
25

THE VISITOR PATTERN

The Visitor pattern turns the tables on our object-oriented model and
creates an external class to act on data in other classes. This is useful if there
are a fair number of instances of a small number of classes and you want to
perform some operation that involves all or most of them.

Motivation
While at first it may seem “unclean” to put operations that should be

inside a class in another class instead, there are good reasons for doing it.
Suppose each of a number of drawing object classes has similar code for
drawing itself. The drawing methods may be different, but they probably all
use underlying utility functions that we might have to duplicate in each class.
Further, a set of closely related functions is scattered throughout a number of
different classes as shown below:

draw
Circle

draw

Triangle

draw

drawObject

Rectangle

draw

Instead, we write a Visitor class which contains all the related draw
methods and have it visit each of the objects in succession:

26

Rectangle Circle Triangle

draw

drawObject

The question that most people who first review this pattern ask is
“what does visiting mean?” There is only one way that an outside class can
gain access to another class, and that is by calling its public methods. In the
Visitor case, visiting each class means that you are calling a method already
installed for this purpose, called accept. The accept method has one
argument: the instance of the visitor, and in return, it calls the visit method of
the Visitor, passing itself as an argument.

Visitor
Visited
instance

visited.accept(this);

v.visit(this);

Putting it in simple code terms, every object that you want to visit must have
the following method:

public void accept(Visitor v)
 {
 v.visit(this); //call visitor method
 }
In this way, the Visitor object receives a reference to each of the instances,
one by one, and can then call its public methods to obtain data, perform
calculations, generate reports, or just draw the object on the screen.

When to Use the Visitor Pattern
You should consider using a Visitor pattern when you want to

perform an operation on the data contained in a number of objects that have
different interfaces. Visitors are also valuable if you have to perform a
number of unrelated operations on these classes.

27

On the other hand, as we will see below, Visitors are a good choice
only when you do not expect many new classes to be added to your program.

Sample Code
Let’s consider a simple subset of the Employee problem we discussed

in the Composite pattern. We have a simple Employee object which
maintains a record of the employee’s name, salary, vacation taken and
number of sick days taken. A simple version of this class is:

public class Employee
{
 int sickDays, vacDays;
 float Salary;
 String Name;

 public Employee(String name, float salary,
int vacdays, int sickdays)

 {
 vacDays = vacdays; sickDays = sickdays;
 Salary = salary; Name = name;
 }
 public String getName() { return Name; }
 public int getSickdays() { return sickDays; }
 public int getVacDays() { return vacDays; }
 public float getSalary() { return Salary; }
 public void accept(Visitor v) { v.visit(this); }
}

Note that we have included the accept method in this class. Now let’s
suppose that we want to prepare a report of the number of vacation days that
all employees have taken so far this year. We could just write some code in
the client to sum the results of calls to each Employee’s getVacDays function,
or we could put this function into a Visitor.

Since Java is a strongly typed language, your base Visitor class needs
to have a suitable abstract visit method for each kind of class in your
program. In this first simple example, we only have Employees, so our basic
abstract Visitor class is just

public abstract class Visitor
{
 public abstract void visit(Employee emp);
}

Notice that there is no indication what the Visitor does with teach
class in either the client classes or the abstract Visitor class. We can in fact
write a whole lot of visitors that do different things to the classes in our

28

program. The Visitor we are going to write first just sums the vacation data
for all our employees:

public class VacationVisitor extends Visitor
{
 protected int total_days;
 public VacationVisitor() { total_days = 0; }
 //-----------------------------
 public void visit(Employee emp)
 {
 total_days += emp.getVacDays();
 }
 //-----------------------------
 public int getTotalDays()
 {
 return total_days;
 }
}

Visiting the Classes
Now, all we have to do to compute the total vacation taken is to go

through a list of the employees and visit each of them, and then ask the
Visitor for the total.

 VacationVisitor vac = new VacationVisitor();
 for (int i = 0; i < employees.length; i++)
 {
 employees[i].accept(vac);
 }
 System.out.println(vac.getTotalDays());

Let’s reiterate what happens for each visit:

1. We move through a loop of all the Employees.

2. The Visitor calls each Employee’s accept method.

3. That instance of Employee calls the Visitor’s visit method.

4. The Visitor fetches the vacation days and adds them into the
total.

5. The main program prints out the total when the loop is complete.

29

Visiting Several Classes
The Visitor becomes more useful, when there are a number of

different classes with different interfaces and we want to encapsulate how we
get data from these classes. Let’s extend our vacation days model by
introducing a new Employee type called Boss. Let’s further suppose that at
this company, Bosses are rewarded with bonus vacation days (instead of
money). So the Boss class as a couple of extra methods to set and obtain the
bonus vacation day information:

public class Boss extends Employee
{
 private int bonusDays;

 public Boss(String name, float salary,
int vacdays, int sickdays) {

 super(name, salary, vacdays, sickdays);
 }
 public void setBonusDays(int bonus) { bonusDays = bonus; }
 public int getBonusDays() { return bonusDays; }
 public void accept(Visitor v) { v.visit(this); }
}

