
Cutting Graphs Using Competing Ant Colonies
and an Edge Clustering Heuristic

Max Hinne and Elena Marchiori

Radboud University Nijmegen

Abstract. We investigate the usage of Ant Colony Optimization to de-
tect balanced graph cuts. In order to do so we develop an algorithm based
on competing ant colonies. We use a heuristic from social network analy-
sis called the edge clustering coefficient, which greatly helps our colonies
in local search. The algorithm is able to detect cuts that correspond very
well to known cuts on small real-world networks. Also, with the cor-
rect parameter balance, our algorithm often outperforms the traditional
Kernighan-Lin algorithm for graph partitioning with equal running time
complexity. On larger networks, our algorithm is able to obtain low cut
sizes, but at the cost of a balanced partition.

1 Introduction

Networks are quickly becoming one of the most well-studied data structures.
Many interesting phenomena can intuitively be seen as networks. Some examples
include the World Wide Web, social networks, neural networks, traffic networks
and gene regulatory networks. Unfortunately, many of the most interesting data
sets are extremely large; several billion nodes are no exception. Even with the
advances in modern hardware, this severely hampers analysis of such huge net-
works. One of the consequences is that research on these networks must employ
efficient algorithms, since even algorithms with polynomial complexity can be
prohibitively expensive.

We consider the network as a graph consisting of a set of vertices and edges.
In this paper we study one particular well-known problem which is finding a
minimum cut, i.e. the division of the set of vertices into two disjoint subsets
with the smallest possible number of intra-set edges. This problem has many
applications, for example in computer vision and network design, and also forms
the basis of several network clustering techniques that operate by repeatedly
bisecting a graph [1]. In particular in the latter example, the minimum cuts
are subject to an additional requirement that captures the relative size of the
subsets. In practice, it is often desirable that these are balanced, i.e. they are of
roughly the same size. This is not reflected in the minimum cut concept itself.
Several measures have been suggested that do take this balance into account.
We will consider conductance [2]. Minimizing the conductance of a network has
been shown to be a problem that is NP-complete [3].

Instead of calculating the minimum conductance exactly, we will apply a
heuristic approach to finding an optimal graph cut based on the Ant Colony

Optimization [4] meta-heuristic. We will show that this method is able to find
graph cuts on several real-world data sets.

The problem of finding the minimum cut of a graph is well-studied. Originally
the problem was solved by dividing it into an easier problem, which was to find
a minimum s− t cut. This entailed finding a cut so that vertices s and t became
disconnected. Repeated application of a minimum s−t cut algorithm on all pairs
(s, t) ∈ V yields the minimum cut. Several approaches have been suggested that
can reduce the running time of such algorithms. For example, Hao and Orlin [5]
devised an algorithm that has a running time of O(m(n−λ) log (1/ε)) on a graph
with n vertices, m edges and λ the node connectivity1. The problem of finding
a minimum cut has been shown to be equivalent to the problem of finding the
maximum flow of a network. Consequently, algorithms that solve the latter can
also be used to solve the former. An extensive overview of available algorithms is
given in [6]. Most of these algorithms have running time complexities of O(nm2),
O(n3) or O(mn2), which makes them all computationally quite expensive on
large graphs. When the problem is not just finding a minimum cut, but finding a
balanced minimum cut – as captured by conductance – the task becomes harder.
Essentially, all possible cuts should be considered, but as this number increases
exponentially with n, this leads to an intractable problem [3]. In order to be able
to use conductance, poly-logarithmic approximation algorithms are used based
on spectral analysis of the adjacency matrix that corresponds to the graph [7], or
heuristics [8]. Although such algorithms have a poly-logarithmic running time,
calculating the spectrum of a matrix can still be computationally expensive.
This leaves room for improvement, which we attempt through the Ant Colony
Optimization (ACO) meta-heuristic. A number of interesting methods for graph
partitioning problems based on ACO have been introduced, e.g., [9–11]. In this
paper we adopt an approach based on competing ant colonies [10]: two colonies
compete for resources and reconstruct a global environment corresponding to
a good graph partition. Our algorithm differs from previous methods based on
competing ACO mainly in the type of heuristic it uses, which is used in social
network analysis.

