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PREFACE

The construction program on the MANIAC was started in the summer 
of 19^9 and the computer was completely tested in March, 1952. The 
group of engineers is under the direction of J. Richardson and consisted, 
at various times, of W. Orvedahl, E. Klein, H. Demuth, T. Gardiner,
H. Parsons, R. Merwin, and J. Breese. In addition, V. Gafke and 
J. Caulfield provided considerable assistance. Since its completion, 
solutions to many numerical problems have been computed.

There are several phases to the solution of a problem by an elec
tronic computer. First, there is the formulation of the problem itself 
by the mathematician or theoretical physicist. Second, this is followed 
by the detailed preparation of the problem by the programmer for the 
specific computer. Finally, there is the actual running of the problem 
on the computer. The present work is primarily an attempt to discuss in 
some detail'the last two stages.

The volume consists of six chapters. Chapter I, Introduction, de
scribes some of the general features of the computer and defines the 
field of activity associated with it. The treatment is intentionally 
brief. The remaining chapters are devoted to an elaboration of the 
salient points.

Chapter II, Coding and Flow Diagrams, is the "raison d'etre" of the 
opus. Beginning with some elementary problems, it gradually takes the 
reader through a coding preparation of some complex exercises. The 
elements of a flow diagram are discussed.

Chapter III, Binary Arithmetic, discusses the various arithmetic 
operations in terms of the binary system. By the time the reader finishes 
this part, it is hoped he will regard the binary system as the "natural" 
one for arithmetic.

Chapter IV, The Computer, is concerned with a simplified discussion 
of the various components. The objective here is that some knowledge of 
the engineering side of a computer is very useful to personnel running 
problems on it. Aiding in the detection of malfunctions and in the locali
zation of them, the programmer helps the engineer in maintaining high per
formance of the computer.
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Chapter V, Descriptive Coding and Subroutines, describes the 
methods of descriptive coding the the use of the computer itself to 
aid the programmer in the preparation of problem codes. The discus
sion of subroutines finds a natural place here.

Chapter VI, Operating Procedures, essentially summarizes some of 
the material of the earlier sections and describes systematically the 
steps involved in automatic computational processes, including "which 
buttons on the computer to press when".

Finally, an Appendix is included. It contains some optional and, 
we hope, useful material.

John B. Jackson 
N. Metropolis

Los Alamos, New Mexico 
December 15> 1951•

V y : r.

Acknowledgements: To Mary Boswell, whose patience was excelled only 
by Job, for typing (and re-typing) the manuscript; to Jean Cornell 
for converting our sketches into neat drawings and figures; and to 
all members of the MANIAC group who deluged us with criticisms, es
pecially Mark Wells.

J. B. J •
N. M.

Los Alamos, New Mexico 
December 15, 1951.

Revised: July 16, 195^



I. INTRODUCTION L fl -) Us

We shall give first a brief description of the general features 
and characteristics of the computer which has been constructed here.

(i) It is a general purpose computer in contradistinction to a 
special purpose type. Its design engenders adequate flexibility to 
handle a vide variety of mathematical problems. The special purpose 
type may be much simpler in design and more direct in its application 
to a particular type of problem, but it has its obvious limitations.
We do not discuss it further.

(ii) It is a digital, rather than an analogue, computer. Compu
ters have been built which use various analogy devices that correspond 
to a continuous variable representation. In such analogy computers, 
numerical information is expressed as measurements of some physical 
quantity. Among other reasons, it may be mentioned that accuracy re
quirements argue for the digital type.

(iii) It is electronic (vacuum tubes) in character, as opposed to 
electro-mechanical (relays). Although both methods are sufficiently 
reliable, the former is many times faster. For the majority of prob
lems, where the number of operations involved is at least in the hun
dred thousand range, the difference in speed is quite serious.

The fqur basic arithmetical operations performed are addition, 
subtraction, multiplication and division. In principle, one might 
conceive of a simple computer that does only subtraction, and effects 
the others by repeated application of that fundamental, operation.
This is not very practice!.. On the other hand, one might have argued 
for including other operations in the basic list; e.g., square rooting, 
as Indeed the ENIAC has included. It appears, however, that the fre
quency of occurrence of any of these does not warrant the added compli
cation in equipment, especially since these more complicated operations 
can be effected by rather simple iterative procedures based on the four 
fundamental operations.

Besides these four arithmetical processes, there are included a 
few operations which are of a purely logical character, but first.
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Some Remarks on Arithmetic
The handling of numerical quantities is done in a digital fashion.

The binary system is used for the representation of numbers rather than 
the conventional decimal system. Everyone knows that in the latter sys
tem a number is expressed as a sum of powers of ten with individual co
factors 0 to 9; e.g.,

47.23 = 4-101 + 7*10° + 2-10*1 + 2*10"2

In a similar fashion a number may be expressed in the binary system by 
powers of two with co-factors either 0 or 1; e.g.,

101.01 = 1-22 + 0-21 + 1.2° + 0-2-1 + 1*2~2

As in the decimal system, the binary point separates the terms with 
positive exponents from those with negative exponents. The standard 
capacity for handling numbers in the present computer is 39 numerical 
bigits preceded by a sign bigit. (The word bigit is defined as binary 
digit.) There is sufficient flexibility to permit rather easy treat
ment of those cases requiring higher precision.

For the various arithmetical operations in the computer, it is 
assumed that the binary point lies immediately to the left of the first 
numerical bigit, so that all numbers lie in the range

-1 ^ x < 1.
It may appear at first that this restriction places a considerable 
additional burden on the preparation of a problem for the computer. 
Actually, however, it is quite a simple matter to scale numbers to the 
appropriate size beforehand, such that the result of any operation does 
not exceed the allowed range. In those instances where it is not pos
sible to provide appropriate scaling factors in advance, one does have 
recourse to procedures which adjust the sizes of numbers—the so-called 
floating point routines.

As mentioned above, the first bigit on the left is used to indicate 
the sign of a number. One possible convention that might be used would 
be to say that bigit 0 in that location Indicates a positive quantity 
and that a 1 is to be interpreted as a negative sign. However, it is 
more convenient to do something different in the case of negative numbers.
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In the computer, a negative number x is represented by its complement 
c with respect to 2, namely

c = 2-|xl.
Since |x| <: 1,
£ will be in the range 1 < c < 2
so that the "sign" bigit will be 1 in every case of complementation.
For positive numbers it will always be 0. For example, suppose

x = -.101110101.... Oil;
then c = 1.010001010....101
is its representation in the computer. One observes that a very simple 
method for obtaining the complement of a number with respect 2, is to 
"reflect" the number, that is, to replace 0 with 1 and conversely, 
then to add 1 in the extreme right place. Electronically, inter
changing 0 and 1 is easily done. As discussed in detail in later 
sections, a "flip-flop", or "toggle", is an electronic device which 
has two stable states; it is essentially a twin triode (a standard 
type of vacuum tube); either one side is in a conducting state (and 
its tube elements have one set of definite voltages) with the other side 
non-conducting (cut-off, and its corresponding elements have smother set 
of voltages) or the opposite situation obtains. It is a symmetrical 
situation. Normally one examines the voltage level at some particular 
point of the circuit, say the grid voltage of one of the triodes, and 
assigns one voltage to the bigit 0 and the other to 1. To obtain the 
complement of a number in a series of such flip-flops, one would merely 
examine the opposite symmetrical point of the circuit of each flip-flop; 
since, if a given flip-flop is in a state corresponding to a 1, the 
other side of the flip-flop would have a voltage level at the corres
ponding point identified as a 0. Additional circuitry is required to 
insert a 1 in the extreme right-hand position.

The notion of complement numbers is a very useful one. Subtrac
tion of two numbers can be replaced by addition. This is convenient 
since the same electronic circuitry designed to effect addition suf
fices for the subtraction process. Instead of performing d = (a-b) 
by direct subtraction techniques, one may add to a the complement of b. 
That this yields the correct difference can be seen from the following:



Assume a, b > 0.
a + (2-b) = 2 + (a-b) = 10. + (a-b)

in binary form. If a > b, and since both a and b have absolute magni
tudes less than unity, the difference (a-b) is positive end less than 
unity. The co-factor 1 of 2 does not appear in the computer, the 
capacity of the computer has been exceeded and that bigit is lost.
The 0 co-factor of 2° does of course appear, and indicates that the 
difference (a-b) is positive. In the event a <: b, our answer would be:

1 c d = 2 - (b-a) <c 2,
which is precisely the desired form for a negative difference, namely 
the complement with respect to 2. Here the co-factor of 2° is appro
priately a 1. The cases where a and/or b are negative are left as 
exercises for the curious students.

Principal Components
Although the computer functions as an entity, it is convenient to 

speak of its various components. These are:
(i) arithmetic unit

(ii) memory
(iii) input-output
(iv) control

Arithmetic Unit
The arithmetic unit performs the operations of addition, subtrac

tion, multiplication and division in binary fashion. It is also con
cerned with such auxiliary operations as shifting of a number to the 
left or right. Finally, it is associated with certain logical operations

In appearance the arithmetic unit is similar to the one in Princeton 
A parallepiped structure of channel aluminum has six panels on each of 
its two long sides. The outer panels in each case are reserved for con
trol chassis, the middle four are used for the arithmetic unit proper. 
Three horizontal rows of arithmetical chassis are located on one of the 
two principal sides. Each chassis contains two registers. The various 
registers are designated Rl, R2,...R6, starting with the lowest. A 
register is the residence, or temporary storage, of one of the numerical
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factors in an aritbmeticeLL operation. In each such operation three 
factors occur, so that at first it might he supposed that three regis
ters would suffice. However, the requirement of shifting in multipli
cation and division necessitates two more. These considerations account 
for the first five registers; the last, R6, is used exclusively in asso
ciation with the control and does not participate in any of the basic 
arithmetical operations, although physically it is located within the 
arithmetic unit. Rl is the associated register for shifting a number 
in R2, a principal register. Physically, the pair forms a chassis. 
Similarly, R3 is associated with the principal register, R4. R5 is a 
non-shifting register with respect to arithmetic operations.

Before discussing the four basic arithmetical operations, we 
digress to consider the manner in which a number in one of the two 
principal registers is shifted. To begin with, a register is an ensemble 
of 40 "flip-flops", or "toggles", and as mentioned earlier, each flip- 
flop has two stable states. One of these states represents the binary 
digit 0 and the other the binary digit 1. The set of flip-flops may 
then be used to represent a 39-bigit number and its sign.

There exists a variety of methods for electronically transferring 
information contained in one set of toggles to another. For example, 
suppose that a given toggle contains a 1 and it is desired to transfer 
this information to a second toggle. By means of an interconnecting 
"gate" tube, it is possible (as a result of a voltage change on the 
gate tube) to set the receiving toggle to a 1, irrespective of its pre
vious state. Another scheme is to have first set the receiving toggle, 
say to 0, as a separate operation. When the appropriate voltage change 
is applied to the gate tube, the receiving toggle is set to a 1, other
wise it remains appropriately unchanged. This method is actually the 
simpler of the two and is the one used. In common parlance we say 
the receiving flip-flops are "cleared" to O's and I's are "gated in". 
Clearly, O's and I's could be interchanged in the preceding statement 
and provide an alternative scheme.



A flip-flop may be symbolically represented as a rectangle in the 
form of two squares; the shading of one square may be said to corres
pond to a 0, the shading of the other to a 1. A gate tube is indicated 
by a circle.

There is a set of gates -which connects the flip-flops of R2 to the 
corresponding ones of Rl. These may be shown diagrammatically.

Before After

Rl has been previously cleared to O's. The information in R2 is 101. 
When an appropriate voltage change is applied to the gate tubes, the 
first flip-flop of Rl will change its state to represent a 1, the 
second remains unchanged, and the third behaves like the first. Rl 
will then have received the information 101.

There is a second set of gates which connects the flip-flops of 
Rl with the flip-flops of R2 displaced one to the left.

Before After
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R2 is cleared to O's. When these gates are opened, the information 
in Rl is transferred to R2 displaced once to the left. Thus, by 
these sequences of operations, a number originally in R2 is shifted 
one place to the left.

Finally, there is a set of "diagonally-right" gates to provide 
for a shift to the right. Repeated application of the sequence of 
operations results in a shift by n places. It perhaps should be men
tioned that these three sets of gates are unilateral in action and 
represent all of the interconnections between Rl and R2.

The four basic arithmetical operations are done in terms of simple 
additions, with shifts where required. Subtraction of a number a is 
performed by the addition of its complement. Multiplication is done by 
the detection of the successive bigits of the multiplier, beginning 
with the rightmost bigit. If the bigit is a 1, an addition of the mul
tiplicand to the partial product is performed followed by a shift of 
the partial product one place to the right. A 0 multiplier bigit merely 
shifts the partial product to the right by one, and the next multiplier 
bigit is examined. For division, the so-called "non-restoring" scheme 
is used. The complement of the divisor is added to the partial remain
der if the signs of the divisor and partial remainder agree; if the 
signs disagree, the divisor is added directly. A 0 is indicated for 
the corresponding quotient bigit in the first case, and a 1 for the 
latter. Strictly speaking, -1 and not 0 is the appropriate bigit.
But -1 is indeed very inconvenient to represent in the computer. As 
von Neumann first pointed out, the pseudo-quotient obtained in this 
way is very simply related to the true quotient. We shall go into 
details later.

The adder proper is physically located on the side opposite the 
registers, and consists of two rows of chassis. One of the two inputs 
is directly from the register R2. The second input is from R5« Here, 
however, a choice is made between the number itself or its complement, 
corresponding to the operation of addition or subtraction. The output 
of the adder is transferred by means of a set of gates to Rl. R2 is 
then cleared and the sum transferred from Rl to R2. Symbolically,
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fRel

(Step I) 
Selector

.Augend (or Complement)

ADDER
(Step I)

Addend
(Step 2)(Step 3)

Output

To recapitulate, the addition process (or subtraction) involves 
adding to the number in R2 the number (or its complement) in R5. The 
sum appears finally in R2. The fact that the sum replaces one of the 
terms is very convenient for the multiplication and division processes, 
where the sum is the partial product or the partial remainder, respec
tively. The multiplicand or the divisor resides accordingly in R5.

In the multiplication process the multiplier factor is in R4 and 
the multiplicand is in R5. R2 is cleared initially. The 39th flip- 
flop of R4 is examined. If it is a 1, an addition is ordered and the 
first partial product is formed in R2. (in this first step, the trivial 
sum of the multiplicand and O's is done.) The multiplier is now shifted 
one place to the right, thus placing the next digit to be examined in 
the end flip-flop of R4. Simultaneously, the partial, product in R2 is 
also shifted one place to the right. In the event that the first 
digit is a 0, the addition of course is not done but the shifting in 
both R2 and R4 does take place. It will be noted that the multiplier 
factor is gradually disappearing in R4. It is convenient, therefore.



to insert the bigits of the partial product that would otherwise be 
lost as a result of the right shift in R2, into the leftmost flip-flop 
of R4. Thus the right half of the complete product appears finally in 
R4 and the significant portion in R2.

For division, the dividend is in R2 and the divisor in R5. A com
parison of signs is made and a direct addition is made for unlike signs 
for like signs the complement of the divisor is sent to the adder. 
Accordingly, a 0 or a 1 is introduced into the 39th flip-flop of R4. 
Both R2 and R4 are shifted one place to the left. The sign of the 
partial remainder is again compared with that of the divisor and the 
process repeated 39 times. The quotient appears in R4, and the re
mainder in R2.

The following short table summarizes the above:

Addition a + b = Sum
Location R2 R5 R2

Subtraction a - b = Difference
R2 R5 R2

Multiplication a X b = Product Left + Product Right

R5 R4 R2 R4
Division a b = Quotient -t-Remainder

R2 R5 R4 R2

Memory
Thus far we have talked of the various arithmetical operations 

without indicating how the numbers get tp the several registers ini
tially, or where the intermediate results are stored. Nor have we 
said anything about the location of the sequence of orders associated 
with a problem. The component of the computer associated with this



activity is described as the memory. Clearly, some of its desired 
functions are:

(i) to receive and store information from the outside—sequences 
of instructions as well as initial sets of numbers,

(ii) to transfer numbers upon instruction to the arithmetic unit,
(iii) to receive and retain intermediate results of a calculation 

until needed at some later stage of the calculation,
(iv) to send instructions as needed to the control,
(v) to transfer the final results to the output mechanism for 

external consumption.
We distinguish two levels of memory, internal and external. The 

internal memory is more intimately related to the arithmetic unit and
control. It communicates directly with these two units and provides

«

individual numbers and instructions as needed.
Physically, the internal memory is an ensemble of 40 cathode-ray 

tubes that act in concert, each tube simultaneously providing one 
bigit of a 40-bigit number upon instruction. The access time, or 
total time required to transfer a number from the internal memory to 
the arithmetic unit, is less than ten micro-seconds. The capacity of 
the internal memory is 1024 forty-bigit numbers; these may be arbi
trarily divided between numbers and instructions.

The location or reference in the internal memory of a particular 
number or instruction is called its address. In our system of instruc
tions there is, associated with each instruction, a single address that 
refers to a particular number to be called up and operated upon in the 
arithmetic unit. An instruction consists therefore of a particular 
operation specified by a group of bigits, together with an address 
specified by another set of bigits. It turns out that less than 20 
bigits are required for each complete instruction, so that it is con
venient to place two instructions in one memory location. We shall 
amplify these remarks in the discussion of the control.

Normally, 40 bigits are used for the representation of a true 
number. For those cases where sufficient accuracy is obtained from 
20 bigits, including sign, there is sufficient flexibility to store
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conveniently two 20-‘bigit numbers in one memory location; separation 
talcing place when needed in the arithmetic unit by shifting.

The external memory is a magnetic drum. It communicates only with 
the internal memory; therefore, when numbers stored on the magnetic 
drum are to be used in computation, they are first sent into the elec
trostatic memory and operated upon from there. The drum has a capacity 
of 10,000 forty-bigit numbers. Numbers are transferred between the 
external and Internal memory in groups of fifty; hence the addressing 
of numbers on the drum is by groups of fifty rather than as single num
bers. Any group of fifty numbers is stored serially along the circum
ference of the drum. Such a group of storage is called a drum track, and 
there are 200 such tracks on the drum. The access time for the drum is 
85 milliseconds per block of fifty words.

Input-Output
The set of coded symbols corresponding to the sequence of instruc

tions, together with the set of initial numbers and parameters, is first 
punched on paper tape with the use of a modified flexowriter. A 
second tape is then prepared, being punched independently of the first 
but simultaneously compared with the first; this is merely a checking 
procedure. The information is then transferred from the verified tape 
to the internal memory by means of the input device.

The initial set of numbers on the tape is in coded-decimal form; 
that is, each decimal character is represented by a tetrad of binary 
digits. For example, the aggregate 1234567890 together with accompany
ing space symbols would appear on the tape as;

O O O
000000000000000 00 0000000

Guide Holes

Space I 234567890 Space

The punched holes correspond to the bigit 1 and unpunched positions 
to 0. A sequence of such tetrads of binary digits is obviously not



the true binary representation of the corresponding decimal number;

decimal number 24 
coded decimal 0010 0100
true binary 11000

Consequently, it is first necessary to convert the initial set of 
coded-decimal numbers into true binaries. But this is a quite simple 
algorithm which the computer can be directed to perform before enter
ing upon the problem proper. The initial set which must thus be con
verted is usually quite small compared to the number of numbers the 
computer handles in the course of the problem, so that the time in
vested for the conversion is relatively negligible. Hie same remark 
applies for the conversion from true binary to coded-decimal repre
sentation for the output process; it being still desirable to view 
answers in decimal notation.

When the desired results are properly converted into coded-decimal 
notation, they may be directed to the output. The output will simul
taneously print the results and punch them on teletype tape. This tape 
is desirable in the event that the answers are to be reintroduced into 
the computer.

It should be remarked that beginning with the second problem of 
any given type it will not again be necessary to manual punch the 
sequence of instructions. The original tape will be adequate. It is 
only necessary to punch the new initial numbers and parameters. This 
portion is usually a small fraction of the total. Finally, it should 
be noted that the casual observer need never be aware of the fact that 
internally the computer uses the binary representation for numbers.

Control
The control may be likened to a central nervous system. Its parts 

spread out physically over the whole computer. It interconnects the 
various other components and transfers information from one to the 
other, as well as directs the operations associated with them 
individually.
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Among its various activities, it must:
(i) direct the input component to read information from the tele

type tape and transfer it to the internal memory,
(ii) conversely, direct the memory to transfer information to the 

output tape and printer,
(iii) effect the basic arithmetic operations,
(iv) be able to start at some point in a sequence of orders, ex

tract the first order (from the internal memory), interpret and provide 
pulses and voltage changes to the components concerned so as to execute 
the particular order, and when finished proceed to the next order.

These activities are specified by a variety of orders.
In the present control scheme, a one-address system is used; that 

is, associated with each order is an address referring to some memory 
location which contains the number upon which the particular order 
operates. For example, there are eight orders that transfer a number 
from the memory to R2. The eight possibilities arise from the three 
choices:

(1) Clear or do not clear R2 before adding number into it.
(2) Complement or do not complement the number being added to R2.
(3) Add the number or its magnitude.
These are the addition and subtraction orders. There are two mul

tiplication orders; one rounds off the product to 39 bigits, the other 
provides a precise ?8 bigit product. There is one division order, one 
order transferring a number from the memory to R4. There are ®ix 
orders associated with transfers to the memory, a right and left shift, 
print, read, and stop orders. Finally, there are a few logical orders 
that involve an interruption of the present sequence of orders and a 
transfer of control to some other sequence.

Eight bigits are used to designate an order. Twelve more are con
veniently available, of which ten are actually used at present, for the 
address. Thus each order is 20 bigits, and two orders are equivalent 
in storage to one true number. Word is used to describe a 40-bigit 
aggregate; this may be either an order pair or a true number. A coder
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is provided with the set of symbols that correspond to the various 
orders. These code symbols are various pairs of the six letters,
A,B,...F.

Let us now attempt a summary by describing the various steps in 
machine operation. Assume a tape has been prepared with instructions 
and initial set of numbers. First the tape is fed into the input.
The tetrads are read into R5 in serial fashion. Ten tetrads, corres
ponding to either a true number or to two orders fill R5. A signal 
is automatically provided that causes the contents of R5 to be trans
ferred to the first memory location; the second set of ten tetrads is 
read into R5, etc. When the complete tape has been read into the 
memory, the computer is ready to do business. The operator presses 
a "start" button. The contents of the first memory location or first 
word go to R6; these are the first two orders. The first one is ex
amined and executed, then the second. The next word goes to R6 and 
the sequence continues. Flexibility exists which enables the sequence 
to be interrupted at some point and the control transferred to some 
other point in the sequence. For example, it may be desired to re
peat a sequence a fixed number of times before proceeding further, as 
in some iteration scheme. This is conveniently handled by the logical 
orders. In fact, it is possible to have the number of repetitions be 
dependent on the fulfillment of some condition in the problem, so 
that the number of repetitions varies from case to case. Finally, 
the desired numerical quantities can be reconverted from binary to 
binary-decimal form, and printed.

Problem Preparation end Operating Techniques
We conclude the present introductory chapter with a brief commen

tary on the various steps leading up to the execution of a problem by 
the computer. The first step concerns the formulation of the problem 
itself. One method would be simply the writing down of the various 
equations and the various steps to be taken, tegether with the neces
sary explanatory remarks. This approach, although feasible, may often 
become quite complicated and untractable. Instead we follow von Neumann
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vho proposed the idea of a flow-diagram. This Is a very elegant, 
logical and mathematical description of the problem to be computed.
It makes use of a set of conventionalized symbols to describe the 
course of the control at every stage of the problem. Represented in 
a very concise way are: (i) the purely mathematical operations, (ii) var
ious logical steps and decisions together with a precise indication of 
the nature of the corresponding criteria, (iii) the contents of the rele
vant part of the memory at points where the question might naturally 
arise.

The flow-diagram of a problem is prepared by the mathematician or 
physicist. The symbols are few in number, their meanings simple enough 
so that they are easily mastered. A flow-diagram may be drawn without 
a specific computer in mind. In practice, however, one usually does 
plan on the use of a specific computer and takes advantage of this fact 
in his planning of a problem. A quite superficial knowledge of the 
particular computer suffices. The important characteristics are:
(i) the capacity of the inner memory, (ii) the nature of the external 
memory, (iii) the extent of the vocabulary, both arithmetical and 
logical.

The next step in the preparation is the coding. This process 
consists conveniently of two parts. In the first, the coder prepares a 
sequence of instructions using a set of readily Interpretable symbols 
that indicate the general nature of the operations. For example, say 
at seme point in the sequence a number is in register R2 and it is in
tended to add to it another number at the moment residing somewhere in 
the memory. A possible notation, and the one used here, is:

m -> Ah
where m indicates that a number in the memory is to be sent to R2. For 
historical reasons, the letter A has been used as a symbol for R2; the 
original intent being that R2 is the accumulator register, h indicates 
that R2 is not to clear its contents before receiving from the memory 
but to hold them for a true addition process. It is observed that the 
specific binary symbols which the computer can Interpret are not used 
yet, nor is the specific location of the number in the memory given.
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There Is, however, some point to this preliminary step in the coding.
In the first place, there are likely to be several improvements or 
modifications made before one is satisfied with the sequence of in
structions finally adopted for a given problem. This form is much 
easier to follow, both from the point of making a sample hand calcu
lation (for checking purposes) as well as in trouble-shooting (in the 
event this is necessary) after the problem has reached the computer.

The second step in the coding is a straightforward translitera
tion from the coder's notation to teletype symbols. This is routine.

A given large problem may often be divided into a set of smaller 
problems. Some members of this set may occur frequently enough so 
that it becomes worthwhile to have these portions coded in quite general 
terms and, in a sense, treated as individual orders but on a somewhat 
broader basis. For example. Integration by Simpson's Rule, or the in
version of an (n x n) matrix. These sub-routines, as they are conven
tionally called, would form a library of general orders. A problem at 
hand would then first be decomposed into the sub-routines available 
from the library, and the remainder coded from the basic individual 
orders. Obviously some preparations are required for each individual 
use of a sub-routine; in the case of the inversion of a matrix, the 
location of the particular elements for the problem at hand must be 
specified. Nevertheless, there is a great reduction in effort, espe
cially in checking.
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II. CODING AND FLOW DIAGRAMS

Introduction
The computer can perform a set of ‘basic operations, both arithmetical 

and logical. It may be desirable to keep the set small as added electronic 
equipment (which is roughly proportional to the number of operations) in
creases the physical complexity of the computer and complicates maintenance.
A modest number of thirty-six operations have been chosen to comprise this 
set. The choice, however, is fluid in that the set may be modified as the 
need for change is shown.

We say that the computer has a language of its own, for it is able 
to interpret and execute the given set of orders. We speak of the orders 
as the vocabulary of the computer. Coding is the translation of the language 
of the mathematician into the language of the computer.

The four fundamental arithmetic operations (addition, subtraction, 
multiplication and division) cure a part of the vocabulary. All of the 
arithmetic operations of the vocabulary, of which there are about twenty, 
involve the four fundamental operations.

The first step in the preparation of any problem for the computer « 
is to arrange the work so that the only arithmetic operations involved are 
addition, subtraction, multiplication and division. In other words, the 
problem must be reduced to a form in which it can be solved by numerical 
procedures.

The usual mathematical formulation of the problems with which we shall 
be concerned is a differential equation, or a coupled set of such equa
tions, together with a group of boundary (or initial) conditions. There 
are other types of problems, but they occur less frequently.

The differential equations are of such complexity that analytical 
methods are not known for obtaining their solutions. The only recourse 
is to numerical procedures; therefore these problems are ideally suited 
for the computer.

The first step in the solution of the problem is to replace the dif
ferential equations by a set of finite difference equations. We do not 
discuss here the stability or convergence of such methods, but only mention 
them as necessary considerations in writing the difference equations. In
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such a process of translation, derivatives are replaced by difference 
quotients, integrals by sums, transcendental functions by algebraic 
functions, etc. The problem is now tractable in terms of the vocabulary 
of the computer as it involves only the fundamental operations.

The next step toward a solution is the preparation of the flow 
diagram. The flow diagram represents the path to be followed by the 
computer in the solution of the problem. It represents this by sequences 
of lines oriented with direction arrows. At points of the diagram where 
confutation is to be performed, the lines are interrupted and boxes are 
inserted that indicate the "local" confutation that is to be performed.
The diagram represents the purely mathematical operations, the logical 
steps and decisions, and the relevant memory storage that is required.
Five kinds of boxes represent the desired information:

(i) The operation box
(ii) The alternative box

(iii) The substitution box
(iv) The assertion box
(v) The storage box 

These are discussed in detail later.
When the flow diagram is confleted, the solution is at the coding 

level; but before discussing the coding we first discuss some background 
matters. Each of the thirty-six operations of the vocabulary is referred 
to as an order. Each order has associated with it a number that specifies 
the location in the memory of the number upon which the order is to 
operate; e.g., in the multiply order the associated number specifies the 
location in the memory of the multiplicand factor. This number location 
is called an address. The memory contains 102k words. The addresses of 
these words consist of the decimal numbers 0 through 1023. Binary-wise, 
it requires ten bigits to express an address as 1023= 1111111111.
Eight bigits axe used for each order; hence eighteen bigits are necessary 
for each order with its address. It is convenient, however, to allow 
twenty bigits for their expression as twenty bigits comprise half of a 
word. Each order with its associated address is called an instruction.
Two instructions are stored per word, giving the memory in principle a 
capacity of 20k8 instructions. However, memory storage is ailso necessatry 
for true numbers, so that in general there will be some combination of 
instructions and numbers stored.



The computer uses a one-address system. Each instruction may refer 
to at most one memory location. Some instructions involve only the 
arithmetic unit and do not refer to the memory. In these instances the 
address portion has a different function which is described later.

To illustrate the one-address system consider a simple example of 
summing two numbers, a and b, which are residing in the memory: The sum 
s = (a+b) is to be stored in the memory. Three instructions are required: 

(i) An instruction to bring a into the arithmetic unit
(ii) An instruction to bring b into the arithmetic unit and to 

form the sum s = (a+b)
(iii) An instruction to store s in the memory 
If a is in the arithmetic unit as a result of some previous operation, 

only the latter two instructions are needed. If a three-address system 
were used, the above sequence could be expressed with one order which 
specified all three addresses: the location of a, the location of b, and 
the location at which s is to be stored. We defer any discussion of the 
merits of the one-address system versus those of the multiple address type.

The process of coding involves writing down a sequence of instructions 
to perform the operations indicated on the flow diagram with the desired 
set of numbers.

The coding in all but the simplest of problems is not a linear se
quence. (That is, the control does not follow a unique path; at various 
points in a problem several courses may be available.) Certain portions 
of the coded sequence may be performed several times, whereas other sections 
are omitted temporarily. The logical orders that have been included in the 
vocabulary provide for such procedures. Furthermore, the coding is not a 
static sequence in that it usually does not remain fixed throughout the 
course of the problem. There are certain orders that allow portions of 
the coding to be altered so that subsequent traversals through the sequence 
give rise to a variety of patterns.

It is these dynamic and non-linear characteristics of the coding 
which provide the desired flexibility for scientific computation but 
which, on the other hand, give rise to complications in coding.
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The remainder of this chapter presents a step-hy-step approach to 
coding, beginning with very simple examples and systematically progressing 
to examples of increasing complexity.

Before coding any actual examples we first discuss the vocabulary as 
shown in Table I. It contains a list of the explicit orders with a de
scription of each. It will be noted that there are two types of symbols.
The first column gives the abbreviated logical symbol for each order, 
while the second column gives the actual code for the computer.

Orders 1 through 8 are the addition and subtraction orders. All of 
these involve R2 (the accumulator register) and a memory location that is 
specified in the instruction. The first four of these orders clear R2 
(set it to O’s) and then add (subtract) the specified word to the O's 
in R2. The remaining four orders actually add (subtract) the contents 
of the specified memory location to the number residing in R2. In a 
sense, the first four orders sire communication orders (they do, however, also 
allow the magnitude or complement of a number to be inserted) while the 
latter four are true add or subtract orders.

Consider the example of forming the sum (difference) of two numbers, 
a and b, and storing the sum s = (a + b), (difference s = a - b) in 
the memory. Assume that a and b are residing in the memory, say at ad
dresses 1 said 2, respectively; and the sum (difference) is to be stored 
in The instructions are:

1. m—»Ac 1 a to R2

2. m—»Ah _ s ~ a + b 
(m—»Ah-) (s = a-b) to R2

3. A—»m 3 £ to 3 .
Each order has immediately following it the memory address to which 

the instruction refers. In a column to the right of the instruction is 
shown the action that takes place due to each instruction.

If the sum of more than two numbers is formed it is not necessary to 
send each sum of two numbers into the memory said repeat the three orders.
A sum of several numbers may be formed in R2 which requires one additional 
order for each new number added to the sum; only the final sum is sent to 
the memory.

In orders 2, 4, 6, and 8 where subtraction is desired this is done by 
taking the complement of the number with respect to 2 and then performing
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1.
2.

3-

4.

5-
6.
7.
8.

9-
10.

11.

12.

13.
14.
15-

16.

17.
18.

TABLE I
(m is the word at address m in the memory)

(The word at its original position is never cleared)
Abbreviation Code
m—*Ac AA Replace the number in R2 by m.
m—►Ac- AB Replace the number in R2 by the complement (the 

negative) of m.
m—*AcM AE Replace the number in R2 by the absolute value

of m.
m—►Ac-M AF Replace the number in R2 by the complement of

the absolute value of m.

m—►Ah BA Add m to the number in R2.
m—►Ah- BB Add to the number in R2 the complement of m.
m—(AhM HE Add to the number in R2 the absolute value of m.
m—►Ah-M BF Add to the number in R2 the complement of the

absolute value of m.

m— EB Replace the number in R4 by m.
X DA Clear R2 and multiply m by the number in R4. The

39 most significant bigits of the product appear 
in R2. The 2~^ bigit position of R2 is set to 1.
R4 is set to O's.

X' DB Clear R2 and multiply m by the number in R4. The 
left-hand 39 bigits appear in R2, the right-hand
39 bigits in R4. The sign bigit of R4 is set to 0.

DD Divide the number in R2 by m. The quotient appeaxs
in R4, two times the remainder appears in R2.

T CA Transfer the control to the left-hand order of m.
T' CB Transfer the control to the right-hand order of m.
C CC If the number in R2 is ^ 0, transfer the control

as in T, otherwise continue to next order in sequence
C CD If the number in R2 is ^ 0, transfer the control

as in Totherwise continue to next order in sequence

Q—»m EC Replace m by the number in R4.
A—>-m DC Replace m by the number in R2.
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TABIE I (Cont.)

19- S— FA

20. S—*-m' FB

21. HS—*-m FC

22. HS—m' FD

Replace the address (bigits 8-19) of the left- 
hand order of m by the 12 bigits 8-19 in R2. 
Replace the address (bigits 28-39) of the right- 
hand order of m by the 12 bigits 28-39 in R2. 
Replace the left-hand 20 bigits (bigits 0-19) of 
m by the 20 bigits 0-19 in R2.
Replace the right-hand 20 bigits (bigits 20-39) 
of m by the 20 bigits 20-39 in R2.

