fit in its entirety, the message is delivered and the receive is completed
immediately. If the message was larger than the unexpected threshold set by the
application, MX will notify the sending side that a matching receive has been posted
and this will trigger an immediate transmission from the sender, without involvement of
the application on the send side. If no matching unexpected messages are found, the
receive information is recorded for matching against future incoming messages.

This mechanism provides an efficient eager protocol for small messages and a loose
rendezvous protocol for larger messages, allowing overlap of communication and
computation even in the case of unexpected messages.

© 2005 Myricom, Inc. 6

II.6 Requests

Requests are identifiers used to specify particular instances of pending asynchronous
operations. All asynchronous MX operations fill in an mx_request_t object passed in by
the application, which is used to specify this pending operation to subsequent interface
calls. These handles are generated by mx_isend(), mx_issend() and mx_irecv(), and can
be passed as arguments to mx_test(), mx_wait(), mx_ibuffered(), and mx_cancel(). If any
of the functions that fill in an mx_request_t object does not return MX_SUCCESS, the
mx_request_t object passed in will remain unchanged.

Every posted receive must have a matching successful call to mx_test() or mx_wait() in
order to release and recycle the resources associated with the request. The request handle
of a completed operation ceases to be a valid argument to any subsequent MX function
calls, unless and until the same value is assigned to a newly posted request.

A value of “NULL” is guaranteed not to be a valid request.

II.7 Request States

Once a request has been posted, it enters a three-state life cycle. The states of this life
cycle are pending, buffered (for send requests only), and complete. Pending means that
the request has been delivered to the MX subsystem, and it is in progress. Once the
buffers associated with a request can be safely used by the posting application, the
request enters the buffered state. At this time the buffers can be read or written without
affecting the outcome of the request. Finally, when all activity needed for a request has
finished, the request enters the complete state.

The progression through the various states is different for different request types. A
receive request enters the pending state when issued, and remains there until a matching
message has been placed in the associated buffers. At this time, the request changes
directly to the complete state.

A send request enters the pending state when issued, but the subsequent state transitions
are slightly different for mx_isend() and mx_issend().

For requests posted with mx_isend(), once the data has been copied out of the associated
buffers, possibly into a queue of unexpected messages on the receiving node, the request
changes directly to the complete state.

For requests posted with mx_issend() (the second ‘s’ is for “synchronous”), the buffered
state is used. Once the data being sent has been copied out of the buffers, possibly into a
queue of unexpected messages on the receiving node, the request enters the buffered state.

© 2005 Myricom, Inc. 7

Only after a matching receive has been issued on the receiving side does the request enter
the complete state. In this case, the complete state can be used as a synchronization point
with the receiver.

There are five functions used to observe and wait on the state of requests. These are
mx_ibuffered(), mx_test(), mx_wait(), mx_ipeek() and mx_peek().

mx_ibuffered() returns MX_SUCCESS if the referenced request has been safely buffered
and the memory buffers associated with the request may be reused. If a request is in
either the buffered or complete state, mx_ibuffered() will return MX_SUCCESS. Calls
to mx_ibuffered() do not affect the state of the request in any way.

mx_test() returns MX_SUCCESS if the referenced request has completed. In this case,
the status structure referenced in the call will be updated with more detailed
information about the requests completion. A successful return from mx_test() does not
mean that the request was successful, just that it is complete. The status structure will
contain all codes related to the outcome of the request, such as successful, cancelled, or
rejected. After a successful return from mx_test(), the referenced request no longer exists
as far as MX is concerned. If the return from mx_test() is unsuccessful for any reason,
the resources associated with the request are not released. mx_wait() is the blocking
counterpart of mx_test().

mx_ipeek() returns the handle of a request for a specific endpoint that is in the complete
state. If mx_ipeek() returns MX_SUCCESS, the returned request handle is guaranteed
to be successfully completed in a call to mx_test() or mx_wait(). If multiple requests are
in the complete state in the endpoint, only one of them will be returned by mx_ipeek(),
but which one is non-deterministic. mx_peek() is the blocking variant of mx_ipeek().

© 2005 Myricom, Inc. 8

I I I Ini tializa tion

III.1 Library Initialization

III.1.1 mx_init()

Before any other MX calls may be made, the library must be initialized by a call to
mx_init():

mx_return_t
mx_init(void);

If the MX library has been successfully initialized, mx_init() returns MX_SUCCESS.
Otherwise, the function may return one of the following error codes.

Error return codes:

MX_NO_DEV The OS-specific /dev/mx devices are not present.
MX_NO_DRIVER The MX driver does not seem to be loaded.
MX_NO_PERM No permission to access the mx device.
MX_BAD_BAD_BAD Something bad happened with the driver, maybe

the wrong driver. You need to check the kernel
log.

MX_ALREADY_INITIALIZED mx_init() has already been called.
MX_NO_RESOURCES Shortage of memory or other system resources.

This function allocates and initializes all data structures used by the MX API library.

III.1.2 mx_finalize()

The complement of the mx_init() function is mx_finalize():

mx_return_t
mx_finalize(void);

The current implementation of mx_finalize() always returns MX_SUCCESS.

This function cleans up the MX library and releases any resources previously allocated.

Example III.1: Initialization of the MX library.

#include "myriexpress.h"

© 2005 Myricom, Inc. 9

int
main(void)
{
 mx_return_t return_code;

 /* Initialize the MX library */
 return_code = mx_init();

 /* do work here ... */

 /* Finalize the MX library */
 return_code = mx_finalize();

 return 0;
}

© 2005 Myricom, Inc. 10

III.2 Information Retrieval

III.2.1 mx_get_info()

A variety of information about MX or about a specific endpoint can be retrieved using
mx_get_info():

mx_return_t
mx_get_info(mx_endpoint_t endpoint,
 mx_get_info_key_t key,
 void *in_val,
 uint32_t in_len,
 void *out_val,
 uint32_t out_len);

Parameters:

IN endpoint
The MX endpoint to focus the scope of the
information inquiry; NULL if information is global.

IN key The enumeration value of the information key.
IN in_val A pointer to the parameters needed for this call.

IN in_len
The length of the memory area referenced by
in_val.

OUT out_val
A pointer to the memory area where the requested
information will be placed.

IN out_len The size of the out_val buffer.

If the value of the specified information key has been successfully retrieved, mx_get_info
() returns MX_SUCCESS. Otherwise, the function may return one of the following
error codes.

Error return codes:

MX_BAD_INFO_KEY Unknown key.
MX_BAD_INFO_LENGTH The buffer length is too small.

mx_get_info() provides a way to obtain information about MX at the global level of the
library or at the limited level of an MX endpoint. Such information is accessible under
the form of (key, value) pairs where the key is an enumeration and the value can be of
multiple types. The size of the content of the value is specific for each information key.