2 Theoretical Background

2.1 Graph Cuts

Let G = (V,E), E ⊆ V × V , be a graph with n = |V | vertices and m = |E|
edges. In this paper, we consider only undirected, unweighted graphs, but our
methodology can easily be extended to graphs with edge directions and weights.

A cut is defined as a partition of the (vertices of the) graph into two disjoint
subsets, S and V \ S = S. The associated cut-set is the set of edges for which
one end point is in one element of the partition and the other end point in the

1 The size of the smallest number of nodes that must be removed in order to leave the
graph disconnected. This can be calculated a priori in O(mn) time.

other element. The size of the cut is the number of edges in the cut set, defined
as

cG(S) ≡
∣∣{{u, v} ∈ E |u ∈ S, v ∈ S

}∣∣ . (1)

We omit the subscript G when there is no confusion likely to occur.
The problem we consider is that of finding a balanced cut, i.e. the cut for

which the cut-set is smaller than any other cut possible on the graph, while at
the same time balances the sizes of the two sets of the partition. This is reflected
in the conductance [7, 12] measure, which is defined as:

φ(S) ≡ c(S)
min(vol(S), vol(S))

, (2)

where c(S) is the size of the cut-set, and vol(S) is the volume of S, i.e. the
number of edges that have both end points within S:

vol(S) ≡ |{{u, v} ∈ E |u,∈ S, v ∈ S}| . (3)

Note that a lower conductance indicates a better balance, given the same size of
the cut-set. The conductance of the whole graph G is the minimum conductance
over all possible cuts:

Φ(G) ≡ min
S⊆V

φ(S) . (4)

Finding the minimum conductance of a graph has been shown to be NP-complete [3],
which is why we resort to a probabilistic meta-heuristic.

2.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is an approach to tackle combinatorial opti-
mization problems (e.g. dividing the vertex set into an optimal partition accord-
ing to some quality function) [4]. ACO considers solution components C and a
pheromone model T . Several independent agents construct a solution s to the
problem by combining elements from the solution components. These compo-
nents ci ∈ C have pheromone values τi ∈ T assigned to them that are used to
obtain the probability that the ant moves to the next component, e.g.

Pr(ci|s) ∝
τi∑

cj∈N(s)

τj

, (5)

with N(s) the options available to the ant. In Section 3 we will go deeper into
this probability distribution.

The general way to solve a combinatorial optimization problem using ACO
is to

1. assemble a candidate solution from components based on the probabilities
of the pheromone model,

Table 1: The outline of the ACO graph cutting algorithm.
Algorithm 1: Cutting graphs through ACO.
Cut GraphCut()

C = LoadGraph();
T = InitializePheromones();
H = InitializeHeuristics();
Cut s = (V, ∅);
while no convergence do

s′ = GenerateSolution(C, T, H);
if φ(s′) < φ(s) then

s = s′;
UpdatePheromones(T, H, s);

fi;
od;
return s;

2. update the pheromone model based on the quality of the candidate solution
and

3. repeat the first two steps until a satisfying solution is obtained. [13]

In the next section we describe how we translate the cutting of graphs into
the ACO paradigm.

3 The Algorithm

The general ACO graph cutting algorithm is provided in Table 1 [4]. Its im-
plementation depends on the two subroutines GenerateSolution(C, T, H) and
UpdatePheromones(T, H, s).