23. Rn

2k. Ln

EE Right shift R2 and R4 n places where n is
specified in the address bigits of the order.
This replaces the contents of R2
and a , a. ••• a-n of R4 by \ • • • X , X, • * *o' 1 39 ^ o o 1
' ‘' SB-n’ Ss-n’ a“i X39-n+l’ ^39-i»2 ’'' >"39’
"o' °1 •" 039-n-

DE Left shift R2 and R4 n places where n is speci
fied in the address bigits of the order. This re
places the contents XQ, X^ • • • X^ of R2 and oo,

°1 "• "39 of Rk by V — V 0 ••• 0
"n’ Vl "• "39’ Xo> \ \-2‘ Vi'

25- a—»Ac EF Replace the number in R2 by the 12 address bigits 
of this order (into positions 0-11 of R2).

26. a—►Ah DF Add to the number in R2 the 12 address bigits of 
this order (into positions 0-11 of R2).

27. DS ED Set the sign bigit of the number in R2 to 0.
28. Flexo Print EA Print m on the page printer (slow speed).
29. Read FF Replace m by the next word to cone under the read

ing head of the paper tape reader.
30. FE (NOT PRESENTLY USED)
31. Punch OF Punch m on paper tape.
32. Sync Print CE To be used in a subroutine which simultaneously

prints 5i+1» ^±+2 ani^ 5i+3J i i® to ^ com
municated to the routine (high speed).
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TABLE I (Concl.)

33- m—>D

3^. D—*n

35- Q—►t 
36. t—HI

37. Stop

BD Read 50 successive words from the memory
starting with the word at the address speci
fied by bigits 8-19 of the instruction. Write 
these 50 words into the drum on the track 
specified by bigits 20-27. Then transfer the 
control to the left-hand instruction of the 
word at the address specified by the bigits 
28-39.

BC Read the 50 words from the track of the drum 
specified by bigits 20-27 of the instruction. 
Write these voids into 50 successive memory 
locations starting with the address specified 
by bigits 8-19. Then transfer the control to 
the left-hand instruction of the word at the 
address specified by bigits 28-39.

AD Write the number in R4 onto the magnetic tape.
AC Replace the number in R4 by the first word to 

come under the reading head of the magnetic 
tape reader.

OFF Stop computation. (Pressing start next order 
button will allow machine to continue in nor
mal sequence.)

NOTE: An address of 800 refers to the quotient register (R4) when
using orders 1 through 8; i.e., AA800 says replace the number 
in R2 by the number in R4.
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a normal addition. The complement scheme is described in detail in the 
chapter on binary arithmetic. When an address 100000000000 which cor
responds to 2048 decimally is used with any of the orders 1 through 8, 
it has the effect of treating R4 (the quotient register) as a memory posi
tion with the address 2048. The number residing in R4 can then be added 
into R2 as described by any one of the orders 1 through 8.

Order 9 transmits a number from the memory to R4 (the quotient regis
ter). R4 does not have add facilities; hence a number being transmitted 
to R4 replaces the number that is in R4.

Orders 10 and 11 are the two multiplication orders. Before either 
of these orders may be given, the multiplier must be in R4 (either as 
the result of some previous operation or by a preceding m~^>Q order).
The 39 most significant bigits of the product appear in R2. Order 10 
gives only the 39 most significant bigits of the product rounded off. 
Order 11 gives a full JQ bigit product; the rightmost 39 bigits appear 
in R4. The multiply order supplies the multiplicand.

Order 12 is the divide order. It is assumed that the dividend is in 
place in R2; the divide order itself provides the divisor. The quotient 
is located in R4, and two times the remainder appears in R2.

Order 13 is a transfer order. This interrupts a sequence and causes 
the computer to continue with another sequence beginning with the in
struction specified by the address part of the transfer instruction. As 
an example of a transfer instruction, suppose that a sequence of in
structions is being performed and in the 25th step of the sequence a 
transfer is encountered:

25 T 125

124
125
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The transfer instruction has the address 125, so that the sequence 
of code from 26 to 124 is omitted. The computer would execute Instruction 
125 and continue sequentially from there.

Since an instruction word consists of two instructions and the flexi
bility of being able to transfer into either instruction of a word is de
sired, it is necessary to have two transfer orders to accomplish this.
This accounts for Order 14, the T' order, as well as Order 13. Hence, in 
the above example, 25 may have read T 125 or T1 125, depending on whether 
the transfer was desired to the left or right instruction of Instruction 
Word 125.

The two conditional transfer orders, 15 and 16, either execute the 
transfer as in the T orders discussed immediately above, or the orders 
require no action, in which case the computer continues along the original 
sequence. The conditional transfer is effective or not, depending on the 
sign of the number, N, in R2 at the time the order is to be performed: 
if N 0, the transfer does occur, and a new sequence of instructions is 
started at the location specified by the address part of the instruction; 
if N < 0, the computer continues with the original sequence of instructions.

Orders 17 and 18 are the two orders that send information from the 
arithmetic unit to the memory. Order 17 transmits from R4 to the memory, 
and 18 transmits from R2 to the memory. When any register or memory lo
cation sends information to any other register or memory location, the in
formation is still available at its original position.

Orders 19 through 22 are the substitution orders. These orders make 
alterations in instructions. By means of 19 and 20, any instruction may 
have its address changed. The new address is first formed in R2 and then 
inserted into the desired instruction by means of a substitution order.
The use of the substitution orders is explained in detail in Problem 2.
The two half word substitution orders (Numbers 21 and 22) may alter whole 
instructions rather than just the address. These two orders may also be 
used in storing half precision numbers. The details of their use will be 
covered by later examples.

Orders 23 and 24 are the right and left shift orders. They give a 
means of dividing or multiplying by powers of 2 by shifting a number 
right or left in R2; e.g., if a number a = 0.00001111 is residing in R2
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kand it is desired to multiply this number by 2 , this can be effected 

by a left shift of 4 places, which displaces the number 4 units to the 
left.

a = 0.00001111 
a x 2^ > 0.11110000

A right shift effects division by powers of 2 by displacing the number 
to the right. In a left shift R4 may be considered an extension of R2 
to the left; hence a number shifting left out of R2 fills into R4 begin- 
nihg in the least significant end of R4. In a right shift R4 may be 
considered an extension of R2 to the right and a number shifting right 
out of R2 fills into R4 beginning in the most significant end of R4.
Since R2 and r4 are so interconnected for shifting operations, these 
operations may be used for separating a multiplex of numbers occupying 
one word. Either a left or right shift of 40 places will transfer 
completely a number from R2 to R4.

Orders 25 and 26, a—>Ac and a—>Ah, treat their associated ad
dresses as true numbers. The addresses of these instructions are sent 
into R2 (either a cleatring or an adding action) into bigit positions 0 
through 11. Many times in the type of problem in which we will be in
terested there are small numerical constants of three significant declmatL 
digits or less. Rather than use an entire memory location to store such 
constants, they can often be expressed in the address position of an 
a—>A Instruction. As an example consider that a quantity

2 . ax + bx
has been formed and is in R2. It is desired to add a constant term k 
where k = .583. This may be expressed in the a—»Ah order as

p. ax -1- bx in R2
(iii) a—>Ah 583 ax2 + bx + (.583 = k) to R2

where .583 is expressed by its binary equivalent. Eleven bigits give 
the same precision as 3*3 decimal digits, so any three-decimal digit 
fraction may be expressed in the address position of an a—>A order.
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The explanation of the remainder of the orders as given in Table I 
is adequate; hence we return to the task at hand, the coding of typical 
problem-examples.

The coding of a problem may be divided into two parts:
(i) The logical coding 

(li) The computer (numerical) coding 
Each of these parts involves several steps. At the present level of our 
knowledge and skill, it seems convenient to have both a logical and a 
numerical symbol for each order. The logical symbols are used in part (i), 
while the numerical symbols are used in part (ii).

The logical symbol attempts to be a descriptive abbreviatfcn of the 
action of that instruction; the associated memory location is preliminarily 
specified by a combination of a letter and a number; the letter identifies 
some group storage and the number identifies a member of that group; e.g., 
m—»Ac B.4 is interpreted as: Bring from the memory to the Accumulator 
(R2), clearing the accumulator first, the number at memory location B.4.
One reason for not assigning specific numerical memory locations at the 
outset of a problem is that the extent and disposition of the memory re
quirements are not immediately obvious. A set of logical symbols is more 
meaningful to the coder than an abstract code; it expedites the actual cod
ing and facilitates checking.

The abstract coding is merely a transliteration from the logical 
code to the numerical code. The numerical code is shown in the second 
column from the left in Table I. Each order is represented by a com
bination of two of the letters, A,B,C,D,E,F, where each letter expresses
a tetrad (4) of bigits. These sore:

A 1010 D 1101
B 1011 E 1110
C 1100 F 1111

When the coding has been written in numerical form, the teletype tape 
(which is the present means of putting the coded sequence into the memory 
unit) is prepared. The actual coding examples are treated in the follow
ing pages.
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Problem 1
We propose to form the rational function y with constant co

efficients where 2
ax + bx + c ^ " ex + f

Assume that x, a, b, c, e, and f are in the memory at known addresses. 
As previously mentioned, the memory locations are denoted by capital 
letters rather than using true number addresses; e.g., the notation 
A.l: a implies that the quantity a is stored in the memory at address 
A.l. The storage of the problem is:

A.l:a A.4:e
A.2:b A.5:f
A.3:£ A.6:x

and when y is formed it is to be stored in A. 7.
As a preparatory step in coding the problem, we form y by a 

sequence of arithmetic operations in which each step involves only one 
operation. Such a sequence is:

1. e*x
2. ex + f
3. a*x
4. ax + b
5. (ax + b)x26. ax + bx + c

2„ ax + bx + c7- » ■ ----ex + f
Since the computer can accomplish only one arithmetic operation at 

a time, the above sequence is precisely the procedure that one must go 
through in coding the problem, insofar as the arithmetic is concerned.

We now proceed with the coding. In the preliminary logical code, 
each instruction is treated as a word rather than the actual case of 
two instructions per word. The left-hand column is the code abbrevia
tion, and the next column indicates the operations that have taken place 
in the arithmetic unit, while the last column is conveniently used for 
memory storage. During the course of the problem, a storage location 
in the memory is needed to store an intermediate value of the computa
tion. This position is denoted as B.l.



The sequence is:
1. m —»Q A.6 x to R4
2. X A. 4 e»x in R2
3. m—»Ah A. 5 ex + f in R2
4. A—»m B.l ex + f to B.l
5. m—>Q A.l a to R4
6. X A.6 a*x in R2
7. m—»Ah A.2 ax + b in R2
8. L40 ax + b to R4
9. X A.6 (ax + b)x in R2

10. m—>Ah A. 3 pax + bx + c in R2

11. • B.l
2 .ax + bx + c in R49 y ex + f

12. Q—»m A.7 y to A.7
Note that the denominator was formed before the numerator. If the reverse 
had been the case, the numerator when formed would have been stored in, 
say, B.l. When the denominator was formed it, too, would have been stored 
in, say, B.2. The numerator would then be brought in and the division per
formed. Coding in this fashion, however, would have required two addition- 
ad instructions and one word more storage in all making the coding two 
words longer than it is at present.

Instruction 8 In the above sequence, which is L40, is a means of 
communication from R2 to R4-. lAO shifts the entire word including the 
sign from R2 to RU. If this were not available, it would be necessatry 
to send the word from R2 to the memory and then from the memory to R4, 
thus requiring one additional instruction.

Recaill that each instruction word in the memory actually contadns 
two instructions. The next step of the coding is to arrange the sequence 
of instructions into words* If we assume that the routine starts at 
address 1 in the memory, the sequence then occupies memory locations 
1 through 6 (since it contadns 12 instructions, 6 words are required).
At this time, the constants of the problem are given true memory ad
dresses. Since there are six such quantities (where each quantity com
prises one word), memory locations 7 through 12 are edlotted for these.
When ^ is formed it will be stored at address 13. One temporary loca
tion is needed which is designated as Ik.



The sequence becomes:
10 
14 
12 
40 
9

13

12. x
13.
14.

Memory locations 13 and 14 are used for quantities formed within the 
routine; hence they must be empty or their contents must be irrelevant 
at the time the sequence is to be executed by the computer.

When the coding is in final form such that the input teletype tape 
is to be prepared, one has the instructions reduced to numerical form 
and has available the true numerics for all of the involved quantities. 
Assume, for example, that

a = .075329 e = .83291
b = .12391 f = .69736
c

The final coding is:
= .017326 X = .32915

1. EB012DA010 8. 0.123910000
2. BA011DC014 9. 0.017326000
3. EB007DA012 10. O.8329IOOOO
4. BA008DE040 11. 0.697360000
5. DA012BA009 12. 0.329150000
6. DD014EC013 13. 0.000000000

7. 0.07532900 14. 0.000000000

m—»Q 12 X
m—s>Ah 11 A—*m
m— 7 X
m—>Ah 8 L

X 12 m—»Ah
fr 14 Q—*m

7. a
8. b
9. c

10. e
11. f
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Problem 2
We modify the preceding problem with a slight logical twist.

Assume that the calculation of the rational function £ is a part of 
some larger problem and that x has been computed as part of a pre
vious routine and stored in some memory location other than the one 
assigned to it (A.6 in the preceding example). Indeed, there may be a 
series of such x values. Further, when £ is computed it Is to be stored, 
not in A.7, but at some other memory location where it will be used in 
subsequent parts of the calculation. In other words, we ask what modi
fications must be made to the sequence of instructions in Problem 1 in 
order to render it moire flexible and assimilable in a larger problem.

One possibility is to reserve memory location A.6, not for storing 
x itself as was done earlier, but instead to store the address at which 
x may be found. A.6 does not contain x, but it does tell us where in 
the memory x is located. Similarly, we may use A.7, not to store £ it
self, but to contain the address at which jr is to be stored when formed.

Suppose then, as a preceding part of some problem, x has been com
puted and stored in, say, memory location M.l; and we wish to use the 
routine outlined in Problem 1 to calculate the rational function given 
there with the stipulation that jr should be stored in N.l.

It is necessary to place the address M.l in location A.6 and ad
dress N.l in location A.7. Thus, in the course of the calculation, 
when x is required, A.6 is consulted, giving the information where x 
is actually located. Finally, A.7 provides the information where £ is 
to be stored, namely in N.l. Thus, this rational function routine may 
be used several times in the course of a large problem; each time, how
ever, it is necessary to provide the corresponding address for the lo
cations x and £.

Making these changes in this routine leads to the simplest illus
tration of using the substitution order. Without attempting to justify 
the utility of it at this point, we proceed with the simple example.

Instructions 1 through 6 of the following code sequence are 
the additional instructions required for the substitutions. The function 
of these first instructions is to provide appropriate addresses to sub
sequent instructions that involve x and y. Recall that x resides at
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location M.l, and the numerical value of M.l is at A.6. The preliminary 
instructions thus involve taking the numerical quantity M.l from location 
A.6 in the memory to the arithmetic unit. From there it may be inserted 
into the address part of the instruction that first involves x. This 
is accomplished by the substitution order. Repeated application of this 
order introduces this same address into all the other instructions that 
require it. In the example observe that Instruction 8 of the code is the 
first instruction referring to x and requiring the particular address 
where x resides. Two instructions, here taken to be 1 and 2, are re
quired to provide Instruction 8 with the appropriate address. These are: 

(i) An instruction to transfer the contents of A.6, namely the 
address of x, to the arithmetic unit;

(ii) A substitution order which has the effect of transferring 
this address of x into Instruction 8.

Inasmuch as this address is also required for Instructions 11 and 15, 
two more substitution orders. Instructions 3 and 4, are needed for them. 
Finally, the address referring to the location of y is needed for In
struction 18; two more instructions, 5 and 6, accomplish this, thus ac
counting for the six preparatory instructions.

At the start of the problem. Instructions 8, 11, 15, and 18 have 
blank addresses. After the control has proceeded through Instruction 6, 
all of the instructions have the proper addresses.

The storage is as before, with the changes as noted above.

A.l: a
A.2: b
A.3: c
A.4: e
A.5: f
A.6: M.l
A.7: N.l
B.l:
M.l: X

N.l:



-33-

The coding is:

1. m—»Ac A.6 M.l to R2
2. S—»m 8 M.l to (8-19)8
3. S—>m 11 M.l to (8-19)U
k. S—*m 15 M.l to (8-19)15
5. m —♦Ac A.7 N.l to R2
6. S—»m 18 N.l to (8-19)18
7. m—*Q A. 4 e to Rk
8. X [ ] e*x in R2
9. m—»Ah A.5 ex + f in R2

10. A—►m B.l ex + f to B.l
11. m—»Q [ ] x to R4
12. X A.l a*x in R2
13. m—»Ah A.2 ax + b in R2
Ik. lAO ax + b to R^
15. X [ ] ax^ + bx in R2
16. m—►Ah A.3 2ax + bx + c in R2

17. B.l
2ax + bx + C In Rlly ' ex + f

18. Q—*m [ ] JT to N.l
In coding the problem into word form, the instructions into which 

addresses axe being substituted may be either the left-hand or the right- 
hand instruction of a word. In Table I, Orders 19 and 20 account for 
this. They read:

"19. S—>m Replace the address (bigits 8-19) of the left-hand
order of u by the 12 bigits 8-19 in R2.

20. S—>m' Replace the address (bigits 28-39) of the right-hand
order of m by the 12 bigits 28-39 in R2."

Since it is desirable to substitute into either a left-hand or right- 
hand instruction from an address which has been brought into R2, the fol
lowing custom in storing addresses is adopted: Consider an address x as 
an integer which may assume values from 0 to 1023* Rather than storing
x, store

(*), = o-19. ,-39._     — .   JWeo — —
where (x)q is called the memory position mark x. Since x is an integer, 
when (x)o is brought into R2 the addresses are so positioned that either

►m or •m' may be used as required.
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The instructions are now paired into words. There are 18 instructions 
or 9 words which, if the coding starts at word 1, give instruction-words 
from address 1 through 9* The numerics then start with address 10 and go 
through address 17*

1. m—»Ac 15 S—»m
2. S —>m 6 S—»m
3. m—»Ac 16 S—>m'
4. m—»Q 13 X
5. m—»Ah 14 A—»m
6. m—>Q [ ] X
7. m—>Ah 11 L40
8. X [ ] m—>Ah
9. ♦ 17 Q—>m

•OH a
11. b
12. c
13. e
14. f
15. (M.l)0
16. (».1)0
17.
The storage has been changed to

4
8
9

C ]

17
10

12
[ ]

include the appropriate values
(M.1)q and (N.l)o.

In the final coding. Instructions 41, 6, 8, and 9* may initially 
be given any address as this address is irrelevant (the correct addresses 
are supplied during the course of the computation). For uniformity, the 
plan of initially setting these addresses to 0 is adopted.
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Problem 3
The munibers and the numbers'l* “2> "3 “n ---—----- - hl’ ^)2, b3 n

are stored in the memory. It is desired to form the following product
>• b

sum n
kVi - Vl + a2b2 + • + a b n n

The storage of the a's and b's is arranged so that
A.l:a1, A.2:a2 ••• A.i:ai ••• A.n:an

and
B.l:b1, B.2:b2 B.i:b. ••• B.n:b i n

That is, the a's are stored consecutively in one section of the memory 
and the b's are stored consecutively in another section. The sum, when 
it is formed, is to be stored in the memory at address C.l.

If n = 1, the coding is trivial; it is:
1. m—»Q A.l to R4
2. X B.l a^b^ in R2
3. A—»m C.l albl bo C*^

The problem may be extended to n = 2 by adding the following instructions:
1^. m—»Q A.2 a2 to R4
5- X B.2 a2b2 in R2
6. m—»Ah C.l a^b^ + a2b2 in R2

- 7. A—»m C.l a1b1 + a_b to C.l
One method of extending the coding to the general case of n elements 

in the sum is to have the first three Instructions followed by (n - 1) re
petitions of Instructions 4 through 7 with the appropriate A.i and B.i 
being used in place of the A.2 and B.2. This method becomes very costly 
with respect to available memory space as n becomes large, since each in
crease of n by 1 increases the code by four instructions.

The coding for the general case n is:
1. m — A.l a^ to R4
2. X B.l a1b1 in R2
3. A —»m C.l
4. m —*Q A.2 a2 to R4
5. X B.2 a2b2 in R2
6. m —>Ah C.l Vl + a2b2
7. A—♦m C.l

albl to C.l

in R2
albl + a2b2 to C*1
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8. m —*Q A.3 a_ to R4
9. X B.3 a^b^ in R2

•
oH m—Ah C.l aibi +
n. A — C.l

+ in R2
albl + a'202 + a'^>3 t0 C*1

4i-4. m —Q A.i a^^ to R4
4i-3. X B.i a.b. in R2 i i
4i-2. m —>Ah C.l albl + a2b2
4i-l. A —»m C.l

+ a.b. in R2 i i
a^b^^ + &2*>2 + *** +ait)i'toC*1

4n-4. m— A.n a to R4 n
4n-3. X B.n a b in R2n n n
4n-2. m—> Ah C.l a,bn + a_b_ + ••• + a b = a.b.11 22 nn ..ii1=0.n
4n-l. A—s>m C.l a.b. to C.l i=i11
4n. STOP

By using this method, 4n instructions are needed. If n is large, 
say 50-100> then 200 to 400 instructions or 100 to 200 vords of cocfing 
are needed.

Note, however, that the only changes in the coding for each i are 
the changes in the addresses of the instructions (m—*Q A.i) and (X B.i), 
and as i is increased by 1 the addresses of these two instructions are also 
increased by 1.

If by some means the computer can be directed to go repeatedly through 
the coding and at each traversal to increase by 1 the addresses of the in
structions (m—A.i) and (X B.i), the length of the total coding can be 
shortened greatly. By means of the transfer orders a section of the coding 
can be traversed as many times as is desired; and at each passage through 
the coding the instructions (m—»Q A.i) and (X B.i) sure brought into the 
arithmetic unit etnd 1 is sulded (in the correct address position) to each 
of them. It is, of course, necessary to have available in the memory the
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appropriate 1 to increase the addresses. It may be either 1 x 
--?q1x2 or, in fact, both may be needed. At present we store 1x2

C.2, and fix upon m later in the coding. The sequence is:
1. m—>Q A.l a^ to R4
2. X B.l a^b^ in R2
3. A—>m C.l a^b to C.l
4. m—>Q A.2 a^ to R4
5. X B.2 a b in R2
6. m—»Ah C.l a,b, + Spb in R2
7. A—*m C.l albl + a2b2 to c*1
8. m—>Ac 4 (m—►Q A.2) to R2
9. m—*Ah C.2 (m—»Q A.2 + 1) in R2
10. A—HU 4 (m—*Q A.3) to 4
11. m—>Ac 5 (X B.2) to R2
12. m—»Ah C.2 (X B.2 + 1) in R2
13. A—«n 5 (X B.3) to 5
14. T 4

The first seven instructions are the same as before. Instructions 
8, 9, and 10 bring Instruction 4 into the arithmetic unit, add 1 to its 
address, and again store the instruction in 4, its correct location. 
Instructions 11, 12, and 13 do the same to Instruction 5. Instruction 14 
transfers the control back to Instruction 4 to traverse that section of 
coding again (the necessary addresses have been increased by l).

The above sequence is not yet complete as it does not provide a 
means of stopping the cyclic process when n is reached. By changing 
the transfer order to a conditional transfer order and adding the follow
ing instructions, we introduce a means of knowing when the cyclic process 
is finished. The number of traversals through the cyclic process is kept 
track of by keeping a count in, say, location C.3, and for each passage 
the count is increased by one and also examined to determine whether the 
desired value has been reached. It is this examination which is performed 
by the conditional transfer order. To initiate the count we store 2 x 2“m. 
Since the first two terms of the product stun a^b^ + a^b^ are formed be
fore the counting process is initiated, these two terms are included in 
the count by stcurbing the count at 2. When the count reaches n, instead 
of transferring back to Instruction 4 the control goes along the other 
branch of the conditional transfer instruction, and in this case terminates 
with a stop order.
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The additional coding is added, starting at Instruction 14.

14. m—*Ac c.3 2 x 2_m to R2
15. m—»Ah C.2 (2+1) x 2"m = 3 x 2~m in R2
16. A—►m C.3 3 x 2"m to C.3
2-m is needed; it is stored in C.4.
IT. m—»Ac C.4 n x 2“m to R2
18. m—»Ah- C.3 n x 2~m - 3 x 2~m in R2
19. C 4

•
0CM STOP

Note that the count in C.3 is increased just before it is subtracted
from n x 2”m. When the count becomes equal to n x 2-m, the subtraction
gives 0 (which is interpreted as positive) and the conditional transfer

■ thsends the control back to Instruction 4 to finish the n term of the pro
duct sum. The next time through the sequence the count is increased to 
n + 1; the subtraction now gives a negative difference; and the conditional 
transfer is not effective. The control then proceeds to Instruction 20 and 
stops as is desired.

The coding is 20 instructions, which is 10 words. We start the se
quence at address 1; hence it occupies words 1 through 10, Four words 
of storage are needed during the course of the problem; for these ad
dresses 11 through 14 are assigned. Let us set n to 100 and store the 
a^'s in 16 through 115 and the b^’s in 116 through 215.

The sequence is:
1. m—»Q 16 X 116
2. A—«n 11 m —>Q 17
3- X 117 m—»Ah 11
4. A—>m 11 m—»Ac 2
5. n—»Ah 12 A—>m 2
6. m—»Ac 3 m—»Ah 15
7. A-7»m 3 m—»Ac 13
8. m—>Ah 12 A—nn. 13
9. m—*Ac 14 m—>Ah- 13

10. C 2 STOP
11. -

12. 1 x 2-39

13. 2 x 2”39
14. n x 2-39 = 100 x 2-39

15. 1 x 2”19
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16. a1
17. a2

115. aioo
116. b
117. b2

215. b100
_19In words 12 and 15, 1x2 and 1x2 are stored. These are 

both needed as the two instructions that have their addresses increased 
are in opposite sides of their respective words.

The code sequence is reduced from 200 words to 15 words by being 
able to use the same section of code repeatedly and altering addresses 
of the instructions as the control proceeds through the code.

The use of substitution orders in this problem was purposely avoided. 
As we shall presently see, the change in addresses could have been accom
plished more efficiently by their use. However, our purpose is not neces
sarily to illustrate the shortest method for coding a sequence but to 
illustrate many methods so that a broad foundation may be laid for subse
quent work.

We adopt the nomenclature set forth by von Neumann and call any such 
repetitive process (whether it be the above, or a solution of a partial 
differential equation by successive approximations, or numerical integra
tion of a function by some stepwise method, or other iterative procedures) 
a simple induction.

We have now reached the point where any further examples have a 
great enough complexity to demand a systematic approach. This leads to 
the discussion of the flow diagram.
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Flov Diagram
The flow diagram, as the name implies, indicates the course of the 

control through a coded sequence of instructions. As previously men
tioned, the flow diagram represents in a concise way

(i) The purely mathematical operations 
(ii) The various logical steps and decisions together with a pre

cise indication of the corresponding criteria
(iii) The contents of the relevant parts of the memory where the 

question might naturally arise
To facilitate the interpretation of such diagrams and to avoid 

ambiguities, it is convenient to have a set of conventionalized symbols 
associated with these flow diagrams.

The direction of motion of the control through the flow diagram is 
indicated by lines oriented with arrows as in Figure 1. A simple in
duction is denoted by a closed loop as in Figure 2 and is called an 
induction loop.

--------Vi-------- -

Figure 1. Figure 2.

Any non-looped segment of the flow diagram is described as a linear 
section, while a looped segment is said to be non-linear.

By themselves the above lines are incomplete as they do not show 
the arithmetic or logical processes that are involved. The arithmetical 
operations are described in the operation boxes. Figure 3 shows the 
symbolization of the operation box.

Figure 3
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The operation box has one entrance and one exit for the control. The 
contents of the box indicate the arithmetic operations and transfers 
of information among the various storage locations that are to take 
place vhen the control reaches that stage. Individually, an operation 
box may be treated as a linear portion of the flow diagram, although 
it may be an element of an induction loop. Each operation box of a 
flow diagram is identified by an Arabic numeral.

The induction loop as shown in Figure 3 is not complete, as it 
shows neither a point of entrance nor a point of exit.

To show the former, two or more paths of a flow diagram merge into 
a common continuation as shown by the heavy lines of Figure 4. These 
mergers are not unique to an induction loop for they are also useful 
where several linear sequences have a common continuation.

Figure 4.

In order to effect an exit from an induction loop, use is made of 
a second type of box called the alternative box (conditional transfer 
box). The alternative box has one entrance, but two exits which are 
labeled the positive (non-negative) and the negative exits. This box 
specifies the criterion by which the control follows either one exit or 
the other. The decision is usually based upon some mathematical ex
pression that is first formed in the Accumulator. In the coding, the 
conditional transfer instruction is given immediately after the dis
criminating quantity has been formed in the Accumulator. If the quan
tity is positive or 0, the control proceeds along the so-called posi
tive branch, whereas if the quantity is negative, the negative branch 
is followed. By convention, the positive branch corresponds to an 
interruption of the sequence and a transfer of the control to the in
struction pair specified by the address part of the conditional transfer. 
On the negative branch the control proceeds sequentially without inter
ruption. The alternative box may be associated with a linear sequence



of a flow diagram as well as with an induction loop; i.e., a linear 
sequence may divide into two sequences, the choice of which may be 
made by an alternative box. Figure 5 illustrates an alternative box 
(emphasized by heavy lines) used in a linear sequence, and also in 
association with an induction loop. The alternative box is identified 
by an Arabic numeral, as is the operation box.

3

Figure 5
Since an alternative box is the means of exit from an induction 

loop, it is the alternative box that indicates when the loop has been 
traversed the appropriate number of times. The quantity upon which the 
conditional transfer instruction is to act should then remain positive 
until the loop has been traversed the correct number of times and then 
this quantity is to become negative, (it may happen, at times, that it 
is more advantageous for the negative branch to return through the loop, 
with the positive branch providing the exit.) As an example:

If we are doing an iterative process to approximate some function- 
say a trigonometric function, square root of a number, or some other such 
scheme—then we know that the error in the approximation to the function 
is less than the difference between any two successive approximations.
We then decide upon the accuracy, say 3, for the approximation to the 
function. If we denote an approximate by S^, then the desired accuracy 
is obtained when | - Si+J < d. Therefore, in such a process, if the
conditional transfer acts upon the quantity | - S^+^| - d, this quan
tity will be positive until the desired condition obtains.

An induction loop may involve a process in which the loop is to 
be traversed a fixed number of times. For these processes a simple 
counting procedure is used to determine the termination of the induction.
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In the initial step of the induction the count is set to some starting 
value (usually 0 or l). At each traversal of the loop the count, which 
may be called i, is increased by 1. An upper limit to the count, which 
is called I, is chosen, such that the quantity I-i first becomes 
negative when the loop has been traversed the correct number -of times, 
hence satisfying the required conditions.

In a linear sequence the alternative box often indicates a single 
quantity which is the result of previous computation where the course 
to be followed depends upon this quantity being positive or negative. 
Figure 6 indicates several alternative boxes with their contents.

Figure 6.

By means of an alternative box an induction loop may be traversed 
as many times as desired and then the control is advanced to the next 
stage of a calculation. Each time the induction loop is traversed the 
control essentially repeats a fixed sequence of orders. At each tra
versal, though, the control operates on a different set of numbers and 
either sends the results to fixed memory positions each time, or else 
sends the results to locations dependent upon the set of numbers being 
operated upon. The operation boxes in an induction loop should contain 
relationships that are valid in general for any traversal through the 
loop; e.g., consider the iterative process for the square root of a 
number u where u < 1 (we defer any mathematical discussion until later). 
The first approximation Zq is chosen equal to 1, and the successive 
ones given by

Z = 10
Zn = 2'1(Z + u/Z )
1 v o ' o

Z2 = 2"1(Z1 + u/Z^

Zi+1 = 2‘1(Zi + u/Zi)
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The successive iterates are to be done in an induction loop where Zo
is an initial step apart from the loon. In the first traversed of 
the loop

Z^ = 2 (Z + u/Z )

is computed. The next traversal, computes
Z2 = 2"1(Z1 + u/z^

the third traversal. Z^, and so on. How, then, with one set of equations 
in eui operation box is the desired notation indicated for each traversal? 
This is done in the following manner:

The contents of the operation box do not represent any specific tra
versal of the loop; hence an index is adopted that represents the general 
traversal; e.g., for the square root the operation box would contain

zi+i = s'XWV.

This index is the variable of induction that describes the inductive pro
cess, for if

Z = 1o
Zi+1 - 2"1(Zi + u/Zj) (i = 0,1,2...)

then the process in question is completely described. Although the 
operation box does give the general expression, a means is needed for 
ascribing the appropriate value to the variable of induction for each 
traversal. This is done by the substitution box. Its function is to 
bring into agreement the notation of all quantities in which the vari
able of induction occurs with the notation that corresponds to a speci
fic traversal of the loop. In other words, the substitution box makes 
the notation agree with the set of numbers upon which the succeeding 
boxes act during the forthcoming traversal of the loop.

A substitution is indicated as a—*i. It is interpreted as 
meaning that during the forthcoming interval and until a new substitu
tion is made, everywhere that i occurs it is to be replaced by a. This 
first case is obvious enough. However, the substitutions are not re
stricted to constants replacing the variable of induction. In fact, 
the substitution often contains some function of i; e.g., the substitu
tion of i+1 —+ i is used frequently. In the instance where the variable 
i occurs in both members of the substitution, it may conveniently be
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interpreted in the following way: For the i's that occur to the left 
of the arrow the substitution from the preceding interval remains valid. 
The quantities on the left of the arrow will then not contain i^ anywhere 
in their expression and the substitution is made as described above; 
e.g., suppose that a substitution a—*i has been indicated. After a 
sequence of boxes a new substitution i+1—>i is then indicated. First 
substitute a (the value of the immediately preceding substitution) for 
the i that occurs to the left of the arrow. The substitution now reads 
a+1—+i and we then proceed as in the above simple case. Hie next time 
the control returns to this substitution box it would be interpreted as 
(a+1) + 1 = a + 2-+i.

Note that substitution boxes do not involve any arithmetic operations 
or transfers of numbers. They merely make changes in notation (trans
formations) such that the flow diagram indicates each stage of the compu
tation in a precise manner. The substitution box is identified by a 
lower case Latin letter.

We continue with the square root example and illustrate the use of 
substitution boxes. The flow diagram for the process is:

Figure 7.
(i) Operation box 1 initiates the induction by setting Zq = 1 

and storing it in A.l
(ii) Substitution box b indicates that everywhere in the following 

boxes up to the next substitution box wherever the variable of 
induction i occurs it is to be replaced by 0.

(iii) As a result of box b, operation box 2 indicates that
= 2“1(Z + u/Z )

1 ' o 'o'

and Z^ is stored in A.l. The alternative box, box 3, indi
cates that the conditional transfer is to act upon |ZQ _ g-J " d*
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(iv) Box £ is a substitution box of the second type discussed in the 
preceding paragraphs, namely the substitution i+1—>i. In the 
interval leading into this box the substitution 0—►! was 
valid. We replace the i to the left of the arrow by 0. The 
substitution is then 1—Operation box 2 now indicates

Z2 = 2~1(Z1 + u/z^

and alternative box 3 indicates | Z^ - Z^ | - d. When substitution 
box c is again traversed, it will indicate 2—>i, and the iter
ative process is advanced another step.

With the aid of the substitution box we have been able to describe 
completely and precisely the desired inductive process.

Throughout the flow diagram many symbols and notations are introduced 
(such as the variable of induction) that are relevant only in the flow 
diagram and often for only isolated parts of the flow diagram. These 
quantities are usually without any physical meaning apart from the 
process that they are describing in the flow diagram. These quantities 
are called bound variables. The Z*s of the square root routine are such 
a variable. In passing from one section of the flow diagram to another 
these bound variables may take on new significance in describing some 
other process (such as the variable of induction i in the induction loop). 
The concept of the substitution box is extended to cover substitutions 
involving any bound variables.