If the endpoint parameter is NULL, the information retrieval applies to the MX library
itself. If information associated to a specific endpoint is requested, then the parameter
endpoint must be defined to the appropriate MX endpoint.

© 2005 Myricom, Inc. 11

The argument key is one value of the enumeration referencing all the information keys.
If this key is not recognized as one of the valid keys listed below, the return code
MX_BAD_INFO_KEY is returned. The parameter in_val is a pointer to a memory
area which contains any needed parameters for that key request. The parameter in_len
is the length associated with in_val. The parameter out_val is the memory where the
information requested will be returned. The argument out_len is the size of the memory
area designated by out_val. If this size is not large enough to contain the value
associated with the key, MX_BAD_INFO_LENGTH is returned and the contents of
the memory referenced by out_val are undefined.

The following keys are recognized as valid:

Global Information (endpoint can be NULL)
Key MX_MAX_NATIVE_ENDPOINTS
Description The maximum number of endpoints interfaced directly with the

NIC (thus providing OS-bypass).
Input None
Output uint32_t
Output Size sizeof(uint32_t)
Key MX_NIC_COUNT
Description The number of NICs available to this application.
Input None
Output uint32_t
Output Size sizeof (uint32_t)
Key MX_NIC_IDS
Description Identifier (MAC address) of all NICS in the system in a 0-

terminated array. (see Section III.2.2)
Input None
Output uint64_t[]
Output Size variable * sizeof (uint64_t)
Key MX_NATIVE_REQUESTS
Description The number of requests that can be handled natively by the NIC.
Input None
Output uint32_t
Output Size sizeof (uint32_t)
Key MX_COUNTERS_COUNT
Description The number of counters in the count table.
Input uint32_t, the board id
Output uint32_t
Output Size sizeof(uint32_t)
Key MX_COUNTERS_LABELS
Description The text names for each counter.
Input uint32_t, the board id
Output uint8_t[][MX_MAX_STR_LEN]

© 2005 Myricom, Inc. 12

Output Size Variable * MX_MAX_STR_LEN
Key MX_COUNTERS_VALUES
Description The counters’ values
Input uint32_t, the board id
Output uint32_t[]
Output Size variable * uint32_t
Key MX_PRODUCT_CODE
Descriptions The product string for this Myrinet NIC.
Input uint32_t, the board id
Output uint8_t[MX_MAX_STR_LEN]
Output Size MX_MAX_STR_LEN
Key MX_PART_NUMBER
Description The part number string for this Myrinet NIC.
Input uint32_t, the board id
Output uint8_t[MX_MAX_STR_LEN]
Output Size MX_MAX_STR_LEN
Key MX_SERIAL_NUMBER
Description The serial number for this Myrinet NIC.
Input uint32_t, the board id
Output uint32_t
Output Size sizeof(uint32_t)
Key MX_PORT_COUNT
Description The number of ports for this Myrinet NIC.
Input uint32_t, the board id
Output uint32_t
Output Size sizeof(uint32_t)

III.2.2 MX_NIC_IDS

Before calling mx_get_info() with the key MX_NIC_IDS, an application should first
call mx_get_info() with the key MX_NIC_COUNT. A subsequent call with
MX_NIC_IDS will fill in an array of NIC IDs in uint64_t’s followed by a 0. Thus,
the memory area passed to mx_get_info() for MX_NIC_IDS should be large enough to
hold N+1 64-bit integers, where N is the number returned by MX_NIC_COUNT.

For example, if MX_NIC_COUNT indicates there are 2 NICs in the system,
MX_NIC_IDS should be passed an array with size at least 3 * sizeof (uint64_t). The
first two elements of the array will contain the two NIC IDs, and the third element will
be zero. This array is terminated with a zero.

III.2.3 MX_COUNTERS_*

© 2005 Myricom, Inc. 13

Before calling mx_get_info() with the key MX_COUNTERS_LABELS, or the key
MX_COUNTERS_VALUES, an application should first call mx_get_info() with the
key MX_COUNTERS_COUNT. The memory area passed to the out_val parameter of
mx_get_info() should be large enough to hold the data returned. For
MX_COUNTERS_LABELS, this should be N * MX_MAX_STR_LEN, and for
MX_COUNTERS_VALUES this should be N * sizeof(uint32_t), where N is the
number returned by MX_COUNTERS_COUNT.

© 2005 Myricom, Inc. 14

III.3 Endpoint Opening and Closing

III.3.1 mx_open_endpoint()

Once the MX library is initialized, the application needs to open an endpoint to be able
to send or receive messages. This operation is performed by the function
mx_open_endpoint():

mx_return_t
mx_open_endpoint(uint32_t board_num,
 uint32_t endpoint_id,
 uint32_t filter,
 mx_param_t *params_list,
 uint32_t params_count,
 mx_endpoint_t *endpoint);

Parameters:

IN board_num
The local board rank of the NIC on which MX will
try to open an endpoint.

IN endpoint_id
The index of the endpoint to open on the specified
NIC.

IN filter
A user-assigned value used to filter incoming
messages and reject mx_connect() (or any
unauthorized messages).

IN params_list
The array of parameters that specifies the
configuration of the endpoint to open; NULL if no
parameters.

IN params_count
The number of entries in the array of parameters, 0
if no parameters.

OUT endpoint The MX endpoint successfully opened.

If the endpoint has been successfully opened, mx_open_endpoint() returns
MX_SUCCESS. Otherwise, the function may return one of the following error codes.

Error return codes:

MX_BUSY The endpoint (or all possible endpoint matching
requirements if wildcards are used) is (are) busy.

MX_NO_DEV Some OS-specific /dev/mx devices are not present.
MX_NO_DRIVER The MX driver does not seem to be loaded.
MX_NO_PERM No permission to access the mx device.

© 2005 Myricom, Inc. 15

MX_BAD_BAD_BAD Something bad happened with the driver, maybe the
wrong driver. You need to check the kernel log.

MX_BOARD_UNKNOWN Invalid board number.
MX_NO_RESOURCES Shortage of memory or other system resources.

© 2005 Myricom, Inc. 16

mx_open_endpoint() opens a specific MX endpoint if available. This function requires a
pointer to an mx_endpoint_t object allocated by the application. This object should be
passed to all of the other MX functions operating on an MX endpoint. Opening an
endpoint also creates it, and these terms may be used interchangeably in this document.
If the return value is not MX_SUCCESS, then the endpoint passed in to
mx_open_endpoint() remains unmodified.

A board number board_num, is passed to specify with which NIC this endpoint should
be associated. This is referred to as the primary NIC for the endpoint.