In case of a graph cut algorithm, a solution is obviously a partition of the
graph. To enable the construction of candidate solutions, we deviate from tra-
ditional ACO based on the ant colony metaphor. Instead, we use two competing
ant colonies. The intuition behind this idea is that both colonies of ants will try
to obtain a densely connected subset of the graph, that is only sparsely connected
to the subset belonging to the other ant colony. Together, the sets of vertices
controlled by the ant colonies correspond to a graph cut. In this scenario, the
solution components are the edges in the graph. Whenever an ant colony sends
an ant to traverse an edge and marks the target vertex, that edge becomes a
part of one of the two components of the cut.

Based on the outcome of several of such ‘ant colony competitions’, the cut
with the lowest conductance is selected as the candidate solution s (see Table 2).
Afterwards, pheromones are deposited on edges within S and S, so that in sub-
sequent rounds the ants will favor walking along these edges. Eventually the
process is ended when a fixed number of iterations is completed.

The CutGraph(C, T, H) function, where the actual ant colony competition
takes place, is described separately in Table 3. In the initialization function, the

Table 2: The GenerateSolution(C, T, H) subroutine.
Algorithm 2: Generating a solution.
Cut GenerateSolution(C, T, H)

S = ∅;
while i < k do

s = CutGraph(C, T, H);
S = S ∪ s;
i = i + 1;

od;
return argmin

s∈S
φ(s);

Table 3: The CutGraph(C, T, H) subroutine.
Algorithm 3: Cutting a graph.
Cut CutGraph(C, T, H)

A = InitializeColonies(Colony 1, Colony 2);
while not all vertices flagged do

foreach colony a ∈ A do
e = SelectEdge(C, T, H);
a.MoveAntAcross(e);
a.FlagVertex(a);

od;
od;

ant colonies are given random starting vertices. The ACO paradigm comes into
play in the SelectEdge(C, T, H) function, where a colony must decide to which
neighboring vertex it sends an ant next. Out of the possible edges N(s) the
colony makes its selection in a probabilistic manner. The probability of an edge
ei ∈ N(s) is given by

Pr(ei|s) ≡
τα
i η(ei)β

∑

ej∈N(s)

τα
j η(ej)β

, (6)

with τi the pheromone associated with ei and η(ei) represents optional prior
knowledge, or heuristic information, the colonies have about the attractiveness
of ei (more on this later). The parameters α ≥ 0 and β ≥ 0 determine the
relation between pheromone information and heuristic information, respectively.

The final part of the ACO approach is the updating of the pheromone
distribution, so that solution components from successful solution candidates
are more likely to occur in future solution candidates. This is accomplished
in UpdatePheromones(T, H, s). In this procedure, pheromones slowly evaporate
over time as well. This is done to prevent the colonies from getting stuck in local
optima. For each τi ∈ T , τi is updated according to

τi = ρτi + δi(s)f(s) , (7)

with ρ the parameter representing the evaporation rate (ρ = 0.1 in our exper-
iments), δi(s) is 1 if ei ∈ s (i.e. the end points are either both in S or both in
S), 0 otherwise and finally f : S → R is a function that maps a solution to a
score, using f(s) ≡ c 1

φ(s) , where φ(s) is the conductance corresponding to this
cut and c a scaling constant. For now, we simply choose c = 1.

3.1 Heuristic Information

Ants are not generally considered bright individuals, but in the ACO paradigm
there is room for heuristic information. This represents the idea that ants (or
their collectives) do not base their decisions on pheromone information only, but
also on some local characteristic of the network connectivity. In Eq. (6) this is
reflected in the parameter η(ei).

In the case of finding a balanced graph cut, the heuristic information should
reward edges that are likely to be inter-set edges. We borrow a measure from
social network analysis that is used in community detection, namely the edge-
clustering coefficient. The coefficient C(e) of an edge [14], which counts the
number of triangles that an edge is part of, is expressed as:

η(ei) ≡ C(ei) =
|Nb(s) ∩Nb(t)|

min (d(s)− 1), (d(t)− 1)
+ 1 . (8)

with s and t the end points of ei, Nb(s) the neighbors of a vertex s and d(s) =
|N(s)| the degree of a vertex. The +1 in the denominator prevents the heuristic
distribution becoming 0, which would make it impossible for the edge to be
selected at all.

