
GM Reference Manual
2.0.6

Generated by Doxygen 1.2.15

Tue Sep 9 08:26:21 2003

Contents

1 GM: A message-passing system for Myrinet networks 1

1.1 Table of Contents: . 1

2 GM Module Index 3

2.1 GM Modules . 3

3 GM Data Structure Index 5

3.1 GM Data Structures . 5

4 GM File Index 7

4.1 GM File List . 7

5 GM Page Index 11

5.1 GM Related Pages . 11

6 GM Module Documentation 13

6.1 Deprecated GM API functions . 13

7 GM Data Structure Documentation 15

7.1 gm free mdebug Union Reference 15

7.2 gm free page Struct Reference . 16

7.3 gm hash Struct Reference . 17

7.4 gm hash entry Struct Reference . 18

7.5 gm hash segment Struct Reference 19

7.6 gm lookaside Struct Reference . 20

ii CONTENTS

7.7 gm lookaside::gm lookaside segment list Struct Reference 21

7.8 gm lookaside segment Struct Reference 22

7.9 gm mark reference Union Reference 23

7.10 gm mark set Struct Reference . 24

7.11 gm mdebug Struct Reference . 25

7.12 gm on exit record Struct Reference 26

7.13 gm page allocation record Struct Reference 27

7.14 gm remote ptr n t Struct Reference 28

7.15 gm s16 n t Struct Reference . 29

7.16 gm s32 n t Struct Reference . 30

7.17 gm s64 n t Struct Reference . 31

7.18 gm s8 n t Struct Reference . 32

7.19 gm s e context t Struct Reference 33

7.20 gm u16 n t Struct Reference . 34

7.21 gm u32 n t Struct Reference . 35

7.22 gm u64 n t Struct Reference . 36

7.23 gm u8 n t Struct Reference . 37

7.24 gm up n t Struct Reference . 38

7.25 gm zone Struct Reference . 39

7.26 gm zone area Struct Reference . 40

7.27 hash entry Struct Reference . 41

7.28 preallocated record chunk Struct Reference 42

8 GM File Documentation 43

8.1 gm.h File Reference . 43

8.2 gm abort.c File Reference . 101

8.3 gm alloc pages.c File Reference . 102

8.4 gm alloc send token.c File Reference 104

8.5 gm allow remote memory access.c File Reference 105

8.6 gm bcopy.c File Reference . 106

8.7 gm blocking receive.c File Reference 107

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

CONTENTS iii

8.8 gm blocking receive no spin.c File Reference 109

8.9 gm bzero.c File Reference . 111

8.10 gm calloc.c File Reference . 112

8.11 gm close.c File Reference . 113

8.12 gm crc.c File Reference . 115

8.13 gm datagram send.c File Reference 117

8.14 gm datagram send 4.c File Reference 119

8.15 gm debug buffers.c File Reference 121

8.16 gm deregister.c File Reference . 124

8.17 gm directcopy.c File Reference . 126

8.18 gm directed send.c File Reference 128

8.19 gm dma calloc.c File Reference . 129

8.20 gm dma malloc.c File Reference . 130

8.21 gm drop sends.c File Reference . 132

8.22 gm eprintf.c File Reference . 134

8.23 gm exit.c File Reference . 135

8.24 gm flush alarm.c File Reference . 136

8.25 gm free.c File Reference . 137

8.26 gm free send token.c File Reference 138

8.27 gm free send tokens.c File Reference 139

8.28 gm get.c File Reference . 140

8.29 gm get host name.c File Reference 142

8.30 gm get mapper unique id.c File Reference 143

8.31 gm get node id.c File Reference . 144

8.32 gm get node type.c File Reference 145

8.33 gm get port id.c File Reference . 146

8.34 gm get unique board id.c File Reference 147

8.35 gm getpid.c File Reference . 148

8.36 gm handle sent tokens.c File Reference 149

8.37 gm hash.c File Reference . 150

8.38 gm hex dump.c File Reference . 160

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

iv CONTENTS

8.39 gm host name to node id.c File Reference 161

8.40 gm init.c File Reference . 163

8.41 gm isprint.c File Reference . 165

8.42 gm log2.c File Reference . 166

8.43 gm lookaside.c File Reference . 168

8.44 gm malloc.c File Reference . 172

8.45 gm mark.c File Reference . 173

8.46 gm max length for size.c File Reference 178

8.47 gm max node id.c File Reference 179

8.48 gm max node id in use.c File Reference 180

8.49 gm memcmp.c File Reference . 182

8.50 gm memorize message.c File Reference 183

8.51 gm memset.c File Reference . 185

8.52 gm min message size.c File Reference 186

8.53 gm min size for length.c File Reference 187

8.54 gm mtu.c File Reference . 188

8.55 gm mutex.c File Reference . 189

8.56 gm next event peek.c File Reference 191

8.57 gm node id to host name.c File Reference 192

8.58 gm node id to unique id.c File Reference 194

8.59 gm num ports.c File Reference . 195

8.60 gm num receive tokens.c File Reference 196

8.61 gm num send tokens.c File Reference 197

8.62 gm on exit.c File Reference . 198

8.63 gm open.c File Reference . 200

8.64 gm page alloc.c File Reference . 202

8.65 gm perror.c File Reference . 204

8.66 gm printf.c File Reference . 205

8.67 gm provide receive buffer.c File Reference 206

8.68 gm put.c File Reference . 208

8.69 gm rand.c File Reference . 210

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

CONTENTS v

8.70 gm rand mod.c File Reference . 212

8.71 gm receive.c File Reference . 213

8.72 gm receive pending.c File Reference 215

8.73 gm register.c File Reference . 216

8.74 gm resume sending.c File Reference 219

8.75 gm send.c File Reference . 221

8.76 gm send to peer.c File Reference . 223

8.77 gm send token available.c File Reference 225

8.78 gm set acceptable sizes.c File Reference 226

8.79 gm set alarm.c File Reference . 228

8.80 gm set enable nack down.c File Reference 231

8.81 gm simple example.h File Reference 232

8.82 gm sleep.c File Reference . 233

8.83 gm strcmp.c File Reference . 234

8.84 gm strdup.c File Reference . 235

8.85 gm strerror.c File Reference . 236

8.86 gm strlen.c File Reference . 237

8.87 gm strncasecmp.c File Reference . 238

8.88 gm strncmp.c File Reference . 239

8.89 gm strncpy.c File Reference . 240

8.90 gm ticks.c File Reference . 241

8.91 gm unique id.c File Reference . 242

8.92 gm unique id to node id.c File Reference 243

8.93 gm unknown.c File Reference . 245

8.94 gm zone.c File Reference . 246

9 GM Page Documentation 251

9.1 XI. Alarms . 251

9.2 VII. Page Allocation . 252

9.3 XV. GM Constants, Macros, and Enumerated Types 253

9.4 I. Copyright Notice . 254

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

vi CONTENTS

9.5 II. About This Document . 256

9.6 X. Endian Conversion . 257

9.7 XIV. Example Programs . 259

9.8 XII. High Availability Extensions 260

9.9 V. Initialization . 263

9.10 IV. Programming Model . 264

9.11 III. Overview . 270

9.12 IX. Receiving Messages . 275

9.13 VIII. Sending Messages . 282

9.14 VI. Memory Setup . 285

9.15 XVI. Function Summary . 286

9.16 XIII. Utility Modules . 294

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

Chapter 1

GM: A message-passing system
for Myrinet networks

1.1 Table of Contents:

� I. Copyright Notice

� II. About This Document

� III. Overview

– 1. Definitions
– 2. Notation

� IV. Programming Model

– 1. GM Endpoints (Ports)
– 2. User Token Flow (Sending)
– 3. User Token Flow (Receiving)

� V. Initialization

� VI. Memory Setup

� VII. Page Allocation

2 GM: A message-passing system for Myrinet networks

� VIII. Sending Messages

� IX. Receiving Messages

� X. Endian Conversion

� XI. Alarms

� XII. High Availability Extensions

� XIII. Utility Modules

– 1. CRC Functions
– 2. Hash Table
– 3. Lookaside List
– 4. Marks
– 5. Zones
– 6. Mutexes
– 7. Buffer Debugging

� XIV. Example Programs

� XV. GM Constants, Macros, and Enumerated Types

� XVI. Function Summary

If difficulties are encountered, please consult the FAQ and all technical support ques-
tions should be directed to help@myri.com.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

http://www.myri.com/scs/GM_FAQ.html
mailto:help@myri.com.

Chapter 2

GM Module Index

2.1 GM Modules

Here is a list of all modules:

Deprecated GM API functions . 13

4 GM Module Index

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

Chapter 3

GM Data Structure Index

3.1 GM Data Structures

Here are the data structures with brief descriptions:

gm free mdebug . 15
gm free page . 16
gm hash . 17
gm hash entry . 18
gm hash segment . 19
gm lookaside . 20
gm lookaside::gm lookaside segment list 21
gm lookaside segment . 22
gm mark reference . 23
gm mark set . 24
gm mdebug . 25
gm on exit record . 26
gm page allocation record . 27
gm remote ptr n t . 28
gm s16 n t . 29
gm s32 n t . 30
gm s64 n t . 31
gm s8 n t . 32
gm s e context t . 33
gm u16 n t . 34
gm u32 n t . 35
gm u64 n t . 36
gm u8 n t . 37
gm up n t . 38
gm zone . 39

6 GM Data Structure Index

gm zone area . 40
hash entry . 41
preallocated record chunk . 42

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

Chapter 4

GM File Index

4.1 GM File List

Here is a list of all documented files with brief descriptions:

gm.h . 43
gm abort.c . 101
gm alloc pages.c . 102
gm alloc send token.c . 104
gm allow remote memory access.c . 105
gm bcopy.c . 106
gm blocking receive.c . 107
gm blocking receive no spin.c . 109
gm bzero.c . 111
gm calloc.c . 112
gm close.c . 113
gm crc.c . 115
gm datagram send.c . 117
gm datagram send 4.c . 119
gm debug buffers.c . 121
gm deregister.c . 124
gm directcopy.c . 126
gm directed send.c . 128
gm dma calloc.c . 129
gm dma malloc.c . 130
gm drop sends.c . 132
gm eprintf.c . 134
gm exit.c . 135
gm flush alarm.c . 136
gm free.c . 137

8 GM File Index

gm free send token.c . 138
gm free send tokens.c . 139
gm get.c . 140
gm get host name.c . 142
gm get mapper unique id.c . 143
gm get node id.c . 144
gm get node type.c . 145
gm get port id.c . 146
gm get unique board id.c . 147
gm getpid.c . 148
gm handle sent tokens.c . 149
gm hash.c . 150
gm hex dump.c . 160
gm host name to node id.c . 161
gm init.c . 163
gm isprint.c . 165
gm log2.c . 166
gm lookaside.c . 168
gm malloc.c . 172
gm mark.c . 173
gm max length for size.c . 178
gm max node id.c . 179
gm max node id in use.c . 180
gm memcmp.c . 182
gm memorize message.c . 183
gm memset.c . 185
gm min message size.c . 186
gm min size for length.c . 187
gm mtu.c . 188
gm mutex.c . 189
gm next event peek.c . 191
gm node id to host name.c . 192
gm node id to unique id.c . 194
gm num ports.c . 195
gm num receive tokens.c . 196
gm num send tokens.c . 197
gm on exit.c . 198
gm open.c . 200
gm page alloc.c . 202
gm perror.c . 204
gm printf.c . 205
gm provide receive buffer.c . 206
gm put.c . 208
gm rand.c . 210
gm rand mod.c . 212
gm receive.c . 213

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

4.1 GM File List 9

gm receive pending.c . 215
gm register.c . 216
gm resume sending.c . 219
gm send.c . 221
gm send to peer.c . 223
gm send token available.c . 225
gm set acceptable sizes.c . 226
gm set alarm.c . 228
gm set enable nack down.c . 231
gm simple example.h . 232
gm sleep.c . 233
gm strcmp.c . 234
gm strdup.c . 235
gm strerror.c . 236
gm strlen.c . 237
gm strncasecmp.c . 238
gm strncmp.c . 239
gm strncpy.c . 240
gm ticks.c . 241
gm unique id.c . 242
gm unique id to node id.c . 243
gm unknown.c . 245
gm zone.c . 246

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

10 GM File Index

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

Chapter 5

GM Page Index

5.1 GM Related Pages

Here is a list of all related documentation pages:

Alarms . ??
Page Allocation . ??
Constants . ??
Copyright . ??
Document . ??
Endian Conversion . ??
Examples . ??
High Availability . ??
Initialization . ??
Programming Model . ??
Overview . ??
Receiving Messages . ??
Sending Messages . ??
Memory Setup . ??
Summary . ??
Utilities . ??

12 GM Page Index

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

Chapter 6

GM Module Documentation

6.1 Deprecated GM API functions

gm directed send() is deprecated and included only for backward compatibility. Use
gm directed send with callback() instead.

See also:
gm directed send with callback

gm handle sent tokens() is deprecated and included only for backward compatibility.
Use gm unknown() instead.

See also:
gm unknown

gm provide receive buffer() is deprecated and included only for backward compatibil-
ity. Customers should instead use gm provide receive buffer with tag(...,0).

See also:
gm provide receive buffer with tag

gm send() is deprecated. Use gm send with callback() instead.

See also:
gm send with callback

14 GM Module Documentation

gm send to peer() is deprecated and included only for backward compatibility. Use
gm send to peer with callback() instead.

See also:
gm send to peer with callback

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

Chapter 7

GM Data Structure
Documentation

7.1 gm free mdebug Union Reference

7.1.1 Detailed Description

Union to allow chaining of free mdebug records, without requiring an extra field in the
mdebug record.

The documentation for this union was generated from the following file:

� gm malloc debug.c

16 GM Data Structure Documentation

7.2 gm free page Struct Reference

7.2.1 Detailed Description

A structure representing a free page. This structure is placed at the start of each free
page, and used to link these free pages in a list.

The documentation for this struct was generated from the following file:

� gm page alloc.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.3 gm hash Struct Reference 17

7.3 gm hash Struct Reference

7.3.1 Detailed Description

The state of a GM hash table, referenced by the client only using opaque pointers.

The documentation for this struct was generated from the following file:

� gm hash.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

18 GM Data Structure Documentation

7.4 gm hash entry Struct Reference

7.4.1 Detailed Description

A hash table entry.

The documentation for this struct was generated from the following file:

� gm hash.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.5 gm hash segment Struct Reference 19

7.5 gm hash segment Struct Reference

7.5.1 Detailed Description

Structure representing a segment of allocated hash table bins. To double the size of the
hash table, we allocate a new segment with just enough bins to double the number of
bins in the hash table an prepend it to the list of hash segments. This way, we don’t have
to double-buffer the hash table while growing it, and we can grow the table closer to the
limits of available memory. While we sometimes have to walk the O(log(N))-segment
list to find a bin, the average lookup only looks at O(2) segments, so operations are still
constant-average-time as expected for hash tables.

The documentation for this struct was generated from the following file:

� gm hash.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

20 GM Data Structure Documentation

7.6 gm lookaside Struct Reference

Data Fields

� gm lookaside::gm lookaside segment list segment list

7.6.1 Detailed Description

State of a lookaside list, which is an very fast and space efficient memory allocator for
fixed-sized buffers.

7.6.2 Field Documentation

7.6.2.1 struct gm lookaside::gm lookaside segment list
gm lookaside::segment list

List of segments. Segments with free entries are at the front.

The documentation for this struct was generated from the following file:

� gm lookaside.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.7 gm lookaside::gm lookaside segment list Struct Reference 21

7.7 gm lookaside::gm lookaside segment list Struct
Reference

7.7.1 Detailed Description

List of segments. Segments with free entries are at the front.

The documentation for this struct was generated from the following file:

� gm lookaside.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

22 GM Data Structure Documentation

7.8 gm lookaside segment Struct Reference

7.8.1 Detailed Description

Structure holding a group of allocated lookaside entries. It is used primarily when
entries are smaller than a page to allocate a page worth of entries at a time. This is
important since some kernel memory allocators (Windows) round all allocations up to
a page length, but this implementation allows us to be efficient for small allocations
despite this.

The documentation for this struct was generated from the following file:

� gm lookaside.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.9 gm mark reference Union Reference 23

7.9 gm mark reference Union Reference

7.9.1 Detailed Description

a reference to a mark, or a free entry. The reference is used to validate the mark. That
mark is considered valid if and only if (set- � reference[mark- � tag] == mark).

The documentation for this union was generated from the following file:

� gm mark.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

24 GM Data Structure Documentation

7.10 gm mark set Struct Reference

7.10.1 Detailed Description

The state of a mark set, the database that tracks the location and validity of marks.

The documentation for this struct was generated from the following file:

� gm mark.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.11 gm mdebug Struct Reference 25

7.11 gm mdebug Struct Reference

7.11.1 Detailed Description

A record holding a pointer free function that an allocation should be used to free the
allocation, and the top of the call stack when the memory was allocated. This allows
us to report when the wrong function is used to free the memory, and to report the call
stack of the allocation in this case or if a memory leak is detected.

The documentation for this struct was generated from the following file:

� gm malloc debug.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

26 GM Data Structure Documentation

7.12 gm on exit record Struct Reference

7.12.1 Detailed Description

List element storing the details of a callback that should be called upon exit.

The documentation for this struct was generated from the following file:

� gm on exit.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.13 gm page allocation record Struct Reference 27

7.13 gm page allocation record Struct Reference

7.13.1 Detailed Description

A record of a large buffer allocation used to allocate a bunch of pages. (We allocate
pages in blocks of many pages, in case the OS’s memory allocator does not give us a
page-aligned allocation, and use only the aligned pages within this large buffer.

The documentation for this struct was generated from the following file:

� gm page alloc.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

28 GM Data Structure Documentation

7.14 gm remote ptr n t Struct Reference

#include � gm.h �

7.14.1 Detailed Description

A pointer to memory on a (potentially) remote machine. Such pointers are always
64-bits, since we don’t know if the remote pointer is 32- or 64-bits.

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.15 gm s16 n t Struct Reference 29

7.15 gm s16 n t Struct Reference

#include � gm.h �

7.15.1 Detailed Description

A 16-bit signed value in network byte order.

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

30 GM Data Structure Documentation

7.16 gm s32 n t Struct Reference

#include � gm.h �

7.16.1 Detailed Description

A 32-bit signed value in network byte order.

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.17 gm s64 n t Struct Reference 31

7.17 gm s64 n t Struct Reference

#include � gm.h �

7.17.1 Detailed Description

A 64-bit signed value in network byte order.

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

32 GM Data Structure Documentation

7.18 gm s8 n t Struct Reference

#include � gm.h �

7.18.1 Detailed Description

A 8-bit signed value in network byte order. (Silly, I know.)

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.19 gm s e context t Struct Reference 33

7.19 gm s e context t Struct Reference

7.19.1 Detailed Description

A structure used to store the state of this simple example program.

The documentation for this struct was generated from the following file:

� gm simple example recv.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

34 GM Data Structure Documentation

7.20 gm u16 n t Struct Reference

#include � gm.h �

7.20.1 Detailed Description

A 16-bit unsigned value in network byte order.

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.21 gm u32 n t Struct Reference 35

7.21 gm u32 n t Struct Reference

#include � gm.h �

7.21.1 Detailed Description

A 32-bit unsigned value in network byte order.

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

36 GM Data Structure Documentation

7.22 gm u64 n t Struct Reference

#include � gm.h �

7.22.1 Detailed Description

A 64-bit unsigned value in network byte order.

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.23 gm u8 n t Struct Reference 37

7.23 gm u8 n t Struct Reference

#include � gm.h �

7.23.1 Detailed Description

An byte value in network byte order. (Silly, I know.)

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

38 GM Data Structure Documentation

7.24 gm up n t Struct Reference

#include � gm.h �

7.24.1 Detailed Description

A user-space pointer in network byte order. (On systems supporting multiple pointer
sizes, this is large enough to store the largest pointer size, even if the process is using
smaller pointers.)

The documentation for this struct was generated from the following file:

� gm.h

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.25 gm zone Struct Reference 39

7.25 gm zone Struct Reference

7.25.1 Detailed Description

State of a zone, which is a region of memory from which one can allocate memory
using the zone allocation functions.

The documentation for this struct was generated from the following file:

� gm zone.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

40 GM Data Structure Documentation

7.26 gm zone area Struct Reference

7.26.1 Detailed Description

Zones are divided into managed buffers called ”areas”, which may either represent free
buffers or buffers holding user data.

The documentation for this struct was generated from the following file:

� gm zone.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

7.27 hash entry Struct Reference 41

7.27 hash entry Struct Reference

7.27.1 Detailed Description

An entry in a custom hash table used to track memory allocations.

The documentation for this struct was generated from the following file:

� gm malloc debug.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

42 GM Data Structure Documentation

7.28 preallocated record chunk Struct Reference

7.28.1 Detailed Description

Holds a groups of preallocated malloc debugging records. We allocated these records in
chunks to reduce the average allocation overhead, and for storage density. We allocate
2

�

N-1 records at a time because many malloc() implementations use memory most
efficiently for allocations just smaller than 2

�

M bytes long.

The documentation for this struct was generated from the following file:

� gm malloc debug.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

Chapter 8

GM File Documentation

8.1 gm.h File Reference

Data Structures

� struct gm remote ptr n t
� struct gm s16 n t
� struct gm s32 n t
� struct gm s64 n t
� struct gm s8 n t
� struct gm u16 n t
� struct gm u32 n t
� struct gm u64 n t
� struct gm u8 n t
� struct gm up n t

Defines

� #define GM API VERSION 1 0 0x100
� #define GM API VERSION 1 1 0x101
� #define GM API VERSION 1 2 0x102
� #define GM API VERSION 1 3 0x103
� #define GM API VERSION 1 4 0x104
� #define GM API VERSION 1 5 0x105
� #define GM API VERSION 1 6 0x106

44 GM File Documentation

� #define GM API VERSION 2 0 0x200
� #define GM API VERSION 2 0 6 0x20006
� #define GM API VERSION GM API VERSION 2 0 6
� #define GM MAX HOST NAME LEN 128
� #define GM MAX PORT NAME LEN 32
� #define GM NO SUCH NODE ID 0
� #define GM CPU alpha 0
� #define GM RDMA GRANULARITY 64
� #define GM MAX DMA GRANULARITY 8
� #define GM STRUCT CONTAINING(type, field, field instance) ((type �)((char

�)(field instance) - GM OFFSETOF (type, field)))
� #define GM NUM ELEM(ar) (sizeof (ar) / sizeof (� ar))
� #define GM POWER OF TWO(n) (!((n)&((n)-1)))
� #define GM STRUCT CONTAINING(type, field, field instance) ((type �)((char

�)(field instance) - GM OFFSETOF (type, field)))
� #define GM NUM ELEM(ar) (sizeof (ar) / sizeof (� ar))
� #define GM POWER OF TWO(n) (!((n)&((n)-1)))

Typedefs

� typedef gm u64 t gm remote ptr t
� typedef enum gm status gm status t
� typedef void(� gm send completion callback t)(struct gm port � p, void

� context, gm status t status)
� typedef gm u32 t gm pid t

Enumerations

� enum gm status
�

GM SUCCESS = 0, GM FAILURE
= 1, GM INPUT BUFFER TOO SMALL = 2,
GM OUTPUT BUFFER TOO SMALL = 3, GM TRY AGAIN = 4,
GM BUSY = 5, GM MEMORY FAULT = 6, GM INTERRUPTED
= 7, GM INVALID PARAMETER = 8, GM OUT OF MEMORY =
9, GM INVALID COMMAND = 10, GM PERMISSION DENIED
= 11, GM INTERNAL ERROR = 12, GM UNATTACHED = 13,
GM UNSUPPORTED DEVICE = 14, GM SEND TIMED OUT = 15,
GM SEND REJECTED = 16, GM SEND TARGET PORT CLOSED
= 17, GM SEND TARGET NODE UNREACHABLE = 18,
GM SEND DROPPED = 19, GM SEND PORT CLOSED = 20,
GM NODE ID NOT YET SET = 21, GM STILL SHUTTING DOWN
= 22, GM CLONE BUSY = 23, GM NO SUCH DEVICE = 24,
GM ABORTED = 25, GM INCOMPATIBLE LIB AND DRIVER = 26,
GM UNTRANSLATED SYSTEM ERROR = 27, GM ACCESS DENIED =

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 45

28, GM NO DRIVER SUPPORT = 29, GM PTE REF CNT OVERFLOW
= 30, GM NOT SUPPORTED IN KERNEL = 31,
GM NOT SUPPORTED ON ARCH = 32, GM NO MATCH = 33,
GM USER ERROR = 34, GM TIMED OUT = 35, GM DATA CORRUPTED
= 36, GM HARDWARE FAULT = 37, GM SEND ORPHANED =
38, GM MINOR OVERFLOW = 39, GM PAGE TABLE FULL =
40, GM UC ERROR = 41, GM INVALID PORT NUMBER = 42,
GM DEV NOT FOUND = 43, GM FIRMWARE NOT RUNNING = 44,
GM YP NO MATCH = 45 �

� enum gm priority
�

GM LOW PRIORITY = 0, GM HIGH PRIORITY = 1,
GM NUM PRIORITIES = 2 �

� enum gm recv event type
�

GM NO RECV EVENT = 0,
GM SENDS FAILED EVENT = 1, GM ALARM EVENT = 2
, GM RECV EVENT = 11, GM HIGH RECV EVENT = 12,
GM PEER RECV EVENT = 13, GM HIGH PEER RECV EVENT =
14, GM FAST RECV EVENT = 15, GM FAST HIGH RECV EVENT
= 16, GM FAST PEER RECV EVENT = 17,
GM FAST HIGH PEER RECV EVENT = 18 ,
GM NEW SENDS FAILED EVENT = 129 , GM NEW RECV EVENT
= 139 , GM NEW FAST RECV EVENT = 143 ,
GM NEW PUT NOTIFICATION EVENT = 149 ,

GM NUM RECV EVENT TYPES �

Functions

� GM ENTRY POINT void gm abort (void)
� GM ENTRY POINT int gm alloc send token (struct gm port � p, unsigned int

priority)
� GM ENTRY POINT gm status t gm allow remote memory access (struct

gm port � p)
� GM ENTRY POINT void gm bcopy (const void � from, void � to, gm size t len)
� GM ENTRY POINT union gm recv event � gm blocking receive (struct gm -

port � p)
� GM ENTRY POINT union gm recv event � gm blocking receive no spin

(struct gm port � p)
� GM ENTRY POINT void gm bzero (void � ptr, gm size t len)
� GM ENTRY POINT void � gm calloc (gm size t len, gm size t cnt)
� GM ENTRY POINT void gm cancel alarm (struct gm alarm � gm alarm)
� GM ENTRY POINT void gm close (struct gm port � p)
� GM ENTRY POINT void gm datagram send (struct gm port � p, void

� message, unsigned int size, gm size t len, unsigned int priority, unsigned int
target node id, unsigned int target port id, gm send completion callback t call-
back, void � context)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

46 GM File Documentation

� GM ENTRY POINT void gm datagram send 4 (struct gm port � p, gm u32 -
t message, unsigned int size, gm size t len, unsigned int priority, unsigned int
target node id, unsigned int target port id, gm send completion callback t call-
back, void � context)

� GM ENTRY POINT gm status t gm deregister memory (struct gm port � p,
void � ptr, gm size t length)

� GM ENTRY POINT void gm directed send with callback (struct gm port
� p, void � source buffer, gm remote ptr t target buffer, gm size t len, enum
gm priority priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

� GM ENTRY POINT void � gm dma calloc (struct gm port � p, gm size t count,
gm size t length)

� GM ENTRY POINT void gm dma free (struct gm port � p, void � addr)
� GM ENTRY POINT void � gm dma malloc (struct gm port � p, gm size -

t length)
� GM ENTRY POINT void gm flush alarm (struct gm port � p)
� GM ENTRY POINT void gm free (void � ptr)
� GM ENTRY POINT void gm free send token (struct gm port � p, unsigned int

priority)
� GM ENTRY POINT void gm free send tokens (struct gm port � p, unsigned int

priority, unsigned int count)
� GM ENTRY POINT gm status t gm get host name (struct gm port � port, char

name[GM MAX HOST NAME LEN])
� GM ENTRY POINT gm status t gm get node type (struct gm port � port, int

� node type)
� GM ENTRY POINT gm status t gm get node id (struct gm port � port, un-

signed int � n)
� GM ENTRY POINT gm status t gm get unique board id (struct gm port � port,

char unique[6])
� GM ENTRY POINT gm status t gm get mapper unique id (struct gm port

� port, char unique[6])
� GM ENTRY POINT void gm hex dump (const void � ptr, gm size t len)
� GM ENTRY POINT unsigned int gm host name to node id (struct gm port

� port, char � host name)
� GM ENTRY POINT void gm initialize alarm (struct gm alarm � my alarm)
� GM ENTRY POINT int gm isprint (int c)
� GM ENTRY POINT void � gm malloc (gm size t len)
� GM ENTRY POINT void � gm page alloc (void)
� GM ENTRY POINT void gm page free (void � addr)
� GM ENTRY POINT void � gm alloc pages (gm size t len)
� GM ENTRY POINT void gm free pages (void � addr, gm size t len)
� GM ENTRY POINT gm size t gm max length for size (unsigned int size)
� GM ENTRY POINT gm status t gm max node id (struct gm port � port, un-

signed int � n)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 47

� GM ENTRY POINT int gm memcmp (const void � a, const void � b, gm size t
len)

� GM ENTRY POINT void � gm memorize message (void � message, void
� buffer, unsigned int len)

� GM ENTRY POINT unsigned int gm min message size (struct gm port � port)
� GM ENTRY POINT unsigned int gm min size for length (gm size t length)
� GM ENTRY POINT unsigned int gm mtu (struct gm port � port)
� GM ENTRY POINT char � gm node id to host name (struct gm port � port,

unsigned int node id)
� GM ENTRY POINT gm status t gm node id to unique id (struct gm port

� port, unsigned int n, char unique[6])
� GM ENTRY POINT unsigned int gm num ports (struct gm port � p)
� GM ENTRY POINT unsigned int gm num send tokens (struct gm port � p)
� GM ENTRY POINT unsigned int gm num receive tokens (struct gm port � p)
� GM ENTRY POINT unsigned int gm get port id (struct gm port � p)
� GM ENTRY POINT gm status t gm open (struct gm port � � p, unsigned int

unit, unsigned int port, const char � port name, enum gm api version version)
� GM ENTRY POINT void gm provide receive buffer with tag (struct gm port

� p, void � ptr, unsigned int size, unsigned int priority, unsigned int tag)
� GM ENTRY POINT int gm receive pending (struct gm port � p)
� GM ENTRY POINT int gm next event peek (struct gm port � p, gm u16 -

t � sender)
� GM ENTRY POINT union gm recv event � gm receive (struct gm port � p)
� GM ENTRY POINT gm status t gm register memory (struct gm port � p, void

� ptr, gm size t length)
� GM ENTRY POINT int gm send token available (struct gm port � p, unsigned

int priority)
� GM ENTRY POINT void gm send with callback (struct gm port � p, void

� message, unsigned int size, gm size t len, unsigned int priority, unsigned int
target node id, unsigned int target port id, gm send completion callback t call-
back, void � context)

� GM ENTRY POINT void gm send to peer with callback (struct gm port � p,
void � message, unsigned int size, gm size t len, unsigned int priority, unsigned
int target node id, gm send completion callback t callback, void � context)

� GM ENTRY POINT gm status t gm set acceptable sizes (struct gm port � p,
enum gm priority priority, gm size t mask)

� GM ENTRY POINT void gm set alarm (struct gm port � p, struct gm alarm
� my alarm, gm u64 t usecs, void(� callback)(void �), void � context)

� GM ENTRY POINT gm size t gm strlen (const char � cptr)
� GM ENTRY POINT char � gm strncpy (char � to, const char � from, int len)
� GM ENTRY POINT int gm strcmp (const char � a, const char � b)
� GM ENTRY POINT int gm strncmp (const char � a, const char � b, int len)
� GM ENTRY POINT int gm strncasecmp (const char � a, const char � b, int len)
� GM ENTRY POINT gm u64 t gm ticks (struct gm port � port)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

48 GM File Documentation

� GM ENTRY POINT gm status t gm unique id (struct gm port � port, char
unique[6])

� GM ENTRY POINT gm status t gm unique id to node id (struct gm port
� port, char unique[6], unsigned int � node id)

� GM ENTRY POINT void gm unknown (struct gm port � p, union gm recv -
event � e)

� GM ENTRY POINT gm status t gm get route (struct gm port � p, unsigned int
node id, char � route, unsigned int � len)

� GM ENTRY POINT void gm dump buffers (void)
� GM ENTRY POINT void gm register buffer (void � addr, int size)
� GM ENTRY POINT int gm unregister buffer (void � addr, int size)
� GM ENTRY POINT struct gm lookaside � gm create lookaside (gm size t en-

try len, gm size t min entry cnt)
� GM ENTRY POINT void gm destroy lookaside (struct gm lookaside � l)
� GM ENTRY POINT void � gm lookaside alloc (struct gm lookaside � l)
� GM ENTRY POINT void � gm lookaside zalloc (struct gm lookaside � l)
� GM ENTRY POINT void gm lookaside free (void � ptr)
� GM ENTRY POINT struct gm hash � gm create hash (long(� gm user -

compare)(void � key1, void � key2), unsigned long(� gm user hash)(void � key1),
gm size t key len, gm size t data len, gm size t gm min entries, int flags)

� GM ENTRY POINT void gm destroy hash (struct gm hash � h)
� GM ENTRY POINT void � gm hash remove (struct gm hash � hash, void � key)
� GM ENTRY POINT void � gm hash find (struct gm hash � hash, void � key)
� GM ENTRY POINT gm status t gm hash insert (struct gm hash � hash, void

� key, void � datum)
� GM ENTRY POINT void gm hash rekey (struct gm hash � hash, void � old key,

void � new key)
� GM ENTRY POINT long gm hash compare strings (void � key1, void � key2)
� GM ENTRY POINT unsigned long gm hash hash string (void � key)
� GM ENTRY POINT long gm hash compare longs (void � key1, void � key2)
� GM ENTRY POINT unsigned long gm hash hash long (void � key)
� GM ENTRY POINT long gm hash compare ints (void � key1, void � key2)
� GM ENTRY POINT unsigned long gm hash hash int (void � key)
� GM ENTRY POINT long gm hash compare ptrs (void � key1, void � key2)
� GM ENTRY POINT unsigned long gm hash hash ptr (void � key)
� GM ENTRY POINT unsigned long gm crc (void � ptr, gm size t len)
� GM ENTRY POINT unsigned long gm crc str (const char � ptr)
� GM ENTRY POINT int gm rand (void)
� GM ENTRY POINT void gm srand (int seed)
� GM ENTRY POINT unsigned int gm rand mod (unsigned int modulus)
� GM ENTRY POINT gm status t gm init (void)
� GM ENTRY POINT void gm finalize (void)
� GM ENTRY POINT unsigned long gm log2 roundup (unsigned long n)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 49

� GM ENTRY POINT struct gm mutex � gm create mutex (void)
� GM ENTRY POINT void gm destroy mutex (struct gm mutex � mu)
� GM ENTRY POINT void gm mutex enter (struct gm mutex � mu)
� GM ENTRY POINT void gm mutex exit (struct gm mutex � mu)
� GM ENTRY POINT struct gm zone � gm zone create zone (void � base, gm -

size t len)
� GM ENTRY POINT void gm zone destroy zone (struct gm zone � zone)
� GM ENTRY POINT void � gm zone free (struct gm zone � zone, void � a)
� GM ENTRY POINT void � gm zone malloc (struct gm zone � zone, gm size t

length)
� GM ENTRY POINT void � gm zone calloc (struct gm zone � zone, gm size t

count, gm size t length)
� GM ENTRY POINT int gm zone addr in zone (struct gm zone � zone, void � p)
� GM ENTRY POINT void gm resume sending (struct gm port � p, un-

signed int priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

� GM ENTRY POINT void gm drop sends (struct gm port � port, un-
signed int priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

� GM ENTRY POINT gm pid t gm getpid (void)
� GM ENTRY POINT gm status t gm directcopy get (struct gm port � p, void

� source addr, void � target addr, gm size t length, unsigned int source instance -
id, unsigned int source port id)

� GM ENTRY POINT void gm perror (const char � message, gm status t error)
� GM ENTRY POINT int gm sleep (unsigned seconds)
� GM ENTRY POINT void gm exit (gm status t status)
� GM ENTRY POINT int gm printf (const char � format,...)
� GM ENTRY POINT char � gm strerror (gm status t error)
� GM ENTRY POINT gm status t gm set enable nack down (struct gm port

� port, int flag)
� GM ENTRY POINT gm status t gm max node id in use (struct gm port � port,

unsigned int � n)
� GM ENTRY POINT int gm eprintf (const char � format,...)
� GM ENTRY POINT void � gm memset (void � s, int c, gm size t n)
� GM ENTRY POINT char � gm strdup (const char �)
� GM ENTRY POINT gm status t gm mark (struct gm mark set � set, gm mark t

� m)
� GM ENTRY POINT int gm mark is valid (struct gm mark set � set, gm mark t

� m)
� GM ENTRY POINT gm status t gm create mark set (struct gm mark set

� � set, unsigned long init count)
� GM ENTRY POINT void gm destroy mark set (struct gm mark set � set)
� GM ENTRY POINT void gm unmark (struct gm mark set � set, gm mark t � m)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

50 GM File Documentation

� GM ENTRY POINT void gm unmark all (struct gm mark set � set)
� GM ENTRY POINT gm status t gm on exit (gm on exit callback t, void � arg)
� GM ENTRY POINT void gm put (struct gm port � p, void � local -

buffer, gm remote ptr t remote buffer, gm size t len, enum gm priority
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

� GM ENTRY POINT gm status t gm global id to node id (struct gm port
� port, unsigned int global id, unsigned int � node id)

� GM ENTRY POINT gm status t gm node id to global id (struct gm port
� port, unsigned int node id, unsigned int � global id)

� GM ENTRY POINT gm status t gm node id to host name ex (struct gm port
� port, unsigned int timeout usecs, unsigned int node id, char(� name)[GM -
MAX HOST NAME LEN+1])

� GM ENTRY POINT gm status t gm host name to node id ex (struct gm port
� port, unsigned int timeout usecs, const char � host name, unsigned int � node -
id)

Variables

� GM ENTRY POINT const unsigned char gm log2 roundup table [257]

8.1.1 Detailed Description

The official GM API include file.

author: glenn@myri.com

8.1.2 Define Documentation

8.1.2.1 #define GM API VERSION 1 0 0x100

Hex equivalent of GM API VERSION 1 0

8.1.2.2 #define GM API VERSION 1 1 0x101

Hex equivalent of GM API VERSION 1 1

8.1.2.3 #define GM API VERSION 1 2 0x102

Hex equivalent of GM API VERSION 1 2

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

mailto:glenn@myri.com

8.1 gm.h File Reference 51

8.1.2.4 #define GM API VERSION 1 3 0x103

Hex equivalent of GM API VERSION 1 3

8.1.2.5 #define GM API VERSION 1 4 0x104

Hex equivalent of GM API VERSION 1 4

8.1.2.6 #define GM API VERSION 1 5 0x105

Hex equivalent of GM API VERSION 1 5

8.1.2.7 #define GM API VERSION 1 6 0x106

Hex equivalent of GM API VERSION 1 6

8.1.2.8 #define GM API VERSION 2 0 0x200

Hex equivalent of GM API VERSION 2 0

8.1.2.9 #define GM API VERSION 2 0 6 0x20006

Hex equivalent of GM API VERSION 2 0 6

8.1.2.10 #define GM API VERSION GM API VERSION 2 0 6

Set the default API version used in this file.