The application can let MX choose the best NIC on which to open an endpoint by using
the MX_ANY_NIC constant.

The second input parameter is the index of the endpoint to be opened. This endpoint
number must be in the [0, (MX_MAX_ENDPOINTS-1)] range. The value of
MX_MAX_ENDPOINTS can be retrieved using mx_get_info().

The application can let MX choose the best endpoint to open by using the
MX_ANY_ENDPOINT constant.

The params_list argument is a pointer to an array of mx_param_t entries. This array
specifies the user configuration of the requested endpoint. MX endpoint parameters are
(key, value) pairs where the keys are member of an enumeration and the values are
pointers to memory areas, allocated by the application and containing the values of the
respective parameters.

The params_count parameter specifies the number of entries in the list of endpoint
parameters. The params_list argument may be NULL, along with a params_count of 0,
in which case default values are used for all settings.

© 2005 Myricom, Inc. 17

The following keys are recognized as valid:

Parameter MX_PARAM_UNEXP_QUEUE_MAX
Description Sets the maximum length of the unexpected queue.
Format uint32_t
Size sizeof (uint32_t)
Default Value Value of the MX_UNEXP_QUEUE_LENGTH_MAX
Parameter Key MX_PARAM_ERROR_HANDLER
Description Sets the error handler.
Format mx_error_handler_t
Size sizeof(mx_error_handler_t)
Default Value No error handler

III.3.2 mx_close_endpoint()

Once opened, an MX endpoint can be closed. This operation is performed by the
function mx_close_endpoint():

mx_return_t
mx_close_endpoint(mx_endpoint_t endpoint);

Parameters:

IN endpoint The MX endpoint to close.

The current implementation of mx_close_endpoint() always returns MX_SUCCESS.

mx_close_endpoint() closes an opened MX endpoint. All pending operations are
cancelled and the endpoint is deregistered from the NIC. This function requires a
pointer to the mx_endpoint_t that references the MX endpoint to close.

The endpoint is closed immediately but cannot be reopened until all messages in flight
have been dropped. To satisfy this condition, the endpoint may remain unusable for a
brief period of time.

III.3.3 mx_wakeup()

The function mx_wakeup() causes blocking functions to abort their wait.

mx_return_t
mx_wakeup(mx_endpoint_t endpoint);

© 2005 Myricom, Inc. 18

Parameters:

IN endpoint The MX endpoint associated with the blocking call.

The current implementation of mx_wakeup() always returns MX_SUCCESS.

mx_wakeup() is useful in multithreaded applications where it may be necessary to
notify a thread that the current blocking operation will never be satisfied.

Example III.2: Allocation and release of a MX endpoint.

/* error checking excised for brevity */

#include "myriexpress.h"

int
main(void)
{
 mx_return_t rc;
 mx_endpoint_t endpoint;
 uint32_t filter;

 /* Initialize the MX library */
 rc = mx_init();

 /* open an MX endpoint */
 filter = 0xcafebabe; /* app specific unique value */
 rc = mx_open_endpoint(MX_ANY_NIC, MX_ANY_ENDPOINT,
 filter, 0, 0, &endpoint);

 /* do work here ... */

 /* close the MX endpoint */
 rc = mx_close_endpoint(endpoint);

 /* Finalize the MX library */
 rc = mx_finalize();

 return 0;
}

Once an endpoint has successfully been opened, it can be used to post asynchronous send
and receive operations, and test or wait for their completion.

© 2005 Myricom, Inc. 19

IV Specifying Endpoints

IV.1 Hostnames and NIC IDs

IV.1.1 mx_hostname_to_nic_id()

In order to facilitate identifying remote hosts, MX provides utility functions,
mx_hostname_to_nic_id() and mx_nic_id_to_hostname(), to convert from a hostname to
a NIC ID and vice-versa. The hostname in the context of these functions is actually a
nic_name, it is different for each NIC on multi-NIC hosts, and is initialized by default
to <hostname>:<board-rank>.

mx_hostname_to_nic_id() returns the NIC ID given the name of a NIC:

mx_return_t
mx_hostname_to_nic_id(char *hostname,
 uint64_t *nic_id);

Parameters:

IN hostname The name of the host whose NIC ID we want.
OUT nic_id The NIC ID of the host.

If the NIC ID for the specified host has been successfully retrieved,
mx_hostname_to_nic_id() returns MX_SUCCESS. Otherwise, the function may return
one of the following error codes.

Error return codes:

MX_HOST_NOT_FOUND The hostname was not found in the network peer table.

IV.1.2 mx_nic_id_to_hostname()

The complementary routine, mx_nic_id_to_hostname(), converts a NIC ID to a
hostname.

mx_return_t
mx_nic_id_to_hostname(uint64_t nic_id,
 char *hostname);

© 2005 Myricom, Inc. 20

Parameters:

IN nic_id The NIC ID of the host whose name we want.
OUT hostname The name of the host.

If the hostname for the specified NIC ID has been successfully returned,
mx_nic_id_to_hostname() returns MX_SUCCESS. Otherwise, the function may return
one of the following error codes.

Error return codes:

MX_HOST_NOT_FOUND No such NIC is in the network peer table .

Note that MX_MAX_HOSTNAME_LEN includes a trailing ‘0’ used in C string
representations.

IV.2 Board numbers and NIC IDs

IV.2.1 mx_board_number_to_nic_id()

In order to facilitate identifying a specific NIC when there are multiple NICs in the
same host, MX provides utility functions, mx_board_number_to_nic_id() and
mx_nic_id_to_board_number(), to convert from a board number to a NIC ID and vice-
versa.

mx_board_number_to_nic_id() returns the MAC address of a board with a given rank.

mx_return_t
mx_board_number_to_nic_id(uint32_t board_number,
 uint64_t *nic_id);

Parameters:

IN board_number The board number whose NIC ID we want.
OUT nic_id The NIC ID assigned to this board number.

If the NIC ID for the board number has been successfully retrieved,
mx_board_number_to_nic_id() returns MX_SUCCESS. Otherwise, the function may
return one of the following error codes.

Error return codes:

© 2005 Myricom, Inc. 21

MX_BOARD_UNKNOWN Invalid board number.

IV.2.2 mx_nic_id_to_board_number()

The complementary routine, mx_nic_id_to_board_number(), is used if an application
wants to open an endpoint on a NIC with a given MAC address. It converts the MAC
address into a board rank, as is required by mx_open_endpoint().

mx_return_t
mx_nic_id_to_board_number(uint64_t nic_id,
 uint32_t *board_number);

Parameters:

IN nic_id The NIC ID assigned to the board number we want.
OUT board_number The board number.