3.2 Stop Conditions

Although by the nature of the ACO paradigm, the algorithm converges, it is out
of the scope of this study to derive the exact time complexity in terms of the
approximation of the true minimal conductance (e.g. [15]). Therefore we settle
for one of two possible stop conditions for the outer loop of the algorithm (see
Table 1). The first alternative is to simply execute a fixed number of iterations of
GenerateSolutions(C, T, H). For small graphs, this gives satisfactory results (see
Section 4).

For larger graphs, a threshold γ can be used to indicate the minimum im-
provement of Φ between each iteration. If ∆Φ drops below γ, the algorithm
terminates.

4 Validation

To test the performance of our algorithm, conducted a series of experiments on
different types of networks. In the first series, we executed the ant colony graph
cutting algorithm on two real-world networks for which a ground truth is known.

The first network we consider is the famous karate club network [16]. The
network has become a staple example in literature on clustering/cutting. It con-
sists of the social network of 34 members of a US university karate club. The
78 edges in the network represent friendships between the members. The net-
work was followed by Zachary for a period of two years, during which the club
split after a dispute. The split caused the club to break into two new clubs, one
centered around the former instructor and one around one of the members. The
separation into these groups is often taken as the ground truth division (i.e. cut)
of this network [17]. The conductance of the actual cut on the karate club net-
work is Φ = 0.30. We obtained a cut through our ACO algorithm as well, using
the following settings: 25 iterations, 10 trials per iteration, α = 1 and β = 0 (i.e.
heuristic information was not used). The result of this cut is shown in Figure 1.
As can be seen, our cut corresponds very well to the actual division, with only
node 10 being classified on the wrong side of the cut (this corresponds to an
accuracy of 0.97). The minimum conductance we obtained is actually lower than
the ground truth, Φ = 0.29.

Fig. 1: The karate club network. The shape of the nodes indicate the partitioning
in the actual network. The cut obtained by our algorithm (for parameters, see
text) is given by the bold line.

The second data set is a network of books sold by Amazon.com about US
politics published around the presidential elections of 2004. The 105 nodes in this
network are the individual books, the 374 edges represent frequent co-purchasing
by customers of Amazon. The data was collected by Krebs [18]. Later, the ground
truth labels of the books were determined by Newman by looking at the book de-
scriptions2. The books were classified into ‘liberal’, ‘neutral’ and ‘conservative’.
Since we wanted to test our algorithm on a binary data set, we removed the five
books that were labeled ‘neutral’. With the remaining sets of liberal and con-
servative books, the cut has a conductance of Φ = 0.07. Using the same settings
as for the karate club network, our algorithm identified a cut with conductance
2 See http://www-personal.umich.edu/~mejn/netdata/

Φ = 0.04. The accuracy of this cut was 0.96, indicating that the obtained cut
nearly coincides with the actual division.

4.1 Parameter Tuning

For many other networks, a ground truth is generally not available. To gain
insight in the performance of our algorithm nonetheless, we executed it on the
neural network of the roundworm C. Elegans [19], which consists of 297 vertices
and 2148 edges. We considered the conductance of the optimal cut after an
increasing number of iterations of the GenerateSolution(C, T, H) procedure. We
used 10 solutions per iteration and up to 25 iterations. The first experiment
considers the impact of using just pheromones (α = 1, β = 0), just heuristic
information (α = 0, β = 1), both in equal proportions (α = 1, β = 1) and
none (α = 0, β = 0), as a baseline to compare the performance. In the baseline,
the edge selection process is essentially random. The experiment was repeated
20 times. Figure 2a shows the mean conductance as a function of the number
of iterations. The chart shows each parameter setting outperforms the baseline,
however, only by a small margin when only heuristic information is used. Using
pheromones and heuristic information combined, or just pheromones alone, leads
to significantly better cuts than the baseline settings.

