
Fast and Scalable MPI-Level Broadcast using InfiniBand’s Hardware Multicast
Support

�

Jiuxing Liu Amith R Mamidala Dhabaleswar K Panda

Computer and Information Science
The Ohio State University

Columbus, OH 43210�
liuj, mamidala, panda � @cis.ohio-state.edu

Abstract

Modern high performance applications require efficient
and scalable collective communication operations. Cur-
rently, most collective operations are implemented based on
point-to-point operations. In this paper, we propose to use
hardware multicast in InfiniBand to design fast and scalable
broadcast operations in MPI. InfiniBand supports multicast
with Unreliable Datagram (UD) transport service. This
makes it hard to be directly used by an upper layer such
as MPI. To bridge the semantic gap between MPI Bcast
and InfiniBand hardware multicast, we have designed and
implemented a substrate on top of InfiniBand which pro-
vides functionalities such as reliability, in-order delivery
and large message handling. By using a sliding-window
based design, we improve MPI Bcast latency by removing
most of the overhead in the substrate out of the communica-
tion critical path. By using optimizations such as a new co-
root based scheme and delayed ACK, we can further bal-
ance and reduce the overhead. We have also addressed
many detailed design issues such as buffer management,
efficient handling of out-of-order and duplicate messages,
timeout and retransmission, flow control and RDMA based
ACK communication.

Our performance evaluation shows that in an 8 node
cluster testbed, hardware multicast based designs can im-
prove MPI broadcast latency up to 58% and broadcast
throughput up to 112%. The proposed solutions are also
much more tolerant to process skew compared with the cur-
rent point-to-point based implementation. We have also de-
veloped analytical model for our multicast based schemes
and validated them with experimental numbers. Our analyt-
ical model shows that with the new designs, one can achieve
MPI broadcast latency of small messages with 20.0 � s and
of one MTU size message (around 1836 bytes of data pay-
load) with 40.0 � s in a 1024 node cluster.

1 Introduction

Cluster based computing systems are becoming increas-
ingly affordable and cost-effective for a wide range of

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, a grant from Sandia National Laboratory, a grant
from Los Alamos National Laboratory, and National Science Foundation’s
grants #CCR-0204429 and #CCR-0311542.

scientific applications. These systems are typically built
from commodity PCs connected with high speed Local
Area Networks (LANs) or System Area Networks (SANs).
In the area of parallel and high performance computing,
the Message Passing Interface (MPI) [17] programming
model is commonly used for writing applications. MPI
provides both point-to-point and collective communication
functions. Many parallel applications take advantage of col-
lective operations. Some of the applications, such as IS and
FT in the NAS Parallel Benchmark suite [12], almost use
collective operations exclusively for communication. Thus,
providing high performance and scalable collective commu-
nication support is critical for many cluster systems. In this
paper, we focus on one of the commonly used MPI col-
lective functions : MPI Bcast. This operation broadcasts a
message to all the other nodes in a communication group.
MPI Bcast can be used alone or as building blocks for other
collective operations.

Currently, there are several network interconnects that
provide low latency (less than 10 � s) and high bandwidth
(in the order of Gbps) for cluster based systems. Two of the
leading products are Myrinet[13] and Quadrics[15]. More
recently, InfiniBand [6] has entered the high performance
computing market. One of the notable feature of Infini-
Band is that it supports hardware multicast. Thus, a mes-
sage can be efficiently delivered to multiple receivers. Al-
though they look similar, the semantics of hardware multi-
cast in InfiniBand do not match with those of MPI Bcast.
For example, multicast in InfiniBand is supported only in
Unreliable Datagram (UD) service and does not guarantee
reliable message delivery. This leads to the following ques-
tions:

1. Can we take advantage of hardware multicast in Infini-
Band to provide broadcast support in MPI?

2. How can we bridge the semantic gap of InfiniBand
multicast and MPI Bcast in an efficient and scalable
manner?

In this paper, we aim to provide answers to the above
questions. To support MPI Bcast, InfiniBand multicast
lacks features such as reliability, in-order delivery and large

1

message handling. We propose designing and using a sub-
strate to enhance InfiniBand multicast by providing these
features. This substrate is an integrated part of the MPI
implementation and it exploits both multicast and point-to-
point communication in InfiniBand.

Providing new features on top of InfiniBand multicast
inevitably brings extra overhead. To achieve high perfor-
mance and scalability, we have used two key design strate-
gies. The first one is to remove the overhead from com-
munication critical path so that it happens in the back-
ground. The second one is to balance and reduce this back-
ground overhead so that it is not a performance bottleneck
in most cases. Based on the first strategy, we have proposed
a sliding window based design which enables the root of
MPI Bcast to proceed without waiting for other nodes to
send ACKs. Based on the second strategy, we have intro-
duced a co-root scheme to balance background ACK traffic
and various delayed ACK techniques to reduce the ACK
traffic. We have also addressed many detailed design issues
such as buffer management, efficient handling of out-of-
order and duplicate messages, timeout and retransmission,
flow control and RDMA based ACK communication.

We have implemented our designs and integrated them
into our MPI implementation over InfiniBand. Compared
with the current MPI Bcast implementation, which is based
solely on point-to-point communication, our new designs
can improve broadcast latency up to 58% and throughput
up to 112% in our 8 node testbed. With larger clusters,
we expect that more benefit can be obtained from our de-
signs because InfiniBand’s hardware multicast scales very
well when the number of nodes increases. We have devel-
oped analytical models to get more insight into the perfor-
mance of different MPI Bcast designs on large scale clus-
ters. Our results show that on a 1024 node cluster, our de-
signs can perform up to 3.86 times better than the current
design and achieve MPI broadcast latency of small mes-
sages with 20.0 � s and of one MTU size message (around
1836 bytes of data payload) with 40.0 � s.