If the board number for the specified NIC ID has been successfully returned,
mx_nic_id_to_board_number() returns MX_SUCCESS. Otherwise, the function may
return one of the following error codes.

Error return codes:

MX_BOARD_UNKNOWN No local board was found with this nic_id.

IV.3 Endpoint Addresses

The function mx_connect() is used to build an MX endpoint address, and the function
mx_decompose_endpoint_addr() is used to extract information from the MX endpoint
address.

IV.3.1 mx_connect()

Remote endpoints are specified through the use of an mx_endpoint_addr_t. An
mx_endpoint_addr_t is formed by combining the NIC ID of a network interface on the
node on which the remote endpoint resides, the ID of the endpoint, and a filter key. An
mx_endpoint_addr_t is initialized from these elements using the function mx_connect(),
which checks that the remote endpoint is open and accepts our filter value. An
endpoint_addr_t is endpoint specific. If a process has multiple local endpoints open, it

© 2005 Myricom, Inc. 22

will need to call mx_connect() for each local endpoint even if all the local endpoints will
be talking to the same remote endpoint.

mx_return_t
mx_connect(mx_endpoint_t endpoint,
 uint64_t nic_id,
 uint32_t endpoint_id,
 uint32_t filter,
 uint32_t timeout,
 mx_endpoint_addr_t *endpoint_addr);

Parameters:

IN endpoint
The local MX endpoint that will be used for
communication.

IN nic_id
NIC ID of remote node with which we wish to
communicate.

IN endpoint_id ID of the remote endpoint.
IN filter Filter value for the remote endpoint.
IN timeout Specifies the amount of time to wait for a

connection, in seconds.
OUT endpoint_addr The newly built endpoint address.

If the endpoint address has been successfully built, mx_connect() returns
MX_SUCCESS. Otherwise, the function may return one of the following error codes.

Error return codes:

MX_NIC_NOT_FOUND The target NIC was not found in the network
peer table.

MX_CONNECTION_FAILED The remote endpoint is closed.
MX_BAD_CONNECTION_KEY Wrong credentials key, the peer rejected the

connection or message.
MX_TIMEOUT The specified timeout was exceeded while

waiting for the target to reply.
MX_NO_RESOURCES Shortage of memory or other system resources.

The mx_endpoint_addr_t returned by this function can be passed either to mx_isend() or
mx_issend() for point-to-point communications.

IV.3.2 mx_decompose_endpoint_addr()

The function, mx_decompose_endpoint_addr() can be used to extract the information
associated with mx_endpoint_addr_t (for instance to identify the source of a message
from the mx_status_t.source field returned at receive completion).

© 2005 Myricom, Inc. 23

mx_return_t
mx_decompose_endpoint_addr(mx_endpoint_addr_t endpoint_addr,
 uint64_t *nic_id,
 uint32_t *endpoint_id);

Parameters:

IN endpoint_addr
An mx_endpoint_addr_t from which we wish to
extract component parts.

OUT nic_id
NIC ID of remote node to which this endpoint
address refers.

OUT endpoint_id ID of the remote endpoint.

The current implementation of mx_decompose_endpoint_addr() always returns
MX_SUCCESS.

© 2005 Myricom, Inc. 24

IV.4 Local Endpoint Address

IV.4.1 mx_get_endpoint_addr()

It is frequently useful to know the endpoint address of a local endpoint to either send a
message to oneself, or extract the NIC id and endpoint id when using MX_ANY_NIC
or MX_ANY_ENDPOINT to communicate it to others. The function
mx_get_endpoint_addr() returns the endpoint address of an opened endpoint.

mx_return_t
mx_get_endpoint_addr(mx_endpoint_t endpoint,

 mx_endpoint_addr_t *endpoint_addr);

Parameters:

IN endpoint
The handle of the open local endpoint whose
address we wish to know.

OUT endpoint_addr
A pointer to an mx_endpoint_addr_t where the
address of this endpoint is to be stored.

The current implementation of mx_get_endpoint_addr() always returns
MX_SUCCESS.

© 2005 Myricom, Inc. 25

V Point-to-point Communication

V.1 Send Operations

MX provides two functions to initiate asynchronous sends, mx_isend() and mx_issend().

V.1.1 mx_isend()

mx_isend() follows the semantics of the standard mode in MPI: the request will be
completed when the send buffer described by the gather list can be reused by the
application. Completion of the operation does not give any indication on the fate of the
message, either being buffered on the send or receive side, or matched by a posted receive
on the receive side, or even lost due to fatal errors in the network.

mx_return_t
mx_isend(mx_endpoint_t endpoint,
 mx_segment_t *segments_list,
 uint32_t segments_count,
 mx_endpoint_addr_t destination,
 uint64_t match_send,
 void *context,
 mx_request_t *request);

Parameters:

IN endpoint The local MX endpoint used to post the send.

IN segments_list
The array of contiguous segments constituting the
gather list describing the buffer to send.

IN segments_count The number of segments in the gather list.
IN destination The MX Addr of the destination of the message.

IN match_send
The matching information from the send side that
will be used to find a matching receive on the
remote side.

IN context
A user-defined pointer that will be passed back to
the application as part of the status structure when
this request completes.

OUT request
The pointer to the MX Request object that
references the pending send operation.

If the send operation has been successfully posted, mx_isend() returns MX_SUCCESS.
Otherwise, the function may return one of the following error codes.

Error return codes:

MX_NO_RESOURCES Shortage of memory or other system resources.

© 2005 Myricom, Inc. 26

This function notifies the network interface that a new send is pending and returns to
the application as soon as possible. The send buffer is described by a gather list via the
parameter segments_list and a number of segments, segments_count. The gather list is
an array of mx_segment_t structures. Each segment describes a contiguous memory area,
using a pointer and a length. The maximum number of segments of a specific endpoint
is available under the key MX_MAX_SEGMENTS via the mx_get_info() mechanism.
Thus, it is possible to send a contiguous buffer using only one segment, or a non-
contiguous buffer without any constraints other than the maximum number of segments.

Segments of length 0 are allowed but ignored. Results are non-deterministic if segments
within a segment list overlap. If the total length of the message is 0, it is then allowed
to pass NULL as a list of segments and 0 as the number of segments.

The destination is specified by the parameter destination. It is an mx_endpoint_addr_t
object returned by mx_connect(). The sender also provides the matching information for
the message in the parameter match_send.

The parameter context specifies a user-defined pointer that will be included in the status
structure returned when this post completes. When a pending send request is completed,
either successfully or unsuccessfully, mx_test() or mx_wait() will return a status
structure with the context field filled in with this user-supplied value. This mechanism
may be used to implement callbacks on top of the status functions. The context can also
be extracted from the request by mx_context().