The second experiment considers using different ratios between α and β.
Again, we used 10 solutions per iteration and up to 25 iterations, and repeated
each experiment 20 times. This time however, we consider strong favor for
pheromones (α = 10, β = 1), strong favor for heuristic information (α = 1,
β = 10), strong emphasis on both (α = 10, β = 10) and again the baseline
(α = 0, β = 0). It is important to note that for a pheromone τi, τi ∈ [1,∞).
For heuristic information η, η ∈ [1, 2]. Consequently, the results for parameter
settings α = 1, β = 1 behave differently than α = 10, β = 10. The results from
this experiment are shown in Figure 2b. The results show that too much em-
phasis on the pheromone information may lead to bad cuts, which we attribute
to getting stuck in local optima. The best performance is obtained when heuris-
tic information is weighed heavily, in combination with a little guidance by the
pheromone distribution.

The experiments show that the two defining features of the ACO paradigm,
pheromone- and heuristics based selection of solution components, indeed lead to
better graph cuts. However, the heuristic information is far more crucial than the
pheromones, although the latter is needed to improve performance in subsequent
iterations.

4.2 Comparison to a Baseline Algorithm

In order to further analyze the performance of our algorithm, we compare it
to a well-known graph partitioning algorithm as proposed by Kernighan and
Lin [8]. The algorithm tries to minimize the cut set while balancing the partition
elements by repeatedly swapping vertices from the sets. It has a running time

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 5 10 15 20 25

Co
nd

uc
ta

nc
e

φ

Iterations

α=0, β=0
α=0, β=1
α=1, β=0
α=1, β=1

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25

Co
nd

uc
ta

nc
e

φ

Iterations

α=0, β=0
α=10, β=1
α=1, β=10

α=10, β=10

(a) (b)

Fig. 2: The mean conductance φ of the optimal solution after I iterations (re-
peated 20 times), for different settings of α and β (see text). Error bars have
been omitted for clarity.

complexity of O(n2 log n) [20]. We compared the cuts obtained by the Kernighan-
Lin algorithm to our own approach, using 25 iterations of 10 solutions, with α = 1
and β = 10. The datasets we used were all taken from the online collection of
Mark Newman3.

The mean results of 20 runs of this experiment are shown in Table 4. As the
conductance scores show, our algorithm obtains better cuts in 5 of 6 datasets, and
obtains the same cut in one network. Only once is the algorithm outperformed
by the baseline algorithm. The table also shows the sizes of the cut-set, which is
used as an alternative for conductance when both partitions are required to be
equal in size.

Table 4: Conductance and cut size for the Kernighan-Lin algorithm (KL) and
the mean conductance for the ant colony optimization algorithm (ACO), for
several network datasets. n and m denote the number of vertices and edges in
the networks, respectively. The number in parenthesis is the standard deviation.
Network n m ΦKL cKL ΦACO cACO

Zachary karate club [16] 34 78 0.64 36 0.29 (0) 10 (0)
Bottlenose dolphins [21] 62 159 0.36 46 0.21 (0.04) 11.15 (3.54)
C. Elegans neural network [19] 297 2345 0.49 716 0.49 (0.02) 402 (20.37)
Football players [22] 115 613 0.37 190 0.25 (0.03) 67.75 (7.81)
Political books [18] 105 441 0.04 16 0.09 (0) 19 (0)
Les Miserables [23] 77 254 0.35 56 0.29 (0.01) 23 (12)

3 http://www-personal.umich.edu/~mejn/netdata/

4.3 Complexity

At each step in the cutting of a graph, our algorithm considers at most m edges
and selects the optimal to traverse according to Eq. (6). The last calculation is
done in O(1). The selection of edges is repeated until all n vertices in the network
have been flagged. As this process is repeated for each iteration (of a total of I)
and each trial (a total of S per iteration), the total running time complexity of
the algorithm is O(ISnm). In general, we assume that I + n and S + n, so
that the complexity may be considered O(nm). If we furthermore assume that
we the algorithm is run on sparse networks, i.e. m = O(n), our algorithm has
running time complexity like the Kernighan-Lin algorithm.