When we add a class to our program, we have to add it to our Visitor
as well, so that the abstract template for the Visitor is now:

public abstract class Visitor
{
 public abstract void visit(Employee emp);
 public abstract void visit(Boss emp);
}

This says that any concrete Visitor classes we write must provide
polymorphic visit methods for both the Employee and the Boss class. In the
case of our vacation day counter, we need to ask the Bosses for both regular
and bonus days taken, so the visits are now different. We’ll write a new
bVacationVisitor class that takes account of this difference:

public class bVacationVisitor extends Visitor
{
 int total_days;

 public bVacationVisitor() { total_days = 0; }
 public int getTotalDays() { return total_days; }
//--------------------------------
 public void visit(Boss boss) {
 total_days += boss.getVacDays();
 total_days += boss.getBonusDays();
 }
 //-----------------------------
 public void visit(Employee emp) {

30

 total_days += emp.getVacDays();
 }
}

Note that while in this case Boss is derived from Employee, it need
not be related at all as long as it has an accept method for the Visitor class. It
is quite important, however, that you implement a visit method in the Visitor
for every class you will be visiting and not count on inheriting this behavior,
since the visit method from the parent class is an Employee rather than a Boss
visit method. Likewise, each of your derived classes (Boss, Employee, etc.
must have its own accept method rather than calling one in its parent class.

Bosses are Employees, too
We show below a simple application that carries out both Employee

visits and Boss visits on the collection of Employees and Bosses. The original
VacationVisitor will just treat Bosses as Employees and get only their
ordinary vacation data. The bVacationVisitor will get both.

 VacationVisitor vac = new VacationVisitor();
 bVacationVisitor bvac = new bVacationVisitor();
 for (int i = 0; i < employees.length; i++)
 {
 employees[i].accept(vac);
 employees[i].accept(bvac);
 }
 total.setText(new Integer(vac.getTotalDays()).toString());
 btotal.setText(

new Integer(bvac.getTotalDays()).toString());

The two lines of displayed data represent the two sums that are computed
when the user clicks on the Vacations button.

31

Double Dispatching
No article on the Visitor pattern is complete without mentioning that

you are really dispatching a method twice for the Visitor to work. The Visitor
calls the polymorphic accept method of a given object, and the accept method
calls the polymorphic visit method of the Visitor. It this bidirectional calling
that allows you to add more operations on any class that has an accept
method, since each new Visitor class we write can carry out whatever
operations we might think of using the data available in these classes.

Traversing a Series of Classes
The calling program that passes the class instances to the Visitor

must know about all the existing instances of classes to be visited and mus
keep them in a simple structure such as an array or Vector. Another
possibility would be to create an Enumeration of these classes and pass it to
the Visitor. Finally, the Visitor itself could keep the list of objects that it is to
visit. In our simple example program, we used an array of objects, but any of
the other methods would work equally well.

Consequence of the Visitor Pattern
The Visitor pattern is useful when you want to encapsulate fetching

data from a number of instances of several classes. Design Patterns suggests
that the Visitor can provide additional functionality to a class without
changing it. We prefer to say that a Visitor can add functionality to a
collection of classes and encapsulate the methods it uses.

The Visitor is not magic, however, and cannot obtain private data
from classes: it is limited to the data available from public methods. This
might force you to provide public methods that you would otherwise not have
provided. However, it can obtain data from a disparate collection of unrelated
classes and utilize it to present the results of a global calculation to the user
program.

It is easy to add new operations to a program using Visitors, since the
Visitor contains the code instead of each of the individual classes. Further,
Visitors can gather related operations into a single class rather than forcing
you to change or derive classes to add these operations. This can make the
program simpler to write and maintain.

Visitors are less helpful during a program’s growth stage, since each
time you add new classes which must be visited, you have to add an abstract
visit operation to the abstract Visitor class, and you must add an

32

implementation for that class to each concrete Visitor you have written.
Visitors can be powerful additions when the program reaches the point where
many new classes are unlikely.

Visitors can be used very effectively in Composite systems and the
boss-employee system we just illustrated could well be a Composite like the
one we used in the Composite chapter.