The rest of the paper is organized as follows: In Sec-
tion 2, we provide an overview of the InfiniBand Architec-
ture. In Section 3, we describe the MPI Bcast operation.
Our designs of MPI Bcast over InfiniBand are presented
in Section 4 at the algorithm level. In Section 5, we dis-
cuss detailed design issues. We evaluate our designs using
experiments and analytical models in Sections 6 and 7, re-
spectively. Conclusions and future research directions are
presented in Section 8.

2 InfiniBand Overview
The InfiniBand Architecture (IBA) [6] defines a switched

network fabric for interconnecting processing nodes and I/O
nodes. It provides a communication and management in-
frastructure for inter-process communication and I/O. In an
InfiniBand network, processing nodes and I/O nodes are
connected to the fabric by Channel Adapters (CA). There

are two kinds of channel adapters: Host Channel Adapter
(HCA) and Target Channel Adapter (TCA). HCAs connect
processing nodes to the network.

The InfiniBand communication stack consists of differ-
ent layers. The interface presented by Channel adapters to
consumers belongs to the transport layer. A queue-based
model is used in this interface. A Queue Pair in InfiniBand
Architecture consists of two queues: a send queue and a re-
ceive queue. The send queue holds instructions to transmit
data and the receive queue holds instructions that describe
where received data is to be placed. Communication opera-
tions are described in Work Queue Requests (WQR), or de-
scriptors, and submitted to the work queue. The completion
of WQRs is reported through Completion Queues (CQs).
InfiniBand also supports different classes of transport ser-
vices. In current products, Reliable Connection (RC) ser-
vice and Unreliable Datagram (UD) service are supported.

InfiniBand Architecture supports both channel semantics
and memory semantics. In channel semantics, send/receive
operations are used for communication. In memory seman-
tics, InfiniBand provides Remote Direct Memory Access
(RDMA) operations, including RDMA write and RDMA
read. RDMA operations are one-sided and do not incur soft-
ware overhead at the remote side.

2.1 Hardware Multicast in InfiniBand
One of the notable features provided by the InfiniBand

Architecture is hardware supported multicast. It provides
the ability to send a single message to a specific multicast
address and have it delivered to multiple processes which
may be on different end nodes. Although the same effect
can be achieved by using multiple point-to-point communi-
cation operations, hardware multicast provides the follow-
ing benefits:

� Since only one send operation is needed to initiate
the multicast, it greatly reduces host overhead at the
sender. By reducing this overhead, multicast latency
as seen by each receiver is also reduced.

� With hardware supported multicast, packets are dupli-
cated by the switches only when necessary. Therefore,
network traffic is reduced by eliminating the cases
that multiple identical packets travel through the same
physical link.

Figure 1 shows the latency of InfiniBand multicast on our
8-node testbed. (The details of our testbed are indicated in
Section 6.) We can see that multicast latency is not sensitive
to the number of destination nodes. Therefore, it provides a
very scalable approach to send data to multiple destinations.

In InfiniBand, hardware multicast operation is only
available under the Unreliable Datagram (UD) transport ser-
vice. In UD, a connectionless communication model is
used. Messages can be dropped or arrive out of order. Thus,
the hardware multicast support cannot be directly integrated
to upper level programming models which require stronger
semantics, such as reliability and in-order delivery.

2

8

10

12

14

16

18

20

22

24

4 8 16 32 64 128 256 512 10242048

T
im

e
(u

s)

Message Size (Bytes)

2 nodes
4 nodes
8 nodes

Figure 1. InfiniBand Multicast Performance

3 MPI Bcast Overview
MPI supports both point-to-point and collective commu-

nication functions. MPI Bcast is a commonly used col-
lective function. It broadcasts a message from a root pro-
cess to other processes in a communication group, which
is specified by an MPI communicator. In many cases, this
communicator is MPI COMM WORLD, whose communi-
cation group includes all the processes participating in the
MPI application. MPI Bcast is a blocking operation. For
a root node, the operation does not return until the com-
munication buffer can be reused. For a receiver node, the
operation returns only after the broadcast data has been de-
livered into the receive buffer. However, it is not necessary
that the operation returns only after the broadcast is finished
at the root.

In many MPI implementations, MPI Bcast is imple-
mented with a tree-based algorithm, which exploits point-
to-point communication operations. This approach is used
in our current MPI implementation over InfiniBand: MVA-
PICH [11, 9]. In the tree based approach, the number
of hops to reach leaf nodes increases with the total num-
ber nodes (typically in a logarithmic manner). Therefore,
MPI Bcast latency also increases. In Figure 2, we show
MPI Bcast performance in MVAPICH using point-to-point
communication. It can be seen that MPI Bcast latency in-
creases with the number of nodes.

Another drawback of tree based implementations is that
if hosts are involved in intermediate nodes to forward broad-
cast messages, skew between different processes may sig-
nificantly delay the forwarding [1]. This has adverse impact
on the execution time of an application. Thus, the challenge
is whether the hardware supported multicast scheme can al-
leviate the impact of process skew.