4.4 Comparison to State-of-the-Art Cuts

As our final experiment, we compared the cuts of our algorithm to the best par-
titions known of five larger datasets. The networks and the best known cuts were
taken from the University of Greenwhich Graph Partitioning Archive4 (GPA).
Unfortunately, these cuts do not list the corresponding conductance values. In-
stead, they show the cut size and the size of the largest element of the partition.
A further difference with our approach is that the cuts from the archive are all
accompanied by a known balance score B, defined as

B =
max

(
|S|, |S|

)

n/2
, (9)

with n the number of vertices in the graph. Although the optimization of conduc-
tance favors balanced partitions, it is possible that the ACO algorithm yields
an imbalanced partition. Therefore, we compare the performance of our algo-
rithm to the most lenient cut known from the archive, those with balance up to
B ≤ 1.05. Table 5 shows the results for the first five datasets in the archive. As
the numbers indicate, the ACO algorithm is not (yet) up to par with state-of-
the-art algorithms on larger graphs. Although the algorithm is sometimes able
to detect a cut with a cut size lower than the best known, it does so with a very
imbalanced partition.

5 Conclusion and Suggestions for Further Research

In this paper we have explored the usage of the Ant Colony Optimization
paradigm to find balanced minimal graph cuts. We developed an algorithm based
on the general ACO outline that uses ant systems to build a solution to the prob-
lem based on individual components (graph edges). Crucial to our approach –
and different from most conventional ACO algorithms – is that we use two com-
peting ant colonies. Both colonies try to claim as much of the graph as possible.
The resulting front line corresponds to the graph cut of a single iteration of the
algorithm.
4 http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

Table 5: Mean cut size for 20 repetitions of the Ant Colony Optimization (ACO)
algorithm, the best known cut from the Graph Partitioning Archive (GPA), and
the best cut and corresponding balance obtained by ACO. The numbers within
parentheses indicate one standard deviation.

Network n m cACO BACO cGPA cACObest BACObest

add20 2395 7462 611.24 (308.31) 1.26 (0.29) 550 141 1.74
data 2851 15093 78.12 (13.19) 1.57 (0.02) 181 61 1.54
3elt 4720 13722 131.50 (12.60) 1.03 (0.05) 87 113 1.02
uk 4824 6837 7.00 (1.49) 1.56 (0.04) 18 4 1.56
add32 4960 9462 7.10 (0.31) 1.12 (0.02) 10 7 1.12

Using the traditional methods to update pheromones along solution compo-
nents that are part of successful solutions, as well as the use of a heuristic based
on edge clustering, our algorithm is able to obtain cuts with low conductance.
Our experiments show that strong emphasis on the heuristic information speeds
up the detection of the optimal cut. Furthermore, we have shown that cuts on
small networks correspond very well to the true cut. This suggests that our
algorithm can be used as a feasible approximation of an otherwise intractable
problem. When comparing our algorithm to benchmark and state-of-the-art al-
gorithms, we observed that the ACO algorithm is able to obtain cuts with lower
conductance than the Kernighan-Lin algorithm. However, the ACO algorithm
delivers rather unbalanced cuts on larger networks. This shows that although the
approach certainly has potential, more work is needed to enforce more balanced
solutions.

In further research, we intend to experiment with the optimization of cut
size alone. Also, more sophisticated techniques may be used to initialize the ant
colonies on the networks, so that local optima can be avoided easier. Lastly, ACO
uses several heuristic constants, such as the evaporation rate of the pheromones,
the relation between conductance and pheromone updates and the factors α and
β that tune the ratio between pheromones and heuristic information. For each
of these parameters, optima should be identified.

