Aspect-Oriented
Programming:
Fad or the Future
Karl Lieberherr

Northeastern University
UBS AG

AOP: Factoring out similarities
that cut across abstractions

ecific Adapters
ehavior 1)
@eﬁﬁc @ Generic
ehavior 2 behavior:
similar to behavior 1 Collaborations
AOP solution:

The goal: Tangling control

» Tangling cannot be eliminated, it can
only be reduced and localized.

» The goal is to encapsulate program
enhancements and minimize
dependencies between them (loose
coupling).

Traditional solution: less redundancy,
redundancy requirestool support
definition deployment result

Collaborations (AP&PC)

PRy sy T A i

minimal]
assumptions on 1
appli catign structure — [S =]

+
required interfaces

add new functionality
written tothe PG +
similar toan OO
program iswritten
toa concrete class
graph

enhancetherequired

provided

everything declared
public

» Adapters specify crosscutting using

Deployment/Composition of
Collaborations

Specified by adapters separately from collaborations

— regular-expressions to express sets of method names and
class names and interface names
— code where simple method name mapping is not enough
- grapﬁs and regular expression-like constructs for mapping
graphs

Design issues

* What goes into collaborations and what
goes into adapters?

» Depends on reuse of collaboration C.

» Consider n reuses of the same
collaboration: A,(C), A,C), ... ,A,(C)

* The goal is to put enough information into
collaboration C so that in the adapters
contain minimal code duplication.

Rough correspondences

AOP enhancement crosscutting
(generic)
Hyper/J Hyperslice Hypermodule

Aspect Advice Crosscut
Introduction

Collab/ Collaboration Adapter

Adapters

Fad or Future

e Future!

* Many issues to be resolved
— Correctness
* aspect
« composition of aspects
— conflicts between aspects

— Trying to unify the existing approaches: taxonomy
of the design space

ECOOP’2000 _Panel:
Aspect-Oriented
Programming

Fad or the future

Mehmet Aksit

Department of Computer Science
P.O. Box 217

7500 AE Enschede, The Netherlands
aksit@cs.utwente.nl
http://www.cs.utwente.nl/~aksit

A tale of a newspaper boy

Give me
one ECOOP
news!

An UML model for the newspaper
boy

Newspaper boy

money in pocket

shout
getorders
calculate change
ask for money
give change
give newspaper

A tale of a newspaper boy

Giveme
gentlemen’
proceedings newspapers

|""=, '?J

A tale of a newspaper boy

An UML model for the synchronized
newspaper boy

Synch newspaper boy

money in pocket

v O
etorders

g
calculate change O
ask for money

give change O
givenewspaper \

@)

o

Multiple concerns and a tale of a
newspaper boy

Qu)-

Modular and orthogonal
extensions

A composition-filters model for the
newspaper boy

diff: Dispatch = {isLover=>*}
syn: Wait = {notActive=> *}
syn: Wait = {isRest=> work, not.isRest=> *}

aCount: Meta = {[*]counter.count}

Lessons learned from the
newspaper boy

 Aspects should be defined as modular
exiensions o
(example: composition filters)

» Aspects must be composable within and
among aspect domains)
fexa.mple: multiple views, mutual exclusion,
ocking, counting)

» Aspects must have well-defined semantics
(example, dispatch, wait, meta filters)

« Aspects must be declarative specifications
(example filter specifications)

AOP: Future or Fad?

Gregor Kiczales
University of British Columbia

why OOP is alasting fad

» apowerful modularity principle

— encapsulated objects, hierarchical inheritance,
polymorphic operations (“message as goal”)

» supported by language & tool technology
e time-proven to

— improve modularity of real system designs

— improve modularity of real programs

but...

problems like...

logging is not modularized

m {WMHI H}H‘ i

« whereis logging in org.apache.tomcat
— red shows lines of code that handle logging
— not in just one place
— not even in a small number of places

problems like...

session caching is not modularized

ApplicationSession ‘StandardSession

ServerSessionManager

AOPis...

e amodularity principle
— crosscutting concerns are important
— should get explicit support

e supported by language & tool technology
— aspects are crosscutting modules
— join points are guideposts to coordinate
crosscutting
* points in program text
« points in dynamic call graph
* points in dynamic data flow graph

— tools can navigate the crosscutting structure

explicit crosscutting structure

neatly captures public
interface of mypackage

aspect PublicCall Logging {

pointcut publiclnterface ():
i nstanceof(nypackage..*) & receptions(public* *(..));

static before(): publiclnterface() {
Systemout. println(thisJoinPoint +*“ called.”);

static after() returning (Cbject r): publiclnterface() {
Systemout. println(thisJoinPoint +*“ returned " +r);
}

}

consider code maintenance
— another programmer adds a public method
+ i.e. extends public interface — this code will still work
— another programmer reads this code
+ ‘“what's really going on” is explicit (the structure of the crosscutting)

FigureEditor

Fi Edi *

igureEditor - Display
loCommand(Command, _
thanged() () pdate(Graphics)

*
figureElement

Line Point
calls to changed() P10 X0
per-Display colors etP2() etY()

etP1(Point) etX(int)
detP2(Point) etY(int)
hoveBwint, inf) oveBvint, inf)
raw(Graphics) raw(Graphics)

context dependence

i Cdis

i Displa
doCommand(Command) .
chanaed() lupdate(Graphics) |

L Point

getP1() getX()

getP2() getY()

setP1(Point) setX(int)

etP2(Point) setY(int)

oveBy(int, int) moveBy(int, int)

(Craphi o (Craghi
torap (orap

aspect DeferUpdates {

Il whenever anyone calls a method that noves a figure el ement
poi ntcut novecal I s():

cal I s(Line, void moveBy(int, int)) |

cal I s(Line, void setP1(Point)) |

cal I s(Line, void setP2(Point)) |

calls(Point, void noveBy(int, int)) |

cal I s(Point, void setX(int)) |

cal I s(Point, void setY(int));

Il this is a call fromoutside of FigureEl enents
poi ntcut deferTo():
!'wi t hi nal | (Fi gureEl enent) & novecalls();

static after(): deferTo() {
FI GUREEDI TOR. updat e() ;
}

contribution of AOP

v attention to crosscutting concerns
— crosscutting concerns are inherent

— deserve explicit support in design and
implementation

»language support
— aspects, join points...
? better programs
— time will tell
— AspectJ is empirical language & SE research