4 Designing MPI Bcast with InfiniBand Mul-
ticast

In the previous section, we have seen that MPI Bcast im-
plementations based on point-to-point communication are
not scalable with respect to the number of processes. It also
indicates that point-to-point implementations are suscepti-
ble to process skew. In Figure 1, we see that InfiniBand

0

5

10

15

20

25

30

35

40

45

50

4 8 16 32 64 128 256 512 1024 1836

T
im

e
(u

s)

Message Size (Bytes)

2 nodes
4 nodes
8 nodes

Figure 2. MPI Bcast Latency in MVAPICH Us-
ing Point-to-Point Communication

multicast provides a more scalable way of delivering a sin-
gle message to multiple destinations. However, there are
several major differences between InfiniBand multicast and
MPI Bcast:

1. InfiniBand multicast does not guarantee reliability,
while in MPI, communication must be reliable.

2. Since InfiniBand multicast uses connectionless UD
service, there is no guarantee regarding the ordering
of multicast messages. However, MPI specifies that all
collective operations must be matched according to the
order they are initiated.

3. In InfiniBand UD service, the size of a message cannot
exceed the MTU (Maximum Transfer Unit), which is
typically 2K Bytes. MPI does not limit the message
size in MPI Bcast.

In other words, there exists a semantic gap between In-
finiBand multicast and MPI Bcast. This issue must be ad-
dressed to take advantage of hardware multicast in an MPI
implementation. In this paper, we propose a substrate which
bridges this gap. As shown in Figure 3, this substrate sits
on top of the underlying InfiniBand layer, exploiting mul-
ticast as well as other InfiniBand functionalities. It also
interacts with other parts of the MPI implementation. To
achieve high performance and scalability, we need to not
only implement this substrate, but also do it in an efficient
and scalable manner.

In designing the substrate, we need to address three is-
sues: reliability, in-order delivery, and handling large mes-
sages. Previous study [19] has shown that data sizes in MPI
collective operations are typically quite small. Therefore,
we will first concentrate on efficient handling of small mes-
sages. We will deal with large messages specifically at the
end of this section.

In the following, we propose several designs used in the
substrate. We first describe a basic design which is easy to
understand and also straightforward to implement. Then we
present several new designs which deal with performance
and scalability issues of the basic design. Although reli-
ability and ordering are two different issues, they can be

3

MPI Interface

IBA Interface

IBA Multicast IBA Point−to−Point

Collective Implementation
(MPI_Bcast)

Substrate

Point−to−Point

Implementation

Figure 3. Bridging the Gap between Infini-
Band Multicast and MPI Bcast

addressed together. In the following discussions, we pri-
marily focus on how to implement reliability. We have cho-
sen ACK based approaches, in which delivery is confirmed
by acknowledgments and message loss is handled by time-
out/retransmission. In the proposed schemes, we also ad-
dress how message ordering can be ensured for MPI Bcast.

4.1 Basic Design

In the basic design, the root node of MPI Bcast sends
out a message using multicast and other nodes wait for this
message. If the message is received, an ACK is sent back
to the root node. The root blocks and waits for all ACKs to
be received. If not all ACKs arrive within a certain period
of time, it times out and retransmits the message using re-
liable point-to-point communication (using the RC service,
as defined by the InfiniBand standard).

The basic design uses ACKs and timeout/retransmission
to provide reliability. Two different broadcast messages
from the same root are guaranteed to arrive in-order because
the root node blocks for ACKs of the first message before it
can send out the second one.

However, there are several major problems in this basic
design. First, making the root block for all the ACKs sig-
nificantly increases the overhead of the MPI Bcast call at
the root. Second, since all other nodes send back ACKs to
a single root node, a hot spot is created at the root, which
becomes a performance bottleneck when the total number
of nodes in a system is large. This problem is also referred
to as ACK implosion [16]. In the following subsections, we
will address these problems.

4.2 Sliding-Window Based Design

Our basic design leads to poor performance because the
root has to wait for all the ACKs to be received. MPI spec-
ifies that MPI Bcast can return immediately after the buffer
can be reused. Therefore, it is not necessary for the root to
wait for all the ACKs to be received.

In order to alleviate this problem, we propose a solution
which makes a copy of the user buffer. After the multicast
operation is initiated, we can immediately return without
waiting for all the ACKs to be received. To handle multi-
ple outstanding MPI Bcast initiated from a single root, we

use a number of pre-allocated buffers at each root. These
buffers are organized as a ring. A sliding-window based
approach is used to manage these buffers, as shown in Fig-
ure 4. A buffer is consumed for each new MPI Bcast oper-
ation. When all ACKs for this operation have arrived, this
buffer can be freed and reused for other MPI Bcast opera-
tions. tail head

0 5 6 7 82 3 41

0

tail head

1 2 3 4 5 6 7 8

After receiving acks for 2 to 4

tail head

2 4 5 6 7 8310

After sending messages 2 to 4

After sending 5

Figure 4. Sliding Window Buffer Management

Compared with the basic design, the sliding-window
based design decouples ACK processing from the multi-
cast. In other words, ACK processing is no longer done in
the critical path of broadcast, but carried out in the “back-
ground”. If the window size is sufficiently large such that
all ACKs can arrive and be processed in time, MPI Bcast
will not block due to running out of buffers. As a result, the
performance of MPI Bcast can be significantly improved.

The window based design also has its drawbacks. First,
the data in user buffers has to be copied to buffers in the win-
dow, which increases processing overhead. Fortunately, the
typical size of MPI Bcast is small and the copying overhead
is negligible. Another problem is that it consumes more
buffer than the basic design. We can control the buffer space
used by changing the total window size. The third issue is
that this design does not solve the ACK implosion problem.
Although ACK processing is now done in the background,
it still happens that all ACKs arrive at the same root node.
Therefore, the root can become a performance bottleneck in
this design for large scale systems.