There is one other box that is an integral part of the flow diagram; 
it is the assertion box. Its usefulness stems from the fact that at cer
tain points of the flow diagram, bound variables may acquire a fixed 
vadue with a fixed meaning; e.g., in the square root diagram when

- Z^ < d, then to sufficient accuracy = \/u, where u is the 
number for which the square root is being extracted. Whenever such con
ditions are attained one may state this relationship by means of an 
assertion box. Hence, if we aigain consider the flow diagram of the square 
root routine and consider the negative branch which terminates the process, 
we have:

3 #

Z; -Z;i+1 -8T Vu" =z i+i
+

Figure 8
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When the control completes the process and proceeds along the negative 
hrhnch, then is the desired ~\/u. This fact is stated in the
assertion box. The assertion box is identified by a crosshatch (#).

The discussion of the various boxes is completed by discussing the 
storage boxes. There are tvo kinds of storage with which we are concerned. 
In the first place, there will be a set of numbers that originate with 
the problem and will remain unchanged throughout the course of the problem. 
The storage necessary for this type of quantity is called static storage.
The storage requirement that originates from computation within the prob
lem is called dynamic storage. We are not concerned here with the static 
storage as it is unchanged throughout a problem. However, at certain 
points along the flow diagram it is convenient to indicate the contents 
of the dynamic storage concerned with the local computation about to be 
performed. The storage boxes are connected to the flow lines of the dia
gram by dotted lines. (These boxes are not an integral part of the flow 
diagram.) In Figure 9 the flow diagram for the square root routine is shown 
complete with storage boxes.

Z(f I to A.

Figure 9.

The examples indicate a complete set of storage boxes indicating all 
relevant changes. In actual practice, however, the procedure will be to 
indicate storage boxes only when they are useful and needed for clarity.

The substitutions indicated by the substitution boxes are also valid 
for the storage boxes. Consider Figure 9: on either side of the substi
tution box b, a storage box is indicated. The storage box to the left of 
Box b shows that A.l:Zo, while the box to the right of Box b shows that
A.l:Zi. If, however, 0 is substituted for the i as is indicated by Box b, 
the two storage boxes agree, as they should at this time. Similarly, the 
storage box immediately to the left of Box 2 is brought into agreement 
with the storage box to the right of Box 2 each time substitution box c 
is traversed.
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Let us recapitulate at this time:
(i) The operation hox indicates the arithmetic operations and the

transfers of numbers that are to take place. In the arithmetic
operations the relationships are expressed by equality signs;

2i.e., y=ax +bx+c, y= f(x,t), or some other such expression.
The quantity that is being formed is always written as the left 
member of the equation vhile all of the known values are included 
in the right member of the equation. The operation box has sin ac
companying identifying letter or number. Arabic numerals are used 
to identify such boxes.

(ii) The alternative box is associated with the conditional, transfer.
The conditioned transfer acts upon the quantity or quantities in
dicated in the box; and the control follows the positive exit or 
negative exit, according as the transfer is effective or not. The 
eiddress of the conditional transfer instruction must be the address 
corresponding to the positive exit of the box; and immediately after 
the conditional transfer instruction is the sequence that the nega
tive branch will follow.

(iii) The substitution box indicates changes that occur in bound variables. 
These are changes in notation (or transformations, if you like) and 
they do not involve any arithmetic operations or transfers of numbers. 
The substitution box is usually concerned with the variable of in
duction in an inductive process; and by attributing successive values 
to the variable of induction wherever it occurs in the general ex
pression of the process, the induction is completely described. The 
contents of the substitution box are indicated with an arrow, such 
as a—where this is read as substitute a for i.

(iv) The assertion box states an existing condition. At certain points 
of the diagram a bound variable may acquire a fixed value. The asser
tion box merely states this fact.

(v) The storage box indicates the relevant storage locations of the quan
tities needed for computation in a sequence of operation boxes.
We have now completed the discussion of the important components of 

the flow diagram. There are certain refinements to the flow diagram that 
will be introduced as the need for them arises in the forthcoming examples.



Problem 4
We propose to extract the square root of a number u by means of 

the iterative process
zi+1 - 2‘1(Zi + u/Zj) (i = 0,1,2 •••)

11m z = VS
i—*oo

Since the computer requires that all numbers be in the range -1 < x < 1, 
u is restricted so that 0 ^ u< 1. At each step of the iterative process 
the division u/Z^ must be performed. Since u < must hold for this 
to be a legal operation, it must either be shown that this condition does 
hold or else the necessary adjustments must be made (by coding) such that 
the condition is true.

We propose to show the former as follows:
Zi+1 = 2’1(Zi + u/Z^ (Eq. 1)

zi+1 -vG" = zi/2 + -\/fi
= (1/2Z.XZ^ - 2ZiVu + u)

Zi+1 = (1/2Z^(Zi -yG)2 (Eq. 2)

Assume 0, then from (Eq. l) all > 0. Since all Z^> 0, the
right member of (Eq. 2) is positive; hence the left member is positive and

Zi+f> nA > u.

If Zq> u, which is done by setting Zq = 1, then all
ZjL> u

and the quotient u/z^ will not exceed the allowed limits of the computer. 
In choosing Zq = 1, Z^ is formed as

Zj^ = 2"1 + 2"1u

which is used as the first step of the inductive scheme.
We must ascertain which Z^+^ is to terminate the induction. This

could be done by determining the number of iterations necessary to com-
-^9pute the worst case, namely u = 2 , and then traverse the induction

loop that fixed number of times, irrespective of the size of u. Let us, 
however, do something slightly different.



We know u to within an error Au where
Au = E”1^"39 = 2"1*0

as this is an error introduced by the physical size of the computer 
The error AvC in determining yfa is found as

u +Au = (/u +AV/G)^

u +Au = u + 2^/GAJu 
neglecting second order terms. Hence,

AuAyu = 2^
For our case

€uE Ay/S = 2"4l//u, u/ 0
For u = 0 we have

Au = (V&) 
2-1*0 =

The error £ varies from 2 u

eo “ 2
-20

-20

when u = 0 to 2 
The iterative process should certainly stop •whenever

Z

-41 when u = 1.

i+1 -v/G^ € . v u
We propose to show that whenever

*t - z1+is 2'21
then

zi - y/i ^ eu

and the iterative process is complete.
First let us show that

Z±+1 -v/u< 1/2 (Zi ->/5).
Since al.1

iyG > u

Zi + U/Zi^ Zi +vA 
1/2 (Zi + u/Z^ 1/2 (Zi +N/i)

then
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The left-hand side is by the definition of the iterative process equal 
to Zi+^; hence

Zi+1<l/2(Zi +v/u)
Zi+1 -n/u)

From this it follows that
Zi+1 ^Zi " Zi+1*

If the iterative process is terminated when
Z - Z. 2-^

then i+1
zi+i -^S2< «-21

and adding these two inequalities gives

Hence, from (Eq. 2) 

we define

then

Since

and

z± < 2-20.

(Zj^-yu)2 = 2z1(zi+1- /i) ^2'1+0

£i “ Zi+1

2Z.€. ^ 2"40. 
i i

v/u/Zi < 1

az^v/S/Zi)®!5 ^
ei S 2-kl/Si.

This completes the proof, for if the induction is stopped when
.-21Zi - Zi+1^ 2

then
-41

■*1+1 -vff = ^i^eu = 2 7^

as is desired.
Since the flow diagram has previously been discussed in detail, 

we turn directly to the coding which is done with the aid of the flow 
diagram.
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Figure 10.
-1Storage locations are needed for u, for the number 2 , for the

-21number 2 , and a temporary location for intermediate results. These
are designated as

B.l: u .-21
.-1

B.3: 2
B.2: 2~~ BA:

and the Z's are stored in A.lj hence utilizing the same location for 
the successive iterates.

In the initial coding each box is treated independently. The coding 
is:
Box 1.

1. m —»Ac B.l u to R2
2. R 1 2"1(u) in R2

3. m —*Ah B.2 Z1 = 2"1(l+u) in
4. A—»m A.l

Box 2 .
1. m—»-Ac B.l u to R2
2. 4- A.l u/Zj. in R4
3. Q—»m B.4
4. m—>Ac B.4 u/Zi to R2
5. m—>Ah- A.l u/Zi - Z± in R2

Z1 to A.l

u/Zj^ to B.l<-
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6. R 1
7. A—wn B.4
8. m—►Ah A.l
9. A —»m A.l

Box 3*
1. m —►Ac- B.4
2. m —»Ah- B.3
3. C Box 2,1
4. Stop

In Box 2, observe how
and u/Zi< 1, but it does

(Zi+l • Zi} = 2"1(u/zi “ zi) in R2
Z. , - Z. to B.U 1 i+1 ,iZ. , = 2 (u/Z. - Z.)+Z, = 2 (u/z. + Zj in R2i+l ' ' i iy i ' ' i 1'

Zi+1 to A.l

- Z. , to B21+1 -21
- Zi+1 - 2 in R2

Ji+1 is formed. It is known that Zi< 1

This, however, would require additional orders as 2 Z would have to— I ^be formed and stored before proceeding to 2~ (u/Z^), in order that the
addition of the two terms could take place at this time. It is more
efficient to form in ihe following way: since Z^ and u/Z^
are both positive, the difference

u/z. - Z. < 1.7 i i
Therefore, the difference is formed and shifted right 1 to obtain

2"1(u/Z. - Z.).

Observe that
Zi+1 - Zi = 2"1(u/Zi - Zi). (Eq. 3)

If Zi is now added to both members, then
Zi+1 = 2‘1(u/Zi - Zi) + Zi = 2"1(u/Zi + Zi).

Equation 3 above expresses the negative of the quantity Zi - Zi+1
desired for the discrimination in Box 3. Z. , - Z., is stored in B.4
so that it will be directly available for Box 3* In fact, if Z^^ had
not been formed by first forming and saving the quantity Z^i - Zi,
Zj , could not have been stored in A.l, as Z. would then still be i+1 7 i
needed for Box 3* This would mean that Z^^ would be sent to B.4 until 
the completion of Box 3 at which time it could be sent to A.l. Again, 
this would have required additional coding.



In pairing the instructions into words, we start the coding at 
Word 1. No connecting instructions are needed between the boxes.
The total number of instructions is:

Box 1: 4 instructions
Box 2: 9
Box 3: 3

and a "stop" instruction : _1
total : 17 instructions

which require 9 words. Five words of storage are needed which account 
for Words 10 through 14. The sequence is:

1. m —>Ac 10 R 1
2. m—*Ah 11 A—»m 13
3. m —»Ac 10 ♦ 13
4. Q —»m 14 m—*Ac 14
5. m—»Ah- 13 R 1
6. A—an 14 m—►Ah 13
7. A—>m 13 m—>Ac- 14
8. m—»Ah- 12 C 3
9. Stop

•
oH u

n. 2-1
12. 2-21

13.
14.

The conditional, transfer instruction in the right half of Word 8 
transfers to the first instruction of Box 2. When the instructions are 
paired, the first word of Box 2 becomes the left-hand instruction of Word 3; 
hence the conditional transfer instruction is the transfer to the left-hand 
instruction of Instruction-pair 3.

Before discussion of Problems 5 and 6, on the conversion of numbers 
from one base system to another, some remarks should be made on the form 
of input and output data. Although the computer operates with numbers ex
pressed in the binary base, the human operator is apt to find that he has, 
through years of exposure, become firmly bound to the decimal number sys
tem. It is then certainly to the advantage of the operator to find some 
means of communication to and from the machine that can be expressed in 
decimal numbers. Before discussing the problems related to such a scheme, 
we first make a few remarks on the input-output problem in general.
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Even though we are at present mainly interested in input and out
put data in the decimal number system we do not wish to exclude input 
and output as true binary numbers. In fact, whenever any data is printed 
for subsequent consumption by the computer it should obviously remain in 
the binary base; furthermore, it is both convenient and simple to have 
instruction words coded in their true binary form. As we have more ex
perience with the computer and with binary numbers, our- dependence upon 
the decimal system may wane, and we may find ourselves operating solely 
with binary numbers. We first consider the input-output in the binary 
system and from that develop the scheme for handling decimal numbers.

It is not practical to have the keyboard of the tape punch or the 
type bars of the printer operate in true binary notation, for this would 
mean that forty characters would have to be printed or punched per word; 
and even though one needs to recognize only 0's and I's, it is difficult 
to examine words forty characters long. Let us arrange the bigits into 
groups of, say, three or four bigits and specify a character to identify 
each unique combination. We choose groups of three or four since these 
correspond to eight and sixteen unique characters, respectively, which 
are each fairly close in number to the usual ten characters in the deci
mal system. Such choices shorten the word length from forty bigits to 
either thirteen or ten characters, accordingly. For the present discus
sion, we fix upon groups of fours {tetrads) and identify each tetrad by 
a single character. Since sixteen characters axe needed, we are really 
operating in the hexadecimal (l6) number base. For those tetrads that 
have single decimal digit equivalents, the corresponding decimal charac
ters are used to identify them. The remaining six tetrads are identified 
by the letters A,B ••• F. Table II shows the hexadecimal characters 
with their binary tetrad equivalents.

TABLE II
0 0000 b 0100 8 1000 c noo
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E mo
3 0011 7 0111 B ion F nn

The keyboard of the tape punch and the type bars of the page printer 
have sixteen characters. In tape preparation, the conversion from hexa
decimal to binary is effected directly by the punching equipment. When 
one of the sixteen keys of the keyboard is depressed the punch is set up
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so that it punches the binary equivalent on the tape (in a tetrad of 
bigits). Similarly, when printing is desired a tetrad of bigits actuates 
the type bars and the hexadecimal equivalent is printed.

To return to the decimal input-output problem, we have at our dis
posal the first ten ordinal characters of the hexadecimal notation which 
are identical to the ten decimal characters 0,1 ••• 9. To prepare a tape 
of decimal information, we depress the keys corresponding to the individual 
decimal characters of the desired number. The punch converts the decimal 
characters into tetrads of bigits which give a "coded-decimal" representa
tion of the number. The coded-decimal form of a number is not identical 
to the number's true binary equivalent. For example, consider the decimal 
number 512* Its coded-decimal representation is 0101 0001 0010 while its 
true binary representation is 1000000000. There is a very simple algorithm 
by which we can convert the coded-decimal number into its true binary equi
valent. The output problem involves the converse. We need an algorithm by 
which a true binary number can be converted into its coded-decimal, equi
valent so that the printer may produce the number in its decimal form. We 
consider first the input problem—the conversion of a coded-decimal number 
into its true binary equivalent.

Problem 5
Since a tetrad of bigits is used to represent a single decimal digit, 

and since the standard word length is forty bigits, each word is comprised 
of ten tetrads. The first tetrad on the left is used to indicate the sign 
of a number. This means that the computer is able to store a nine digit 
coded-decimal number with its sign. In following the present sign repre
sentation for binary numbers, the tetrad 0000 designates a positive num
ber and the tetrad 1111 designates a negative number. Negative coded- 
decimal numbers are represented as signed numbers rather than as complement 
numbers as used for negative binary numbers. As examples, a positive and a 
negative coded-decimal number are shown.
+ .765432109: 0000 0111 0110 0101 0100 0011 0010 0001 0000 1001 
- .543010678: 1111 0101 0100 0011 0000 0001 0000 0110 0111 1000

The conversion of coded-decimal number a' into the true binary number 
a may be performed as follows: The absolute value of a' is, converted and 
then the sign is determined. The absolute value is obtained by neglecting 
the sign tetrad of a'. The sign tetrad comprises bigits (0 — 3)i hence

| a'| = bigits (4—39) of a' 0.<|a'|<l (Eq. 4)
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Recall that each decimal digit treated as an integer is represented by 
its true binary equivalent in the coded-decimal notation. The tetrad 
represented by the bigits

(4i—ln+3) (i = 1,2 ••• 9)
beginning at the left of a' represents the decimal digit w.. The first
tetrad from the left corresponds to the 10 position, the second tetrad

_2to the 10 , and so on. Therefore,
(4i—4i+3) = 10"^ (i = 1,2 **• 9) (Eq. 5)

and furthermore, Q
|a'| = 10“^; (Eq. 6)

e.g., I a'I = .0111 0101 0110 1001 0001 0000 0100 0011 1000 = .756910438 =

= jfio'3^ = 7/l01+5/l02+6/l03+9/lo\l/l05+0/l06+Vl07+3/l08+8/l09.

Since each tetrad is, by itself, in true binary form if considered as an 
integer, one method of converting the number is to divide each tetrad by 
its appropriate power of 10 (expressed, of course, as a binary number) 
and add the results of all such divisions; e.g., .25 is .0010 0101 in 
coded-decimal form and to convert this to a true binary we perform the
steps

0010 . 0101 0010 0101 n m 1010 + (1010)(1010) = 1010 1100100 " * '
and 0.01 is the true binary form of the decimal number .25. However,
let us do something slightly different. Multiply and divide the right
member of (Eq. 6) by 10^* 2-3^. This gives

(Eq. 7)

The conversion may now be effected by multiplying each tetrad w. byg_i _39 110 • 2 , adding the products of all such multiplications, and then
dividing the resultant sum by 10^• 2”3^. Each tetrad w. has a co-

9-i 1factor, 10 , which is ten greater than the cofactor of the immediately
succeeding tetrad. The conversion from the coded decimal number ji* to
the binary number & is then described by the following inductive pro
cess
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a = 0o
a, = 10a + 2~39w.

1 o
a_ = 10a.. +

2-3<
2 1

li+l = 10a. + 2-39w. i
i+1

a9 10a8 + 2~39w9

The tetrads are isolated with the aid of the left shift order. 
First the magnitude of a* is formed by bringing a* into R2 (the 
Accumulator) and effecting a left shift of 4. The portion of a’ left
in R2 is | a'| . R4 (the quotient register) is then set to 0. A subse
quent left shift by 4 now has the effect that w^ appears in the ex
treme right of R4. The first tetrad w^ has thus been separated from
the remaining tetrads, and since wn appears in the extreme right of 
R4 it is 2 «■]_> as desired, a^ is now formed as:

-•5Qan = 10a + 2 J*\r-.1 o 1
Wg is isolated in the same manner as was w^ 'tl:ieri a2 is forme(3-^
and so on, until aQ is formed. A multiplication by ten at each stepy
cannot directly be done as this is an illegal operation, since allowed 
multiplication factors must be in the range |x| <1. However, a multi
plication by ten may be simulated by doing a series of left shifts and 
an addition for ■5lOaj^ = 2“^ + 2ai.

The inductive process may be written as:
a = 0o

a1+1 = 23ai + 2ai + 2“39wi+1 (i = 0,1 ••• 8)

a9
109. 2~39a



The 's are also formed by an inductive scheme where

w^ = 2^a'o (integer part) a'^ = 2^a'o (fractional part)

w2 = S^a^ (integer part) a'g = 2^a'^ (fractional part)

i+1
2^a' (integer part) a' i+1

2^a' (fractional part)

= 2^a' 8 (integer part) = 0 = 2 a'g (fractional part)

There remains finally the determination of the appropriate sign to 
affix to the true binary number a. It is recalled that the extreme left 
tetrad is reserved to denote the sign of a'. A sufficient method is to 
examine the leftmost bigit of a'. If this is 0, a' > 0 and a is to be 
positive. If the leftmost bigit of a' is a 1, then a'<" 0 and a is 
to be formed as a complement.

The only operations that are performed on a*, the coded-decimal num
ber, are a series of left shifts by 4. To simplify the coding and flow 
diagram, the number a* is treated as though the binary point is immedi
ately left of the first bigit position. In other words, the normal sign 
bigit (the 2° position) is treated as a numerical bigit, in fact the 
bigit position. After the first left shift of a* by 4, the first signi
ficant bigit of w^ is in the leftmost bigit position. After is
isolated by a left shift of 4 places, the first bigit of w^ is in the 
leftmost bigit position, and so on with the remaining w's. The conse
quence of treating a' in this fashion is discussed in the coding of 
the problem.

Since nine tetrads must be operated upon, the induction loop must be 
traversed nine times. The method used for determining when to stop in the 
induction is essentially to discriminate upon the quantity

I - i (l = 8; and i = 1, 2 ••• 9> successively)
When i = 9 (which corresponds to the completion of the 9 traversal of 
the induction loop), the discrimination on (l - i) becomes negative for 
the first time and the induction process is stopped as desired.
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The storage requirements are as follows: a' (the coded-decimal
number) is initially in the memory at address A.l. When a (the true
binary number) is formed it is to be stored at A.2. Storage is needed

q ..39for the numbers 0 and 10 «2 . These are stored in C.l and C.2, re
spectively. Four intermediate storage locations sire needed during the 
course of the conversion. These are designated as B.l, B.2, B.3, and
B.4.

We axe now ready to draw the flow diagram and do the coding. The 
flow diagram is shown in Figure 11.

In the flow diagram. Box 1 sets up the initial steps of the inductions
over a* and a. It sets

a'o = | a'| = 2^a' (fractional part)

a =0 o
as is indicated in the description of the induction on the preceding page. 
This box also sets the upper limit 1=8 of the induction. Box b. Box 2, 
and Box c complete the description of the induction. Box 2 forms

a'^+^ = 2^a'^ (fractional part)

2*^w^+1 = S^a'^ (integer part)

-■PQa.,, = 10a. + 2 w. ni+l i i+1
with Boxes b and c ascribing the appropriate values to the variable of 
induction i^. In Box 3, the conditional transfer box, the quantity upon 
which the discrimination is made is more conveniently I-(i+l) rather 
than I-i as previously discussed. In discriminating upon I-(i+l), 
i assumes the values 0,1 •••8. This is then equivalent to the discri
mination I-i where i = 1,2 •** 9« Box 4 forms (a) by dividing a^.

9 -39by Kr *2 . Finally, Boxes 5, 6, and 7 are concerned with determining
the correct sign for the true binary number a.

The coding is:
Box 1.

1. m—*Ac A.l a' to R2
2. L 4 a* = o M = 2^a' in R2
3- A—>m B.l a' to B.l0
4. a —+Ac 0 a = 0 o to R2
5. A —*m B.2 a to B.2
6. a—»Ac

3
1CVI
•CO OJcbii

H -11 to R2
0

7. A—»m B.3 I to B.3
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CODED DECIMAL to BINARY CONVERSION

A.P o'
A.2 s a (when formed)

STORAGE

C.l! 0
C.2S I09*2"39

B. I • -
B.2: - 
B.3 - - 
B.4: -

IONHl
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Box 2.
1. m—»Ac B.l a'^ to R2
2. m >Q C.l 0 to R4

3. L 4 2""^w^+^ = 2^a'^(int.pt.) to : 
a’i+1 = 2^a’i(fract.pt.) in :

4. A—nil B.l a'i+l to
5. Q—*.m B.4 2-39v ^ i+1
6. m—>Ac B.2 a^ to R2

7. L 2 22a± in R2

8. m—>Ah B.2 22 a. + a. in R2 i 1
9. L 1 23a^ + 2ai in R2

10. m—>Ah B.4 ai+i = s\+ 2'39wi+i In 32

11. A—►m B.2 a1+i to :
12. m—►Ac B.3 I-i to R2

13. a—>Ah -1-2-11 I-i-1 in R2
14. A—►m B.3 I - (i+1)

Box 3*
1. m—*Ac B.3 I - (i+1) to R2
2. C 2,1

Box 4.
1. m —►Ac B.2 a^ to R2
2. ~ C.2 |aj = a^/l09.2~39 in R4
3. Q— B.2 |a| to B.2

Box 5.
1. m—►Ac A.l a» to R2
2. C 7,1

Box 6.
1. m—>-Ac- B.2 a = -(a| to R2
2. A—»m A.2 a to A.2

to B.4

Stop
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a = |a| to R2
Box 7.

1. m—sAc B.2
2. A—»-m A.2 a to A.2
3. T 6,3

In the coding in Box 1 the a—>Ac order has been used in In
structions 4 and 6. Recall that this order replaces the number in R2 
by the twelve address bigits of the instruction; i.e., R2 is cleared 
to 0's and the twelve address bigits of the instruction a—>Ac are 
added into R2 into positions 0 through 11. In Instruction 4, the num
ber 0 is desired in R2; hence the instruction a—>Ac has 0 as its 
eiddress. Instruction 6 forms 1=8. Since the integer 8 cannot be 
stored, we store S^”31 where m is at least 4 so that 8«2~m< 1.
The a—»Ac may be utilized to form I and save the word of storage 
that would be needed initially to store the 8*2-in. Since 1^ is formed 
in this manner we have the freedom of choosing 1=8•2-^, 8*2-^ ••• 8*2-^'.

for this case. In Box 2 where (l-i-1) is formed
-m

I is chosen as 8*2 
the 1 that is subtracted must have the same cofactor 2 “ as does the I; 
hence to do this the instruction a —>Ah is used with the associated 
address being -l*2-‘*^" = FFF In hexadecimal notation.

In Box 2, the first five instructions are concerned with forming
2-39w * i+1 and i+1* Before the left shift of 4 is executed (instruc
tion 3), R4 must be set to 0. This is done because 2~39w^+^ is needed 
by itself and if R4 were not 0 the left shift of 4 would place 2_39w^+^ 
into R4, but whatever number y that had been in R4 at the time of the
shift would merely be shifted left 4 places and R4 would contain
4 -39 -392 y + 2 rather than the desired 2 w^+^. For clarity, we show

in the following example how a left shift of 4 isolates each tetrad.
Suppose the number O.98 is to be converted into true binary form. In
coded-decimal form it first appears in R2 as the following sequence of
tetrads:

0.98*•• 0000 1001 1000*••
(+) (9) (8)

Normally, the leftmost bigit is reserved for the sign bigit. Inasmuch 
as no arithmetic operations are to be performed on a'^ except for shift
ing to the left, it is convenient to disregard the usual function of the 
leftmost position as corresponding to the sign bigit. The aim at this 
point is merely to separate successively the various tetrads. The first
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left shift of 4 produces in R2
a'0 = | a'| = 1001 1000* •*

The next time a left shift of 4 occurs, R2 contains
= 1000

Sinceand R4 has 00****0........ 1001.
is desired, one sees that in R4 the usual binary point convention is re
stored; namely, after the first bigit position. Hence the tetrad in R4 
can participate in normal arithmetic operations.

If one had adhered strictly to the sign convention for R2, some 
needless complications in the coding would have resulted.

Also in Box 2 we see that 2-^w^+^ in R4 must be sent to temporary 
storage (instruction 5) before

ai+i - 23,i + 2ai

is formed in R2 (instructions 6 through 9)* This is necessary as R4 
shifts in concert with R2, hence altering its contents.

The final coding is left as an exercise for the student, and the 
conversion of a true binary number into its coded-decimal equivalent is 
considered.
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Problem 6
When the formal calculation of a problem on the computer is finished 

the desired answers are to he converted from true binary form into coded- 
decimal notation so that the teletype page printer produces the true deci
mal representation of the desired numbers.

We develop this conversion scheme in the following way: The true 
binary number a is to be converted into its coded-decimal equivalent a'. 
Since coded-decimal numbers are stored as signed numbers rather than comple
ment numbers, j a j is first converted to | a'| , and then the appropriate sign 
is prefixed. Since j a | < 1, it has a decimal equivalent which may be writ
ten as

|a| = lO-1^ + ICT^Wg + ••• + 10“^w^. (Eq. 8)

The problem is to determine the w's. If 10|a| (multiplication by ten in 
binary form) is formed, there is an integer part and a fractional part to 
the number. We see from (Eq. 9) that the integer part corresponds to the 
decimal digit w^.

10|a| = w1 + 10-1w2 + ••• + ICf^w^. (Eq. 9)

If the fractional part of lOJaj is now multiplied by ten, the integer part 
is just w2, etc. The following inductive process to produce each of the 
decimal digits is used:

ao
10ao
10a1

e

♦

10ai

w1 + ai 
W2 + a2

w. , + a. , i+1 i+1

10a8 = w9 + a9
where the w^s are the binary equivalents of the decimal digits. In the 
coded-decimal representation, each decimal digit is represented as a tetrad 
of bigits; hence each w^ is separated as a tetrad of bigits. This is done 
by multiplying by ten in the following way:

10ai = 21*(2";Lai + 2"^).
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The left shift of 4 separates the integer part (wi+1) from the fractional 
part (&i+1) by shifting into the quotient register (r4) as a tetrad 
and leaving the fractional part in the accumulator (R2).

The coded-decimal number a' is formed by the following inductive
process:

a'.

■{
0 if a > 0 
F*2~39 if a 0

+ 2"39v,2^a'o ^
2^^ + 2"39w2

a' = 24a' + 2”39w.

i+1 i i+l

+ 2'39^

= a9
Note that each w^ •39,.is desired as 2 which is precisely the

quantity that appears on the right in R4 as a result of the left shift of 
4 places.

As in the previous problem the induction has nine steps; hence the 
same index representation is used. The flow diagram is shown in Figure 12, 
The required storage is indicated on the flow diagrao. The coding is:
Box 1.

1. m—»Ac
2. C

A.l
3,1

a to R2

Box 2.
1. m—+Ac C.l
2. A—nn B.l

a' = F x 2“39 to R2 
o

a' to B.l o
Box 4.

1. m—>AcM A.l
2. A—»m B.2
3. a—*Ac 8*2"1;L
4. A—»m B.3

2‘1a =|a I to R2
° -12 a to B.2 o

1=8 to R2
I to B.3
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BINARY to CODED DECIMAL CONVERSION

A.2sa

a = 0 to B.

B.2’* O;

a0 = lalto B.2 
I = 8 to B.3

Oj+i = fracfional part of 24(2’lai+2"3a, ) to B.2

2”39Wi s Integer part of 24(2',ai +2"3ai) 
a-j., =24a,i + 2’39*W14.1 to B.l

STORAGE

A.l-a C.l ! Fx2’39 B.I*• — B.35 —
A.2:a'(when formed) C.2S0 B.2;— B.4: —
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Box 5.
1. m—*Ac B.2 2"^ to R2

2. R2 2_3ai in R2

3. m—*Ah B.2 2_1a + 2"3ai in R2

4. m—►Q B.l a' to R4

5. L4 ai+1 = 2^(2”1ai + fract. pt. in R2

a* . = 2^a* + 2_3^w. ^ in R4
i+1 i i+1

6. Q—>m B.l af1+1 to B.l

7. R1 2_1ai+1 in R2

8. DS

9. A— B.2 2"1ai+1 to B.2

10. m—>Ac B.3 I-i to R2

11. a—►Ah -1.2-11 I-i-1 in R2

Box 6 •

1. C 4,4

Box 7 •
1. m—»Ac B.l a' to R2
2. A— A.2 a* to A.2
3. Stop

Box 3 •
1. m—*Ac C.2 0 to R2
2. A—►m B.l a' = 0 to B.l0
3. T 4,1

In Box 5 a^and a'i+1 are formed simultaneously. R4 is utilized
for 1a'i+^ and R2 for ai+^. This can be done since

a'i+i ■ 21|a,i + 2~^wi+1

ai+l = 2 (2 ai + 2 fractional part
are formed by a left shift of 4 and R2 and R4 shift in concert. As in



the previous problem (the conversion from coded-decimal form to binary 
form) the binary point in R2 is treated as though it were immediately left 
of the sign bigit. The reason for this is the same as in the previous ex
ample—the sign of R2 shifts with the number; hence, when the left shift 
of 4 is performed, the sign position should contain the first bigit of the 
w^+1 that is being isolated. There is, however, the complication intro
duced of having to shift the number to the right in forming the
quantity

2~1a. + 2~^a.. 
i i

Recall that in a right shift the sign bigit fills into the bigit positions
vacated by the shift. The quantity is a positive fraction; hence, in
shifting right, 0's should fill into the vacated positions. However, in
using the sign position as the first significant bigit of a^, whatever this
first bigit is, either a 1 or a 0, it will fill into the vacated positions.
This, then, would give an incorrect result if the first bigit were a 1. To
avoid this difficulty first form 2”1a which means that the sign position
no longer contains a significant bigit of a^ Then set the sign to 0 and
proceed in a normal fashion. In Box 4 where we first set

a = I a| o I I
we have really formed

2'\ = IH

since a has the normal binary point convention. In all subsequent steps
2"^a. n is formed by a right shift of 1 followed by a drop sign order (see
Box 5, Instructions 7 and 8). Instruction 1 of Box 5 brings 2 a. into-1 -R 1
the accumulator and the quantity 2 ai + 2 Ja^ is subsequently formed. 
Instruction 4 places a^ into R4; and Instruction 5, the left shift of 4, 
then forms a'i+i in snd a^+1 in R2* Instructions 7 and 8 then form 
R^a^^ and prefix the correct positive sign.

Instructions 10 and 11 of Box 5 form (l-i-l) but note that the quantity 
is not immediately stored. Since (l-i-l) is in R2, Box 6 consists only of 
the conditional transfer instruction. Instead of the conditional transfer 
instruction transferring to the first instruction of Box 5, it transfers to 
the last instruction of Box 4. The last instruction of Box 4 is the in
struction that initially sent I to storage; hence that same instruction is 
now used to store (l-i-l). This saves a needless duplication of a storage 
order. In the previous conversion problem, the same scheme could have been



used. Compare the last two Instructions of Box 5 and 1 of Box 6 of 
this problem with Instructions 12, 13, and 14 of Box 2 and nl 1 instructions 
of Box 3 of the previous problem.

In coding the various boxes, they have been coded in the sequence that 
corresponds to their correct position in the final coding. This sequence 
is Boxes 1, 2, 4, 5, 6, 7, and finally, 3. Box 2 must immediately follow 
Box 1 as it corresponds to the negative branch of the transfer. Then con
tinuing from Box 2, the flow lines go to Boxes 4, 5> 6, and 7. We may in
sert Box 3 after Box 7 since Box 3 is reached from Box 1 by the satisfied 
conditional transfer, and then Instruction 3 of Box 3 sends the control to 
Box 4 as is desired.
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Problem 7
We propose to evaluate the integral (x)dx where a < 1. We

ass-ume that f(x) is continuous in the interval O^x^a and that the 
value of the integral as well as the value of any intermediate steps of 
the integration lies in the range of the computer. The value of the in
tegral is approximated by Simpson's method for stepwise integration. The 
function f(x) is given at the equidistant values xq(=0), x^, x^ *•* x^.(=a). 
The values f(x0) f(x ) f(x^) ••• f(xj) are stored in the memory at I+l 
consecutive storage locations. If x is taken as the interval between the 
various x^'s, then Simpson’s Rule may be stated as
^af(x)dx + er =^^(xo)+4f(x1)+2f(x2)+l^f(x3)+ ••• +ltf(xI_1)+f(xI],

where £r is the error term. To evaluate an integral, by Simpson's Rule 
f(x) must be determined at an odd number of x values (an even number 
of Ax intervals).

The integral is evaluated by using the following inductive process:
0

I 1.1 + T
where (*0 = 0, Xj = a) to the desired accuracy.

The inductive scheme that is chosen to describe the integration is 
perhaps neither the simplest in coding nor the shortest in computing time. 
It is used principally because an Innovation is introduced into the flow 
diagram.
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Three decisions must be made in traversing the induction:

f(x^) is added to the partial summation.

As previously discussed, the conditional transfer instruction 
allows the control to make a decision and follow one of two paths, dependent 
upon the decision. To make three decisions as outlined above, two alterna
tive boxes could be used in sequence. However, let us approach the problem 
in a slightly different manner.