Finally, the last argument request is a pointer to an mx_request_t object, allocated by the
application. This handle will be assigned by the library and used to reference the
pending send operation when checking or blocking for its completion.

The data buffer(s) specified in a send operation must not be modified until the request is
in the buffered state. This state is detected by a successful return from mx_ibuffered().
The segment list itself may be modified immediately after mx_isend() returns; however,
the data buffers to which the list refers should not be modified until the operation is
complete.

The operation is complete as soon as a call to mx_test() or mx_wait() indicates that this
pending operation is complete. Note that being complete also indicates that the send
buffers are available for the application. As mx_isend() follows the semantics of the
MPI standard mode, a send request in the buffered state can be completed immediately
by calling mx_test() or mx_wait(). Thus, there is no advantage to use mx_ibuffered()
before mx_test() or mx_wait() on requests initiated by mx_isend().

© 2005 Myricom, Inc. 27

V.1.2 mx_issend()

MX also supports the concept of a synchronous send, which means that the send request
is not considered complete until it is successfully received by the destination endpoint, it
is cancelled, or an unrecoverable error has occurred sending the message. The function
to initiate a non-blocking synchronous send is mx_issend():

mx_return_t
mx_issend(mx_endpoint_t endpoint,
 mx_segment_t *segments_list,
 uint32_t segments_count,
 mx_endpoint_addr_t destination,
 uint64_t match_send,
 void *context,
 mx_request_t *request);

Parameters:

IN endpoint The local MX endpoint used to post the send.

IN segments_list
The array of contiguous segments constituting the
gather list describing the buffer to send.

IN segments_count The number of segments in the gather list.
IN destination The MX Addr of the destination of the message.

IN match_send
The matching information from the send side that
will be used to find a matching receive on the
remote side.

IN context
A user-defined pointer that will be passed back to
the application as part of the status structure when
this request completes.

OUT request
The pointer to the MX Request object that
references the pending send operation.

If the send operation has been successfully posted, mx_issend() returns MX_SUCCESS.
Otherwise, the function may return one of the following error codes.

Error return codes:

MX_NO_RESOURCES Shortage of memory or other system resources.

The arguments and return codes are identical to the previous function mx_isend(). The
difference between mx_issend() and mx_isend() lies in the send completion semantics: a
send request initiated by mx_issend() can be completed by a call to mx_test() or
mx_wait() only if the message has been safely delivered to a matching receive request on
the destination, has been cancelled, or an error has occurred.

© 2005 Myricom, Inc. 28

The request will be pending, and will use resources in the MX library and in the NIC
associated to the local endpoint, as long as the message is not received. Posting too many
synchronous sends with mx_issend() when no matching receives are posted on the
receive side will lead to resource exhaustion on the send side.

The data buffer(s) specified in a send operation must not be modified until the request
enters the buffered state. This state is detected by a successful return from mx_ibuffered
(). The segments list itself may be modified immediately after mx_issend() returns, just
not the data buffers to which it refers.

The operation is complete as soon as a call to mx_test () or mx_wait() indicates that this
pending operation is complete. Note that being complete also indicates that the buffers
are available for use.

In the specific case of a send request initiated by mx_issend(), it may be useful for the
application to know when the send buffers can be reused, before the message is effectively
received on the remote side and the send request is ready to be completed. Indeed, data
can be buffered on the send or receive side with the synchronous send request still
pending. mx_ibuffered() is used to check if the send request is in buffered state but not
yet in complete state.

Example V.1 : Post of a non-blocking non-contiguous synchronous send

#include "myriexpress.h"

int
main(void)
{
 mx_return_t rc;
 mx_endpoint_t endpoint;
 mx_endpoint_addr_t destination;
 uint64_t nic_id;
 mx_request_t send_handle;
 mx_segment_t buffer_desc[2];
 uint8_t workspace[256];
 uint64_t match_send;
 mx_status_t status;
 uint32_t result;

 /* Init and open endpoint [...] */

 /* Build address of remote endpoint, hostname = remotehost,
 Endpoint ID = 6, Filter key = 0x12345678 */
 rc = mx_hostname_to_nic_id(“remotehost”, &nic_id);
 rc = mx_connect(endpoint, nic_id, 6, 0x12345678, MX_INFINITE,
&destination);

 /* post an synchronous non-contiguous send composed of
 2 contiguous segments */

© 2005 Myricom, Inc. 29

 buffer_desc[0].segment_ptr = &(workspace[64]);
 buffer_desc[0].segment_length = 17;
 buffer_desc[1].segment_ptr = &(workspace[0]);
 buffer_desc[1].segment_length = 50;
 match_send = 0x1111111122223333L;

 rc = mx_issend(endpoint, buffer_desc, 2, destination, match_send,
 NULL, &send_handle);

 /* safe to modify segment list here */

 /* wait for it to be safe to change values in workspace */
 do {
 rc = mx_ibuffered(endpoint, &send_handle, &result);
 } while (rc == MX_SUCCESS && !result);

 /* Now OK to modify data buffer, “workspace” */

 /* wait for send completion. mx_wait could be used to release the
 CPU instead of looping on mx_test, see section VII.2 */
 do {
 rc = mx_test(endpoint, &send_handle, &status, &result);
 } while (rc == MX_SUCCESS && !result);

 /* endpoint closing and finalize [...] */
}

© 2005 Myricom, Inc. 30

V.2 Receive Operations

V.2.1 mx_irecv()

The receive operation has arguments similar to the send operations. MX provides
mx_irecv() to post asynchronous receives.

mx_return_t
mx_irecv(mx_endpoint_t endpoint,
 mx_segment_t *segments_list,
 uint32_t segments_count,
 uint64_t match_recv,
 uint64_t match_mask,
 void *context,
 mx_request_t *request);

Parameters:

IN endpoint The MX Endpoint used to post the receive.

IN segments_list
The array of contiguous segments constituting the
scatter list describing the receive buffer.

IN segments_count The number of segments in the scatter list.

IN match_recv
The matching information to be matched by the
incoming message after masking it by the
match_mask.

IN match_mask
The mask applied to the matching information of the
incoming message to match the match_recv
associated to the pending receive.

IN context
A user-defined pointer that will be passed back to
the application as part of the status structure when
this request completes or fails.

OUT request
The pointer to the MX Request object that references
the pending receive operation.

If the receive operation has been successfully posted, mx_irecv() returns MX_SUCCESS.
Otherwise, the function may return one of the following error codes.

Error return codes:

MX_NO_RESOURCES Shortage of memory or other system resources.