4.3 Avoiding ACK Implosion

To solve the ACK implosion problem, we should not let
all the receivers send ACKs to a single root node. The basic
idea to deal with this problem is to use a hierarchical struc-
ture for ACK collection and distribute the load to a number
of nodes. One solution is to use a tree based structure to col-
lect ACKs. In this approach, all nodes form a tree structure,
with the root node being the root of the tree. Intermediate
nodes are responsible for collecting ACKs for its children.
After all ACKs have come from its children, an intermedi-
ate node sends an ACK to its parent node. The root node

4

only needs to collect ACKs from its direct children instead
of all other nodes.

The drawback of the tree based ACK collection is that
it depends on intermediate nodes for ACK processing.
Thus, ACK collection time depends on the communica-
tion progress of intermediate nodes. (A similar problem
has been discussed in [1].) In a polling based MPI imple-
mentation such as MPICH, communication progress is only
made within MPI function calls. Therefore, if an interme-
diate node is doing lengthy computation, ACK processing
and forwarding could be delayed. The problem becomes
even more serious when the tree has multiple levels. As
a result, it is very hard to determine the timeout value for
retransmission at the root. When ACK processing at inter-
mediate nodes are delayed, the tree based ACK collection
is prone to false retransmission, which is triggered by de-
layed ACKs instead of real message loss. To make matters
worse, a single delayed ACK will result in the root node re-
transmitting the message to everyone in the same sub-tree,
which can generate a lot of network traffic and increase the
overhead of the root node.

To solve the ACK implosion problem and also to address
problems with the tree based scheme, we propose a new
ACK collection scheme called the co-root scheme. In this
scheme, in addition to the root node, we select a subset of
other nodes as co-roots. The remaining nodes are called leaf
nodes. Each of the root and the co-roots is responsible for a
group of leaf nodes. The basic idea is to guarantee that co-
roots can get messages reliably and use them to help ACK
processing. The co-root scheme is illustrated in Figure 5
and it consists of the following steps:

1. The root uses multicast to transfer the message to every
other node.

2. The root does a small scale “broadcast” to all co-
roots. The broadcast is done using reliable point-to-
point communication. A tree based algorithm can be
used, just like that in the current MPI implementation.

3. Each of the root and the co-roots collects ACKs from
all other nodes in its sub-group. If timeout happens,
the root or the appropriate co-root will do the retrans-
mission.

Similar to the tree based ACK collection, the co-root
scheme also uses a hierarchical structure to delegate ACK
collection and processing to other nodes. They both aim to
solve the ACK implosion problem. However, there are also
major differences between them. The co-root scheme is a
two-level hierarchy. After the message is delivered to a co-
root, the co-root essentially plays the same role as the root
and ACK processing for its sub-group is completely decou-
pled from the root. In a tree based scheme, intermediate
nodes are responsible for ACK collection and forwarding,
while the root is responsible for ACK collection and retrans-
mission. The ACK processing is not completely decoupled

Ack Transmission to respective coroots

Multicast to All the nodes

Unicast to coroots

0 4 8 12

0 4 8 12

,

Figure 5. Co-Root Scheme
from the root because it has to handle all the retransmis-
sions.

The co-root scheme has several advantages over a tree
based scheme. Since co-roots now help with both ACK
collection and retransmission, the load is more evenly dis-
tributed. The co-root scheme does not depend on the
progress of intermediate nodes. As a result, it is easier to
determine the timeout value for a given system size. The
co-root scheme also results in fewer false retransmissions.
(Note that false retransmission can still happen if an ACK
from a leaf to its co-root is delayed.) Another advantage
of the co-root scheme is that each co-root keeps informa-
tion of all the leaf nodes in its sub-group. When an ACK is
not received, retransmission is done only to that particular
node. In a tree based scheme, the root can only track other
nodes at the level of sub-trees. Therefore, retransmission
must be done for all nodes in that sub-tree, which increases
overhead and network traffic.

The co-root scheme also has its disadvantages. First, de-
livering the message reliably to every co-root introduces ex-
tra root processing overhead and network traffic. However,
it should be noted that usually the co-root scheme does not
increase latency of the broadcast. At any co-root, the broad-
cast can be completed when it receives either the multicast
message or the “reliable broadcast” message. It does not
have to wait for both messages. The second problem of the
co-root scheme is that a copy of the message is duplicated
at all co-roots. Therefore, it consumes more buffer space
compared with a tree-based scheme. Another issue for co-
root scheme is that we must carefully determine the number
of co-roots (or the sub-group size). We address this issue
(determining optimal number of co-roots) in Section 7.2.

4.4 Reducing ACK Traffic
ACK implosion avoiding schemes distribute ACK pro-

cessing and retransmission tasks from the root to other
nodes, but they do not reduce the total number of ACK mes-
sages. To improve utilization of the network resource and
to avoid possible network congestion, it is also desirable to
reduce ACK traffic.

Our basic idea of reducing ACK traffic is to send ACKs
in a lazy manner. We propose two schemes:

5

1. Piggybacking. In this scheme, a node attaches the
ACK with other messages instead of sending it as a
separate message. If there is no message sending out
to the ACK destination after a certain period of time,
an explicit ACK message is sent.

2. Acknowledge every M broadcast messages. Instead of
sending an ACK for every broadcast message, we only
send one ACK for every M broadcast messages. Time-
out and explicit ACK messages are also used.

Both schemes can reduce the total amount of ACK traffic.
The effectiveness of piggybacking is very dependent on the
communication pattern of the application. In the best case,
all ACKs can be attached with other messages. In the worst
case, timeout happens and we have to send the ACK using
an explicit message. However, even in this worst case we
can still possibly reduce ACK traffic. This is because we
wait for the timeout before sending out the ACK messages.
Therefore, if there are multiple broadcast messages received
from the same root, they can be acknowledged using a sin-
gle ACK message.

