Parcours International

The Infinitely Large and Infinitely Small

jonathan.braine@u-bordeaux.fr Laura.alvarez-frances@u-bordeaux.fr Bernhard-Hermann.haak@u-bordeaux.fr Yvan.le-borgne@u-bordeaux.fr We will talk about Physics via Astrophysics. Many basic Physics problems require Astrophysical environments to be studied.

neutrinos
 Gravitational waves (binary pulsar and now merging black holes and merging binary pulsars)
 Dark Matter in this class
 Dark Energy

I have chosen *Dark Matter* as a topic because it is the major matter constituent of the Universe and it is fairly straightforward to show why physicists think it exists.

basic astro background the *Dark Matter* problem via simple calculations a few exercises and explanations subjects for presentations and choice of subjects fundamental particles as Dark Matter options your presentations

2

3

4

5

6

Brownian motion at the microscale -The infinitely Large and Infinitely Small-

Laura Alvarez, UF Chemistry

2023

Brownian motion at the microscale

Chem. Soc. Rev., 42, 2100 (2013)

Email: laura.alvarez-frances@u-bordeaux.fr

Brownian motion at the microscale

1. Microscale (colloidal) systems and their physical-chemical properties.

2. From an experimental observation to its physical and mathematical implications at different scales

3. Brownian motion and molecular reality

4. Passive vs. Active Brownian motion: designing artificial motion at the microscale

Micro(nano)scale

Email: laura.alvarez-frances@u-bordeaux.fr

Brownian motion at the microscale

Evaluation

- 1. Presentation: the possible projects will be given the first day. (You are also free to choose!).
- 2. Small assignments (they will be taken into account as a plus to the final grade).
- 3. Daily participation: small group exercises in some of the lecutres

!!! Possibility of doing experiments and/or use python code for better grades

Infinitely small & large Matter sizes — Size matters

Bernhard Haak

University of Bordeaux

bernhard.haak@math.u-bordeaux.fr

January 17, 2022

Physics is about inventing mathematical models that fit observations / measurements and allow predictions.

Schrödinger's Question: Is random behaviour at atomic scale consistent with deterministic mechanics?

Schrödinger's suggestion: 10^{23} "random things" average out to determinism. We will study how and why this happens.

scale 1

scale 100.000.000.000.000.000.000

- Probability in a nutshell: basic concepts.
- Integrals and probabilities having "densities"
- Gaussians: the "normal" distribution.
- Explicit convergence rates of averages of "random variables" towards a normal distribution.

The emphasis is on intuition and easy proofs.

Project list (propositions)

- $k\pi \mod 1$ for $k \in \mathbb{Z}$: Weyl's equidistribution theorem.
- Stirling's formula (needed for next two subjects).
- Random walk on a "grid": Why does a 1D or 2D random walk "come back" to orgin?
- Random walk on a grid in dimension d ≥ 3:
 "a drunken bird never finds home".
- Random walk on a graph: the Google page-rank algorithm.
- Random or not random? Program a random walk orbit in 2D once with a RNG and once using digits of π as "random" source.
- Random in cryptography (contact me: to be further specified)
- . . .

• (tell me what inspires you - I'll find a subject for you!) IMPORTANT: I might be obliged to "fill gaps" and do unchosen projects myself in the lecture - so please tell me quickly if you are interested.

Bernhard Haak (UBX)

An introduction to Quantum Computing

Yvan Le Borgne, LaBRI (Computer science Lab)

January 17, 2022

- ▶ 5 Lectures (5 × 1h20)
- No screen (today is the exception !)
- Evaluation:
 - possibility to make a presentation on an article.
 - Exercices: implement quantum circuits in python via https://qiskit.org/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Toward a (second !) quantum computer ?

(Some) physical supports of calculus

Transistor (1947)

Elementary step of computation T(B, E) = C: T(1, 1) = 0 et sinon T(B, E) = 1

(Classical) Gate: NAND $(x, y) := NOT \circ AND(x, y)$

Theorem: NAND (and COPY) are enough to express in circuits any boolean function:

$$f: \{0,1\}^k \longrightarrow \{0,1\}^n$$

 \Rightarrow Classical computer (science)

Potential applications

$35 \rightarrow 5 \times 7$

Shor's quantum algorithm for prime's factorization of integers.

• A threat for cryptography: many protocols, like RSA, relies on the assumption that this is not feasible for large numbers. https://csrc.nist.gov/projects/post-quantum-cryptography

• An opportunity for cryptography (No-cloning theorem for Quantum States, BB84 protocol).

- Efficient simulations of quantum phenomenon in chemistery.
- Quantum supremacy: a classical computer with additional 50 universal quantum bits will outperform any classical computer.

Lecture's syllabus and evaluation

Lectures:

- Just a quantum register in a classical computer is enough.
- Formal definition of quantum bits, logical gates.
- Description of Mach-Zehnder interferometer via qbits and quantum logical gates.
- ▶ No-cloning theorem and BB84 protocol in cryptography.
- (If times permit) EPR paradox, Bell'inequalities and Aspect's experiment.

Evaluation (if selected among the four lectures):

Presentation of a problem in the context of quantum computing.

- A problem more efficiently solved by quantum algorithms, see http://quantumalgorithmzoo.org
- A discussion on the various announcement of Google, D-Wave, IBM, ... or Gil Kalai on quantum computers
- Implement (in python) some quantum circuits https://qiskit.org/...