Objec Oriented Design

Master 1 of Informatics I|.E.l. - V.N.U.
2020-2021
Marie Beurton-Aimar

Université de Bordeaux

Introduction about Software Designing

Object Oriented design and programming.

Large programs for real cases.

Maintenance is time and money consuming.
Creating new programs is not the common task now.

Introduction about Software Designing

Object Oriented design and programming.

Large programs for real cases.

Maintenance is time and money consuming.
Creating new programs is not the common task now.

Several ways to answer : conception level, programming
level, data level ...

Data Analysis

¢ Real applications often imply complex data.

e Object Oriented paradigm is based on the analysis of data
firstly.

e Does it exist some methods to help us to analyze these
data?

Data Analysis

Real applications often imply complex data.

Object Oriented paradigm is based on the analysis of data
firstly.

Does it exist some methods to help us to analyze these
data?

It exists methodology and many recipes.

Find the good classes

De-composition / Composition: an object is an individual
element, real or abstract with a well defined role in the
problem domain.

Find the right objects and the size of each object.
Decide where to attach behaviors.
Create modules and links between them.

Basic Principles

e Objects : base units organized in classes and sharing
common traits (attributes or procedures). They can be
entities from real world, concepts of the application or of
the concerned domain.

e Encapsulation :

e Data structures and implementation details are hidden to
the other system objects.

e The only way to access to the object state is to send to it a
message which activates the execution of one of its
methods.

¢ Abstraction : is the way to apply encapsulation and
encapsulation make abstraction useful.

Basic Principles

e Polymorphism : possibility to use the same expression for
different operations. Inheritance is a specific form of
polymorphism typical to the object oriented systems.

e Modularity : program partition which creates well-defined
(and documented) frontiers into the program in the goal to
reduce complexity(Meyers). The choice of a good set of
modules for a given problem is as difficult as the choice of
a good set of abstractions.

Object Programming

Object Oriented Languages

e The old ones : C++, SmallTalk, C

¢ A lot of another ones : Java, Python, Ruby, Ada,
ObjectiveC, PHP ...

¢ In fact at this time, pretty all languages have a object layer.

Usage

e Graphic application : Swing, JFX, GTK ..
e Web : JavaScript, Nodejs
o Statistics : R, python library

Java: A coffee story

e Written by Sun team in the 90’s.
¢ Develop by the world community in collaboration.

e Address all the application domain :

o Economy, bank applications,

o Graphical interfaces,

o Web applications with Applet (no link with JavaScript).
¢ DataBase programming,

e Network and systems application

Java - Environment

Characteristics

e Byte Code

e Virtual Machine
e Tools:
¢ Java SE - JDK plateform.
e Current version 15.0.1 (11 is also possible).
¢ Running environnement
e Compiler to produce byte code.

Java Language

Everything is an object.

A program is a set of objects which send messages
together.

Each object as a type (instance of class). All objects of the
same type can receive the same message.

A class describes a set of objects which share common
features (data) and behaviors (methods).

Inheritance between classes allows to organize data type
in hierarchy.

Each instance of a class inherits of the features (attributes
and methods) of its own class and of the super-class.

Writting Rules

Class names have to begin by an upper case letter.
Method and variable names have to begin by a lower case
letter.

Everything, all pieces of code, has to be in a class.

A class has to contain the main method.

public static void main(String [Jargs) {
..... your code

Primitive Types

Types Characteristiques

boolean | true ou false

char charactere 16 bits Unicode

byte integer 8 bits signés

short integer 16 bits signés

int integer 32 bits signés

long integer 64 bits signés

float real number with floating point 32-bits
double | real number with floating point 64-bits

Operators

e Arithmetics :

e+, — % /, o/o,

o =, —=,x=, /= ++, ——,
e Boolean :

o === =<=>,],8&&, 7.

e Control structures :

e if, for,while, switch,

“wrapper” Classes

o Primitive types can be encapsulated in another classes :

¢ Integer, Byte, Long,
e Double, Float,
e Character, Void.

e Example :

int num=Integer.parselnt (word);
double size=Double.parserDouble (chain);

String class

Create a String : string word = "abc";
char datal] = {'a’, 'b’", 'c'};
String newWord = new String(data);

Test equality : word.equals (*‘bcd’’);

Take care with ==.

Convert an int ora double toa String
String name=String.valueOf (num)

Get information about a String : 1ength (), charAt () ...

Create an array

Array type : []

Declare an array :
e int []ImyArray;

Declaration and memory allocation :
e int []myArray=new int [10];

e Person []anotherArray = new Person|[MAX];
Access to the box array : int num=myArray[2];
Size of the array : int size =myArray.length

Un petit program !

class Hello{
static public void main(String [Jlargs) {
System.out.println(‘Hello World’’);

Define a class

public class Person{
private String name;
private int age;
public void display ()
{
System.out.println("this person is " + name);
System.out.println
("she is " + age + "year old");

Define a constructor

public class Person{
private String name;
private int age;
public Person(String chain, int wval)
{
name=chain;
age=val;
}
public void display ()
{
System.out.println("this person is " + name);
System.out.println

("she is " + age + "year old");
}

Take care of the default constructor Person ()

Overloading the constructor

public class Person{
private String name;
private int age;

public Person(String chain, int val)
{

name=chain;

age=val;
}
public Person(String chain)
{

name=chain;

age=0;
}
public void display ()
{
System.out.println("this person is " + name);
System.out.println

("she is " + age + "year old");

Using This

¢ Design the instance attribute:
public Person(String name, int age) {
this.name=name;
this.age=age;

Using a class

e Create a variable of the type Person

public void main (String [Jarg) {
Person item;
Person item2=new Person('‘Kee’’);
Person item3=new Person(‘‘Lila’’,2);

Define methods

¢ Using instance attributes/variables :

public String getName () {
return (name);
}
public int getAge () {
return (age) ;
}
public void setAge (int wval) {
age=val;

}

Calling methods

e Call a method linked to an instance :
Person item2=new Person(‘‘Hien’’);
item2.setAge (2);

String name=item2.getName () ;
item2.display () ;