The second scheme effectively reduces the ACK traffic
to 1/M of the original amount if there are many back-to-
back broadcasts. However, one problem with the scheme is
that after every M message, the root will receive ACKs from
all other nodes. This leads to similar situations as ACK im-
plosion. To solve this problem, we introduce a technique
called skewed ACK. In this technique, every node still ac-
knowledges after receiving every M messages. However,
they now do the ACK in a more independent way. For ex-
ample, suppose there are n nodes in the broadcast group and
every broadcast message has a sequence number B, then
node i can generate an ACK based on the following condi-
tion: B mod M = i mod M.

We should note that schemes to avoid ACK implosion
and to reduce ACK traffic are complementary. By combin-
ing both schemes, we can achieve even more benefit. For
example, the schemes proposed in this subsection can be
used to reduce ACK traffic in the co-root scheme proposed
in the previous subsection.
4.5 Dealing with Large Messages

In previous discussions, we dealt with small broadcast
messages which can fit into a single buffer. (The buffer
size is no larger than InfiniBand MTU.) Large messages
can be divided into small chunks and sent out using mul-
tiple buffers. The techniques we have discussed previously
are still applicable in this case. However, the copying cost
may be significant because the message size is large. Since
large broadcast messages are relatively infrequent, an alter-
native way is to fall back on schemes based on point-to-
point communication. The advantage of this approach is
simplified design and implementation. Also the overhead
of the root due to the copy can be eliminated because zero-
copy point-to-point communication can be used for trans-
ferring the message.

5 Detailed Design Issues
Our MPI Bcast implementation is based on MVA-

PICH [11, 9], our MPI implementation over InfiniBand.
MVAPICH is derived from MPICH [3], which was devel-
oped at Argonne National Laboratory and is one of the most
popular MPI implementations. MVAPICH is also derived
from MVICH [8].

In this section, we discuss some of the detailed design is-
sues in our MPI Bcast designs. These issues include buffer
management, out-of-order and duplicate message handling,
timeout and retransmission, flow control and RDMA based
ACK communication.

5.1 Buffer Management
To ensure reliability of MPI Bcast, we have to store

broadcast messages in buffers until we can be sure that ev-
ery other node has received this message. Therefore, buffer
management is an important issue in our design.

For each node, a number of pre-allocated buffers are
used for storing broadcast messages sent by this node. Since
InfiniBand requires communication buffers to be registered,
we pre-register these buffer to save cost during communica-
tion. The buffers are organized as a ring and managed using
a sliding window based algorithm. For each new broad-
cast, the message is copied to the buffer at the head of the
window. For a buffer at the tail of the window, if we have
collected all ACKs, we free this buffer by incrementing the
tail pointer. For the co-root scheme, a window of buffers
exist also in all co-roots and are managed in the same way.

One parameter we have to decide in buffer management
is the window size. A large window size means that the ap-
plication can issue a large number of back-to-back broad-
cast without blocking because of delayed ACKs. However,
using a large window size also consumes more buffer space.
This parameter is best decided by the communication pat-
tern of applications. Currently we use a static value for win-
dow size which can be changed at compile time.

One issue we have to deal with is what to do if we run
out of buffers. In the current implementation, we treat this
situation in the same way as timeout. Thus, we will retrans-
mit the message to all nodes from which the ACK has not
come.

5.2 Handling Out-of-Order and Duplicate Mes-
sages

Multicast messages in InfiniBand use Unreliable Data-
gram transport service, which does not maintain message
order. Duplicate messages can also be sent to a receiver
due to false retransmission or algorithms used in co-root
scheme. These situations are handled by using sequence
numbers attached with each broadcast message.

Each receiver maintains a counter which specifies the se-
quence number of the next broadcast message it is expect-
ing. If the sequence number of the next message is equal
to the counter, the message is processed and the counter
is incremented. If the sequence number is larger than the

6

counter, the processing is delayed and the message is put
into a queue. If an arriving message is a duplicate, its se-
quence number is either less than the counter value or equal
to the sequence number of one of the messages in the queue.
In this case, the message is not processed but silently dis-
carded.

5.3 Timeout and Retransmission
Whenever a root issues a multicast message, it sets a

timeout value for this message. For the co-root scheme,
all the co-roots also set a timeout value after receiving the
message from the root. When we set or check the timeout
value, the current time value is obtained by reading the time
stamp counter register provided by the Intel Pentium archi-
tecture. This approach has very low overhead. To check if
a timeout value has been reached, we use a polling based
approach. Therefore, timeout and retransmission only hap-
pen inside MPI functions calls. An alternative is to use an
interrupt based method. However, this approach is not used
because it brings many race conditions and does not match
well with the polling based implementation of MPICH.

There are many factors which affect the timeout value,
such as multicast and point-to-point latency, process skew,
window size at the root (or co-roots), the number of co-
roots and the system size. Currently, we use a static value
which can be changed at compile time. We plan to investi-
gate these issues in future with the availability of large-scale
InfiniBand clusters.

Retransmission is always done using reliable point-to-
point communication. After retransmission, the message
buffer can be freed because we are now sure that the mes-
sage can arrive at the receiver. In certain retransmission
cases, such as those when a large number of ACKs are not
received, it may be more efficient to re-issue the multicast
operation. However, we decide not to use this approach be-
cause it complicates the implementation and these cases are
quite rare.