8.1.2.11 #define GM MAX HOST NAME LEN 128

Maximum length of GM host name

8.1.2.12 #define GM MAX PORT NAME LEN 32

Maximum length of GM port name

8.1.2.13 #define GM NO SUCH NODE ID 0

No such GM node id

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

52 GM File Documentation

8.1.2.14 #define GM CPU alpha 0

Define all undefined GM CPU switches to 0 to prevent problems with ”gcc -Wundef”

8.1.2.15 #define GM RDMA GRANULARITY 64

GM RDMA GRANULARITY

8.1.2.16 #define GM MAX DMA GRANULARITY 8

GM MAX DMA GRANULARITY

8.1.2.17 #define GM STRUCT CONTAINING(type, field, field instance) ((type
�)((char �)(field instance) - GM OFFSETOF (type, field)))

Given a pointer to an instance of a field in a structure of a certain type, return a pointer
to the containing structure.

8.1.2.18 #define GM NUM ELEM(ar) (sizeof (ar) / sizeof (� ar))

Given an array, return the number of elements in the array.

8.1.2.19 #define GM POWER OF TWO(n) (!((n)&((n)-1)))

Return nonzero if the input is neither a power of two nor zero. Otherwise, return zero.

8.1.2.20 #define GM STRUCT CONTAINING(type, field, field instance) ((type
�)((char �)(field instance) - GM OFFSETOF (type, field)))

Given a pointer to an instance of a field in a structure of a certain type, return a pointer
to the containing structure.

8.1.2.21 #define GM NUM ELEM(ar) (sizeof (ar) / sizeof (� ar))

Given an array, return the number of elements in the array.

8.1.2.22 #define GM POWER OF TWO(n) (!((n)&((n)-1)))

Return nonzero if the input is neither a power of two nor zero. Otherwise, return zero.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 53

8.1.3 Typedef Documentation

8.1.3.1 typedef gm u64 t gm remote ptr t

The ”gm up t” is a LANai-compatible representation of a user virtual memory address.
If the host has 32-bit pointers, then a gm up t has 32 bits. If the host has 64-bit point-
ers, but only 32-bits of these pointers are used, then a gm up t still has 32 bits (for
performance reasons). Finally, if the host has 64-bit pointers and more than 32 bits of
the pointer is used, then a gm up t has 64-bits.

8.1.3.2 typedef enum gm status gm status t

GM Send Completion Status codes

8.1.3.3 typedef void(� gm send completion callback t)(struct gm port � p, void
� context, gm status t status)

gm send completion callback t typedef function.

8.1.3.4 typedef gm u32 t gm pid t

typedef for gm pid t.

8.1.4 Enumeration Type Documentation

8.1.4.1 enum gm status

GM Send Completion Status codes

Enumeration values:
GM SUCCESS The send succeeded. This status code does not indicate an error.

GM FAILURE Operation Failed

GM INPUT BUFFER TOO SMALL Input buffer is too small

GM OUTPUT BUFFER TOO SMALL Output buffer is too small

GM TRY AGAIN Try Again

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

54 GM File Documentation

GM BUSY GM Port is Busy

GM MEMORY FAULT Memory Fault

GM INTERRUPTED Interrupted

GM INVALID PARAMETER Invalid input parameter

GM OUT OF MEMORY Out of Memory

GM INVALID COMMAND Invalid Command

GM PERMISSION DENIED Permission Denied

GM INTERNAL ERROR Internal Error

GM UNATTACHED Unattached

GM UNSUPPORTED DEVICE Unsupported Device

GM SEND TIMED OUT The target port is open and responsive and the mes-
sage is of an acceptable size, but the receiver failed to provide a matching
receive buffer within the timeout period. This error can be caused by the
receive neglecting its responsibility to provide receive buffers in a timely
fashion or crashing. It can also be caused by severe congestion at the receiv-
ing node where many senders are contending for the same receive buffers on
the target port for an extended period. This error indicates a programming
error in the client software.

GM SEND REJECTED The receiver indicated (in a call to
gm set acceptable sizes()) the size of the message was unacceptable.
This error indicates a programming error in the client software.

GM SEND TARGET PORT CLOSED The message cannot be delivered be-
cause the destination port has been closed.

GM SEND TARGET NODE UNREACHABLE The target node could not
be reached over the Myrinet. This error can be caused by the network be-
coming disconnected for too long, the remote node being powered off, or by
network links being rearranged when the Myrinet mapper is not running.

GM SEND DROPPED The send was dropped at the client’s request. (The
client called gm drop sends().) This status code does not indicate an error.

GM SEND PORT CLOSED Clients should never see this internal error code.

GM NODE ID NOT YET SET Node ID is not yet set

GM STILL SHUTTING DOWN GM Port is still shutting down

GM CLONE BUSY GM Clone Busy

GM NO SUCH DEVICE No such device

GM ABORTED Aborted.

GM INCOMPATIBLE LIB AND DRIVER Incompatible GM library and
driver

GM UNTRANSLATED SYSTEM ERROR Untranslated System Error

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 55

GM ACCESS DENIED Access Denied

GM NO DRIVER SUPPORT No Driver Support

GM PTE REF CNT OVERFLOW PTE Ref Cnt Overflow

GM NOT SUPPORTED IN KERNEL Not supported in the kernel

GM NOT SUPPORTED ON ARCH Not supported for this architecture

GM NO MATCH No match

GM USER ERROR User error

GM TIMED OUT Timed out

GM DATA CORRUPTED Data has been corrupted

GM HARDWARE FAULT Hardware fault

GM SEND ORPHANED Send orphaned

GM MINOR OVERFLOW Minor overflow

GM PAGE TABLE FULL Page Table is Full

GM UC ERROR UC Error

GM INVALID PORT NUMBER Invalid Port Number

GM DEV NOT FOUND No device files found

GM FIRMWARE NOT RUNNING Lanai not running

GM YP NO MATCH No match for yellow pages query.

8.1.4.2 enum gm priority

Priority Levels

Enumeration values:
GM LOW PRIORITY Low priority message

GM HIGH PRIORITY High priority message

GM NUM PRIORITIES Number of priority types

8.1.4.3 enum gm recv event type

Receive Event Types

Enumeration values:
GM NO RECV EVENT No significant receive event is pending.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

56 GM File Documentation

GM SENDS FAILED EVENT deprecated

GM ALARM EVENT This event should be treated as an unknown event
(passed to gm unknown())

GM RECV EVENT This event indicates that a normal receive (GM LOW -
PRIORITY) has occurred.

GM HIGH RECV EVENT This event indicates that a normal receive (GM -
HIGH PRIORITY) has occurred.

GM PEER RECV EVENT This event indicates that a normal receive (GM -
LOW PRIORITY) has occurred, and the PEER indicates that the
sender/receiver ports are the same.

GM HIGH PEER RECV EVENT This event indicates that a normal receive
(GM HIGH PRIORITY) has occurred, and the PEER indicates that the
sender/receiver ports are the same.

GM FAST RECV EVENT A small-message receive occurred (GM LOW -
PRIORITY) with the small message stored in the receive queue for improved
small-message performance.

GM FAST HIGH RECV EVENT A small-message receive occurred (GM -
HIGH PRIORITY) with the small message stored in the receive queue for
improved small-message performance.

GM FAST PEER RECV EVENT A small-message receive occurred (GM -
LOW PRIORITY) with the small message stored in the receive queue
for improved small-message performance. The PEER indicates that the
sender/receiver ports are the same.

GM FAST HIGH PEER RECV EVENT A small-message receive occurred
(GM HIGH PRIORITY) with the small message stored in the receive queue
for improved small-message performance. The PEER indicates that the
sender/receiver ports are the same.

GM NEW SENDS FAILED EVENT deprecated

GM NEW RECV EVENT normal receives

GM NEW FAST RECV EVENT streamlined small message receives

GM NEW PUT NOTIFICATION EVENT Directed send notification

GM NUM RECV EVENT TYPES DO NOT add new types here.

8.1.5 Function Documentation

8.1.5.1 GM ENTRY POINT void gm abort (void)

gm abort() aborts the current process, and is a wrapper around the system function
abort().

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 57

See also:
gm init gm open gm close gm exit gm finalize

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.2 GM ENTRY POINT int gm alloc send token (struct gm port � p,
unsigned int priority)

Allocates a send token (Details).

8.1.5.3 GM ENTRY POINT gm status t gm allow remote memory access
(struct gm port � port)

gm allow remote memory access() allows any remote GM port to modify the contents
of any GM DMAable memory using the gm directed send() function. This is a signifi-
cant security hole, but is very useful on tightly coupled clusters on trusted networks.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
port (IN) Handle to the GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.4 GM ENTRY POINT void gm bcopy (const void � from, void � to,
gm size t len)

gm bcopy() copies len bytes starting at from to location to. This function does not
handle overlapping regions.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

58 GM File Documentation

Parameters:
from (IN) The starting location for the region to be copied.

to (IN) The ending location for the region to be copied.

len (IN) The length in bytes of the region to be copied.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.5 GM ENTRY POINT union gm recv event � gm blocking receive (struct
gm port � p)

Blocks until there is a receive event and then returns a pointer to the event. (Details).

8.1.5.6 GM ENTRY POINT union gm recv event �
gm blocking receive no spin (struct gm port � p)

Like gm blocking receive(), except it sleeps the current thread immediately if no re-
ceive is pending. (gm blocking receive no spin ”Details”).

8.1.5.7 GM ENTRY POINT void gm bzero (void � ptr, gm size t len)

gm bzero() clears the len bytes of memory starting at ptr. This function does not use
partword I/O unless it must (for speed, especially when doing PIO), and does not rely
on the system bzero() functionality, which may not be safe for PIO mapped memory.

Parameters:
ptr (IN) The pointer to the memory location.

len (IN) The number of bytes of memory to be bzero’ed.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 59

8.1.5.8 GM ENTRY POINT void � gm calloc (gm size t len, gm size t cnt)

gm calloc() allocates and clears an array of cnt elements of length len.

Parameters:
len (IN) The number of bytes in each element.

cnt (IN) The number of elements in the array.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.9 GM ENTRY POINT void gm cancel alarm (struct gm alarm �
gm alarm)

Cancels alarm (Details).

8.1.5.10 GM ENTRY POINT void gm close (struct gm port � p)

Closes a GM port (Details).

8.1.5.11 GM ENTRY POINT void gm datagram send (struct gm port �
p, void � message, unsigned int size, gm size t len, unsigned int
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

Unreliable send (Details).

8.1.5.12 GM ENTRY POINT void gm datagram send 4 (struct gm port �
p, gm u32 t message, unsigned int size, gm size t len, unsigned int
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

Unreliable send of gm u32 t messages (Details).

8.1.5.13 GM ENTRY POINT gm status t gm deregister memory (struct
gm port � p, void � ptr, gm size t length)

Deregisters memory (Details).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

60 GM File Documentation

8.1.5.14 GM ENTRY POINT void gm directed send with callback (struct
gm port � p, void � source buffer, gm remote ptr t target buffer,
gm size t len, enum gm priority priority, unsigned int target node id,
unsigned int target port id, gm send completion callback t callback,
void � context)

Directed send (PUT) (Details).

8.1.5.15 GM ENTRY POINT void � gm dma calloc (struct gm port � p,
gm size t count, gm size t length)

gm dma calloc() allocates and clears count � length bytes of DMAable memory
aligned on a 4-byte boundary. Memory should be freed using gm dma free().

Parameters:
p (IN) Handle to the GM port.

count (IN) The number of elements to be calloc’ed.

length (IN) The size of each element to be calloc’ed.

See also:
gm dma malloc gm dma free

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.16 GM ENTRY POINT void gm dma free (struct gm port � p, void �
addr)

Frees a region of DMAable memory (Details).

8.1.5.17 GM ENTRY POINT void � gm dma malloc (struct gm port � p,
gm size t length)

gm dma malloc() allocates length bytes of DMAable memory aligned on a 4-byte
boundary. Memory should be freed using gm dma free().

Parameters:
p (IN) Handle to the GM port.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 61

length (IN) The number of bytes to be malloc’ed.

See also:
gm dma calloc gm dma free

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.18 GM ENTRY POINT void gm flush alarm (struct gm port � p)

Flushes an alarm (Details).

8.1.5.19 GM ENTRY POINT void gm free (void � ptr)

gm free() frees the memory buffer at ptr, which was previously allocated by
gm malloc(), or gm calloc().

Parameters:
ptr (IN) Address of the memory to be freed.

See also:
gm malloc gm calloc

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.20 GM ENTRY POINT void gm free send token (struct gm port � p,
unsigned int priority)

Frees a send token (Details).

8.1.5.21 GM ENTRY POINT void gm free send tokens (struct gm port � p,
unsigned int priority, unsigned int count)

Frees multiple send tokens (Details).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

62 GM File Documentation

8.1.5.22 GM ENTRY POINT gm status t gm get host name (struct gm port �
port, char name[GM MAX HOST NAME LEN])

Copies the host name of the local node (Details).

8.1.5.23 GM ENTRY POINT gm status t gm get node type (struct gm port �
port, int � node type)

Returns GM GET NODE TYPE (Details).

8.1.5.24 GM ENTRY POINT gm status t gm get node id (struct gm port �
port, unsigned int � n)

Copies the GM ID of the interface (Details).

8.1.5.25 GM ENTRY POINT gm status t gm get unique board id (struct
gm port � port, char unique[6])

Copies the board ID of the interface (gm get unique board id ”Details”).

8.1.5.26 GM ENTRY POINT gm status t gm get mapper unique id (struct
gm port � port, char unique[6])

Copies copies the 6-byte ethernet address of the interface (Details).

8.1.5.27 GM ENTRY POINT void gm hex dump (const void � ptr, gm size t
len)

gm hex dump() prints the hex equivalent of data at ptr.

Parameters:
ptr (IN) Address of the data.

len (IN) The length (in bytes) of the data.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 63

8.1.5.28 GM ENTRY POINT unsigned int gm host name to node id (struct
gm port � port, char � host name)

This function is deprectated. Use gm host name to node id ex() instead. Returns the
GM ID associated with a host name (Details).

8.1.5.29 GM ENTRY POINT void gm initialize alarm (struct gm alarm �
my alarm)

Initializes user-allocated storage for an alarm. (Details).

8.1.5.30 GM ENTRY POINT int gm isprint (int c)

gm isprint() is just like ANSI isprint(), only it works in the kernel and MCP.

Return values:
int The return value is nonzero if the character is a printable character including a

space, and a zero value if not.

Parameters:
c (OUT) Printable character.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.31 GM ENTRY POINT void � gm malloc (gm size t len)

gm malloc() returns a pointer to the specified amount of memory. In the kernel, the
memory will be nonpageable.

Return values:
ptr Pointer to the specified amount of memory.

Parameters:
len (IN) The length in bytes to be malloc’ed.

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

64 GM File Documentation

Version:
GM API VERSION (as defined in gm.h)

8.1.5.32 GM ENTRY POINT void � gm page alloc (void)

gm page alloc() returns a ptr to a newly allocated page-aligned buffer of length GM -
PAGE LEN.

Return values:
ptr Page-aligned buffer of length GM PAGE LEN.

See also:
gm page free

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.33 GM ENTRY POINT void gm page free (void � ptr)

gm page free() frees the page of memory at ptr previously allocated by
gm page alloc(). If all pages have been freed, free all of the memory allocated for
pages.

Parameters:
ptr (IN) Address of the memory page to be freed.

See also:
gm page alloc

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 65

8.1.5.34 GM ENTRY POINT void � gm alloc pages (gm size t alloc len)

gm alloc pages() allocates a page-aligned buffer of length ALLOC LEN, where AL-
LOC LEN is a multiple of GM PAGE LEN. Any fractional page following the buffer
is wasted.

Return values:
ptr Pointer to the allocated buffer.

0 Error occurred.

Parameters:
alloc len (IN) The length of buffer to be allocated.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.35 GM ENTRY POINT void gm free pages (void � addr, gm size t
alloc len)

gm free pages() frees the pages at addr, which were previously allocated with
gm alloc pages().

Parameters:
addr (IN) The address of the buffer to be freed.

alloc len (IN) The length (in bytes) of the buffer to be freed.

See also:
gm alloc pages

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

66 GM File Documentation

8.1.5.36 GM ENTRY POINT gm size t gm max length for size (unsigned int
size)

gm max length for size() returns the maximum length of a message that will fit in a
GM buffer of size size.

Return values:
gm size t

Parameters:
size (IN) The size of the GM buffer.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.37 GM ENTRY POINT gm status t gm max node id (struct gm port �
port, unsigned int � n)

Stores the maximum GM node ID supported by the network interface card (Details).

8.1.5.38 GM ENTRY POINT int gm memcmp (const void � a, const void � b,
gm size t len)

gm memcmp() emulates the ANSI memcmp() function.

Return values:
int Returns an integer less than, equal to, or greater than zero if the first len bytes

of a is found, respectively, to be less than, to match, or be greater than the
first len bytes of b.

Parameters:
a (IN) The first memory area for comparison.

b (IN) The second memory area for comparison.

len (IN) The number of bytes to compare.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 67

8.1.5.39 GM ENTRY POINT void � gm memorize message (void � message,
void � buffer, unsigned len)

gm memorize message() is a wrapper around function memcpy().
gm memorize message() copies a message into a buffer if needed. If message
and buffer differ, gm memorize message(port,message,buffer) copies the message
pointed to by message into the buffer pointed to by buffer. gm memorize message()
returns buffer. This function optionally optimizes the handling of FAST receive
messages as described in ”See Chapter 9 [Receiving Messages].

Return values:
something

Parameters:
message (IN) Address of the message to be copied.

buffer (OUT) Address where the message is to be copied.

len (IN) The length in bytes of the message to be copied.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.40 GM ENTRY POINT unsigned int gm min message size (struct
gm port � port)

Returns the minimum supported message size (Details).

8.1.5.41 GM ENTRY POINT unsigned int gm min size for length (gm size t
length)

gm min size for length() returns the minimum GM message buffer size required to
store a message of length length.

Return values:
gm log2 roundup

Parameters:
length (IN) The length of the message.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

68 GM File Documentation

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.42 GM ENTRY POINT unsigned int gm mtu (struct gm port � port)

gm mtu() returns the value of GM MTU.

Return values:
GM MTU

Parameters:
port (IN) The handle to the GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.43 GM ENTRY POINT char � gm node id to host name (struct gm port
� port, unsigned int node id)

This function is deprecated. Use gm node id to host name ex() instead. Returns a
pointer to the host name of the host containing the network interface card with GM
node id node id. (Details).

8.1.5.44 GM ENTRY POINT gm status t gm node id to unique id (struct
gm port � port, unsigned int n, char unique[6])

Stores the MAC address for the interface (gm node id to unique id ”Details”).

8.1.5.45 GM ENTRY POINT unsigned int gm num ports (struct gm port � p)

Returns the number of ports supported by this build. (Details).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 69

8.1.5.46 GM ENTRY POINT unsigned int gm num send tokens (struct
gm port � p)

Returns the number of send tokens for this port. (Details).

8.1.5.47 GM ENTRY POINT unsigned int gm num receive tokens (struct
gm port � p)

Returns the number of receive tokens for this port. (Details).

8.1.5.48 GM ENTRY POINT unsigned int gm get port id (struct gm port � p)

Returns the id of the GM port (Details).

8.1.5.49 GM ENTRY POINT gm status t gm open (struct gm port � � p,
unsigned int unit, unsigned int port, const char � port name, enum
gm api version version)

Opens a GM port on an interface (Details).

8.1.5.50 GM ENTRY POINT void gm provide receive buffer with tag (struct
gm port � p, void � ptr, unsigned int size, unsigned int priority, unsigned
int tag)

Provides GM with a buffer into which it can receive messages (Details).

8.1.5.51 GM ENTRY POINT int gm receive pending (struct gm port � p)

Returns nonzero if a receive event is pending (gm receive pending ”Details”).

8.1.5.52 GM ENTRY POINT int gm next event peek (struct gm port � p,
gm u16 t � sender)

Returns the nonzero event type if an event is pending (Details).

8.1.5.53 GM ENTRY POINT union gm recv event � gm receive (struct
gm port � p)

Returns a receive event. (Details).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

70 GM File Documentation

8.1.5.54 GM ENTRY POINT gm status t gm register memory (struct gm port
� p, void � ptr, gm size t length)

Registers virtual memory for DMA transfers. (gm register memory ”Details”).

8.1.5.55 GM ENTRY POINT int gm send token available (struct gm port � p,
unsigned int priority)

Tests for the availability of a send token without allocating the send token. (Details).

8.1.5.56 GM ENTRY POINT void gm send with callback (struct gm port �
p, void � message, unsigned int size, gm size t len, unsigned int
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

A fully asynchronous send. (Details).

8.1.5.57 GM ENTRY POINT void gm send to peer with callback (struct
gm port � p, void � message, unsigned int size, gm size t len, unsigned
int priority, unsigned int target node id, gm send completion callback t
callback, void � context)

A fully asychronous send from/to the same GM port on the sending and receiving side.
(Details).

8.1.5.58 GM ENTRY POINT gm status t gm set acceptable sizes (struct
gm port � p, enum gm priority priority, gm size t mask)

gm set acceptable sizes() informs GM of the acceptable sizes of GM messages re-
ceived on port p with priority priority. Each set bit of mask indicates an acceptable
size. While calling this function is not required, clients should call it during program
initialization to detect errors involving the reception of badly sized messages to be re-
ported nearly instantaneously, rather than after a substantial delay of 30 seconds or
more.

Note: the MASK is a long to support larger than 2GByte packets (those with size larger
than 31).

Return values:
GM SUCCESS Operation completed successfully.

GM PERMISSION DENIED Port number hasn’t been set.

GM INTERNAL ERROR LANai is not running.

GM INVALID PARAMETER The priority has an invalid value.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 71

Parameters:
p (IN) The GM port in use.

priority (IN) The priority of the message.

mask

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.59 GM ENTRY POINT void gm set alarm (struct gm port � p, struct
gm alarm � my alarm, gm u64 t usecs, void(� callback)(void �), void �
context)

Sets an alarm, which may already be pending. (gm set alarm ”Details”).

8.1.5.60 GM ENTRY POINT gm size t gm strlen (const char � cptr)

gm strlen() calculates the length of a string.

Return values:
gm size t The length of the string.

Parameters:
cptr (IN) The string.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.61 GM ENTRY POINT char � gm strncpy (char � to, const char � from,
int len)

gm strncpy() copies exactly n bytes, truncating src or adding null characters to dst if
necessary. The result will not be null-terminated if the length of src is n or more.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

72 GM File Documentation

Return values:
char � Returns a pointer to a destination string.

Parameters:
to (IN) The destination string to be copied.

from (IN) The source string to be copied.

len (IN) The number of bytes to be copied.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.62 GM ENTRY POINT int gm strcmp (const char � a, const char � b)

gm strcmp() reimplements strcmp().

Return values:
int Returns an integer less than, equal to, or greater than zero if a is found, respec-

tively, to be less than, to match, or be greater than b.

Parameters:
a The first string to be compared.

b The second string to be compared.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.63 GM ENTRY POINT int gm strncmp (const char � a, const char � b,
int len)

gm strncmp() reimplements strncmp().

Return values:
int Returns an integer less than, equal to, or greater than zero if the first len bytes

of a is found, respectively, to be less than, to match, or be greater than b.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 73

Parameters:
a (IN) The first string to be compared.

b (IN) The second string to be compared.

len (IN) The length in bytes.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.64 GM ENTRY POINT int gm strncasecmp (const char � a, const char �
b, int len)

gm strncasecmp() reimplements strncasecmp().

Return values:
int Returns an integer less than, equal to, or greater than zero if the first len bytes

of a is found, respectively, to be less than, to match, or be greater than b.

Parameters:
a (IN) The first string to be compared.

b (IN) The second string to be compared.

len (IN) The number of bytes.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.65 GM ENTRY POINT gm u64 t gm ticks (struct gm port � port)

gm ticks() returns a 64-bit extended version of the LANai real time clock (RTC). For
implementation reasons, the granularity of gm ticks() is 50 microseconds at the appli-
cation level.

Return values:
gm u64 t

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

74 GM File Documentation

Parameters:
port (IN) The handle to the GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.66 GM ENTRY POINT gm status t gm unique id (struct gm port � port,
char unique[6])

Returns the board id number for an interface. (gm unique id ”Details”).

8.1.5.67 GM ENTRY POINT gm status t gm unique id to node id (struct
gm port � port, char unique[6], unsigned int � node id)

Returns the GM node id for a specific interface. (Details).

8.1.5.68 GM ENTRY POINT void gm unknown (struct gm port � p, union
gm recv event � e)

GM Event Handler. (Details).

8.1.5.69 GM ENTRY POINT gm status t gm get route (struct gm port � p,
unsigned int node id, char � route, unsigned int � len)

gm get route function. (Details).

8.1.5.70 GM ENTRY POINT void gm dump buffers (void)

gm dump buffers()

Author:
??

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 75

8.1.5.71 GM ENTRY POINT void gm register buffer (void � addr, int size)

gm register buffer() registered a GM buffer.

Return values:
1

0

Parameters:
addr (IN) Address of data to be registered.

size (IN) Size of buffer to be registered.

Author:
??

Version:
GM API VERSION (as defined in gm.h)

8.1.5.72 GM ENTRY POINT int gm unregister buffer (void � addr, int size)

gm unregister buffer() unregistered a GM buffer.

Return values:
1

0

Parameters:
addr (IN) Address of data to be freed.

size (IN) Size of buffer to be freed.

Author:
??

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

76 GM File Documentation

8.1.5.73 GM ENTRY POINT struct gm lookaside � gm create lookaside
(gm size t entry len, gm size t min entry cnt)

gm create lookaside() returns a newly created lookaside list to be used to allocate
blocks of ENTRY LEN bytes. MIN ENTRY CNT entries are preallocated.

Return values:
gm lookaside Handle to the lookaside table.

Parameters:
entry len (IN)

min entry cnt (IN)

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.74 GM ENTRY POINT void gm destroy lookaside (struct gm lookaside
� l)

gm destroy lookaside() frees a lookaside list and all associated resources, including
any buffers currently allocated from the lookaside list.

Parameters:
l (IN) Handle to the lookaside table.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.75 GM ENTRY POINT void � gm lookaside alloc (struct gm lookaside �
l)

gm lookaside alloc() allocates an entry from the lookaside table, with debugging. It
returns a buffer of size ENTRY LEN specified when the entry list L was created, or ‘0’
if the buffer could not be allocated.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 77

Return values:
ptr Buffer of size ENTRY LEN.

Parameters:
l (IN) Handle to the gm lookaside list.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.76 GM ENTRY POINT void � gm lookaside zalloc (struct gm lookaside �
l)

gm lookaside zalloc() allocates and clear an entry from the lookaside table.

Return values:
ptr

Parameters:
l (IN) Handle to the gm lookaside list.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.77 GM ENTRY POINT void gm lookaside free (void � ptr)

gm lookaside free() schedules an allocated entry to be freed, and actually performs
any scheduled free. It frees a block of memory previously allocated by a call to
gm lookaside alloc(). The contents of the block of memory are guaranteed to be un-
changed until the next operation is performed on the lookaside list.

Parameters:
ptr (IN) Pointer to the entry to be freed.

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

78 GM File Documentation

Version:
GM API VERSION (as defined in gm.h)

8.1.5.78 GM ENTRY POINT struct gm hash � gm create hash (long(�
gm user compare)(void � key1, void � key2), unsigned long(�
gm user hash)(void � key1), gm size t key len, gm size t data len,
gm size t gm min entries, int flags)

Creates a hash table. (Details).

8.1.5.79 GM ENTRY POINT void gm destroy hash (struct gm hash � hash)

gm destroy hash() frees all resources associated with the hash table, except for any
client-allocated buffers.

Parameters:
hash (IN) Handle to the hash table.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.80 GM ENTRY POINT void � gm hash remove (struct gm hash � hash,
void � key)

Removes an entry from the hash table. (Details).

8.1.5.81 GM ENTRY POINT void � gm hash find (struct gm hash � hash, void
� key)

Finds an entry in the hash table. (Details).

8.1.5.82 GM ENTRY POINT gm status t gm hash insert (struct gm hash �
hash, void � key, void � datum)

Inserts an entry in the hash table. (Details).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 79

8.1.5.83 GM ENTRY POINT void gm hash rekey (struct gm hash � hash, void
� old key, void � new key)

Replaces a key in the hash table. (Details).

8.1.5.84 GM ENTRY POINT long gm hash compare strings (void � key1, void
� key2)

gm hash compare strings() is the function used to compare two strings.

Return values:
long

Parameters:
key1 (IN) The key for the first string.

key2 (IN) The key for the second string.

See also:
gm hash compare ints gm hash compare longs gm hash compare ptrs

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.85 GM ENTRY POINT unsigned long gm hash hash string (void � key)

gm hash hash string() is the function used to hash keys.

Return values:
long

Parameters:
key (IN) The key for the string in the hash table.

See also:
gm hash compare string gm hash hash int gm hash hash long gm hash hash ptr

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

80 GM File Documentation

8.1.5.86 GM ENTRY POINT long gm hash compare longs (void � key1, void �
key2)

gm hash compare longs() is the function used to compare two longs.

Return values:
long

Parameters:
key1 (IN)

key2 (IN)

See also:
gm hash compare ints gm hash compare strings gm hash compare ptrs

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.87 GM ENTRY POINT unsigned long gm hash hash long (void � key)

gm hash hash long() is the function used to hash keys.

Return values:
long

Parameters:
key (IN)

See also:
gm hash compare long gm hash hash int gm hash hash string gm hash hash ptr

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 81

8.1.5.88 GM ENTRY POINT long gm hash compare ints (void � key1, void �
key2)

gm hash compare ints() is the function used to compare two ints.

Return values:
long

Parameters:
key1 (IN) The key for the first int.

key2 (IN) The key for the second int.

See also:
gm hash compare longs gm hash compare strings gm hash compare ptrs

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.89 GM ENTRY POINT unsigned long gm hash hash int (void � key)

gm hash hash int() is the function used to hash keys.

