Deep Learning and Neural Network

Marie Beurton-Aimar, LE Van Linh

December 1, 2020

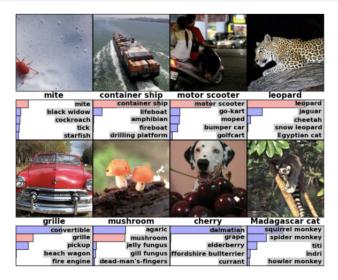
Deep Learning

Deep learning is a class of machine learning that:

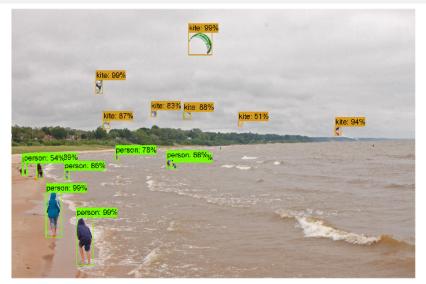
- use a cascade of multiple layers for extracting and transforming the features.
- learn in supervised or unsupervised mode
- learn with different levels of presentation

[ZDNet, 2018]

[Silicon ANGLE, 2016]



[Siecle Digital, 2016]


ROSS Intelligence, 2018

Deep Learning - Images classification

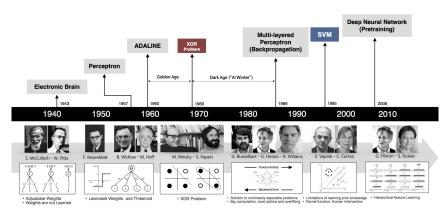
[Machine Learning Mastery, 2016]

Deep Learning - Object detection

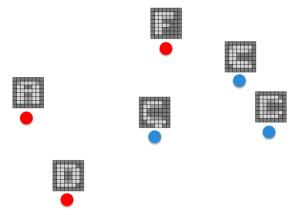
[Medium, 2018]

Deep Learning - Machine translation

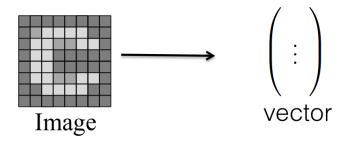
Traduction



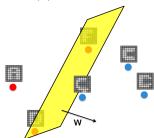
Deep Learning - Speech recognition

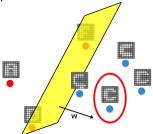


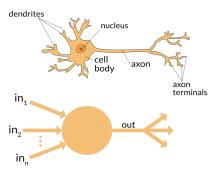
History

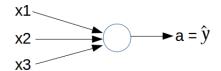


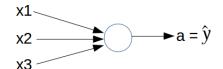
[beamandrew, 2017]

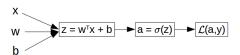

• Collect data for training: includes positive and negative examples

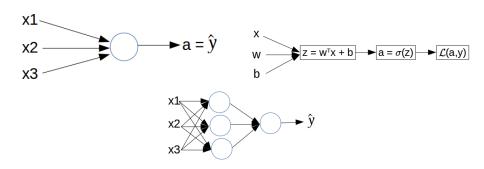

• Represent data as vectors:

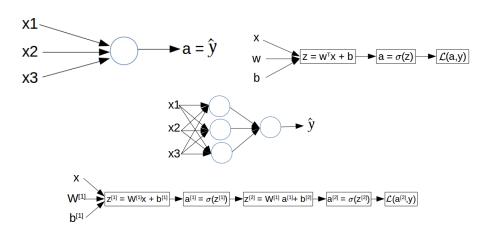

- Function: $f(x) = w^T x + b$
- Train the function on training data: find w and b so that
 - If sample x is positive, f(x) is positive
 - If sample x is negative, f(x) is negative

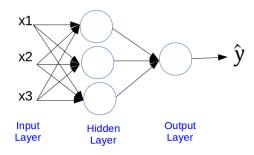

• Testing on new examples

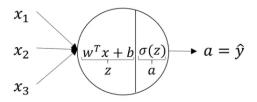



The Inspiration for a Perceptron



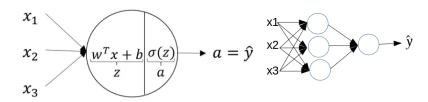

[appliedgo, 2016]




NN Representation

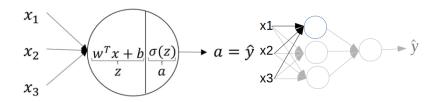
This is a:

- 2 layers neural network
- The hidden layers and output layer (sometime) will have the parameters (W,b)



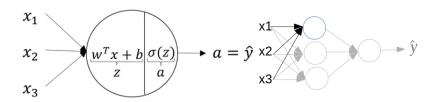
$$z = w^T x + b$$

$$a = \sigma(z)$$



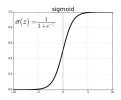
$$z = w^T x + b$$

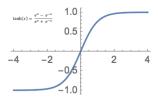
$$a = \sigma(z)$$



$$z = w^T x + b$$

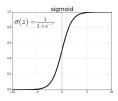
$$a = \sigma(z)$$

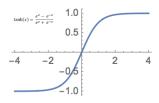

$$z = w^T x + b$$


$$a = \sigma(z)$$

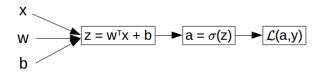
$$z_1^{[1]} = w_1^{[1]T} x + b_1^{[1]}$$

 $a_1^{[1]} = \sigma(z_1^{[1]})$


Note: $a_i^{[I]}$ denotes node a_i at layer I.


Activation functions

Activation functions

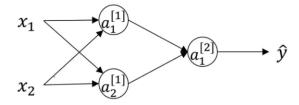


• For hidden units: use tanh, ReLU should be better than sigmoid

Backward propagation intuition

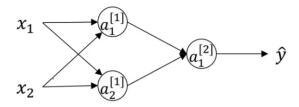
What is values of da, dz, dw, and db?

Backward propagation intuition


What is values of da, dz, dw, and db?

What is values of $da^{[2]}$, $dz^{[2]}$, $dw^{[2]}$, $db^{[2]}$, $da^{[1]}$, $dz^{[1]}$, $dw^{[1]}$ and $db^{[1]}$?

Beurton-Aimar, Le Deep Learning and Neural Network today 14 / 16


Parameters random initialization

If W = [0] then the computing of neural network is exactly the same function at every layer?

Parameters random initialization

If W = [0] then the computing of neural network is exactly the same function at every layer?

Solution: Randomly initialization the parameters

- W = np.random.randn((2,2)) * 0.01
- b = np.zero((2,1))

Beurton-Aimar, Le

Summary

 Overview about Neural Network with hidden layers

Initialize the parameters

Activation of neural networks