The application describes the receive buffer in the same way as in the send case, using a
scatter list segments_list composed of segments_count entries which are mx_segment_t
structures. A user-defined pointer, context, can be associated to the receive request that

© 2005 Myricom, Inc. 31

will be returned in the mx_status_t structure when this request completes. The caller
specifies request, a pointer to an mx_request_t object allocated by the application, to
receive a handle by which this receive operation is referenced in future calls. The
address of the remote endpoint (mx_endpoint_addr_t) which sends the message
ultimately matched to this receive will be included in the mx_status_t structure to be
returned when this request completes.

mx_irecv() differs from its send counterparts by specifying matching data, match_recv
and match_mask. The match_send value of any incoming message will be first bitwise
ANDed with match_mask and the result then compared to match_recv. If the values
are the same, the message matches the receive and the sent data is placed in the buffer(s)
associated with this receive.

Data in excess of the total buffer size provided is discarded, and the status of the receive
operation will be MX_STATUS_TRUNCATED. The total amount of data delivered
is specified in the mx_status_t structure returned from mx_test() or mx_wait().

The rules for accessing data buffers are analogous to those for sending. The data in
receive buffers is non-deterministic between the time the mx_irecv() call returns and
when mx_test() or mx_wait() indicates that the receive has been completed. Writing to
the buffers after the receive has been posted but before the status routine indicates
completion may corrupt the receive data. As with posting a send, the segment list may
be reused as soon as the call to mx_irecv() returns.

Inasmuch as receive requests cannot be buffered, calls to mx_ibuffered() do not apply for
receive requests. Only mx_test() or mx_wait() are required and used to recycle the
request's resources.

Example V.2 : Post of an asynchronous non-contiguous receive with a context value:

#include "myriexpress.h"

int
main(void)
{
 mx_return_t rc;
 mx_endpoint_t endpoint;
 mx_request_t recv_handle;
 mx_segment_t buffer_desc[2];
 uint8_t workspace[256];
 uint64_t match_recv;
 uint64_t match_mask;
 mx_status_t status;
 some_private_struct my_context;
 uint32_t result;

 /* Init and open local endpoint [...] */

 /* post an asynchronous non-contiguous receive with a
 wildcard for the middle 16 bits of the match data (part B) */

© 2005 Myricom, Inc. 32

 buffer_desc[0].segment_ptr = &(workspace[64]);
 buffer_desc[0].segment_length = 17;
 buffer_desc[1].segment_ptr = &(workspace[0]);
 buffer_desc[1].segment_length = 50;
 match_recv = UINT64_C(0x1111111100003333);
 match_mask = UINT64_C(0xffffffff0000ffff);
 rc = mx_irecv(endpoint, buffer_desc, 2,
 match_recv, match_mask,
 &my_context, &recv_handle);

 /* it is not yet safe to change values in workspace,
 though it is safe to modify buffer_desc */

 /* wait for receive completion */
 rc = mx_wait(endpoint, &recv_handle, MX_INFINITE, &status, &result);

 /* status.context now holds &my_context, and
 it is now safe to write into workspace */

 /* endpoint closing and finalize [...] */
}

© 2005 Myricom, Inc. 33

VI Request State Functions

Since all communication requests within MX are non-blocking, applications must be
able to check for the completion or the intermediate buffered state of these requests.
mx_ibuffered(), mx_test(), and mx_ipeek() are used to check the state of requests without
blocking. mx_wait() and mx_peek() are used to block, waiting for a request to complete
or for the associated buffer(s) to be reusable for the application, effectively releasing the
CPU for use by other threads or processes in the meantime. mx_context() is used to
extract the context associated with a particular request.

VI.1 Buffered State

VI.1.1 mx_ibuffered()

The function used to check if the application can reuse the buffer(s) committed to a
pending operation is mx_ibuffered().

mx_return_t
mx_ibuffered(mx_endpoint_t endpoint,
 mx_request_t *request,
 uint32_t *result);

Parameters:

IN endpoint The MX endpoint on which the operation is pending.
IN request The handle of the pending request.

OUT result Filled in with a non-zero value if the request is
buffered.

mx_ibuffered() always returns MX_SUCCESS in the current implementation.

The argument request is the handle referencing the pending MX operation. If the value
returned in result is non-zero, the buffer(s) involved in the pending operation can be
recycled by the application. Otherwise, the data is not buffered yet and the application
cannot safely reuse the buffer(s).

© 2005 Myricom, Inc. 34

VI.2 Request Completion

A successful return from a completion function like mx_test() or mx_wait() is required
for each pending request in order to release the resources associated with the operation.
If asynchronous requests are not successfully completed, the application will suffer a
resource leak and MX operations will eventually fail. The usage of these functions is
the only way for the application to query for the eventual success or failure of the
requests.

VI.2.1 mx_test()

The function used to check for the completion of a pending operation in a non-blocking
way is mx_test():

mx_return_t
mx_test(mx_endpoint_t endpoint,
 mx_request_t *request,
 mx_status_t *status,
 uint32_t *result);

Parameters:

IN endpoint The MX endpoint on which the operation is
pending.

IN request The handle to the pending request.
OUT status The status structure to be filled in case of completion.
OUT result Non-zero if the request is complete.

If the asynchronous pending request is complete, mx_test() returns MX_SUCCESS.
Otherwise, the function may return one of the following error codes.

Error return codes:

MX_NO_RESOURCES Shortage of memory or other system resources.

The argument request is the pointer to the handle referencing the pending MX
operation. If the referenced operation is complete, the output parameter result is non-zero
and the output parameter status, a pointer to an mx_status_t structure, is filled with
information about the completed operation. If the request is not in the complete state, the
content of the output parameter status is unchanged and meaningless.

The information returned to the application upon completion is organized as a structure
of type mx_status_t, defined below:

© 2005 Myricom, Inc. 35

• mx_status_code_t code : This code defines the nature of the completion of the
operation. It can take one of these values:

o MX_STATUS_SUCCESS: Operation completed successfully.
o MX_STATUS_PENDING: Request still pending.
o MX_STATUS_BUFFERED: Request has been buffered, but still

pending.
o MX_STATUS_REJECTED: Filter key mismatch, message was rejected

by the remote endpoint.
o MX_STATUS_TIMEOUT: Posted operation timed out.
o MX_STATUS_TRUNCATED: Operation completed, but received data

was truncated due to undersized buffer (or oversized message).
o MX_STATUS_CANCELLED: Pending operation was cancelled.
o MX_STATUS_ENDPOINT_UNKNOWN: Destination endpoint is

unknown on the network fabric.
o MX_STATUS_ENDPOINT_CLOSED: Remote endpoint is closed.
o MX_STATUS_ENDPOINT_UNREACHABLE: Connectivity is broken

between the source and the destination.
o MX_STATUS_BAD_SESSION: Bad session (no mx_connect () done?).
o MX_STATUS_BAD_KEY: Connection failed due to bad credentials.
o MX_STATUS_BAD_ENDPOINT: Destination endpoint rank is out of

range for the peer.
o MX_STATUS_BAD_RDMAWIN: Invalid RDMA window given to

the mcp.
o MX_STATUS_ABORTED: Operation aborted on peer NIC.