Return values:
long

Parameters:
key (IN)

See also:
gm hash compare int gm hash hash ptr gm hash hash long gm hash hash string

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

82 GM File Documentation

8.1.5.90 GM ENTRY POINT long gm hash compare ptrs (void � key1, void �
key2)

gm hash compare ptrs() is the function used to compare two ptrs.

Return values:
long

Parameters:
key1 (IN) The key for the first ptr.

key2 (IN) The key for the second ptr.

See also:
gm hash compare longs gm hash compare strings gm hash compare ints

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.91 GM ENTRY POINT unsigned long gm hash hash ptr (void � key)

gm hash hash ptr() is the function used to hash keys.

Return values:
long

Parameters:
key (IN)

See also:
gm hash compare ptr gm hash hash int gm hash hash long gm hash hash string

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 83

8.1.5.92 GM ENTRY POINT unsigned long gm crc (void � ptr, gm size t len)

gm crc() computes a CRC-32 of the indicated range of memory.

Return values:
long

Parameters:
ptr (IN) Pointer to a range of memory.

len (IN) The length of the indicated range of memory.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.93 GM ENTRY POINT unsigned long gm crc str (const char � ptr)

gm crc str() computes a CRC-32 for the indicated string.

Return values:
long

Parameters:
ptr (IN) Pointer to a string.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.94 GM ENTRY POINT int gm rand (void)

gm rand() returns a pseudo-random integer, using a poor but fast random number gen-
erator.

Return values:
RANDOM NUMBER The random number that was generated.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

84 GM File Documentation

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.95 GM ENTRY POINT void gm srand (int seed)

gm srand() returns a pseudo-random integer, and requires a seed for the random num-
ber generator.

Parameters:
seed (IN) Seed for the random number generator.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.96 GM ENTRY POINT unsigned int gm rand mod (unsigned int a)

gm rand mod() returns a pseudo-random number modulo modulus, using

a poor but fast random number generator.

Return values:
RANDOM NUMBER

Parameters:
a (IN) The modulus bound.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 85

8.1.5.97 GM ENTRY POINT gm status t gm init (void)

gm init() initializes GM. It increments the GM initialization counter and initializes GM
if it was uninitialized. This call must be performed before any other GM call and before
any reference to a GM global variable (e.g.: GM PAGE LEN). Each call to gm init()
should be matched by a call to gm finalize().

Return values:
GM SUCCESS Operation completed successfully.

GM FAILURE Error occurred.

See also:
gm finalize gm open gm close gm exit gm abort

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.98 GM ENTRY POINT void gm finalize (void)

gm finalize() decrements the GM initialization counter and if it becomes zero, frees all
resources associated with GM in the current process. Each call to gm finalize() should
be matched by a call to gm init().

See also:
gm init gm open gm close gm abort gm exit

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.99 GM ENTRY POINT unsigned long gm log2 roundup (unsigned long
n)

gm log2 roundup() returns the logarithm, base 2, of n, rounding up to the next inte-
ger.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

86 GM File Documentation

Return values:
LOG

Parameters:
n (IN) The integer for which the logarithm will be computed.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.100 GM ENTRY POINT struct gm mutex � gm create mutex (void)

gm create mutex() creates a GM mutex.

Return values:
gm mutex (OUT) Handle to the GM mutex.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.101 GM ENTRY POINT void gm destroy mutex (struct gm mutex � mu)

gm destroy mutex() destroys a GM mutex.

Parameters:
mu (IN) The handle to the GM mutex.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 87

8.1.5.102 GM ENTRY POINT void gm mutex enter (struct gm mutex � mu)

gm mutex enter()

Parameters:
mu (IN) The handle to the GM mutex.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.103 GM ENTRY POINT void gm mutex exit (struct gm mutex � mu)

gm mutex exit()

Parameters:
mu (IN) The handle to the GM mutex.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.104 GM ENTRY POINT struct gm zone � gm zone create zone (void �
base, gm size t length)

gm zone create zone()

Return values:
gm zone Handle to the GM zone.

Parameters:
base

length

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

88 GM File Documentation

Version:
GM API VERSION (as defined in gm.h)

8.1.5.105 GM ENTRY POINT void gm zone destroy zone (struct gm zone �
zone)

gm zone destroy zone()

Parameters:
zone (IN) Pointer to the GM zone.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.106 GM ENTRY POINT void � gm zone free (struct gm zone � zone, void
� a)

gm zone free()

Parameters:
zone (IN) Pointer to the GM zone.

a

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.107 GM ENTRY POINT void � gm zone malloc (struct gm zone � zone,
gm size t length)

gm zone malloc() mallocs a GM zone.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 89

Parameters:
zone (IN) Pointer to the GM zone.

length

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.108 GM ENTRY POINT void � gm zone calloc (struct gm zone � zone,
gm size t count, gm size t length)

gm zone calloc() callocs a GM zone.

Parameters:
zone (IN) Pointer to the GM zone.

count

length

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.109 GM ENTRY POINT int gm zone addr in zone (struct gm zone �
zone, void � p)

gm zone addr in zone()

Parameters:
zone (IN) Pointer to the GM zone.

p

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

90 GM File Documentation

8.1.5.110 GM ENTRY POINT void gm resume sending (struct gm port �
p, unsigned int priority, unsigned int target node id, unsigned int
target port id, gm send completion callback t callback, void � context)

gm resume sending(0 reenables packet transmission of messages from port of priority
priority destined for target port id of target node id. This function should only be
called after an error is reported to a send completion callback routine. The message
that generated the error is not resent. The first four parameters must match those of the
failed send. It should be called only once per reported error. This function requires a
send token, which will be returned to the client in the callback function.

gm resume sending() and gm drop sends(), as most gm requests, require a send token,
and the callback you give to them is just meant to return this token. These gm requests
always succeed (if called in a valid manner), so the callback will always be called with
GM SUCCESS (which here does not mean at all that something was sent successfully,
just that the request has been taken into account, and the token used for that request
was recycled).

Parameters:
p (IN) The handle to the GM port.

priority (IN) The priority of the message being sent.

target node id (IN) The GM node to which the message is being sent.

target port id (IN) The GM port on the destination GM node to which the mes-
sage is being sent.

callback (IN) The function called when the send is complete.

context (IN) Pointer to an integer or to a structure that is passed to the callback
function.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.111 GM ENTRY POINT void gm drop sends (struct gm port � port,
unsigned int priority, unsigned int target node id, unsigned int
target port id, gm send completion callback t callback, void � context)

gm drop sends() drops all enqueued sends for port of priority priority destined for
target port id of target node id to be dropped, and reenable packet transmission on
that connection. This function should only be called after an error is reported to a send
completion callback routine. The first four parameters must match those of the failed

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 91

send. It should be called only once per reported error. This function requires a send
token, which will be returned to the client in the callback function. The dropped sends
will then be returned to the client with a status of GM SEND DROPPED.

gm drop sends() and gm resume sending(), as most gm requests, require a send token,
and the callback you give to them is just meant to return this token. These gm requests
always succeed (if called in a valid manner), so the callback will always be called with
GM SUCCESS (which here does not mean at all that something was sent successfully,
just that the request has been taken into account, and the token used for that request
was recycled).

Parameters:
port (IN) The handle to the GM port.

priority (IN) The priority of the message.

target node id (IN) The GM node to which the message is being sent.

target port id (IN) The GM port on the destination GM node to which the mes-
sage was sent.

callback (IN) The function called when the send is complete.

context (IN) Pointer to an integer or to a structure that is passed to the callback
function.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.112 GM ENTRY POINT gm pid t gm getpid (void)

gm getpid() is a cover for the usual Unix getpid() functionality.

Return values:
gm pid t The process ID of the parent of the current process.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

92 GM File Documentation

8.1.5.113 GM ENTRY POINT gm status t gm directcopy get (struct gm port
� p, void � source addr, void � target addr, gm size t length, unsigned
int source instance id, unsigned int source port id)

gm directcopy get() copies data of length length bytes, specified at the address
source addr of the local process using the port port id of the board source instance -
id to the memory area specified at the address target addr of the current process.
This implementation bypasses all of the protection of the operating system to provide
a memory copy from one process’s memory space to another one. The memory areas
must have been registered by GM prior to calling this function in order to lock mem-
ory pages at their physical locations. There are no alignment or length constraints but
the maximum performance will be reached with aligned addresses on both sides. This
function is supported exclusively on Linux.

Return values:
GM SUCCESS Operation completed successfully.

GM FAILURE Error occurred.

Parameters:
p (IN) Handle to the GM port.

source addr (IN) Address of the data to be copied.

target addr (IN) Target address of the copied data.

length (IN) The length (in bytes) of the area to be copied.

source instance id (IN) The id of the interface.

source port id (IN) The port id of the interface.

Author:
Patrick Geoffray

Version:
GM API VERSION (as defined in gm.h)

8.1.5.114 GM ENTRY POINT void gm perror (const char � message,
gm status t error)

gm perror() is similar to ANSI perror(), but takes the error code as a parameter to allow
thread safety in future implementations, and only supports GM error numbers. Prints
message followed by a description of errno.

Parameters:
message (OUT) Textual description of the GM error.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 93

error (IN) GM Error code.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.115 GM ENTRY POINT int gm sleep (unsigned int seconds)

gm sleep() emulates the ANSI standard sleep(), sleeping the entire process for seconds
seconds.

Return values:
SLEEP

Parameters:
seconds (IN) The number of seconds for which the process should sleep.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.116 GM ENTRY POINT void gm exit (gm status t status)

gm exit() causes the current process to exit with a status appropriate to the GM status
code status.

Parameters:
status (IN) The GM status code, as specified in gm.h.

See also:
gm init gm open gm close gm finalize gm abort

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

94 GM File Documentation

8.1.5.117 GM ENTRY POINT int gm printf (const char � format, ...)

gm printf() emulates or invokes the ANSI standard printf() function.

Return values:
0 Operation completed successfully.

Parameters:
format Specifies how the arguments are converted for output.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.118 GM ENTRY POINT char � gm strerror (gm status t error)

gm strerror() is an error function for GM. The error is only valid until next call to this
function.

Return values:
char

Parameters:
error (IN) GM status code.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.119 GM ENTRY POINT gm status t gm set enable nack down (struct
gm port � port, int flag)

gm set enable nack down()

Return values:
GM SUCCESS Operation completed successfully.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 95

GM PERMISSION DENIED

Parameters:
port (IN) Handle to the GM port.

flag

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.120 GM ENTRY POINT gm status t gm max node id in use (struct
gm port � port, unsigned int � n)

Returns the maximum GM node ID that is in use by the network attached to the port.
(Details).

8.1.5.121 GM ENTRY POINT int gm eprintf (const char � format, ...)

gm eprintf() emulates or invokes the ANSI standard vprintf() function.

Return values:
0 Operation completed successfully.

Parameters:
format Specifies how the variable-length arguments are converted for output.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.122 GM ENTRY POINT void � gm memset (void � s, int c, gm size t n)

gm memset() reimplements the UNIX function memset().

Return values:
void Returns a pointer to the memory area s.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

96 GM File Documentation

Parameters:
s (IN) The memory area.

c (IN) The constant byte size.

n (IN) The number of bytes.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.123 GM ENTRY POINT char � gm strdup (const char � in)

gm strdup() reimplements the UNIX function strdup().

Return values:
char � Returns a pointer to the duplicated string, or NULL if insufficient memory

was available.

Parameters:
in (IN) The string to be duplicated.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.124 GM ENTRY POINT gm status t gm mark (struct gm mark set � set,
gm mark t � m)

gm mark() adds ‘ � MARK’ to SET. Requires O(constant) time if the mark set has pre-
allocated resources for the mark. Otherwise, requires O(constant) average time.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
set (IN) Handle to the GM mark set.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 97

m

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.125 GM ENTRY POINT int gm mark is valid (struct gm mark set � set,
gm mark t � m)

gm mark is valid() returns nonzero value if ‘ � MARK’ is in SET. Requires O(constant)
time.

Return values:
int

Parameters:
set (IN) Handle to the GM mark set.

m

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.126 GM ENTRY POINT gm status t gm create mark set (struct
gm mark set � � msp, unsigned long cnt)

gm create mark set() returns a pointer to a new mark set at SET with enough preal-
located resources to support INIT COUNT. Returns GM SUCCESS on success. Re-
quires time comparable to malloc().

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
msp (IN) Handle to the GM mark set.

cnt

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

98 GM File Documentation

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.127 GM ENTRY POINT void gm destroy mark set (struct gm mark set
� set)

gm destroy mark set() frees all resources associated with mark set ‘ � SET’. Requires
time comparable to free().

Parameters:
set (IN) Handle to the GM mark set.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.128 GM ENTRY POINT void gm unmark (struct gm mark set � set,
gm mark t � m)

gm unmark() removes ‘ � MARK’ from SET. Requires O(constant) time.

Parameters:
set (IN) Handle to the GM mark set.

m

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.1 gm.h File Reference 99

8.1.5.129 GM ENTRY POINT void gm unmark all (struct gm mark set � set)

gm unmark all() unmarks all marks for the mark set, freeing all but the initial number
of preallocated mark references.

Removes all marks from SET. Requires O(constant) time.

Parameters:
set (IN) Handle to the GM mark set.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.1.5.130 GM ENTRY POINT gm status t gm on exit (gm on exit callback t
callback, void � arg)

gm on exit() is like Linux on exit(). This function registers a callback so that ‘CALL-
BACK(STATUS,ARG)’ is called when the program exits. Callbacks are called in the
reverse of the order of registration. This function is also somewhat similar to BSD
‘atexit()’.

Call the callbacks in the reverse order registered inside gm exit(), passing GM exit
status and registered argument to the callback.

Return values:
GM SUCCESS Operation completed successfully.

GM OUT OF MEMORY

Parameters:
callback

arg

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

100 GM File Documentation

8.1.5.131 GM ENTRY POINT void gm put (struct gm port � p, void �
local buffer, gm remote ptr t remote buffer, gm size t len, enum
gm priority priority, unsigned int target node id, unsigned int
target port id, gm send completion callback t callback, void � context)

Directed send (PUT) (Details).

8.1.5.132 GM ENTRY POINT gm status t gm global id to node id (struct
gm port � port, unsigned int global id, unsigned int � node id)

Stores at � node id the local connection ID corresponding to the connection to global -
id. (gm global id to node id ”Details”).

8.1.5.133 GM ENTRY POINT gm status t gm node id to global id (struct
gm port � port, unsigned int node id, unsigned int � global id)

Stores at � global id the global node ID corresponding to the connection identified by
the local connection ID. (Details).

8.1.5.134 GM ENTRY POINT gm status t gm node id to host name ex
(struct gm port � port, unsigned int timeout usecs, unsigned int
node id, char � name[GM MAX HOST NAME LEN+1])

Store at � name the host name of the host containing the network interface card with
GM node id node id. (Details).

8.1.5.135 GM ENTRY POINT gm status t gm host name to node id ex
(struct gm port � port, unsigned int timeout usecs, const char �
host name, unsigned int � node id)

Store at � node id the node ID of the host containing the network interface card with
GM host name host name. (Details).

8.1.6 Variable Documentation

8.1.6.1 GM ENTRY POINT const unsigned char gm log2 roundup table[257]

Log 2 roundup table. (Details).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.2 gm abort.c File Reference 101

8.2 gm abort.c File Reference

#include "gm config.h"

#include "gm debug.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT void gm abort ()

8.2.1 Detailed Description

8.2.2 Function Documentation

8.2.2.1 GM ENTRY POINT void gm abort (void)

gm abort() aborts the current process, and is a wrapper around the system function
abort().

See also:
gm init gm open gm close gm exit gm finalize

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

102 GM File Documentation

8.3 gm alloc pages.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm internal.h"

#include "gm malloc debug.h"

Functions

� GM ENTRY POINT void � gm alloc pages (gm size t alloc len)
� GM ENTRY POINT void gm free pages (void � addr, gm size t alloc len)

8.3.1 Detailed Description

8.3.2 Function Documentation

8.3.2.1 GM ENTRY POINT void � gm alloc pages (gm size t alloc len)

gm alloc pages() allocates a page-aligned buffer of length ALLOC LEN, where AL-
LOC LEN is a multiple of GM PAGE LEN. Any fractional page following the buffer
is wasted.

Return values:
ptr Pointer to the allocated buffer.

0 Error occurred.

Parameters:
alloc len (IN) The length of buffer to be allocated.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.3 gm alloc pages.c File Reference 103

8.3.2.2 GM ENTRY POINT void gm free pages (void � addr, gm size t
alloc len)

gm free pages() frees the pages at addr, which were previously allocated with
gm alloc pages().

Parameters:
addr (IN) The address of the buffer to be freed.

alloc len (IN) The length (in bytes) of the buffer to be freed.

See also:
gm alloc pages

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

104 GM File Documentation

8.4 gm alloc send token.c File Reference

#include "gm call trace.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT int gm alloc send token (gm port t � p, unsigned int prior-
ity)

8.4.1 Detailed Description

8.4.2 Function Documentation

8.4.2.1 GM ENTRY POINT int gm alloc send token (gm port t � p, unsigned
int priority)

gm alloc send token() allocates a send token of priority priority previously freed with
gm free send token() and returns 0 if no token is available. Clients may choose to
maintain their own send token counts without using this utility function.

Return values:
send token cnt

0 Error occurred.

Parameters:
p (IN) The GM port on the source/sender GM node from which the communica-

tion will be sent.

priority (IN) The priority of the message to be sent.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.5 gm allow remote memory access.c File Reference 105

8.5 gm allow remote memory access.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT gm status t gm allow remote memory access (struct
gm port � port)

8.5.1 Detailed Description

8.5.2 Function Documentation

8.5.2.1 GM ENTRY POINT gm status t gm allow remote memory access
(struct gm port � port)

gm allow remote memory access() allows any remote GM port to modify the contents
of any GM DMAable memory using the gm directed send() function. This is a signifi-
cant security hole, but is very useful on tightly coupled clusters on trusted networks.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
port (IN) Handle to the GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

106 GM File Documentation

8.6 gm bcopy.c File Reference

#include "gm internal.h"

#include "gm bcopy up.h"

Functions

� GM ENTRY POINT void gm bcopy (const void � from, void � to, gm size t len)

8.6.1 Detailed Description

8.6.2 Function Documentation

8.6.2.1 GM ENTRY POINT void gm bcopy (const void � from, void � to,
gm size t len)

gm bcopy() copies len bytes starting at from to location to. This function does not
handle overlapping regions.

Parameters:
from (IN) The starting location for the region to be copied.

to (IN) The ending location for the region to be copied.

len (IN) The length in bytes of the region to be copied.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.7 gm blocking receive.c File Reference 107

8.7 gm blocking receive.c File Reference

#include "gm call trace.h"

#include "gm cmp64.h"

#include "gm compiler.h"

#include "gm debug.h"

#include "gm internal.h"

#include "gm set alarm.h"

Functions

� GM ENTRY POINT gm recv event t � gm blocking receive (gm port t � p)

8.7.1 Detailed Description

8.7.2 Function Documentation

8.7.2.1 GM ENTRY POINT gm recv event t � gm blocking receive (gm port t
� p)

gm blocking receive() blocks until there is a receive event and then returns a pointer
to the event. If no send is immediately available, this call suspends the current process
until a receive event is available. As an optimization for applications with one CPU per
CPU-intensive thread, this function polls for receives for one millisecond before sleep-
ing the process, so it is not suited for machines running more than one performance
critical process or thread on the machine.

Return values:
GM SUCCESS Operation completed successfully.

GM NO RECV EVENT Handle all flushed alarm events, which the user never
needs to know about, and which must not cause my alarm to be cancelled or
reset.

GM FLUSHED ALARM EVENT Intercept my alarm.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

108 GM File Documentation

GM ALARM EVENT If our alarm went off, block. Be careful to not handle any
other alarms at this time since we are not passing the GM ALARM EVENT
to the user and we want to maintain the semantics that user alarms are called
only inside gm unknown() when it is called by the user.

Parameters:
p (IN) The GM port in use.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.8 gm blocking receive no spin.c File Reference 109

8.8 gm blocking receive no spin.c File Reference

#include "gm call trace.h"

#include "gm cmp64.h"

#include "gm debug.h"

#include "gm internal.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT gm recv event t � gm blocking receive no spin (gm -
port t � p)

8.8.1 Detailed Description

8.8.2 Function Documentation

8.8.2.1 GM ENTRY POINT gm recv event t � gm blocking receive no spin
(gm port t � p)

gm blocking receive no spin() behaves just like gm blocking receive(), only it sleeps
the current thread immediately if no receive is pending. It is well suited to applications
with more than one CPU-intensive thread per processor.

Return values:
GM SUCCESS Operation completed successfully.

GM NO RECV EVENT

GM WAKE REQUEST EVENT

GM SLEEP EVENT

Parameters:
p (IN) The GM port in use.

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

110 GM File Documentation

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.9 gm bzero.c File Reference 111

8.9 gm bzero.c File Reference

#include "gm config.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT void gm bzero (void � ptr, gm size t len)

8.9.1 Detailed Description

8.9.2 Function Documentation

8.9.2.1 GM ENTRY POINT void gm bzero (void � ptr, gm size t len)

gm bzero() clears the len bytes of memory starting at ptr. This function does not use
partword I/O unless it must (for speed, especially when doing PIO), and does not rely
on the system bzero() functionality, which may not be safe for PIO mapped memory.

Parameters:
ptr (IN) The pointer to the memory location.

len (IN) The number of bytes of memory to be bzero’ed.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

112 GM File Documentation

8.10 gm calloc.c File Reference

#include � stdlib.h �

#include "gm call trace.h"

#include "gm internal.h"

#include "gm malloc debug.h"

Functions

� GM ENTRY POINT void � gm calloc (gm size t len, gm size t cnt)

8.10.1 Detailed Description

8.10.2 Function Documentation

8.10.2.1 GM ENTRY POINT void � gm calloc (gm size t len, gm size t cnt)

gm calloc() allocates and clears an array of cnt elements of length len.

Parameters:
len (IN) The number of bytes in each element.

cnt (IN) The number of elements in the array.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.11 gm close.c File Reference 113

8.11 gm close.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm debug open.h"

#include "gm dma malloc.h"

#include "gm enable trace.h"

#include "gm internal.h"

#include "gm ptr hash.h"

#include "gm trace.h"

#include � stdio.h �

Functions

� GM ENTRY POINT void gm close (gm port t � p)

8.11.1 Detailed Description

8.11.2 Function Documentation

8.11.2.1 GM ENTRY POINT void gm close (gm port t � p)

gm close() closes a previously opened port p, and frees all resources associated with
that port.

Parameters:
p (IN) The GM port to be closed.

See also:
gm open gm init gm exit gm finalize gm abort

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

114 GM File Documentation

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.12 gm crc.c File Reference 115

8.12 gm crc.c File Reference

#include "gm internal.h"

#include "gm crc32.h"

Functions

� GM ENTRY POINT unsigned long gm crc (void � ptr, gm size t len)
� GM ENTRY POINT unsigned long gm crc str (const char � ptr)

8.12.1 Detailed Description

This file contains the GM API functions, gm crc() and gm crc str(), which compute 32-
bit CRCs on the contents of memory. These functions are not guaranteed to perform
any particular variant of the CRC-32, but these functions are useful for creating robust
hashing functions.

8.12.2 Function Documentation

8.12.2.1 GM ENTRY POINT unsigned long gm crc (void � ptr, gm size t len)

gm crc() computes a CRC-32 of the indicated range of memory.

Return values:
long

Parameters:
ptr (IN) Pointer to a range of memory.

len (IN) The length of the indicated range of memory.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

116 GM File Documentation

8.12.2.2 GM ENTRY POINT unsigned long gm crc str (const char � ptr)

gm crc str() computes a CRC-32 for the indicated string.

Return values:
long

Parameters:
ptr (IN) Pointer to a string.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.13 gm datagram send.c File Reference 117

8.13 gm datagram send.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm enable fast small send.h"

#include "gm enable trace.h"

#include "gm internal.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm datagram send (gm port t � p, void � message, un-
signed int size, gm size t len, unsigned int priority, unsigned int target node -
id, unsigned int target port id, gm send completion callback t callback, void

� context)

8.13.1 Detailed Description

This file contains the GM API function gm datagram send().

8.13.2 Function Documentation

8.13.2.1 GM ENTRY POINT void gm datagram send (gm port t � p,
void � message, unsigned int size, gm size t len, unsigned int
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

gm datagram send() queues message of length length to be sent unreliably to a buffer
of size size at target port id on target node id. length must be no larger than GM -
MTU. If any network error is encountered while sending the packet, the packet is
silently and immediately dropped. After the packet has been DMA’ed from host mem-
ory, callback(port,context,status) is called inside a user invocation of gm unknown(),
reporting the status of the attempted send.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

118 GM File Documentation

Parameters:
p (IN) The GM port on the source/sender GM node from which the communica-

tion is being sent.

message (IN) The pointer to the data to be communicated.

size (IN) The size of the buffer.

len (IN) The length in bytes of the array.

priority (IN) The priority of the message being communicated.

target node id (IN) The GM node to which the message is being sent.

target port id (IN) The GM port on the destination GM node to which the mes-
sage is being sent.

callback (IN) The function called when the send is complete.

context (IN) Pointer to an integer or to a structure that is passed to the callback
function.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.14 gm datagram send 4.c File Reference 119

8.14 gm datagram send 4.c File Reference

#include "gm internal.h"

#include "gm enable pio sends.h"

#include "gm enable datagrams.h"

#include "gm enable trace.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm datagram send 4 (gm port t � p, gm u32 t data,
unsigned int size, unsigned long len, unsigned int priority, unsigned int target -
node id, unsigned int target port id, gm send completion callback t callback,
void � context)

8.14.1 Detailed Description

This file contains the GM API function gm datagram send 4().

8.14.2 Function Documentation

8.14.2.1 GM ENTRY POINT void gm datagram send 4 (gm port t � p,
gm u32 t data, unsigned int size, unsigned long len, unsigned int
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

gm datagram send 4() queues gm u32 t message of length length to be sent unreli-
ably to a buffer of size size at target port id on target node id. length must be no
larger than GM MTU. If any network error is encountered while sending the packet,
the packet is silently and immediately dropped. After the packet has been DMA’ed
from host memory, callback(port,context,status) is called inside a user invocation of
gm unknown(), reporting the status of the attempted send.

Parameters:
p (IN) The GM port on the source/sender GM node from which the communica-

tion is being sent.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

120 GM File Documentation

data (IN) The pointer to the gm u32 t data to be communicated.

size (IN) The size of the buffer.

len (IN) The length in bytes of the array.

priority (IN) The priority of the message being communicated.

target node id (IN) The GM node to which the message is being sent.

target port id (IN) The GM port on the destination GM node to which the mes-
sage is being sent.

callback (IN) The function called when the send is complete.

context (IN) Pointer to an integer or to a structure that is passed to the callback
function.

See also:
gm datagram send

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.15 gm debug buffers.c File Reference 121

8.15 gm debug buffers.c File Reference

#include "gm debug.h"

#include "gm internal.h"

#include � stdio.h �

Functions

� GM ENTRY POINT int gm unregister buffer (void � addr, int size)
� GM ENTRY POINT void gm register buffer (void � addr, int size)
� GM ENTRY POINT void gm dump buffers (void)

8.15.1 Detailed Description

This file contains the GM API functions gm register buffer(), gm unregister buffer(),
gm dump buffers().

8.15.2 Function Documentation

8.15.2.1 GM ENTRY POINT int gm unregister buffer (void � addr, int size)

gm unregister buffer() unregistered a GM buffer.

Return values:
1

0

Parameters:
addr (IN) Address of data to be freed.

size (IN) Size of buffer to be freed.

Author:
??

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

122 GM File Documentation

8.15.2.2 GM ENTRY POINT void gm register buffer (void � addr, int size)

gm register buffer() registered a GM buffer.

Return values:
1

0

Parameters:
addr (IN) Address of data to be registered.

size (IN) Size of buffer to be registered.

Author:
??

Version:
GM API VERSION (as defined in gm.h)

8.15.2.3 GM ENTRY POINT void gm dump buffers (void)

gm dump buffers()

Author:
??

Version:
GM API VERSION (as defined in gm.h)

8.15.3 Variable Documentation

8.15.3.1 GM ENTRY POINT char � gm buf status name[]

Initial value:

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.15 gm debug buffers.c File Reference 123

{
"gm_in_send",
"gm_in_recv",
"gm_in_app",
"gm_invalid_status",

}

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

124 GM File Documentation

8.16 gm deregister.c File Reference

#include "gm call trace.h"

#include "gm compiler.h"

#include "gm debug.h"

#include "gm debug mem register.h"

#include "gm internal.h"

#include "gm io.h"

#include "gm lanai command.h"

Functions

� GM ENTRY POINT gm status t gm deregister memory (gm port t � p, void
� ptr, gm size t length)

8.16.1 Detailed Description

This file contains the GM API function gm deregister memory().

8.16.2 Function Documentation

8.16.2.1 GM ENTRY POINT gm status t gm deregister memory (gm port t �
p, void � ptr, gm size t length)

gm deregister memory() deregisters len bytes of user virtual that were previously
registered for DMA transfers with a matching call to gm register memory() using
pvma.

Return values:
GM SUCCESS Operation completed successfully.

GM FAILURE

Parameters:
p (IN) The GM port in use.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.16 gm deregister.c File Reference 125

pvma (IN) The pvma used to register the memory to now be deregistered.

length (IN) The number of bytes in the array to be deregistered.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

126 GM File Documentation

8.17 gm directcopy.c File Reference

#include "gm debug.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT gm status t gm directcopy get (struct gm port � p, void
� source addr, void � target addr, gm size t length, unsigned int source instance -
id, unsigned int source port id)

8.17.1 Detailed Description

This file contains the GM API function gm directcopy get().

8.17.2 Function Documentation

8.17.2.1 GM ENTRY POINT gm status t gm directcopy get (struct gm port �
p, void � source addr, void � target addr, gm size t length, unsigned int
source instance id, unsigned int source port id)

gm directcopy get() copies data of length length bytes, specified at the address
source addr of the local process using the port port id of the board source instance -
id to the memory area specified at the address target addr of the current process.
This implementation bypasses all of the protection of the operating system to provide
a memory copy from one process’s memory space to another one. The memory areas
must have been registered by GM prior to calling this function in order to lock mem-
ory pages at their physical locations. There are no alignment or length constraints but
the maximum performance will be reached with aligned addresses on both sides. This
function is supported exclusively on Linux.

Return values:
GM SUCCESS Operation completed successfully.

GM FAILURE Error occurred.

Parameters:
p (IN) Handle to the GM port.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.17 gm directcopy.c File Reference 127

source addr (IN) Address of the data to be copied.

target addr (IN) Target address of the copied data.

length (IN) The length (in bytes) of the area to be copied.

source instance id (IN) The id of the interface.

source port id (IN) The port id of the interface.

Author:
Patrick Geoffray

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

128 GM File Documentation

8.18 gm directed send.c File Reference

#include "gm.h"

#include "gm debug.h"

#include "gm enable put.h"

#include "gm internal.h"

#include "gm send queue.h"

8.18.1 Detailed Description

This file contains the GM API function gm directed send().

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.19 gm dma calloc.c File Reference 129

8.19 gm dma calloc.c File Reference

#include "gm internal.h"

#include "gm call trace.h"

Functions

� GM ENTRY POINT void � gm dma calloc (struct gm port � p, gm size t count,
gm size t length)

8.19.1 Detailed Description

This file contains the GM API function gm dma calloc().

8.19.2 Function Documentation

8.19.2.1 GM ENTRY POINT void � gm dma calloc (struct gm port � p,
gm size t count, gm size t length)

gm dma calloc() allocates and clears count � length bytes of DMAable memory
aligned on a 4-byte boundary. Memory should be freed using gm dma free().

Parameters:
p (IN) Handle to the GM port.

count (IN) The number of elements to be calloc’ed.

length (IN) The size of each element to be calloc’ed.

See also:
gm dma malloc gm dma free

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

130 GM File Documentation

8.20 gm dma malloc.c File Reference

#include "gm call trace.h"

#include "gm compiler.h"

#include "gm debug.h"

#include "gm debug mem register.h"

#include "gm internal.h"

#include "gm malloc debug.h"

#include "gm register recv queue.h"

Functions

� GM ENTRY POINT void gm dma free (gm port t � p, void � addr)
� GM ENTRY POINT void � gm dma malloc (struct gm port � p, gm size -

t length)

8.20.1 Detailed Description

This file includes source for the user-level API calls gm dma malloc() and
gm dma free().

8.20.2 Function Documentation

8.20.2.1 GM ENTRY POINT void gm dma free (gm port t � p, void � addr)

gm dma free() frees p, which was allocated by a call to gm dma calloc() or
gm dma malloc(). Note that the memory is not necessarily unlocked and returned
to the operating system, but may be reused in future calls to gm dma calloc() or
gm dma malloc().

Parameters:
p (IN) The GM port.

addr (IN) The address of the memory to be freed.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.20 gm dma malloc.c File Reference 131

See also:
gm dma calloc gm dma malloc

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.20.2.2 GM ENTRY POINT void � gm dma malloc (struct gm port � p,
gm size t length)

gm dma malloc() allocates length bytes of DMAable memory aligned on a 4-byte
boundary. Memory should be freed using gm dma free().

Parameters:
p (IN) Handle to the GM port.

length (IN) The number of bytes to be malloc’ed.

See also:
gm dma calloc gm dma free

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

132 GM File Documentation

8.21 gm drop sends.c File Reference

#include "gm internal.h"

#include " gm modsend.h"

Functions

� GM ENTRY POINT void gm drop sends (struct gm port � port, un-
signed int priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

8.21.1 Detailed Description

This file contains the GM API function gm drop sends().

8.21.2 Function Documentation

8.21.2.1 GM ENTRY POINT void gm drop sends (struct gm port � port,
unsigned int priority, unsigned int target node id, unsigned int
target port id, gm send completion callback t callback, void � context)

gm drop sends() drops all enqueued sends for port of priority priority destined for
target port id of target node id to be dropped, and reenable packet transmission on
that connection. This function should only be called after an error is reported to a send
completion callback routine. The first four parameters must match those of the failed
send. It should be called only once per reported error. This function requires a send
token, which will be returned to the client in the callback function. The dropped sends
will then be returned to the client with a status of GM SEND DROPPED.

gm drop sends() and gm resume sending(), as most gm requests, require a send token,
and the callback you give to them is just meant to return this token. These gm requests
always succeed (if called in a valid manner), so the callback will always be called with
GM SUCCESS (which here does not mean at all that something was sent successfully,
just that the request has been taken into account, and the token used for that request
was recycled).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.21 gm drop sends.c File Reference 133

Parameters:
port (IN) The handle to the GM port.

priority (IN) The priority of the message.

target node id (IN) The GM node to which the message is being sent.

target port id (IN) The GM port on the destination GM node to which the mes-
sage was sent.

callback (IN) The function called when the send is complete.

context (IN) Pointer to an integer or to a structure that is passed to the callback
function.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

134 GM File Documentation

8.22 gm eprintf.c File Reference

#include "gm config.h"

#include "gm.h"

#include "gm debug.h"

Functions

� GM ENTRY POINT int gm eprintf (const char � format,...)