Acknowledgments We wish to thank Mart Gerrits and Bob van der Linden for
their contributions to the experimentation software and the anonymous reviewers
for their constructive comments on Section 4.

References

1. G.W. Flake, R.E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and minimum
cut trees. Internet Mathematics, 1:385–408, 2004.

2. F.R.K. Chung. Spectral Graph Theory (CBMS Regional Conference Series in Math-
ematics, No. 92). American Mathematical Society, February 1997.

3. J. Śıma and S.E. Schaeffer. On the NP-Completeness of Some Graph Cluster
Measures. CoRR, abs/cs/0506100, 2005.

4. M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26:29–41, 1996.

5. J. Hao and J.B. Orlin. A faster algorithm for finding the minimum cut in a directed
graph. J. Algorithms, 17(3):424–446, 1994.

6. A.V. Goldberg and R.E. Tarjan. A new approach to the maximum flow problem.
Journal of the ACM, 35:921–940, 1988.

7. U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering al-
gorithms. In In 11th Europ. Symp. Algorithms, pages 568–579. Springer-Verlag,
2003.

8. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell system technical journal, 49(1):291–307, 1970.

9. P. Korošec and J. Šilc. Multilevel optimization of graph bisection with pheromo-
noes. In Bogdan Filipič and Jurij Šilc, editors, Proceedings of the International
Conference on Bioinspired Optimization Methods and their Applications (BIOMA
2004), pages 73–80, Ljubljana, Slovenia, October 11-12 2004. Jožef Stefan Institute.

10. A.E. Langham and P.W. Grant. Using Competing Ant Colonies to Solve k-way
Partitioning Problems with Foraging and raiding strategies. In D. Floreano, J.D.
Nicoud, and F. Mondana, editors, Proceedings of the Fifth European Conference
on Artificial Life (ECAL), pages 621–625. Springer-Verlag, Heildelberg, Germany,
1999.

11. M. Leng and S. Yu. An effective multi-level algorithm based on ant colony opti-
mization for bisecting graph. In PAKDD, volume 4426 of LNCS, pages 138–149.
Springer, 2007.

12. D. Cheng, R. Kannan, S. Vempala, and G. Wang. A divide-and-merge methodology
for clustering. ACM Trans. Database Syst., 31(4):1499–1525, December 2006.

13. C. Blum. Ant colony optimization: Introduction and recent trends. Physics of Life
Reviews, 2(4):353–373, December 2005.

14. S. Papadopoulos, A. Skusa, A. Vakali, Y. Kompatsiaris, and N. Wagner. Bridge
bounding: A local approach for efficient community discovery in complex networks.
Technical report, Informatics & Telematics Institute (CERTH), 2009.

15. W.J. Gutjahr. First steps to the runtime complexity analysis of ant colony opti-
mization. Comput. Oper. Res., 35(9):2711–2727, 2008.

16. W.W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33:452–473, 1977.

17. M. E. J. Newman. Fast algorithm for detecting community structure in networks.
Sep 2003.

18. V. Krebs. Political polarization during the 2008 us presidential campaign.
19. D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393(6684):440–442, June 1998.
20. C. P. Ravikumar. Parallel Methods for VLSI Layout Design. Greenwood Publishing

Group Inc., Westport, CT, USA, 1995.
21. D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, and S.M. Dawson.

The bottlenose dolphin community of doubtful sound features a large proportion
of long-lasting associations. can geographic isolation explain this unique trait?
Behavioral Ecology and Sociobiology, 54(4):396–405, 2003.

22. M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. PNAS, 99(12):7821–7826, June 2002.

23. D. E. Knuth. The stanford graphbase: A platform for combinatorial computing.
Addison-Wesley, Reading, MA, 1993.