• mx_addr_t source : This field represent the MX address of the source endpoint,
from which the NIC id and the endpoint id can be extracted with
mx_decompose_endpoint_addr(). It can be used for identification purposes or to
reply to the sender.

• uint32_t length : This is the effective length of the received message. It can be
smaller than the length of the posted receive but not greater. If the incoming
message was larger than the length of the posted receive, this length is set to the
length of the posted receive and the status code returned is
MX_STATUS_TRUNCATED.

• void *context : The user-defined pointer which was passed to MX when posting
the original request. It can be used to implement a callback functionality, or
simply ignored.

If a context argument was specified when the operation was posted, this value will be in
the status structure returned. To implement callbacks, context could be a pointer to a
structure containing a callback function address and an argument that the application
code would arrange to call.

© 2005 Myricom, Inc. 36

VI.2.2 mx_wait()

It is sometimes useful to block the current thread when waiting for the completion of a
pending operation. The blocked thread should not use any CPU cycles while waiting,
thus yielding the processor to other threads. MX provides this capability via mx_wait():

mx_return_t
mx_wait(mx_endpoint_t endpoint,
 mx_request_t *request,
 uint32_t timeout,
 mx_status_t *status,
 uint32_t *result);

Parameters:

IN endpoint The MX endpoint on which the operation is
pending.

IN request The handle of the pending request.
IN timeout The value of the timeout in milliseconds.

OUT status
A pointer to the status structure to be filled in case
of completion, if any.

OUT result Non zero if the request is complete.

If the asynchronous pending request is complete, mx_wait() returns MX_SUCCESS.
Otherwise, the function may return one of the following error codes.

Error return codes:

MX_NO_RESOURCES Shortage of memory or other system resources.

This function blocks the current thread of execution in the kernel waiting for an
interrupt from the NIC. The arguments to the mx_wait() functions are the same as to
mx_test() with the addition of a timeout. This timeout is the maximum time, in
milliseconds, that the function will wait for the completion of the pending request. If the
request is not yet completed at the expiration of the timeout, mx_wait() will return to
the application. If the request is completed before the expiration of the timeout, the
function will return at that time and result will be non-zero.

VI.3 Querying for Any Completion

It may be required for the application to know if at least one request among all of the
posted operations on an endpoint is ready to be completed; mx_ipeek() and mx_peek()
provide this capability. These functions will return the handle of the first request on
this endpoint that is ready for completion, i.e., that can be successfully processed by
mx_test() or mx_wait(). If there are no requests posted on the endpoint that can be

© 2005 Myricom, Inc. 37

completed at the time of the call, mx_peek() will wait until one is ready for completion,
and mx_ipeek() will return immediately. If several requests are eligible for completion,
the particular one returned by one of the peek functions is non-deterministic.

These functions do not release any resources associated with the request; a call to
mx_test() or mx_wait() is still required to release the resources.

VI.3.1 mx_ipeek()

mx_ipeek() looks for a request ready for completion on the specified endpoint and returns
immediately:

mx_return_t
mx_ipeek(mx_endpoint_t endpoint,
 mx_request_t *request,
 uint32_t *result);

Parameters:

IN
endpoint The MX endpoint on which the operations are

pending.
OUT request The handle of the completed operation, if any.
OUT result Non-zero if there is a request that can be completed.

If one asynchronous pending request is complete, mx_ipeek() returns MX_SUCCESS.
Otherwise, the function may return one of the following error codes.

Error return codes:

MX_NO_RESOURCES Shortage of memory or other system resources.

This function looks for completion of any pending operations on a specific MX endpoint.
If multiple pending requests are ready to be completed, the request returned is non-
deterministic. The output parameter request is only valid if the output parameter result
is non-zero.

The returned handle must be subsequently passed to mx_test () or mx_wait() in order to
learn the success or failure of the request and to release the resources associated with the
request. mx_test() is preferred over mx_wait() in this case as the specified request is
guaranteed to be complete.

VI.3.2 mx_peek()

© 2005 Myricom, Inc. 38

mx_peek() is the same as mx_ipeek() except that it does not return until a complete
request is available or the timeout specified in the call expired.

mx_return_t
mx_peek(mx_endpoint_t endpoint,
 uint32_t timeout,
 mx_request_t *request,
 uint32_t *result);

Parameters:

IN endpoint The MX endpoint on which the operations are
pending.

IN timeout The value of the timeout in milliseconds.
OUT request The handle of the completed operation, if any.
OUT result Non-zero if there is a request that can be completed.

If the asynchronous pending request is complete, mx_peek() returns MX_SUCCESS.
Otherwise, the function may return one of the following error codes.

Error return codes:

MX_NO_RESOURCES Shortage of memory or other system resources.

This function blocks until at least one pending operation on a specific MX endpoint is
ready for completion. If multiple pending requests are ready to be completed, the request
returned is non-deterministic. The output parameter request is only valid if the output
parameter result is non-zero.

The returned handle must subsequently be passed to mx_test () or mx_wait() in order to
learn the success or failure of the request and to release the resources associated with the
request. mx_test() is preferred over mx_wait() in this case as the specified request is
guaranteed to be complete.

VI.4 Obtaining the context

Functions that generate request handles take a context parameter. This parameter is
made available to the user when the request is completed by mx_wait() or mx_test() as
part of the status output parameter. There can be cases, for example when handling
requests returned by mx_peek() or mx_ipeek(), where it might be useful to extract the
context field before the request is completed. mx_context() is the function used to obtain
the context.

mx_return_t
mx_context(mx_request_t *request,
 void **context);

© 2005 Myricom, Inc. 39

Parameters:

IN request
The handle of the request from which the context is
to be extracted.

OUT context
The user-defined pointer specified when the request
was created.

The current implementation of mx_context() always returns MX_SUCCESS.

© 2005 Myricom, Inc. 40

VII Probing

The functions mx_iprobe() and mx_probe() can check for incoming messages without
actually receiving them. If a message is ready to be received and matches the specified
matching information, the probe functions return a status structure updated with
information about the message, including match data, message source, and message
length.

mx_probe() blocks until a matching message is available; mx_iprobe() returns
immediately, indicating whether a matching incoming message is available or not.

VII.1.1 mx_iprobe()

mx_return_t
mx_iprobe(mx_endpoint_t endpoint,
 uint64_t match_recv,
 uint64_t match_mask,
 mx_status_t *status,
 uint32_t *result);

Parameters:

IN endpoint
The MX endpoint on which to probe for incoming
messages.