(i) If i = 0 or I, then Ax3
(ii) If i is odd, then 4a x 

3
(iii) If i is even, then 2Ax

3

Ax3 f.(x°)-The first time through the induction it is desired to form
Ax J Ax ^As -z- f(x ) is formed, the next step of the induction is to form Ifc- f(x )° .Ax ^3 ‘'“o'........1 ..... . ............. ....... . '3

and as f(x^) is operated on it is known that next 2-y is to be
formed. In fact, at each passage through the induction it is known what
the forthcoming traversal should form. Let us, then, represent three
operation boxes which for convenience we call Boxes 2, 3> and 4. Box 2
forms fA^; Box 3 forms f^); and Box k forms
Rather than use a sequence of alternative boxes to direct the control to
the correct operation box (Box 2, 3> or according as !_ = 0 or I,
i = odd, i = even ^ o nor l), a transfer instruction is used to which is
supplied, at the appropriate time, the various addresses corresponding to
the entrance points of Boxes 2, 3> or k. To simplify the discussion this
transfer instruction is called A. In the initial traversal of the induction,
\ is to have an address that sends the control to Box 2 where it forms
^y- f(xQ); hence in setting up the initial, step of the induction the address
corresponding to Box 2 is supplied to \. At the time that the control is
operating in Box 2, it is known that the next step of the induction should
form —y- f(x^) which corresponds to Box 3; hence as part of the operations
performed in Box 2 the address for Box 3 is supplied to A. Similarly,
when the control traverses Box 3 it is known that the next traversal of the

2 Ax^ f(xg); hence Box 3 supplies.induction should involve Box k which forms 
among other things, the address of Box k to A* And when in Box k, the con 
trol should return to Box 2 on the next traversal so A is supplied with 
the address corresponding to Box 3. The final step of the induction is to 
form
until i=I, at which time the last term is formed.

y fCxj). This is done by a discrimination on i-I, which is negative
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The position of the flow diagram at which the transfer instruction \ 
occurs is represented by an interruption in the flow line with a circle con
taining the Greek letter The circle has one point of entrance but no
point of exit. See Figure 13. In general, the Greek letter is not restricted 
to \ and any letter could be used. The various points to which the transfer 
is to send the control are also represented by circles which contain the same 
Greek letter as the transfer circle. These Greek letters are, however, in
dexed for identification. These circles have no point of entrance but one 
point of exit as shown in Figure 14.

©-

Figure 13. Figure 14.

Such a set of symbols is said to represent a set of variable remote 
connections.

The appropriate addresses are supplied to the transfer Xl in various 
operation boxes by making use of the substitution instructions. The opera
tion is denoted as where we enclose the \^'s in circles to
show that they axe addresses which are concerned with variable remote con
nections. is interpreted as meaning that the address repre
sented by is to be supplied (substituted) into the transfer instruction \.

The flow diagram includes the use of the variable remote connections. The 
flow diagram is shown in Figure 15.

At any step of the integration is used to represent the sum of the
terms in Simpson's Rule up to that point. When the integration is completed

represents the value of the integral to the desired accuracy.
Box 1 of the flow diagram sets ^ to 0 as an initial step for the 

induction. The variable of induction i is set to 0. \ is set to so
that the first traversal of the induction will be through Box 2.

Immediately following Box 2, X is set to so that after going
through Box 2 the next traversal will correctly include Box 3. In Box 3, X 
is set to X2 so that the following traversal includes Box 4, and so on until 
the induction is completed. At each traversal of the induction only one of 
the boxes, 2, 3* or is included.



A.1:2- 
A.2:0

2,= 0 to A.I 
0 to A.2 X=X2if i/Oorl, but i even 

X = X, if i odd

cr, = ^2- f (xj) to A.3

X MX.

f(Xi) to A.3
A.I

X\ =5!i-i+ cr to A.I

i+l-Ii +1 to A.2

ST =i:T.l+^f(xT)toA.I

A.I-* ./fUJdx —

INTEGRATION by SIMPSON'S RULE

FIG. 15
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Box 7 discriminates on the quantity i+l-I. This means that the con
ditional transfer is effective when i = 1-1. At this time ) T , hasI-l <-
just been formed. The final step of the induction, the formation of ^ 
is done in Box 9.

Storage is needed to store the numbers corresponding to the addresses 
^l , ^2 ' 1111686 addresses are stored as position marks and

B.l: (\1)0
B.2: (k2)o
B-3= (^>0

The following storage is also needed:
B.4: (1) 
B.5: (I) 
B.6: Ar

o
o

The values of f(x^) are stored in ■ 1+1 successive locations where C.O 
stores C.l: f(x1) ••• C.i: f^) ••• C.I: fCx^.). The value of the
initial address C.O is needed and it is stored in

B.7: (C.0)o

as a position mark. Any particular value f(x^) is brought into the arith
metic unit by forming its address as

(C.i)o = (C.0)o + (i)o in R2
The address C.i is then substituted into the instruction which is to operate 
upon the corresponding f(x^).

The coding is:
Box 1.
1. a—*Ac 0 0 to R2 « —
2. A—.m A.l 2. 1 =0 to A.l
3. A—«a A.2 0 to A.2
4. m—»Ac B.l OO to R2 v 1 0
5. S—»m 1,11 X1 to (8-19)11
6. m—*Ac B.7 (C.O) to R20
7. m—»Ah A.2 (c.i)o = (c.0)o + (i)Q in R2
8. S—*m 1,10

Ax C.i to (8-19)10
9. m— b.6 ■y to R4
10. X [c.i] f (xi) in R2
11. T U]



-76-

Box 2.
1. A—«n A.3

Box 5.
1. m—»Ac B.3 (\-) to R2 v 3 o
2. S—wn 1,11 \3 to(8-19)ll

Box 6.
1. m—»Ac A.3 ai to R2

2. m—>Ah A.l / . = / . . + o. in R2i i-l i r-
3. A—»m A.l 2^ to A.l

Box 7.
1. m—*Ac A.2 (i) to R2 ' 'o
2. m—>Ah B.4 (i+l) in R20
3. m—»Ah- B.5 (i+l-I)o in R2
k. C 9,1

Box 8.
1. m—►Ac A.2 (i) to R2 ' o
2. m—»Ah B.4 (i+l)o in R2
3. A—►m A.2 (i+l)o to A.2
4. T 1,6

Box 3.
1. L(2) a± = ^ f (x1) in R2
2. A—nn A.3 to A. 3
3. m—»Ac B.2 (\2)o to \2 to (8-19)11
4. S- >m 1,U
5. T 6,1

Box 4.
1. L(l) ai = f (xi) in R2
2. A—>01 A.3 to A.3
3. T 5,1

ro A.3

to A.3
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Box 9. Ax1. m—»Q B.6 -j- to R4
A x2. X C.I y fCXj) in R2

3. m—»Ah A.l Y.J = fin 32

In Boxes 2, 3> and 4 the quantity ^y f(x^) is needed. Rather than 

code this separately in qach box, it is coded immediately preceding the 
variable transfer X. This is coded in Instructions 6 through 10 of Box 1. 
The transfer instruction at the end of Box 8 transfers the control into In
struction 6 of Box 1 for this computation is to be done for all traversals 
in the induction. The coding of Boxes 2, 3> and 4 starts with the quantity 
^ f(xi) in R2.

There are 38 instructions in all. Pairing these into words gives 19 
words of instructions.

The word coding is:
1. a—*Ac 000 A—►m 028
2. A—►m 029 m—►Ac 021
3. S—*m ' 006 m—►Ac 027
4. m—►Ah 029 S—►m* 005
5- m— 026 X [ J
6. T' L ] A—►m 030
7. m—»Ac 023 S—hh 006
8. m—Ac 030 m —►Ah 028
9. A—»m 028 m—►Ac 029
10. m—*Ah 024 m—*Ah- 025
11. C 018 m—►Ac 029
12. m—»Ah 024 A—►m 029
13. T» 003 L(2) 002
14. A—*m 030 m —»Ac 022
15. S—*m 006 T 008
16. c ] L(l) 001
17. A—wa 030 T 007
18. m— 026 X (c.i)
19. m—►Ah 028 A—►m 028
20. Stop



-78-

21. <Vo ' (6>o
22. ("24 - (16)
23. <"3>o ■ (13)
24. Wo
25. Wo

2?. (C.0)q
28. A.l
29. A.2
30. A.3
The transfer instruction X must transfer the control at various 

phases of the problem into Box 2, Instruction 1; into Box 3> Instruction 1; 
and into Box h. Instruction 1. As the coding was done the transfer was 
fixed as a prime transfer since Box 2, Instruction 1, and Box 3> Instruction 1 
each were on the right side of their respective words. The first instruction 
of Box k, however, naturally falls as the left side of an instruction word.
This meant that the left half of Word 16, the start of Box 4, was left blank 
and Box 4 was started as the right-hand instruction. Perhaps by shifting 
the arrangement of Boxes 3, 4, and 9 this could have been avoided.

A better method of avoiding this would be to use the half word substitu
tion instruction. In Words 21, 22, and 23, where the numerical values of 
X^’s are stored, rather than storing just the addresses the following should 
be stored:

21. (X,) = CBOO6CBOO61 o
22. (X2)q = CA016CA016
23. (*-3)0 = CB013CB013

Then by a half word substitution the order as well as the address of the trans
fer instruction may be altered. Box 4 would now start with the left-hand in
struction of Word 16 which saves the previously wasted half word.

In the right-hand instruction of Word 18, the address C.I is inserted 
in parentheses. C.I is a known address, but for the example no numerical 
values were assigned for the C.i storage, nor was the number of intervals 
I determined. For this reason the C.I is indicated in parentheses rather 
than as a numerical, address.



The addresses of the instructions in the word code are written as 
three characters. Writing numerical addresses in this fashion tends to 
avoid errors in transcribing the word code into the numerical code as 
addresses are represented in the numerical code by three characters.



Problem 8
Although the computer operates with a fixed binary point, at 

times it is advantageous to use a floating binary point. The float
ing point method (hereinafter referred to as FPM) allows each number 
to be expressed as a fraction and a characteristic (an exponent).
For example the decimal number

7798.5^3210
or its equivalent

.7798543210 x 104 
expressed in floating point notation would be

.7798543210, + 4
where the +4 is the positive exponent of 10 associated with the number. 
Similarly, a binary number

1011.1001
expressed in floating point notation would be

.10111001, + 100
where the +100 is the positive exponent of 2 associated with the number.

The discussion here will pertain only to floating binary point 
operation. Although the computer operates with binary numbers, there 
are floating point schemes where the characteristic (exponent) may be 
expressed to a base other than the base two, such as the more familiar 
decimal base. Since the computer operates with binary numbers, it is 
inherently easier to use the floating binary point scheme, or at least 
a scheme where the base of the characteristic is a power of two, such 
as the octal or hexadecimal base. For much of the floating point 
operation a choice of expressing the characteristic to a base 16, 32, 
or even 128 might simplify floating point procedures.

The need for FPM may arise where the ranges (the maximum and mini
mum) of the quantities entering into the computation are not known with
in reasonable limits; or where the range of the quantities is so great 
that the scaling of numbers for fixed binary point operation causes un
due loss of the significant figures of the numbers. When a problem is 
scaled for fixed point operation, the loss of significant figures caused 
by the numbers becoming too small is as important a consideration as is 
numbers becoming too large.
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The use of the FPM is, in general, discouraged for must compu
tation as it greatly slovs down the effective computer speed. In 
most problems, scaling may be accomplished without undue loss of 
significant figures. In cases where the scaling is difficult to 
accomplish, a scheme of self-adjusting scaling or the use of scaling 
checks may be employed as an aid to scaling.

Addition is chosen as the example for FPM. The other operations 
are accomplished by a somewhat similar scheme.

To add two numbers that are represented in floating point nota
tion, the exponents must first be made the same. This may be shown 
by the following decimal example:

. -753, 3
•325, 2

These numbers are
.753 x lo|
.325 x icr

and for the numbers to be summed, the powers of 10 must be the same; 
therefore,

.753 x 10|

.0325 x 103

.7855 x ioi
To do the operations in the computer, all numbers must be less 

than 1. The smaller exponent must always be made equal to the larger 
as this has the effect of making the number whose exponent is in
creased, smaller, which keeps it less than 1.

The addition operation is accomplished by the computer as follows:
(i) The exponents are compared. If they are not the same, the 

smaller exponent is increased. The difference between the 
exponents is the amount by which the smaller is increased.

(ii) For each increase of the exponent by 1, the number should be 
multiplied by 2~ . A multiplication by 2~ corresponds to 
the number being shifted right by 1.

(iii) After the smaller number has been adjusted, the addition is 
done. The exponent of the sum is the same exponent as the 
numbers, unless the sum is greater than 1. In this case 
the sum is shifted right 1 and the exponent is increased by 1.
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For example:
a = .11111101, 100
b = .10110010, 011
s

The exponent of b is 1 less than the exponent of a; there
fore b is shifted right 1, and 1 is added to its exponent.
Now

a = 0.11111101, 100
b = 0.01011001, 100
s = 1.01010110, 100

The sum of the two numbers is greater than 1 so s is 
shifted right 1 and the exponent is increased by 1. 

s = 0.10101011, 101
In the computer, if the sum of the numbers is greater than 1, it 

cannot be adjusted simply by a right shift of 1 as indicated above 
since the sign bigit propagates in a right shift. To avoid this dif
ficulty, the addend and augend are each shifted right by 1 and their 
exponents increased by 1 before the addition is done. Then no spillage 
can occur in the addition.

Numbers to be operated on by FPM are adjusted into a standard 
form where the first significant bigit of the number is in the 2~^ 
bigit position. All fractions F are therefore in the range

1/2 < F < 1
Floating point numbers have 27 significant bigits which, with the sign 
bigit, occupy bigit positions 0 through 27. Positions 28 through 39 
of the word are used for storing the exponent, and a number and its 
associated exponent are stored in one word. The 27 bigits of the num
ber correspond to about 8 decimal digits. The 12 bigits allowed for 
the exponent are more than ample; however, 12 are used since the bigits 
(28-39) may be conveniently manipulated by the s—»m' instruction.

Positive and negative exponents are allowed, and the 12 bigits 
(28-39) for expressing the exponent n give a range

- 2048 <n c 2048
Negative exponents are represented as complement numbers. The first 
bigit of the exponent is considered its sign bigit. The exponent n is 
an integer and it is represented as n-2~
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We propose to form the sum of two numbers a and b with exponents 
Of and j3 , respectively. The fractions a and b are in standard nota
tion, that is

1/2 <: a, b < 1
After the addition, the sum s is adjusted to standard form.

As a first step of the procedure, a and b are each shifted right 
by 1 and their respective exponents are increased by 1. This Insures 
that the sum s = a + b <: 1.

The difference in the exponents is determined. If the difference 
is greater than 27, the sum is set to the value of the number with the 
larger exponent. A difference of more than 27 means that the smaller 
exponent must be increased by at least 28, and the number associated 
with the exponent must be shifted right the corresponding number of 
places. Since the numbers are represented as a sign bigit and 27 sig
nificant bigits, a number shifted right by 28 places can make no con
tribution to the sum. If the difference in the exponents is less than 
28, the smaller is adjusted to be equal to the larger. The sum of the 
numbers is then formed and put in standard notation. We now examine 
the flow diagram shown in Figure 16 . The storage of the problem is:

A.l: a (0-27)Of(28-39)
A.2: b (0-27) £(28-39)
A.3: s (0-27)<r(28-39)

Box 1 shifts a and b right 1 and increases each of the exponents.
Box 3 discriminates on the difference of the exponents to determine which 
exponent is the greater. The problem is arranged so that the number 
with the larger exponent must be in location B.l and its exponent must 
be in B.3. If cr > £ no changes of storage need be made. If cr < £ 
then the positions of a and b are interchanged and£tl is put into B.3. 
This is done in Box 4. Box 5 discriminates on the difference of the ex
ponents to see if this difference is greater than 27* If the difference 
is greater than 27, the sum is set to a, the number with the larger ex
ponent. If the difference is less than 28, the sum is

s = a + 2‘ltf“^b

and the exponent is the exponent of a. A discrimination is made on the 
sum s to see if it is in standard form. If it is not, the sum is shifted
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Start

S = S:

S = a to A.3A.3: S (ISi -28)2'

or +1 —►0%

S to (0-27)A.3 
<r to (28-39)A.3

S = a+2 b to A.3

<^>-2~ll=(jQ +1 )2~11 to B.3

b' = 2"1 b to B.2 

(cr+l )2-11 to B.3 

(/3+I)2'm to B.4

FLOATING POINT ADDITION

FIG. 16
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left vmtil the first significant bigit is in the 2*1 bigit position. 
This is done in Boxes 7 and 8. Box 9 combines the sum and its ex
ponent and stores them in A.3.

The storage locations B.l, B.2, B.3, B.4, and B.5 are needed to 
store intermediate values during the computation.

Rie coding is:
Box 1.
1. m—►Ac A.l a (0-27) ,cf(28-39) to R2
2. R(l) a* = 2_1a in R2
3. A--MB B.l a' to B.l
4. m—►Ac A.2 b(0-27) ,/Q(28-39) to R2
5- R(l) b' = 2_Ib in R2

6. A--MB B.2 b* to B.2
7. m—►Ac A.l a (0-27) ,0(28-39) to R2
8. L(28) CT-2-11 in R2
9. a—►Ah 2-11 (cr+l)2"i;L in R2
A. A—»m B.3 ( of+l)2” to B.3
B. m—►Ac A.2 b(0-27) ,^3(28-39) to R2
C. L(28) /3.2-11 in R2
D. a—*Ah 2”11 ()9+l)2“11 in R2
E. A—►m B.4 (£+l)2_11 to B.4

Box 2 •
1. m—►Ac B.3 (of+l) -2-11 to R2
2. m ——>Ah- B.4 b=(cC-fi)2~11 in R2
3. A—►m B.5 a to B.5

Box 3 •
1. C 5,1 8 in R2

Box 4 •
1. m—►Q B.2 b' to R4
2. m—»Ac B.l a* to R2
3. Q >m B.l a = b1 to B.l
4. A—>m B.2 b = a' to B.2
5. m—►Ac B.4 V2"11 =(j8«-i)*2"11 to R2
6. A—►m B.3 <T0.2‘ to B.3
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Box 5*
1. m—*AcM B.5
2. a—♦Ah -28*2
3. c 10,1

Box 6.
1. m—►AcM B.5
2. R(8)
3. S-MU 6,5
4. m—►Ac B.2
5. R(n) im

6. m—►Ah B.l
7. A—*m A.3

Box 7.
1. m—>AcM A.3
2. a—►Ah -2-1
3- c 9,1

Box 8.
1. m—►Ac A.3
2. L(l)
3 • A— ->1H A.3
4. m—>Ac B.3
5. a—►Ah -2-11
6. A—►a B.3
7. T 7,1

Box 9.
1. m—►Ac B.3
2. R(28)
3. S—►a* A.3
4. Stop

Box 10.
1. m—*Ac B.l
2. A—►a a.3
3. T 7,1

| 812_11 to R2 
(|d|-28)2"11 in R2

(ai.2'11 to R2 
|8|*2-19 in R2

|d| to (8-19)5
t to R22"^U in R2
s = a + 2"^b in R2 
o

6o to A.3

ISj^j to R2 
|si| - 1/2 in R2

to R2
s.= 2s. in R2 i+x 1
0i-2"11 to R2

to A.3

’fi - (-v1)2'11 R2
ff1+1*2“^ to B.3

ff-2"11 to R2 
o*2"39 in R2

a to (28-39)A.3

a to R2
8O a to A.3
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In the coding of Box 1, the exponent is not cleared out of positions 
28 through 39* These positions do not affect the answer. Hie numbering 
of the instructions in Box 1 is done hexadecimally. There are E in
structions which corresponds to 14 decimally.

In the coding of problems for the computer, the numbering is done 
hexadecfinally; therefore in all further examples the numbering will be 
hexadecimal.

In Box 9, where s and a are combined, £ is already residing in
A.3* £ is brought into R2 and shifted right by 28 so that it is in positions
28 through 39 of R2. It is then sent to A.3 by means of a substitution in
struction, and A.3 correctly contains

s(0-27), 0(28-39)
The floating point addition as set up would not be practical to in

corporate into a large problem where many such additions are done. As 
coded, 49 instructions are used, several of which are lengthy shifts. In 
floating point routines, time becomes a determining factor and the routines 
must be constructed with that in mind. There are several ways in which the 
time involved in the present routine could be shortened. However, we are 
interested at this time in demonstrating floating point procedures without 
attempting to develop the most satisfactory scheme.

The present problem does not take into account a method of handling 
a number that is zero. A way of doing this is not to allow an exact zero, 
but to say that zero is to be represented as the fraction l/2, with an 
appropriate negative exponent. The negative exponent needs to be at least 
28 smaller than the smallest exponent encountered in the problem concerned.
An addition would treat this number as zero in forming the sum. The fraction 
part as l/2 is suggested so that all numbers are represented in the stand- 
cud notation.

The code in final form contains 25 words since there are k-9 instructions. 
If the code starts at zero, 25 words would occupy addresses 0 through 19, 
hexadeclmally. B.l, B.2, B.3, b.4, and B.5 are the addresses 1A through 
IE, and A.l, A.2, and A.3 are addresses IP, 20, 21, respectively.
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The code is:
0. m—*-Ac OIF R(l) 001
1. A— 01A m—►Ac 020
2. R(l) 001 A— 01B
3. m—>Ac OIF L(28) 01C
k. aL-^Ah 001 A—>m 01C
5. m—»-Ac 020 L(28) 01C
6. a—x-Ah 001 A— 01D
7. m—»-Ac 01C m—>Ah- 01D
8. A—m 01E C OOC
9. m—>Q 01B m—^Ac 01A
A. Q— 01A A— 01B
B. m—»-Ac 01D A— 01C
C. m—>AcM 01E a—>Ah FE4-
D. C 018 m—►AcM 01E
E. R(28) 01C S—►IIl, OOF
F. m—>Ac 01B r(3) 000
10. m—»Ah 01A A—►m 021
11. m—>AcM 021 a—►•All COO
12. C 016 m—►•Ac 021
13. L(l) 001 A—► ni 021
Ik. m—»Ac 01C a—►Ah FFF
15. A—»m 01C T on
16. l o 01C R(28) 01C
17. S—»m' 021 Stop

•
00H m—*-Ac 01A A—►m 021

19. T on
1A.
IB.
1C.
ID.
IE.
IF. a,cf
20. b,)3
21. sfo
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Instruction 5 of Box 6 becomes the right hand instruction of OOF. 
The substitution instruction (Box 6, Instruction 3) that substitutes the 
address into Instruction 5 of Box 6 must be an s—>m' instruction as 
is indicated. Instruction 2 of Box 6 must be changed to R(28) rather 
than R(8) to accommodate the s—.



Problem 9
The standard 40 bigit number (including sign) provides sufficient 

accuracy for must computation; however, certain problems may arise 
where added precision is necessary. To handle such cases, multiple 
precision routines must be used. These routines effect the basic 
operations with numbers that are 78, 117, or k*39 (k = 1, 2 • • • K) 
bigits in length. For the present purpose, which is to illustrate 
such methods, only double precision (numbers 78 bigits in length) is 
considered.

In the treatment of multiple precision numbers, some convention 
must be adopted for the sign bigits of the auxiliary components, the 
principal component having of course the same form as the standard 
size numbers. A convenient pattern is to set to 0 the sign bigits of 
all auxiliary components. Hence, for the double precision number x>.0, 
the representation is simply

x — x * + 2 39x11
where x' is the principal component and x" the auxiliary one.

For x < 0, it should be represented as a 78 bigit complement, 
the sign bigit of the principal component being 1 and that of the 
auxiliary being 0 by our convention. This implies that the two parts 
of (2- x ) are

2 - x' - 2-39 and
1 - x"

The example chosen is double precision division, for it in itself 
includes a double precision multiplication and subtraction. The division 
is performed by forming first the reciprocal of the divisor to double 
precision, followed by a double precision multiplication with the 
dividend. We first consider double precision addition, subtraction and 
multiplication.

A double precision addition
s = x + y

is done by first adding the less significant components x" and y". The 
sum may be greater than 1. Recall that x" and y" each had a sign bigit
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of 0 so that a 1 in the sign position of this sum indicates spillage 
rather than a negative number. This spillage corresponds to a carry 
into the 2 position of the more significant part of the sum; there
fore, we may write

s" = x" + y" (mod l)
The more significant part of the sum is

s' = x' + y' +€ Q
_^Qf 2 if carry present o ~ V 0 if no carry present

Finally, the double precision sum is
s = s' + 2“39s"

In order to form a difference of two double precision numbers, 
the complement of the number being subtracted is first obtained. An 
addition is then performed as indicated above.

In the double precision multiplication, the product
p = xy

is to be formed. For simplicity of discussion, first assume x,y^ 0. 
Algebraically, the multiplication is

p = (x* + 2~3^x")(y' + 2"’3^y")
__ x»yi ^ 2™3^x**y^ 2”^x,y" ^ 2™*^^x**y^

Each term on the right has 78 bigits, so we may write the product 
(neglecting roundoff on the extreme right) as

p - (x'y1) • + 2""3^(x'y1)" + 2”3^c,,y,), + 2”3^(x,y,,),

P' = (x'y')’

p" = (x'y')" + (x'V)' + (x'y")'
p" is formed first. In the partial summing, carries may be produced that_-agmust be added into the 2 position of p*. The summing is done in two 
steps as

s = gx'y')"* (xV)'] (modi)

(1 if carry present 
0 if no carry presentwith
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p" = [s + (xV)'] (mod 1)

(1 if carry present 
0 if no carry present

This completes the multiplication for x,y>0 and
p" = (x'y*)" + (xV)’ + (xV)' - «0 -
p* = (x'y*)' + 2"39( eo + €l)

p = p' + 2"39p”

In order to treat the double precision multiplication when either 
the multiplier or the multiplicand is negative, we refer to the algebraic 
derivation of the multiplication. (See chapter on Binary Arithmetic.)
A product uv is formed as

p = (io + u)(
where

. _ ri if u is negative ^o - Vo if u is positive

1 + v)

The product expanded is

P = I, + | + f v + uo o 2 + u + uv

40 i+op = |v+2 u-u+u+uv+2 |* o o
p(mod 2) = £0V + 2 - u + u + uv

If u is negative, = 1 and a term v appears in the product. A 
correction of (2-v) is then necessary. For simple precision, if v is 
negative the terms (2-u) and u are generated during the multiplication 
and precisely compensate each other; hence, no correction term is neces
sary when v is negative. This compensation is not exact in double pre
cision, and a small correction is required. Now in a double precision 
multiplication

a correction term of
P = xy.

2 - y
is necessary if x is negative (indicated by the sign of x'). All inter
mediate products involving x' have a correction added, namely the comple
ment of the multiplicand. The terms involved are

(x'y')' and UV)1



-93-

The term (x'y')" of course does not suffer any correction, and the 
corrections as done by the computer are, respectively,

(2-y*) and (2-y")
Combining these two terms appropriately one gets the correction as 
done by the computer for a negative multiplier x, namely

2 - y' + 2"39(2-y")
The true correction, however, should be

2-y = 2-y'- 2“39 + 2’39(l-y")
The most significant part of the correction term is 2~39 too large. It 
is adjusted by subtracting 2-39 from (x'y')'. The least significant 
part of the correction term is 1 too large. It is adjusted by setting 
the sign bigit of (x'y")' to 0. (Less pedagogically, but more concisely,_oQit may be said that the computer correction is too large by 2” , and

-•30 .this is compensated by subtracting 2 twice.)
A negative multiplier which necessitates the above additional cor

rections may be detected by examining the sign of (x'y")'. always 
has a sign of 0; therefore, if

(x'y")^ 0, then x<0
and 2“39 is subtracted from (x'y')' and the sign of (x'y")' is set to 0. 
If (x'y") ' > 0, then x > 0
and no correction is necessary. If

(x'y")' = 0
and if y" = 0
then x^ may be negative, and examining (x'y")' will not indicate this. 
However, in such a case, the correction as done by the computer is the 
precise one and no further steps are necessary.

When the multiplicand £ is negative, the terms (x'y')' and (x"y')' 
suffer the standard correction by the computer (as a negative 
multiplicand is indicated by the sign of y'). We have seen above that 
the single multiplication process which forms the products (x'y')' and 
(x"y*)' generates pairwise the terms

x', (2-x') and x", (2-x")
The first pair compensate precisely; the second pair is really

2“39(x"+2-x") = 2(2-39)



-9h-

Ab before, this quantity must be subtracted from the collection to 
obtain the precise multiple product, and again this is accomplished

_OQby subtracting 2 from the more significant part and 1 from the 
less significant part. If

(x"y,).< 0 then yl< 0
and 2~^ is subtracted from (x'y')* and the sign of (x'^')' is set to 0. 
If 0 then no correction is needed.

A double precision product involving sill necessary correction terms 
is done as follows:
Form (x'y”)*. If

Form (xV)'. If

(x'y")' < 0 

(xV")1^ 0 

(XV)' < 0

* = 2 o
-39

then set sign of (x^")' to 0.
€o " 0*

*1 " 2-39
then set sign of (x'^')1 io 0*
e1 = 0.(xV)' ^0

Form (x^*)' emd (x^1)". Then form the stun
s = (x’y")1 + (xV)’*

If

p" is formed as

If

p* is formed as

and

s=>l 
s < 1

-■39Cg = 2 then set sign of £ to 0.
€2 = 0.

p" = (xV')" + s*

p"^ 1 6^ = 2”^ then set sign of p" to 0.
•S'0-P"< 1

p* = (xV')’ - €0 - €1+ €2 + €3

p = p* + 2_^p".
We now return to the division process. The double precision quotient

Q = x/y
is to be formed. As a first step the reciprocal of £ is obtained to Jd
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found by the iterative scheme
i/y*
2Zi - yzl 

l/y.

Such a scheme is error-squaring; therefore if the guess ZQ is precise 
to 39 bigits, Z1 is precise to J8 bigits. The scheme is shown to be 
error-squaring by the following:

Multiply both sides of the above equation by -y. This gives
-yz1+l = SZf + fzl

Adding 1 to both members gives
X - yZ1+1 . 1 - 2Zty + ySzl

- (i - yZi)2
(1-yZ ) is the error in the i approximation. The error (l-yZ. .) is 

^ th i+xthe error of the (i+l) approximation which as indicated above is the
square of the error of the i approximation.

The reciprocal of y cannot be determined directly as it is greater
than 1. Hence, the reciprocal of the scaled quantity 2 y is found where

l/2 ^ 2I)y|< 1, hence |(2nf^y)”^]< 1.
The unsealed quotient is obtained in two steps. First x may be multiplied 
by 2n, inasmuch as |x| < |y|; after the division a left shift of two is 
then performed. The first guess Zq is formed as

Zq = 2"2/2V Eq.(l)
Z is precise to 39 figures; consequently Z. is precise to 78 figures, o J.
Z^ involves a double precision multiplication in the term

The subtraction
2Z - 22-2nyZ 2 

o o

figures. The reciprocal of y is
Z = o

lim 
L—» oo

Ji+1
Ji+1

is not a true double precision subtraction as 2Z contains Just 39 figures.2 2 0A double precision complement of 2 *2 yZo must be taken however. Note 
that a factor 22 is incorporated into the subtrahend in the above subtraction.
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This is necessary because of the 2 ^ factor introduced in forming Z in 
E<1* (l). Using the quotient

= Z1 * X
is formed by a double precision multiplication. Then

Q = 2Q1
Since Q is formed by a left shift of 2, only 76 bigits are determined 
in Q rather than the desired 78.

We now discuss the flow diagram of Figures 17 and 18. Boxes 1 and 
2 of the flow diagram adjust x and y so that

i/2$|y)<i
Box 4 stores y and into the four appropriate locations to be 

used by the double precision multiplication routine. Since two double 
precision multiplications are required and since they are at two different 
locations on the flow diagram, the multiplication routine is arranged so 
that it can be used from any of several places. Four locations are re
served for the factors in the multiplication and upon completing the multi
plication a variable remote connection is set as an exit point from the 
routine. Box k also sets the exit from the multiplication as(<r)= 
which corresponds to the first instruction of Box 5*

Box 5 forms and then sends Z^ and x to the appropriate locations 
for the multiplication routine, and the exit is set as (^) = which
corresponds to the first instruction of Box 6.

Box 6 shifts left by 2 to give the desired Q.
The multiplication routine is contained in Boxes 7 through 14, num

bering hexadecimally. The boxes follow the multiplication procedure as 
outlined; hence, no further discussion is necessary.

The storage of the problem is:
A.l:
A.2:

A.3: y‘
A.4: y"

The number 2-39 is needed, and it is stored in A.5 as 
A.5: -2"39

The addresses and flT^ need to be stored. They are stored as posi
tion marks at addresses A.6 and A.7.

