Software Engineering and Design

Master 2
Péles Universitaires Francais
Marie Beurton-Aimar
Université de Bordeaux



Software design

e 7 sessions of lectures and 10 sessions of TD.
e 2 parts:

¢ Object design and data structuring.
e Programs structuring and reusable objects.



Software design

e 7 sessions of lectures and 10 sessions of TD.
e 2 parts:

¢ Object design and data structuring.
e Programs structuring and reusable objects.

e Main questions:
e Howto? Methods? Tools?



Context

e Large programs for real cases.
e Maintenance is time and money consuming.
e Creating new programs is not the common task now.



Context

Large programs for real cases.
Maintenance is time and money consuming.
Creating new programs is not the common task now.

Several ways to answer : conception level, programming
level, data level ...



What is the software design

e Context:

¢ Object oriented paradigm.
e Data analysis and structuring is the starting point and the
fundation.

¢ Addition of task organisation and methods to formalize
that.



Data Analysis

¢ Real applications often imply complex data.

e Object Oriented paradigm is based on the analysis of data
firstly.

e Does it exist some methods to help us to analyze these
data?



Data Analysis

Real applications often imply complex data.

Object Oriented paradigm is based on the analysis of data
firstly.

Does it exist some methods to help us to analyze these
data?

It exists methodology and many recipes.



Bibliography

Best-of :
e Object-Oriented Analysis and Design with Applications,
G Booch (Addison-Wesley, 1992).

e Object-Oriented Software Engineering,l. Jacobson,
M. Christerson, P. Jonsson, G. Overgaard
(Addison-Wesley, 1993).

The outsiders:

e Object-Oriented Methods , 3nd édition,
| Graham (thompson Publisher, 1997).



Find the good classes

De-composition / Composition: an object is an individual
element, real or abstract with a well defined role in the
problem domain.

Find the right objects and the size of each object.
Decide where to attach behaviors.
Create modules and links between them.



Basic Principles

e Objects : base units organized in classes and sharing
common traits (attributes or procedures). They can be
entities from real world, concepts of the application or of
the concerned domain.

e Encapsulation :

e Data structures and implementation details are hidden to
the other system objects.

e The only way to access to the object state is to send to it a
message which activate the execution of one of its
methods.

¢ Abstraction : is the way to apply encapsulation and
encapsulation make abstraction useful.



Basic Principles

e Polymorphism : possibility to use the same expression for
different operations. Inheritance is a specific form of
polymorphism typical to the object oriented systems.

e Modularity : program partition which creates well-defined
(and documented) frontiers into the program in the goal to
reduce complexity(Meyers). The choice of a good set of
modules for a given problem is as difficult as the choice of
a good set of abstractions.



UML - a tool to design applications

e Just a graphical language, not a method.
e 1990 - Object Management Group : standardisation.

¢ Unification of the methods OMT (Booch) OOSE
(Jacobson) et Rumbaugh : Unified Modeling Language
(version 1.0 1997, version actuelle 1.3).



Special UML

o UML Distilled: A brief guide to the standard object
modeling language Martin Fowler (3rd edition).

e Instant UML,
Pierre-Alian Muller.

Internet sites

¢ Index to Object-Oriented Information Sources
http://www.oonumerics.org/oon and www.omg.org

¢ UML Resources
http://www.rational.com/uml/adobe.html
http://umlcenter.visual-paradigm.com/LinksBooks.html

¢ Aspect-Oriented Programming Home Page

http://aosd.net
http://http://aspectj.org



Objects and classes

e Reminders :
| Object = State + Behavior + Identity

e UML graphical conventions

Identity Product myComputer
. ) Price 2 500 euos
Adtributes Manufacturer dell
rint() ----1- rint
Methods print() ' print()
computePrice() ! computePrice(
I

IR AN
printf(price);

e Abstract classes are represented with the stereotype
<abstract>



Object composition

Object attributes can be themselves objects.

e Composition by value : responsability to create and to
delete the object.

Stock

e Creating an object implies to create its attributes by value
too.




Object composition

e Composition by reference : it is a reference link to an
object, this object can be shared by several another object,

Truck < Driver

e Creating the container does not imply to create the
referenced object.

e NB :the diamond is always at the using object side.



Methods and attributes visibility

e Public: a public attribute or method is specified with the +
sign.

e Private: a private attribute or method is specified with the
- sign.

e Protected: a protected attribute or method is specified
with the # sign.



Association/Composition Arity

1 only one

0 or 1 association

3
0.

M..N | from M to N (M and N integer)
* from O to several

0.x | from 0 to several

1..x | from 1 to several




Example of arities placed in diagram

thePostman : Postman

1.N 1

theMail:Mail

1

0.N | mailOffice : MailOffice

1.N

theMailBoxes: MailBoxes

1

0.N

0.1

person : Person




Inheritance

e Simple inheritance

|
’ Flig[hing ‘ ’ Lalnd ‘ ’ Marine ‘




Inheritance

e Simple inheritance

’ Flig[hing ‘ ’ Lalnd ‘ ’ Malrine ‘

e Multiple inheritance

’ Flighting ‘ ’ Land ‘ ’ Marine ‘

FlightingCarpet



Meta-Classes

Definition :
¢ A meta-classe defines class characteristics,it is a generic
model of classes (attribute or behavior).
Example :
e abstract class, interface, by extension each class of class.

We note that a meta-class is also an object of which the
class is the reference base class from which all objects are
built (0Object class in Java).

