
Objec Oriented Design

Master 1 of Informatics I.E.I. - V.N.U.

2020-2021

Marie Beurton-Aimar

Université de Bordeaux

Introduction about Software Designing

• Object Oriented design and programming.
• Large programs for real cases.
• Maintenance is time and money consuming.
• Creating new programs is not the common task now.

• Several ways to answer : conception level, programming
level, data level ...

Introduction about Software Designing

• Object Oriented design and programming.
• Large programs for real cases.
• Maintenance is time and money consuming.
• Creating new programs is not the common task now.
• Several ways to answer : conception level, programming

level, data level ...

Data Analysis

• Real applications often imply complex data.
• Object Oriented paradigm is based on the analysis of data

firstly.
• Does it exist some methods to help us to analyze these

data?

• It exists methodology and many recipes.

Data Analysis

• Real applications often imply complex data.
• Object Oriented paradigm is based on the analysis of data

firstly.
• Does it exist some methods to help us to analyze these

data?
• It exists methodology and many recipes.

Find the good classes

• De-composition / Composition: an object is an individual
element, real or abstract with a well defined role in the
problem domain.

• Find the right objects and the size of each object.
• Decide where to attach behaviors.
• Create modules and links between them.

Basic Principles

• Objects : base units organized in classes and sharing
common traits (attributes or procedures). They can be
entities from real world, concepts of the application or of
the concerned domain.

• Encapsulation :
• Data structures and implementation details are hidden to

the other system objects.
• The only way to access to the object state is to send to it a

message which activates the execution of one of its
methods.

• Abstraction : is the way to apply encapsulation and
encapsulation make abstraction useful.

Basic Principles

• Polymorphism : possibility to use the same expression for
different operations. Inheritance is a specific form of
polymorphism typical to the object oriented systems.

• Modularity : program partition which creates well-defined
(and documented) frontiers into the program in the goal to
reduce complexity(Meyers). The choice of a good set of
modules for a given problem is as difficult as the choice of
a good set of abstractions.

Object Programming

Object Oriented Languages

• The old ones : C++, SmallTalk, C
• A lot of another ones : Java, Python, Ruby, Ada,

ObjectiveC, PHP ...
• In fact at this time, pretty all languages have a object layer.

Usage

• Graphic application : Swing, JFX, GTK ..
• Web : JavaScript, Nodejs
• Statistics : R, python library

Java: A coffee story

• Written by Sun team in the 90’s.
• Develop by the world community in collaboration.
• Address all the application domain :

• Economy, bank applications,
• Graphical interfaces,
• Web applications with Applet (no link with JavaScript).
• DataBase programming,
• Network and systems application

Java - Environment

Characteristics

• Byte Code
• Virtual Machine
• Tools:

• Java SE - JDK plateform.
• Current version 15.0.1 (11 is also possible).
• Running environnement
• Compiler to produce byte code.

Java Language

• Everything is an object.
• A program is a set of objects which send messages

together.
• Each object as a type (instance of class). All objects of the

same type can receive the same message.
• A class describes a set of objects which share common

features (data) and behaviors (methods).
• Inheritance between classes allows to organize data type

in hierarchy.
• Each instance of a class inherits of the features (attributes

and methods) of its own class and of the super-class.

Writting Rules

• Class names have to begin by an upper case letter.
• Method and variable names have to begin by a lower case

letter.
• Everything, all pieces of code, has to be in a class.
• A class has to contain the main method.
public static void main(String []args) {
.....your code
}

Primitive Types

Types Characteristiques
boolean true ou false
char charactere 16 bits Unicode
byte integer 8 bits signés
short integer 16 bits signés
int integer 32 bits signés
long integer 64 bits signés
float real number with floating point 32-bits
double real number with floating point 64-bits

Operators

• Arithmetics :
• +, −, ∗, /, %,
• + =, − =, ∗ =, / =, ++, −−,

• Boolean :
• ==, ! =, =<,=>, ||, &&, ? :.

• Control structures :
• if, for , while, switch,

“wrapper” Classes

• Primitive types can be encapsulated in another classes :
• Integer, Byte, Long,
• Double, Float,
• Character, Void.

• Example :
int num=Integer.parseInt(word);
double size=Double.parserDouble(chain);

String class

• Create a String : String word = "abc";

char data[] = {’a’, ’b’, ’c’};
String newWord = new String(data);

• Test equality : word.equals(‘‘bcd’’);
Take care with ==.

• Convert an int or a double to a String
String name=String.valueOf(num)

• Get information about a String : length(), charAt() . . .

Create an array

• Array type : []
• Declare an array :

• int []myArray;

• Declaration and memory allocation :
• int []myArray=new int [10];
• Person []anotherArray = new Person[MAX];

• Access to the box array : int num=myArray[2];

• Size of the array : int size =myArray.length

Un petit program !

class Hello{
static public void main(String []args){
System.out.println(‘‘Hello World’’);

}
}

Define a class

public class Person{
private String name;
private int age;
public void display()
{
System.out.println("this person is " + name);
System.out.println

("she is " + age + "year old");
}

}

Define a constructor

public class Person{
private String name;
private int age;
public Person(String chain, int val)
{
name=chain;
age=val;

}
public void display()
{
System.out.println("this person is " + name);
System.out.println

("she is " + age + "year old");
}

}

Take care of the default constructor Person()

Overloading the constructor
public class Person{

private String name;
private int age;

public Person(String chain, int val)
{

name=chain;
age=val;

}
public Person(String chain)
{

name=chain;
age=0;

}
public void display()
{
System.out.println("this person is " + name);
System.out.println

("she is " + age + "year old");
}

}

Using This

• Design the instance attribute:
public Person(String name,int age){

this.name=name;
this.age=age;

}

Using a class

• Create a variable of the type Person

public void main (String []arg){
Person item;
Person item2=new Person(‘‘Kee’’);
Person item3=new Person(‘‘Lila’’,2);

Define methods

• Using instance attributes/variables :
public String getName(){

return (name);
}
public int getAge(){

return(age);
}
public void setAge(int val){

age=val;
}

Calling methods

• Call a method linked to an instance :
Person item2=new Person(‘‘Hien’’);
item2.setAge(2);
String name=item2.getName();
item2.display();