A.6:
A.7: (<r2)0



DOUBLE PRECISION DIVISION

FIG. 17



B-2- P

C.5= €,

p"= S+(uV')' to B.2

C.5: €

C.2: S

(uV)' toC.3 

= 0 to C.5

S=(u" v'V+tu'vTtoC^

p' =(u,v'),+ €, to B.l

€, ~ €n+0 to C.5

(uV'VDS toC.3 

6^= -2‘39to C.5
Set exit (or) to(orj)

(S) D S to C.2 
= +2"39 to C.5

to C.5

DOUBLE PRECISION DIVISION

FIG 18



Ten words of intermediate storage are needed for the computation. This 
storage is designated as

B.l C.l
B.2 C.2
B.3 C.3
B.U C.4
B.5 C.5

The coding is:
Box 1
1. m—»AcM A. 3 |y'lt°R2
2. a—»Ah -1/2 | |- 1/2 in R2
3. C 3,1

Box 2
1. m—>Ac A. 4 y" to R2
2. L(l) 2y^J in R2
3.
4.

m—>Q
L(l)

A. 3 y^ to R4
2(y^ + 2"39yMn)

5. Q—►m A.3
6. R(l)
7. DS
8. A—»m A. 4
9. m—>Ac A.2 x" to R2 n
A* L(l) 2x" in R2 n
B. m—yQ A.l x^ to R4
c. L(l) 2(x* + 2"39x”)

' n n'
D. Q—>m A.l
E. R(l)
F. DS
10. A—wn A.2
11. T 1,1

Box 3
1. a—»Ac 1/4 1/4 to R2
2. >• A.3 Zq = 1/4 ♦ y’
3. B.5

in R4 and R2
y'n+l toA'3

rnfl t0A-4

in R4 and R2
xn+l t0 A*1

xn+l toA-2

Z to B.5 o
in R4
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Box 4
1. m—*Q A.3 y* to R4
2. Q—>m B.l y* to B.l
3. m— A. 4 y" to R4
4. Q— B.2 y" to B.2
5. hi— B.5 Z to r4 o

6. X' B.5 (!?)• in R2, (Z2)" in R4

7. A— B.3 <*o)’ to B.3

8. Q— B.4 (z2)" to B.4
9. m—>Ac A.6 to R2
A. T (fi)

Box 5
1.
2.
3-

m—>Ac
L(l)
m—»Q

B.2

B.l

(yZp" to R2
2(yZ^)" In R2 
(yZ2)' to R4

4.
5-

L(2)
Q—mu B.l

22(yZ^)' in R4, 23(yZ2)''' in R2 
(22yZ2)' to B.l

6. R(l) (22yZ2)" in R2
7-
8.

DS
A— B.2

(22yZ2)" in R2
(22yZ2)" to B.2

9- m—»Ac- B.l -(22yZ2)• to R2
A. m—»Ac A.5 -(22yZ?)' - 2-39 in R2
B.
c.

m—>Ah
m—*Ah

B.5
B.5

Z - (22yZ2)' - 2"39
O O o oZ'l - “o - (2

in
i _

R2
2*’39 in R2

D. A—mu B.l Z* to B,.1
E.
F.

m—>Ac-
DS

B.2 2 - (22yz| 
Z’^ = 1

2y to R2 
°- (22^)” in R2

10. A—wn B.2 Z" to B.2
11. m—»Ac A.l x' to R2
12. A—«n B.3 x' to B.3
13. m—*Ac A.2 x" to R2
14. A— B.4 x" to B.4
15- m—»Ac A.7 (cr2)o to R2
l6. T (/3>
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Box 6
1. m—»Ac B.2 Qj to R2

2. L(l) 2QJ in R2

3. m— B.l in R4

4. L(2) Q* in R4, 2Q" in R2

5. Q— B.l Q' to B.l
6. R(l) Q" in R2

7. DS
8. A —>m B.2 Q" to B.2
9. Stop

Box 7
1. S— 12,4 (<r.) in R2 i o to (8-19)11,4
2. m—►Q B.l u* to R4
3. X' B.3 , (u'v')' in R2, (n’T')" in R4
4. A— C.l (uW*)’ to C.l
5. Q—►m C.2 (u*v*)*' to C.2

Box 8 -

1. m—>Q B.l u' to R4
2. X B.4 (u»v")V in R2
3. C 9,3

Box 9
1. m—>Q A. 5 € = -2"39 to R4

o
2. DS (u'v")^ in R2
3. A— c.3 (u'v")* to C.3
4. Q— c.5 €q to C.5

Box A
1. m—»Q B.2 u" to R4
2. X B.3 (u'V)' in R2
3. C B,3
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Box B
1. m—»Q A.5
2. DS
3. A—»m C.4
4. m—*Ac C.5

5. m—>Ah 8006. A— C.5

Box C
1. m—»Ac C.4
2. m—>Ah C.2
3. A—►m C.2

Box D
1. C F,1

Box E
1. DS
2. A— C.2
3. m—>Ac c.5
4. m—>Ah- A.5
5- A—►m c.5

Box F
1. m—»Ac C.2
2. m—>Ah C. 3
3. A— B.2

Box 10
1. C 12,1

Box 11
1. DS
2. A—>m B.2
3. m—>Ac C.5
4. m—►Ah- A.55. A— c.5

-2"39 to R4 
(u'VJ’DS in R2

(u'V)* to C.4
« to R2 o

= 6Q + (contents of R4)
to C.5

(u^v1)* to R2
S = (u’V)’ + (u’v')" in R2

S to C.2

(S)DS in R2 

to R2
e2 = €1 + 2~39 in R2

S to C.2

«2 to C.5

S to R2
p" = S + (u’v")' in R2

p" to B.2

(p")DS in R2 

«2 to R2
€3 = «2 + 2**39 in R2

p" to B.2

to C.5
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Box 12
m—»Ac C.l
m—>Ah C.5

A— B.l
T [cr]

(x'y')' to R2
p' = (x'y1)' + in K2

p' to B.l

The double precision shift in Box 2 is done by placing twice the 
less significant part of the number into R2. Its first significant bigit 
is then in the sign position of R2. The more significant part of the num
ber is put into Rk. A left shift of 1 now shifts the 78 bigits correctly 
as the sign bigit position of R2 fills into bigit position of R4.
The quantity in R4 is stored. The quantity in R2 is then shifted right 1 
and the sign bigit is set to 0. This is done to keep the less significant 
part of the number, the part in R2, in correct form.

In Box 5, the complement of 2 yZ^ is needed. Recall that the comple
ment of a 78 bigit number is

2 - 22yZQ2 = 2 -{(22yZo2)« + 2"39(22yZQ2)^

= 2 - (22yZo2)' - 2”39 + 2"39[l - (22yZo2)"]

Since the complement is to be added to a standard 39 bigit number, the
less significant part has only to be complemented as indicated and sent
into storage. The more significant part is complemented as indicated
and added to the 2Z and the result is sent to storage.o

In the multiplication routine (u'v")' and (uV)' are formed using
multiplication with round-off. This accounts for the possible contri-

-78butions from the neglected terms involving the coefficient 2~' . This 
does not, however, always give a correct round-off.

Note that Box 13 is not coded. It is not necessary to code it if 
the conditioned transfer of Box 8 goes to Box 9, Instruction 3« Since 
(u'v")' is formed as a multiply with round-off, Rk contains 0. This 0 
is set to and Instruction 4 of Box 9 stores it correctly. Instruction 
3 of Box 9 stores the (u'v")'. Similarly, Box il< is not coded and the 
conditioned transfer of Box A transfers into Instruction 3 of Box B.

Note the last two instructions of Box 4 and Box 5* Box 4 brings 
( into R2 emd then transfers to the multiplication routine. Box 5
brings (into ^ and then transfers to the multiplication routine.
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The first instruction of the multiplication routine then substitutes 
the address or ^ as the case may be, into the transfer instruc
tion at the end of the multiplication routine.

There are, in all, 107 instructions in the code; which is 54 words.
The code is to start at Word 0; therefore Words 0 through 35# hexadecim- 
ally, are the code. Words 36 through 3C are A.l through A.7# respectively. 
Words 30 through 4l sure B.l through B.5# and Words 42 through 46 are C.l 
through C.5, respectively.

The coding paired into words is:
0. m—sAcM O38 a—>Ah COO
1. C 0QA m—>Ac 039
2. L(l) 001 m—»Q 038
3. L(l) 001 Q—>m 038
4. R(l) 001 DS 000
5. A—*m 039 m—>Ac 037
6. L(l) 001 m— 036
7. L(l) 001 Q— 036
8. R(l) 001 DS 000
9. A—»m 037 T 000
A. a—»Ac 200 *• 038
B. Q—>m 04l m—>Q 038
c. Q—*m 03D m—>Q 039
D. Q—Mn 03E m—>Q 041
E. X* 04l A—>m 03F
F. Q—>m 040 m—>Ac 03B
10. T 020 m—»Ac 03E
11. L(l) 001 m— 03D
12. L(2) 002 Q—»m 03D
13. R(l) 001 DS 000
14. A— 03E m—>Ac- 03D

15. m—*Ah 03A m—»Ah 041
16. m—>Ah 041 A—>m 03D
17. m—>Ac- 03E DS 000
18. A—>m 03E m—»Ac 036

19. A—>m 03F m—>Ac 037
1A. A—»m 040 m—>Ac 03c
IB. T 020 0<ta 03E
1C. L(l) 001 m—>Q 03D
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ID. L(2) 002 Q— 03D
IE. R(l) 001 DS 000
IF. A— 03E Stop
20. S— >m 035 m— 03D
21. X* 03F A—>m 042
22. Q— 043 m—>Q 03D
23. X 040 C 025
24. m—>Q 03A DS 000
25. A—>m 044 Q— 046
26. m—>Q 03E X 03F
27. C* 028 m—>Q 03A
28. DS 000 A— 045
29. m—>Ac 046 m—>Ah 800
2A. A— 046 m—>Ac 045
2B. m—>Ah 043 A—»m 043
2C. C 02F DS 000
2D. A— 043 m—>Ac 046
2E. m—>Ah- 03A A— 046
2F. m—>Ac 043 m—>Ah 044
30. A—>m 03E C 033
31. DS 000 A— 03E
32. m—>Ac 046 m—>Ah- 03A
33. A--Ml 046 m—>Ac 042
34. m—>Ah 046 A--Ml 03D
35. T* [ ]
36. A.l X*
37. A.2 x"
38. A.3 y*
39. A. 4 y"
3A. A.5 -2-39 ppp ... FF
3B. A.6 (crl>o 0001000010
30. A.7 0001B0001B
3D. B.l 42. C.l
3E. B.2 ^3. C.2
3F. B.3 44. C.3
4o. B.4 ^5. c.4
41. B.5 46. c.5
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Problem 10
The problems previously discussed have all been of an analytical 

character where the efficiency of solution is dependent upon the speed 
and flexibility of the arithmetic unit. We now consider a problem of 
a combinatorial nature which falls into a class of problems where the 
efficiency of solution depends on the flexibility of the logical con
trol. The problem is a simple sorting procedure.

A set of N numbers, subject to no degree of monotony whatever, is 
to be sorted into a monotonic decreasing sequence. In order to simplify
the discussion, we asstime that the number of numbers to be sorted is

pN = 2
where P is a positive integer.

The sorting is accomplished by repeated meshings of groups of num
bers. Meshing is the process of combining groups of elements (numbers) 
in a prescribed fashion. For the present sorting procedure we are 
meshing groups two at a time. Two groups, each monotonic decreasing, 
are meshed into a single monotonic decreasing group; e.g., groups £ and 
1) of length b and c elements, respectively, (where the elements of t 
and 7] are In a monotonic decreasing sequence) are meshed into a group

V = £+7)

of length b + c elements where V is also a monotonic decreasing sequence.
Since we have restricted the N numbers to be sorted to be

pN = 2
we may without further loss of generality say that any two groups to be 
meshed are to contain the same number of elements.

The procedure is as follows: Consider the original sequence of num
bers as N groups, where each group contains one element. These N groups 
are then meshed two at a time into N/2 groups each containing two elements. 
The N/2 groups are meshed two at a time into N/4 groups each containing 
four elements. This meshing process is continued until the sorting is 
complete (one group of N elements is formed). In each of the meshings 
the monotonic decreasing sequence is preserved. Hence, for the various 
meshings there are N/2* groups of 2* elements each, where i (=1,2•••N/2) 
specifies the particular meshing.
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The meshing of two groups | and Tf is done as follows. Each 
group contains J numbers and the numbers belong to and y be
long to 7} . The groups are monotonic decreasing so

where i,j (=1,2,**J)xi 5*1+1 “4 yj5yj+i
The groups | and 7) are to be meshed into a group v with elements

n (=1,2*•*2J)
called ▼ where n

v > v . in n+1
The elements x^ and y^ are compared. Then

if (1) xl5 yl’ vl - xi
or if (2) x1< V1 = yl

If (1) holds, then is compared with y^. Then

if (3) V2 = X2
or if W X2 < yl> V2 =

However, if (2) holds rather than (l), x^ is competed with y^. Then

if (5) S y2. v2 = xx
or if (6) *!< y2. V2 = y2

The meshing of elements :ici and y^ follows the above:

if (a) Xi^yj' vn - xi (n = i + j - 1)

or if (b) xi<yj. v = y. n
If (a) holds i and n are increased by 1 emd the process is repeated.
If (b) holds and n are increased by 1 emd the process is repeated.
The meshing continues until either all of the numbers or all of
the numbers y. are incorporated into V J The remaining elements of 
the non-exhausted set are then directly included as the last elements 
of V .

A meshing of two groups, each containing J elements, needs at most 
2J - 1 comparisons of the elements to complete the meshing.

The number of elements involved in a sorting may often exceed the 
capacity of the electrostatic memory; hence, we consider the problem 
which requires the magnetic drum. However, we further simplify the dis
cussion and assume that each drum track contains 6k (=2^) words rather 
than the actual 50 words.
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Once the sorting procedure given here is understood, it is 
easily generalized to any number of elements and to any number of 
words per drum track; e.g., 50 in our instance.

The N numbers subject to no degree of monotony whatever are 
stored on the drum on M consecutive tracks. The numbers on the drum 
are considered as two sets, and Y^, where is the first N/2 
numbers on the drum and Y is the remainder. X^ and Y^ each contain 
N/2 groups of one number. The groups of X^ are meshed with the groups 
of Y^ to form a set of N/2 groups of two numbers each. To accomplish 
this initial step, the first track (64 numbers) of X^ and the first 
track of Y^ are brought into the memory. The first number of X^ is 
meshed with the first number of Y^ and the two are stored properly 
in the electrostatic memory. This is repeated with the second elements 
of the sets, and so on. When 64 numbers have been meshed into groups 
of two, the 64 numbers are sent to the first drum track of the second 
set of M tracks on the drum; when 64 more numbers have been meshed 
they are then sent to the drum, and so on, until the entire set X^ 
has been meshed with Y^. Whenever the 64 numbers from either the 
set X^ or Y^ have been exhausted, another track of 64 numbers of the 
appropriate set is brought into the memory. The set consists of 
N/2 groups (each of two elements) where each group is a monotonic de
creasing sequence.

The set is now considered as two sets X and Y^, where X^ is 
the first N/2 numbers and Y^ the remaining numbers. X^ and Y^ each 
contain N/4 groups (of two elements) and each group has the desired 
monotony. The groups of the set X^ are meshed with the groups of the 
set Yg to form a set of N/4 groups (of four elements) where each 
group is a monotonic decreasing sequence.

We then have the following inductive process: Two sets of
numbers X and Y each contain N/2^ groups (of 2^"^ elements). The 

P P
groups of Xp are meshed with the groups of Y^ to form the set V^, 
where V contains N/2^ groups (of 2^ elements). The set X . is
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the first N/2 numbers of V .and Y the remaining nmbers. X n and
/ p+1 p P*1 p P+1

Y^^ each contain N/^r groups (of 2V nvunbers).
For a further discussion and elaboration of the sorting procedure

we draw the flow diagram.
The flow diagram contains three induction loops. They are:
(i)

(ii)

(iii)

cycles. It is used in connection with the sets X and YP P

the induction concerned with the mesh cycles 
that concerned with the meshing of a group within the sets 
during any mesh cycle
that concerned with the transfer of elements between the 
memory and the drum

Eleven distinct indices (variables of induction) are needed in 
the flow diagram to describe the inductions.

The index p (=0,1,2••-P) describes the induction over the mesh
It keeps

account of the mesh cycle. £ has no relevance other than as an index, 
and it need not be stored.

The index n (=1,2*••N), where N is the total number of elements 
being sorted, indicates the current number of elements that have been 
meshed during any mesh cycle p. It is also used in a discrimination 
to indicate the completion of the p^*1 mesh cycle; therefore, n is a 
stored quantity.

The indices i., j_, and k describe the induction concerned with the
meshing of the groups within the two sets.2The index k (=1,2,2 ••• ) indicates the number of elements in 
the groups of the two sets X^ and Y^. k and £ are simply related: 
during mesh cycle £ the number of elements in the groups within X
and Y is P k = 2 .

The indices i. and indicate the elements x. and y. of the groups
The indices i and j are used in discrimina-within the sets X and Y P P

tions with k to indicate the completion of the meshing of any two 
groups within the sets; hence, i, j, and k are all stored quantities. 
Rather than using i^ and as indices which range over i,j (=1,2* ••k).
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we let i and ^ be such that i, j (=1,2* • »N/2). That is, and ^ 
range over the total number of elements of X and Y . The dis-p p
crimination of i^ and csumot then be done directly with the index 
k, since they are not reset to 1 at the time they become equal to k; 
in fact, they continue increasing until they reach N/2. To accomplish 
the desired discrimination, an index K (=k, 2k, 3k«*»N/2) is intro
duced; and when

1 ^ i» J ^ k . then K = k 
k+l^i, j < 2k then K = 2k 

and so on, until K = N/2.
At the completion of each mesh cycle |>, the index k is doubled;

i.e., when £ is increased by 1 to become p»l, then k = 2^ is increased
to k - 2P+1. This index k is used to determine the completion of the

Psorting. The sorting is complete when p = P, at which time k = 2 = N;
hence, a discrimination on k - N becomes positive for the first time
when k = 2*>, and the process is terminated.

The indices V_, and n_^ are the indices describing the induction
concerned with the drum emd i', j', n* (=1,2*••64). The indices i' and
j' indicate when the 64 elements x^ or y^ which are in the memory are
meshed. They also keep account of which two elements of the 64 elements
x^ and y^ are being meshed. Whenever i* or j* reaches 64, a new track
of elements x or y., respectively, is brought from the drum into theJmemory. The index n' indicates the number of elements xi and y^ that 
have been meshed and stored in locations in the memory. When n* reaches 
its maximum value, the 64 elements which have been meshed and stored 
in the electrostatic memory are subsequently sent to the drum. The in
dices i', j', and n' are needed in discriminations and in, addresses; 
hence, they are stored numbers. There are three indices concerned with 
the drum which are, in themselves, addresses. They are Tx, Ty, and Tv.
Tx is the address of the drum track which contains the 64 elements of

/

the set Xp that are to be sent into the memory. Ty is the correspond
ing drum address for Y . The index Tv is the address of the drum trackPupon which the 64 meshed elements are to be stored. Now that we have 
defined the necessary indices, the flow diagram of Figure 19 may be 
examined in detail.
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In what follows, decimal and hexadecimal numbers both enter into
the discussion. The hexadecimal numbers usually refer to instructions
and box numbers, hence entering only in the role of "labels" or "names."
The decimal numbers are usually used where the numerical character of
the number is significant. However, at places where there might be
confusion if the number is intended to be decimal it is underlined.

Boxes 1, 2, and 3 set up the necessary indices. Boxes b, 5, 6, rJ)

8, 10, and 11 are the boxes of the meshing of the groups within the sets.
Box 12 is an alternative box that indicates when the N elements have all
been meshed. Boxes A, B, C, D, E, and F are the boxes concerned with the
transfer of numbers between the drum and the memory. Boxes 13, 15, and
16 set up necessary values at the completion of one meshing of the sets
X and Y in order to start the next cycle in the meshing. Box 14- deter- 
P P

mines when the entire process is completed.
Box 1 sets the index k = (l)0 since the first meshing is in groups

of one element. It sets the initial drum addresses for Tx, Ty, and Tv.
It also sets the address <©=©• This is discussed in more detail

when Boxes 15 and 16 are discussed.
Box 2 sets up the indices k, j, n, i', j', and n'. These indices

are all set to (l) . This box also sends the contents of tracks Tx ando
Ty into the memory.

Box 3 sets up an index K = k.
Box 4 is the alternative box that indicates when all of the elements

y. of a particular group of the set Y have been meshed. Boxes 5 and 7 J P
indicate when all of the elements x^ of a particular group of the set X
have been meshed. If the elements of the two groups have not been ex
hausted, the control proceeds to Box 10 to determine which is the larger,
x or y..J

If x.> y , from Box 10 the control proceeds to Box 11, and v = x..j’ * n 1
i and i* are increased by (l)0* If from Box 10 the control pro
ceeds to Box 8, and v = y.. j and j' are increased by (l) .

n j o
If all of the elements of a particular group of the set Y are meshed

and stored, and the corresponding elements of the set X are not, the dis-3?
crimination of Box 4 is negative and that of Box 5 is still positive;
hence the control proceeds to Box 11, where the element v = x. is stored.n 1



64—n

k to D.B

2k to D.l

K+k to D.B

n+l to D.7 
n' + l toD.A j +1 to D.6

j'+l to D.9

i + I to D.5

(i)0t° d.a
v, to v64 to Tv (Drum)

Tx=C0to D.2 
Ty=C0+M/2toD.3 
T„ = d„ to D.4

(D0to 0.8 
Tx+I to D.2
Drum Tx+ I to X.l - X.64

(I )0 to D.9 
Ty+I to D.3
DrumTv+l to Y.I-Y.64

Drum tracks
Cq to C0+M/2 =Xp

Cq+M/2+I to C^+M = Y1

(I )0to D.5, D.6, D.7, D.B,D.9,D.A 
Drum Tx to X.l — X.64 
Drum Tuto Y.l — Y.64Ttf = C0+ M/2 to D.3

Drum trocksTjjiXPtx^Xg, - -x^) 
Drum trocksTy-- Yp(y, ,y2, •-y^) 

D. Is k

- elements v,N/2+1* N/2+2

A SIMPLE SORTING PROCEDURE 
FIG. 19
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This condition ho Ids until all of the elements of the particular group
of the set have been incorporated into the meshed sequence. A
similar condition holds for the entry of the control from Box 7 to
Box 8. In this instance, the elements of a particular group of the
set X have all been exhausted and those of the set Y have not.P P

The Alternative Box 12 determines when N elements have been meshed.
The control proceeds to Box 13 when this obtains, and the control pro
ceeds to Box 4 when the meshing is not complete.

The Alternative Box A determines when 6k elements of Y have been
— P

meshed. If they have. Box B sends 6k new elements y. into the memory.<3
Box C and Box D determine if 6k elements of the set X are exhausted,— p

and if they are, 6k new elements x^ are sent to the memory.
Box E determines when 64.elements have been meshed and stored in 

the memory. Box F subsequently stores the 6k elements onto the drum.
Box 14 terminates the sorting process when k = N. However, if the 

sorting is not complete. Box 15 or Box 16 sets up the new initial drum 
addresses for subsequent meshing. Recall that in Box 1 the address 
® - © was set up. This means that upon the first traversal through 

Box 14 the control proceeds to Box 15 as is desired. In Box 15 the ad
dress @ = ® is set up so that on the next traversal of Box 14 the 

control proceeds to Box 16 where the address is restored, and
so on, until the sorting is complete. Upon the completion of either 
Box 15 or Box 16, the control returns to Box 2, where the i, j, n, i', 
j', and n* indices are reset to (l)Q in order to repeat the induction 
process.

The storage needed for the problem is as follows: The quantity
(l) is needed and o B.l: (1)

21The four initial drum track addresses are stored, scaled by 2 and

B.2: co-2"27
B.3: (c + M/2)2“27
B.4: do-2"27
B.5: (d^ + M/2)2"27

-27 0The quantity 1*2 is needed for altering the drum track addresses said
B.6: 1*2‘27



Three memory addresses are needed. They are hase addresses for the
storage of the numbers x., y , and v ; and they are designated (X.o) ,

x j n o
(Y.0)q and (V.0)q. The storage is

B.7: (X.0)q
B.8: (Y.O) o
B.9: (V.O) o

where the address (X.i')0 = (X.0)q + and X.i1: xi> Similarly,
Y.j': Yj and V.n': vn. The number (64)Q is needed for discriminations and

B.A: (64)— o
The total number of elements N is needed and

B.B: (N)o
The drum instructions occupy full words where bigits 28-39 specify an 
address to which the control transfers upon completion of the drum in
structions. The addresses for these transfers need to be stored. Four 
such addresses are needed and they are

B.C: (Box 12, 1)2-39
B.D: (Box 2, 10)2"39
B.E: (Box 3, l)2-39
B.F: (Box E, l)2-39

The addresses (Qj and(jty are needed. They are stored as position marks in
B.XO: (0 )
B-11:

Eleven words of intermediate storage are needed during the course of the 
computation. They are designated as D.l, D.2 ••• D.9, D.A, D.B. The 
required electrostatic storage for the numbers being meshed is 192 loca
tions; the drum storage is 2M tracks.

The coding is:
Box 1
1. m—»Ac B.l (1)Q to R2
2. A—>m D.l (l)o to D.l
3. m—»Ac B.2 -27c • 2 ' to R2
4. A—*m D.2 T = c * 2“27 to D.2
5. m—>Ac B.3 (cq + M/2)2-27 X

to R2
0

6.
7-

A—*m
m—»Ac

D.3
B.4 d • 2"27 to R2

11

.H
* (cq + M/2)2‘27 to
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Box 1 (Cont.)
9. m—>Ac B.10
A. S—>m 14,4

Box 2
1. m—+Ac B.l
2. A—+m D.5
3. A—>m D.6
4. A--MU d.7
5- A—wa D.8
6. A— D.9
7. A—mu D.A
8. m—*Ac D.2
9- m—^Ah B.D
A. HS—+m 2,F
B. m—>Ac D.3
c. m—+Ah B.E
D. HS—>m 2,11
£. D—+m X.l
F. [ T 2,10 J

10. D— y.l
11. [t

y
3,1]

Box 3
1. m—»Ac D.l
2. A—*m D.B

Box 4
1. m—+Ac D.B
2. m—>Ah- D.6
3- C 7,1

Box 5
1. m—+Ac D.B
2. m—*Ah- D.5
3- C 11,1

Box 6
1. m—►Ac D.B
2. m—>Ah D.l
3- A—Ma D.B
4. T

( ^1)o to R2
^ to (8-19)U,U

(1) to R2 o
(l)o to D.5
(1) to D.6
(l)o to d.7
(1) to D.8 o
(l)o to D.9 
(1)q to D.A

Tx to R2
T + (Box 2,10)2~39 in R2 
x

T to R2yTy + (Box 3,1)2“^ in R2

(X1 to x^) to 2L1 to X.64 

(yl to y64^ to to Y‘6h

(k)Q to R2
(k) to D.B o

(K)q to R2 
(K-j)o in R2

(K)q to R2 
(K-i)o in R2

(K)q to R2
(K+k) in R2 o

(K+k) to D.B o
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Box 7
1. m—>Ac D.B (K) to R2 o
2. m—»Ah- D.5 (K-i)o to R2
3. C 10,1

Box 8
1. m—>Ac B.8 (Y.O) to R2
2. m—»Ah D.9 (Y.j')o= (Y.0)o+ U')o i- R2

3- S— 8,D V t0 (8-19)8,D
4. m—>Ac D.6 (j)0 to R2
5* m—>Ah B.l (j+l)o in R2
6. A— D.6 (3*D0 to D.6
7. m—*Ac D.9 (j')0 to R2
8. m—>Ah B.l (j'+l)o in R2
9. A— D.9 (J'+Do to D.9
A. m—>Ac B.9 (V.O) to R2
B. m—>Ah D.A +

c
o
•
>_Itc•
>
(n')n in R2

C. S— 8,E V-n’ to (8-19)8,:
D. m—>Ac 0-j‘] v = y.
E. A— [V.n*] v to V, n .n'

Box 9
1. m—»Ac D.7 (n) to R2 o
2. m—>Ah B.l (n+l)Q in R2
3- A— D.7 (n+l)0 to D.7
4. m—>Ac D.A (n*) to R2
5- m—>Ah B.l (n+l) in R2 o
6. A— D.A (n'+l)0 to D.A

Box A
1. m—»Ac B.A
2. m—»Ah- D.9
3- C C,1

Box B

(64) to R2 — o
(64-j')o in R2

1. m—>Ac D.3
2. m—>Ah B.6
3- A— D.3

T to R2y
T +1 in R2y

T +1 to D.3 X J
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Box B (Cont.)
4. m—>Ah B.F T + 1 + (Box E,l)2-39 in R2
5. HS—>m B,9
6. m—»Ac B.l (1)Q to R2
7. A— D.9 (l)o to D.9
8. D—»in Y.l (yi to yi+6^) to Y.l to y.64
9. pr + 1 E,l]

Box C
1. m—*Ac B.A (64) to R2
2. m—WUi- D.8 (64-i1) in R2
3. c E,1

Box D
1. m—»Ac D.2 T to R2

X

2. m—>Ah B.6 T +1 in R2
X

3« A—>m D.2 Tx + 1 in D.2
4. m—»Ah B.F Tx + 1 + (Box E,l) 2-39 in R2
5. HS— E,9
6. m—*-Ac B.l (1) to R20
7. A—»ni D.8 (1)Q to D.8
8. D— X.l (xA to x1+6^) to X.l to X.64
9. [t + 1 E,l]

Box E
1. m —»Ac B.A (64)q to R2
2. m—>Ah- D.A (64-n,)0 in R2
3. c 12,1

Box F
1. m—>Ac D.4 T to R2

V

2. m—>Ah B.6 Ty + 1 in R2
3. A—wn D.4 Ty + 1 to D.4
4. m—>Ah- B.6 T in R2v OQ5. m—>Ah B.C Ty + (Box 12,1)2”^ in R2
6. HS— 10, A
7- m—*Ac B.l (l)o to R2
8. A—►m D.A (1) to D.A
9. m—>D V.l (vn to V64* to Tv

> •
(- 12,l]
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1. m- ->Ac B.7 (X.O) to R2O
2 • in— >Ah D.8 (x.i')o = (x.0)o + (i') in R20
3* S—>ni 10,7 X.i* to (8-19)10,7
4. m—»Ac B.& (Y.O) to R2O
5. m—sAh D.9 tt.j'Jo- (i.0)o + (j’)o in R2
6 • s— 10,8 Y. j' to (8-19)10,8
"7 • m —3>Ac [X.i’j xA to R2
8. m—>Ah- [Y.O'] x. - y. in R2 i J
9- C 11,1
A. T 8,1

Box 11
1 • m—^Ac B.7 (X.0)Q to R2
2. m—»Ah d.8 (x.i')o = (x.o)o + (i') in R20
3. S— 11, D X.i' to (8-19)11,D
4. m—>Ac B.9 (V.0)q to R2
5. m—»Ah D.A (V.n')o = (V.0)q + (n*) in R20
6 • S >m 11,E V.n* to (8-19)ll,E
7. m—>Ac D.5 (i) to R2O
8. m—>Ah B.l (i+1) in R20
9. A— D.5 (i+l)Q to D.5
A. m—>Ac d.8 (i') to R2O
B. m—>Ah B.l (i'+l)o in R2
C. A— D.8 (i'+l) to D.80
D. m—>Ac [x.i'] v = x. to R2 n i
E. A— [V.n'] v to V.n' n
F. T 9,1

Box 12
1. m—*Ac B.B (N) to R2O
2. m—>Ah- D.7 (N-n)o in R2
3. c 4,1

Box 13
1. m—»Ac D.l (k) to R20
2. L(l) 1 (2k)Q in R2
3. A—»m D.l (2k) to D.l ' 0
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Box 14
1. m—>Ac D.l (k) to R2
2. m—>Ah-
3. c
4. T

B.B
16,A
r/ij

(k-N) in R20

Box 15
1. m—*Ac B.4 Tx = do‘ 2“2' to R2
2. A—*m D.2 T to D.2
3. m—*Ac b.5 Ty = (do + M/2)2"27 X

to R2
4. A—wn D.3 T to D.3
5 • m—»Ac B.2 T = c • 2-27 to R2 

v 0
y

6. A—Mn D.4 T to D.4
V

?• m—*Ac B.ll (02)o to R2
8. S—>m
9. T

14,4
2,1

to (8-19)14,4

Box 16
1. m—*Ac B.2 c * 2-27 to R2
2. A—»m D.2 T = c • 2"27 to D.2
3. m—>Ac B.3 (c + M/2)2-27 to R2
4. A—»m D.3 T = (c + M/2)2~27 to
5. m—»Ac B.4 d -2~27 to R2 y 0

6. A—>m D.4
0 -27T = d • 2 to D.4v 0

7. m—»Ac B.10 (/31)0to R2
8. S—>m
9. T

14,4
2,1

to (8-19)14,4

A. Stop
Recall that the magnetic drum instructions each occupy a full word.

The drum instructions are:
"m—»D BD Read 50 successive words from the memory starting with

the word at the address specified by bigits 8-19 of 
the instruction. Write these 50 words into the drum 
on the track specified by bigits 20-27. Then transfer 
the control to the left-hand instruction of the word 
at the address specified by the bigits 28-39*

D—>m BC Read the 50 words from the track of the drum specified
by bigits 20-2? of the instruction. Write these words 
into 50 successive memory locations starting with the 
address specified by bigits 8-19. Then transfer the 
control to the left-hand instruction of the word at 
the address specified by bigits 28-39."
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For the present problem we assume that 64 words are transferred, rather 
than the ^0 expressed by the instructions.

Instructions E and F of Box 2 comprise a drum instruction. In the 
final coding these two instructions must be in the same word. Instruc
tions E and F are interpreted as: Read 64 words from track Tx of the 
drum, and write them into the memory at the addresses X.l through X.64; 
then transfer the control to Instruction 10 of Box 2. This means that 
Instruction 10 of Box 2 must appear on the left side of an instruction 
word in the final coding.

Note that Instruction F of Box 2, the right-hand 20 bigits of the
drum instruction, is formed in R2 by Instructions 8 and 9 and then sent
to F by an HS—>m instruction. This is necessary since Tx is a variable
address, (in Box 2, Tx may be either cq or d0*) There is no instruction
that will modify only bigits 20-27 of a word in the memory, so one method
of altering the drum track address is to modify bigits 20-39 of the drum
instruction by an HS—>m instruction. This method necessitates storing
the address which is to constitute bigits 28-39> the transfer portion, of

-27the instruction. Instruction 8 of Box 2 brings the track Tx*2 into 
R2. Instruction 9 adds to this the address of (Box 2, Instruction 10)2 0 
The half-word substitution is then effected by Instruction A. In the 
final coding this must be an HS—>m' instruction.

Instructions 10 and 11 of Box 2 also comprise a drum instruction 
where the right-hand 20 bigits. Instruction 11, are generated as discussed 
for the previous drum instruction.

Instructions 8 and 9 of Box B, Instructions 8 and 9 of Box D, and 
Instructions 9 and A of Box F are drum instructions. Note in Box B and 
Box D, where the coding would normally end with a transfer instruction to 
send the control to Box E, Instruction 1, and in Box F, where the coding 
would normally end with a transfer to Box 12, Instruction 1, that the 
drum instruction performs this function. When possible then, it is use
ful to incorporate the drum instructions at points where transfers must 
normally take place.

The drum instructions in Boxes B, D, and F are similar in treatment 
to the previous discussion; hence the only further comment needed is 
that the drum instruction in Box F is an m—>D instruction.
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In the pairing of the coding into words one has to ascertain that
Box 2, Instructions E and 10; Box 3, Instruction 1, Box D, Instruction 8;
Box 12, Instruction 1; Box E, Instruction 1; and Box F, Instruction 9,
all are the left-hand instructions of their respective instruction words.

We begin the coding at Word 000. There are, in all, I53 instructions, 
which is l6 l/2 code words. The code would normally occupy Words 000 
through 04C hexadecimally. However, four "dummy"' instructions need to be 
inserted to obtain the correct positioning of those instructions which 
must begin on the left. This adds two words to the code, and it occupies 
Words 000 through 04E.

The constant storage begins at 04F. The 17 words of B storage occupy 
locations 04F through 05F. The 11 words of intermediate storage occupy 
Words 060 through 06A.

The routine and storage occupy 107 words of the memory 000-06A. 
Numerical values are inserted for the addresses (X.0)q, (Y.0)q and (V.0)q. 
They are chosen as:

(X.O)0 = (06A)q

(Y.0)o - (0AA)q
(v.o)o - (0EA)0

The algebraic addresses are left for the drum tracks as they depend in 
part on the total number of numbers being sorted. The quantity (N)q 
which is the total number of numbers is also left in algebraic notation. 

