
Software Engineering and Design

Master 2
Pôles Universitaires Français

Marie Beurton-Aimar
Université de Bordeaux



Software design

• 7 sessions of lectures and 10 sessions of TD.
• 2 parts :

• Object design and data structuring.
• Programs structuring and reusable objects.

• Main questions:
• Howto? Methods? Tools?



Software design

• 7 sessions of lectures and 10 sessions of TD.
• 2 parts :

• Object design and data structuring.
• Programs structuring and reusable objects.

• Main questions:
• Howto? Methods? Tools?



Context

• Large programs for real cases.
• Maintenance is time and money consuming.
• Creating new programs is not the common task now.

• Several ways to answer : conception level, programming
level, data level ...



Context

• Large programs for real cases.
• Maintenance is time and money consuming.
• Creating new programs is not the common task now.
• Several ways to answer : conception level, programming

level, data level ...



What is the software design

• Context:
• Object oriented paradigm.
• Data analysis and structuring is the starting point and the

fundation.

• Addition of task organisation and methods to formalize
that.



Data Analysis

• Real applications often imply complex data.
• Object Oriented paradigm is based on the analysis of data

firstly.
• Does it exist some methods to help us to analyze these

data?

• It exists methodology and many recipes.



Data Analysis

• Real applications often imply complex data.
• Object Oriented paradigm is based on the analysis of data

firstly.
• Does it exist some methods to help us to analyze these

data?
• It exists methodology and many recipes.



Bibliography

Best-of :

• Object-Oriented Analysis and Design with Applications,
G Booch (Addison-Wesley, 1992).

• Object-Oriented Software Engineering,I. Jacobson,
M. Christerson, P. Jonsson, G. Overgaard
(Addison-Wesley, 1993).

The outsiders:

• Object-Oriented Methods , 3nd édition,
I Graham (thompson Publisher, 1997).



Find the good classes

• De-composition / Composition: an object is an individual
element, real or abstract with a well defined role in the
problem domain.

• Find the right objects and the size of each object.
• Decide where to attach behaviors.
• Create modules and links between them.



Basic Principles

• Objects : base units organized in classes and sharing
common traits (attributes or procedures). They can be
entities from real world, concepts of the application or of
the concerned domain.

• Encapsulation :
• Data structures and implementation details are hidden to

the other system objects.
• The only way to access to the object state is to send to it a

message which activate the execution of one of its
methods.

• Abstraction : is the way to apply encapsulation and
encapsulation make abstraction useful.



Basic Principles

• Polymorphism : possibility to use the same expression for
different operations. Inheritance is a specific form of
polymorphism typical to the object oriented systems.

• Modularity : program partition which creates well-defined
(and documented) frontiers into the program in the goal to
reduce complexity(Meyers). The choice of a good set of
modules for a given problem is as difficult as the choice of
a good set of abstractions.



UML - a tool to design applications

• Just a graphical language, not a method.
• 1990 - Object Management Group : standardisation.
• Unification of the methods OMT (Booch) OOSE

(Jacobson) et Rumbaugh : Unified Modeling Language
(version 1.0 1997, version actuelle 1.3).



Special UML

• UML Distilled: A brief guide to the standard object
modeling language Martin Fowler (3rd edition).

• Instant UML,
Pierre-Alian Muller.

Internet sites

• Index to Object-Oriented Information Sources
http://www.oonumerics.org/oon and www.omg.org

• UML Resources
http://www.rational.com/uml/adobe.html
http://umlcenter.visual-paradigm.com/LinksBooks.html

• Aspect-Oriented Programming Home Page
http://aosd.net
http://http://aspectj.org



Objects and classes

• Reminders :
Object = State + Behavior + Identity

• UML graphical conventions

printf(price);

Identity

Attributes

Methods

Product

Price

Manufacturer

print()

computePrice()

myComputer

computePrice()

print()

dell
2 500 euos

• Abstract classes are represented with the stereotype
<abstract>



Object composition

Object attributes can be themselves objects.
• Composition by value : responsability to create and to

delete the object.

Stock

Product

• Creating an object implies to create its attributes by value
too.



Object composition

• Composition by reference : it is a reference link to an
object, this object can be shared by several another object,

Truck Driver

• Creating the container does not imply to create the
referenced object.

• NB : the diamond is always at the using object side.



Methods and attributes visibility

• Public: a public attribute or method is specified with the +
sign.

• Private: a private attribute or method is specified with the
- sign.

• Protected: a protected attribute or method is specified
with the # sign.



Association/Composition Arity

1 1 only one
0..1 0 or 1 association
M..N from M to N (M and N integer)
? from 0 to several
0..? from 0 to several
1..? from 1 to several



Example of arities placed in diagram

mailOffice : MailOffice

1

0..1

1

0..N

1

1..N

1..N

thePostman : Postman

theMailBoxes: MailBoxes

theMail:Mail

person : Person

0..N



Inheritance

• Simple inheritance

Land Marine

Vehicle

Flighing

• Multiple inheritance

Land Marine

VehicleCarpet

FlightingCarpet

Flighting



Inheritance

• Simple inheritance

Land Marine

Vehicle

Flighing

• Multiple inheritance

Land Marine

VehicleCarpet

FlightingCarpet

Flighting



Meta-Classes

• Definition :
• A meta-classe defines class characteristics,it is a generic

model of classes (attribute or behavior).
• Example :

• abstract class, interface, by extension each class of class.