IN match_recv
The matching information to be matched by the
incoming message after masking it by the
match_mask.

IN match_mask
The mask applied to the matching information of the
incoming message to match the match_recv
argument.

OUT status
The status structure to be filled in case of a
matching incoming message is available.

OUT result Non-zero if there is a message ready to be received

If an incoming message matches the matching information, the status structure has been
updated and mx_iprobe() returns MX_SUCCESS. Otherwise, the function may return
one of the following error codes.

Error return codes:

MX_NO_RESOURCES Shortage of memory or other system resources.

If the output parameter result is non-zero, the status structure has been updated with the
information related to the incoming message that matches the matching information.

© 2005 Myricom, Inc. 41

The incoming message is not received yet; a call to mx_irecv() is required to allow
delivery of the message.

One current application of the probe function is to allocate the exact amount of memory
needed to receive a message before receiving it.

VII.1.2 mx_probe()

mx_probe() is the blocking counterpart of mx_iprobe():

mx_return_t
mx_probe(mx_endpoint_t endpoint,
 uint32_t timeout,
 uint64_t match_recv,
 uint64_t match_mask,
 mx_status_t *status,
 uint32_t *result);

Parameters:

IN endpoint
The MX endpoint on which to probe for incoming
messages.

IN timeout The value of the timeout in milliseconds.

IN match_recv
The matching information to be matched by the
incoming message after masking it by the
match_mask.

IN match_mask
The mask applied to the matching information of the
incoming message to match the match_recv argument.

OUT status
The status structure to be filled in case a matching
incoming message is available.

OUT result Non-zero if there is a message ready to be received

If an incoming message matches the matching information, the status structure has been
updated and mx_probe() returns MX_SUCCESS. Otherwise, the function may return
one of the following error codes.

Error return codes:

MX_NO_RESOURCES Shortage of memory or other system resources.

If multiple threads are blocked in mx_probe() on the same endpoint, only one of them
will return with success in case of a matching incoming message.

© 2005 Myricom, Inc. 42

VII I Canceling MX requests

VIII.1.1 mx_cancel()

Pending receive operations may be cancelled via mx_cancel(). This function is required
for cleanup. Posting a receive ties up user resources (receive buffers) and MX resources
(in the library or in the NIC), and a cancel may be needed to free these resources
gracefully.

mx_return_t
mx_cancel(mx_endpoint_t endpoint,
 mx_request_t *request,
 uint32_t *result);

Parameters:

IN endpoint The MX endpoint on which the operation is
pending.

IN request The pointer to the handle of the pending request.
OUT result Non-zero if the request was really cancelled.

mx_cancel() always returns MX_SUCCESS in the current implementation.

This function always returns immediately. If (*result == 1), then this request was
cancelled successfully. If (*result == 0), then it was too late to cancel this request
because the receive has already been matched. Thus, after a call to mx_cancel(), the
request has either been cancelled (and the resources freed), or the request has been
matched and a subsequent call to mx_test() or mx _wait() is guaranteed to complete
quickly. In either case, mx_cancel() provides a way for the application to safely free
receive requests.

IX Application Program ming Notes

This section discusses important points for which application programmers writing to
the Myrinet Express API should be aware.

IX.1 Completing Requests

It is important to remember that every request posted must have a matching call to
either mx_test() or mx_wait() to free the resources allocated for handling the request.
These resources are not released until a call, made with the handle for the request, to
mx_test() or mx_wait() returns successfully.

© 2005 Myricom, Inc. 43

Remember also that calling mx_cancel() on a request only releases its resources if
(*result == 1). Otherwise, the call to mx_test() or mx_wait() is still needed to confirm
the completion of the request (and the release of the resources).

IX.2 Multi- threaded Applications

Thread safety in MX imposes special considerations:

If one thread is already blocked in a blocking state function, such as mx_wait(), for a
single pending request then no other threads can block on the same handle. It is an
application error to have several threads waiting on the same operation. However, it is
allowed to have several threads blocking on a whole MX endpoint through calls to
mx_peek(). In this case, a request on this endpoint reaching the complete state will
awaken one of the blocked threads.

The user must not mix polling and blocking on the same handle. Concurrently calling
mx_test() and mx_wait(), for example, or on the same endpoint concurrently calling
mx_ipeek() and mx_peek() is not allowed. Such a mix would introduce race conditions
and the result would be undefined. However, it is safe to poll and block on different
handles or endpoints at the same time.

X Error Handling

Each MX program has an error handler (either the default one, or one explicitly given
by the application). This handler is invoked each time a MX function is unable to
complete successfully.

The error handler may terminate the application, or if it returns, the error code is simply
passed back to the application as the return value of the MX function call.

The default error handler will print some details about the error and terminate the
application. Consequently, unless the application installs a specific error handler, MX
functions will always return MX_SUCCESS, never an error code. This is a behavior
similar to the MPI default error handling. Most applications that would abort upon a
fatal network error or memory exhaustion can rely on this default behavior and do not
need to check the return value of MX primitives.

Applications can change the error handler with mx_set_error_handler().
mx_error_handler_t
mx_set_error_handler(mx_error_handler_t handler);

IN handler The error handler chosen by the application.

It is the only function allowed to be called before mx_init(). (It would be necessary to do
so if the application wanted to handle mx_init() errors itself). An application can

© 2005 Myricom, Inc. 44

change the error handler at any point in the course of the application. The
mx_set_error_handler() function returns the previous error handler that was installed.

An application can either install its own handler (of type mx_error_handler_t), or it can
install the predefined MX_ERRORS_RETURN handler. This predefined error handler
does nothing and returns immediately. This is the handler to use to have all errors
passed back as the return value of MX functions; the application then has the
responsibility of checking the return value of MX functions and handling any error
condition.

An application can restore the default error handler at any time by using
MX_ERRORS_ARE_FATAL as the error parameter.

All MX functions return MX_SUCCESS when no error occurs. A list of possible errors
(if a non-aborting error handler is used) is given with each function description. For
compatibility with future revisions, applications should not assume that this list is
exhaustive, and should always have a default case for unknown errors (mx_strerror()
can give a string describing the error in this case).

MX behavior in the case of programming errors is undefined (examples of programming
errors are passing an invalid endpoint/request or pointer to any MX functions, or
calling any MX primitive without having called mx_init() first, waiting for the same
request twice,, etc.. Undefined behavior includes the possibility of generating an
undocumented error code (with explicative text given by mx_strerror()), the MX
implementation might use such undocumented error codes as a way to report some
programmings errors that are easy to detect.

© 2005 Myricom, Inc. 45