5.4 Flow Control
In UD service, a multicast send operation will consume

one buffer at every receiver. If there are not enough buffers
posted at the receiver, incoming messages may be dropped.
The purpose of flow control is to keep the root from sending
if the receivers have not posted enough receive buffers.

We use a credit-based scheme for flow control. Dur-
ing initialization, a number of buffers are pre-posted and
each node has an array of credit values for every other node
which are equal to the number of pre-posted buffers. After
receiving a broadcast message, a node will decrement the
credit count of all nodes because a multicast operation will
consume buffers at all receivers. After the message is pro-
cessed and the buffer is re-posted at a receiver, the credit
count for this node should be incremented at other nodes.
This information is transferred using piggybacking. Both
point-to-point messages and multicast messages can carry
piggybacked credit information.

5.5 RDMA Based ACK communication
In our previous study [11], we have shown that RDMA

operations in InfiniBand provide better performance than
send/receive operations. Another advantage of RDMA is
that there is no descriptor posting or management overhead
at the receiver. To improve performance of ACK collection
in MPI Bcast, we have used RDMA write operations for
ACK collections. To send back an ACK, a receiver issues
an RDMA write to a memory location at the root (or its co-
root). The root or co-root only needs to check the memory
location in order to find out if an ACK has come. Since this
check only involves memory read, it is very efficient.

6 Performance Evaluation
In this section, we evaluate performance of our

MPI Bcast designs based on InfiniBand multicast. We
present results for several different designs and compare
them with the original implementation in MVAPICH, which
is a point-to-point implementation based on the binomial
tree algorithm. We characterize broadcast performance us-
ing two micro-benchmarks: latency and throughput. We
also show how process skew can affect different imple-
mentations. Since different ACK implosion avoiding tech-
niques and ACK traffic reducing techniques may be com-
bined, we can have different combinations for multicast
based schemes. We have chosen only a subset of all possible
combinations in the performance evaluation. All schemes
used in our tests and their abbreviations are as follows:

� Original: the original implementation based on point-
to-point communication.

� Basic: the basic design.
� Window: sliding-window based design without ACK

implosion avoiding or ACK traffic reduction.
� Co-root2: sliding-window based with one co-root.
� Aggregate10: sliding-window based with ACK for ev-

ery 10 messages.

Our experimental testbed consists of a cluster system
with 8 SuperMicro SUPER P4DL6 nodes. Each node
has dual Intel Xeon 2.40 GHz processors with a 512K L2
cache and a 400 MHz front side bus. The machines are
connected by Mellanox InfiniHost MT23108 DualPort 4X
HCA adapter through an InfiniScale MT43132 Eight 4x
Port InfiniBand Switch. The HCA adapters work under the
PCI-X 64-bit 133MHz interfaces. We used the Linux Red
Hat 7.2 operating system with 2.4.7 kernel. The compilers
we used were GNU GCC 2.96 and GNU FORTRAN 0.5.26.

6.1 Latency Test
We define broadcast latency to be the time it takes for a

broadcast message to reach every receiver. Figure 6 shows
the broadcast latency results for different designs. The
buffer size in the multicast window is 2K bytes, which is
equal to the MTU. However, because of the message header
and other overhead (a portion of the buffer is used to store

7

descriptor.), currently we can send a payload of up to 1836
bytes in a single buffer. We can see that our new imple-
mentations based on InfiniBand multicast performs signif-
icantly better than the original broadcast implementation
based on point-to-point communication. In the broadcast la-
tency test, most of the ACK processing is carried out in the
background. Thus, all the multicast based designs shown in
the figure perform comparably. For small messages, mul-
ticast based designs can perform up to 58% better than the
original design.

6.1.1 Large Message Latency
Figure 7 compares one of the designs (Window) with the
original design. We can see that although handling large
messages requires fragmentation and reassembly of mes-
sages and extra copies, the performance can still be im-
proved by using InfiniBand multicast for message sizes up
to 32K bytes. For example, the improvements are 210% for
2K byte messages and 86% for 8K byte messages.

6.2 Throughput Test
We use broadcast throughput to measure how fast

MPI Bcast operations can be issued and finished. In this
test, a number of back-to-back MPI Bcast operations are is-
sued from a root node. The throughput is simply the number
of broadcast operations finished divided by the total time.

Figure 8 presents the throughput results for a number of
different designs. We can see that the basic design performs
the worst even though it uses InfiniBand multicast. This is
because it always waits for all the ACKs before initiating
the next broadcast. However, if we use a sliding-window
based design, we can perform significantly better than the
original design. By using ACK reducing technique, the per-
formance can be further improved because the overhead to
process ACKs is reduced. We can see that Aggregate10
scheme can perform up to 112% better than the original
scheme in terms of throughput.

6.3 Impact of Process Skew
To measure the effect of process skew on broadcast per-

formance, we use a test similar to that in [1]. The test
consists of a loop, in which a barrier operation is performed
before a broadcast. To emulate the effect of process skew, a
random delay is inserted between the barrier and the broad-
cast for all the receiver. We then measure the average time
spent in MPI Bcast.

Figure 9 shows the impact of process skew on
MPI Bcast. Schemes Window and Original are chosen for
comparison. We can see that multicast based scheme is not
affected by process skew at all. In contrast, the original de-
sign relies on intermediate nodes to forward broadcast mes-
sages. Therefore, as process skew increases, the receivers
spend more time in MPI Bcast. When the average pro-
cess skew is 400 � s, the multicast based scheme performs
10 times better than the original design in the process skew
test.

