Parcours International

The Infinitely Large and Infinitely Small

jonathan.braine@u-bordeaux.fr

- Laura.alvarez-frances@u-bordeaux.fr Bernhard-Hermann.haak@u-bordeaux.fr Yvan.le-borgne@u-bordeaux.fr

We will talk about Physics via Astrophysics. Many basic Physics problems require Astrophysical environments to be studied.

1 neutrinos
2 Gravitational waves (binary pulsar and now merging black holes and merging binary pulsars)
3 Dark Matter in this class
4 Dark Energy

I have chosen Dark Matter as a topic because it is the major matter constituent of the Universe and it is fairly straightforward to show why physicists think it exists.

1 basic astro background
2 the Dark Matter problem via simple calculations a few exercises and explanations
4 subjects for presentations and choice of subjects
5 fundamental particles as Dark Matter options
6 your presentations

Brownian motion at the microscale
 -The infinitely Large and Infinitely Small-

Laura Alvarez, UF Chemistry

Brownian motion at the microscale

Brownian motion at the microscale

1. Microscale (colloidal) systems and their physical-chemical properties.

2. From an experimental observation to its physical and mathematical implications at different scales
3. Brownian motion and molecular reality

4. Passive vs. Active Brownian motion: designing artificial motion at the microscale

Micro(nano)scale
Email: laura.alvarez-frances@u-bordeaux.fr

Brownian motion at the microscale

Evaluation

1. Presentation: the possible projects will be given the first day. (You are also free to choose!).
2. Small assignments (they will be taken into account as a plus to the final grade).
3. Daily participation: small group exercises in some of the lecutres
!!! Possibility of doing experiments and/or use python code for better grades

Infinitely small \& large
 Matter sizes — Size matters

Bernhard Haak
University of Bordeaux
bernhard.haak@math.u-bordeaux.fr

January 17, 2022

Matter sizes — Size matters

Physics is about inventing mathematical models that fit observations / measurements and allow predictions.
Schrödinger's Question: Is random behaviour at atomic scale consistent with deterministic mechanics?

scale 1

Schrödinger's suggestion: 10^{23} "random things" average out to determinism. We will study how and why this happens.

scale 100.000.000.000.000.000.000.000

Subject list

- Probability in a nutshell: basic concepts.
- Integrals and probabilities having "densities"
- Gaussians: the "normal" distribution.
- Explicit convergence rates of averages of "random variables" towards a normal distribution.

The emphasis is on intuition and easy proofs.

Project list (propositions)

- $k \pi \bmod 1$ for $k \in \mathbb{Z}$: Weyl's equidistribution theorem.
- Stirling's formula (needed for next two subjects).
- Random walk on a "grid": Why does a 1D or 2D random walk "come back" to orgin?
- Random walk on a grid in dimension $d \geq 3$:
"a drunken bird never finds home".
- Random walk on a graph: the Google page-rank algorithm.
- Random or not random? Program a random walk orbit in 2D - once with a RNG - and once using digits of π as "random" source.
- Random in cryptography (contact me: to be further specified)
- ...
- (tell me what inspires you - I'll find a subject for you!) IMPORTANT: I might be obliged to "fill gaps" and do unchosen projects myself in the lecture - so please tell me quickly if you are interested.

An introduction to Quantum Computing

Yvan Le Borgne, LaBRI (Computer science Lab)

$$
\text { January 17, } 2022
$$

- 5 Lectures ($5 \times 1 \mathrm{~h} 20$)
- No screen (today is the exception !)
- Evaluation:
- possibility to make a presentation on an article.
- Exercices: implement quantum circuits in python via https://qiskit.org/

Toward a (second!) quantum computer ?

(Some) physical supports of calculus

Elementary step of
computation $T(B, E)=C$:
$T(1,1)=0$ et sinon $T(B, E)=1$
(Classical) Gate:
$\operatorname{NAND}(x, y):=\operatorname{NOT} \circ \operatorname{AND}(x, y)$

Theorem: NAND (and COPY)
are enough to express in circuits any boolean function:
$f:\{0,1\}^{k} \longrightarrow\{0,1\}^{n}$
\Rightarrow Classical computer (science)

Potential applications

$35 \rightarrow 5 \times 7$

Shor's quantum algorithm for prime's factorization of integers.

- A threat for cryptography: many protocols, like RSA, relies on the assumption that this is not feasible for large numbers. https://csrc.nist.gov/projects/post-quantum-cryptography
- An opportunity for cryptography (No-cloning theorem for Quantum States, BB84 protocol).
- Efficient simulations of quantum phenomenon in chemistery.
- Quantum supremacy: a classical computer with additional 50 universal quantum bits will outperform any classical computer.

Lecture's syllabus and evaluation

Lectures:

- Just a quantum register in a classical computer is enough.
- Formal definition of quantum bits, logical gates.
- Description of Mach-Zehnder interferometer via qbits and quantum logical gates.
- No-cloning theorem and BB84 protocol in cryptography.
- (If times permit) EPR paradox, Bell'inequalities and Aspect's experiment.
Evaluation (if selected among the four lectures):
Presentation of a problem in the context of quantum computing.
- A problem more efficiently solved by quantum algorithms, see http://quantumalgorithmzoo.org
- A discussion on the various announcement of Google, D-Wave, IBM, ... or Gil Kalai on quantum computers
- Implement (in python) some quantum circuits https://qiskit.org/...