The coding, with the necessary "dummy" instructions, is:
0. m—»Ac 04F A—»m 060
1. m—>Ac 050 A—>m 06l
2. m—>Ac 051 A—^m 062
3. m—>Ac 052 A—>m O63
k. m—>Ac 05E HS—»m' 044
5- m—»Ac 04F A—>m 064
6. A—wn O65 A—>m 066
7. A—mil 067 A—wn 068
8. A—>m 069 m—*Ac 061
9- m—>Ah 05B HS—►m* 00c
A. m—»>Ac 062 m—*Ah 05C
B. HS—mu' 00D (D s 000) "dummy
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c. D—»m o6b
D. D ■—-wn OAB
E. m—>Ac 060
F. m—*Ac 06A
10. C 014
11. m—*Ah- 064
12. m—>Ac 06A
IB- A—»m 06a
14. m—>Ac 06a
15. C 033
16. m—>Ah 068
17. m—»Ac 065
18. A—»m 065
19. m—*Ah 04F
IA. m—>Ac 057
IB. S—3>m 01c
1C. A—>m 000
ID. m—»Ah 04F
IE. m—»Ac 069
IF. A—>m 069
20. m—>Ah- 068
21. m—>Ac 062
22. A—>m 062
23. HS—»m' 025
24. A—»m 068
25. D—*m OAB
26. m—>Ac 058

ro
 —j • C 02c

28. m—>Ah 054
29- m—>Ah 05D
2A. m—»Ac 04f
2B. D—>m 06b
2C. m—>Ac 058
2D. C 040
2E. m—>Ah 054
2F. m—>Ah- 054

00000
00000

A—06A 
m—>Ah- 065
m—>Ac 06A

c 038
m—sAh 060
T OOF

m—»Ah- 064
m—»-Ac O56
S—>m' OIB
m—>Ah 04F
m—»Ac 068
A—068
m—>Ah 069
m—>Ac OOO
m—>Ac 066
A—066 
m—>Ah 04F
m—^Ac 058

C 026
m—»Ah 054
m —>Ah 05D
m—>Ac O^F
(D S 000) "dummy" 

00000
m—>Ah- 067
m—>Ac 06l
A—»m 06l
HS—^m' 02B
A—>m 067

00000
m—»Ah- O69
m—*Ac 063
A—»m 063
m—>Ah 05A
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30. HS—wn*
31. A—>m
32. m—>D
33. m—>Ac
34. S—>m
35. m—>Ah
36. m—>Ac
37. C
38. m—>Ac 
39- S—
3A. m—>Ah 
3B. m—?Ac 
3C. A—>m 
3D. m—>Ah 
3E. m—>Ac 
3F. T*
40. m—>Ac
41. C
42. L(l)
43. m—?Ac
44. C
45. m—>Ac
46. m—♦■Ac
47. m—>Ac
48. m—♦Ac
49. T 
4A. A—»m 
4B. A—*m 
4C. A—>m 
4D. HS—♦m'
4E. STOP 
4F. (1)o
50. c •2-27
51. (co + M/2)2"27
52. d .2"27

o

m—yAc 04F
(D S 000) "dummy

00000
m-—>Ah 067
m—♦Ac 056
S—*m' 036
m—»Ah- 000
T» 015

m—♦Ah 067
m—♦Ac 057
S—►m' 03E
m—♦Ah 04F

I > 0 067
A—♦m 067
A—♦m 000
(00000) "dummy1
m—♦Ah- 066
m—>Ac 060
A-^m 060
m—►Ah- 059

T 000
A—♦m 061
A—►m 062
A—♦m O63
HS—►m' 044
m—♦Ac 050
m—♦Ac 051
m—♦Ac 052
m—♦Ac 05E

T 005

032
O69
OEB
055
036
068
000
038
055
03E
O69
064
o64
04f
000
01c
059
OOF
001
060 
04e
052
053 
050 
05F 
005
061
062 
063. 
044
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53- (d + M/2)2~27

54. 1.2-27

55. (x.o) = (06A)0 0
56. (Y.0) = (OAA)0 0
57. (v.o) = (oea)0 0
58. (64) = (o4o)0 0
59- (N)0

5A. 12,1 = (040)2-39

5B. 2,10 = (OOD)2~39

5c. 3,1 = (OOE)2'39

5D. E,1 = (02C)2~39

5E. (/91)o = (CA045)
5F. ()Q2)o = (cb°49)

60. D.l
61. D.2

62. D.3

63. D.4

64. D.5

65. D.6
66. D.7

67. D.8
68. D.9

69. D.A
6A. D.B

o

o

The first drum instruction (Box 2, Instructions E and F) would not 
normally have been in one word in the paired coding. A "dummy" instruc
tion, DSOOO, was inserted on the right-hand side of Word 00B in order to 
position the drum instruction correctly in Word 00C. The right 20 bigits 
of the drum instruction are not indicated as they are supplied from the 
problem. In punching a tape, five 0's could be punched for right-hand 
portion of Word 00C.
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Upon positioning 00C correctly, the next drum instruction. Word 00D, 
and the first instruction of Box 3, Word 00E, are in the correct position.

The drum instruction in Box B, Instructions 8 and 9, also needed a 
"dummy" instruction inserted as the right-hand instruction of Word 024 
to position the drum instruction correctly into Word 025* Similarly, the 
drum instruction in Box F, Instructions 9 and A, needs a "dummy" instruc
tion inserted in the right-hand side of 031 to position the drum instruc
tion correctly into 032. Instructions! of Boxes 12 and E need to be left- 
hand instructions since they are entered by the transfer portion of drum 
instructions. Box E is in the correct position as it begins on the left 
of Word 02C; however. Box 12 does not naturally begin on the left, hence 
a dummy instruction (00000) is inserted into 03F' following the last in
struction of Box 11. Box 12 then begins on the left of Word 040 as is 
desired. The dummy instruction may be inserted as all 0's since the in
struction is never executed by the control as Box 11 ends in a transfer 
instruction.

(0^0 and ( f&^)Q are stored as

05E: (iVo = (CA045)o 
05F: (02)o = (CB049)o

rather than as addresses. This is done since the entrances © and
which are Box 15,1 and Box 16,1 do not both begin on the same side 

of their respective words. The addresses © and (^) are supplied 
to Box 14, Instruction 4 (Word 044') by an HS—^m' instruction; hence 
the order as well as the address is modified appropriately.

The sorting procedure as presented is valid only if all of the num
bers have the same sign (i.e., either all positive or all negative). If 
manbers of mixed sign are to be sorted. Box 10 would need to be modified 
m numbers of opposite sign could presently cause spillage.
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Problem 11
We evaluate and tabulate a sequence of values for sin x where the 

argument x is not given in any systematic order. The values of x are 
punched on paper tape for use in the sine computation. When sin x is 
determined for each value of x, it is stored with its argument as one 
word. The first 20 bigits (0-19) store x and bigits (20-39) store 
sin x. The values of x and sin x are then printed and punched by the 
flexowriter.

The method used for evaluating sin x is the Taylor's series ex
pansion of the function.

3 5 7. x-' x^ x'sin x = x--r-r+^T-=rT + •••

The following induction describes the series:

I3 ' II + °3

S* " + 0j+2

lim ) = sin x
<j—►00 J

For the example it is assumed that 0 < x < 1, where x is in radians. 
It then follows that sin x <1.

From the induction process it is seen that the formation of the 
term o. p involves a division by (j+l)(j+2). Since ^ is an integer, 
the division cannot be done directly. To allow this division, £ is 
scaled by 2~n, determined by

2"nj < 1 Jmax
As the a. _ is desired as an unsealed quantity, the numerator is scaled 
by the same factor as is the denominator which gives the resultant quo
tient unsealed. In order to preserve significant figures, ls
formed as follows:

°3 = "V 3-2

2
V2 = "0j (j+1 A j+2)

X
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0j+2 = -a.
2 nx 2~nx

2-n(j+l) 2~n(j+2)

The induction is terminated when the difference between two suc
cessive terms is less than a predetermined amount & , where the size of 
S is determined by the number of figures desired in the approximation 
to sin x. The difference between two successive approximations is the 
term a.. The discrimination is on the quantity

The absolute value of a. is used, since a. may be positive or<3 Jnegative.
The storage needed is as follows: The constants l*2"n and S 

are stored at B.l and B.2, respectively. The number 1, representing 
the total number of values of the argument x, is stored at B.3 as 
1*2 and 1*2 m is stored at B.4 where 2 m is such that I’2~m< 1.
The values x^, x^, x^ ••• x^ are punched onto paper tape as input data. 
Seven intermediate storage locations are needed. They are designated 
as D.l, D.2 ••• D.7.

No explanatory remarks are needed for the flow diagram which is 
shown in Figure 20, so we turn directly to the coding.

Box 1
1. m—^*Ac B.4 l-2‘m to R2
2. A—Mn D.7 l*2~m to D.7

Box 2
1. Read D.l x^ to D.l

Box 3
1. m—*Ac D.l x. to 1 R2 1
2. A—*m D.2 x^^ to D.2

3. A—»m D.3 1°i = x^ to D.3
4. R(n) n 2’nxi in R2
5. A—*m D.4 2"\ to D.4
6. m—»Ac B.l 1.2-“ to R2
7. A—>m D.5 l*2-n to D.5
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I •2'm to D.7 Read X: to D.l

D.7: i-2

D.6:(0-l9)xj,(20-39)Sin xjPrint and Punch x-,, Sin X;

Xj to (0-19) D.6 

Sin x; to (20-39) D.6

D.2-2

D.5-j-2

2j = Xj to D.2

«tJ = Xj to D.3 

2*nXj to D.4 

I •2’n to D.5

to D.3

SINE by TAYLOR’S SERIES EXPANSION

FIG. 20
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j *2-n to R2 
(j+l)2‘n in R2

-2_nxi to R2 
xi■ -rrr- in R4 J+1

A ^ *
(j+l)2"n to R2 
(j+2)2'n in R2

2-nx to R2

j+2 in Rl^

if2' I

(j+l)2'n to D.5

j Xi■°i j+T toD‘3

(j+2)2_n to D.5

j+2 = _2L_ . _2L_
i i j+1 j+2

j+2

in R2
a^2 to D.3

+ o' in R2

| o" | to R2 
| | - in R2

j+2V to D.2

x± to R2

Box 4
1. m - ■ >Ac D.5
2. m—»Ah B.l
3. A—»m D.5
4. m—»Ac - D.4

5- -i- D.5

6. X D.3
7. A—vm D.3
8. m—>Ac D.5
9. m—>Ah B.l
A. A—>m D.5
B. m—>Ac D.4

C. D.5

D. X D.3
E. A— D.3

F. m—►Ah D.2

10. A—»m D.2

Box 5
1. m—>>AcM D.3
2. m—»Ah- B.2
3. C Box 4,1

Box 6
1. m—+Ac D.l
2. HS— D.6
3. m—>Ac D.2
4. R(20) 20
5- HS—►m' D.6

Box 7
1. Flexoprint D.6

2. Punch D.6

sin x. to R2 -20 12 sin x± in R2

x± to (0-19)0.6

sin x± to (20-39)0.6

(0-19)xi(20-39)sin Xi 
to Printer

(0-19)x1(20-39)sin Xi 
to Punch
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Box 8
1. m—jAc D.7 i.2-m to R2
2. m—*Ah- B-3 (i-l)2 -m in R2
3- C Box A,1

Box 9
1. m—*Ac d.7 1.2-* to R2
2. m—»Ah B.4 (i+l)2 -m in R2
3- A—»m D.7
4. T Box 2,1

Box A
1. Stop

(l+l)2~m to D.7

The coding needed in Box 2 is merely the read instruction. The
read instruction does the following:

Read the next word to come under the reading head of the 
photo-electric reader and send the word to the memory at 
the address specified with the instruction.

In Box 3, Instruction 4 specifies only a right shift of n places. In 
an actual problem the scaling factor 2~n would be detemined and the 
numerical value of n would be inserted as the address of the R(n) in
struction. Box 6 stores the x^^ and sin Xj^ into one word D.6 by making 
use of the HS—>m and HS—♦m' instructions. Instruction 2 of Box 6 
stores the first 20 bigits of x^ into bigits 0-19 of D.6. This in
struction does not alter bigits 20-39 of D.6. Instructions 4 and 5 
store the first 20 bigits of sin x^ into bigits 20-39 of D.6. Since the 
HS—»m' order replaces bigits 20-39 of m by bigits 20-39 of R2, the num
ber in R2 must be positioned so that the 20 bigits to be sent to m are 
in bigits 20-39 of R2. Instruction 4 shifts sin x right 20 bigits so 
that the 20 most significant bigits of sin x are in (20-39)R2. In
struction 5 is then an HS—mu’ D.6 which stores sin x into (20-39)D.6. 
Box 7 requires two instructions, one to print D.6 and one to punch D.6 

In this example the HS—»m and HS—*m’ instructions were used to 
store half-precision (20 bigits) numbers, as compared to Problem 10 
where they were used in modifying instructions.



-131-

The pairing of the code into words should present no difficulties. 
If the code sequence is started at address 000 the paired coding is:

0. m—»Ac 019 A— 020
1. Read 01A m—»Ac 01A
2. A— 01B A— 01C
3- R(n) (n) A— 01D
4. m—WVc 016 A— OIE
5- m—>Ac OIE m—»Ah 016
6. A— 01E m—>Ac- 01D
7- » OIE X 01C
8. A— 01C m—>Ac OIE
9- m—>Ah 016 A— OIE
A. m—>Ac 01D »• OIE
B. X 01C A—>m 01C
C. m—>Ah 01B A— 01B
D. til—>AcM 01C m—>Ah- 017
E. C 005 l 0 01A
F. HS—Mn OIF m—>Ac 01B
ia 0OJ"k 014 HS-»m' OIF
1L FlexoprintOlF Punch OIF
12. m—>Ac 020 m—>Ah- 018
13. C* 015 m—vAc 020
14. m—»Ah 019 A—>m 020
15- T 001 Stop
l6. l*2-n
17, s
18. ! *2-m
19. l*2-m
IA.
IB.
IC.
ID.
IE.
IF.
20.



-132-

Problem 12
During the course of a lengthy computation it is desirable to 

make a periodic record of the contents of the memory. This record 
should be in a form that can be read back into the memory. Then, in 
the event of a computer malfunction which causes a computational error, 
one has only to read the last record of the memory contents back into 
the computer and resume the computation. If such a record is not 
available, the computation often has to be restarted from the beginning; 
and several hours, or even several days, of computational time may be 
lost. These periodic records of the memory contents help to keep the 
time lost due to computational errors at a minimum.

Such periodic records also increase the flexibility of the com
puter, for it becomes a simple task to interrupt a problem at any stage 
of the computation and start computation on a different problem. To in
terrupt a problem, one has only to record the memory contents and to 
know the instruction with which the control is to resume the computation. 
To resume, the record is read back into the memory and the control is 
sent to the desired starting instruction.

A magnetic tape unit has been adapted to the computer as an auxili
ary input-output device for making these periodic records of the memory 
contents. A further discussion of the magnetic tape unit and its opera
tional procedures is given in the chapter on operating procedures.

In this problem we outline two routines which are concerned with 
the magnetic tape unit. The first of these routines transfers the con
tents of the memory except for the routine itself to the magnetic tape. 
The second of the routines transfers the contents of the magnetic tape 
into the memory at the addresses specified by the routine.
Routine 1: Memory to magnetic tape.

This routine reads successively the words in the memory beginning 
with the first word beyond this routine and ending with the last word 
(1023) of the memory. As these words are read from the memory they are 
written onto the magnetic tape in a serial fashion beginning at a pre- 
marked section of the magnetic tape (details are discussed in the chapter 
on operating procedures).

A sum is formed of the contents of the memory (excluding this 
routine). The sum is: 1023

S1
o

m.1
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where c is the address of the first recorded word and m. is the word o x
at address ^ in the memory. This sum is recorded on the magnetic tape 
immediately following the word miQ2y an<^ sum *s also printed.
The sum is formed as a checking procedure for the magnetic tape unit. 
When the words on the tape are read back into the memory, the memory 
is summed and this sum must agree with the sum made at the time the 
contents of the memory were sent to the tape. If the two do not agree, 
an error has occurred and the record sent to the tape has not been 
transmitted correctly into the memory.

The inductive procedure should cause no difficulty, so we turn 
directly to the flow diagram in Figure 21. Box 1 sets up the initial 
values of the induction. Box 2 sends the word nu to the magnetic tape. 
The partial.summation

L ■ l + m.
i — i-1

is also formed. Note in Box 2 the expression
[delay L(4-0)]

This has the following meaning: Each Q—»t instruction is preceded by 
an L(kO) shift instruction. During the traversal of this routine by 
the control, the magnetic tape is running continuously, and the L(lK)) 
instruction gives a certain spacing between words on the tape. This 
spacing is necessary to insure accurate transmission at some later oc
casion of the data from the tape back into the memory. Again this is 
discussed more thoroughly in the chapter on operating procedures.

Note in Alternative Box 3 how the induction is terminated. The 
discrimination is upon

(M*i+l)2’^ where M*i(= cq, c0+1 ••• 1023)
Now when

and

However, when

M-i < 1023 
M-i+K 1024

(M-i+l)2_10 < 1

M-i = 1023
which means that the last word in the memory has been sent to the 
magnetic tape

M-i+1 1024
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M.o = 0
= 0 to D.2

r

V.

D.l :(M.i)2"10 
D. 2 • 2j.|
M. i : mj

2
[delay L(40)] 

mj to tape 
£j = 2i.jfm, to D.2 
(M.i + l)2'l°to D.l

1
D.l •-(M.i+ l)2’10 
D^sSj . '

(M.i+l) 2 10

#
3FF = i

I
(delay L(40)J 

S, s 2) 3FFto tape 

Print Si

MEMORY TO MAGNETIC TAPE

FIG. 2 1
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and
(M.i+l)2"10 = 1

which appears in the computer as a negative number and the control 
proceeds to Box k. This discrimination really allows the positive 
discriminating quantity to increase until it exceeds for the first 
time the allowed range for numbers in the computer. The effect to 
the computer is a change in the sign bigit of the number upon which 
the discrimination is made.

Box 4 sends the summation (3FF s 1023) to the tape and
also prints the Siam.

The only storage needed in the problem is for two intermediate 
values of the computation. These values are the address M.i and the 
partied, summation They are stored in D.l and D.2, respectively.

The coding of the problem is:
Box 1
1. a—»Ac 0 > = 0 to R2c -1 V-2. A—»m D.2 L „ = 0 to D.2
3- a—■►Ac c •2-10 (M.c)2"10 = c -2"10 to c -x

R2
4. A—mu

o
D.l

o (M.c)2~10 to D.l
Box 2
1. R(9) 9 (M.i)2‘19 in R2
2.
3-

S—>m
L(40)

2,5 M.i to (8-19)5

4. m—>Ac D.2 L !_! to *2
5- m—>Q [M.i] m^ to R4

6. m—»Ah 8oo Zi = Zi_i + mi r~

• 
•

t— 
CO

A—»>m
Q—*t

D.2 }_i to D.2
m. to tape1

9. m—jAc D.l (M.i)2_1° to R2

A.
Box 3
1.

a—»Ah
•

C

1.2-10 (M«i+1)2"10 = (M.i)2"10 + 1-2'10 in R2

Box 4
1. l(4o)
2.
3.

m—»Q
Q—»t

D.2 S = ) to R41 ^-1023
to tape

4.
5-

Flexoprint D.2
Stop

S1 to printer
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In Box 1 the starting address (c )2"’^ is stored as the address 

portion of an a—*Ac instruction. The instruction clears R2 and 
brings c0*2~ into positions 0-11 of R2. An a—*Ac instruction may 
often be utilized in this manner for storing and forming addresses.

Since the address as formed is
(M-i)2~10

it cannot directly be used in conjunction with an S—»-m instruction, 
as the bigits of an address to be substituted must appear in R2 as

(M.i)2"19 or (M.i)2"39
Instruction 1 of Box 2 shifts (M.i)2-1^ right by nine places so that 
the bigits in R2 are

(M.i)2"19
Consequently, the instruction that receives this address must reside
on the left-hand side of the instruction-pair.

Instruction 6 of Box 2 adds m. to the quantity Z_ „ which is ini i-1
R2 as the result of Instruction 4. Instruction 6 reads

m—-►Ah 800
Recall that any of the add orders (orders 1-8 of the vocabulary. Table l) 
treat R4 as a memory location with the address 2048 = 800 hexadecimally. 
m—»Ah 800 adds the contents of R4 into R2. Now R4 contains mi as the 
result of Instruction 5, so that

I i
+ m 

i-1 i
is formed in R2 as desired.

Instruction 8 of Box 2 is the Q—*t instruction. The instruction
is

"Q—*t AD Write the number in R4 onto the magnetic tape."

The quantity nu to be sent to the tape is in R4 as the result of 
Instruction 5 of Box 2. The address portion of the Q—>t instruction 
has no relevance (the address is usually set to 000 for convenience; 
it may, however, be set to any value).

instructions 9 and A of Box 2 form (M.i+l)2 in R2. Rather 
than storing (M.i+l)2“10 into D.l, it is left in R2 for the discrimina
tion of Box 3, Instruction 1. The conditional transfer of Box 3, if 
effective, sends the control to Box 1, Instruction 4, where the contents
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of R2, (M.i+l)2-^ are sent to storage. We saw previously that upon 
entry into Box 2 from Box 1, the quantity (M.i)2~ was in R2. Box 2 
is also entered from the plus branch of Alternative Box 3> and from 
this entry the quantity (M.i)2~^ is correctly in R2.

Box 4, Instructions 1, 2, and 3 send ^ on^° the magnetic
tape. Again, as in Box 2, an instruction L(40) precedes the Q—»t in
struction.

The routine as outlined is to be coded beginning with Word 000.
The paired coding occupies Words 000 through 009 and the storage needed 
is designated as 00A and 00B. The initial address cq is then OOC. The 
paired coding is:

0. a—>Ac 000 A—»m 00B
1. a—*Ac 018 A—»m 00A
2. R(9) 009 S—►m 004
3- L(4o) 028 m—►Ac 00B
4. m— [oooj m—*Ah 800
5- A—►m 00B Q—»t 000
6. m—►Ac OQA a—►Ah 002
7. C* 001 L(40) 028
8. m—►Q 00B Q—»t 000
9.
A.
B.

Flexoprint 00B Stop

The left-hand instruction of Word 001 sets up the initial address cq. 

It is to be (OOC)2~^ which is (018)2"'^'; hence, the address of the in
struction is 018.
Routine 2: Magnetic tape to memory.

This routine is to be used in conjunction with Routine 1. It reads 
successively the words from the magnetic tape (which had been written onto 
the tape by utilizing Routine l) and writes them into the memory at the 
addresses that they had originally occupied. Routine 1 sent Words OOC 
through 3FF onto the tape; therefore, this routine reads the words from 
the tape and writes them into the memory at the addresses OOC through 3FF-
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3FF = i

M.o = 0

(M.i+1)2

D.2 •• Si

D.l ;(M.i+1)2

S| (tape) to D.I 
Print Sj 
Print So=2'ap

^.,=0 to D.2 

(M.c)210= C0*2"10to D.l

tape to M.i

MAGNETIC TAPE TO MEMORY

FIG. 2 2
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After the vords 
memory, a stun

where i (= 12, 13

m.

•• 1023) are sent to the 

cQ = 12 (dec.)
o

is formed and printed. Also printed is the word Immediately following 
m1023 °n ma£ne'tic "tape. The latter is S^, the sum of the memory
contents (hence the sum of the words on the tape) when the tape record 
was made. The sums and are identical, if no errors have been made 
by the computer or the magnetic tape. The procedures to be followed if 

and S2 do not agree are outlined in the chapter on operating procedures 
The flow diagram shown in Figure. 22 is so similar to the flow dia

gram of Routine 1 that we turn directly to the coding without further 
comment.

The coding is:
Box 1

1. a—>Ac
2. A—»m D.2

X C-! * ° to 82 ^
► , to D.2

3. a—*Ac 0-1° c *2 (M.c)2"10 = c •2"10 - c
to R2

4. A—>m
0

D.l
0 (M.c)2"10 to D.

Box 2
1. R(9)
2. S—«a 2,5

(M.i)2~19 in R2
M.i to (8-19)5

3. S—>m 2,7 M.i to (8-19)7
k. t—»Q
5. Q—»m [M.i]

m^ to R4
m^ to M.i

6. m—»Ac D.2 2-i-1 to 82

7. m—»Ah [M.i] Xi - Xi-i + -i in R2
8. A—»m D.2 ) . to D.2
9. m—►Ac D.l (M.i)2~10 1

»
A. a—►Ah 1.2-10 (M-i+l)2"10 = (M-i)2-1° ^ _ o-10 . . + 1*2 in .

Box 3
1. C 1,4

Box 4
1. t—>Q
2. Q—Mn
3. Flexoprint D.l

S to R41
to D.l
to Printer

4. Flexoprint D.2 S2 to Printer
5. Stop
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In the formation of each successive term of the partial summation
in Box 2, Instructions 6, 7, and 8, the contribution nu is added 

from its memory location M.i rather than from RU where it also exists. 
The checking obtained by this summing process is more complete than 
if m^ were added from R4.

The t—instruction which is Instruction 4 of Box 2 and In
struction 1 of Box 4 is:

"t—AC Replace the number in R4 by the first word to come 
under the reading head of the magnetic tape reader."

Again, as in the Q—*t instruction, the address of the instruction has 
no relevance. Note that the L(4o) instruction which preceded each Q—»t 
instruction is not used with the t—>Q instructions.

In the paired coding. Instructions 5 and 7 of Box 2 must be left- 
hand instructions since the address M.i which is being substituted is 
in R2 as

(M.i)2‘19
In Box 4, Instructions 3 and 4 print the summations and S^. A 

visual check is then made of the numbers rather than allowing the com
puter to do the comparison. This has the added feature that these two 
numbers printed may also be checked against the number which was 
printed when the tape record was made.

This routine is coded into Address 000 and occupies Words 000 
through 009. D.l and D.2 are designated as 00A and 00B, respectively. 
Agnin, cq is OOC. The paired coding is:

0. a—*Ac 000 A—»m 00B
1. a—*Ac 018 A—»m OOA
2. R(9) 009 S—>m 004
3- S—wn 005 t1 ■> Q 000
4. Q—wa [OOO] m—»Ac 00B
5. m—*Ah [000J A—>m 00B
6. m—►Ac 00A a—*Ah 002
7. C 001 t—*Q 000
8. Q—►m 00A Flexoprint OOA
9- Flexoprint 00B Stop
A.
B.



We have in this problem taken the liberty of incorporating checking 
features into the two related routines without either discussing the need 
for such checking features or discussing what the procedures are if this 
checking indicates an error in the transmission. This checking is such 
an integral part of the routines which make use of the magnetic tape unit 
that we do not feel that the routines should be presented without includ
ing them.



Problem 13
We develop a routine for the synchroprinter, the high-speed page 

printer that has been adapted to the computer as a part of the output 
equipment. The synchroprinter has a maximum operating speed of 36,000 
characters per minute. The ordinal numbers 0, 1, 2 ••• 9i the letters 
A, £ * *• F; a decimal point; and a minus sign are the eighteen distinct 
characters that may be printed. A line at a time is printed, where a 
line consists of 40 characters. Recall that the synchroprint order reads: 
"Sync Print CE To be used in a subroutine which simultaneously

prints m^, m^+^, m^^ and mi+^; i is to be com
municated to the routine (high speed)."

Inasmuch as four words are printed simultaneously, it is not surprising 
that a special routine is required. Further discussion of the synchro
printer is given in the chapters IV and VI on The Computer and Operating 
Procedures, respectively.

In order to achieve the high speed of operation, the printer operates 
as follows:

To print an aggregate of forty digits (a line) there are eighteen 
distinct print cycles. All the F's of the aggregate are printed simul
taneously in Cycle 1, all the E*s of the aggregate are printed Simultane
ously in Cycle 2, and so on to Cycle 16 which prints all the 0's, to 
Cycle 17 for the decimal points, and to Cycle 18 for the minus signs.
Since there are these eighteen distinct cycles, one has only to supply 
the digital information which corresponds to the cycle. That is, during 
Cycle 1, only the digital information for the F’s is needed, and so on. 
This information is obviously binary. For Cycle 1 it is either to print 
an F in a particular digit position, or not to print it. The line of 
print is 40 digits and a register contains hO bigits, so a register may 
supply the binary data (either print or do not print) to the printer for 
each cycle. The register R2 is used for this purpose. During the i 
print cycle i (= 1,2 18) an appropriate number which speciflee the
digit positions to be printed is brought into R2. A 0 in any position of

~ ththe number in R2 corresponds to the presence of the character of the 1



cycle in the respective digit position of the line, whereas a 1 indi
cates the absence of the corresponding character.

For simplicity of design, the paper feed is vertically down.
Hence, to achieve a conventional listing, the characters must be in
verted and left,right interchanged, so that the leftmost bigit of R2

-■30corresponds to the rightmost bigit of the print line while 2 of R2 
corresponds to the leftmost bigit of the print line.

The procedure to print a line corresponding to four 10-digit (10- 
tetrad) words is as follows:

The four words are fanned out into an 18 x 40 array which occupies
18 successive memory locations. The rows of the array (the eighteen
locations) correspond to the characters of the printer. The columns
of the array correspond to the digit position within the line of print.
The first row of the array corresponds to the minus sign, the second to
the decimal point, the third to the 0, the fourth to the 1, and so on,
through the l8th row which corresponds to the F. Column 0 corresponds
to digit position 39 of the line, column 1 to digit position 38, and so
on, through column 39> which corresponds to digit position 0 of the line.

We define an element of the array as a ., where i corresponds to** J
the row of the array and j corresponds to the column. If

, th
ij = 0

the i character is to be printed in column (digit position 39 - j). 
If

ij = 1
the character is not to be printed. No column of the array may contain
more than one 0; that is, only one character may be printed in any
digit position. However, if a column contains I's only, then no character
is printed in the corresponding digit position.

The elements of the array are initially set to 1. The first tetrad
of the first word is examined and found to have the value i, then a 0
is inserted into the appropriate element a. ,Q. The second tetrad is

*■>
examined and a 0 is inserted into the corresponding element a^ ^g; and 
so on, until the forty tetrads of the four words have been examined and 
0 has been inserted into the appropriate elements of the array.
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The inductive process of fanning the four words into the array is 
described as follows: The elements of the 18x40 array are initially 
set to 1. The insertion of zeros into elements in the two rows of the 
array corresponding to the minus sign and the decimal point is treated 
apart from the induction. Hence, we may regard the rows as being 
specified by the values of the tetrads with

0 <: i < F.
The tetrads of the words must be isolated to obtain the values i. They 
are isolated as follows: The four words are specified as

k (=0,1,2,3).

In each word there are ten tetrads
Vn n

The induction for isolating the tetrads of any word is over the in
dex n and it is

Ck, -1 = \
Ck,n = 2^Ck,n-l (frac'tiorial part)
^n = 2\,n-l (inteSer ^t) 

where 0 ^ n < 9*
After the row i is determined, the column ^ must be determined so that 
the element a. . may be set to 0. The column ^ is easily seen to beX J
given by

j = 39 - (10k + n)
We specify the i row of the array as r^ Then after determining the 
appropriate i and values we have only to perform the operation

to set the element a^ to 0.
The printing sequence proper,which is carried out after the array 

is formed, may now be given. Within the sequence, each of the eighteen 
print cycles is determined by a print order. The first print order 
actuates the printer and the remaining seventeen print orders act in a 
timing capacity to keep the printer and computer in synchronization. 
Once the printer has been actuated it proceeds through its eighteen
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cycles at a fixed rate independently of the computer. Each of the 
seventeen print orders must be given before the printer is ready to 
perform that particular cycle. The order has the effect that the 
computer waits for the printer until the cycle is complete and then 
proceeds to the next instruction of the sequence. The printer operates 
at a speed of roughly 1.5 milliseconds between its print cycles. The 
print sequence must have no more than 1.5 milliseconds elapse between 
successive print orders.

Immediately preceding each print order, the appropriate word of 
the array is brought into R2. Cycle 1 prints the F's so that Word 18 
of the array is the first word to be brought into R2. It is followed 
by a print order which actuates the printer and executes Cycle 1.
Word 17 of the array is brought in and the succeeding print order exe
cutes Cycle 2 and prints the E's. This continues until the eighteen 
print cycles have been completed.

Even though the eighteen distinct characters may not all appear 
in any given printed line, it is necessary that eighteen print orders 
corresponding to the eighteen characters be given. Those characters 
that do not appear have their respective row in the array containing 
all I's so that nothing is printed during the corresponding print cycle.

We now turn to the flow diagram shown in Figure 23. The storage
needed is as follows: The four words m m.o' V m2’ 3
be printed are stored in D.l, D.2, D.3, and D.4, respectively. The
eighteen words needed for the array are designated (the addresses are
hexadecimal)t

and nu which are to

The following constants are needed

E .1: r_
E .2: r.
E.3: r0
E.4:

•

rl

•

•

!.12: rF
eded

B.l: -2~
B.2: 2"
B.3: 0

+ 2'19 + 2'39



Three initial addresses are stored. They are
B.4: (“•Do
B.5: (E.3>o
B.6: (E.12)O

(D.1)q is the base address for the four words to be printed. (E.3)q 
is the base address to which i is added to form the address of r..- i
(E.12) is the base address used in the printing sequence. Four jwords 
of intermediate storage are needed. They are designated as D.5, D.6, 
D.7) and D.8.

Boxes 1, 2, and 3 of the flow diagram set the eighteen rows of 
the array to all I's. Boxes 4 through A form a double induction that 
records 0's into the appropriate elements a.. of the array. Boxes B, 
C, D, and E are the print sequence proper.

Box 1 sets the initial index of 1*2 for storing I's into the
rows rr Box 2 stores -39-2 into the rows

r^ ^ where i (=0,1,2 17) decimally)
The discrimination of Box 3 is on

(I - i -
Immediately after

r = -2o

2)2*

-39
is stored, (i = 17) dec.) is increased by 1; hence the quantity

I - 1 - (i+l)2"7
is correctly negative for the first time as

I = 18-2 -7 dec.
Box 4 sets up the initial conditions for the induction over k. It

sends the initial address (D.l) to D.7 where it becomes (D.l+k) aso o
k = 0 initially. It also sends the number

-2"39 to D.5
where it is to become

-2 -J j = 39 - (10k + n)
k and n are both initially 0; hence is initially 39) as is desired.

Box 5 sets up the induction over n. The word m, becomes c, n,-11 -11 K -'L and N*2 is set to 9*2 . Box 6 forms c, and i by shifting c, ,k, n — J 0 k,n-l
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A SYNCHROPRINTER ROUTINE

FIG.23



-11*8-

left four places, 
priate element a^

Note that

i is in R4 as 2~^i and c, is in R2.
XI

is set to 0 by the operation
r± - 2~j to E.3+1

E*3 + i: r^ where i (=0,1*“F)

The appro-

E.l and E.2 contain r_ and r. of the array, and they do not enter into 
this print routine, but they must exist as all I’s. Alternative Box 7 
terminates the double induction and sends the control to the print 
sequence. The discrimination is on

-2"J
This quantity appears negative to the computer until j = -1, at which 
time -2~^ appears as 0 in the computer. It is then a positive number 
with respect to discrimination and the control is sent to the start of 
Box B. Note in Box 6 that is decreased to j - 1 after the operation

r± - 2~J to E.3+1

When «j = 0 the last step of the induction is completed and a 0 is stored 
in the leftmost bigit of the row r^. ^ is then decreased to j" - 1 = -1 
and the quantity

-2-j
becomes positive for the first time.

Boxes B, C, D, and E bring out the rows of the array and print 
them, starting with r^, which corresponds to the character F, and de
creasing to rQ, which corresponds to character 0. Print orders are 
given corresponding to the rows r. and r_, even though these characters 
are not printed by the routine. After the print order for r_ has been 
given, the discrimination of Box E is negative for the first time and 
the routine terminates.