0

20

40

60

80

100

4 8 16 32 64 128 256 512 1024 1836

T
im

e
(u

s)

Message Size (Bytes)

Basic
Window

Co-root2
Original

Aggregate10

Figure 6. MPI Bcast Latency for Small Mes-
sages (8 Nodes)

20

40

60

80

100

120

140

160

180

200

220

240

2048 4096 8192 16384 32768

T
im

e
(u

s)

Message Size (Bytes)

Window
Original

Figure 7. MPI Bcast Latency for Large Mes-
sages (8 Nodes)

0

50

100

150

200

250

300

350

4 8 16 32 64 128 256 512 1024

T
hr

up
ut

 (
B

ca
st

s/
m

ill
is

ec
)

Message Size (Bytes)

Basic
Window

Aggregate10
Original

Figure 8. MPI Bcast Throughput (8 Nodes)

1
5

10

15

20

25

30

35

40

45

50

55

50 100 150 200 250 300 350 400

A
vg

 ti
m

e
sp

en
t i

n
bc

as
t(

us
)

Avg Delay(us)

Original
Window

Figure 9. Impact of Process Skew on
MPI Bcast (8 Nodes)

8

15

20

25

30

35

40

45

50

4 8 16 32 64 128 256 512 1024 1836

T
im

e
(u

s)

Message Size (Bytes)

Window_Estimated
Window_Actual

Original_Estimated
Original_Actual

Figure 10. Estimated and Actual MPI Bcast
Latency (8 Nodes)

0

20

40

60

80

100

120

140

160

180

4 8 16 32 64 128 256 512 1024 1836

T
im

e
(u

s)

Message Size (Bytes)

Window
Original

Figure 11. Estimated MPI Bcast Latency (1024
Nodes)

7 Analytical Model
In this section, we use analytical models to character-

ize different MPI Bcast implementations. Since our experi-
ments were done in a relatively small testbed, these models
help us to estimate the performance of different schemes in
large scale systems.

7.1 Modeling Broadcast Latency
The broadcast operation in the original implementation

happens in a binomial fashion. If we assume that the av-
erage latency of each hop is Tpp, the latency of the whole
broadcast is given by Tpp * log(n).

We now consider the latency for sliding-window based
schemes. With only one root, the latency in this case is due
to the cost of copying (Tcc) at the root, cost of posting a UD
descriptor (Tud), latency of the hardware multicast (Tmc)
and cost of copying (Tcc) at the receiver. The latency for
a single root (Tsr) is thus given by: Tsr = 2Tcc + Tud +
Tmc, where Tmc is the time taken for the multicast packet
to travel from the root to the farthest node.

For the case of multiple roots, we have to consider two
latencies. One of which is the multicast latency Tsr we have
considered above. The other latency is due to the broadcast
to all the co-roots using the binomial algorithm. This la-
tency (Trc) is Trc = 2*Tcc + Tud + Tpp * log (n/s), where s
is the size of each subgroup.

For the nodes which are not the co-roots it takes Tsr for
the message to arrive at these nodes. The latency at the co-
roots (Tcr) is the minimum of Trc and Tsr. This is because
the co-root gets the earliest of the unicast and the multicast
messages destined to it.

The latency of the whole operation is thus the maximum
of the Tsr’s for nodes other than the co-roots and Tcr’s for
the co-roots. The latency of the operation is also determined
by how these nodes are mapped to the fabric. This is be-
cause the topology is one major factor affecting the latency
of hardware multicast.

Figure 10 shows the results estimated by our model and
the actual measurements on our 8-node cluster. We can
see that the model matches our measurements quite closely.
Figure 11 shows the estimated results for the original imple-
mentation and the sliding-window based schemes in a 1024
node cluster. (In our model, the number of co-roots does
not have significant impact on the results.) From the figure
we can see that in a 1024 node cluster where each node has
similar configuration as those in our testbed, using Infini-
Band multicast can improve MPI Bcast performance signif-
icantly. For small message, the potential latency improve-
ment can be as high as 4.86 times. Our design can achieve
MPI broadcast latency of small messages with 20.0 � s and
of one MTU size message (around 1836 bytes of data pay-
load) with 40.0 � s.

7.2 Determining the Number of Co-Roots

One of the important issues in the co-root scheme we
proposed is to determine the number of co-roots for a given
system. Since in the broadcast latency test, most of the pro-
cessing overhead is in the background, different number of
co-roots tend to give similar performance. Therefore, we
use broadcast throughput to help us determine the optimal
number of co-roots. Since in the co-root scheme, the root
and the co-roots are responsible for ACK processing, they
tend to be the bottleneck in the throughput test. We con-
sider the time spent at the root in the throughput test. This
is equal to Tcc + Tud + Tum * log(n/s) + Tpack * s, where
Tpack is the ACK processing time per single node and Tum
includes the copy cost and the time for posting a unicast
message to one node.

Based on the model, if the number of co-roots is large,
the root needs to spend a large amount of time to reliably de-
liver the message co-roots, and if the number of co-roots is
too small, then each co-root needs to spend a large amount
of time processing ACKs because the sub-group size is
large. We have found that 128 co-roots are the best choice
for 1024 nodes. The details can be found in [10].

8 Related Work
There have been many studies about multicast and reli-

able multicast in the networking area [5, 2]. A majority of
the work done in this area focuses on networks based on
TCP/IP protocol. Our work in this paper deals with imple-
menting MPI Bcast in InfiniBand. Compared with a gen-
eral TCP/IP network, InfiniBand offers much higher com-
munication performance and hardware supported multicast.
Also, group membership in MPI is much more static than
that in the dynamic environment of a TCP/IP network.