8.22.1 Detailed Description

8.22.2 Function Documentation

8.22.2.1 GM ENTRY POINT int gm eprintf (const char � format, ...)

gm eprintf() emulates or invokes the ANSI standard vprintf() function.

Return values:
0 Operation completed successfully.

Parameters:
format Specifies how the variable-length arguments are converted for output.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.23 gm exit.c File Reference 135

8.23 gm exit.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm internal.h"

#include "gm malloc debug.h"

Functions

� GM ENTRY POINT void gm exit (gm status t status)

8.23.1 Detailed Description

8.23.2 Function Documentation

8.23.2.1 GM ENTRY POINT void gm exit (gm status t status)

gm exit() causes the current process to exit with a status appropriate to the GM status
code status.

Parameters:
status (IN) The GM status code, as specified in gm.h.

See also:
gm init gm open gm close gm finalize gm abort

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

136 GM File Documentation

8.24 gm flush alarm.c File Reference

#include "gm call trace.h"

#include "gm internal.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm flush alarm (gm port t � p)

8.24.1 Detailed Description

This file contains the GM API function gm flush alarm().

8.24.2 Function Documentation

8.24.2.1 GM ENTRY POINT void gm flush alarm (gm port t � p)

gm flush alarm() flushes the alarm queue.

Parameters:
p (IN) The GM port.

See also:
gm set alarm gm initialize alarm gm cancel alarm

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.25 gm free.c File Reference 137

8.25 gm free.c File Reference

#include � stdlib.h �

#include "gm call trace.h"

#include "gm debug malloc.h"

#include "gm internal.h"

#include "gm malloc debug.h"

Functions

� GM ENTRY POINT void gm free (void � ptr)

8.25.1 Detailed Description

This file contains the GM API function gm free().

8.25.2 Function Documentation

8.25.2.1 GM ENTRY POINT void gm free (void � ptr)

gm free() frees the memory buffer at ptr, which was previously allocated by
gm malloc(), or gm calloc().

Parameters:
ptr (IN) Address of the memory to be freed.

See also:
gm malloc gm calloc

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

138 GM File Documentation

8.26 gm free send token.c File Reference

#include "gm internal.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm free send token (gm port t � p, unsigned priority)

8.26.1 Detailed Description

This file contains the GM API function gm free send token().

8.26.2 Function Documentation

8.26.2.1 GM ENTRY POINT void gm free send token (gm port t � p,
unsigned priority)

gm free send token() increments a free send token of priority for port so that it can
later be allocated using gm alloc send token(). Clients may choose to maintain their
own count of send tokens in the client’s possession instead of using this utility func-
tion.

Parameters:
p

priority

See also:
gm alloc send token gm free send tokens

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.27 gm free send tokens.c File Reference 139

8.27 gm free send tokens.c File Reference

#include "gm internal.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm free send tokens (gm port t � p, unsigned prior-
ity, unsigned count)

8.27.1 Detailed Description

This file contains the GM API function gm free send tokens().

8.27.2 Function Documentation

8.27.2.1 GM ENTRY POINT void gm free send tokens (gm port t � p,
unsigned priority, unsigned count)

gm free send tokens() increments a count of free send tokens of priority for port
so that it can later be allocated using gm alloc send token(). Clients may choose to
maintain their own count of send tokens in the client’s possession instead of using this
utility function.

Parameters:
p

priority

count

See also:
gm alloc send token gm free send token

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

140 GM File Documentation

8.28 gm get.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm enable get.h"

#include "gm internal.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm get (gm port t � p, gm remote ptr t re-
mote buffer, void � local buffer, unsigned long len, enum gm priority
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

8.28.1 Detailed Description

This file contains the GM API function gm get().

8.28.2 Function Documentation

8.28.2.1 GM ENTRY POINT void gm get (gm port t � p, gm remote ptr t
remote buffer, void � local buffer, unsigned long len, enum gm priority
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

gm get() performs an RDMA Read operation.

gm get() transfers the len bytes at remote buffer to target port id on target node id
with priority priority and stores the data at the local virtual memory address local -
buffer. Call callback(port,context,status) when the receive completes or fails, with
status indicating the status of the receive.

Parameters:
p (IN) The GM port on the destination GM node to which the communication is

being received.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.28 gm get.c File Reference 141

remote buffer (IN) Address of the remote buffer.

local buffer (OUT) Address of the local buffer.

len (IN) The length in bytes of the buffer to be received.

priority (IN) The priority of the data being received.

target node id (IN) The GM node to which the data is being received.

target port id (IN) The GM port on the destination GM node to which the mes-
sage is being received.

callback (IN) The function called when the receive is complete.

context (IN) Pointer to an integer or to a structure that is passed to the callback
function.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

142 GM File Documentation

8.29 gm get host name.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT gm status t gm get host name (gm port t � port, char
name[GM MAX HOST NAME LEN])

8.29.1 Detailed Description

This file contains the GM API function gm get host name().

8.29.2 Function Documentation

8.29.2.1 GM ENTRY POINT gm status t gm get host name (gm port t � port,
char name[GM MAX HOST NAME LEN])

gm get host name() copies the host name of the local node to name.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
port (IN) The GM port.

name (OUT) The host name of the GM node.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.30 gm get mapper unique id.c File Reference 143

8.30 gm get mapper unique id.c File Reference

#include "gm internal.h"

Functions

� gm status t gm get mapper unique id (struct gm port � port, char � id)

8.30.1 Detailed Description

This file contains the GM API function gm get mapper unique id().

8.30.2 Function Documentation

8.30.2.1 gm status t gm get mapper unique id (struct gm port � port, char � id)

gm get mapper unique id() copies the 6-byte ethernet address of the network interface
card associated with port to the buffer at id.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
port (IN) The GM port associated with a specific network interface card.

id (OUT) Buffer to which the 6-byte ethernet address (GM GET MAPPER -
UNIQUE ID) is copied.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

144 GM File Documentation

8.31 gm get node id.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT gm status t gm get node id (gm port t � port, unsigned int
� node id)

8.31.1 Detailed Description

This file contains the GM API function gm get node id.c

8.31.2 Function Documentation

8.31.2.1 GM ENTRY POINT gm status t gm get node id (gm port t � port,
unsigned int � node id)

gm get node id() copies the GM ID of the network interface card associated with port
to the address node id.

Return values:
GM SUCCESS Operation completed successfully

GM NODE ID NOT YET SET The GM node ID has not been set.

Parameters:
port (IN) The GM port.

node id (OUT) Address to copy the GM ID.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.32 gm get node type.c File Reference 145

8.32 gm get node type.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT gm status t gm get node type (gm port t � port, int
� node type)

8.32.1 Detailed Description

This file contains the GM API function gm get node type().

8.32.2 Function Documentation

8.32.2.1 GM ENTRY POINT gm status t gm get node type (gm port t � port,
int � node type)

gm get node type() does something.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
port (IN) The GM port.

node type (OUT) GM GET NODE TYPE, the Big Endian, Little Endian-
ness???.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

146 GM File Documentation

8.33 gm get port id.c File Reference

#include "gm compiler.h"

#include "gm debug.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT unsigned int gm get port id (gm port t � p)

8.33.1 Detailed Description

8.33.2 Function Documentation

8.33.2.1 GM ENTRY POINT unsigned int gm get port id (gm port t � p)

gm get port id() returns the id of the GM port p.

Return values:
port id The id of the GM port.

Parameters:
p (IN) The GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.34 gm get unique board id.c File Reference 147

8.34 gm get unique board id.c File Reference

#include "gm internal.h"

Functions

� gm status t gm get unique board id (gm port t � port, char unique[6])

8.34.1 Detailed Description

This file contains the GM API function gm get unique board id().

8.34.2 Function Documentation

8.34.2.1 gm status t gm get unique board id (gm port t � port, char unique[6])

gm get unique board id() copies the 6-byte MAC address of the network interface card
associated with port to the buffer at unique.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
port (IN) The GM port associated with a specific network interface card.

unique (OUT) Buffer to which the 6-byte MAC address (GM GET UNIQUE -
BOARD ID) is copied.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

148 GM File Documentation

8.35 gm getpid.c File Reference

#include "gm config.h"

#include "gm.h"

Functions

� gm pid t gm getpid (void)

8.35.1 Detailed Description

This file contains the GM API function gm getpid().

8.35.2 Function Documentation

8.35.2.1 gm pid t gm getpid (void)

gm getpid() is a cover for the usual Unix getpid() functionality.

Return values:
gm pid t The process ID of the parent of the current process.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.36 gm handle sent tokens.c File Reference 149

8.36 gm handle sent tokens.c File Reference

#include "gm debug.h"

#include "gm internal.h"

8.36.1 Detailed Description

This file contains the GM API function gm handle sent tokens() and is deprecated and
included only for backward compatibility. Use gm unknown() instead.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

150 GM File Documentation

8.37 gm hash.c File Reference

#include "gm call trace.h"

#include "gm compiler.h"

#include "gm crc32.h"

#include "gm debug.h"

#include "gm internal.h"

Data Structures

� struct gm hash entry
� struct gm hash segment
� struct gm hash

Typedefs

� typedef gm hash entry gm hash entry t
� typedef gm hash segment gm hash segment t
� typedef gm hash gm hash t

Functions

� GM ENTRY POINT struct gm hash � gm create hash (long(� gm user -
compare)(void � key1, void � key2), unsigned long(� gm user hash)(void � key),
gm size t key len, gm size t data len, gm size t min cnt, int flags)

� GM ENTRY POINT void gm destroy hash (struct gm hash � hash)
� GM ENTRY POINT void � gm hash remove (gm hash t � hash, void � key)
� GM ENTRY POINT void � gm hash find (gm hash t � hash, void � key)
� GM ENTRY POINT void gm hash rekey (gm hash t � hash, void � old key,

void � new key)
� GM ENTRY POINT gm status t gm hash insert (gm hash t � hash, void � key,

void � data)
� GM ENTRY POINT long gm hash compare strings (void � key1, void � key2)
� GM ENTRY POINT unsigned long gm hash hash string (void � key)
� GM ENTRY POINT long gm hash compare longs (void � key1, void � key2)
� GM ENTRY POINT unsigned long gm hash hash long (void � key)
� GM ENTRY POINT long gm hash compare ints (void � key1, void � key2)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.37 gm hash.c File Reference 151

� GM ENTRY POINT unsigned long gm hash hash int (void � key)
� GM ENTRY POINT long gm hash compare ptrs (void � key1, void � key2)
� GM ENTRY POINT unsigned long gm hash hash ptr (void � key)

8.37.1 Detailed Description

This file contains the GM API functions gm create hash(), gm destroy hash(),
gm hash remove(), gm hash find(), gm hash insert(), gm hash rekey(),
gm hash compare strings(), gm hash hash string(), gm hash compare longs(),
gm hash hash long(), gm hash compare ints(), gm hash hash int(), gm hash -
compare ptr(), gm hash hash ptr().

This module implements a generic hash table. It uses lookaside lists to ensure efficient
memory allocation in the kernel.

GM implements a generic hash table with a flexible interface. This module can au-
tomatically manage storage of fixed-size keys and/or data, or can allow the client to
manage storage for keys and/or data. It allows the client to specify arbitrary hashing
and comparison functions.

For example,

hash = gm_create_hash (gm_hash_compare_strings, gm_hash_hash_string,
0, 0, 0, 0);

creates a hash table that uses null-terminated character string keys residing in client-
managed storage, and returns pointers to data in client-managed storage. In this case,
all pointers to hash keys and data passed by GM to the client will be the same as the
pointers passed by the client to GM.

As another example,

hash = gm_create_hash (gm_hash_compare_ints, gm_hash_hash_int,
sizeof (int), sizeof (struct my_big_struct),
100, 0);

creates a hash table that uses ‘ints’ as keys and returns pointers to copies of the inserted
structures. All storage for the keys and data is automatically managed by the hash
table. In this case, all pointers to hash keys and data passed by GM to the client will
point to GM-managed buffers. This function also preallocates enough storage for 100
hash entries, guaranteeing that at least 100 key/data pairs can be inserted in the table if
the hash table creation succeeds.

The automatic storage management option of GM not only is convenient, but also is
extremely space efficient for keys and data no larger than a pointer, because when

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

152 GM File Documentation

keys and data are no larger than a pointer, GM automatically stores them in the space
reserved for the pointer to the key or data, rather than allocating a separate buffer.

Note that all keys and data buffers are referred to by pointers, not by value. This allows
keys and data buffers of arbitrary size to be used. As a special (but common) case,
however, one may wish to use pointers as keys directly, rather than use what they point
to. In this special case, use the following initialization, and pass the keys (pointers)
directly to the API, rather than the usual references to the keys.

hash = gm_create_hash (gm_hash_compare_ptrs, gm_hash_hash_ptr,
0, DATA_LEN, MIN_CNT, FLAGS);

While it is possible to specify a KEY LEN of ‘sizeof (void �)’ during initialization
and treat pointer keys just like any other keys, the API above is more efficient, more
convenient, and completely architecture independent.

8.37.2 Typedef Documentation

8.37.2.1 typedef struct gm hash entry gm hash entry t

A hash table entry.

8.37.2.2 typedef struct gm hash segment gm hash segment t

Structure representing a segment of allocated hash table bins. To double the size of the
hash table, we allocate a new segment with just enough bins to double the number of
bins in the hash table an prepend it to the list of hash segments. This way, we don’t have
to double-buffer the hash table while growing it, and we can grow the table closer to the
limits of available memory. While we sometimes have to walk the O(log(N))-segment
list to find a bin, the average lookup only looks at O(2) segments, so operations are still
constant-average-time as expected for hash tables.

8.37.2.3 typedef struct gm hash gm hash t

The state of a GM hash table, referenced by the client only using opaque pointers.

8.37.3 Function Documentation

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.37 gm hash.c File Reference 153

8.37.3.1 GM ENTRY POINT struct gm hash � gm create hash (long(�
gm user compare)(void � key1, void � key2), unsigned long(�
gm user hash)(void � key), gm size t key len, gm size t data len,
gm size t min cnt, int flags)

gm create hash() returns a newly-created ‘gm hash’ structure or ‘0’ if the hash table
could not be created.

Return values:
gm hash Handle to the hash table.

Parameters:
gm user compare (IN) The function used to compare keys and may be any

of gm hash compare ints, gm hash compare longs, gm hash compare -
ptrs, gm hash compare strings, or may be a client-defined function.

gm user hash (IN) The function to be used to hash keys and may be any of gm -
hash hash int, gm hash hash long, gm hash hash ptr, gm hash hash -
string, or may be a client-defined function.

key len (IN) Specifies the length of the keys to be used for the hash table, or ‘0’
if the keys should not be copied into GM-managed buffers.

data len (IN) Specifies the length of the data to be stored in the hash table, or ‘0’
if the data should not be copied into GM-managed buffers.

min cnt (IN) Specifies the number of entries for which storage should be preallo-
cated.

flags (IN) Should be ‘0’ because no flags are currently defined.

See also:
gm destroy hash

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.37.3.2 GM ENTRY POINT void gm destroy hash (struct gm hash � hash)

gm destroy hash() frees all resources associated with the hash table, except for any
client-allocated buffers.

Parameters:
hash (IN) Handle to the hash table.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

154 GM File Documentation

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.37.3.3 GM ENTRY POINT void � gm hash remove (gm hash t � hash, void �
key)

gm hash remove() removes an entry associated with KEY from the hash table HASH
and returns a pointer to the data associated with the key, or ‘0’ if no match exists. If
the data resides in a GM-managed buffer, it is only guaranteed to be valid until the next
operation on the hash table.

Parameters:
hash (IN) Pointer to the hash table.

key (IN) The key for the hash table.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.37.3.4 GM ENTRY POINT void � gm hash find (gm hash t � hash, void �
key)

gm hash find() finds an entry associated with KEY from the hash table HASH and
returns a pointer to the data associated with the key, or ‘0’ if no match exists.

Parameters:
hash (IN) Pointer to the hash table.

key (IN) The key for the hash table.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.37 gm hash.c File Reference 155

8.37.3.5 GM ENTRY POINT void gm hash rekey (gm hash t � hash, void �
old key, void � new key)

gm hash rekey() finds each entry with key OLD KEY and changes the key used to
store the data to NEW KEY. This call is guaranteed to succeed.

Parameters:
hash (IN) Pointer to the hash table.

old key (IN) The previous key for the hash table.

new key (IN) The new key for the hash table.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.37.3.6 GM ENTRY POINT gm status t gm hash insert (gm hash t � hash,
void � key, void � data)

gm hash insert() stores the association of KEY and DATA in the hash table HASH.
The key ‘ � ’KEY (or data ‘ � ’DATA) is copied into the hash table unless the table was
initialized with a KEY LEN (or DATA LEN) of 0.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
hash (IN) Pointer to the hash table.

key (IN) The key for the hash table.

data (IN) Data to be inserted.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

156 GM File Documentation

8.37.3.7 GM ENTRY POINT long gm hash compare strings (void � key1, void
� key2)

gm hash compare strings() is the function used to compare two strings.

Return values:
long

Parameters:
key1 (IN) The key for the first string.

key2 (IN) The key for the second string.

See also:
gm hash compare ints gm hash compare longs gm hash compare ptrs

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.37.3.8 GM ENTRY POINT unsigned long gm hash hash string (void � key)

gm hash hash string() is the function used to hash keys.

Return values:
long

Parameters:
key (IN) The key for the string in the hash table.

See also:
gm hash compare string gm hash hash int gm hash hash long gm hash hash ptr

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.37 gm hash.c File Reference 157

8.37.3.9 GM ENTRY POINT long gm hash compare longs (void � key1, void �
key2)

gm hash compare longs() is the function used to compare two longs.

Return values:
long

Parameters:
key1 (IN)

key2 (IN)

See also:
gm hash compare ints gm hash compare strings gm hash compare ptrs

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.37.3.10 GM ENTRY POINT unsigned long gm hash hash long (void � key)

gm hash hash long() is the function used to hash keys.

Return values:
long

Parameters:
key (IN)

See also:
gm hash compare long gm hash hash int gm hash hash string gm hash hash ptr

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

158 GM File Documentation

8.37.3.11 GM ENTRY POINT long gm hash compare ints (void � key1, void �
key2)

gm hash compare ints() is the function used to compare two ints.

Return values:
long

Parameters:
key1 (IN) The key for the first int.

key2 (IN) The key for the second int.

See also:
gm hash compare longs gm hash compare strings gm hash compare ptrs

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.37.3.12 GM ENTRY POINT unsigned long gm hash hash int (void � key)

gm hash hash int() is the function used to hash keys.

Return values:
long

Parameters:
key (IN)

See also:
gm hash compare int gm hash hash ptr gm hash hash long gm hash hash string

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.37 gm hash.c File Reference 159

8.37.3.13 GM ENTRY POINT long gm hash compare ptrs (void � key1, void �
key2)

gm hash compare ptrs() is the function used to compare two ptrs.

Return values:
long

Parameters:
key1 (IN) The key for the first ptr.

key2 (IN) The key for the second ptr.

See also:
gm hash compare longs gm hash compare strings gm hash compare ints

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.37.3.14 GM ENTRY POINT unsigned long gm hash hash ptr (void � key)

gm hash hash ptr() is the function used to hash keys.

Return values:
long

Parameters:
key (IN)

See also:
gm hash compare ptr gm hash hash int gm hash hash long gm hash hash string

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

160 GM File Documentation

8.38 gm hex dump.c File Reference

#include "gm config.h"

#include "gm compiler.h"

#include "gm.h"

#include "gm debug.h"

#include "gm internal funcs.h"

Functions

� GM ENTRY POINT void gm hex dump (const void � ptr, gm size t len)

8.38.1 Detailed Description

This file contains the GM API function gm hex dump().

8.38.2 Function Documentation

8.38.2.1 GM ENTRY POINT void gm hex dump (const void � ptr, gm size t
len)

gm hex dump() prints the hex equivalent of data at ptr.

Parameters:
ptr (IN) Address of the data.

len (IN) The length (in bytes) of the data.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.39 gm host name to node id.c File Reference 161

8.39 gm host name to node id.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm debug yp.h"

#include "gm internal.h"

#include "gm lanai command.h"

Functions

� GM ENTRY POINT gm status t gm host name to node id ex (gm port -
t � port, unsigned int timeout usecs, const char � host name, unsigned int

� node id)
� GM ENTRY POINT unsigned int gm host name to node id (gm port t � port,

char � host name)

8.39.1 Detailed Description

The file containing the GM API function gm host name to node id().

8.39.2 Function Documentation

8.39.2.1 GM ENTRY POINT gm status t gm host name to node id ex
(gm port t � port, unsigned int timeout usecs, const char � host name,
unsigned int � node id)

gm host name to node id ex() translates a GM host name to a node ID.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
port (IN) The GM port associated with the specific GM ID.

timeout usecs (IN) The maximum length of time (in microseconds) to query, or
0 to use the default (long) timeout.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

162 GM File Documentation

host name (IN)

node id (OUT) Where to store the node ID.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.39.2.2 GM ENTRY POINT unsigned int gm host name to node id
(gm port t � port, char � host name)

This function is deprecated. Use gm host name to node id ex() instead.

gm host name to node id() returns the GM ID associated host name or GM NO -
SUCH NODE ID in case of an error.

Return values:
GM SUCCESS Operation completed successfully.

GM NO SUCH NODE ID Error.

Parameters:
port (IN) The GM port associated with the specific GM ID.

host name (OUT) Where to store the host name. At most GM MAX HOST -
NAME LEN+1 bytes will be written.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.40 gm init.c File Reference 163

8.40 gm init.c File Reference

#include "gm call trace.h"

#include "gm crc32.h"

#include "gm debug.h"

#include "gm enable security.h"

#include "gm internal.h"

Functions

� gm status t gm init ()
� void gm finalize ()

8.40.1 Detailed Description

This file contains the GM API functions gm init() and gm finalize().

8.40.2 Function Documentation

8.40.2.1 gm status t gm init (void)

gm init() initializes GM. It increments the GM initialization counter and initializes GM
if it was uninitialized. This call must be performed before any other GM call and before
any reference to a GM global variable (e.g.: GM PAGE LEN). Each call to gm init()
should be matched by a call to gm finalize().

Return values:
GM SUCCESS Operation completed successfully.

GM FAILURE Error occurred.

See also:
gm finalize gm open gm close gm exit gm abort

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

164 GM File Documentation

Version:
GM API VERSION (as defined in gm.h)

8.40.2.2 void gm finalize (void)

gm finalize() decrements the GM initialization counter and if it becomes zero, frees all
resources associated with GM in the current process. Each call to gm finalize() should
be matched by a call to gm init().

See also:
gm init gm open gm close gm abort gm exit

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.41 gm isprint.c File Reference 165

8.41 gm isprint.c File Reference

#include "gm internal.h"

Functions

� int gm isprint (int c)

8.41.1 Detailed Description

The file containing the GM API function gm isprint().

8.41.2 Function Documentation

8.41.2.1 int gm isprint (int c)

gm isprint() is just like ANSI isprint(), only it works in the kernel and MCP.

Return values:
int The return value is nonzero if the character is a printable character including a

space, and a zero value if not.

Parameters:
c (OUT) Printable character.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

166 GM File Documentation

8.42 gm log2.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT unsigned long gm log2 roundup (unsigned long n)

Variables

� GM ENTRY POINT const unsigned char gm log2 roundup table [257]

8.42.1 Detailed Description

This file contains the GM API functions related to base 2 logarithmic computations.

gm log2 roundup table, gm log2 roundup().

8.42.2 Function Documentation

8.42.2.1 GM ENTRY POINT unsigned long gm log2 roundup (unsigned long
n)

gm log2 roundup() returns the logarithm, base 2, of n, rounding up to the next inte-
ger.

Return values:
LOG

Parameters:
n (IN) The integer for which the logarithm will be computed.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.42 gm log2.c File Reference 167

8.42.3 Variable Documentation

8.42.3.1 GM ENTRY POINT const unsigned char gm log2 roundup table[257]

Initial value:

{
0,
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

}

Log 2 roundup table. (Details).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

168 GM File Documentation

8.43 gm lookaside.c File Reference

#include "gm.h"

#include "gm cache line.h"

#include "gm call trace.h"

#include "gm debug.h"

#include "gm internal.h"

#include "gm malloc debug.h"

#include "gm struct lock.h"

Data Structures

� struct gm lookaside segment
� struct gm lookaside
� struct gm lookaside segment list

Functions

� GM ENTRY POINT void � gm lookaside alloc (struct gm lookaside � l)
� GM ENTRY POINT void � gm lookaside zalloc (struct gm lookaside � l)
� GM ENTRY POINT void gm lookaside free (void � ptr)
� GM ENTRY POINT struct gm lookaside � gm create lookaside (gm size t en-

try len, gm size t min entry cnt)
� GM ENTRY POINT void gm destroy lookaside (struct gm lookaside � l)

8.43.1 Detailed Description

This file contains the GM API functions gm create lookaside(),
gm destroy lookaside(), gm lookaside alloc(), gm lookaside zalloc(), and
gm lookaside free().

This file implements a lookaside list. It is mainly intended to allow efficient memory
allocation of small structures in kernels where the minimum memory allocation is a
page, but is not kernel-specific.

GM implements a lookaside list, which may be used to manage small fixed-length
blocks more efficiently than gm malloc() and gm free(). Lookaside lists can also be

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.43 gm lookaside.c File Reference 169

used to ensure that at least a minimum number of blocks are available for allocation at
all times.

gm lookaside alloc() returns cache-line-aligned buffers, in an attempt to minimize the
cost of accessing data stored in the buffers.

8.43.2 Function Documentation

8.43.2.1 GM ENTRY POINT void � gm lookaside alloc (struct gm lookaside �
l)

gm lookaside alloc() allocates an entry from the lookaside table, with debugging. It
returns a buffer of size ENTRY LEN specified when the entry list L was created, or ‘0’
if the buffer could not be allocated.

Return values:
ptr Buffer of size ENTRY LEN.

Parameters:
l (IN) Handle to the gm lookaside list.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.43.2.2 GM ENTRY POINT void � gm lookaside zalloc (struct gm lookaside �
l)

gm lookaside zalloc() allocates and clear an entry from the lookaside table.

Return values:
ptr

Parameters:
l (IN) Handle to the gm lookaside list.

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

170 GM File Documentation

Version:
GM API VERSION (as defined in gm.h)

8.43.2.3 GM ENTRY POINT void gm lookaside free (void � ptr)

gm lookaside free() schedules an allocated entry to be freed, and actually performs
any scheduled free. It frees a block of memory previously allocated by a call to
gm lookaside alloc(). The contents of the block of memory are guaranteed to be un-
changed until the next operation is performed on the lookaside list.

Parameters:
ptr (IN) Pointer to the entry to be freed.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.43.2.4 GM ENTRY POINT struct gm lookaside � gm create lookaside
(gm size t entry len, gm size t min entry cnt)

gm create lookaside() returns a newly created lookaside list to be used to allocate
blocks of ENTRY LEN bytes. MIN ENTRY CNT entries are preallocated.

Return values:
gm lookaside Handle to the lookaside table.

Parameters:
entry len (IN)

min entry cnt (IN)

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.43 gm lookaside.c File Reference 171

8.43.2.5 GM ENTRY POINT void gm destroy lookaside (struct gm lookaside
� l)

gm destroy lookaside() frees a lookaside list and all associated resources, including
any buffers currently allocated from the lookaside list.

Parameters:
l (IN) Handle to the lookaside table.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

172 GM File Documentation

8.44 gm malloc.c File Reference

#include � stdlib.h �

#include "gm call trace.h"

#include "gm compiler.h"

#include "gm internal.h"

#include "gm malloc debug.h"

#include "gm debug malloc.h"

Functions

� GM ENTRY POINT void � gm malloc (gm size t len)

8.44.1 Detailed Description

This file contains the GM API function gm malloc().

8.44.2 Function Documentation

8.44.2.1 GM ENTRY POINT void � gm malloc (gm size t len)

gm malloc() returns a pointer to the specified amount of memory. In the kernel, the
memory will be nonpageable.

Return values:
ptr Pointer to the specified amount of memory.

Parameters:
len (IN) The length in bytes to be malloc’ed.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.45 gm mark.c File Reference 173

8.45 gm mark.c File Reference

#include "gm.h"

Data Structures

� union gm mark reference
� struct gm mark set

Typedefs

� typedef gm mark reference gm mark reference t

Functions

� GM ENTRY POINT gm status t gm mark (struct gm mark set � set, gm mark t
� m)

� GM ENTRY POINT int gm mark is valid (struct gm mark set � set, gm mark t
� m)

� GM ENTRY POINT void gm unmark (struct gm mark set � set, gm mark t � m)
� GM ENTRY POINT gm status t gm create mark set (struct gm mark set

� � msp, unsigned long cnt)
� GM ENTRY POINT void gm destroy mark set (struct gm mark set � set)
� GM ENTRY POINT void gm unmark all (struct gm mark set � set)

8.45.1 Detailed Description

This file implements a constant-time system for marking memory locations and veri-
fying that they have not been corrupted. All operations have average execution time of
O(1). If enough marks were specified in the call to gm create mark set(), then all op-
erations have worst-case performance of O(1); otherwise, the worst-case performance
is O(N) where N is the number of marks in the mark set.

We do not simply use a magic number as a mark, or a mark set identifier as a mark,
since this technique can lead to false positives where unitialized marks appear valid.
With this system, any localized corruption of a mark or the mark set database will
result in the mark being determined to be invalid. False positives in this system require
that both the mark and mark set database be corrupted in a consistent way, which is
basically impossible.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

174 GM File Documentation

This implementation was inspired by a challenge from John Regehr, who was forward-
ing a challenge from a UVA CS professor, paraphrased as follows: Can you implement
the functionality of an array where initialization, insertion, removal, and test for pre-
sense of an array element each has execution time bounded by a constant, assuming
you are initially provided with a pointer to a sufficient amount of uninitialized mem-
ory. You are only allowed O(N) storage, where N is the max number of entries.” The
anwer is ”Yes” and a lot of the same tricks are used here.

The GM ”mark” API is introduced in GM-1.4. It allows the creation and destruction
of mark sets, which allow mark addition, mark removal, and test for mark in mark set
operations to be performed in constant time. Marks may be members of only one mark
set at a time. Marks have the very unusual property that they need not be initialized
before use.

All operations on marks are extremely efficient. Mark initialization requires zero time.
Removing a mark from a mark set and testing for mark inclusion in a mark set take
constant time. Addition of a mark to a mark set takes O(constant) time, assuming
the marks set was created with support for a sufficient number of marks; otherwise,
it requires O(constant) average time. Finally, creation and destruction of a mark set
take time comperable to the time required for a single call to ‘malloc()’ and ‘free()’,
respectively.

Because marks need not be initialized before use, they can actually be used to deter-
mine if other objects have been initialized. This is done by putting a mark in the object,
and adding the mark to a ”mark set of marks in initialized objects” once the object has
been initialized. This is similar to one common use of ”magic numbers” for debugging
purposes, except that it is immune to the possibility that the uninitialized magic num-
ber contained the magic number before initialization, so such marks can be used for
non-debugging purposes. Therefore, marks can be used in ways that magic numbers
cannot.

Marks have a nice set of properties that each mark in a mark set has a unique value
and if this value is corrupted, then the mark is implicitly removed from the mark set.
This makes marks useful for detecting memory corruption, and are less prone to false
negatives than are magic numbers, which proliferate copies of a single value.

Finally, marks are location-dependent. This means that if a mark is copied, the copy
will not be a member of the mark set.

8.45.2 Typedef Documentation

8.45.2.1 typedef union gm mark reference gm mark reference t

a reference to a mark, or a free entry. The reference is used to validate the mark. That
mark is considered valid if and only if (set- � reference[mark- � tag] == mark).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.45 gm mark.c File Reference 175

8.45.3 Function Documentation

8.45.3.1 GM ENTRY POINT gm status t gm mark (struct gm mark set � set,
gm mark t � m)

gm mark() adds ‘ � MARK’ to SET. Requires O(constant) time if the mark set has pre-
allocated resources for the mark. Otherwise, requires O(constant) average time.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
set (IN) Handle to the GM mark set.

m

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.45.3.2 GM ENTRY POINT int gm mark is valid (struct gm mark set � set,
gm mark t � m)

gm mark is valid() returns nonzero value if ‘ � MARK’ is in SET. Requires O(constant)
time.

Return values:
int

Parameters:
set (IN) Handle to the GM mark set.

m

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

176 GM File Documentation

8.45.3.3 GM ENTRY POINT void gm unmark (struct gm mark set � set,
gm mark t � m)

gm unmark() removes ‘ � MARK’ from SET. Requires O(constant) time.

Parameters:
set (IN) Handle to the GM mark set.

m

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.45.3.4 GM ENTRY POINT gm status t gm create mark set (struct
gm mark set � � msp, unsigned long cnt)

gm create mark set() returns a pointer to a new mark set at SET with enough preal-
located resources to support INIT COUNT. Returns GM SUCCESS on success. Re-
quires time comparable to malloc().

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
msp (IN) Handle to the GM mark set.

cnt

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.45.3.5 GM ENTRY POINT void gm destroy mark set (struct gm mark set �
set)

gm destroy mark set() frees all resources associated with mark set ‘ � SET’. Requires
time comparable to free().

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.45 gm mark.c File Reference 177

Parameters:
set (IN) Handle to the GM mark set.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.45.3.6 GM ENTRY POINT void gm unmark all (struct gm mark set � set)

gm unmark all() unmarks all marks for the mark set, freeing all but the initial number
of preallocated mark references.

Removes all marks from SET. Requires O(constant) time.

Parameters:
set (IN) Handle to the GM mark set.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

178 GM File Documentation

8.46 gm max length for size.c File Reference

#include "gm internal.h"

#include "gm types.h"

Functions

� GM ENTRY POINT gm size t gm max length for size (unsigned int size)

8.46.1 Detailed Description

This file contains the GM API function gm max length for size().

8.46.2 Function Documentation

8.46.2.1 GM ENTRY POINT gm size t gm max length for size (unsigned int
size)

gm max length for size() returns the maximum length of a message that will fit in a
GM buffer of size size.

Return values:
gm size t

Parameters:
size (IN) The size of the GM buffer.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.47 gm max node id.c File Reference 179

8.47 gm max node id.c File Reference

#include "gm call trace.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT gm status t gm max node id (gm port t � port, unsigned
int � n)

8.47.1 Detailed Description

This file contains the GM API function gm max node id().