The coding of the routine is:
Box 1
1. a—»Ac 11*2“

Box 2
1. m—>Ah B.6
2. S—>m 2,4
3. m—»Q B.l

11-2"7(=17.2"7 dec.) to R2

(l-l)2-7 + (E.l)0 = 11*2~7 + (E.12)o in R2
E.I-i to (8-19)2,4

o-39 to R4
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Box 2 (Cont.)
4. Q—wn [E.I-i] r. = -2~39 to E. I - 

1
5. m—>Ah- B.2 (l-i-2)2“7 + (E. I -i-l) in R20

Box 3
1. C 2,2

Box 4
1. Q— D-5 -2~39 to D.5
2. m—>Ac B.4 (D.l) to R2 v 0
3. A—»m D.7 (D.l) to D.7 v 0

Box 5
1. m—j>Ac D.7 (D.k+l)o to R2
2. S—>m 5,5__ -11 ___-11 ^ -11

D.k+1 to (8-19)5,5
3. a—>Ac 9-2 N-2 = 9*2 to R2
4. A— D.6 W-2"11 to D.6
5. m—>Ac [D.k+lJ ‘x-r'V toR2
6. A—nn D.8 Ck,-1 toD-8

Box 6
1. m—>Ac D.8 c. , to R2k,n-l
2. m— B.3 0 to R4
3- L(4) 4 i-2'39 in R4; c,

k,n in R2
4. A—>m D.8 c, to D.8k,n
5. m—»Ac B.5 (E.3)q to R2

6. m—>Ah 800 E.3-2"19 + (E.3+i)2_39 in R2
7. S— 6,9 E.3+i to (8-19)6,9
8. S—wn 6,b E.3+1 to (8-19)6,B
9. m—>Ac fE-B+i] T. to R21
A. m—»Ah D.5 rj - 2"J in R2
B. A— [E.3+1] r - 2"‘3 to E.3+i
C. m—>Ac D.5 -2'^ to R2
D. L(l) 1 _2-(j-l) in
E. A—vm D.5 _2-(j-l) to D>5

Box 7
1. C B, 1

(
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Box 8
1. m—►Ac D.6 (N-n)2-11 to R2
2. a—>Ah -2-11 (N-n-l)2"i;L in R2

3- A—*m d.6 (N-n-l)2-11 to D.6
Box 9
1. C 6,1

Box A
1. m—>Ac D.7 (D.k+l)o to R2
2. m—>Ah B.2 (D.k+2)Q in R2
3- A—wn D.7 (D.k+2)o to D.7
4. T 5,1

Box B
1. 01 a -711.2 11*2”'(= 17*2"' dec.) to R2

Box C
1. m—>Ah b.6 (l-l)2-7 + (E.l)0 = 11*2"' + (E.12)q in R2
2. S—*m C,4 E.I-i to (8-19)C,4
3- A—*m D.6 (l-i-l)2“2 * * * * 7 * + (E.I-i) to D.6
4. m—>Ac [E.I-i] o

r-j. A to R2
5- Syncprint

Box D
1. m—>Ac D.6 (l-i-l)2"7 + (E.I-1) to R2
2. m—>Ah- B.2 7 ^(l-i-2)2"' + (E.I-i-1) in R2

Box E
1. C C,2
2. Stop

_OQIn the induction storing -2 to all r., the register R2 is
—7 ^needed only in forming (l-i-l)2"' and in forming the addresses 

(E.I-i) . These two operations may be performed simultaneously and 
the quantities (l-i-l)2" and (E.I-i) are left in R2 throughout the

O _rt ninduction. Therefore the quantity 11•2~ (= 17*2" dec.) need only
be sent to R2 in Box 1, and it is not stored into D.6. During the 
traversal of Box 2, R2 contains

(l-i-l)2'7 + (E.I-i)q
Instruction 5 subtracts the contents of B.2 from R2. B.2 contains
the constant „ „2"' + 2’ *9 + 2“39
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80 that the subtraction gives
(l-i-2)2‘7 + (E.I-i-l)o

_OQin R2 as is desired. The quantity -2 that is sent to all addresses 
E.I-1 is stored from R4. The only instruction needed in Box 3 is the_ r7conditional transfer as the quantity (l7-i-2)2 ' upon which the trans
fer acts is in R2 from Box 2.

In Box 4, Instruction 1 stores -2 ->7 to D.5 where it becomes -2 
The quantity -2-^ exists in R4 as a result of Box 2.

Instruction 2 of Box 6 sends 0 to R4 and Instruction 3> an B(4), 
isolates i in R4 as

2-39i
The quantity i*2~^ is added from R4 into the (E.3)0 in R2 by making use 
of the m—»Ah 800 instruction where the address 800 refers to R4. In
structions 7 and 8 must both be S—>m' instructions in the final code 
since the pertinent address in R2 is

(E.3+i)2"39
In Box C where the print order is given the scheme used in Box 2 of 
having the index and the address in one word as

(l-i-l)2"7 + (E.I-i)o

is utilized. In this instance, however, the word cannot be left in R2 
during the induction as the rows r^ to be printed must be brought into 
R2. Instruction 5 is the print. Since i^ is initially 0 the rows of 
the array rT . are correctly brought into R2 beginning with r_.J-—X J?

Box D subtracts 2~' + 2-'L'^ + 2-^
from

(l-i-l)2"7 + (E.I-i)
o

and leaves the result in R2. Box E then needs only the conditional 
transfer order. As long as (l-i-2)2~7 is a positive number the transfer 
sends the control to Instruction 2 of Box C.
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The coding contains 4^ instructions, which is 24 l/g words. We 
start the code at Word 000. Upon examination it is revealed that In
structions 9 and B of Box 6 naturally occur as left-hand instructions 
in the final code. It is necessary for them to he on the right; there
fore a dummy instruction must he inserted for positioning. This gives 
25 words of code which occupy addresses 000 through 018 in the memory. 
The 18 words of the array occupy addresses 019 through 02A. The 6 words 
of B storage are then in addresses 02B through 030, and the 8 words of 
D storage are in addresses 031 through 038.

The coding is:
000 a—>Ac 110 m—>Ah 030
001 S-—>m 002 m—»-Q 02B
002 Q—wri 000 m—*Ah- 02C
003 C 001 Q—»m 035

004 m—>Ac 02E A—>m 037

005 m—»Ac 037 S—♦■m 007

006 a—»Ac 009 A >m 036
007 m—*Ac 000 A—»m 038
008 m—*Ac 038 m— 02D
009 L(4) 004 A--MU 038
00A m—*Ac 02F m—>Ah 800
00B S—ml' 00c S.-»m * 00D
00c (ds 000) m—>Ac 000
00D m—»Ah 035 A—»m 000
00E m—*Ac 035 L(l) 001
OOF A—Mn 035 C 014

010 m—»Ac O36 a—>Ah FFF
Oil A—*m 036 C 008
012 m;—>Ac 037 m—»Ah 02C
013 A—»m 037 T 005
014 a—»Ac 110 m—»Ah 030
015 S—*m 016 A—»m O36
016 m—>Ac 000 SyncprintOOO
017 m—»Ac 036 m—»Ah- 02C
018 C 015 Stop
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019 r
01A r.
01B r0
01C rl
01D r2
01E r3
OIF
020 r5
021 r6
022 r7
023 r8
02k r9
025 rA
026 rB
02? rc
028 rD
029 rE
02A
02B B.l -2-39
02C B.2 2_T + 2_19 + 2"39
02D B.3 0
02E B.4 (D.l)o = (0003l)o
02F B.5 (E.3)o = (0001B)o
030 B.6 (E.12) = (0002A)0
031 D.l
032 D.2
033 D.3
034 D.4
035 D.5
036 D.6
037 D.7
O38 D.8



III. BINARY ARITHMETIC

We begin the study of arithmetic as it relates to the computer 
by discussing (i) the allowed ranges of numbers and (ii) the treat
ment of negative numbers.

The allowed number range may be approached in two ways. There 
is the so-called "floating binary point" method and the "fixed binary 
point" method. We have adopted the latter approach; however, a few 
cursory remarks may be made about the former.

The "floating binary point" allows each number to be expressed 
as a fraction and a characteristic. That is, the binary number 
1011.1101 would be expressed as (0.10111101, +100) where the 100 is 
the positive exponent of 2 associated with the number. An argument 
in favor of such a scheme is that it alleviates the scaling considera
tions at the coding stage which one otherwise encounters in working 
with a fixed binary point. It is felt, however, that scaling is not 
a serious problem and that the time spent in arranging suitable scale 
factors is small in comparison to the total time spent in preparing 
an interesting problem for the computer. Two definite arguments 
against the floating binary point are: (i) It increases the complex
ity of the computer which in turn increases maintenance difficulties, 
(ii) It increases the time necessary to perform each operation. In 
many problems that are contemplated the time required for their solu
tion is a principal factor; hence advantages of speed are important.

In the "fixed binary point" method the binary point in the present 
computer is taken between the first and second bigits from the left.
The binary point might have been fixed between any other bigit pair. 
This fixed binary point places an upper limit on the size of a number 
in the computer.

Since it is necessary to be able to distinguish between positive 
and negative numbers, and since their treatment has a direct bearing 
on the allowed range of numbers, we digress temporarily and discuss 
the "sign" of a number.

Although there are many possibilities for the representation of 
numbers in the computer, we consider the two most common ones:
(i) "signed" numbers and (ii) "complement" numbers. In the first
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scheme the leftmost bigit would indicate the "sign". The sign 
bigit would be a 0 or 1 according as the number is non-negative 
or negative. In each instance the sign bigit is followed by the 
actual numerical bigits. Clearly, in this case the magnitude of 
all numbers would be less than 1.

In the second scheme of "complement" numbers, since

we write x as

2n+i 1,

x = 21 + 1 + x 2N+1;

then take for our representation of x

x(mod 2N+1) = + 1 + x.

For positive x, that is x ^ 0, the above equation gives:
/ , _N+lv -x(mod 2 ) — x.

If also, Jx|d, the leftmost bigit contains a 0 as in the preceding 
scheme. For the negative values of x, 0> x> -1, the integral part 
of the number’s representation is a sequence of 1's, (N+l) in length, 
followed by a fractional part equal to (l-|xj). Since the computer 
contains numbers modulo 2, it contedns the complete fractional part 
and the first integer to the left of the binary point; hence the 
leftmost bigit contains a 1. Therefore, in the complement scheme, 
if Jxj < 1, the "sign" of a number may be identified by examining 
the leftmost bigit. This is not a true "sign" and the bigit has 
numerical significance. However, for convenience it is called the 
sign bigit.

In either the "signed" number representation or the "complement" 
number representation |x] <1, and the "sign" of the number is de
termined by the leftmost bigit.

Since the sign of a number is identified by examining the sign 
bigit, we are naturally led to treating zero as positive for compu
tational purposes. Since a 1 in the sign bigit indicates a negative
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number and since the sign bigit also has numerical significance, 
one may interpret 1 in the sign bigit followed by all 0’s as the 
integer -1 and operate with it accordingly. The allowed number 
range in the computer is then -1< x< 1.

All numbers are of the form:
x(mod 2N+1)

where N may be any suitably chosen value. For the discussion of 
addition and subtraction it suffices to take N=0 and to consider 
a negative number as represented by its complement with respect to
2. For the multiplication process, 39. The details are con
sidered presently. Since the computer contains numbers modulo 2, 
we actually see x or (2-[x|) according as x is positive or negative, 
and we refer either to the number or its complement with respect to 
2. However, the existence of the (N+l) bigits left of the binary 
point is implied.

Shifting
Shifting is one of the more basic operations the computer per

forms and perhaps should be the first of the arithmetic operations 
discussed. The left and right shift provide a means of multiplying by
2n where -40.<n5~40.

Recall that x is represented as:

x(mod 2W4’‘L)

Performing a left shift of n places, 0 < n^ 40, gives:

which conforms with the adopted complement notation.
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As previously stated, all numbers in the computer must have 
a numeric value less than 1; therefore, for this "power" shift to 
be a legitimate operation

2n|x|<l,
or |x| < 2"n
In the computer where the left shift takes place modulo 2, the sign 
bigit is treated as a numerical bigit, and at each step of the 
shift the 2”^ bigit shifts into the sign bigit. After an n-fold 
shift where |x| < 2-n, the shifted number still has the proper sign 
representation as is indicated by the algebraic representation.

There are other schemes of left shifting; for example, where 
the sign is not affected and numerical bigits are lost from the 2-' 
bigit position. For purposes of power shifting this scheme is com
parable to the scheme adopted. However, when one uses shifting 
facilities to separate a multiplex of numbers stored as a 40-bigit 
aggregate our scheme allows much more flexibility. This is not 
the place for a discussion of non-standard operation; hence we de
lay the discussion of shifting as it applies to such cases until a 
later time.

Performing a right shift of n places, 0^ n^ 40, gives:

2-nx

N - n 

2"nx(mod 2W,+1)

2~n ^ ^ + 2-n(l+x)

L zl'n + 2'd + ^

^ 21 + (J” 2'i+2~n+2_nx)

N' > 0
N‘y 2i + (1+2“nx) 
i=o

N> n

which conforms with our complement notation
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Phenomenologically, one may say that in a right shift the sign
bigit fills into the bigit positions that are vacated by the shift.

_^oThe output to the right of the 2 position is still available else
where, hut is of no concern in the present discussion.

For examples of shifting, consider a left shift of k and a right 
shift of 4 where x is in each case a negative number. A negative x 
is used, as it provides the more interesting example. The shift ex
amples are considered modulo 2 as this is the computer representation.
(i) shift x left 4, x

. * 2 *-M
24(2-|x|) 

2^2 - jxj )mod 2 
signed number

-0.00001011
1.11110101
11111.01010000
1.01010000

-0.10110000
equivalent to the

(ii) shift right 4, x
k 2"|X| 

2 (2-jxj)
gives 2”^(2-|x j)

signed number

-0.10101011
1.01010101
1.111101010101
i.inioioi

-0.00001011

then truncating 
equivalent to the

In the right shift the resulting number may be in error by at most 1 
in the rightmost position because of the truncation. One can reduce 
this truncation error by introducing a "round-off" scheme in the 
right shift.

Addition and Subtraction
Consider the sum S = (x+y). Not only must Jxj, JyJ < 1, but

jsj < 1. (x+y) is represented in complement notation as
JL . N N2 + l + x+ y 2 +1 + y = 2 y 2 +2 + (x+y)
3=b 3^0 fsro

N+l . N+l
)_ 2 + (l+x+y) = V 2 + (1+S).
i=o j^o

Hence S is of the same form as x and y. If (x+y) 0, then

(21 + (1+S) } mod 2N+1 r: S > 0.
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If (x+y)< 0, then the result is:

J 2i+ (l-|S J).

In either case we have the correct interpretation. Since the result 
is viewed modulo 2, we may set N=0 in the above equations without 
affecting the results. Therefore, in addition and subtraction num
bers are of the form (2+u), where -1 ^ u < 1.

(2+x) + (2+y) = 4 + (x+y) = 4 + S
and if (x+y) > 0, then (4+S)mod 2= S. On the other hand, if 
(X+y) < 0, then (4-|sj)mod 2— 2-|s). Therefore, the signs of x 
and 2 do not alter the process and one may, by means of addition, 
effect either sums or differences.

Clearly, if it is desired to form the difference (x-y) of two 
numbers x and y where their representations are

Njr 21+ (i+x)
1=0

and t 21 + (1+y),
1=0

we must first represent -y in this notation which is

N
y 21 + (l-y). 
i=o

NThis is referred to as the complement of y with respect to 2* . For 
subtraction it suffices to be able to form the complement of numbers 
with respect to 2.

To form the complement (2-y), write

2 - y = (2-2"n-y) + 2~n
where n is the rightmost bigit position. Since

n2 - 2"n = y 2-1,
1=0

(2-2_n-y) is the reflection of each bigit of y; that is, where there 
is a 1 in £ there will be a 0 in (2-2-n-y). The complement is com
pleted by adding 2~n to the difference. For example,

2 - 2"12 = 1.1111 1111 1111
- y = -0.1101 QUO 1011

which reflects each bigit of y: 1.0010 1001 0100
Adding 1 into the rightmost bigit ___________________1
gives the complement 2-y 1.0010 1001 0101
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This method of reflecting each bigit and adding 1 into the 
rightmost bigit position is, in essence, the method by which the 
computer forms complements.

Examples of addition and subtraction are:

(1) x = 0.00101011;

x + y =

(2) x = 0.10101101;

2 -
2 + (x-y) = 2 -

y = 0.01000111;

x = 0.00101011
y = 0.01000111
S = 0.01110010

y = 0.11010110;
x = 0.10101101
y = 1.00101010
Sj = 1.11010111

form S = x+y

form S = x - y

Multiplication
We consider the multiplication of y, a 39-bigit multiplicand and 

sign, by x, a 39-bigit multiplier and sign. The product P is a 78- 
bigit product and sign. It has previously been stated that |xj,
|y| <1; therefore it follows that |pj < 1. Here is an advantage of 
placing the binary point to the left of the first numerical bigit.
If [x|, |y|> 1 were allowed, the product P could be greater than 
either factor, and P would have its binary point in a position dif
ferent from either that of x or y.

To develop a multiplication scheme, consider two numbers x and 
y where |x|, |y| < 1. Since the complement notation is used, their 
product is:

p = (Jo2' + (1+^ (1/ +
= (l+x)(l+y)+(l+x)

= l+x + y + xy +

+ (1+y)
N

Xo
N . J2
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Using the relation Nl21
= 2N+1 - 1,

One obtains: « •. ~N+1 0N+1P = l+x + y+ xy + 2 -1 + 2 x-

Collecting terms:
P =

Since

0N+1 n 0N+1 , _2N+2 _ -N+l , n-x+2 -1+2 y-y+2 - 2*2 + 1.

-2N+2 -N+l/ s 2 +2 (x+y) + xy.

,2N+2 2N+1
Xo2i + 1

rewrite the product as:
,N+1 2N+1

P = P^Cx+y) + )2 + (1+xy).

Either (x+y) = 0, or |x+y| > 2~^; hence, if we choose N=39> 2^^(x+y) 
is either 0 or greater than 2. Since the computer contains numbers 
modulo 2, P^fx+yjmod 2=0, and we see P as :

P mod 2=2 + xy, 
the correct complement notation.

The scheme as outlined is not desirable for the computer as itliOconsiders x mod 2 which implies that the multiplication is a 7o-step 
process rather than the conventional 39 steps.

One may modify the scheme so that it treats only the fractional 
part (but not the sign bigit) of the multiplier x. Here, x has the 
representation (£q+x) where |Q = 0 if x > 0 and = 1 if 
x < 0; i.e., the complement of x with respect to 1 if x is negative.
By a procedure similar to the above, one finds

(S0«)( ^S^l+y) = 2*°t0 + 2lt0x + iQy + xy.

Rewrite the product P as
P = + 240(x-2"39) + 2 + £oy + xy.

Then, as in the preceding case, consider P mod 2 and 
P mod 2=2+ loy + xy.

If x :> 0, then = 0 and
P mod 2=2 + xy,

the correct product using complement notation. If x <: 0, then io = 1 
and P mod 2 = 2 + y + xy.
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Clearly, one needs to subtract y to gain the desired product. An 
additional step is required in this scheme if the multiplier is 
negative, namely adding the complement of the multiplicand y to the 
product.

The multiplication is accomplished by examining the multiplier 
a bigit at a time, beginning with the least significant bigit, and per
forming the indicated operation. If the multiplier bigit is a 1, the 
multiplicand is added into the partial product; then the sum and multi
plier are shifted right one place. If the multiplier bigit is a 0, 
the partial product and multiplier are merely shifted right one. Ihe 
multiplication involves steps; the first 39 steps either add the 
multiplicand to the partial product and shift the sum right one unit, 
or merely shift the partial product right one unit according as the 
examined bigit of the multiplier is 1 or 0. The 4<j step adds the 
complement of the multiplicand to the partial product or does nothing 
according as the sign bigit of the multiplier is 1 or 0.

The computer can only perform operations modulo 2; therefore some
liOway is needed of simulating the multiplicand modulo 2 . To find a

suitable method, we examine whether there is a simple relation between 
the sign of the partial products, as viewed in the computer, and the 
sign of the multiplicand for the scheme discussed immediately above.
We now prove that after the first 1 is encountered in the examination 
of the successive bigits of the multiplier (prior to that the partial 
product is zero), the signs of the multiplicand and the partial product
agree.

Assume the partial product p^ is of the form:
where |b j < 1;

O.T_
if the (i+lj bigit of the multiplier is a 1

2 21 + (2+b+y)

Now|b| < 1 and |y| <1; therefore |b+yj/2 = |b’J < 1 and

Eq. (1)
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thFor the case where the (i+l) bigit of the multiplier is a 0, it is 
easy to see that b’ of Eq. (l) is equal to b/2. The partial product 
is originally 0, but after the first 1 appears in the multiplier, the 
partial product p is:

2p + 1 + y lyl < i

p + 1 + y/2 ly/2| < 1

Therefore, by induction all succeeding partial products are of the 
form:

pi - L2i ♦1 + ^ 1
i=o

Inasmuch as the various increments to the partial product all have 
the same sign, namely that of the multiplicand, and since it has been 
shown that |b'| <1 for all possibilities, it is clear that the sign 
of the partial product agrees with that of the multiplicand (again, 
after the first 1 appears in the multiplier). Hence, if it is arranged 
so that this condition is satisfied in the course of multiplication as 
done by the computer, then one has simulated the multiplicand modulo 2 
and the above scheme may be adopted.

It turns out, however, that multiplication as done by the 
computer may cause ihe sign bigit to change] consequently it must be 
arranged to keep it invariant after the first 1 of the multiplier 
appears. To see that the sign bigit may change if no precautions are 
taken, consider the magnitude of the p^'s:

Pjl + y
Pj+y

Pi+1 = 2
iPj+yi < IPjj + lyl <■ 2

iPi+yi
2 <d 1

ipi+ii < 1.

where |y| 1



Since po = 0, "by induction all jp^j c 1. Although jp^ <: 1, 2 jp^ 
is not necessarily less than one, but 2 p^j < 2. At each step 2 jpj 
is formed and then shifted right one unit. This implies that in form
ing 2pi one does not lose significant bigits of the partial product, 
but the "sign'' bigit may be lost. The loss of the "sign1' bigit is the 
result of the addition at each step being done modulo 2.

The multiplication of a 39-bigit number by a 39-bigit number gives 
a 78-bigit product. When one is interested in single precision opera
tion, i.e., operation with 39-bigit numbers, the 78-bigit product is 
rounded-off" to 39 bigits. That is, the 78-bigit product is approxi

mated by a 39-bigit product. There are several methods for doing 
"round-off ' that are applicable to our needs. We have chosen for 
multiplication the scheme in which all bigits beyond and including the 
n*"*1 bigit are ignored and the n^*1 bigit is set to a 1. At this point 
we do not plan to argue the validity of this round-off scheme. We 
may, however, state that the scheme is unbiased, and it has a variance 
of l/3'22n.

The multiplication may be summarized as follows: There are 39 
steps in which the multiplier is examined a bigit at a time. At each 
examination the multiplicand is added to the partial product or nothing 
is done, according as the multiplier bigit is a 1 or a 0. In either
case the result is shifted right one unit and the process is repeated
for 39 steps. When the first 1 appears in the multiplier, the sign 
bigit of the partial product is, on this and all subsequent steps, 
set equal to the sign bigit of the multiplicand. The 4C; step either 
adds in the complement of the multiplicand or does nothing, according 
as the sign of the multiplier is a 1 or a 0. And at the end of the
UO^1 step the 39^ bigit of the product is set to a 1 if the multipli
cation is dene with round-off; or nothing is done if the multiplication 
is without round-off.

We consider two examples of multiplication. For simplicity we use 
three-bigit multipliers and multiplicands. Both examples are with nega
tive multiplicands as this affords the most interesting cases. The first
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example has a positive multiplier and the product is rounded-off to 
three bigits. This round-off to three bigits, of course, tends to 
give a more distorted product than would occur in the computer where 
the product is rounded-off to 39 bigits. The second example has a 
negative multiplier; hence, as a correction, the complement of the 
multiplicand is added to the product in the last step. This example 
considers multiplication without round-off.
Example 1:

x
xy

xy(ro)

0.111 = 7/8 y = 1.001 = -7/8
1.001111 =-49/64
1.001 = -7/8 (The round-off scheme used is to

set the 2~^ position to a 1. In 
this instance it is a 1; hence 
no change is made.)

(i)

(ii)

(iii)

(iv)

Step (i):

y = 1.001
p = 0.000*0
p = 0.000+y° = 1.001

2p. = 1.001p^ = 1.1001

p. = 1.1001
+y = 1.001
2p- =lL0.10ll
Pg = 1.01011

p = 1.01011+y^ = 1.001
2p =[i3o.oiiiip^ = 1.001111

x = 0.111 o

X1 = 0.011

Xg = 0.001

x^ = 0.000 

1.001p = P3(ro)

Initially (pQ = 0). The rightmost bigit of the multiplier 
is examined. Since it is a 1, £ is added to p to give 
2?^ We have a negative multiplicand; hence, from this 
step on, the sign of the partial product is set to the
sign of the multiplicand. 2p1 is shifted right one place
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Step (ii):

Step (iii) 
Step (iv):

to give p1, and the sign of p1 is set to a 1. xq is 
shifted right one place to form x^, which again has a 1 
in the rightmost position.
£ is added to p^ to form 2pg. (Note that in adding (y+p^,) 
2pg is written as [1] 0.1011. The 1 does not exist in the 
computer as it adds modulo 2; hence the 1 is shown in 
■brackets and does not enter into the product.) 2pg is 
shifted right to form p^, and the sign higit is set to a 
1. x1 is shifted right to give x^.
Identical in procedure to Step (ii).
x^ is examined and the rightmost bigit (the original sign 
of the multiplier) is a 0; hence no correction term is 
needed. Round-off is indicated; hence the right-hand 
three bigits are truncated and the 2 bigit is set to 
a 1. In this instance it is a 1; therefore no action is
required.

Example 2:

xy
= 1.101 = -3/8 y = 1.011 = -5/8
= 0.001111 = 15/61

•o
 *
<*
 

o II
 II 1.011

0.000 xo = 1.101

(i)

ro
 +

H H
 1 

O
II
 II 

II
 II 0.000
1.011
I75IT
1.1011 x1 = 1.110

(ii)

■^2

1.1011
1.1011
1.11011 x = 1.111

(iii) p = 1.11011+y2 = 1.011
2p =[i]i.o6Iii
p^ = 1.100111 x = 1.111

(iv) =+(2-y) 3 = 1.100111
0.101

P =[U 0.001111 
= 0.001111
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Steps (i) and (iii): These are identical in procedure to the preced
ing example.

Step (ii): The multiplier bigit is a 0; hence p^ is shifted right
one unit to form p2.

Step (iv): The rightmost bigit of is a 1 indicating the comple
ment correction. (2-y) is added to p^ to give the cor
rect product, P. (if round-off had been indicated, the 
right-hand three bigits would now be truncated and the 
2 J bigit of the product set to a 1.

Division
The division scheme adopted for the computer is a pseudo-non

restoring scheme. Before discussing the scheme, we compare a true 
non-restoring scheme with the more familiar restoring type of division.

For simplicity of discussion, we assert that x, the dividend, and 
y, the divisor, are positive. Further we assert that for any division 
scheme

lxl<:|y| < 1
(all numbers in the computer must be less than l).

In the restoring scheme, the divisor is continually subtracted 
from the partial remainder (the dividend on the first step) until the 
remainder is less than the divisor. The number of such subtractions 
is then recorded in the appropriate position in the quotient. The 
partial remainder is then shifted left one unit and the process is 
repeated.

In the non-restoring scheme the divisor is subtracted from the 
partial remainder (the dividend on the first step) until the partial 
remainder becomes negative. The number of such subtractions is then 
recorded in the appropriate position in the quotient. The partial re
mainder is then shifted left one unit, but now the divisor is added 
to the partial remainder until the partial remainder again becomes a 
positive quantity. The number of such additions is then appropriately 
positioned and subtracted from the existing partial quotient.
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These two sequences are then repeated ad infinitum with the sign 
of the partial remainder being either positive or negative. The quo
tient is formed by a succession of additions and subtractions.

If we consider the binary base, a well ordered division may have 
only one addition or subtraction for each fixed quotient position.
This may be seen most clearly by referring again to the restoring 
scheme. If the dividend is initially less than the divisor, then for 
any fixed quotient position there may be at most (m-l) subtractions 
(where m is the number base) before the partial remainder becomes 
smaller than the divisor. In the non-restoring scheme it is not neces
sary to have more than (m-l) subtractions or additions for a fixed 
quotient position, as it suffices to know that the dividend is less 
than the divisor. Since (m=2) for the binary case, one addition or 
subtraction suffices for each quotient position.

An example of a well-ordered non-restoring division in binary form is

15M + 3 A = 5/16

1.111101
0.000011
0.000006

Collecting terms of the quotient gives:

1 x 2° + 1 x 2-^ = 1.0010
- (1x2"1+1x2"2+1x2'1;) = -(0.1101)

5/16 = 0.0101

Step (i): The sign of the divisor and dividend (partial remainder) 
are the same. The first quotient position is chosen 
as the 2° position; hence a 1 is recorded and the divisor
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is subtracted from the dividend (the subtraction is done 
using complement notation).

Step (ii): The partial remainder is now negative; hence its sign dif
fers from that of the divisor. -1 is recorded in the 2 ^ 
quotient position and the (divisor) x 2~^ is added to the 
partial remainder. In the computer the partial remainder 
is shifted left one unit rather than shifting the divisor 
right one unit as it is added. In essence the two are 
equivalent; however the former is more advantageous with 
respect to computer operation.

Step (iii): The partial remainder is still negative, a -1 is inserted
-2 -2 into the 2~ quotient position, and the (divisor) x 2

Step (iv):

Step (v):

is added to the partial remainder.
The partial remainder is positive; hence a 1 is recorded 
in the 2~^ position of the quotient and the (divisor) x
j-3 is subtracted from the partial remainder.
The partial remainder is negative, so -1 is recorded in

-4 / \ -4the 2 position of the quotient. The (divisor) x 2
is added to the partial remainder giving a new partial 
remainder of 0 which terminates the division.

Step (vi): The indicated additions and subtractions in the quotient
are performed. The result is the desired quotient.

Note that the restriction of treating x and j as positive numbers 
is not necessary in the non-restoring scheme as the sign of the partial 
remainder (x, initially) may be either positive or negative. It is not 
needed to know the specific sign of each factor but only the relation 
between the sign of the divisor and dividend. Hence, in further dis
cussion no sign restrictions are necessary.

As each step of the quotient involves an addition or a subtraction, 
the true non-restoring scheme would necessitate a second register that 
had all the complications associated with the adding facilities. There 
is, however, a simple relationship between the true non-restoring quo
tient that is written as a series of 1's and -1's and a pseudo-non
restoring quotient obtained by replacing the -1 by 0 wherever it occurs. 
This relation, first shown by von Neumann, may be found as follows:
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Write the true quotient Q in non-restoring fora as:

Q » 2 \ +2 + • • • +2 + ro 1 n n
vhere may he ±1 and r^ may he positive or negative. Using the
transformation X. = 2c -1 vhere c.= 0 if X. = -1 and c. = 1 if X. = 1, i i i i i i
one obtains:

Q = 2°(2c -1) + 2"l(2c1-l) + ... + 2"n(2c -l) + r
' o '1 v n n

= 2(2°c +2’^c.+...+2~nc ) - (2°+2-1+...+2~n) + r
' o 1 n' ' ' n

o „-l

If we assert that the pseudo-quotient C is 
C

then, since
C = 2°c + 2~1c. + ... + 2-nc ,

o 1 n7

.o ^-1(2u+2~'L+...+2"n) = n -i = -(2-2-n),

Q = 2C - 2 + 2'“ + r ,n7
2 + Q = 2C + 2"n + r .n

If ve fora the pseudo-quotient C, multiply it hy 2 (a simple left shift),
and add 2”n, the result is (2+Q) which is the correct complement nota-

n ^9tion with respect to 2. In our instance 2” = 2~:5~ (the rightmost higit
position).

-•90Hie 2 that is introduced is, in effect, round-off of the same 
type as that used in multiplication.

The pseudo-non-restoring scheme is the one actually used in the 
computer.

For an example of division, divide

Divisor
y = 1.001 = -7/8,

49/128 7 -7/8 = -7/16
Partial Remainder 

x = rQ = 0.0110001 = 49/128,
Quotient

0

(i) r = 0.0110001
+y° = 1.001
r1 = 1.1000001 0.



2rl = 1 1.0000010+(2-y) 1
- 0.111

r2 = 1.1110010

2ro = 1 1.1100100
+(2-y) = 0.111

r3 ~ 0.1010100

2r
+y~’

= 0 1.0101000
= 1.001

r4 0.0111000

2r4
+y

= 0 0.1110000
= 1.001
= 0.0000000

s'

c = 0.1100
20 + 2"^ 1.1001 =

o.i

o.n

0.110

0.1100

(ii)

(iii)

(iv)

(v)

(vi)

Q -
Step (i): The sign of the partial remainder (dividend at this step)

and the sign of the divisor are different; hence the di
visor (y) is added to the partial remainder (r ) and a 0 
is recorded in the quotient.

Step (ii): The sign of r^ and y are the same; hence the complement
of y is added to 2r^ and a 1 is recorded in the quotient.

Step (iii): The sign of r^ and y are the same; hence the complement
of £ is added to and a 1 is recorded in the quotient.

Step (iv): The sign of r^ and y are different; hence y is added to
2r^ and a 0 is recorded in the quotient.

Step (v): The sign of r^ and y are different; hence y is added to
2r, and a 0 is recorded in the quotient, (r =0) so the 4 - 5
division steps are completed.

Step (vi): Shift C, the quotient resulting from the first 5 steps,
-4left one place and add 2 . This gives the true Q.

The computer would not terminate, as we have done, when the re
mainder is 0. It would carry the division out to 40 steps rather

-^9than and then insert a 1 into the 2 position. Obviously this 
does not give an exact answer. In fact, the computer quotient for the 
given example would be Q = 1.1000111.. .Ill, = -(j/l6 + 2~^).
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IV THE COMPUTER

Block Diagram
In this part we discuss in more detail the various components of 

the computer and the various interactions between them. We begin with 
a simple block diagram of the computer;

Output

Arithmetic

Internal
Memory

External Memory

CONTROL

The block diagram shows the components with their various intercon
nections. Some of these connections are for logical (non-arithmetical) 
operations and others to transfer numerical data from one component 
to another. It is observed that the control is the central agency in 
the organization and directs the operation of the other components.
It signals the input to read new information into the internal memory 
and receives a signal when the operation is completed. The control 
directs the internal memory to provide the next order to be executed; 
further, it transfers numbers from the memory to the arithmetic unit, 
and conversely. The control directs the transfer of numbers between 
the internal and external memory. It supplies the sequence of pulses 
and voltage changes to the arithmetic unit to effect the various 
mathematical operations. Finally, it instructs the output to punch 
a paper tape and print page information from the memory for external
use.
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Arlthmetlc Unit
We follow the same pattern as in the Introduction and begin with 

the arithmetic unit. A schematic cross-section of the arithmetic unit 
proper is shown:

ARITHMETIC 
GATE 

CHASSIS

ADDER

Rig. 1 Schematic Cross-Section of Arithmetic Unit.
Circles with the small arrows indicate gate tubes, 
or electronic switches. Also shown are the inter
connections for the addition process.

The six registers, Rl, R2,...R6, are mounted in pairs on three horizon
tal, three-dimensional chassis, a type proposed by Bigelow. It is 
sometimes convenient to refer to the pair, Rl, R2, by the single let
ter A (for accumulator); R3, R1+ are designated by Q (for quotient 
register). Rl and R3 provide a method for the shifting of numbers in 
R2 and R4, respectively, so it is quite natural to think of the two 
doublets of registers, A and Q, as single entities. However, R5 and 
R6 are not so interconnected; in fact they perform quite different 
functions. Nevertheless, it is compact to have them also Juxtaposed.

Opposite the three chassis of registers are three other sets, quite 
similar in appearance. The lower two constitute the adder proper; the 
topmost is called the arithmetic gate chassis.

We discuss first the registers. Each register is a set of bO 
flip-flops. Between the two rows of flip-flops in a chassis are two 
other rows of tubes. These are the so-called gate tubes (electronic



switches) and allow for four different types of switching action. (Each 
tube contains two halves which can be used independently; such tubes 
are sometimes called double triodes.)

