
Objec Oriented Design

Master 1 of Informatics I.E.I. - V.N.U.

2020-2021

Marie Beurton-Aimar

Université de Bordeaux

Compilation

How to produce a program

• Write a source file - respecting the java language rules.
• For example write a class Person and save in a file
Person.java.

• Compile to produce byte code : in a terminal window write
javac Person.java.

• If no compiler error, you have now a new file with the name
Person.class

• Verify ! if not verify your class name.
• To run the program : in a terminal window write java
Person

• In this case, the main function has to be written in the
Person.java file.

Compilation

How to produce a program

• Write a source file - respecting the java language rules.
• For example write a class Person and save in a file
Person.java.

• Compile to produce byte code : in a terminal window write
javac Person.java.

• If no compiler error, you have now a new file with the name
Person.class

• Verify ! if not verify your class name.
• To run the program : in a terminal window write java
Person

• In this case, the main function has to be written in the
Person.java file.

Compilation

How to produce a program

• Write a source file - respecting the java language rules.
• For example write a class Person and save in a file
Person.java.

• Compile to produce byte code : in a terminal window write
javac Person.java.

• If no compiler error, you have now a new file with the name
Person.class

• Verify ! if not verify your class name.
• To run the program : in a terminal window write java
Person

• In this case, the main function has to be written in the
Person.java file.

The code
public class Person{

private String name;
private int age ;
public Person(String chain, int val){

name=chain;
age = val;

}
public void display(){

System.out.println("this person is " + name);
System.out.println

("he/she is " + age + "year old");
}
public static void main (String []arg){

Person item1=new Person(‘‘Lila’’,2);
Person item2 = new Person(‘‘Tung’’,4);
item1.display();
item2.display();

}

Polymorphism

Methods overloading

• Same method name with different implementations.
• Signatures have to be different:

public void addAge()
{ age++; }
pubic void addAge (int val)
{ age +=val; }

Compile with multiple files

Separate the main

• Create a new Main.java file and put into the main.
• Suppress the main function in the Person.java file.

public class Main{
public static void main (String []arg){
Person item1=new Person(‘‘Lila’’,2);
Person item2 = new Person(‘‘Tung’’,4);
item1.display();
item2.display();

}
}

Compile with multiple files

Compile the main

• Write in the terminal window:
javac Main.java

• Observe that now you have a Main.class

• Run the program by executing the Main :
java Main

• The Main will be able to use the code in the other file
because they are in the same directory(folder).

If you use an IDE some steps of the process could be
automatized but remember these rules because you have to
respect them to work well.

Attributes of Class object
Keyword static

• Attributes/Variables declared in the class are by default
attributes of each object - see name for example.

• It is possible to declare attribute of class with the keyword
static

public class Person{
private String name;
private int age ;
public static int num=0;

public Person(String chain, int val){
name=chain;
age = val;
num++;

}

Attributes of Class object

public class Main{
public static void main (String []arg){

Person []myArray= new Person[10];
for (i=0;i<10;i++){

System.out.println("give a name");
String aName=getString();
System.out.println("give an age");
int aVal=getInt();
Person item=new Person(aName,aVal);
myArray[i]=item;

}
System.out.println

("you have " + Person.num + "person in
your array");

Attributes of Class object
Keyword static

• Notice : access to the attribute is given from the class
name not from a variable name.

• Example of System.out !

Static method

• A method can be also static :
Math.sqrt()

• No need to create a variable to access to this method.
• Remember main is static
• Why ?

• java Main calls the method Main.main().
• Consequence: methods called by a static method have

to be static too.

Attributes of Class object
Keyword static

• Notice : access to the attribute is given from the class
name not from a variable name.

• Example of System.out !

Static method

• A method can be also static :
Math.sqrt()

• No need to create a variable to access to this method.
• Remember main is static
• Why ?
• java Main calls the method Main.main().
• Consequence: methods called by a static method have

to be static too.

Final keyword

• final keyword allows to specify that a variable cannot be
modified, i.e. it is a constant.

• The initial value is given at the declaration step.
public final int MAX = 10;

• A final method cannot be overload by another class.
• A final method is not inherited by subclass.
• Allows to make more secure the application.

Inheritance

• Object oriented design allows to specify concepts (or
functionalities) that are shared by several classes (types).

• In this case, we define a generic (super) class for that and
particularities are given in subclasses which inherit of the
super class.

• A subclass inherits of all variables and methods : public
and protected, belonging to the super class.

A part !

public, private and protected keywords

• Both attributes and methods of an object are qualified by 3
possible keywords that define their visibility :

• public: available from everywhere - if the classpath is
correctly set. Value by default if no precision.

• private: available only inside the code of the class,
hidden for all other classs objects. Compiler errors if it is
not respected.

• protected: available in the class and in all its subclasses
if any. Compiler errors if not respected

• Defining package modifies the default rules of visibility. In
a first attempt we do not create any package. In this case,
a default package is created with the current folder.

Inheritance

• Key-word extends allows to declare inheritance of a
class.

Genericity

• Behaviors (methods) of objects are ready without
knowledge of the used object type(class).

• An object can react to message without knowledge of the
sender type (client).

Keyword super

• Calling the constructor of the super class by super() with
or without parameters depending on the case.

• This calling has to be the first instruction in the constructor
of the subclass.

• Calling any method of the super class in a subclass by
adding the prefix super.

Java Language

public class Student extends Person{
private String diploma;
public Student(String chain, int val,

String level)
{
super(chain, val);
diploma = level;

}
public void display()
{
super.display();
System.out.println("Diploma is " + diploma);

}
}

Abstract Class
Goal

• To give a not complete implementation of a class.
• To forbid instanciation.

How to

• Declare the class as abstract.
• Use the keyword abstract :
public abstract MyAbstractClass

• Has a meaning only if the abstract class is a super class.
• A lot of example in the java library :
AbstractList, AbstractQueue, AbstractSet
....

• A method can be abstract in this case it is mandatory to
declare the class as abstract too.

Abstract Class

Example

• You have two subclasses of players : tennis and golf.
• You have a super class Player and the two subclasses

inherits from Player.
• The class Player has a method play() but as it differs in

the two subclasses we don’t want to give a generic code in
the super class.

• We declare in the class Player the method public
abstract void play() and we give the code of the
method in the subclasses.

• Consequence: Player class is abstract too.

Your turn!

Exercise

• Write a class Person with a name and an age.
• Write a subclass Player with an array of 10 scores

(integer).
• Write a class Game which contains the main function, that

create 2 players, ask to the user the scores they have
obtained .

• Display the scores of each players and claim who is the
winner, i.e with the best sum of scores.