8.47.2 Function Documentation

8.47.2.1 GM ENTRY POINT gm status t gm max node id (gm port t � port,
unsigned int � n)

gm max node id() stores the maximum GM node ID supported by the network inter-
face card corresponding to port at the address of n.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
port (IN)

n (OUT) Buffer to store the maximum GM node ID.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

180 GM File Documentation

8.48 gm max node id in use.c File Reference

#include "gm call trace.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT gm status t gm max node id in use (gm port t � port, un-
signed int � n)

8.48.1 Detailed Description

This file contains the GM API function gm max node id in use().

This function exists to allow gm board info to have a guess for an upper limit to the
actual number of nodes in the route table Without it, gm board info calls thousands of
gm get route() calls. When debugging, this is really a mess.

8.48.2 Function Documentation

8.48.2.1 GM ENTRY POINT gm status t gm max node id in use (gm port t �
port, unsigned int � n)

gm max node id in use() returns the maximum GM node ID that is in use by the net-
work attached to the port.

Return values:
GM SUCCESS Operation completed successfully.

GM UNATTACHED

Parameters:
port (IN) The GM port.

n (OUT) Buffer containing the maximum GM node ID.

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.48 gm max node id in use.c File Reference 181

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

182 GM File Documentation

8.49 gm memcmp.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT int gm memcmp (const void � a, const void � b, gm size t
len)

8.49.1 Detailed Description

This file contains the GM API function gm memcmp().

8.49.2 Function Documentation

8.49.2.1 GM ENTRY POINT int gm memcmp (const void � a, const void � b,
gm size t len)

gm memcmp() emulates the ANSI memcmp() function.

Return values:
int Returns an integer less than, equal to, or greater than zero if the first len bytes

of a is found, respectively, to be less than, to match, or be greater than the
first len bytes of b.

Parameters:
a (IN) The first memory area for comparison.

b (IN) The second memory area for comparison.

len (IN) The number of bytes to compare.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.50 gm memorize message.c File Reference 183

8.50 gm memorize message.c File Reference

#include "gm debug.h"

#include "gm internal.h"

Functions

� void � gm memorize message (void � message, void � buffer, unsigned len)

8.50.1 Detailed Description

This file contains the GM API function gm memorize message().

8.50.2 Function Documentation

8.50.2.1 void � gm memorize message (void � message, void � buffer, unsigned
len)

gm memorize message() is a wrapper around function memcpy().
gm memorize message() copies a message into a buffer if needed. If message
and buffer differ, gm memorize message(port,message,buffer) copies the message
pointed to by message into the buffer pointed to by buffer. gm memorize message()
returns buffer. This function optionally optimizes the handling of FAST receive
messages as described in ”See Chapter 9 [Receiving Messages].

Return values:
something

Parameters:
message (IN) Address of the message to be copied.

buffer (OUT) Address where the message is to be copied.

len (IN) The length in bytes of the message to be copied.

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

184 GM File Documentation

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.51 gm memset.c File Reference 185

8.51 gm memset.c File Reference

#include "gm config.h"

#include "gm.h"

Functions

� GM ENTRY POINT void � gm memset (void � s, int c, gm size t n)

8.51.1 Detailed Description

8.51.2 Function Documentation

8.51.2.1 GM ENTRY POINT void � gm memset (void � s, int c, gm size t n)

gm memset() reimplements the UNIX function memset().

Return values:
void Returns a pointer to the memory area s.

Parameters:
s (IN) The memory area.

c (IN) The constant byte size.

n (IN) The number of bytes.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

186 GM File Documentation

8.52 gm min message size.c File Reference

#include "gm compiler.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT unsigned int gm min message size (gm port t � p)

8.52.1 Detailed Description

This file contains the GM API function gm min message size().

8.52.2 Function Documentation

8.52.2.1 GM ENTRY POINT unsigned int gm min message size (gm port t �
p)

gm min message size() returns the minimum supported message size. This value is
accessed through the function API to avoid hard-coding it in user applications, allowing
dynamic library upgrades.

Return values:
GM MIN MESSAGE SIZE

Parameters:
p

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.53 gm min size for length.c File Reference 187

8.53 gm min size for length.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT unsigned int gm min size for length (gm size t length)

8.53.1 Detailed Description

This file contains the GM API function gm min size for length().

8.53.2 Function Documentation

8.53.2.1 GM ENTRY POINT unsigned int gm min size for length (gm size t
length)

gm min size for length() returns the minimum GM message buffer size required to
store a message of length length.

Return values:
gm log2 roundup

Parameters:
length (IN) The length of the message.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

188 GM File Documentation

8.54 gm mtu.c File Reference

#include "gm.h"

#include "gm types.h"

Functions

� GM ENTRY POINT unsigned int gm mtu (struct gm port � port)

8.54.1 Detailed Description

This file contains the GM API function gm mtu().

8.54.2 Function Documentation

8.54.2.1 GM ENTRY POINT unsigned int gm mtu (struct gm port � port)

gm mtu() returns the value of GM MTU.

Return values:
GM MTU

Parameters:
port (IN) The handle to the GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.55 gm mutex.c File Reference 189

8.55 gm mutex.c File Reference

#include "gm call trace.h"

#include "gm compiler.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT struct gm mutex � gm create mutex ()
� GM ENTRY POINT void gm destroy mutex (struct gm mutex � mu)
� GM ENTRY POINT void gm mutex enter (struct gm mutex � mu)
� GM ENTRY POINT void gm mutex exit (struct gm mutex � mu)

8.55.1 Detailed Description

This file contains the GM API functions gm create mutex(), gm destroy mutex(),
gm mutex enter(), gm mutex exit().

8.55.2 Function Documentation

8.55.2.1 GM ENTRY POINT struct gm mutex � gm create mutex (void)

gm create mutex() creates a GM mutex.

Return values:
gm mutex (OUT) Handle to the GM mutex.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

190 GM File Documentation

8.55.2.2 GM ENTRY POINT void gm destroy mutex (struct gm mutex � mu)

gm destroy mutex() destroys a GM mutex.

Parameters:
mu (IN) The handle to the GM mutex.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.55.2.3 GM ENTRY POINT void gm mutex enter (struct gm mutex � mu)

gm mutex enter()

Parameters:
mu (IN) The handle to the GM mutex.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.55.2.4 GM ENTRY POINT void gm mutex exit (struct gm mutex � mu)

gm mutex exit()

Parameters:
mu (IN) The handle to the GM mutex.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.56 gm next event peek.c File Reference 191

8.56 gm next event peek.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT int gm next event peek (gm port t � p, gm u16 t � sender)

8.56.1 Detailed Description

This file contains the GM API function gm next event peek().

8.56.2 Function Documentation

8.56.2.1 GM ENTRY POINT int gm next event peek (gm port t � p, gm u16 t
� sender)

gm next event peek() returns the nonzero event type if an event is pending. If the event
is a message receive event, then the sender parameter will be filled with the gmID of the
message sender. If an event is pending a call to any gm receive � () function will return
the event immediately, although gm receive() is preferred in this case for efficiency.

Return values:
gm recv event t Receive event type.

Parameters:
p (IN) The GM port for which the communication is received.

sender

See also:
gm receive pending gm receive

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

192 GM File Documentation

8.57 gm node id to host name.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm debug yp.h"

#include "gm internal.h"

#include "gm lanai command.h"

Functions

� GM ENTRY POINT char � gm node id to host name (gm port t � port, un-
signed int node id)

� GM ENTRY POINT gm status t gm node id to host name ex (gm port t
� port, unsigned int timeout usecs, unsigned int node id, char(� name)[GM -
MAX HOST NAME LEN+1])

8.57.1 Detailed Description

This file contains the GM API functions gm node id to host name() and
gm node id to host name ex().

8.57.2 Function Documentation

8.57.2.1 GM ENTRY POINT char � gm node id to host name (gm port t �
port, unsigned int node id)

This function is deprecated.

gm node id to host name() returns a pointer to the host name of the host containing
the network interface card with GM node id node id. The name referenced by the
returned pointer is only valid until the next GM API call.

Return values:
host name The host name of the host containing the GM node id node id.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.57 gm node id to host name.c File Reference 193

Parameters:
port (IN) The GM port associated with the network interface card.

node id (IN) The GM node id associated with the network interface card.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.57.2.2 GM ENTRY POINT gm status t gm node id to host name ex
(gm port t � port, unsigned int timeout usecs, unsigned int node id,
char � name[GM MAX HOST NAME LEN+1])

Store at � name the host name of the host containing the network interface card with
GM node id node id. The buffer pointed to by name must have at least GM MAX -
HOST NAME LEN+1 bytes of storage.

Return values:
host name The host name of the host containing the GM node id node id.

Parameters:
timeout usecs (IN) The maximum length of time (in microseconds) to query, or

0 to use the default (long) timeout.

port (IN) The GM port associated with the network interface card.

node id (IN) The GM node id associated with the network interface card.

name (OUT) Where to store the pointer to the host name.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

194 GM File Documentation

8.58 gm node id to unique id.c File Reference

#include "gm call trace.h"

#include "gm internal.h"

#include "gm global id.h"

Functions

� GM ENTRY POINT gm status t gm node id to unique id (gm port t � port,
unsigned int node id, char � uid)

8.58.1 Detailed Description

This file contains the GM API function gm global id to unique id().

8.58.2 Function Documentation

8.58.2.1 GM ENTRY POINT gm status t gm node id to unique id (gm port t
� port, unsigned int node id, char � uid)

gm global id to unique id() stores the MAC address for the interface with GM ID n at
unique.

Return values:
GM SUCCESS Operation completed successfully.

GM INVALID PARAMETER

Parameters:
port (IN) A GM port.

node id (IN) The node ID to convert.

uid (OUT) Where to store the unique ID corresponding to node id.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.59 gm num ports.c File Reference 195

8.59 gm num ports.c File Reference

#include "gm compiler.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT unsigned int gm num ports (gm port t � p)

8.59.1 Detailed Description

This file contains the GM API function gm num ports().

8.59.2 Function Documentation

8.59.2.1 GM ENTRY POINT unsigned int gm num ports (gm port t � p)

gm num ports() returns the number of ports supported by this build. Note that this is a
build-time value, and the ’p’ parameter is actually meaningless at the present time.

This value is accessed through the function API to avoid hard-coding it in user appli-
cations, thus allowing dynamic library upgrades.

Return values:
GM NUM PORTS

Parameters:
p (IN) The GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

196 GM File Documentation

8.60 gm num receive tokens.c File Reference

#include "gm compiler.h"

#include "gm debug.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT unsigned int gm num receive tokens (gm port t � p)

8.60.1 Detailed Description

This file contains the GM API function gm num receive tokens().

8.60.2 Function Documentation

8.60.2.1 GM ENTRY POINT unsigned int gm num receive tokens (gm port t
� p)

gm num receive tokens() returns the number of receive tokens for this port. This value
is accessed through the function API to avoid hard-coding it in user applications, al-
lowing dynamic library upgrades.

Return values:
GM NUM RECV TOKENS

Parameters:
p (IN) The GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.61 gm num send tokens.c File Reference 197

8.61 gm num send tokens.c File Reference

#include "gm compiler.h"

#include "gm debug.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT unsigned int gm num send tokens (gm port t � p)

8.61.1 Detailed Description

This file contains the GM API function gm num send tokens().

8.61.2 Function Documentation

8.61.2.1 GM ENTRY POINT unsigned int gm num send tokens (gm port t �
p)

gm num send tokens() returns the number of send tokens for this port. This value is
accessed through the function API to avoid hard-coding it in user applications, allowing
dynamic library upgrades.

Return values:
GM NUM SEND TOKENS

Parameters:
p (IN) The GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

198 GM File Documentation

8.62 gm on exit.c File Reference

#include "gm.h"

#include "gm call trace.h"

#include "gm config.h"

#include "gm internal funcs.h"

Data Structures

� struct gm on exit record

Typedefs

� typedef gm on exit record gm on exit record t

Functions

� GM ENTRY POINT gm status t gm on exit (gm on exit callback t callback,
void � arg)

8.62.1 Detailed Description

This file contains the GM API function gm on exit().

8.62.2 Typedef Documentation

8.62.2.1 typedef struct gm on exit record gm on exit record t

List element storing the details of a callback that should be called upon exit.

8.62.3 Function Documentation

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.62 gm on exit.c File Reference 199

8.62.3.1 GM ENTRY POINT gm status t gm on exit (gm on exit callback t
callback, void � arg)

gm on exit() is like Linux on exit(). This function registers a callback so that ‘CALL-
BACK(STATUS,ARG)’ is called when the program exits. Callbacks are called in the
reverse of the order of registration. This function is also somewhat similar to BSD
‘atexit()’.

Call the callbacks in the reverse order registered inside gm exit(), passing GM exit
status and registered argument to the callback.

Return values:
GM SUCCESS Operation completed successfully.

GM OUT OF MEMORY

Parameters:
callback

arg

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

200 GM File Documentation

8.63 gm open.c File Reference

#include "gm call trace.h"

#include "gm compiler.h"

#include "gm debug.h"

#include "gm debug open.h"

#include "gm internal.h"

#include "gm internal funcs.h"

#include "gm enable ethernet.h"

#include "gm enable security.h"

#include "gm enable trace.h"

#include "gm ptr hash.h"

Functions

� GM ENTRY POINT gm status t gm open (gm port t � � port p, unsigned unit,
unsigned port id, const char � client type, enum gm api version api version)

8.63.1 Detailed Description

The file containing the GM API function gm open().

8.63.2 Function Documentation

8.63.2.1 GM ENTRY POINT gm status t gm open (gm port t � � port p,
unsigned unit, unsigned port id, const char � client type, enum
gm api version api version)

gm open() opens a GM port port p for LANai interface unit, a pointer to the port’s
state at � port p. The pointer must be passed to all subsequent functions that operate
on the opened port. port id is a null-terminated ASCII string that is used to identify
the port client for debugging (and potentially other) purposes; pass in the name of your

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.63 gm open.c File Reference 201

program. Note that unit and port numbers start at 0, and that ports 0 (internal use) and
1 (mapper) and 3 (ethernet emulation) are reserved, so clients should use port 2 and
ports 4-7.

gm open() is to be called by clients other than the daemon and mapper.

Return values:
GM SUCCESS Operation completed successfully.

GM INVALID PARAMETER Invalid parameter passed.

GM BUSY Could not open device.

GM NO SUCH DEVICE port id � GM NUM PORTS - 1.

GM INCOMPATIBLE LIB AND DRIVER The GM user library linked with
this program may not be compatible with the installed driver.

GM OUT OF MEMORY Could not allocate storage for user port.

Parameters:
port p (IN) Pointer to the handle of the GM port.

unit (IN) The device for the Myrinet interface. = 0 if device is myri0.

port id (OUT) The id of the GM port that is opened. = 2, 4, 5, 6, or 7 (Ports 0, 1,
and 3 are for privileged use only.)

client type (IN) Unused.

api version (IN) GM API VERSION = GM API VERSION as defined in gm.h

See also:
gm close gm init gm abort gm finalize gm exit

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

202 GM File Documentation

8.64 gm page alloc.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm internal.h"

#include "gm malloc debug.h"

Data Structures

� struct gm free page
� struct gm page allocation record

Functions

� GM ENTRY POINT void � gm page alloc ()
� GM ENTRY POINT void gm page free (void � ptr)

8.64.1 Detailed Description

This file contains gm page alloc() and gm page free().

These GM API functions allow pages to be allocated and freed.

These modules implement a platform-independent page allocation interface, with au-
tomatic initialization and finalization for use in the kernel.

In some cases, this file uses platform-specific features to implement page allocation
efficiently, but by default this module allocates blocks of pages and keeps a page free
list to recycle freed pages, but the module never frees the blocks of pages until all pages
have been freed.

8.64.2 Function Documentation

8.64.2.1 GM ENTRY POINT void � gm page alloc (void)

gm page alloc() returns a ptr to a newly allocated page-aligned buffer of length GM -
PAGE LEN.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.64 gm page alloc.c File Reference 203

Return values:
ptr Page-aligned buffer of length GM PAGE LEN.

See also:
gm page free

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.64.2.2 GM ENTRY POINT void gm page free (void � ptr)

gm page free() frees the page of memory at ptr previously allocated by
gm page alloc(). If all pages have been freed, free all of the memory allocated for
pages.

Parameters:
ptr (IN) Address of the memory page to be freed.

See also:
gm page alloc

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

204 GM File Documentation

8.65 gm perror.c File Reference

#include "gm debug.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT void gm perror (const char � message, gm status t error)

8.65.1 Detailed Description

This file contains the GM API function gm perror().

8.65.2 Function Documentation

8.65.2.1 GM ENTRY POINT void gm perror (const char � message,
gm status t error)

gm perror() is similar to ANSI perror(), but takes the error code as a parameter to allow
thread safety in future implementations, and only supports GM error numbers. Prints
message followed by a description of errno.

Parameters:
message (OUT) Textual description of the GM error.

error (IN) GM Error code.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.66 gm printf.c File Reference 205

8.66 gm printf.c File Reference

#include "gm config.h"

#include "gm.h"

#include � stdio.h �

Functions

� GM ENTRY POINT int gm printf (const char � format,...)

8.66.1 Detailed Description

8.66.2 Function Documentation

8.66.2.1 GM ENTRY POINT int gm printf (const char � format, ...)

gm printf() emulates or invokes the ANSI standard printf() function.

Return values:
0 Operation completed successfully.

Parameters:
format Specifies how the arguments are converted for output.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

206 GM File Documentation

8.67 gm provide receive buffer.c File Reference

#include "gm debug.h"

#include "gm debug recv tokens.h"

#include "gm internal.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm provide receive buffer with tag (gm port t � p,
void � ptr, unsigned size, unsigned priority, unsigned int tag)

8.67.1 Detailed Description

This file contains the GM API function gm provide receive buffer with tag().

8.67.2 Function Documentation

8.67.2.1 GM ENTRY POINT void gm provide receive buffer with tag
(gm port t � p, void � ptr, unsigned size, unsigned priority, unsigned int
tag)

gm provide receive buffer with tag() provides GM with a buffer into which it can re-
ceive messages with matching size and priority fields. It is the client software’s re-
sponsibility to provide buffers of each size and priority that might be received; not
doing so can cause program deadlock, which will eventually result in a port being
closed after a timeout. This timeout is a function of the number of packets sent.

The client software may provide up to gm num receive tokens() different receive
buffers into which messages may be received.

Each buffer provided by the client software to GM via this function will be used only
once to receive a message. In other words, calling gm provide receive buffer with -
tag(port,buffer,size,priority,tag) provides GM a token to receive a single message of
size size and priority priority into the receive buffer buffer. When a message is even-
tually received into this buffer, gm receive(port) stores the buffer pointer buffer and

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.67 gm provide receive buffer.c File Reference 207

tag in the returned event, returning control of the buffer (token) to the client software.
If the client software wishes for the buffer to be reused for a similar receive, it must
call gm provide receive buffer with tag() again with the same or similar parameters.

Once a buffer has been provided to GM, its content should not be changed until control
of the buffer has been returned to the client software via gm receive().

The tag parameter must be in the range [0,255], and is returned in the receive event
describing a receive into a buffer. It may be used in any way the client desires, and
need not be unique.

Parameters:
p (IN) The GM port.

ptr (IN) The address of the message communicated.

size (IN) The size of the message.

priority (IN) The priority of the message.

tag (OUT) The tag for a receive event queue.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

208 GM File Documentation

8.68 gm put.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm enable put.h"

#include "gm internal.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm put (gm port t � p, void � source buffer,
gm remote ptr t target buffer, unsigned long len, enum gm priority
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

8.68.1 Detailed Description

This file contains the GM API function gm put().

8.68.2 Function Documentation

8.68.2.1 GM ENTRY POINT void gm put (gm port t � p, void � source buffer,
gm remote ptr t target buffer, unsigned long len, enum gm priority
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

gm put() transfers the len bytes at source buffer to target port id on target node id
with priority priority and stores the data at the remote virtual memory address target -
buffer. Call callback(port,context,status) when the send completes or fails, with status
indicating the status of the send. The order of the transfer is preserved relative to
messages of the same priority sent using gm send() or gm send to peer().

Parameters:
p (IN) The GM port on the source/sender GM node from which the communica-

tion is being sent.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.68 gm put.c File Reference 209

source buffer (IN) Address of the send buffer.

target buffer (OUT) Address of the receive buffer.

len (IN) The length in bytes of the buffer to be sent.

priority (IN) The priority of the data being sent.

target node id (IN) The GM node to which the data is being sent.

target port id (IN) The GM port on the destination GM node to which the mes-
sage is being sent.

callback (IN) The function called when the send is complete.

context (IN) Pointer to an integer or to a structure that is passed to the callback
function.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

210 GM File Documentation

8.69 gm rand.c File Reference

#include "gm internal.h"

#include "gm crc32.h"

Functions

� GM ENTRY POINT int gm rand ()
� GM ENTRY POINT void gm srand (int seed)

8.69.1 Detailed Description

This file contains the GM API functions gm rand() and gm srand().

8.69.2 Function Documentation

8.69.2.1 GM ENTRY POINT int gm rand (void)

gm rand() returns a pseudo-random integer, using a poor but fast random number gen-
erator.

Return values:
RANDOM NUMBER The random number that was generated.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.69.2.2 GM ENTRY POINT void gm srand (int seed)

gm srand() returns a pseudo-random integer, and requires a seed for the random num-
ber generator.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.69 gm rand.c File Reference 211

Parameters:
seed (IN) Seed for the random number generator.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

212 GM File Documentation

8.70 gm rand mod.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT unsigned int gm rand mod (unsigned int a)

8.70.1 Detailed Description

8.70.2 Function Documentation

8.70.2.1 GM ENTRY POINT unsigned int gm rand mod (unsigned int a)

gm rand mod() returns a pseudo-random number modulo modulus, using

a poor but fast random number generator.

Return values:
RANDOM NUMBER

Parameters:
a (IN) The modulus bound.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.71 gm receive.c File Reference 213

8.71 gm receive.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm debug recv tokens.h"

#include "gm enable trace.h"

#include "gm internal.h"

#include "gm tick.h"

Functions

� GM ENTRY POINT gm recv event t � gm receive (gm port t � p)
� GM ENTRY POINT gm recv event t � gm receive debug buffers (gm port -

t � port)

8.71.1 Detailed Description

This file contains the GM API functions gm receive() and gm receive debug buffers().

8.71.2 Function Documentation

8.71.2.1 GM ENTRY POINT gm recv event t � gm receive (gm port t � p)

gm receive() returns a receive event. If no significant receive event is pending, then an
event of type GM NO RECV EVENT is immediately returned.

Return values:
gm recv event t

Parameters:
p (IN) The GM port for which the communication is received.

See also:
gm receive pending

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

214 GM File Documentation

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.71.2.2 GM ENTRY POINT gm recv event t � gm receive debug buffers
(gm port t � port)

gm receive debug buffers()

Return values:
gm recv event t

Parameters:
port (IN) The GM port for which the communication is received.

See also:
gm receive pending gm receive

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.72 gm receive pending.c File Reference 215

8.72 gm receive pending.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT int gm receive pending (gm port t � p)

8.72.1 Detailed Description

This file contains the GM API function gm receive pending().

8.72.2 Function Documentation

8.72.2.1 GM ENTRY POINT int gm receive pending (gm port t � p)

gm receive pending() returns nonzero if a receive event is pending. If a receive event
is pending, a call to any gm receive � () function will return the event immediately,
although gm receive() is preferred in this case for efficiency.

Return values:
event.recv.type

Parameters:
p (IN) The GM port for which the received communication is pending.

See also:
gm receive

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

216 GM File Documentation

8.73 gm register.c File Reference

#include "gm call trace.h"

#include "gm compiler.h"

#include "gm debug.h"

#include "gm internal.h"

#include "gm io.h"

#include "gm debug mem register.h"

Functions

� GM ENTRY POINT gm status t gm register memory ex (gm port t � p, void
� ptr, gm size t length, void � pvma)

� GM ENTRY POINT gm status t gm register memory (gm port t � p, void � ptr,
gm size t length)

8.73.1 Detailed Description

This file contains the GM API function gm register memory().

8.73.2 Function Documentation

8.73.2.1 GM ENTRY POINT gm status t gm register memory ex (gm port t �
p, void � ptr, gm size t length, void � pvma)

gm register memory ex() registers length bytes of user virtual memory starting at ptr
for DMA transfers, associating the memory with port virtual address pvma. The mem-
ory is locked down (made nonpageable) and DMAs on the region of memory are en-
abled. Memory may be registered multiple times. Memory may be deregistered using
matching calls to gm deregister memory(). Note that memory registration is an expen-
sive operation relative to sending and receiving packets, so you should use persistent
memory registrations wherever possible. Also note that memory registration is not
supported on Solaris 2.7 and earlier due to operating system limitations.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.73 gm register.c File Reference 217

Note that pvma must be used in all subsequent GM API calls to refer to the registered
memory region.

gm register memory(p,ptr,len) is equivalent to gm register memory -
ex(p,ptr,len,ptr).

Return values:
GM SUCCESS Operation completed successfully.

GM FAILURE

GM PERMISSION DENIED

GM INVALID PARAMETER

GM OUT OF MEMORY

Parameters:
p (IN) Handle to the GM port.

ptr (IN) The address of the memory region to be registered.

length (IN) The length in bytes of the memory region to be registered.

pvma (IN) The port virtual memory address with which to associate this region.

See also:
gm register memory , gm deregister memory

Author:
Glenn Brown

Version:
GM API VERSION 2 0 6

8.73.2.2 GM ENTRY POINT gm status t gm register memory (gm port t � p,
void � ptr, gm size t length)

gm register memory() registers length bytes of user virtual memory starting at ptr for
DMA transfers. The memory is locked down (made nonpageable) and DMAs on the
region of memory are enabled. Memory may be registered multiple times. Memory
may be deregistered using matching calls to gm deregister memory(). Note that mem-
ory registration is an expensive operation relative to sending and receiving packets,
so you should use persistent memory registrations wherever possible. Also note that
memory registration is not supported on Solaris 2.7 and earlier due to operating system
limitations.

Return values:
GM SUCCESS Operation completed successfully.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

218 GM File Documentation

GM FAILURE

GM PERMISSION DENIED

GM INVALID PARAMETER

GM OUT OF MEMORY

Parameters:
p (IN) Handle to the GM port.

ptr (OUT) The address of the memory location to be registered.

length (IN) The length in bytes of the memory location to be registered.

See also:
gm deregister memory , gm register memory ex

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.74 gm resume sending.c File Reference 219

8.74 gm resume sending.c File Reference

#include "gm internal.h"

#include " gm modsend.h"

Functions

� GM ENTRY POINT void gm resume sending (struct gm port � p, un-
signed int priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

8.74.1 Detailed Description

The file contains the GM API function gm resume sending().

8.74.2 Function Documentation

8.74.2.1 GM ENTRY POINT void gm resume sending (struct gm port
� p, unsigned int priority, unsigned int target node id, unsigned int
target port id, gm send completion callback t callback, void � context)

gm resume sending(0 reenables packet transmission of messages from port of priority
priority destined for target port id of target node id. This function should only be
called after an error is reported to a send completion callback routine. The message
that generated the error is not resent. The first four parameters must match those of the
failed send. It should be called only once per reported error. This function requires a
send token, which will be returned to the client in the callback function.

gm resume sending() and gm drop sends(), as most gm requests, require a send token,
and the callback you give to them is just meant to return this token. These gm requests
always succeed (if called in a valid manner), so the callback will always be called with
GM SUCCESS (which here does not mean at all that something was sent successfully,
just that the request has been taken into account, and the token used for that request
was recycled).

Parameters:
p (IN) The handle to the GM port.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

220 GM File Documentation

priority (IN) The priority of the message being sent.

target node id (IN) The GM node to which the message is being sent.

target port id (IN) The GM port on the destination GM node to which the mes-
sage is being sent.

callback (IN) The function called when the send is complete.

context (IN) Pointer to an integer or to a structure that is passed to the callback
function.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.75 gm send.c File Reference 221

8.75 gm send.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm enable fast small send.h"

#include "gm enable trace.h"

#include "gm internal.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm send with callback (gm port t � p, void
� message, unsigned int size, gm size t len, unsigned int priority, unsigned
int target node id, unsigned int target port id, gm send completion callback t
callback, void � context)

8.75.1 Detailed Description

This file contains the GM API functions gm send with callback().

8.75.2 Function Documentation

8.75.2.1 GM ENTRY POINT void gm send with callback (gm port t �
p, void � message, unsigned int size, gm size t len, unsigned int
priority, unsigned int target node id, unsigned int target port id,
gm send completion callback t callback, void � context)

gm send with callback() is a fully asynchronous send. It queues the message of length
len to be sent with priority priority to node target node id. As GM is event-based, the
effective completion of the send is notified to the client software by the execution of
the callback function specified by callback. Before calling gm send with callback(),
the client software must first possess a send token of the same priority, and by calling
gm send with callback() the client implicitly relinquishes this send token. After a call
to gm send with callback(..., message, len, ...), the memory specified by message and

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

222 GM File Documentation

len must not be modified until the send completes. After the send completes, call-
back(port,context,status) will be called inside gm unknown(), with status indicating
the status of the completed send.

Note: The order of messages with different priorities or with different destination ports
is not preserved. Only the order of messages with the same priority and to the same
destination port is preserved.

In the special case that the target port id is the same as the sending port ID (as is
often the case), the streamlined gm send to peer with callback() function may be used
instead of gm send with callback(), allowing the target port id parameter to be omit-
ted, and slightly improving small-message performance.

Parameters:
p (IN) A pointer to the GM port on the source/sender GM node over which the

message is to be sent.

message (IN) A pointer to the data to be sent.

size (IN) The size receive buffer in which to store the message on the remote node.

len (IN) The length (in bytes) of the message to be sent.

priority (IN) The priority with which to send the message (’GM HIGH -
PRIORITY’ or ’GM LOW PRIORITY’).

target node id (IN) The ID of the GM node to which the message should be sent.

target port id (IN) The ID of the GM port to which the message should be sent.

callback (IN) The client function to call when the send completes.

context (IN) A pointer to pass to the CALLBACK function when it is called.

See also:
gm send to peer with callback

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.76 gm send to peer.c File Reference 223

8.76 gm send to peer.c File Reference

#include "gm internal.h"

#include "gm enable fast small send.h"

#include "gm send queue.h"

Functions

� GM ENTRY POINT void gm send to peer with callback (gm port t � p, void
� message, unsigned int size, gm size t len, unsigned int priority, unsigned int
target node id, gm send completion callback t callback, void � context)

8.76.1 Detailed Description

This file contains the GM API function gm send to peer with callback().

8.76.2 Function Documentation

8.76.2.1 GM ENTRY POINT void gm send to peer with callback (gm port t �
p, void � message, unsigned int size, gm size t len, unsigned int priority,
unsigned int target node id, gm send completion callback t callback,
void � context)

gm send to peer with callback() is an asynchronous send like
gm send with callback(), only with the target node id implicitly set to the same
ID as port (sending to the same port). This function is marginally faster than
gm send with callback().

Parameters:
p (IN) A pointer to the GM port over which the message is to be sent.

message (IN) A pointer to the data to be sent.

size (IN) The size receive buffer in which to store the message on the remote node.

len (IN) The length (in bytes) of the message to be sent.

priority (IN) The priority with which to send the message (’GM HIGH -
PRIORITY’ or ’GM LOW PRIORITY’).

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

224 GM File Documentation

target node id (IN) The ID of the GM node to which the message should be sent.

callback (IN) The client function to call when the send completes.

context (IN) A pointer to pass to the CALLBACK function when it is called.

See also:
gm send with callback

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.77 gm send token available.c File Reference 225

8.77 gm send token available.c File Reference

#include "gm internal.h"

Functions

� int gm send token available (gm port t � p, unsigned priority)

8.77.1 Detailed Description

This file contains the GM API function gm send token available().

8.77.2 Function Documentation

8.77.2.1 int gm send token available (gm port t � p, unsigned priority)

gm send token available() tests for the availability of a send token without allocating
the send token. It is similar to the function gm alloc send token(port,priority) without
the allocation.

Return values:
int

Parameters:
p (IN) The GM port on the source/sender GM node from which the communica-

tion would be sent.

priority (IN) The priority of the message to be sent.

See also:
gm alloc send token

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

226 GM File Documentation

8.78 gm set acceptable sizes.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT gm status t gm set acceptable sizes (struct gm port � p,
enum gm priority priority, gm size t mask)

8.78.1 Detailed Description

This file contains the GM API function gm set acceptable sizes().

8.78.2 Function Documentation

8.78.2.1 GM ENTRY POINT gm status t gm set acceptable sizes (struct
gm port � p, enum gm priority priority, gm size t mask)

gm set acceptable sizes() informs GM of the acceptable sizes of GM messages re-
ceived on port p with priority priority. Each set bit of mask indicates an acceptable
size. While calling this function is not required, clients should call it during program
initialization to detect errors involving the reception of badly sized messages to be re-
ported nearly instantaneously, rather than after a substantial delay of 30 seconds or
more.

Note: the MASK is a long to support larger than 2GByte packets (those with size larger
than 31).

Return values:
GM SUCCESS Operation completed successfully.

GM PERMISSION DENIED Port number hasn’t been set.

GM INTERNAL ERROR LANai is not running.

GM INVALID PARAMETER The priority has an invalid value.

Parameters:
p (IN) The GM port in use.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.78 gm set acceptable sizes.c File Reference 227

priority (IN) The priority of the message.

mask

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

228 GM File Documentation

8.79 gm set alarm.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm cmp64.h"

#include "gm internal.h"

#include "gm send queue.h"

#include "gm set alarm.h"

Functions

� GM ENTRY POINT void gm cancel alarm (gm alarm t � my alarm)
� GM ENTRY POINT void gm initialize alarm (gm alarm t � my alarm)
� GM ENTRY POINT void gm set alarm (gm port t � port, gm alarm t � my -

alarm, gm u64 t usecs, void(� callback)(void �), void � context)

8.79.1 Detailed Description

This file includes source for the user-level alarm API calls gm initialize alarm(),
gm set alarm(), and gm cancel alarm().

The alarm API allows the GM client to schedule a callback function to be called af-
ter a delay, specified in microseconds. An unbounded number of alarms may be set,
although alarm overhead increases linearly in the number of set alarms, and the client
must provide storage for each set alarm.

These source for all the functions is included here, because if the user needs one, the
user needs them all.

This code is a bit tricky, since the LANai provides only one alarm per port. This alarm
is used to time the first pending alarm, but if any new alarm is set, then the LANai
alarm must be flushed to find out what time it is and potentially to allow the alarm to
be rescheduled for an earlier time. Therefore, unless no other alarm is set, alarms are
set by adding them to an ”unset alarm” queue, flushing any pending alarm, and then
adding the alarms to the sorted alarm queue only once the pending LANai alarm has
been flushed or triggered.

