
Software Engineering

• Object oriented design mainly concerns the data
structuration.

• Data first, treatments ... second.
• Go back to the treatments structuration.
• How to define good design for treatments ?

• Don’t forget OO design !

Software Engineering

• Object oriented design mainly concerns the data
structuration.

• Data first, treatments ... second.
• Go back to the treatments structuration.
• How to define good design for treatments ?
• Don’t forget OO design !

Needs of New Programming Paradigm ?

Model Concern Element
Linear Programming
Structured Programming Control flux instructions
Procedural Programming Split code in parts function,

procedure
Obj. Orient. Programming Data as objects Class
Aspect Orient. Programming Crossing function Aspect

Meta-Program and Meta-Programming

• What is a Meta-Programming ?
The creation of procedures and programs that
automatically construct the definitions of other procedures
and programs.

• First example the Turing machine
With the Universal Turing Machine, named after Alan
Turing, it has been proved that it is possible to program a
machine to imitate the behavior of any other machine.

Meta-Program and Meta-Programming

• What is a Meta-Program ?
• A program which modifies or generates other programs. A

compiler is an example of a metaprogram: it takes a
program as input and produces another (compiled) one as
output. Genetics programming allows to generate new
programs in simulating biological evolution.

• Meta-programs in general are programs that create, control
or make decisions about programs, such as when and how
to run them, preferred and unpreferred programs, and
strategic choices of fall-back or alternative programs.

• Well-known examples : compiler, language parser, genetics
programs . . .

Why do we need Meta-Programming ?

• Object Oriented Design has some interests : capability to
capture data semantics, complexity management, abstract
level . . .

• Limitations: the main principle is to tell that all the tasks to
accomplish can be assumed by one object and the
methods are always into classes.

• BUT! it exist several cases where put methods into
classes cause code duplication because sometimes we
need more linear programming than hierarchical
programming.

Why do we need Meta-Programming ?

• Object Oriented Design has some interests : capability to
capture data semantics, complexity management, abstract
level . . .

• Limitations: the main principle is to tell that all the tasks to
accomplish can be assumed by one object and the
methods are always into classes.

• BUT! it exist several cases where put methods into
classes cause code duplication because sometimes we
need more linear programming than hierarchical
programming.

Design example

Some cases of transversal concerns : log management,
verification for input parameters, exception treatments . . .

Method

Code

Aspect

Code

Persistance

Business Logic

Method Code

Security

Synchronisation

How to write horizontal sharing of behaviors?
• In the Object design we can separate the business objects

from the technical objects.
• Object oriented design encapsulatse concerns into single

entity.
• But some concerns defy these forms of encapsulation.

Software engineers call these crosscutting concerns,
because they ”cut” across multiple modules in a program.

• So we need to build a separation of concerns and AOP
give a solution for the cross-cutting concerns between
several classes.

Aspect Oriented Programming

O
b

je
ct

 O
ri

en
te

d
 P

ro
g

ra
m

m
in

g

What is AOP?

• The beginning of the story : Gregor Kiczales and his team
at the Palo Alto Xeroc Parc published their works on writing
programs in the 90’s.

• Aspect Oriented Programming give a new way to share
behaviors, or controls without breaking encapsulation.

• They wrote AspectJ which implements AOP for Java
applications.

• One of the multiple web site with example :
https://medium.com/@jdvp/aspect-oriented-programming-in-android-159054d52757

AOP Principles

• Calling to a technical module from a business one or
another technical modules is not direct. For example
calling trace management module. This aspect is specified
in a self-working way.

• But if the aspect defined explicitly where it interacts with
the business module, this just put the problem in another
place.

• The solution is a system of rational expressions to precise
where are the executing point of the different aspects.

AOP Vocabulary

• Join point: points in a running program where additional
behavior can be usefully joined. A join point needs to be
addressable and understandable by an ordinary
programmer to be useful

• Pointcut: the place where the join points are put.
Determine whether a given join point matches.