9

Recently, different collective operations in MPI have
been studied on high speed interconnects such as Virtual In-
terface Architecture (VIA) [4], Quadrics [14], Myrinet [20]
and IBM SP [18]. Compared with these interconnects,
InfiniBand provides new challenges and opportunities for
implementing MPI collective operations. Our previous
work [7] proposed an RDMA based scheme to implement
efficient barrier operations over InfiniBand. In this paper,
we continue our work in this direction by presenting differ-
ent broadcast designs while exploiting the hardware multi-
cast support.

9 Conclusions and Future Work
In this paper, we described how to take advantage of

hardware multicast in InfiniBand to implement MPI Bcast
operation in MPI. To support MPI Bcast, we proposed a
substrate on top of InfiniBand multicast which provides reli-
ability, in-order delivery and handling of large messages. To
improve performance of the substrate, we use sliding win-
dow based design which removes much of the processing
from communication critical path. To further balance and
reduce processing overhead, we proposed techniques such
as the co-root scheme and delayed ACK.

Our performance evaluation on our 8-node cluster shows
that our designs can improve MPI Bcast latency up to 58%
and throughput up to 112% compared with the current im-
plementation. Our new designs also have much better tol-
erance to process skew. To get more understanding of the
performance of MPI Bcast in large-scale clusters, we use
analytical modeling to estimate the performance of different
designs. Our results show that in a 1024 node cluster, our
designs can achieve MPI broadcast latency of small mes-
sages with 20.0 � s.

In this work, we have focused on ACK based schemes
to ensure multicast reliability. We plan to explore the use
of NAK based schemes and combine them with ACK based
schemes. We also intend to evaluate our designs on larger
cluster to better understand possible scalability bottlenecks.
Another direction we are currently pursuing is high perfor-
mance and scalable implementation of other MPI collec-
tive operations such as MPI Allreduce, MPI Alltoall and
MPI Reduce on top of InfiniBand.
References

[1] D. Buntinas, D. K. Panda, and R. Brightwell. Application-
Bypass Broadcast in MPICH over GM. In International
Symposium on Cluster Computing and the Grid (CCGRID
’03), May 2003.

[2] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and
L. Zhang. A reliable multicast framework for light-weight
sessions and application level framing. IEEE/ACM Transac-
tions on Networking, 5(6):784–803, 1997.

[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, 1996.

[4] R. Gupta, V. Tipparaju, J. Nieplocha, and D. K. Panda. Ef-
ficient Barrier using Remote Memory Operations on VIA-
Based Clusters. In Proceedings of the IEEE International
Conference on Cluster Computing, 2002.

[5] H. Eriksson. Mbone: the multicast backbone. Communica-
tions of the ACM, August 1994.

[6] InfiniBand Trade Association. InfiniBand Architecture
Specification, Release 1.0, October 24 2000.

[7] S. P. Kini, J. Liu, J. Wu, P. Wyckoff, and D. K. Panda. Fast
and Scalable Barrier using RDMA and Multicast Mecha-
nisms for InfiniBand-Based Clusters. In Euro PVM/MPI
Conference, Venice, Italy, September 2003.

[8] Lawrence Berkeley National Laboratory.
MVICH: MPI for Virtual Interface Architecture.
http://www.nersc.gov/research/FTG/mvich/index.html,
August 2001.

[9] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini,
W. Yu, D. Buntinas, P. Wyckoff, and D. K. Panda. Per-
formance Comparison of MPI Implementations over Infini-
Band, Myrinet and Quadrics. In SuperComputing 2003 (SC
’03), November 2003.

[10] J. Liu, A. R. Mamidala, and D. K. Panda. Fast and Scalable
MPI-Level Broadcast using InfiniBand’s Hardware Multi-
cast Support. Technical Report, OSU-CISRC-10/03-TR57,
October 2003.

[11] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High
Performance RDMA-Based MPI Implementation over In-
finiBand. In 17th Annual ACM International Conference on
Supercomputing (ICS ’03), June 2003.

[12] NASA. NAS Parallel Benchmarks.
[13] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L.

Seitz, J.N. Seizovic, and W. Su. Myrinet: A Gigabit-per-
second Local Area Network. IEEE Micro, 15(1):29–36,
February 1995.

[14] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie.
Hardware- and Software-Based Collective Communication
on the Quadrics Network. In IEEE International Sympo-
sium on Network Computing and Applications 2001 (NCA
2001), Boston, MA, February 2002.

[15] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg.
The Quadrics Network: High-Performance Clustering Tech-
nology. IEEE Micro, 22(1):46–57, 2002.

[16] S. Pingali, D. Towsley, and J. F. Kurose. A Comparison
of Sender-Initiated and Receiver-Initiated Reliable Multi-
cast Protocols. In Proceedings of the Sigmetrics Conference
on Measurement and Modeling of Computer Systems, pages
221–230, New York, NY, USA, 1994. ACM Press.

[17] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI–The Complete Reference. Volume 1 - The MPI-1
Core, 2nd edition. The MIT Press, 1998.

[18] V. Tipparaju, J. Nieplocha, D.K. Panda. Fast Collective Op-
erations Using Shared and Remote Memory Access Proto-
cols on Clusters. In Int’l Parallel and Distributed Processing
Symposium (IPDPS ’03), April 2003.

[19] J. S. Vetter and F. Mueller. Communication Characteris-
tics of Large-Scale Scientific Applications for Contempo-
rary Cluster Architectures. In IPDPS, April 2002.

[20] W. Yu, D. Buntinas, and D. K. Panda. High Performance and
Reliable NIC-Based Multicast over Myrinet/GM-2. In Int’l
Conference on Parallel Processing, (ICPP 2003), Kaohsi-
ung, Taiwan, October 2003.

10