8.79.2 Function Documentation

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.79 gm set alarm.c File Reference 229

8.79.2.1 GM ENTRY POINT void gm cancel alarm (gm alarm t � my alarm)

gm cancel alarm() cancels a scheduled alarm, or does nothing if an alarm is not sched-
uled. Alarms are cancelled by simply removing them from the alarm list so that when
the next GM ALARM EVENT arrives from the LANai gm handle alarm() will not
find the alarm.

Parameters:
my alarm (IN) Alarm to be cancelled.

See also:
gm initialize alarm gm set alarm gm flush alarm

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.79.2.2 GM ENTRY POINT void gm initialize alarm (gm alarm t �
my alarm)

gm initialize alarm() initializes a client-allocated gm alarm t structure for use with
gm set alarm(). This function should be called after the structure is allocated but before
a pointer to it is passed to gm set alarm() or gm cancel alarm().

Parameters:
my alarm (IN) Alarm to be initialized.

See also:
gm cancel alarm gm set alarm gm flush alarm

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

230 GM File Documentation

8.79.2.3 GM ENTRY POINT void gm set alarm (gm port t � port, gm alarm t
� my alarm, gm u64 t usecs, void(� callback)(void �), void � context)

gm set alarm() sets an alarm, which may already be pending. If it is pending, it is
rescheduled. The user supplies MY ALARM, a pointer to storage for the alarm state,
which has been initialized with gm init alarm my alarm(). When the alarm occurs,
CALLBACK(CONTEXT) is called.

gm set alarm() schedules CALLBACK(CONTEXT) to be called after USEC mi-
croseconds (or later), or reschedule the alarm if it has already been scheduled and
has not yet triggered. CALLBACK must be non-NULL. CONTEXT is treated as an
opaque pointer by GM, and will be passed as the single parameter to the client-supplied
CALLBACK function.

GM clients will also be able to take advantage of the fact that an application is guar-
anteed to receive a single GM ALARM EVENT for each call to a client-supplied
callback, with the corresponding callback occurring during the call to gm unknown()
that processes that alarm. This means that a case statement like the following in the
client’s event loops can be used to significantly reduce the overhead of polling for any
effect of a client supplied alarm callback:

case GM_ALARM_EVENT:
gm_unknown (event);

poll for the effect of alarm callbacks only here

break;

Parameters:
port (IN) A pointer to the GM Port.

my alarm (IN) Alarm to be initialized.

usecs

callback

context

See also:
gm cancel alarm gm initialize alarm gm flush alarm

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.80 gm set enable nack down.c File Reference 231

8.80 gm set enable nack down.c File Reference

#include "gm internal.h"

#include "gm debug.h"

Functions

� gm status t gm set enable nack down (struct gm port � port, int flag)

8.80.1 Detailed Description

This file contains the GM API function gm set enable nack down().

8.80.2 Function Documentation

8.80.2.1 gm status t gm set enable nack down (struct gm port � port, int flag)

gm set enable nack down()

Return values:
GM SUCCESS Operation completed successfully.

GM PERMISSION DENIED

Parameters:
port (IN) Handle to the GM port.

flag

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

232 GM File Documentation

8.81 gm simple example.h File Reference

#include "gm.h"

8.81.1 Detailed Description

Include file for gm simple example send.c and gm simple example recv.c.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.82 gm sleep.c File Reference 233

8.82 gm sleep.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT int gm sleep (unsigned int seconds)

8.82.1 Detailed Description

This file contains the GM API function gm sleep().

8.82.2 Function Documentation

8.82.2.1 GM ENTRY POINT int gm sleep (unsigned int seconds)

gm sleep() emulates the ANSI standard sleep(), sleeping the entire process for seconds
seconds.

Return values:
SLEEP

Parameters:
seconds (IN) The number of seconds for which the process should sleep.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

234 GM File Documentation

8.83 gm strcmp.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT int gm strcmp (const char � a, const char � b)

8.83.1 Detailed Description

This file contains the GM API function gm strcmp().

8.83.2 Function Documentation

8.83.2.1 GM ENTRY POINT int gm strcmp (const char � a, const char � b)

gm strcmp() reimplements strcmp().

Return values:
int Returns an integer less than, equal to, or greater than zero if a is found, respec-

tively, to be less than, to match, or be greater than b.

Parameters:
a The first string to be compared.

b The second string to be compared.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.84 gm strdup.c File Reference 235

8.84 gm strdup.c File Reference

#include "gm.h"

Functions

� GM ENTRY POINT char � gm strdup (const char � in)

8.84.1 Detailed Description

8.84.2 Function Documentation

8.84.2.1 GM ENTRY POINT char � gm strdup (const char � in)

gm strdup() reimplements the UNIX function strdup().

Return values:
char � Returns a pointer to the duplicated string, or NULL if insufficient memory

was available.

Parameters:
in (IN) The string to be duplicated.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

236 GM File Documentation

8.85 gm strerror.c File Reference

#include "gm.h"

Functions

� GM ENTRY POINT char � gm strerror (gm status t error)

8.85.1 Detailed Description

This file contains the GM API function gm strerror().

8.85.2 Function Documentation

8.85.2.1 GM ENTRY POINT char � gm strerror (gm status t error)

gm strerror() is an error function for GM. The error is only valid until next call to this
function.

Return values:
char

Parameters:
error (IN) GM status code.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.86 gm strlen.c File Reference 237

8.86 gm strlen.c File Reference

#include "gm internal.h"

#include "gm debug.h"

Functions

� GM ENTRY POINT gm size t gm strlen (const char � cptr)

8.86.1 Detailed Description

This file contains the GM API function gm strlen().

8.86.2 Function Documentation

8.86.2.1 GM ENTRY POINT gm size t gm strlen (const char � cptr)

gm strlen() calculates the length of a string.

Return values:
gm size t The length of the string.

Parameters:
cptr (IN) The string.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

238 GM File Documentation

8.87 gm strncasecmp.c File Reference

#include "gm internal.h"

#include "gm debug.h"

Functions

� GM ENTRY POINT int gm strncasecmp (const char � a, const char � b, int len)

8.87.1 Detailed Description

This file contains the GM API function gm strncasecmp().

8.87.2 Function Documentation

8.87.2.1 GM ENTRY POINT int gm strncasecmp (const char � a, const char �
b, int len)

gm strncasecmp() reimplements strncasecmp().

Return values:
int Returns an integer less than, equal to, or greater than zero if the first len bytes

of a is found, respectively, to be less than, to match, or be greater than b.

Parameters:
a (IN) The first string to be compared.

b (IN) The second string to be compared.

len (IN) The number of bytes.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.88 gm strncmp.c File Reference 239

8.88 gm strncmp.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT int gm strncmp (const char � a, const char � b, int len)

8.88.1 Detailed Description

This file contains the GM API function gm strncmp().

8.88.2 Function Documentation

8.88.2.1 GM ENTRY POINT int gm strncmp (const char � a, const char � b,
int len)

gm strncmp() reimplements strncmp().

Return values:
int Returns an integer less than, equal to, or greater than zero if the first len bytes

of a is found, respectively, to be less than, to match, or be greater than b.

Parameters:
a (IN) The first string to be compared.

b (IN) The second string to be compared.

len (IN) The length in bytes.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

240 GM File Documentation

8.89 gm strncpy.c File Reference

#include "gm config.h"

#include "gm.h"

Functions

� GM ENTRY POINT char � gm strncpy (char � to, const char � from, int len)

8.89.1 Detailed Description

This file contains the GM API function gm strncpy().

8.89.2 Function Documentation

8.89.2.1 GM ENTRY POINT char � gm strncpy (char � to, const char � from,
int len)

gm strncpy() copies exactly n bytes, truncating src or adding null characters to dst if
necessary. The result will not be null-terminated if the length of src is n or more.

Return values:
char � Returns a pointer to a destination string.

Parameters:
to (IN) The destination string to be copied.

from (IN) The source string to be copied.

len (IN) The number of bytes to be copied.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.90 gm ticks.c File Reference 241

8.90 gm ticks.c File Reference

#include "gm internal.h"

Functions

� GM ENTRY POINT gm u64 t gm ticks (struct gm port � port)

8.90.1 Detailed Description

This file contains the GM API function gm ticks().

8.90.2 Function Documentation

8.90.2.1 GM ENTRY POINT gm u64 t gm ticks (struct gm port � port)

gm ticks() returns a 64-bit extended version of the LANai real time clock (RTC). For
implementation reasons, the granularity of gm ticks() is 50 microseconds at the appli-
cation level.

Return values:
gm u64 t

Parameters:
port (IN) The handle to the GM port.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

242 GM File Documentation

8.91 gm unique id.c File Reference

#include "gm internal.h"

Functions

� gm status t gm unique id (gm port t � port, char � id)

8.91.1 Detailed Description

This file contains the GM API function gm unique id().

8.91.2 Function Documentation

8.91.2.1 gm status t gm unique id (gm port t � port, char � id)

gm unique id() returns the board id number for an interface.

Return values:
GM SUCCESS Operation completed successfully.

Parameters:
port (IN) The GM port.

id (OUT) Contains the LANai board id number.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.92 gm unique id to node id.c File Reference 243

8.92 gm unique id to node id.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm internal.h"

#include "gm global id.h"

Functions

� gm status t gm unique id to node id (gm port t � port, char � unique, unsigned
int � node id)

8.92.1 Detailed Description

This file contains the GM API function gm unique id to node id().

8.92.2 Function Documentation

8.92.2.1 gm status t gm unique id to node id (gm port t � port, char � unique,
unsigned int � node id)

gm unique id to node id() takes the MAC address and returns the GM node id for a
specific port.

Return values:
GM SUCCESS Operation completed successfully.

GM INVALID PARAMETER

Parameters:
port (IN) The GM port.

unique (IN) The unique ID to translate.

node id (OUT) Where to store the node ID corresponding to unique.

Author:
Glenn Brown

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

244 GM File Documentation

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.93 gm unknown.c File Reference 245

8.93 gm unknown.c File Reference

#include "gm call trace.h"

#include "gm debug.h"

#include "gm debug blocking.h"

#include "gm enable put.h"

#include "gm internal.h"

Functions

� GM ENTRY POINT void gm unknown (gm port t � p, gm recv event t � e)

8.93.1 Detailed Description

This file contains the GM API function gm unknown().

8.93.2 Function Documentation

8.93.2.1 GM ENTRY POINT void gm unknown (gm port t � p,
gm recv event t � e)

gm unknown() handles all GM events not recognized or processed by the client soft-
ware, allowing the GM library and network interface card firmware to interact. This
function also catches and reports several common client program errors, and converts
some unrecognizable events into recognizable form for the client.

Parameters:
p (IN) The GM port associated with a specific event.

e (IN) The GM receive event.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

246 GM File Documentation

8.94 gm zone.c File Reference

#include "gm call trace.h"

#include "gm internal.h"

#include "gm malloc debug.h"

Data Structures

� struct gm zone area
� struct gm zone

Typedefs

� typedef gm zone area gm zone area t
� typedef gm zone gm zone t

Functions

� GM ENTRY POINT struct gm zone � gm zone create zone (void � base, gm -
size t length)

� GM ENTRY POINT void gm zone destroy zone (struct gm zone � zone)
� GM ENTRY POINT void � gm zone free (struct gm zone � zone, void � a)
� GM ENTRY POINT void � gm zone malloc (struct gm zone � zone, gm size t

length)
� GM ENTRY POINT void � gm zone calloc (struct gm zone � zone, gm size t

count, gm size t length)
� GM ENTRY POINT int gm zone addr in zone (struct gm zone � zone, void � p)

8.94.1 Detailed Description

This file contains the GM API functions gm zone create zone(),
gm zone destroy zone(), gm zone free(), gm zone malloc(), and gm zone calloc(),
gm zone addr in zone().

This file provides alloc, calloc, and free routines to manage an externally specified
”zone” of memory.

This package use buddy-system memory allocation to allocate (2
�

n)-byte regions of
memory, where ”n” is referred to as the ”size” of the allocated area of memory.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.94 gm zone.c File Reference 247

All allocated (or freed) areas are maximally aligned. A zone is a chunk of memory
starting and ending on page boundaries. The size and state of each area are encoded in
a pair of bit-arrays. One array has a bit set for each position corresponding to a buddy-
boundary. The second array has a bit set for each position corresponding to an area that
is not free.

In the code, variables named with ”size” are in logarithmic units and those named
”length” are in real units.

DEBUGGING

If debugging is turned on, we ”mark” all valid areas in the zone, using the gm mark
API, and we check each area passed to a function. This should catch any DMA over-
runs type corruption of the data structures stored in the managed memory.

8.94.2 Define Documentation

8.94.2.1 #define GM AREA FOR PTR(ptr)

Value:

((gm_zone_area_t *) \
((char *) (ptr) - GM_ZONE_AREA_PTR_OFFSET))

8.94.3 Typedef Documentation

8.94.3.1 typedef struct gm zone area gm zone area t

Zones are divided into managed buffers called ”areas”, which may either represent free
buffers or buffers holding user data.

8.94.3.2 typedef struct gm zone gm zone t

State of a zone, which is a region of memory from which one can allocate memory
using the zone allocation functions.

8.94.4 Function Documentation

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

248 GM File Documentation

8.94.4.1 GM ENTRY POINT struct gm zone � gm zone create zone (void �
base, gm size t length)

gm zone create zone()

Return values:
gm zone Handle to the GM zone.

Parameters:
base

length

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.94.4.2 GM ENTRY POINT void gm zone destroy zone (struct gm zone �
zone)

gm zone destroy zone()

Parameters:
zone (IN) Pointer to the GM zone.

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.94.4.3 GM ENTRY POINT void � gm zone free (struct gm zone � zone, void
� a)

gm zone free()

Parameters:
zone (IN) Pointer to the GM zone.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

8.94 gm zone.c File Reference 249

a

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.94.4.4 GM ENTRY POINT void � gm zone malloc (struct gm zone � zone,
gm size t length)

gm zone malloc() mallocs a GM zone.

Parameters:
zone (IN) Pointer to the GM zone.

length

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

8.94.4.5 GM ENTRY POINT void � gm zone calloc (struct gm zone � zone,
gm size t count, gm size t length)

gm zone calloc() callocs a GM zone.

Parameters:
zone (IN) Pointer to the GM zone.

count

length

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

250 GM File Documentation

8.94.4.6 GM ENTRY POINT int gm zone addr in zone (struct gm zone �
zone, void � p)

gm zone addr in zone()

Parameters:
zone (IN) Pointer to the GM zone.

p

Author:
Glenn Brown

Version:
GM API VERSION (as defined in gm.h)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

Chapter 9

GM Page Documentation

9.1 XI. Alarms

GM provides the following simple alarm API. The alarm API allows the GM client to
schedule a callback function to be called after a delay, specified in microseconds. An
unbounded number of alarms may be set, although alarm overhead increases linearly
in the number of set alarms, and the client must provide storage for each set alarm.

� gm initialize alarm()

� gm cancel alarm()

� gm set alarm()

� gm flush alarm()

GM clients will also be able to take advantage of the fact that an application is guaran-
teed to receive a single GM ALARM EVENT for each call to a client-supplied callback,
with the corresponding callback occurring during the call to gm unknown() that pro-
cesses that alarm. This means that a case statement like the following in the client’s
event loops can be used to significantly reduce the overhead of polling for any effect of
a client supplied alarm callback:

case GM_ALARM_EVENT:
gm_unknown (event);
/* poll for effect of alarm callbacks only here */
break;

252 GM Page Documentation

9.2 VII. Page Allocation

The following GM API allows pages to be allocated and freed.

� gm page alloc()

� gm page free()

� gm alloc pages()

� gm free pages()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.3 XV. GM Constants, Macros, and Enumerated Types 253

9.3 XV. GM Constants, Macros, and Enumerated
Types

A number of constants, macros, and enumerated types are defined in the gm.h include
file.

� Enum: GM HIGH PRIORITY The priority of high priority messages (1).

� Enum: GM LOW PRIORITY The priority of low priority messages (0).

/ � Maximum length of GM host name

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

254 GM Page Documentation

9.4 I. Copyright Notice

Myricom GM Myrinet(R) software and documentation

Copyright (c) 1994-2003 by Myricom, Inc.

All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation
in source and binary forms for non-commercial purposes and without fee is hereby
granted, provided that the modified software is returned to Myricom, Inc. for redistri-
bution. The above copyright notice must appear in all copies and both the copyright
notice and this permission notice must appear in supporting documentation, and any
documentation, advertising materials, and other materials related to such distribution
and use must acknowledge that the software was developed by Myricom, Inc. The
name of Myricom, Inc. may not be used to endorse or promote products derived from
this software without specific prior written permission.

Myricom, Inc. makes no representations about the suitability of this software for any
purpose.

THIS FILE IS PROVIDED ”AS-IS” WITHOUT WARRANTY OF ANY KIND,
WHETHER EXPRESSED OR IMPLIED, INCLUDING THE WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. MYRI-
COM, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS FILE
OR ANY PART THEREOF.

In no event will Myricom, Inc. be liable for any lost revenue or profits or other spe-
cial, indirect and consequential damages, even if Myricom has been advised of the
possibility of such damages.

Other copyrights might apply to parts of this software and are so noted when applicable.

Myricom, Inc. Email: <info@myri.com>
325 N. Santa Anita Ave. World Wide Web: ‘http://www.myri.com/’
Arcadia, CA 91024

Portions of this program are subject to the following copyright:

Copyright (c) 1990 The Regents of the University of California.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.4 I. Copyright Notice 255

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. All advertising materials mentioning features or use of this software must display
the following acknowledgement: This product includes software developed by the Uni-
versity of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

256 GM Page Documentation

9.5 II. About This Document

This document describes the GM message passing system and the GM-2.0 API. Several
GM-1.0 API functions have been deprecated; however, the 1.0 API will continue to be
supported by the GM libraries for the foreseeable future. New programs should use the
GM API as described in this document.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.6 X. Endian Conversion 257

9.6 X. Endian Conversion

GM receive events are delivered to the user in network byte order. This enhances the
performance of GM programs, but is a minor inconvenience to developers using the
GM API. The client must call a special function to convert each field read from the
gm recv event t union to host byte order. Neglecting this conversion will result in
undefined program behavior in most cases.

In the absence of automatic checks, endian conversion is typically an error-prone pro-
gramming task. Therefore, support has been added to GM-1.4 ‘gm.h’ to ensure that no
conversion is missing. Note, however, the support is incompatible with the deprecated
gm send()/GM SENT EVENT mechanism in GM. All you need to do to activate the
checking is add the line

#define GM_STRONG_TYPES 1

before the line

\#include "gm.h"

in your source code. Once the feature is activated, the compiler will report errors if any
type conversion is missing. The error messages can be a bit cryptic and are platform
specific, but they generally indicate some sort of type mismatch.

Endian conversion of fields in receive events from network to host order is achieved
with the following functions:

Network to host conversion routines.

gm ntoh u8() unsigned 8-bit

gm ntoh u16() unsigned 16-bit

gm ntoh u32() unsigned 32-bit

gm ntoh u64() unsigned 64-bit

gm ntoh s8() signed 8-bit

gm ntoh s16() signed 16-bit

gm ntoh s32() signed 32-bit

gm ntoh s64() signed 64-bit

Host to network conversion routines.

gm hton u8() unsigned 8-bit

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

258 GM Page Documentation

gm hton u16() unsigned 16-bit

gm hton u32() unsigned 32-bit

gm hton u64() unsigned 64-bit

gm hton s8() signed 8-bit

gm hton s16() signed 16-bit

gm hton s32() signed 32-bit

gm hton s64() signed 64-bit

(1) On 64-bit Solaris machines, the GM STRONG TYPES feature can be used during
compilation to check for missing conversion, but it the resulting programs will not run
and must be recompiled without this feature.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.7 XIV. Example Programs 259

9.7 XIV. Example Programs

These GM example programs are intended primarily as illustrations and models of GM
API usage. As such, they supplement the GM API documentation, and it is probably
more useful to read their source than to execute them.

These programs illustrate the use of simple message sending
(gm send to peer with callback()) and receiving (gm receive()), and also the use
of gm directed send with callback().

� gm simple example.h
� gm simple example send.c
� gm simple example recv.c

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

260 GM Page Documentation

9.8 XII. High Availability Extensions

While GM automatically handles transient network errors such as dropped, corrupted,
or misrouted packets, and while the GM mapper automatically reconfigures the net-
work if links or nodes appear or disappear, GM cannot automatically handle catas-
trophic errors such as crashed hosts or loss of network connectivity without the coop-
eration of the client program.

When GM detects a catastrophic error, it temporarily disables the delivery of all mes-
sages with the same sender port, target port, and priority as the message that experi-
enced the error, and GM informs the client of catastrophic network errors by passing a
status other than GM SUCCESS to the client’s send completion callback routine. The
client program is then expected to call either gm resume sending() or gm drop sends(),
which re-enable the delivery of messages with the same sender port, target port, and
priority. This mechanism preserves the message order over the prioritized connection
between the sending and receiving ports, while allowing the client to decide if the other
packets that it has already enqueued over the same connection should be transmitted or
dropped.

Simpler GM programs, such as MPI programs, will typically consider GM send errors
to be fatal and will typically exit when they see a send error. This is reasonable for
applications running on small or physically robust clusters where errors are rare and
when users can tolerate restarting jobs in the rare event of a network error. Poorly writ-
ten GM programs may simply ignore the error codes, which will cause the program
to eventually hang with no error indication when catastrophic errors are encountered.
This poor programming practice is strongly discouraged: Developers should always
check the send completion status. More sophisticated applications, such as high avail-
ability database applications, will respond to the network faults, which appear to the
client as send completion status codes other than GM SUCCESS.

A complete list of send completion status codes can be found in gm.h and section
VIII. Sending Messages.

When the send completion status code indicates an error a sophisticated client pro-
gram may respond by calling gm resume sending() or gm drop sends(). Calling
gm resume sending() causes GM to simply re-enable delivery of subsequent messages
over the connection, including those that have already been enqueued. This would be
the typical response of a distributed database that assumes the underlying network is
unreliable and layers its own reliability protocol over GM. Calling gm drop sends()
causes GM to drop all enqueued sends over the disabled connection, return them to
the client with status GM SEND DROPPED, and re-enable the connection. This would
be the typical response of a program that wishes to reorder subsequent communication
over the connection in response to the error.

Note that each of the fault response functions (gm drop sends() and

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.8 XII. High Availability Extensions 261

gm resume sending() requires a send token. This send token is implicitly re-
turned to the caller when the callback function passed to gm drop sends() or
gm resume sending() is called by GM.

Here is an example program demonstrating the use of gm drop sends(). In this ex-
ample, there are no messages queued after the message that has just been discarded,
and gm drop sends() and gm resume sending() are equivalent. They just re-enable the
target subport for further gm send with callback() calls. If the send callback returns
you an error, that means the corresponding message has been definitely discarded,
both gm resume sending() and gm drop sends() only impact messages that have been
queued after the message that has just been discarded.

#include <stdio.h>
#include <assert.h>

#include "gm.h"

unsigned int received,sent;
unsigned int my_gm_node_id;

static void test_send_callback (struct gm_port *port, void *context,
gm_status_t status);

static void
drop_send_callback (struct gm_port *port,

void *context,
gm_status_t status)

{
fprintf(stderr, "Got gm_drop_send notification, start resending\n");
gm_send_with_callback(port, context, 20, 1, GM_LOW_PRIORITY,

my_gm_node_id, 7, test_send_callback, context);
}

static void
test_send_callback (struct gm_port *port,

void *context,
gm_status_t status)

{
switch (status)

{
case GM_SUCCESS:

fprintf(stderr, "Send successfully delivered\n");
sent += 1;
break;

case GM_SEND_TIMED_OUT:
fprintf(stderr, "Send timeout, provide buffers and initiate resend...\n");
gm_provide_receive_buffer(port, context, 20, GM_LOW_PRIORITY);
gm_provide_receive_buffer(port, context, 20, GM_LOW_PRIORITY);
gm_drop_sends (port, GM_LOW_PRIORITY, my_gm_node_id, 7,

drop_send_callback, context);
break;

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

262 GM Page Documentation

case GM_SEND_DROPPED:
fprintf(stderr, "Got DROPPED_SEND notification, resend\n");
gm_send_with_callback(port, context, 20, 1, GM_LOW_PRIORITY,

my_gm_node_id, 7, test_send_callback, context);
break;

default:
fprintf(stderr, "Something bad happen\n");
assert (0);

}
}

int main (void)
{

struct gm_port *port;
gm_recv_event_t *event;
char *token;

assert (gm_open (&port, 0, 7, "Test Resume", GM_API_VERSION) == GM_SUCCESS);
token = gm_dma_malloc (port, sizeof (char));
assert (token != NULL);

received = 0;
gm_get_node_id(port, &my_gm_node_id);
gm_send_with_callback (port, token, 20, sizeof (char),

GM_LOW_PRIORITY, my_gm_node_id, 7,
test_send_callback, token);

gm_send_with_callback (port, token, 20, sizeof (char),
GM_LOW_PRIORITY, my_gm_node_id, 7,
test_send_callback, token);

while (received < 2 || sent < 2)
{

event = gm_receive (port);
switch (gm_ntoh_u8 (event->recv.type))

{
case GM_NO_RECV_EVENT:
break;
case GM_RECV_EVENT:
fprintf(stderr,"received message\n");
received += 1;
break;

default:
gm_unknown (port, event);

}
}

gm_dma_free (port, token);
gm_close (port);

}

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.9 V. Initialization 263

9.9 V. Initialization

Before calling any other GM function, gm init() should be called. gm finalize() should
be called after all other GM calls and before your program exits. Each call to gm init()
should be balanced by a call to gm finalize() before the program exits. Although GM
automatically handles ungraceful program termination without such balanced calls on
operating systems with memory protection, developers are strongly discouraged from
relying on this feature because on some systems, such as those using the VxWorks
embedded runtime system, the calls to gm finalize() are required for proper shutdown
of GM to allow ports to be reused without rebooting VxWorks.

A GM port is initialized by calling gm open()(struct gm port � � PORT, unsigned int
UNIT, unsigned int PORT ID, char � PORT NAME, enum gm api version VERSION)
to open port number PORT ID of Myrinet interface number UNIT. The pointer re-
turned at � PORT must be passed to subsequent GM API calls. PORT NAME is an char-
acter string of up to gm max port name length() bytes describing the client. The name
is currently used for debugging purposes only, but this information will eventually be
available to all GM clients on the network through a mechanism TBD. VERSION
should be ‘GM API VERSION 2 0’ as defined in gm.h.

Note that while the GM API uses ‘struct gm port � ’ pointers throughout, these
pointers are opaque to the client. The client should not attempt to dereference these
pointers.

After opening a port, the client implicitly possesses gm num send tokens() send tokens
and gm num receive tokens() receive tokens. Most GM programs will use most or
all of the gm num receive tokens() immediately after opening a port to pass receive
buffers to GM using gm provide receive buffer().

After the client has provided all receive buffers that it will provide during port initial-
ization, the client should call gm set acceptable sizes() for each priority (GM LOW -
PRIORITY and GM HIGH PRIORITY) to indicate what GM receive sizes the client
expects to receive on the port. While this call is not strictly required, calling it allows
GM to immediately reject any contradictory sends, immediately generating a send er-
ror at the sender. If these calls to gm set acceptable sizes() are not made, then the error
will not be reported until the sender experiences a GM long-period timeout, which takes
about a minute to be generated by default. Therefore, calling gm set acceptable sizes()
can save much time during application development.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

264 GM Page Documentation

9.10 IV. Programming Model

The GM communication system provides reliable, ordered delivery between communi-
cation endpoints, called ports, with two levels of priority. This model is connectionless
in that there is no need for client software to establish a connection with a remote port
in order to communicate with it: the client software simply builds a message and sends
it to any port in the network. (This apparently paradoxical connectionless reliability
is achieved by GM maintaining reliable connections between each pair of hosts in the
network and multiplexing the traffic between ports over these reliable connections.)

Host Host
.----------------------. .---------------------.
Process		Process						
.-----------.		.--------.						
	Port				Port			
	.--.________.--.							
	Port /				,--			
	.--./ ‘--’		,’	/‘--’				
			----	---’ /				
	‘--’			/				
‘----\----	-’	/	‘--------’					
\		/						
.----\--	-.	/ˆ						
	\		/ ˆ					
	.--./	ˆ						
Process	Port				ˆ			
	‘--’		ˆ					
			ˆ					
			ˆ					
‘---------’	ˆ							
‘----------------------’ ˆ ‘---------------------’

ˆ
Reliable Connection

9.10.1 1. GM Endpoints (Ports)

Under operating systems that provide memory protection, GM provides memory pro-
tected network access. It should be impossible for any non-privileged GM client ap-
plication to use GM to access any memory other than the application’s own memory,
except as explicitly allowed by the GM API. The unforgeable source of each received
message is available to the receiver, allowing the receiver to discard messages from
untrusted sources.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.10 IV. Programming Model 265

The largest message GM can send or receive is limited to (2 � � 31)-1 bytes. However,
because send and receive buffers must reside in DMAable memory, the maximum mes-
sage size is limited by the amount of DMAable memory the GM driver is allowed to al-
locate by the operating system. Most GM applications obtain DMAable memory using
the straightforward gm dma malloc() and gm dma free() calls, but sophisticated ap-
plications with large memory requirements may perform DMA memory management
using gm register memory() and gm deregister memory() to pin and unpin memory on
operating systems that support memory registration.

Message order is preserved only for messages of the same priority, from the same
sending port, and directed to the same receiving port. Messages with differing priority
never block each other. Consequently, low priority messages may pass high priority
messages, unlike in some other communication systems. Typical GM applications will
either use only one GM priority, or use the high priority channel for control messages
(such as client-to-client acks) or for single-hop message forwarding.

Both sends and receives in GM are regulated by implicit tokens, representing space al-
located to the client in various internal GM queues, as depicted in the following figure.
At initialization, the client implicitly possesses gm num send tokens() send tokens,
and gm num receive tokens() receive tokens. The client may call certain functions
only when possessing an implicit send or receive token, and in calling that function,
the client implicitly relinquishes the token(1). The client program is responsible for
tracking the number of tokens of each type that it possesses, and must not call any
GM function requiring a token when the client does not possess the appropriate to-
ken. Calling a GM API function without the required tokens has undefined results, but
GM usually reports such errors, and such errors will not cause system security to be
violated.

Send Queue
+-+-+-+-+-+

.----------| | | | | |<-------------------.
| +-+-+-+-+-+ |
| gm_num_send_tokens() slots |
| |
| Receive Buffer Pool |
| +-+-+-+-+-+ |
.--------						<-----------------.
	+-+-+-+-+-+					
	gm_num_receive_tokens() slots					
			LANai Memory			

- -|-|- - - - - - - - - - - - - - - - - - -|-|- - - - - - - - - - -
| | | | User Virtual Memory
| | Receive Event Queue | |
| ‘------->+-+-+-+-+-+ +--------+
| | | | | | |--------------->| Client |
‘--------->+-+-+-+-+-+ |Software|

gm_num_receive_tokens() + +--------+
gm_num_send_tokens() slots

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

266 GM Page Documentation

9.10.2 2. User Token Flow (Sending)

As stated above, sends are token regulated. A client of a port may send a message
only when it possesses a send token for that port. By calling a GM API send func-
tions, the client implicitly relinquishes that send token. The client passes a callback
and context pointer to the send function. When the send completes, GM calls
callback, passing a pointer to the GM port, the client-supplied context pointer,
and status code indicating if the send completed successfully or with an error. When
GM calls the client’s callback function, the send token is implicitly passed back
to the client. Most GM programs, which rely on GM’s fault tolerance to handle tran-
sient network faults, should consider a send completing with a status other than GM -
SUCCESS to be a fatal error. However, more sophisticated programs may use the GM
fault tolerance API extensions to handle such non-transient errors. These extensions are
described in an appendix. It is important to note that the client-supplied callback
function will be called only within a client’s call to gm unknown(), the GM unknown
event handler function that the client must call when it receives an unrecognized event.
The gm unknown() function is described in more detail below.

Sent Packet
ˆ
|

+-------+
|Send |

.-------------------------------------|State |
| |Machine|
| +-------+
| ˆ
| |
| Send Queue
| +-----------------+
| | | | | | | | | | |
| +-----------------+
| ˆ
| | LANai Memory

- - - - -|- -|- - - - - - - - - - - -
| | User Process Memory
V |

Receive Event Queue |
+-----------------+ .---------’
| | | | | | | | | | |
+-----------------+ |

| |
| .--ˆ--.
| gm_send_with_callback(...,ptr,len,callback,context)
| ... | |
‘-> event=gm_receive(); | |

switch(event.recv.type){ | |
... | |

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.10 IV. Programming Model 267

default: | |
gm_unknown(port,event); | |

} | ‘-------------|--. |
‘--------. | | |

.-----|----------’ | |
| | .-------|-----’
| | | |

+ - - -|- - -|- - -|- - - -|- - - - - - - - - - - +
| V V V V |
| callback(port,context,status) |
| |
| [behind the scenes in gm_unknown()] |
+ - +

The following functions require send tokens:

� gm datagram send()

� gm directed send with callback()

� gm drop sends()

� gm resume sending()

� gm send to peer with callback()

� gm send with callback()

The send token is implicitly returned to the client when the function’s callback is
called or, for the GM-1.0 functions gm send() and gm send to peer(), a send token
is implicitly passed to the client with each pointer returned in a GM SENT EVENT.
(The legacy GM SENT EVENTs are generated if and only if the legacy gm send() and
gm send to peer() functions are called.)

9.10.3 3. User Token Flow (Receiving)

GM receives are also token regulated. After a port is opened, the client implic-
itly possesses gm num receive tokens() receive tokens, allowing it to provide GM
with up to this many receive buffers using gm provide receive buffer(). With each
call to gm provide receive buffer(), the client implicitly relinquishes a receive to-
ken. With each buffer passed to gm provide receive buffer(), the client passes a cor-
responding integer SIZE indicating that the length of the receive buffer is at least
gm max length for size() bytes.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

268 GM Page Documentation

Before a client of a port can receive a message of a particular size and priority, the
client software must provide GM with a receive token of matching size and priority.
The receive token specifies the buffer in which to store the matching receive. When a
message of matching size and priority is received, that message will be transferred into
the receive buffer specified in the receive token. Note that multiple receive tokens of
the same size and priority may be provided to the port.

After providing receive buffers with sizes matching the sizes of all packets that poten-
tially could be received, the client must poll for receive events using a gm receive(),
gm blocking receive(), or gm blocking receive no spin() function. The gm receive(),
gm blocking receive(), or gm blocking receive no spin() function will return a gm -
receive event. The receipt of events of type GM RECV EVENT and GM HIGH -
RECV EVENT describe received packets of low and high priority, respectively. All
other events should be simply passed to gm unknown(). Such events are used internally
by GM for sundry purposes, and the client need not be concerned with the contents of
unrecognized receive events unless otherwise stated in this document.