• We note that a meta-class is also an object of which the
class is the reference base class from which all objects are
built (Object class in Java).

• At the analysis and conception step, it does not exist
difference between a class and a meta-class.



Meta-Class

Vehicle

<<abstract>>
Object

Land Flighting Marine



Package representation

SaveProcedure

Service

Clients

Client

<<import>>

BankOffice

Bank

Treatement

Compte

Gestion

Networks

Communication

Persistance



Module graph

Modules are compiling sub-units. Some programming
languages do not be able to implement this concept.

account

Gestion of

Client



Classes Diagram

• Classes diagram is a static view of the model.
• It describes the internal structure of classes and their

relations (inheritance, dependancy, composition . . . ).
• The terms : static structural diagram and class diagram are

equivalent in UML terminology.
• It is a collection of declarative elements of the model.

These elements are classified by typing mechanism.
• Note: it is possible to build a diagram which contains only

interfaces and abstract classes. In this case, it is called a
Meta-Model



Objects Diagram

• It is the instance graph for the all object class.
• It is itself an instance of the class diagram.
• It is only used to illustrate examples.



Now You have to work !

• The problem:
• Modeling a library application to manage the subscription

lends.
• There are two kinds of subscripters: adult and child.

• Rules to take books or video or CDs:
• Adult: 7 things - with a maximum of 5 books, 3 videos and 3

music CDs.
• Child: 5 things - with a maximum of 3 books for child and 2

videos.

• All the lends are for a period of 3 weeks maximum.
• Goal: give the class diagram for this application.



The college time table

• Give the class diagram of this application:
• Students, professors and rooms have their own time table
• Firstly, we need to be able to answer to these questions :

where is a classe at this moment? where is a particular
student? This room is it free at this time?

• Secondly, we want to organize a day to visit museum, can
we find two free professors to go with the classe.



Use cases diagram
• Communication, event or data flux diagram between

external entities and the system.
• Give the external interface of the system.
• Only two kinds of represented objects: external actors and

composants which interact directly with the actors.

make

<<actor>>
client

account

transfert manage
distributor

maintenance

<<actor>>

<<actor>>
worker

money
get

consulting

Making

Bank

Automatic Transfert Money



Collaboration diagram

• This diagram shows the interactions between objects and
the structural relations which allows these interactions.

• The numerotation gives the order of messages.
• Time is not represented.

:Cabin

1 up

2 switch on

:Lift

:Door

:Light

3 close



Collaboration diagram

• Give the context for an objects set and the interactions
beween these objects (messages sendings).

• Messages are given on the links which associate objects,
these links are oriented from the caller to the destination.

• Allows to represent actors or external element.
• The links in the collaboration diagram have not the same

semantic than the composition links into the class diagram.



Sequence Diagram

• Show interactions between object from the time point of
view.

• Notation 1 :
• An objet is materialized by a rectangle and a vertical line

called the life line

anObject

1Object Message Sequence Chart, Siemens Pattern Group. Wiley 1996
Pattern-riented Software



Sequence diagram

• The rank of the message sending is done by the position
on the vertical axe.

something

a message

another message

anObject
 anotherObject



Sequence Diagram

• Creation / destruction of object

object b
create

delete

object a



Sequence diagram

• Representation of activity periods for objects = working
time for this object.

• Beginning and the end of the vertical band correspond to
the beginning and the end of the activiy period.

activation

object a



Centralized - decentralized mode

• Sequence diagrammes can show the control structure
choice.

BA C D



Centralised - decentralised mode

• Decentralised sending of messages.

BA C D



Temporal constraints

A CB

x

t’

t

y

{y-x <3s}

{z-y < 1s}

{t’-t <2s}

z



Loops and branchings

A BA B

while X
loop

end loop

message *[X]message



Conditional branching

A CB

if X

else

A CB

[X]message

non[X]message2

message

message2



State-transitions diagram

• An object is in a given state at each step.
• The state of an object is given by the values of its attributes

Final stateInitial state

Middle state



State-transitions diagram

• The object change from a state to another one by using
transition.

• Fired by event, transitions allows the change immediatly.

activity
+60 years

+ 60 years
unemployment

retirement

employment
employment
lost of



Generalisation of states

• To simplify the diagram, states can be put together into
subclasses of a generic class.

• A state can be decomposed into several separeted
(exclusive) sub-states, object can be only in only one state
at the same time.

t2

A B

C

t2 t2

t1

A B

C

t1



Exemple of agregation of states

• How to decompose states without breaking the abstraction
frontier.

B
A B1

B2

B

C

A



Agregation of states

• Agregation of several automatas which work
simultaneously and independently

evt4

U

Z

W

X

Y

evt1 evt2

evt3



Agregation of state

2−OK

TestFinal

ProjetFini

Fabriq1

ok

Treat a module

Validated

Rejected

Incomplet

Fabriq2

echec

projet OK

1−OK



Complex transitions

RedrawingSwitch on

AskParamC

AskParamP

ColorMAJ

PositionMAJ



Activity diagram

stock

give
command

get
command

command

service

vendor

take

articles

client

take

pay

ask

[given]
cmd

cmd
[passed]