At the analysis and conception step, it does not exist
difference between a class and a meta-class.



Meta-Class

<<abstract>>
Object

T

Vehicle

VAN

Land

Flighting

Marine




Package representation
Service

Clients

~
\

R Gestion
\ N

~
\
|

1

[Treatement |
\‘ BankOffice Compte
\ Bank
1
1

|
1

’

’ \
7z \
4—l. - 7 <<import>> \
Communication it P \
.
e

SaveProcedure

Networks

Persistance




Module graph

Modules are compiling sub-units. Some programming
languages do not be able to implement this concept.

@ Gestion of
Client

account




Classes Diagram

Classes diagram is a static view of the model.

It describes the internal structure of classes and their
relations (inheritance, dependancy, composition .. .).

The terms : static structural diagram and class diagram are
equivalent in UML terminology.

It is a collection of declarative elements of the model.
These elements are classified by typing mechanism.

Note: it is possible to build a diagram which contains only
interfaces and abstract classes. In this case, it is called a
Meta-Model



Objects Diagram

e |t is the instance graph for the all object class.
e ltis itself an instance of the class diagram.
e Itis only used to illustrate examples.



Now You have to work |

The problem:
¢ Modeling a library application to manage the subscription
lends.
e There are two kinds of subscripters: adult and child.
Rules to take books or video or CDs:
e Adult: 7 things - with a maximum of 5 books, 3 videos and 3
music CDs.
e Child: 5 things - with a maximum of 3 books for child and 2
videos.

All the lends are for a period of 3 weeks maximum.
Goal: give the class diagram for this application.



The college time table

¢ Give the class diagram of this application:
¢ Students, professors and rooms have their own time table
o Firstly, we need to be able to answer to these questions :
where is a classe at this moment? where is a particular
student? This room is it free at this time?
¢ Secondly, we want to organize a day to visit museum, can
we find two free professors to go with the classe.



Use cases diagram

e Communication, event or data flux diagram between
external entities and the system.

¢ Give the external interface of the system.

¢ Only two kinds of represented objects: external actors and
composants which interact directly with the actors.

Automatic Transfert Money

client

Bank

Tt manage <<actor>>
<<actor>> X distributor
,
/
/

,
,
get e )/
money
4 Makin
4 . 2 <<actor>>
maintenance

’
’

, worker
consulting "\
account




Collaboration diagram

e This diagram shows the interactions between objects and
the structural relations which allows these interactions.

e The numerotation gives the order of messages.
e Time is not represented.

1 up

\301056

2 switcﬁl\



Collaboration diagram

Give the context for an objects set and the interactions
beween these objects (messages sendings).

Messages are given on the links which associate objects,
these links are oriented from the caller to the destination.

Allows to represent actors or external element.

The links in the collaboration diagram have not the same
semantic than the composition links into the class diagram.



Sequence Diagram

e Show interactions between object from the time point of
view.
o Notation ' :

e An objet is materialized by a rectangle and a vertical line
called the life line

anObject

'Object Message Sequence Chart, Siemens Pattern Group. Wiley 1996
Pattern-riented Software



Sequence diagram

¢ The rank of the message sending is done by the position
on the vertical axe.

anObject anotherObject something
a message

T
1
I
I
1
I
' _another message
1
I
1
I
1
I



Sequence Diagram

e Creation / destruction of object

object a

create

delete

object b




Sequence diagram

¢ Representation of activity periods for objects = working
time for this object.

e Beginning and the end of the vertical band correspond to
the beginning and the end of the activiy period.

object a

I
. . |
activation_



Centralized - decentralized mode

e Sequence diagrammes can show the control structure
choice.

ES
[ov}
{la
lo

|

.|:-



Centralised - decentralised mode

e Decentralised sending of messages.

A B

lo

e



- |>
|

la

{y-x <3s} :

{z-y < 1s}

- N«

(-t <2s) |
t, \DD i




Loops and branchings

A B

while X._,_message _ |
loop

end loop




if X

else

Conditional branching

B

- |>

message 1
message?

g EERRRS [N

A

_|w

[X]message |

s I S [

non[X]message?2
1
1
1



State-transitions diagram

¢ An object is in a given state at each step.
¢ The state of an object is given by the values of its attributes

. Middle state @

Initial state Final ¢



State-transitions diagram

¢ The object change from a state to another one by using
transition.

e Fired by event, transitions allows the change immediatly.

.. +60 years
activity
lost of retirement
employment

employment

unemployme
oy + 60 years




Generalisation of states

e To simplify the diagram, states can be put together into
subclasses of a generic class.

¢ A state can be decomposed into several separeted
(exclusive) sub-states, object can be only in only one state
at the same time.

(» =] ‘[A

2 2

]L{ B

J!




Exemple of agregation of states

e How to decompose states without breaking the abstraction
frontier.




Agregation of states

e Agregation of several automatas which work
simultaneously and independently

I U ’ l W evt3

evtl evt2
Cx ]
Lz ]
evtd
(v J—




Agregation of state

Treat a module

Incomplet

o—{ Fabriq1 } =K Fabrig2 |2-0K@)
----------------------------- Z

echec .
Rejecte




Complex transitions

7[AskParamC ]—>@olorMAJ ]
"""""""""""""" |—1F Redrawing
AskParamP PositionMA]J




Activity diagram

client vendor stock

ask |
service

take
articles




