
Meta-Program and Meta-Programming

• What is a Meta-Programming ?
The creation of procedures and programs that
automatically construct the definitions of other procedures
and programs.

• First example the Turing machine
With the Universal Turing Machine, named after Alan
Turing, it has been proved that it is possible to program a
machine to imitate the behavior of any other machine.

Meta-Program and Meta-Programming

• What is a Meta-Program ?
• A program which modifies or generates other programs. A

compiler is an example of a metaprogram: it takes a
program as input and produces another (compiled) one as
output. Genetics programming allows to generate new
programs in simulating biological evolution.

• Meta-programs in general are programs that create, control
or make decisions about programs, such as when and how
to run them, preferred and unpreferred programs, and
strategic choices of fall-back or alternative programs.

• Well-known examples : compiler, language parser, genetics
programs . . .

Why do we need Meta-Programming ?

• Object Oriented Design has some interests : capability to
capture data semantics, complexity management, abstract
level . . .

• Limitations: the main principle is to tell that all the tasks to
accomplish can be assumed by one object and the
methods are always into classes.

• BUT! it exist several cases where put methods into
classes cause code duplication because sometimes we
need more linear programming than hierarchical
programming.

Why do we need Meta-Programming ?

• Object Oriented Design has some interests : capability to
capture data semantics, complexity management, abstract
level . . .

• Limitations: the main principle is to tell that all the tasks to
accomplish can be assumed by one object and the
methods are always into classes.

• BUT! it exist several cases where put methods into
classes cause code duplication because sometimes we
need more linear programming than hierarchical
programming.

Design example

Some cases of transversal concerns : log management,
verification for input parameters, excepion treatments

. . .

How to write horizontal sharing of behaviors?
• In the Object design we can separate the business objects

from the technical objects.
• Object oriented design encapsulatse concerns into single

entity.
• But some concerns defy these forms of encapsulation.

Software engineers call these crosscutting concerns,
because they ”cut” across multiple modules in a program.

• So we need to build a separation of concerns and AOP
give a solution for the cross-cutting concerns between
several classes.

What is AOP?

• The beginning of the story : Gregor Kiczales and his team
at the Palo Alto Xeroc Parc published their works on writing
programs in the 90’s.

• Aspect Oriented Programming give a new way to share
behaviors, or controls without breaking encapsulation.

• They wrote AspectJ which implements AOP for Java
applications.

• One of the multiple web site with example :
https://medium.com/@jdvp/aspect-oriented-programming-in-android-159054d52757

AOP Principles

• Calling to a technical module from a business one or
another technical modules is not direct. For example
calling trace management module. This aspect is specified
in a self-working way.

• But if the aspect defined explicitly where it interacts with te
business module, this just put the problem in another
place.

• The solution is a system of rational expressions to precise
where are the executing point of the different aspects.

AOP Vocabulary

• Join point: points in a running program where additional
behavior can be usefully joined. A join point needs to be
addressable and understandable by an ordinary
programmer to be useful

• Pointcut: the place where the join points are
put.Determine whether a given join point matches.

• Advice: code to run at a join point. It can run before, after
and around join points.

• Weaver: the tool to link aspect code and code of class
methods. It can works before or during the compilation
time, befor or during the runtime.

• Crosscutting concerns:secondary requirements sharing
by several classes.

Example

class RealSquareRootExample {
public static void main(String[] args) {

System.out.println("sqrt(13.0) is " + Math.sqrt(13.0));
System.out.println("sqrt(9.0) is " + Math.sqrt(9.0));
System.out.println("sqrt(-4.0) is " + Math.sqrt(-4.0));

}
}

aspect EnsureRealSquareRoot {
before(double d) : call(static double Math.sqrt(double)) && args(d) {

if(d < 0.0)
throw new IllegalArgumentException("Positive arguments to sqrt() only, please!");

}
}

Editor Example

pointcut move():
call(void FigureElement.setXY(int,int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

before(): move() {
System.out.println("about to move");

}

after() returning: move() {
System.out.println("just successfully moved");

}

pointcut setXY(FigureElement fe, int x, int y):
call(void FigureElement.setXY(int, int))
&& target(fe)
&& args(x, y);

after(FigureElement fe, int x, int y) returning: setXY(fe, x, y) {
System.out.println(fe + " moved to (" + x + ", " + y + ").");

}

The new Observer

aspect PointObserving {
private Vector Point.observers = new Vector();

public static void addObserver(Point p, Screen s) {
p.observers.add(s);

}
public static void removeObserver(Point p, Screen s) {

p.observers.remove(s);
}

pointcut changes(Point p): target(p) && call(void Point.set*(int));

after(Point p): changes(p) {
Iterator iter = p.observers.iterator();
while (iter.hasNext()) {

updateObserver(p, (Screen)iter.next());
}

}
}

