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AOP: Factoring out similarities
that cut across abstractions
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The goal: Tangling control

» Tangling cannot be eliminated, it can
only be reduced and localized.

» The goal is to encapsulate program
enhancements and minimize
dependencies between them (loose
coupling).
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definition deployment result
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» Adapters specify crosscutting using

Deployment/Composition of
Collaborations

Specified by adapters separately from collaborations

— regular-expressions to express sets of method names and
class names and interface names
— code where simple method name mapping is not enough
- grapﬁs and regular expression-like constructs for mapping
graphs




Design issues

* What goes into collaborations and what
goes into adapters?

» Depends on reuse of collaboration C.

» Consider n reuses of the same
collaboration: A,(C), A,C), ... ,A,(C)

* The goal is to put enough information into
collaboration C so that in the adapters
contain minimal code duplication.

Rough correspondences
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Fad or Future

e Future!

* Many issues to be resolved
— Correctness
* aspect
« composition of aspects
— conflicts between aspects

— Trying to unify the existing approaches: taxonomy
of the design space
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A tale of a newspaper boy
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Giveme
gentlemen’
proceedings newspapers

|""=, '?J

A tale of a newspaper boy

An UML model for the synchronized
newspaper boy
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Multiple concerns and a tale of a
newspaper boy
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Modular and orthogonal
extensions

A composition-filters model for the
newspaper boy

diff: Dispatch = {isLover=>*}
syn: Wait = {notActive=> *}
syn: Wait = {isRest=> work, not.isRest=> *}

aCount: Meta = {[*]counter.count}




Lessons learned from the
newspaper boy

 Aspects should be defined as modular
exiensions o
(example: composition filters)

» Aspects must be composable within and
among aspect domains )
fexa.mple: multiple views, mutual exclusion,
ocking, counting)

» Aspects must have well-defined semantics
(example, dispatch, wait, meta filters)

« Aspects must be declarative specifications
(example filter specifications)
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why OOP is alasting fad

» apowerful modularity principle

— encapsulated objects, hierarchical inheritance,
polymorphic operations (“message as goal”)

» supported by language & tool technology
e time-proven to

— improve modularity of real system designs

— improve modularity of real programs

but...

problems like...

logging is not modularized
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« whereis logging in org.apache.tomcat
— red shows lines of code that handle logging
— not in just one place
— not even in a small number of places

problems like...

session caching is not modularized

ApplicationSession ‘StandardSession

ServerSessionManager

AOPis...

e amodularity principle
— crosscutting concerns are important
— should get explicit support

e supported by language & tool technology
— aspects are crosscutting modules
— join points are guideposts to coordinate
crosscutting
* points in program text
« points in dynamic call graph
* points in dynamic data flow graph

— tools can navigate the crosscutting structure




explicit crosscutting structure

neatly captures public
interface of mypackage

aspect PublicCall Logging {

pointcut publiclnterface ():
i nstanceof(nypackage..*) & receptions(public* *(..));

static before(): publiclnterface() {
Systemout. println(thisJoinPoint +*“ called.”);

static after() returning (Cbject r): publiclnterface() {
Systemout. println(thisJoinPoint +*“ returned " +r);
}

}

consider code maintenance
— another programmer adds a public method
+ i.e. extends public interface — this code will still work
— another programmer reads this code
+ ‘“what's really going on” is explicit (the structure of the crosscutting)
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aspect DeferUpdates {

Il whenever anyone calls a method that noves a figure el ement
poi ntcut novecal I s():

cal I s(Line, void moveBy(int, int)) |

cal I s(Line, void setP1(Point)) |

cal I s(Line, void setP2(Point)) |

calls(Point, void noveBy(int, int)) |

cal I s(Point, void setX(int)) |

cal I s(Point, void setY(int));

Il this is a call fromoutside of FigureEl enents
poi ntcut deferTo():
!'wi t hi nal | (Fi gureEl enent ) & novecalls();

static after(): deferTo() {
FI GUREEDI TOR. updat e() ;
}

contribution of AOP

v attention to crosscutting concerns
— crosscutting concerns are inherent

— deserve explicit support in design and
implementation

»language support
— aspects, join points...
? better programs
— time will tell
— AspectJ is empirical language & SE research