• Advice: code to run at a join point. It can run before, after
and around join points.

• Weaver: the tool to link aspect code and code of class
methods. It can works before or during the compilation
time, befor or during the runtime.

• Tangled code:“spaghetty” code.
• Crosscutting concerns:secondary requirements sharing

by several classes.

How to do ?

• The method consists in :
• Defining functionalities.
• Implementing functionalities as Aspects.
• Weaving the aspects with the existing code.

Aspects

Weaver Application

Classes

What is a Weaver ?

• Weaving is the operation to link aspects and classes.
• Any programming language which has a weaver can be

used with aspects.
• The weaver allows to insert piece of code at some

executing points. Weaving can be done at :
• statically - most often at compilation time. In that case, the

executing code mixes classes and aspects, modification
needs recompilation. Good performances (Aspectj).

• dynamically - easy to modify aspects (JBoss-AOP).
• Three ways to do :

• Compiling time, sometimes with a pre-compiler dedicated
to aspects. From the source code or bytecode.

• Loading time with a specific class loader.
• Running time by using proxys or interceptions.

Advantages and Limits

• Advantages :
• Separation between concerns makes maintenance easyest.
• Good modularity.
• Solutions to some weakness of object oriented

programming.
• Drawbacks :

• Reading the code does not inform about excuted aspects.
• No standardisation.
• Need of programmers training.

Tools for Java

• Generic approach : AspectJ.
• Specific approach : for requirements of some framework

as Spring (before version 2,0).

Implementation URL
AspectJ http://www.eclipse.org/aspectj
Spring-AOP http://www.springframework.org
JBoss-AOP http://jbossaop.jboss.org/
AspectWerkz http://aspectwerkz.codehaus.org

Example

class RealSquareRootExample {
public static void main(String[] args) {

System.out.println("sqrt(13.0) is " + Math.sqrt(13.0));
System.out.println("sqrt(9.0) is " + Math.sqrt(9.0));
System.out.println("sqrt(-4.0) is " + Math.sqrt(-4.0));

}
}

aspect EnsureRealSquareRoot {
before(double d) : call(static double Math.sqrt(double)) && args(d) {

if(d < 0.0)
throw new IllegalArgumentException("Positive arguments to sqrt() only, please!");

}
}

AspectJ Language

• Aspect to add new method to the Point class:
aspect VisitAspect {

void Point.acceptVisitor(Visitor v) {
v.visit(this);

}
}

• Definition of a pointcut:

pointcut set() : execution(* set*(..))
&& this(Point);

• Definition of an advice:

after () : set() {Display.update();}

• Operator like * || && can be used. Example:
call(void Figure.make*(..))

Editor Example

pointcut move():
call(void FigureElement.setXY(int,int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

before(): move() {
System.out.println("about to move");

}

after() returning: move() {
System.out.println("just successfully moved");

}

pointcut setXY(FigureElement fe, int x, int y):
call(void FigureElement.setXY(int, int))
&& target(fe)
&& args(x, y);

after(FigureElement fe, int x, int y) returning: setXY(fe, x, y) {
System.out.println(fe + " moved to (" + x + ", " + y + ").");

}

Another simple example

aspect DataLog{
advise * Worker.performActionA(...), *Worker.performActionB(...){

static after {
if (thisResult == true)

System.out.println("Executed " +thisMethodname+
"successfully");

else
System.out.println("Error" +thisMethodname);

}
}

}

The new Observer

aspect PointObserving {
private Vector Point.observers = new Vector();

public static void addObserver(Point p, Screen s) {
p.observers.add(s);

}
public static void removeObserver(Point p, Screen s) {

p.observers.remove(s);
}

pointcut changes(Point p): target(p) && call(void Point.set*(int));

after(Point p): changes(p) {
Iterator iter = p.observers.iterator();
while (iter.hasNext()) {

updateObserver(p, (Screen)iter.next());
}

}
}