Arriving Packet
|
| ,---------------------.
V V |

+-------+ |
|Receive| Receive Buffer Pool
|State | +-------------------+
|Machine| | | | | | | | | | | |
+-------+ +-------------------+

| ˆ LANai Memory
- - -|- - - - - - - - - - - - -|- - - - - - - - - - - - - - - - -

| | User Process Memory
V |

Receive Event Queue |
+-------------------+ |
| | | | | | | | | | | |
+-------------------+ ‘--- gm_provide_receive_buffer()

| ...
‘------------------------- gm_receive()

To avoid deadlock of the port, the client software must ensure that the port is never
without a receive token for any acceptable combination of size and priority for more
than a bounded amount of time, that the port is informed which combinations of size
and priority are not acceptable for receives, and that the client not send to any remote
port that does not do likewise.

By convention, when a port runs out of low priority receive tokens for any combination
of sizes, the client may defer replacing the receive tokens pending the completion of
a bounded number of high priority sends, but must always replace exhausted types
of high priority receive tokens without waiting for any sends to complete. Using this
technique, reliable, deadlock-free, single-hop forwarding can be achieved.

The following functions require a receive token:

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.10 IV. Programming Model 269

� gm provide receive buffer()

� gm provide receive buffer with tag()

A single receive token is passed to the client with each of the following events:

� GM RAW RECV EVENT

� GM RECV EVENT

� GM HIGH RECV EVENT

� GM HIGH PEER RECV EVENT

� GM FAST HIGH RECV EVENT

� GM FAST HIGH PEER RECV EVENT

(However, if the client passes these events to gm unknown(), then the token is implic-
itly returned to GM.) Any of the GM receive functions can generate these types of
events. These functions are:

� gm receive()

� gm blocking receive()

� gm blocking receive no spin()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

270 GM Page Documentation

9.11 III. Overview

GM is a message-based communication system for Myrinet. Like many messaging
systems, GM’s design objectives included low CPU overhead, portability, low latency,
and high bandwidth. Additionally, GM has several distinguishing characteristics:

� GM has extremely low overhead of about 1 microsecond per packet on all archi-
tectures.

� GM can provide simultaneous memory-protected user-level OS-bypass network
interface access to several user-level applications simultaneously. (On systems
that do not support memory protection, such as VxWorks, no memory protection
is provided.)

� GM provides reliable ordered delivery between hosts in the presence of network
faults. GM will detect and retransmit lost and corrupted packets. GM will also
reroute packets around network faults when alternate routes exist. Catastrophic
network errors, such as crashed hosts or disconnected links, are nonfatal; the
undeliverable packets are returned to the client with an error indication, although
most client programs are unable to adapt in the presence of such severe errors.

� GM supports clusters of over 10,000 nodes.

� GM provides two levels of message priority to allow efficient deadlock-free
bounded-memory forwarding.

� GM allows clients to send messages up to 2 � � 31 - 1 bytes long, under operating
systems that support sufficient amounts of DMAable memory to be allocated.

� GM automatically maps Myrinet networks.

GM is a light-weight communication layer, and as such has limitations that can be
addressed by layering a heavier-weight interface over GM. Some such limitations are
the following:

� GM is unable to send messages from or receive messages into nonDMAable
memory.

� The GM API does not yet support any gather or scatter operations directly.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.11 III. Overview 271

From the client’s point of view, GM consists of a library, libgm.a, and a header file,
gm.h. All externally visible GM identifiers in these files match the regular expression
‘

�

� [Gg][Mm] ’ to minimize name space pollution.

Additionally, GM has other parts that system administrators need to be concerned
about:

� gm The GM driver provides systems services. It is called “gm” under Unix,
and is the ‘Myricom Myrinet Adapter’ driver implemented in “gm.sys” under
Windows NT.

� mapper The Myrinet mapper daemon maps the network. It is called
“sbin/mapper” under Unix, and is the ‘Myricom Myrinet Mapper Daemon’ ser-
vice implemented in “gm mapper service.exe” under Windows NT.

9.11.1 1. Definitions

This document attaches special meaning to a few commonly used words. The meaning
of each of these words in the context of this document is defined here. In particular,
please note the special meanings of the words size and length. Understanding the
special meaning of these terms is critical to understanding this document.

� aligned A value is said to be aligned if it is a multiple of the required GM align-
ment. The required GM alignment is 1 on LANai7 hardware, 4 on LANai4
hardware, and 8 on LANai5 hardware. Pointers to memory allocated by GM are
always automatically aligned.

� client software

� client The client software or simply client is the non-GM software that uses GM
to provide a reliable ordered message delivery service. It can be an application,
or a higher level networking layer, such as MPI or VI.

� message A message is an aligned array of bytes in DMAable memory.

� buffer A buffer is a contiguous region of DMAable memory into which a mes-
sage may be copied. All GM buffers must be aligned.

� length The length of a message is the number of bytes of data that comprise the
message. There is no alignment restriction on the length of any GM message.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

272 GM Page Documentation

The length of a receive buffer is the number of bytes that may be safely copied into the
buffer.

� packet A packet is an aggregation of bytes sent over the network. Packet lengths
are limited to just over gm mtu()(port) (usually 4096 bytes) to bound the time
any packet can monopolize network resource. Note that multiple packets are
required to send large messages over the network, but the segmentation of mes-
sages into packets and reassembly of packets into messages is performed auto-
matically by GM.

� size The size of the message is any integer greater than or equal to

log (LENGTH + 8)
2

where LENGTH is the length of the message.

The size of a receive buffer is any positive integer less than or equal to

log (LENGTH + 8)
2

where LENGTH is the length of the buffer. Consequently, a buffer of size SIZE must
have a LENGTH of at least 2 � � SIZE - 8.

A buffer having a longer length serves no useful purpose in GM, but is allowed.

The function gm min size for length()(LENGTH) can be used to compute the min-
imum size for any length, and the function gm max length for size()(SIZE) can be
used to compute the maximum length for any size.

� port A port is a GM communication endpoint, and serves as the interface be-
tween the client software and the network.

� user A human using an application that uses GM.

� user virtual memory Memory directly accessible by software running in a user
application.

� kernel virtual memory Memory directly accessible by the GM driver.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.11 III. Overview 273

9.11.2 2. Notation

The following terms abbreviations are used in the GM documentation and source code.
Some of these abbreviations are obvious to speakers of English, but are included for
speakers of other languages. This section does not include architecture-specific abbre-
viations used in the architecture-specific GM driver code, as those are documented by
the architecture’s vendor and are not of interest to most GM developers.

� accum accumulator

� addr address

� alloc allocate

� arch(s) architecture(s)

� buf
� buff buffer

� cnt count

� create allocate and then initialize

� destroy finalize and then free

� dma direct memory access

� hash hash table

� hp host pointer (a pointer of the appropriate size for the host architecture in
question)

� insn(s) instruction(s)

� intr interrupt

� KVMA kernel virtual memory address

� lookaside lookaside list

� LSB(s) least significant byte(s)

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

274 GM Page Documentation

� lsb(’s) least significant bit(s)

� MAC Media Access Control. This is a commonly referred to sublayer of the
datalink layer in the ISO network reference model.

� MAC Address A 6-byte address unique to a Myrinet interface. It is equivalent
to an ethernet address.

� minor device minor number

� num number

� phys physical

� pre prefetch or precompute

� PTE page table entry

� recv receive

� ref reference

� seg segment

� sema semaphore

� UVMA user virtual memory address

� virt virtual

� VM virtual memory

� VMA virtual memory address

� zalloc allocate and clear

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.12 IX. Receiving Messages 275

9.12 IX. Receiving Messages

Similarly to message sends, message receives in GM are regulated by a simple token-
passing mechanism: Before a message can be received, the client software must pro-
vide GM a receive token that allows the message to be received and specifies a buffer
to hold the received data.

After initialization, the client implicitly possesses all gm num receive tokens() re-
ceive tokens. The client software grants receive tokens to GM by calling
gm provide receive buffer()(PORT,BUFFER,SIZE,PRIORITY), indicating that GM
may receive any message into BUFFER as long as the size and priority fields
of the received message exactly match the SIZE and PRIORITY fields passed to
gm provide receive buffer(). Eventually, GM will use the buffer indicated by MES-
SAGE and SIZE to receive a message of the indicated SIZE and PRIORITY. Unlike
some messaging systems, GM requires that the SIZE of the received message match
the token size exactly. GM will not use the next larger sized receive buffer when
a receive buffer of the correct size is not available. All receive buffers passed to
gm provide receive buffer() must DMAable. They must also be aligned or be within
memory allocated using gm dma calloc() or gm dma malloc() to ensure that messages
can be DMAed into the buffer, and must be at least gm max length for size()(SIZE)
bytes long.

Typical GM clients will provide at least 2 receive buffers for each size and priority of
message that might be received to maximize performance by allowing one buffer to be
processed and replaced while the network is filling the other. However, 1 receive buffer
for each size-priority combination is sufficient for correct operation. Additionally, it is
almost always a good idea to provide additional buffers for the smallest sizes, so that
many small messages may be received while the host is busy computing. There is no
need to provide tokens for receives smaller than gm min message size().

After providing receive tokens, code may poll for pending events using
gm receive pending()(port), which returns a nonzero value if a receive is pending or
zero if no event has been received. gm next event peek()(struct gm port � P, gm u16 t

� SENDER) can also be used to peek at the event at the head of the queue. The return
value is the event type (zero if no event is pending). The SENDER parameter will be
filled with the sender of the message if the event is a message receive event. The client
may also poll for receives using gm receive()(PORT), which returns a pointer to a event
structure of type gm event t. If no recv event is in the receive queue, a pointer to
a fake receive event of GM NO RECV EVENT will be returned. The event returned by
gm receive() is only guaranteed to be valid until the next call to gm receive().

There are several variants of gm receive() available, all of which can safely be used in
the same program.

gm receive() returns the first pending receive event or GM NO RECV EVENT if none is

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

276 GM Page Documentation

pending.

gm blocking receive() returns the first pending receive, blocking if necessary. This
function polls for receives for 1 millisecond before sleeping, so it should generally be
used only if the polling thread has a dedicated processor.

gm blocking receive no spin() returns the first pending receive, blocking if necessary.
This function sleeps immediately if no receive is pending. It should be generally used
in environments with more than one thread per processor.

Once the client has obtained a receive event from one of these three functions, the
client should either process the event if the client recognizes the event, or pass the
event to gm unknown() if the event is unrecognized. All fields in the receive event are
in network byte order, and must be converted to host byte order as specified in section
X. Endian Conversion.

The client is not required to handle any receive events, and may simply pass all events
to gm unknown(), but any useful GM program will handle GM RECV EVENT or GM -
HIGH RECV EVENT in order to access the received data. The receive event types that
the client software may choose to recognize are as follows (GM internal events are not
listed):

� GM NO RECV EVENT No event is in the event queue.

� GM ALARM EVENT GM ALARM EVENT should be treated as an un-
known event and passed to gm unknown(). However, because client alarm
handlers are called within gm unknown() when gm unknown() receives a GM -
ALARM EVENT, it can be useful for a program to perform alarm polling only
after passing GM ALARM EVENT to gm unknown(), as in the ‘test/gm allsize.c’
example program. See the documentation for gm set alarm() for more informa-
tion.

� GM SENT EVENT This type indicates that one or more sends completed.
� Developers using the GM-1.5 API should never see this event type � , as it is
generated only if the client calls the GM-1.0 gm send() function, which is dep-
recated in favor of the superior gm send with callback() functions.

‘event- � sent.message list’ points to a null-terminated array of ‘void’ pointers, which
are message pointers from earlier gm send() calls that have completed successfully.
For each pointer in this array, a send token is implicitly returned to the client.

� GM SLEEP EVENT

� GM RAW RECV EVENT This type is for internal use by the GM mapper pro-
cess and will never be received by normal GM clients. It provides the following
information in the event � recv structure:

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.12 IX. Receiving Messages 277

– length the number of bytes received
– buffer the location of the received bytes

� GM RAW RECV EVENT

� GM BAD SEND DETECTED EVENT

� GM SEND TOKEN VIOLATION EVENT

� GM RECV TOKEN VIOLATION EVENT

� GM BAD RECV TOKEN EVENT

� GM ALARM VIOLATION EVENT

� GM RECV EVENT
� GM HIGH RECV EVENT This event indicates that a normal receive has oc-

curred. The following information is available in the event � recv struc-
ture.

– length the number of bytes of received data
– size the size of the buffer into which the message was received
– buffer a pointer to the buffer passed in a call to

gm provide receive buffer(), which allowed this receive to occur
– sender node id the GM identifier for the node that sent the message
– sender port id the GM identifier for the port that sent the message
– tag the tag passed to gm provide receive buffer with tag() or 0 if

gm provide receive buffer() was used instead
– type GM HIGH RECV EVENT indicates the receipt of a high-priority

packet. GM RECV EVENT indicates the receipt of a low-priority packet.

� GM PEER RECV EVENT
� GM HIGH PEER RECV EVENT These events may be safely ignored

(passed to gm unknown()), in which case the event will be converted to a normal
GM RECV EVENT and passed to the client in the next call to a gm � receive � ()
function.

These events are just like the normal GM RECV EVENT and GM HIGH RECV EVENT
events, but indicate that the sender port id is the same as the receiver port id. Most
GM programs should handle these events directly just like they handle normal receive
events.

� length the number of bytes of received data
� size the size of the buffer into which the message was received

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

278 GM Page Documentation

� buffer a pointer to the buffer passed in a call to gm provide receive buffer(),
which allowed this receive to occur

� sender node id the GM identifier for the node that sent the message
� sender port id the GM identifier for the port that sent the message
� tag the tag passed to gm provide receive buffer with tag() or 0 if

gm provide receive buffer() was used instead.
� type The PEER event types indicate that the sender port number is the same as

the port number. The HIGH event types indicate that the message was sent with
high priority.

� GM FAST RECV EVENT
� GM FAST HIGH RECV EVENT
� GM FAST PEER RECV EVENT
� GM FAST HIGH PEER RECV EVENT These events may be safely ignored

(passed to gm unknown()), in which case the event will be converted to a normal
GM RECV EVENT and passed to the client in the next call to a gm � receive � ()
function. The conversion process will copy the receive message from the receive
queue into the receive buffer.

These types indicate that a small-message receive occurred with the small message
stored in the receive queue for improved small-message performance. The PEER event
types indicate that the sender port number is the same as the port number. The HIGH
event types indicate that the message was sent with high priority.

If your program uses any small messages that are immediately processed and discarded
upon receipt, then your program can improve performance by processing these mes-
sages directly. If after examining the message your program determines that it needs
the data copied into the buffer, it can either call gm memorize message() to do so or
can pass the event to gm unknown().

� message a pointer to the received message, which is stored in the receive queue
and is only guaranteed to be valid until the next call to gm receive().

� length the number of bytes of received data
� size the size of the buffer into which the message was received
� buffer a pointer to the buffer passed in a call to gm provide receive buffer(),

which allowed this receive to occur
� sender node id the GM identifier for the node that sent the message
� sender port id the GM identifier for the port that sent the message
� tag the tag passed to gm provide receive buffer with tag() or 0 if

gm provide receive buffer() was used instead.
� type The PEER types indicate that the sender port number is the same as the

port number. The HIGH types indicate that the message was sent with high
priority.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.12 IX. Receiving Messages 279

Note that although the receive data is in the receive queue and no receive buffer was
used to store the received message, the client must have provided an appropriate re-
ceive buffer before the receive could take place, and this buffer is passed back to the
client in the fast receive event. If the client needs to store the data ‘ � message’ past the
next call to gm receive(), then the client should copy ‘ � message’ into ‘ � buffer’ using
gm memorize message(), which is simply a version of bcopy() optimized for copy-
ing aligned messages. After calling gm memorize message(), the fast receive event
becomes equivalent to a normal receive event.

Although the number of receive events may seem daunting at first glance, almost all of
the event types can be ignored. The following receive dispatch loop is fully functional
for a nontrivial application that accepts messages ports, accepts only small control
messages sent with high priority, and accepts low priority messages of any size:

{
struct gm_port *my_port;
gm_recv_event_t *e;
void *some_buffer;
...
while (1) {
e = gm_receive (my_port);
switch (gm_htohc (e->recv.type))

{
case GM_HIGH_RECV_EVENT:

/* Handle high-priority control messages here in bounded time */
gm_provide_recv_buffer (my_port,

gm_ntohp (e->recv.buffer),
gm_ntohc (e->recv.size),
GM_HIGH_PRIORITY);

break;

case GM_RECV_EVENT:
/* Handle data messages here in bounded time */
gm_provide_recv_buffer (my_port, some_buffer,

gm_ntohc (e->recv.size),
GM_LOW_PRIORITY);

break;

case GM_NO_RECV_EVENT:
/* Do bounded-time processing here, if desired. */
break;

default:
gm_unknown (my_port, e);

}
}

}

However, the following implementation is slightly faster because it handles control
messages without copying them into the receive buffer:

{

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

280 GM Page Documentation

struct gm_port *my_port;
gm_recv_event_t *e;
void *some_buffer;
...
while (1) {

e = gm_receive (my_port);
switch (gm_ntohc (e->recv.type))
{
case GM_FAST_HIGH_PEER_RECV_EVENT:
case GM_FAST_HIGH_RECV_EVENT:

/* Handle high-priority control messages here in bounded time */
gm_provide_recv_buffer (my_port,

gm_ntohp (e->recv.buffer),
gm_ntohc (e->recv.size),
GM_HIGH_PRIORITY);

break;

case GM_FAST_PEER_RECV_EVENT:
case GM_FAST_RECV_EVENT:

gm_memorize_message (gm_ntohp (e->recv.message),
gm_ntohp (e->recv.buffer),
gm_ntohl (e->recv.length));

case GM_PEER_RECV_EVENT:
/* Handle data messages here in bounded time */
gm_provide_recv_buffer (my_port, some_buffer,

gm_ntohc (e->recv.size),
GM_LOW_PRIORITY);

break;

case GM_NO_RECV_EVENT:
/* Do bounded-time processing here, if desired. */
break;

default:
gm_unknown (my_port, e);

}
}

}

Any receive event not recognized by an application must be passed immediately to
gm unknown(), as in the example above. The function gm unknown() will free any
resources associated with the event that the client application would normally be ex-
pected to free if it recognized the type. Also, additional, undocumented event types
will be received by an application and are handled by gm unknown(). These messages
can be used for supporting features such as GM alarms and blocking receives.

The motivation for putting small messages in the receive queue despite the fact that
doing so might require a receive-side copy is the following set of observations:

A large fraction of small receive messages are control messages that can be processed
immediately upon reception, and consequently do not need to be copied into the more
permanent buffer to survive calls to gm receive().

The cost of performing an additional DMA to place the message in the buffer, rather

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.12 IX. Receiving Messages 281

than in the receive queue, is actually more expensive for very small messages than
having the host perform the copy.

Therefore, placing small received messages in the receive command queue rather than
in the more permanent receive buffer enhances performance and is worth the added
complexity.

To prevent program deadlock, the client software must ensure that GM is never without
a receive token (buffer) for any potentially received message for more than a bounded
amount of time. Generally, except for the case of message forwarding described in the
next chapter, this means that after each successful call to gm receive() the client will
call gm provide receive buffer() to replace the receive token (buffer) with one of the
same SIZE and PRIORITY before the next call to gm receive() or gm send(). If such
a deadlock condition exists for too long (on the order of a minute) or too often (a sig-
nificant fraction of a one-minute interval), then remote sends directed at the receiving
port will time out.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

282 GM Page Documentation

9.13 VIII. Sending Messages

In GM, message sends are regulated by a simple token-passing mechanism to pre-
vent GM’s bounded-size internal queues from overflowing. The client software must
possess a send token before calling gm send with callback(). After initialization, the
client software implicitly possesses all gm num send tokens() send tokens, and im-
plicitly passes one token to the GM library with each call to gm send with callback()
or gm send to peer with callback(). The token is retained by GM until the send com-
pletes, at which time GM calls the client-supplied callback, implicitly returning the
send token to the client. The contents of the send message should not be modified
in the interval between the call to gm send with callback() and the send completion,
because doing so will cause undefined data to be delivered to the receiver.

The order of messages with different priorities or with different destination ports is
not preserved. Only the order of messages with the same priority and to the same
destination port is preserved.

In the special case that the TARGET PORT ID is the same as the sending port ID (as
is often the case), the streamlined gm send to peer with callback() function may be
used instead of gm send with callback(), allowing the TARGET PORT ID parameter
to be omitted, and slightly improving small-message performance on 32-bit Myrinet
interfaces.

The send completion status codes (listed in gm.h) are as follows:

� GM SUCCESS The send succeeded. This status code does not indicate an error.

� GM FAILURE Operation failed.

� GM INPUT BUFFER TOO SMALL Input buffer is too small.

� GM OUTPUT BUFFER TOO SMALL Output buffer is too small.

� GM TRY AGAIN Try again.

� GM BUSY GM Port is Busy.

� GM MEMORY FAULT Memory Fault.

� GM INTERRUPTED Interrupted.

� GM INVALID PARAMETER Invalid input parameter.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.13 VIII. Sending Messages 283

� GM OUT OF MEMORY Out of Memory.

� GM INVALID COMMAND Invalid Command.

� GM PERMISSION DENIED Permission Denied.

� GM INTERNAL ERROR Internal Error.

� GM UNATTACHED Unattached.

� GM UNSUPPORTED DEVICE Unsupported Device.

� GM SEND TIMED OUT The target port is open and responsive and the mes-
sage is of an acceptable size, but the receiver failed to provide a matching receive
buffer within the timeout period. This error can be caused by the receive neglect-
ing its responsibility to provide receive buffers in a timely fashion or crashing.
It can also be caused by severe congestion at the receiving node where many
senders are contending for the same receive buffers on the target port for an
extended period. This error indicates a programming error in the client software.

� GM SEND REJECTED The receiver indicated (in a call to
gm set acceptable sizes()) the size of the message was unacceptable. This error
indicates a programming error in the client software.

� GM SEND TARGET PORT CLOSED The message cannot be delivered be-
cause the destination port has been closed.

� GM SEND TARGET NODE UNREACHABLE The target node could not be
reached over the Myrinet. This error can be caused by the network becoming
disconnected for too long, the remote node being powered off, or by network
links being rearranged when the Myrinet mapper is not running.

� GM SEND DROPPED The send was dropped at the client’s request. (The
client called gm drop sends().) This status code does not indicate an error.

� GM SEND PORT CLOSED Clients should never see this internal error code.

� GM NODE ID NOT YET SET Node ID is not yet set.

� GM STILL SHUTTING DOWN GM Port is still shutting down.

� GM CLONE BUSY GM Clone Busy.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

284 GM Page Documentation

� GM NO SUCH DEVICE No such device.

� GM ABORTED Aborted.

� GM INCOMPATIBLE LIB AND DRIVER Incompatible GM library and
driver.

� GM UNTRANSLATED SYSTEM ERROR Untranslated System Error.

� GM ACCESS DENIED Access Denied.

� GM NO DRIVER SUPPORT No Driver Support.

� GM PTE REF CNT OVERFLOW PTE Ref Cnt Overflow.

� GM NOT SUPPORTED IN KERNEL Not supported in the kernel.

� GM NOT SUPPORTED ON ARCH Not supported for this architecture.

� GM NO MATCH No match.

� GM USER ERROR User error.

� GM TIMED OUT Timed out.

� GM DATA CORRUPTED Data has been corrupted.

� GM HARDWARE FAULT Hardware fault.

� GM SEND ORPHANED Send orphaned.

� GM MINOR OVERFLOW Minor overflow.

� GM PAGE TABLE FULL Page Table is Full.

� GM UC ERROR UC Error.

� GM INVALID PORT NUMBER Invalid Port Number.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.14 VI. Memory Setup 285

9.14 VI. Memory Setup

GM will only send messages from memory allocated with a gm dma calloc() or
gm dma malloc() function, or memory that has been registered for DMA transfers
using gm register memory(). If the client attempts to send data from nonDMAable
memory, GM will send bytes of value 0xaa instead. If the client attempts to receive
data into nonDMAable memory, the data will be silently discarded, and a BOGUS send
or receive will appear in the kernel log.

Note that some operating systems (e.g.: Solaris) do not support gm register memory()
due to operating system limitations, so the gm dma calloc() or gm dma malloc() func-
tions must be used instead to obtain DMA memory.

Unless explicitly enabled using gm allow remote memory access()(PORT), GM will
not allow remote processes to use gm directed send with callback() (gm put()) to
modify the memory of the process. If remote memory access has been enabled, then
this protection is disabled, and any remote GM port may modify the contents of any
DMAable memory associated with that port. GM developers should be aware of this
potential security risk, although it is usually not a concern.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

286 GM Page Documentation

9.15 XVI. Function Summary

We have subdivided this GM function summary into a listing of ”Basic GM API”
functions and ”Advanced GM API” functions.

The following ”basic” functions should suffice for most GM API applications.

Basic GM API

Initialization

� gm init()

� gm finalize()

� gm open()

� gm close()

� gm exit()

� gm abort()

Currently, gm open() implicitly calls gm init() for the caller and gm close() implicitly
calls gm finalize(), but developers should not rely on this.

Memory Setup

� gm dma calloc()

� gm dma malloc()

� gm dma free()

Sending Messages

� gm send to peer with callback()

� gm send with callback()

Receiving Messages

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.15 XVI. Function Summary 287

� gm provide receive buffer with tag()

� gm receive()

� gm unknown()

Endian Conversion

� gm ntoh u8()

� gm ntoh u16()

� gm ntoh u32()

� gm ntoh u64()

� gm ntoh s8()

� gm ntoh s16()

� gm ntoh s32()

� gm ntoh s64()

Error Handling

� gm perror()

� gm eprintf()

� gm printf()

Utility Functions

� gm max length for size()

� gm min message size()

� gm min size for length()

� gm set acceptable sizes()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

288 GM Page Documentation

Advanced GM API

The following ”advanced” functions supplement the Basic GM API functions; they
may be useful for more complex applications.

Memory Setup

� gm allow remote memory access()

� gm register memory()

� gm deregister memory()

� gm alloc pages()

� gm free pages()

� gm page alloc()

� gm page free()

Sending Messages

� gm alloc send token()

� gm datagram send()

� gm datagram send 4()

� gm directcopy get()

� gm directed send with callback()

� gm put()

� gm free send token()

� gm free send tokens()

� gm num send tokens()

� gm send token available()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.15 XVI. Function Summary 289

Receiving Messages

� gm blocking receive()

� gm blocking receive no spin()

� gm get()

� gm memorize message()

� gm next event peek()

� gm num receive tokens()

� gm receive pending()

Endian Conversion

� gm hton u8()

� gm hton u16()

� gm hton u32()

� gm hton u64()

� gm hton s8()

� gm hton s16()

� gm hton s32()

� gm hton s64()

� gm htopci u32()

Alarms

� gm cancel alarm()

� gm flush alarm()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

290 GM Page Documentation

� gm initialize alarm()

� gm set alarm()

High Availability Extensions

� gm drop sends()

� gm resume sending()

Utility Functions

� gm get host name()

� gm get node id()

� gm get node type()

� gm get unique board id()

� gm get mapper unique id()

� gm getpid()

� gm get route()

� gm get port id()

� gm host name to node id ex()

� gm max node id()

� gm max node id in use()

� gm mtu()

� gm node id to host name ex()

� gm node id to unique id()

� gm num ports()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.15 XVI. Function Summary 291

� gm set enable nack down()

� gm unique id()

� gm unique id to node id()

Miscellaneous Routines

The following miscellaneous library functions are provided. Several are simply cover
functions for standard Unix library functions, but are provided to simplify the creation
of portable GM programs, or to provide the ANSI functionality on non-ANSI systems,
such as Windows NT.

� gm bcopy()

� gm bzero()

� gm calloc()

� gm free()

� gm hex dump()

� gm isprint()

� gm log2 roundup()

� gm malloc()

� gm memcmp()

� gm memset()

� gm on exit()

� gm rand()

� gm rand mod()

� gm srand()

� gm sleep()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

292 GM Page Documentation

� gm strdup()

� gm strerror()

� gm strlen()

� gm strncpy()

� gm strcmp()

� gm strncmp()

� gm strncasecmp()

� gm ticks()

Utility Modules

These GM internal modules may be useful to GM developers.

� CRC Functions

– gm crc()
– gm crc str()

� Hash Table Functions

– gm create hash()
– gm destroy hash()
– gm hash rekey()
– gm hash remove()
– gm hash find()
– gm hash insert()
– gm hash compare strings()
– gm hash hash string()
– gm hash compare longs()
– gm hash hash long()
– gm hash compare ints()
– gm hash hash int()
– gm hash compare ptrs()
– gm hash hash ptr()

� Lookaside Functions

– gm create lookaside()
– gm destroy lookaside()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.15 XVI. Function Summary 293

– gm lookaside alloc()
– gm lookaside zalloc()
– gm lookaside free()
– gm create mark set()
– gm destroy mark set()

� Mark Functions

– gm mark()
– gm mark is valid()
– gm unmark()
– gm mark set unmark all()

� Zone Functions

– gm zone create zone()
– gm zone destroy zone()
– gm zone free()
– gm zone malloc()
– gm zone calloc()
– gm zone addr in zone()

� Mutex Functions

– gm create mutex()
– gm destroy mutex()
– gm mutex enter()
– gm mutex exit()

� Buffer Debugging

– gm dump buffers()
– gm register buffer()
– gm unregister buffer()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

294 GM Page Documentation

9.16 XIII. Utility Modules

Some of GM’s internal modules may be useful to GM developers, so their APIs are
exposed. These modules include the following:

9.16.1 1. CRC Functions

GM provides the following functions, which compute 32-bit CRCs on the contents of
memory. These functions are not guaranteed to perform any particular variant of the
CRC-32, but these functions are useful for creating robust hashing functions.

� gm crc()

� gm crc str()

9.16.2 2. Hash Table

GM implements a generic hash table with a flexible interface. This module can au-
tomatically manage storage of fixed-size keys and/or data, or can allow the client to
manage storage for keys and/or data. It allows the client to specify arbitrary hashing
and comparison functions.

For example,

hash = gm_create_hash (gm_hash_compare_strings, gm_hash_hash_string,
0, 0, 0, 0);

creates a hash table that uses null-terminated character string keys residing in client-
managed storage, and returns pointers to data in client-managed storage. In this case,
all pointers to hash keys and data passed by GM to the client will be the same as the
pointers passed by the client to GM.

As another example,

hash = gm_create_hash (gm_hash_compare_ints, gm_hash_hash_int,
sizeof (int), sizeof (struct my_big_struct),
100, 0);

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.16 XIII. Utility Modules 295

creates a hash table that uses ints as keys and returns pointers to copies of the inserted
structures. All storage for the keys and data is automatically managed by the hash table.
In this case, all pointers to hash keys and data passed by GM to the client will point
to GM-managed buffers. This function also preallocates enough storage for 100 hash
entries, guaranteeing that at least 100 key/data pairs can be inserted in the table if the
hash table creation succeeds.

The automatic storage management option of GM not only is convenient, but also is
extremely space efficient for keys and data no larger than a pointer, because when
keys and data are no larger than a pointer, GM automatically stores them in the space
reserved for the pointer to the key or data, rather than allocating a separate buffer.

Note that all keys and data buffers are referred to by pointers, not by value. This allows
keys and data buffers of arbitrary size to be used. As a special (but common) case,
however, one may wish to use pointers as keys directly, rather than use what they point
to. In this special case, use the following initialization, and pass the keys (pointers)
directly to the API, rather than the usual references to the keys.

hash = gm_create_hash (gm_hash_compare_ptrs, gm_hash_hash_ptr,
0, DATA_LEN, MIN_CNT, FLAGS);

While it is possible to specify a KEY LEN of ‘sizeof (void �)’ during initialization
and treat pointer keys just like any other keys, the API above is more efficient, more
convenient, and completely architecture independent.

Some day the GM hash table API may be extended, but the current API is as follows:

� gm create hash()

� gm destroy hash()

� gm hash rekey()

� gm hash remove()

� gm hash find()

� gm hash insert()

The parameters are as follows:

� GM CLIENT COMPARE The function used to compare keys and may be any of
gm hash compare ints(), gm hash compare longs(), gm hash compare ptrs(),
gm hash compare strings(), or may be a client-defined function.

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

296 GM Page Documentation

� GM CLIENT HASH The function to be used to hash keys and may
be any of gm hash hash int(), gm hash hash long(), gm hash hash ptr(),
gm hash hash string(), or may be a client-defined function.

� KEY LEN specifies the length of the keys to be used for the hash table, or ‘0’ if
the keys should not be copied into GM-managed buffers.

� DATA LEN specifies the length of the data to be stored in the hash table, or ‘0’
if the data should not be copied into GM-managed buffers.

� MIN CNT specifies the number of entries for which storage should be preallo-
cated.

� FLAGS should be ‘0’ because no flags are currently defined.

9.16.3 3. Lookaside List

GM implements a lookaside list, which may be used to manage small fixed-length
blocks more efficiently than gm malloc() and gm free(). Lookaside lists can also be
used to ensure that at least a minimum number of blocks are available for allocation at
all times.

GM lookaside lists have the following API:

� gm create lookaside()

� gm destroy lookaside()

� gm lookaside alloc()

� gm lookaside zalloc()

� gm lookaside free()

9.16.4 4. Marks

The GM ”mark” API was introduced in GM-1.4. It allows the creation and destruction
of mark sets, which allow mark addition, mark removal, and test for mark in mark set

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.16 XIII. Utility Modules 297

operations to be performed in constant time. Marks may be members of only one mark
set at a time. Marks have the very unusual property that they need not be initialized
before use.

All operations on marks are extremely efficient. Mark initialization requires zero time.
Removing a mark from a mark set and testing for mark inclusion in a mark set take
constant time. Addition of a mark to a mark set takes O(constant) time, assuming the
marks set was created with support for a sufficient number of marks; otherwise, it re-
quires O(constant) average time. Finally, creation and destruction of a mark set take
time comperable to the time required for a single call to malloc() and free(), respec-
tively.

Because marks need not be initialized before use, they can actually be used to deter-
mine if other objects have been initialized. This is done by putting a mark in the object,
and adding the mark to a ”mark set of marks in initialized objects” once the object has
been initialized. This is similar to one common use of ”magic numbers” for debugging
purposes, except that it is immune to the possibility that the uninitialized magic num-
ber contained the magic number before initialization, so such marks can be used for
non-debugging purposes. Therefore, marks can be used in ways that magic numbers
cannot.

Marks have a nice set of properties that each mark in a mark set has a unique value
and if this value is corrupted, then the mark is implicitly removed from the mark set.
This makes marks useful for detecting memory corruption, and are less prone to false
negatives than are magic numbers, which proliferate copies of a single value.

Finally, marks are location-dependent. This means that if a mark is copied, the copy
will not be a member of the mark set.

The following APIs are provided:

� gm create mark set()

� gm destroy mark set()

� gm mark()

� gm mark is valid()

� gm unmark()

� gm mark set unmark all()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

298 GM Page Documentation

9.16.5 5. Zones

These GM API routines manage an externally specified zone of memory. A zone is a
chunk of memory starting and ending on page boundaries. The size and state of each
area are encoded in a pair of bit-arrays. All allocated (or freed) areas are maximally
aligned.

The following APIs are provided:

� gm zone create zone()

� gm zone destroy zone()

� gm zone free()

� gm zone malloc()

� gm zone calloc()

� gm zone addr in zone()

9.16.6 6. Mutexes

GM mutex routines have the following API:

� gm create mutex()

� gm destroy mutex()

� gm mutex enter()

� gm mutex exit()

9.16.7 7. Buffer Debugging

There are three API functions provided for buffer debugging:

� gm dump buffers()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

9.16 XIII. Utility Modules 299

� gm register buffer()

� gm unregister buffer()

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

Index

GM NEW PUT NOTIFICATION -
EVENT

gm.h, 56
gm get route

gm.h, 74

Deprecated GM API functions, 13

gm.h, 43
GM NEW PUT -

NOTIFICATION EVENT,
56

gm get route, 74
gm abort, 56
GM ABORTED, 54
GM ACCESS DENIED, 54
GM ALARM EVENT, 56
gm alloc pages, 64
gm alloc send token, 57
gm allow remote memory -

access, 57
GM API VERSION, 51
GM API VERSION 1 0, 50
GM API VERSION 1 1, 50
GM API VERSION 1 2, 50
GM API VERSION 1 3, 50
GM API VERSION 1 4, 51
GM API VERSION 1 5, 51
GM API VERSION 1 6, 51
GM API VERSION 2 0, 51
GM API VERSION 2 0 6, 51
gm bcopy, 57
gm blocking receive, 58
gm blocking receive no spin, 58
GM BUSY, 53
gm bzero, 58
gm calloc, 58

gm cancel alarm, 59
GM CLONE BUSY, 54
gm close, 59
GM CPU alpha, 51
gm crc, 82
gm crc str, 83
gm create hash, 78
gm create lookaside, 75
gm create mark set, 97
gm create mutex, 86
GM DATA CORRUPTED, 55
gm datagram send, 59
gm datagram send 4, 59
gm deregister memory, 59
gm destroy hash, 78
gm destroy lookaside, 76
gm destroy mark set, 98
gm destroy mutex, 86
GM DEV NOT FOUND, 55
gm directcopy get, 91
gm directed send with callback,

59
gm dma calloc, 60
gm dma free, 60
gm dma malloc, 60
gm drop sends, 90
gm dump buffers, 74
gm eprintf, 95
gm exit, 93
GM FAILURE, 53
GM FAST HIGH PEER -

RECV EVENT, 56
GM FAST HIGH RECV -

EVENT, 56
GM FAST PEER RECV -

EVENT, 56
GM FAST RECV EVENT, 56

INDEX 301

gm finalize, 85
GM FIRMWARE NOT -

RUNNING, 55
gm flush alarm, 61
gm free, 61
gm free pages, 65
gm free send token, 61
gm free send tokens, 61
gm get host name, 61
gm get mapper unique id, 62
gm get node id, 62
gm get node type, 62
gm get port id, 69
gm get unique board id, 62
gm getpid, 91
gm global id to node id, 100
GM HARDWARE FAULT, 55
gm hash compare ints, 80
gm hash compare longs, 79
gm hash compare ptrs, 81
gm hash compare strings, 79
gm hash find, 78
gm hash hash int, 81
gm hash hash long, 80
gm hash hash ptr, 82
gm hash hash string, 79
gm hash insert, 78
gm hash rekey, 78
gm hash remove, 78
gm hex dump, 62
GM HIGH PEER RECV -

EVENT, 56
GM HIGH PRIORITY, 55
GM HIGH RECV EVENT, 56
gm host name to node id, 62
gm host name to node id ex,

100
GM INCOMPATIBLE LIB -

AND DRIVER, 54
gm init, 84
gm initialize alarm, 63
GM INPUT BUFFER TOO -

SMALL, 53
GM INTERNAL ERROR, 54
GM INTERRUPTED, 54
GM INVALID COMMAND, 54

GM INVALID PARAMETER,
54

GM INVALID PORT -
NUMBER, 55

gm isprint, 63
gm log2 roundup, 85
gm log2 roundup table, 100
gm lookaside alloc, 76
gm lookaside free, 77
gm lookaside zalloc, 77
GM LOW PRIORITY, 55
gm malloc, 63
gm mark, 96
gm mark is valid, 97
GM MAX DMA -

GRANULARITY, 52
GM MAX HOST NAME LEN,

51
gm max length for size, 65
gm max node id, 66
gm max node id in use, 95
GM MAX PORT NAME LEN,

51
gm memcmp, 66
gm memorize message, 66
GM MEMORY FAULT, 54
gm memset, 95
gm min message size, 67
gm min size for length, 67
GM MINOR OVERFLOW, 55
gm mtu, 68
gm mutex enter, 86
gm mutex exit, 87
GM NEW FAST RECV -

EVENT, 56
GM NEW RECV EVENT, 56
GM NEW SENDS FAILED -

EVENT, 56
gm next event peek, 69
GM NO DRIVER SUPPORT,

55
GM NO MATCH, 55
GM NO RECV EVENT, 55
GM NO SUCH DEVICE, 54
GM NO SUCH NODE ID, 51

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

302 INDEX

GM NODE ID NOT YET SET,
54

gm node id to global id, 100
gm node id to host name, 68
gm node id to host name ex,

100
gm node id to unique id, 68
GM NOT SUPPORTED IN -

KERNEL, 55
GM NOT SUPPORTED ON -

ARCH, 55
GM NUM ELEM, 52
gm num ports, 68
GM NUM PRIORITIES, 55
gm num receive tokens, 69
GM NUM RECV EVENT -

TYPES, 56
gm num send tokens, 68
gm on exit, 99
gm open, 69
GM OUT OF MEMORY, 54
GM OUTPUT BUFFER TOO -

SMALL, 53
gm page alloc, 64
gm page free, 64
GM PAGE TABLE FULL, 55
GM PEER RECV EVENT, 56
GM PERMISSION DENIED, 54
gm perror, 92
gm pid t, 53
GM POWER OF TWO, 52
gm printf, 93
gm priority, 55
gm provide receive buffer -

with tag, 69
GM PTE REF CNT -

OVERFLOW, 55
gm put, 99
gm rand, 83
gm rand mod, 84
GM RDMA GRANULARITY,

52
gm receive, 69
gm receive pending, 69
GM RECV EVENT, 56
gm recv event type, 55

gm register buffer, 74
gm register memory, 69
gm remote ptr t, 53
gm resume sending, 89
gm send completion callback t,

53
GM SEND DROPPED, 54
GM SEND ORPHANED, 55
GM SEND PORT CLOSED, 54
GM SEND REJECTED, 54
GM SEND TARGET NODE -

UNREACHABLE, 54
GM SEND TARGET PORT -

CLOSED, 54
GM SEND TIMED OUT, 54
gm send to peer with callback,

70
gm send token available, 70
gm send with callback, 70
GM SENDS FAILED EVENT,

55
gm set acceptable sizes, 70
gm set alarm, 71
gm set enable nack down, 94
gm sleep, 93
gm srand, 84
gm status, 53
gm status t, 53
GM STILL SHUTTING -

DOWN, 54
gm strcmp, 72
gm strdup, 96
gm strerror, 94
gm strlen, 71
gm strncasecmp, 73
gm strncmp, 72
gm strncpy, 71
GM STRUCT CONTAINING,

52
GM SUCCESS, 53
gm ticks, 73
GM TIMED OUT, 55
GM TRY AGAIN, 53
GM UC ERROR, 55
GM UNATTACHED, 54
gm unique id, 74

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

INDEX 303

gm unique id to node id, 74
gm unknown, 74
gm unmark, 98
gm unmark all, 98
gm unregister buffer, 75
GM UNSUPPORTED DEVICE,

54
GM UNTRANSLATED -

SYSTEM ERROR, 54
GM USER ERROR, 55
GM YP NO MATCH, 55
gm zone addr in zone, 89
gm zone calloc, 89
gm zone create zone, 87
gm zone destroy zone, 88
gm zone free, 88
gm zone malloc, 88

gm abort
gm.h, 56
gm abort.c, 101

gm abort.c, 101
gm abort, 101

GM ABORTED
gm.h, 54

GM ACCESS DENIED
gm.h, 54

GM ALARM EVENT
gm.h, 56

gm alloc pages
gm.h, 64
gm alloc pages.c, 102

gm alloc pages.c, 102
gm alloc pages, 102
gm free pages, 102

gm alloc send token
gm.h, 57
gm alloc send token.c, 104

gm alloc send token.c, 104
gm alloc send token, 104

gm allow remote memory access
gm.h, 57
gm allow remote memory -

access.c, 105
gm allow remote memory access.c,

105

gm allow remote memory -
access, 105

GM API VERSION
gm.h, 51

GM API VERSION 1 0
gm.h, 50

GM API VERSION 1 1
gm.h, 50

GM API VERSION 1 2
gm.h, 50

GM API VERSION 1 3
gm.h, 50

GM API VERSION 1 4
gm.h, 51

GM API VERSION 1 5
gm.h, 51

GM API VERSION 1 6
gm.h, 51

GM API VERSION 2 0
gm.h, 51

GM API VERSION 2 0 6
gm.h, 51

GM AREA FOR PTR
gm zone.c, 247

gm bcopy
gm.h, 57
gm bcopy.c, 106

gm bcopy.c, 106
gm bcopy, 106

gm blocking receive
gm.h, 58
gm blocking receive.c, 107

gm blocking receive.c, 107
gm blocking receive, 107

gm blocking receive no spin
gm.h, 58
gm blocking receive no spin.c,

109
gm blocking receive no spin.c, 109

gm blocking receive no spin,
109

gm buf status name
gm debug buffers.c, 122

GM BUSY
gm.h, 53

gm bzero

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

304 INDEX

gm.h, 58
gm bzero.c, 111

gm bzero.c, 111
gm bzero, 111

gm calloc
gm.h, 58
gm calloc.c, 112

gm calloc.c, 112
gm calloc, 112

gm cancel alarm
gm.h, 59
gm set alarm.c, 229

GM CLONE BUSY
gm.h, 54

gm close
gm.h, 59
gm close.c, 113

gm close.c, 113
gm close, 113

GM CPU alpha
gm.h, 51

gm crc
gm.h, 82
gm crc.c, 115

gm crc.c, 115
gm crc, 115
gm crc str, 115

gm crc str
gm.h, 83
gm crc.c, 115

gm create hash
gm.h, 78
gm hash.c, 152

gm create lookaside
gm.h, 75
gm lookaside.c, 170

gm create mark set
gm.h, 97
gm mark.c, 176

gm create mutex
gm.h, 86
gm mutex.c, 189

GM DATA CORRUPTED
gm.h, 55

gm datagram send
gm.h, 59

gm datagram send.c, 117
gm datagram send.c, 117

gm datagram send, 117
gm datagram send 4

gm.h, 59
gm datagram send 4.c, 119

gm datagram send 4.c, 119
gm datagram send 4, 119

gm debug buffers.c, 121
gm buf status name, 122
gm dump buffers, 122
gm register buffer, 122
gm unregister buffer, 121

gm deregister.c, 124
gm deregister memory, 124

gm deregister memory
gm.h, 59
gm deregister.c, 124

gm destroy hash
gm.h, 78
gm hash.c, 153

gm destroy lookaside
gm.h, 76
gm lookaside.c, 170

gm destroy mark set
gm.h, 98
gm mark.c, 176

gm destroy mutex
gm.h, 86
gm mutex.c, 189

GM DEV NOT FOUND
gm.h, 55

gm directcopy.c, 126
gm directcopy get, 126

gm directcopy get
gm.h, 91
gm directcopy.c, 126

gm directed send.c, 128
gm directed send with callback

gm.h, 59
gm dma calloc

gm.h, 60
gm dma calloc.c, 129

gm dma calloc.c, 129
gm dma calloc, 129

gm dma free

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

INDEX 305

gm.h, 60
gm dma malloc.c, 130

gm dma malloc
gm.h, 60
gm dma malloc.c, 131

gm dma malloc.c, 130
gm dma free, 130
gm dma malloc, 131

gm drop sends
gm.h, 90
gm drop sends.c, 132

gm drop sends.c, 132
gm drop sends, 132

gm dump buffers
gm.h, 74
gm debug buffers.c, 122

gm eprintf
gm.h, 95
gm eprintf.c, 134

gm eprintf.c, 134
gm eprintf, 134

gm exit
gm.h, 93
gm exit.c, 135

gm exit.c, 135
gm exit, 135

GM FAILURE
gm.h, 53

GM FAST HIGH PEER RECV -
EVENT

gm.h, 56
GM FAST HIGH RECV EVENT

gm.h, 56
GM FAST PEER RECV EVENT

gm.h, 56
GM FAST RECV EVENT

gm.h, 56
gm finalize

gm.h, 85
gm init.c, 164

GM FIRMWARE NOT RUNNING
gm.h, 55

gm flush alarm
gm.h, 61
gm flush alarm.c, 136

gm flush alarm.c, 136

gm flush alarm, 136
gm free

gm.h, 61
gm free.c, 137

gm free.c, 137
gm free, 137

gm free mdebug, 15
gm free page, 16
gm free pages

gm.h, 65
gm alloc pages.c, 102

gm free send token
gm.h, 61
gm free send token.c, 138

gm free send token.c, 138
gm free send token, 138

gm free send tokens
gm.h, 61
gm free send tokens.c, 139

gm free send tokens.c, 139
gm free send tokens, 139

gm get
gm get.c, 140

gm get.c, 140
gm get, 140

gm get host name
gm.h, 61
gm get host name.c, 142

gm get host name.c, 142
gm get host name, 142

gm get mapper unique id
gm.h, 62
gm get mapper unique id.c, 143

gm get mapper unique id.c, 143
gm get mapper unique id, 143

gm get node id
gm.h, 62
gm get node id.c, 144

gm get node id.c, 144
gm get node id, 144

gm get node type
gm.h, 62
gm get node type.c, 145

gm get node type.c, 145
gm get node type, 145

gm get port id

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

306 INDEX

gm.h, 69
gm get port id.c, 146

gm get port id.c, 146
gm get port id, 146

gm get unique board id
gm.h, 62
gm get unique board id.c, 147

gm get unique board id.c, 147
gm get unique board id, 147

gm getpid
gm.h, 91
gm getpid.c, 148

gm getpid.c, 148
gm getpid, 148

gm global id to node id
gm.h, 100

gm handle sent tokens.c, 149
GM HARDWARE FAULT

gm.h, 55
gm hash, 17
gm hash.c, 150

gm create hash, 152
gm destroy hash, 153
gm hash compare ints, 157
gm hash compare longs, 156
gm hash compare ptrs, 158
gm hash compare strings, 155
gm hash entry t, 152
gm hash find, 154
gm hash hash int, 158
gm hash hash long, 157
gm hash hash ptr, 159
gm hash hash string, 156
gm hash insert, 155
gm hash rekey, 154
gm hash remove, 154
gm hash segment t, 152
gm hash t, 152

gm hash compare ints
gm.h, 80
gm hash.c, 157

gm hash compare longs
gm.h, 79
gm hash.c, 156

gm hash compare ptrs
gm.h, 81

gm hash.c, 158
gm hash compare strings

gm.h, 79
gm hash.c, 155

gm hash entry, 18
gm hash entry t

gm hash.c, 152
gm hash find

gm.h, 78
gm hash.c, 154

gm hash hash int
gm.h, 81
gm hash.c, 158

gm hash hash long
gm.h, 80
gm hash.c, 157

gm hash hash ptr
gm.h, 82
gm hash.c, 159

gm hash hash string
gm.h, 79
gm hash.c, 156

gm hash insert
gm.h, 78
gm hash.c, 155

gm hash rekey
gm.h, 78
gm hash.c, 154

gm hash remove
gm.h, 78
gm hash.c, 154

gm hash segment, 19
gm hash segment t

gm hash.c, 152
gm hash t

gm hash.c, 152
gm hex dump

gm.h, 62
gm hex dump.c, 160

gm hex dump.c, 160
gm hex dump, 160

GM HIGH PEER RECV EVENT
gm.h, 56

GM HIGH PRIORITY
gm.h, 55

GM HIGH RECV EVENT

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

INDEX 307

gm.h, 56
gm host name to node id

gm.h, 62
gm host name to node id.c, 162

gm host name to node id.c, 161
gm host name to node id, 162
gm host name to node id ex,

161
gm host name to node id ex

gm.h, 100
gm host name to node id.c, 161

GM INCOMPATIBLE LIB AND -
DRIVER

gm.h, 54
gm init

gm.h, 84
gm init.c, 163

gm init.c, 163
gm finalize, 164
gm init, 163

gm initialize alarm
gm.h, 63
gm set alarm.c, 229

GM INPUT BUFFER TOO SMALL
gm.h, 53

GM INTERNAL ERROR
gm.h, 54

GM INTERRUPTED
gm.h, 54

GM INVALID COMMAND
gm.h, 54

GM INVALID PARAMETER
gm.h, 54

GM INVALID PORT NUMBER
gm.h, 55

gm isprint
gm.h, 63
gm isprint.c, 165

gm isprint.c, 165
gm isprint, 165

gm log2.c, 166
gm log2 roundup, 166
gm log2 roundup table, 167

gm log2 roundup
gm.h, 85
gm log2.c, 166

gm log2 roundup table
gm.h, 100
gm log2.c, 167

gm lookaside, 20
segment list, 20

gm lookaside.c, 168
gm create lookaside, 170
gm destroy lookaside, 170
gm lookaside alloc, 169
gm lookaside free, 170
gm lookaside zalloc, 169

gm lookaside::gm lookaside -
segment list, 21

gm lookaside alloc
gm.h, 76
gm lookaside.c, 169

gm lookaside free
gm.h, 77
gm lookaside.c, 170

gm lookaside segment, 22
gm lookaside zalloc

gm.h, 77
gm lookaside.c, 169

GM LOW PRIORITY
gm.h, 55

gm malloc
gm.h, 63
gm malloc.c, 172

gm malloc.c, 172
gm malloc, 172

gm mark
gm.h, 96
gm mark.c, 175

gm mark.c, 173
gm create mark set, 176
gm destroy mark set, 176
gm mark, 175
gm mark is valid, 175
gm mark reference t, 174
gm unmark, 175
gm unmark all, 177

gm mark is valid
gm.h, 97
gm mark.c, 175

gm mark reference, 23
gm mark reference t

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

308 INDEX

gm mark.c, 174
gm mark set, 24
GM MAX DMA GRANULARITY

gm.h, 52
GM MAX HOST NAME LEN

gm.h, 51
gm max length for size

gm.h, 65
gm max length for size.c, 178

gm max length for size.c, 178
gm max length for size, 178

gm max node id
gm.h, 66
gm max node id.c, 179

gm max node id.c, 179
gm max node id, 179

gm max node id in use
gm.h, 95
gm max node id in use.c, 180

gm max node id in use.c, 180
gm max node id in use, 180

GM MAX PORT NAME LEN
gm.h, 51

gm mdebug, 25
gm memcmp

gm.h, 66
gm memcmp.c, 182

gm memcmp.c, 182
gm memcmp, 182

gm memorize message
gm.h, 66
gm memorize message.c, 183

gm memorize message.c, 183
gm memorize message, 183

GM MEMORY FAULT
gm.h, 54

gm memset
gm.h, 95
gm memset.c, 185

gm memset.c, 185
gm memset, 185

gm min message size
gm.h, 67
gm min message size.c, 186

gm min message size.c, 186
gm min message size, 186

gm min size for length
gm.h, 67
gm min size for length.c, 187

gm min size for length.c, 187
gm min size for length, 187

GM MINOR OVERFLOW
gm.h, 55

gm mtu
gm.h, 68
gm mtu.c, 188

gm mtu.c, 188
gm mtu, 188

gm mutex.c, 189
gm create mutex, 189
gm destroy mutex, 189
gm mutex enter, 190
gm mutex exit, 190

gm mutex enter
gm.h, 86
gm mutex.c, 190

gm mutex exit
gm.h, 87
gm mutex.c, 190

GM NEW FAST RECV EVENT
gm.h, 56

GM NEW RECV EVENT
gm.h, 56

GM NEW SENDS FAILED EVENT
gm.h, 56

gm next event peek
gm.h, 69
gm next event peek.c, 191

gm next event peek.c, 191
gm next event peek, 191

GM NO DRIVER SUPPORT
gm.h, 55

GM NO MATCH
gm.h, 55

GM NO RECV EVENT
gm.h, 55

GM NO SUCH DEVICE
gm.h, 54

GM NO SUCH NODE ID
gm.h, 51

GM NODE ID NOT YET SET
gm.h, 54

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

INDEX 309

gm node id to global id
gm.h, 100

gm node id to host name
gm.h, 68
gm node id to host name.c, 192

gm node id to host name.c, 192
gm node id to host name, 192
gm node id to host name ex,

193
gm node id to host name ex

gm.h, 100
gm node id to host name.c, 193

gm node id to unique id
gm.h, 68
gm node id to unique id.c, 194

gm node id to unique id.c, 194
gm node id to unique id, 194

GM NOT SUPPORTED IN -
KERNEL

gm.h, 55
GM NOT SUPPORTED ON ARCH

gm.h, 55
GM NUM ELEM

gm.h, 52
gm num ports

gm.h, 68
gm num ports.c, 195

gm num ports.c, 195
gm num ports, 195

GM NUM PRIORITIES
gm.h, 55

gm num receive tokens
gm.h, 69
gm num receive tokens.c, 196

gm num receive tokens.c, 196
gm num receive tokens, 196

GM NUM RECV EVENT TYPES
gm.h, 56

gm num send tokens
gm.h, 68
gm num send tokens.c, 197

gm num send tokens.c, 197
gm num send tokens, 197

gm on exit
gm.h, 99
gm on exit.c, 198

gm on exit.c, 198
gm on exit, 198
gm on exit record t, 198

gm on exit record, 26
gm on exit record t

gm on exit.c, 198
gm open

gm.h, 69
gm open.c, 200

gm open.c, 200
gm open, 200

GM OUT OF MEMORY
gm.h, 54

GM OUTPUT BUFFER TOO -
SMALL

gm.h, 53
gm page alloc

gm.h, 64
gm page alloc.c, 202

gm page alloc.c, 202
gm page alloc, 202
gm page free, 203

gm page allocation record, 27
gm page free

gm.h, 64
gm page alloc.c, 203

GM PAGE TABLE FULL
gm.h, 55

GM PEER RECV EVENT
gm.h, 56

GM PERMISSION DENIED
gm.h, 54

gm perror
gm.h, 92
gm perror.c, 204

gm perror.c, 204
gm perror, 204

gm pid t
gm.h, 53

GM POWER OF TWO
gm.h, 52

gm printf
gm.h, 93
gm printf.c, 205

gm printf.c, 205
gm printf, 205

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

310 INDEX

gm priority
gm.h, 55

gm provide receive buffer.c, 206
gm provide receive buffer -

with tag, 206
gm provide receive buffer with tag

gm.h, 69
gm provide receive buffer.c, 206

GM PTE REF CNT OVERFLOW
gm.h, 55

gm put
gm.h, 99
gm put.c, 208

gm put.c, 208
gm put, 208

gm rand
gm.h, 83
gm rand.c, 210

gm rand.c, 210
gm rand, 210
gm srand, 210

gm rand mod
gm.h, 84
gm rand mod.c, 212

gm rand mod.c, 212
gm rand mod, 212

GM RDMA GRANULARITY
gm.h, 52

gm receive
gm.h, 69
gm receive.c, 213

gm receive.c, 213
gm receive, 213
gm receive debug buffers, 214

gm receive debug buffers
gm receive.c, 214

gm receive pending
gm.h, 69
gm receive pending.c, 215

gm receive pending.c, 215
gm receive pending, 215

GM RECV EVENT
gm.h, 56

gm recv event type
gm.h, 55

gm register.c, 216

gm register memory, 217
gm register memory ex, 216

gm register buffer
gm.h, 74
gm debug buffers.c, 122

gm register memory
gm.h, 69
gm register.c, 217

gm register memory ex
gm register.c, 216

gm remote ptr n t, 28
gm remote ptr t

gm.h, 53
gm resume sending

gm.h, 89
gm resume sending.c, 219

gm resume sending.c, 219
gm resume sending, 219

gm s16 n t, 29
gm s32 n t, 30
gm s64 n t, 31
gm s8 n t, 32
gm s e context t, 33
gm send.c, 221

gm send with callback, 221
gm send completion callback t

gm.h, 53
GM SEND DROPPED

gm.h, 54
GM SEND ORPHANED

gm.h, 55
GM SEND PORT CLOSED

gm.h, 54
GM SEND REJECTED

gm.h, 54
GM SEND TARGET NODE -

UNREACHABLE
gm.h, 54

GM SEND TARGET PORT -
CLOSED

gm.h, 54
GM SEND TIMED OUT

gm.h, 54
gm send to peer.c, 223

gm send to peer with callback,
223

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

INDEX 311

gm send to peer with callback
gm.h, 70
gm send to peer.c, 223

gm send token available
gm.h, 70
gm send token available.c, 225

gm send token available.c, 225
gm send token available, 225

gm send with callback
gm.h, 70
gm send.c, 221

GM SENDS FAILED EVENT
gm.h, 55

gm set acceptable sizes
gm.h, 70
gm set acceptable sizes.c, 226

gm set acceptable sizes.c, 226
gm set acceptable sizes, 226

gm set alarm
gm.h, 71
gm set alarm.c, 229

gm set alarm.c, 228
gm cancel alarm, 229
gm initialize alarm, 229
gm set alarm, 229

gm set enable nack down
gm.h, 94
gm set enable nack down.c, 231

gm set enable nack down.c, 231
gm set enable nack down, 231

gm simple example.h, 232
gm sleep

gm.h, 93
gm sleep.c, 233

gm sleep.c, 233
gm sleep, 233

gm srand
gm.h, 84
gm rand.c, 210

gm status
gm.h, 53

gm status t
gm.h, 53

GM STILL SHUTTING DOWN
gm.h, 54

gm strcmp

gm.h, 72
gm strcmp.c, 234

gm strcmp.c, 234
gm strcmp, 234

gm strdup
gm.h, 96
gm strdup.c, 235

gm strdup.c, 235
gm strdup, 235

gm strerror
gm.h, 94
gm strerror.c, 236

gm strerror.c, 236
gm strerror, 236

gm strlen
gm.h, 71
gm strlen.c, 237

gm strlen.c, 237
gm strlen, 237

gm strncasecmp
gm.h, 73
gm strncasecmp.c, 238

gm strncasecmp.c, 238
gm strncasecmp, 238

gm strncmp
gm.h, 72
gm strncmp.c, 239

gm strncmp.c, 239
gm strncmp, 239

gm strncpy
gm.h, 71
gm strncpy.c, 240

gm strncpy.c, 240
gm strncpy, 240

GM STRUCT CONTAINING
gm.h, 52

GM SUCCESS
gm.h, 53

gm ticks
gm.h, 73
gm ticks.c, 241

gm ticks.c, 241
gm ticks, 241

GM TIMED OUT
gm.h, 55

GM TRY AGAIN

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

312 INDEX

gm.h, 53
gm u16 n t, 34
gm u32 n t, 35
gm u64 n t, 36
gm u8 n t, 37
GM UC ERROR

gm.h, 55
GM UNATTACHED

gm.h, 54
gm unique id

gm.h, 74
gm unique id.c, 242

gm unique id.c, 242
gm unique id, 242

gm unique id to node id
gm.h, 74
gm unique id to node id.c, 243

gm unique id to node id.c, 243
gm unique id to node id, 243

gm unknown
gm.h, 74
gm unknown.c, 245

gm unknown.c, 245
gm unknown, 245

gm unmark
gm.h, 98
gm mark.c, 175

gm unmark all
gm.h, 98
gm mark.c, 177

gm unregister buffer
gm.h, 75
gm debug buffers.c, 121

GM UNSUPPORTED DEVICE
gm.h, 54

GM UNTRANSLATED SYSTEM -
ERROR

gm.h, 54
gm up n t, 38
GM USER ERROR

gm.h, 55
GM YP NO MATCH

gm.h, 55
gm zone, 39
gm zone.c, 246

GM AREA FOR PTR, 247

gm zone addr in zone, 249
gm zone area t, 247
gm zone calloc, 249
gm zone create zone, 247
gm zone destroy zone, 248
gm zone free, 248
gm zone malloc, 249
gm zone t, 247

gm zone addr in zone
gm.h, 89
gm zone.c, 249

gm zone area, 40
gm zone area t

gm zone.c, 247
gm zone calloc

gm.h, 89
gm zone.c, 249

gm zone create zone
gm.h, 87
gm zone.c, 247

gm zone destroy zone
gm.h, 88
gm zone.c, 248

gm zone free
gm.h, 88
gm zone.c, 248

gm zone malloc
gm.h, 88
gm zone.c, 249

gm zone t
gm zone.c, 247

hash entry, 41

preallocated record chunk, 42

segment list
gm lookaside, 20

Generated on Tue Sep 9 08:26:24 2003 for GM by Doxygen

	GM: A message-passing system for Myrinet networks
	Table of Contents:

	GM Module Index
	GM Modules

	GM Data Structure Index
	GM Data Structures

	GM File Index
	GM File List

	GM Page Index
	GM Related Pages

	GM Module Documentation
	Deprecated GM API functions

	GM Data Structure Documentation
	gm_free_mdebug Union Reference
	gm_free_page Struct Reference
	gm_hash Struct Reference
	gm_hash_entry Struct Reference
	gm_hash_segment Struct Reference
	gm_lookaside Struct Reference
	gm_lookaside::gm_lookaside_segment_list Struct Reference
	gm_lookaside_segment Struct Reference
	gm_mark_reference Union Reference
	gm_mark_set Struct Reference
	gm_mdebug Struct Reference
	gm_on_exit_record Struct Reference
	gm_page_allocation_record Struct Reference
	gm_remote_ptr_n_t Struct Reference
	gm_s16_n_t Struct Reference
	gm_s32_n_t Struct Reference
	gm_s64_n_t Struct Reference
	gm_s8_n_t Struct Reference
	gm_s_e_context_t Struct Reference
	gm_u16_n_t Struct Reference
	gm_u32_n_t Struct Reference
	gm_u64_n_t Struct Reference
	gm_u8_n_t Struct Reference
	gm_up_n_t Struct Reference
	gm_zone Struct Reference
	gm_zone_area Struct Reference
	hash_entry Struct Reference
	preallocated_record_chunk Struct Reference

	GM File Documentation
	gm.h File Reference
	gm_abort.c File Reference
	gm_alloc_pages.c File Reference
	gm_alloc_send_token.c File Reference
	gm_allow_remote_memory_access.c File Reference
	gm_bcopy.c File Reference
	gm_blocking_receive.c File Reference
	gm_blocking_receive_no_spin.c File Reference
	gm_bzero.c File Reference
	gm_calloc.c File Reference
	gm_close.c File Reference
	gm_crc.c File Reference
	gm_datagram_send.c File Reference
	gm_datagram_send_4.c File Reference
	gm_debug_buffers.c File Reference
	gm_deregister.c File Reference
	gm_directcopy.c File Reference
	gm_directed_send.c File Reference
	gm_dma_calloc.c File Reference
	gm_dma_malloc.c File Reference
	gm_drop_sends.c File Reference
	gm_eprintf.c File Reference
	gm_exit.c File Reference
	gm_flush_alarm.c File Reference
	gm_free.c File Reference
	gm_free_send_token.c File Reference
	gm_free_send_tokens.c File Reference
	gm_get.c File Reference
	gm_get_host_name.c File Reference
	gm_get_mapper_unique_id.c File Reference
	gm_get_node_id.c File Reference
	gm_get_node_type.c File Reference
	gm_get_port_id.c File Reference
	gm_get_unique_board_id.c File Reference
	gm_getpid.c File Reference
	gm_handle_sent_tokens.c File Reference
	gm_hash.c File Reference
	gm_hex_dump.c File Reference
	gm_host_name_to_node_id.c File Reference
	gm_init.c File Reference
	gm_isprint.c File Reference
	gm_log2.c File Reference
	gm_lookaside.c File Reference
	gm_malloc.c File Reference
	gm_mark.c File Reference
	gm_max_length_for_size.c File Reference
	gm_max_node_id.c File Reference
	gm_max_node_id_in_use.c File Reference
	gm_memcmp.c File Reference
	gm_memorize_message.c File Reference
	gm_memset.c File Reference
	gm_min_message_size.c File Reference
	gm_min_size_for_length.c File Reference
	gm_mtu.c File Reference
	gm_mutex.c File Reference
	gm_next_event_peek.c File Reference
	gm_node_id_to_host_name.c File Reference
	gm_node_id_to_unique_id.c File Reference
	gm_num_ports.c File Reference
	gm_num_receive_tokens.c File Reference
	gm_num_send_tokens.c File Reference
	gm_on_exit.c File Reference
	gm_open.c File Reference
	gm_page_alloc.c File Reference
	gm_perror.c File Reference
	gm_printf.c File Reference
	gm_provide_receive_buffer.c File Reference
	gm_put.c File Reference
	gm_rand.c File Reference
	gm_rand_mod.c File Reference
	gm_receive.c File Reference
	gm_receive_pending.c File Reference
	gm_register.c File Reference
	gm_resume_sending.c File Reference
	gm_send.c File Reference
	gm_send_to_peer.c File Reference
	gm_send_token_available.c File Reference
	gm_set_acceptable_sizes.c File Reference
	gm_set_alarm.c File Reference
	gm_set_enable_nack_down.c File Reference
	gm_simple_example.h File Reference
	gm_sleep.c File Reference
	gm_strcmp.c File Reference
	gm_strdup.c File Reference
	gm_strerror.c File Reference
	gm_strlen.c File Reference
	gm_strncasecmp.c File Reference
	gm_strncmp.c File Reference
	gm_strncpy.c File Reference
	gm_ticks.c File Reference
	gm_unique_id.c File Reference
	gm_unique_id_to_node_id.c File Reference
	gm_unknown.c File Reference
	gm_zone.c File Reference

	GM Page Documentation
	XI. Alarms
	VII. Page Allocation
	XV. GM Constants, Macros, and Enumerated Types
	I. Copyright Notice
	II. About This Document
	X. Endian Conversion
	XIV. Example Programs
	XII. High Availability Extensions
	V. Initialization
	IV. Programming Model
	III. Overview
	IX. Receiving Messages
	VIII. Sending Messages
	VI. Memory Setup
	XVI. Function Summary
	XIII. Utility Modules