A flip-flop is a relatively simple electronic circuit containing a 
tube consisting of two separate parts, such that either one half is con
ducting current and the other is cut off, or the converse. These two 
modes of operation correspond to two stable configurations, and one state 
is said to represent a "0", the other a "1". A flip-flop is schematically 
drawn as a rectangle of two squares, one being shaded to indicate con
duction. We adopt the following convention:

0 I

A small neon is connected to each flip-flop; "off" corresponds to a 0 
and "on" to a 1.

As mentioned in the Introduction there are two alternative methods 
for transferring information from one set of flip-flops to another. 
Consider two sets of flip-flops, A and B. There exist circuits--gating 
schemes—whereby it is possible to transfer information from A—in
dependent of the previous states of the individual flip-flops of B.
The alternative procedure would be to first reset all of B to 0's and 
then cause only those flip-flops of B to be set to 1 whose correspond
ing flip-flops in A contain 1. Quite clearly, B could be first reset 
(or "cleared") to all I's and then the 0's from A could be transferred 
to the corresponding flip-flops of B. The latter method with both 
schemes of "clearing" and gating is used in the computer.

We indicate diagrammatically how a number 0011*••0 in, say, R2 
is shifted to the right by one binary place. Rl initially contains an 
arbitrary number fran some previous operation. (See Figure below.)

As a result of the four steps, the number originally in R2 has been 
shifted to the right by one binary place. It is observed that the left
most flip-flop of Rl, the flip-flop of the sign bigit, has an additional 
gate leading to the "sign" flip-flop of R2, as is of course required
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R2
0 0 I I • • • • 0 number to be

shifted right 
by one place

• • • |
• • • arbitrary

number

Initial State

• • • • 
• • • •

W/ I • • • • “11O' - ot O' ot • • • • of
Clear Bus

Step 1. Clear Rl to ZEROS by voltage pulse on Clear Bus. 
Symbol* CoRI

Step 2. Flip-flops of R2 containing "l" cause corresponding 
flip-flops of Rl to set to T‘ when voltage pulse is 
applied to gate tubes.

Step 3. Clear R2 to I Symtol * C ■ R2

Clear Bus
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Step 4. Flip-flops of 
corresponding

Rl containing "o" cause 

flip-flops of R2 to set to
II ^ II0 .

to propagate the sign bigit. With the aid of a third set of gate 
tubes connected diagonally to the left, shifting to the left by one 
binary place is essentially the same sequence as in the above, except 
that in Step 4 the third set of gates would be pulsed.

It is convenient to label the sequence of toggles in a register 
by 0,1,...39 starting from the left, so that there is a one-to-one 
correspondence between a flip-flop and the magnitude of the exponent 
of that binary place; e.g., 0R2 designates the sign flip-flop of R2, 
(0-7)Rl refers to the first eight flip-flops of Rl.

The chassis with R3 and R4 has a similar set of gate connections. 
In fact, whenever a shift occurs in A the same process occurs in Q; 
both multiplication and division processes make use of the simultan
eous shifting. Furthermore, it is desirable in some Instances not to 
lose the information which would otherwise disappear by truncation at 
the ends of A. In order to retain the information, flip-flop 0R1 is 
connected to 39R4, and the information being truncated at the left of 
A is introduced at the right in Q. The information being truncated
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at the left of Q is lost. Symbolically,

empyrean

0 12 3 4 37 38 39

Fig.2 Nature of left shift operation, showing 
interconnection of A and Q.

The sign flip-flop of A, 0R2, is treated the same as the others of R2J 
i.e., the original sign of a number in R2 gets shifted, along with the 
numerical part. This type of shift operation facilitates the separa
tion of multiple stored numbers.

In the right shift operations, Q again acts as a reservoir for 
the bigits spilling out of A. Here the bigits are introduced at the 
left in Q, beginning with the "sign" flip-flop, ORU. Diagrammatically,

empyrean
0 12 3 4 37 38 39

Fig. 3 Nature of right shift operation

Thus we can Imagine that for the left shifts, Q is the continuation of
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A on the left, and for the right shifts, Q is the extension of A on 
the right. For the right shift operation, it is of course necessary 
that the original sign bigit of R2 propagate. For example, a right 
shift by five binary places of the complement number, say 1001...in R2, 
results in 111111001.....

The Addition Process
A schematic drawing of the addition process is given in Figure 4.

ADDER

MEMORY

Fig. 4 Schematic cross-section of the arithmetic unit 
that participates in the addition process. As 
usual, circles Indicate gate tubes. The small 
arrows represent symbolically the signals that 
stimulate the gating action. The clearing ac
tions associated with each gating action are

not shown.
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The 14-0 stages of the various registers are represented by simple squares. 
As before, circles represent "gates". The two inputs to the adder are 
from R2 and R5. R2 is statically connected to the adder, so that its 
contents are always sent there, irrespective of whether or not an addi
tion operation is being pursued. The number to be added to that in R2 
comes initially from some memory location into R5. The pulse, indicated 
by 2 in Figure k, gates this number into the adder. There the sum is 
formed. During this process, in preparation for receiving the sum, Rl 
is cleared. Finally gating action 4 transfers the sum from Rl—»R2. This 
latter gating action involves a displacement of the bigits to the right by 
one. In order to keep the position of the binary point unchanged, gating 
action 3 effects a shift of one to the left. An alternative scheme would 
be to have gating action 3 bring the sum into Rl without any shift. Then 
transfer to R2 with a right shift; return to Rl directly; but then go 
back to R2 with a left shift. This doubling back costs two extra clear
ing and gating actions. In place of this we have introduced another set 
of gates, in which the sum is brought into Rl displaced once to the left; 
then a single transfer to R2 completes the process. It should be men- 
tbned that it is necessary to have an extra flip-flop, eRl, beyond 0R1, 
which connects to 0R2, the sign flip-flop of R2.

We have seen earlier that the subtraction d=(a-b) may be performed 
by adding to a the complement of b. We have also indicated that the 
complement information is quite naturally available in a set of flip- 
flops. Indeed, if a set of gates is connected to the adder from the 
side of the toggles opposite that normally used in addition, we can per
form subtraction. Gating action of Figure 4, transfers the comple
ment of the number in R5 to the adder; the result (here, the difference) 
again appears finally in R2. Thus the addition and subtraction processes 
differ only in the choice of gating action 2 or 5, respectively. When
ever the "complement" gate 5 is used it must, of course, be accompanied 
by the insertion of a 1 into the 39th stage of the adder in order to 
obtain the true complement of the number in R5. This insertion is 
effected by stimulating a carry input into the 39th stage of the adder.
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Multipllcation
Inasmuch as multiplication is a series of additions, the nature 

of the addition process dictates in large part the role of the various 
registers in the multiplication process. When the multiply order is 
given, it is assumed that the multiplier factor is already residing 
in R4 as a result of a preceding instruction or of an earlier arith
metical operation. The address associated with this order refers to 
the memory location containing the multiplicand. The operation begins 
with the transfer of the multiplicand from the memory to R5; simulta
neously R2 is cleared in preparation for the successive partial pro
ducts. We distinguish two types of multiplication:

(i) no round-off, in which the full 78 bigits and sign are 
available, the significant portion appears in R2, and the right half 
appears in R4;

(ii) round-off, in which the first 39 bigits rounded-off are in 
R2. The remaining portion of the product is truncated.

In both types of multiplication the first step is the examination 
of the bigit in the rightmost bigit of the multiplier. If it is
a 1, an addition of the multiplicand and the partial product (at first, 
0) is performed. R2 and R4 are then shifted to the right by one place. 
In the event that the bigit is a 0, R2 and R4 shift without an addi
tion. The succeeding bigit of the multiplier is now examined in R4 
and an addition is performed if the bigit is 1. Because of the pre
ceding right shift of the partial product in R2, the direct addition 
of the multiplicand to it is appropriately placed. Note that the 
bigits being shifted out of R2 are no longer involved in the partial 
product sum. In the case of "nro" (no round-off) they are introduced 
into R4 at the left, where room is being made available by the right 
shifting of the multiplier. In "ro" multiplication, R4 is empty at 
the end of the process. The final step in the process involves the 
"multiplicand correction” (as discussed in the section on binary 
arithmetic) in the event the multiplier is negative, and the round
off procedure if the latter is indicated.

The successive additions that occur in forming the partial pro
ducts differ in one respect from the single addition process associated
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with the addition orders. In the latter case it will he recalled 
that the gate connection from the adder to Rl was such that the out
put of the adder was displaced one to the left, so that in the sub
sequent right-diagonal transfer from Rl—»R2 the binary point is 
unchanged. In the multiplication process, a right shift of one is 
precisely what is needed of the partial sum; hence the gating from
the adder to Rl is direct; i.e., the i stage of the adder is con- 

tilnected to the i stage of Rl, and the subsequent transfer from 
Rl—>-R2 introduces the desired right shift by one.

In the control panel immediately to the left of the adder chassis 
is a six stage binary counter called the operations counter. At the 
beginning of the multiplication process, this counter is set to 23/ 
and each cycle of the multiplication adds 1. It is arranged so that 
the iterative routine is interrupted after the counter reaches 63,* i.e., 
the counter is filled with I's. The full counter then terminates the 
routine, stimulates the multiplicand correction in the event of a nega
tive multiplier, and finally initiates the round-off procedure if in
dicated. The sign bigit of the multiplier is at this time residing in 
39R4 and is detected there.

We conclude the discussion of the multiplication by an example 
with "nro". The particular problem is

/ 13n , ru 143x = 255

in binary form: (-0.1101) x (-0.1011) = (0.10001111)

in complement form: (1.0011) x (1.0101) = (0.10001111)

The first row of the sketch shows the initial configuration. In 
Step 1 we have included Rl and R3 to show their respective gate 
connections to R2 and R4. There is no connection from the adder to 
eRl; it is set to correspond to OR5. In the subsequent steps only 
the principals, R2 and R4, are shown. In the example we assume that 
the arithmetic unit has only 5 stages instead of the actual 40.
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01234 01234 (unchanged)
R4| I |0l I loTH R5| I | 0101 rR2 0 0 0

Step I

R21 I 1 I | I |6To1 R4|l | I 1 I | Ofi Step 2

R2 0 I I R4 I I Step 3

R2 I I 0 I I R4 I I I I I Step 4

R2 0 I 0 0 0 R4 0 I I I I Step 5

Initial
State

At the end of Step U the Iterative procedure Is coapleted, ani the 
sign of the Multiplier Is by nov at the extres* right flip-flop. Step 5 
Is a true addition of the coaplenent of the multiplicand, inasmuch as 
the multiplier is negative. Simultaneously R4 Is shifted to the right 
by one so that the right half of the final product is properly posi
tioned. For reasons of uniformity 0R4 Is always set to 0 in this step, 
irrespective of the true sign of the product.

If the multiplication were rounded-off, the rightmost flip-flop of 
R2 would always be set to 1 and RU would contain all O's.
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Division
We now discuss the various steps of the division process. It 

will he recalled that we use a so-called "pseudo-non-restoring" 
type of division rather than the usual "restoring" form. It is 
assumed that the dividend is already in place in A as a result of a 
previous instruction or operation. The first step is to transfer the 
divisor from some memory location, specified hy the address part of 
the divide instruction, to R5. The signs of the divisor and dividend 
sure then compared. If they agree the complement of the divisor is 
added to the dividend; and accordingly a 1 is set into 39R^> the regis
ter which eventually contains the whole of the quotient. On the other 
hand, if the signs of the two terms differ, the divisor is added di
rectly to the dividend, and 39R^ is left undisturbed. Inasmuch as R4 
was cleared to O's at the start, if 39R^ is left undisturbed this cor
responds to the Insertion of a 0. Q is then shifted one to the left.
By virtue of the gate connections used here, in particular the fact 
that the transfer from Rl —> R2 is diagonally left, the partial remain
der appears in R2 already shifted to the left by one. Hie signs of 
the partial remainder and the divisor are again compared and 39R^ 
again set appropriately. This process is done 40 times. In this 
manner the pseudo-quotient is obtained. We have seen that the pseudo
quotient is simply related to the true quotient. Finally, the round
off is perfonned.

Inasmuch as the desired shift of the partial remainder is to the 
left, it is necessary to have an extra flip-flop precede 0R2 in order 
not to lose the sign of the partial remainder. It is designated as 
eR2. Further, along with the preparatory step of securing the divisor, 
it is necessary to set eR2 to agree with 0R2. At the completion of 
the operation, Q contains the rounded-off quotient and A has twice the 
remainder.

As an illustrative example, we consider a four-blgit division:
0.1001/-0.1101 = = 0.1001/1.0011

Binary Computer
At the start of the process, R2 contains the dividend, R5 the divisor, 
and Bh is cleared to O's. eR2 is made the same ae 0R2, in this case 
0. Hie first sign comparison of eR2 and 0R5 shows disagreement; 
hence the contents of R5 are sent to the adder directly, and a 0 is



-im

partial remainder (quotient) (unchanged)

e 0 1 2 3 4
R2 0 | 0 0 0 1 R4 0 0 0 0 0 R5 1 0 0 11

e 0 I 2 3 4
R2

0 12 3 4 

e 0 I 2 3 4
R2 00I0I0 R4 00010 Step 2

Step

R2 I I I 0 I 0 R4 0 0 I 0 0 Step 3

R2 0 0 I I I 0 R4 0 I 0 I 0 Step 4

R2 0 0 0 R4 I 0 I 0 I Step 5

Initial
State
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set in the rightmost flip-flop of R4 and transferred, via R3, one place 
to the left. In the second sign comparison, the signs agree and the com
plement of the contents of R5 is sent to the adder directly and a 1 ap
pears in R4, etc. At Step 5> R*4- contains 10100. (The last stage is 
always 0 at the completion of intermediate steps.) The round-off pro
cedure corresponds to setting the rightmost flip-flop to 1, and the 
quotient is 1.0101 (= -0.1011). Twice the remainder resides in R2 be
cause of the shift occurring in each addition process.

Memory
The memory (internal and external) component of the computer pro

vides the storage facility for numbers and instructions. The internal 
memory is electrostatic storage and the external memory is magnetic drum 
storage. In what follows reference to "memory" refers to the internal 
memory and reference to "drum" implies external memory.

The memory consists of 40 cathode ray tubes (crt), commercially 
available two inch tubes, type 2BP1. Each tube is mounted in a separate 
metal container, together with some associated electronic circuitry.
The units have been designed so that they may be easily connected into 
the computer, or easily removed in case of malfunction and replaced by 
tested spares. The ensemble is located immediately above the arithmetic 
unit.

Each unit of the memory communicates with one, and only one, stage 
of the arithmetic unit; that is to say, the units of the memory are
connected in parallel with the 40 stages of the arithmetic component.

Each unit has a capacity of 1024 bigits. These are arranged in a
32 x 32 square array. If the various positions are numbered from 0 1023,
clearly it requires 10 bigits (2^ = 1024) to specify a location or, as it 
is commonly called, an address. Once an address is specified, all units 
switch to the corresponding position in their square arrays, and communi
cate simultaneously to the arithmetic unit the corresponding bigits.

Data sent to the memory, either initially as input material or 
during the course of computation, must be continuously regenerated in 
order to be retained effectively. Indeed, the cathode ray tubes are con
tinually regenerating the contained information unless interupted to go 
through an action cycle when the arithmetic unit asks for a new order pair 
or number, or else when the memory is to receive new information. After 
the interruption the memory returns to regeneration.
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Without entering into a discussion of the theory of storage 
tubes, let us make a few simplified remarks on "writing" and "reading" 
of information in crt.

(i) Writing: the prescription for inserting a 0 at some loca
tion is to turn the beam on for a few microseconds. To write a 1, 
the beam is turned on for a few microseconds exactly as in writing a 
0; but then the beam is displaced a few spot diameters and kept on a 
few microseconds longer in the new position. In either case, the 
procedure is Independent of what conditions existed beforehand; in 
other words, there is nothing required that corresponds to erasing.

(ii) Reading: the beam is turned on for a few microseconds in 
the undisplaced position. If a 0 is residing there, there will be a 
small negative pulse on the pickup screen on the outside face of the 
tube. On the other hand, if a 1 were there the pulse on the pickup 
screen would be positive. These pulses are amplified and used to 
set flip-flops accordingly. We discuss this presently; however, it 
might be mentioned here that, in the event of a 0, the associated 
negative pulse turns the beam off before it is displaced; hence the 
0 at that spot is not destroyed and is available for repeated consul
tations. The positive pulse does not turn the beam off until the 
beam is displaced; hence the 1 is Intact also.

A very much simplified logical diagram of the memory system is 
shown in Figure 5.

Pickup
ScreenReading

RegenerationWriting
fromR!

Action
fromR2 Reset

Order Pair
Information

Abbreviations: D.A. deflection adder
R.C. regeneration counter
C.C. control counter

Fig. 5 Memory System.
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Only one of the 40 cathode ray tubes with its associated amplifier 
and flip-flop is shown. The deflection adder is a device that converts 
a 10-bigit number into a pair of voltages which are applied to the de
flecting plates of the crt. There are three inputs (via gate tubes) 
into the deflection adder. Normally, the regeneration counter is 
sending its systematic addresses to it. When an action cycle is called 
for, the deflection adder receives an address either from the control 
counter or from R6 in preparation for activity at the location speci
fied by them.

In a regeneration cycle, an address from the regeneration counter 
is sent to the deflection adder and there converted into a deflection 
voltage on the crt. The electron beam is then turned on to read the 
information at that spot. An amplified positive pulse from the pickup 
plate, corresponding to a 1, will set the flip-flop and allow the beam 
to stay on in its slightly displaced position; thus a 1 is rewritten 
in that spot. If the pulse is negative, the flip-flop is not set; the 
beam is turned off before it gets displaced; and a 0 is rewritten. In 
the meantime, the regeneration counter is advanced by one; the flip-flop 
is then reset; and the cycle is repeated for the succeeding spot. In 
this way, the complete pattern is continuously regenerated.

At some point in this process let us assume that an action cycle 
is demanded and that this action is to read a number from the memory to 
the arithmetic unit, into either R5 or R6. There is an interlock (not 
shown in the diagram) which allows the regeneration process to complete 
the present cycle; but in the next cycle. Instead of gating an address 
to the deflection adder from the regeneration counter, the address is 
either taken from R6 or from the control counter, according as an order 
is being executed or a new order pair is being asked for. Reading pro
ceeds and the flip-flop is either set to the 1 state or left undisturbed. 
The information, in addition to being sent back into the crt, is also 
gated into R5 or R6 aa desired, by means of the gates shown in the 
diagram.

If the action cycle calls for writing into the memory, either from 
R2 or R5, the corresponding gates are opened and again the flip-flop 
is set or left undisturbed according as the bigit is 1 or 0. Here, too, 
the flip-flop controls the length of time the beam is on, hence whether
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It is to "write" a 1 or 0.
There exists a variety of possible paths of coimnunication between 

the various registers of the arithmetic unit and the memory. Obviously, 
R6 must be able to receive order pairs from the memory; it suffices that 
this connection is unilateral. R2 must be able to send to and receive 
from the memory; similarly, RU. Finally R5 needs to receive from the 
memory (for example, in multiplication). The scheme adopted is shown 
in Figures 6 and 7*

In the first are shown the 
gate connections from the memory.
R6 connection is straightforward 
and requires no additional com
ments. A number from the memory 
is gated into R2 by first being 
gated into R5, from there to the 
adder, then to Rl, and finally to 
B2; the last having been previous
ly cleared or not as desired. R4 
communicates with the memory via H5-

The connections to the memory are shown in Figure ?• B2 and R5 
communicate directly with the memory; R4 readies the memory via RJ.
There exists a certain amount of flexibility in the gate connections 
from R2 and R5 to the memory. It is possible to send a composite word 
to the memory, one part being from R2 and the remainder from R5« This 
arrangement is useful in the substitution order where it is desired to 
change the address part of an order 
residing in the memory by an address 
at the moment in R2. This is exe
cuted by first bringing all of the 
word from the memory into R5, then 
sending all but the old address 
part back;, the new address being 
supplied from R2, where the appro
priate set of 12 gates is opened.
Use is also made of this flexibili
ty of composition in the half-word 
substitution.

ED
Fig. 7

Gate connections to the mem
ory from the arithmetic unit.
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The external memory is a magnetic drum system built for the computer 
by Engineering Research Associates, Inc., of St. Paul, Minnesota. The 
drum proper is a precision cylinder whose surface carries a magnetizable 
iron oxide. The cylinder is 8 l/2 inches in diameter and 15 inches in 
length. The drum cylinder is completely enclosed in a housing on which 
are mounted 202 magnetic heads for reading and writing information on 
the drum. When in operation with the computer, the drum is continuously 
rotating at 3^50 rpm. The drum is mounted with the associated electronic 
gear in a 7 foot cabinet which is approximately 5 feet wide and 30 inches 
deep.

The drum has a capacity of 10,000 forty-bigit words. However, these 
words are not singly addressed and the communication between the drum 
and the memory is in blocks of fifty words. The addressing is done by 
200 drum tracks where each contains fifty words arranged serially around 
the periphery of the cylinder. A separate magnetic head is associated 
with each drum track. There are 202 magnetic heads in all; two of these 
are for indexing purposes and the rest are concerned with the 200 storage 
tracks.

Due to peculiarities in the ERA logical design of the drum, the 
track addresses range from 0-255 with certain addresses being omitted. 
Table III shows the correspondence between the ordinal numbers and the 
actual track addresses. There are, however, routines in existence which 
allow one to address the drum tracks sequentially as addresses 0-C7 
(O-I99, decimally) in the process of coding. Since the communication 
with the drum is by tracks where any block of 50 words comes from a single 
track (one magnetic head), we observe that the drum is a serial storage 
system in contrast to the parallel storage of the memory.

It requires between four and five revolutions of the drum to read 
or write a track of words. The drum speed of 3^50 rpm gives a drum period 
of 17 milliseconds, so that it requires between 68 to 85 milliseconds 
for 50 words to be read from, or written onto, the drum. This is, on 
the average, 78.5 milliseconds per 50 words.

The drum instructions each require a full word for their expression. 
The drum orders are:



0 0 19 20 32 4o 4b 60

1 1 1A 21 33 41 4c 61
2 2 IB 22 34 42 4o 62

3 3 1C 23 35 43 4e 63
k k ID 24 36 44 4f 64
5 5 IE 25 37 45 50 65
6 6 IF 26 38 46 51 66

7 7 20 27 39 47 52 67
8 8 21 28 3A 48 53 68

9 9 22 29 3B 49 54 69
A A 23 2A 3C 4a 55 6a
B B 24 2B 3D 4b 56 6b
C C 25 2C 3E 4c 57 6c
D D 26 20 3F 40 58 6o
E E 27 2E 40 4e 59 6e
F F 28 2F 41 4f 5A 6f

10 10 29 30 42 50 5B 70
11 11 2A 31 43 51 5C 71
12 12 2B 32 44 52 5D 72
13 13 2C 33 45 5^ 5E 74
1^ 1* 20 3* 46 56 5F 76
15 15 2E 35 47 58 60 78
16 16 2F 36 48 5A 61 7A
17 17 30 37 49 5C 62 7C
18 18 31 38 4a 5E 63 7E

iTfl

64 80 7D AO 96 CO AF EO
65 81 7E A1 97 Cl BO El
66 82 7F A2 98 C2 B1 E2
67 83 80 A3 99 C3 B2 E3
68 84 81 A4 9A C4 B3 E4
69 85 82 A5 9B C5 B4 E5
6a 86 83 a6 9C c6 B5 e6
6b 87 84 A7 90 C7 b6 E7
6c 88 85 a8 9E C8 B7 E8
6o 89 86 A9 9F C9 b8 E9
6e 8a 87 AA AO CA B9 EA
6f 8b 88 AB A1 CB BA EB
70 8c 89 AC A2 CC BB EC
71 8o 8a AO A3 CD BC EO
72 8e 8b AE A4 CE BO EE
73 8f 8c AF A5 CF BE EF
74 90 8o BO A6 DO BF FO
75 91 8e B1 A7 01 CO FI
76 92 8f B2 A8 02 Cl F2
77 94 90 b4 A9 D3 C2 F3
78 95 91 B5 AA 04 C3 F4
79 98 92 B8 AB 08 C4 F8
7A 99 93 B9 AC D9 C5 F9
7B 9C 94 BC AO DA c6 FA
7C 90 95 BO AE OB C7 FB

in
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"m—>D BD Read 50 successive words from the memory starting with
the word at address specified by bigits 8-19 of the 
instruction. Write these 50 words into the drum on 
the track specified by bigits 20-27. Then transfer 
the control to the left-hand instruction of the word 
at the address specified by the bigits 28-39*

D—►m BC Read the 50 words from the track of the drum specified
by bigits 20-27 of the instruction. Write these words 
into 50 successive memory locations starting with the 
address specified by bigits 8-19* Then transfer the 
control to the left-hand instruction of the word at 
the address specified by bigits 28-39."

An example of a drum instruction in hexadecimal notation is
BD 137 £2 2BF.

This is interpreted as: Read 50 words from the memory beginning with the 
word at address 137* Write these 50 words into the drum at track 29.
Upon completion of the instruction the control transfers to the left- 
hand instruction of the word at address 2BF in the memory.

During a drum instruction R4 serves as a transition register between 
the parallel storage of the memory and the serial, storage of the drum. 
That is, in transmitting to the drum each word is brought into R4 from 
the memory (parallel) and then shifted out of R4 to the drum (serial).
In transmitting from the drum each word shifts into R4 (serial) and then 
is stored from R4 into the memory (parallel).

In order to transmit 50 words between the memory and the drum there 
must be a register or a counter which specifies the appropriate memory 
addresses. The control counter is used for this purpose. This means 
then that the control counter contains, at the completion of the trans
mission of the 5° words, the address of the 50th memory word concerned 
with the instruction. This, in general, is not the address of the next 
instruction word to be brought into R6; hence the drum instruction ends 
in a transfer which sets the control counter to the desired address for 
the next instruction word of the code sequence.

In the use of auxiliary equipment such as the drum, it is desirable 
to incorporate some sort of checking feature. The checking of the drum 
is by summing procedures similar to those used in loading. That is, 
when 50 words are transmitted from the memory to the drum, a sum of the 
words is formed and stored in an appropriate location. Upon transmitting 
this track of information back into the memory, a sum is again formed
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and checked against the previously formed sum. It was initially in
tended that this summing he done entirely hy programmed routine; however, 
it was observed that summing could he done electronically on the D—»m 
instruction with practically no additional equipment; hence this feature 
was incorporated as follows: If in the D—>m instruction one writes the 
initial memory address m as m + 800, the sum of the 50 words is accumu
lated in R2. R2 is not cleared to zero prior to the start of the sum
ming; hence the sum is added into the contents of R2. At the completion 
of the instruction, the sum is left in R2 and may he checked with further 
programming. One still needs the summing routine for the m—*D instruction.

Input-Output
The input component exists in two forms. There is the photo-electric 

paper tape reader and the magnetic tape unit. All input to the computer 
is initially via the photo-electric reader.

For input hy the photo-electric reader, information on the paper tape 
is punched transversely in groups of four higits, called tetrads. Usually 
a decimal digit or a logical character is represented hy a single tetrad. 
For each separate decimal digit, the true binary representation is used 
where a punched hole corresponds to a 1 and a blank to a 0. Clearly, the 
true binary representation of a sequence of decimal digits is not given 
hy the sequence of tetrads (cf. page 56 )• However, the conversion to 
the true binary number is quite simple and is done hy the computer 
through a conversion routine before the actual computation starts.

We distinguish two methods of reading information from the paper 
tape into the memory. There is, first, an initial loading process which 
begins hy setting the control counter to the desired initial address.
Hie first word (10 tetrads) from the paper tape is transmitted hy the 
reader into R5. The space symbol which terminates each word initiates 
the transfer of the word from R5 to the memory location specified hy the 
control counter. The control counter is advanced one, the second word 
is read and transmitted to the second memory location, etc. The end 
of the loading process is indicated hy the presence of two consecutive 
space symbols. The control counter resets to the initial address, the 
first order pair may then he brought into R6, and the problem started.
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R5 has been made into a shifting register by making use of a short 
term memory facility afforded by a simple resistance-capacity circuit 
connected between each stage of R5* The speed of the photo-electric 
reader is sufficiently slow compared to electronic speeds that it is 
possible to scan the transverse series of holes of a tetrad, and still 
have time to shift R5 four times per tetrad. In this way the parallel 
information in tetradic form is converted into a strictly serial pattern.

The use of R5 in association with the reader affords two desirable 
features. First, the functioning of the memory is divorced from that 
of the arithmetic unit so that, in the event of some malfunction, iso
lation of th£ difficulty is greatly facilitated.. Second, since each 
word passes through R5 en route to the memory, it may be added into R2 
so that during the loading process R2 acts as an accumulator of partial 
sums. At the completion of the loading the number residing in R2 is the 
sum of the contents of the tape, and it may be compared with a known 
correct value. This provides a useful preliminary check of the reader 
and associated electronics.

The second method of reading from the paper tape is, of course, 
the single read instruction which transfers a word (the next one in 
the series) from the tape to the memory location specified by the ad
dress part of that instruction. The use of this instruction in a 
small induction loop makes it possible to read whole blocks of words 
from the tape to the memory.

The magnetic tape unit serves as an input and output device. The 
magnetic tape drive is a standard audio-broadcast unit that was pur
chased from the Ampex Electric Corporation, San Carlos, California.
The tape drive with our own associated electronic gear is mounted in 
a console cabinet of approximate dimensions 3 feet high by 2 feet wide 
by 2 feet deep. The unit is used as a single channel serial system 
where the magnetic tape reels contain 1200 feet of l/h inch wide Scotch 
Sound Recording Tape.

The reels of magnetic tape are, in general, premarked into sections 
which will accommodate 1024 forty-bigit words. There are fifteen such 
sections on a 1200 foot reel. The markings dividing these sections are 
short lengths made transparent by removing the magnetizable material 
from the tape.
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Since the unit is used only as an input-output device, there is no 
automatic addressing of the fifteen marked sections, and there are only 
manual searching facilities.

The manual searching is afforded hy a photo-cell hooked into the 
tape drive mechanism and a fast forward and reverse for driving the tape. 
The fast forward and reverse allows one to advance or reverse the tape 
at a speed of roughly four seconds per block of 1024 words. The photo
cell actuates a brake whenever a transparent length of tape passes in 
front of it. With this, one can then advance or reverse a tape as many 
blocks as desired.

The operating speed of the tape is 15 inches per second. The pack
ing density of the tape is 72.6 zeros per Inch, or 57-1 ones per inch, 
which is an average of 64.8 bigits per inch. The time required to record 
a memory load onto the tape is 40.9 seconds, if the information is all 
zeros, or 51 seconds if the information is all ones. This gives an 
average record time of 45-9 seconds per memory load.

The magnetic tape unit has no completely automatic load feature as 
does the reader; hence all information from the magnetic tape is read 
into the computer by a programmed routine. The tape order, reading from 
tape to R4, is:
"t—»Q AC Replace the number in R4 by the first word to come under

the reading head of the magnetic tape reader."
To insure accurate reading of data from the tape to the computer, a 

timing feature must be incorporated in the writing process, i.e., in the 
computer to tape routine. This feature is a time delay between the trans
mission of successive words from the computer to the tape, and it is ac
complished by an L(40) instruction given prior to each Q—>t instruction. 
This delay in recording on the magnetic tape gives adequate spacing be
tween words to insure proper transmitted, by the tape "call" routine 
which does not include the L(4o) delay.

As in the drum, a checking feature has been incorporated into the 
magnetic tape routines by summing. In the computer to tape routine, the 
words sent to the tape are summed. The sum is printed and recorded on 
the tape as the last word of the record. Upon "calling" the information 
back into the computer via the tape to computer routine, the contents of 
the tape are summed except for the last word. The sum is then compared 
with the last word of the record; the last word being the sum formed 
when the record was made.
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Output from the computer may he accomplished by four mechanisms. 
There is the magnetic tape already discussed, the Synchroprinter, a high
speed page printer; the Flexoprinter, a slow-speed page printer; and the 
Flexopunch, a slow-speed tape punch. No further comments are needed for 
the magnetic tape unit; hence we turn to the printers and punch.

The Synchroprinter is a high-speed page printer that was purchased 
from the ANelex Corporation, Concord, New Hampshire. The Synchroprinter 
and its associated electronic gear are mounted in a cabinet of approxi
mate dimensions 5 feet 6 inches high by 1 foot 10 inches wide by 1 foot 
7 inches deep. The printer has a maximum operating speed of fifteen 
lines per second which is 36,000 characters per minute.

The characters that may be printed are the ordinal numbers 0,1,2 ••• 
8,9; the letters A,B ••• F; a decimal point; and a minus sign. The 
printer achieves its speed by printing a line at a time where a line con
sists of 40 characters; these may be four 10-digit numbers or any other 
aggregate. The printer operates on the following principle: There are 
40 type wheels, each containing the 18 available characters. The 40 
wheels are rigidly mounted on a metal cylinder. All of the O's, I's,
2's, etc., of the 40 wheels are aligned. This cylinder rotates at a 
constant speed whether the printer is being actuated or not. During any 
one revolution of the cylinder a line may be printed. In printing an 
aggregate of 1*0 characters all of the O's of the aggregate are printed 
simultaneously, then the I's, the 2's, and so on, until after one revolu
tion of the type cylinder the 40 characters of the line are printed.

There are two apparent methods of operating such a printer.
Hie first is to supply the correct digital information to all 40 
type wheels simultaneously and then allow each wheel to print at the 
proper time. As is known, a 40-bigit register may represent only 10 
coded-decimal or hexadecimal characters; hence to represent 40 such 
characters, four standard registers would be needed. Although this 
method is very simple from a coding viewpoint the electronic gear in
volved makes such a scheme prohibitive.

The second method and the one adopted for the printer involves 
very little additional electronic equipment. Inasmuch as the O's of 
a line are printed simultaneously and then the I's, the 2's, and so on.
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only the O's digital Information needs to he supplied to the appropriate 
type wheels when the O's are to he printed, and similarly for the re
maining digits. During the 0 print cycle the Information that needs 
to he supplied to each type wheel is binary, I.e., either print or do 
not print. Since a register contains 40 higits, and since a line for 
the printer is 1(0 characters, a register may supply the necessary binary 
information to the print wheels. The register R2 is used for this 
purpose.

To print an aggregate of 1(0 digits, the 1(0 digits are first repre
sented hy an 18-row, l(0-column matrix (i.e., 18 consecutive memory 
locations) where the rows represent the 18 characters present on a 
print wheel, and the columns correspond to the digit position in the 
aggregate. For electronic convenience a 0 in any element corresponds 
to the presence of a digit and a 1 corresponds to the absence of that 
digit. As an example, consider a 4-row, 6-column matrix where the
number 302132 is represented. It is:

0: 101111
1: 1110 11
2: 110110
3: 0 1110 1

where rows correspond to the digits 0 -»3 in order from top to bottom, 
and the leftmost column corresponds to the most significant digit posi
tion. To represent an 18 x 40 array or matrix in the computer 18 words 
of storage are required. After such an array has been formed a line 
may be printed. Row 0 is brought into R2 for the 0 print cycle, row 1 
for the 1 print cycle, row 2 for the 2 print cycle, and so on.

A timing problem is involved^ as only about 1.5 milliseconds exist 
between adjoining print cycles once the printer is actuated. Hie print 
order itself acts as a timing element. To print a line Ifi print orders 
are given as part of a subroutine. The first of the 18 actuates the 
printer and the rest act in a timing capacity. It is necessary that the 
time elapsing between successive print orders be less than 1.5 milli
seconds, and for safety it is recommended that the time be kept somewhat 
less. When each print order is given the appropriate row of the matrix 
must be in R2.

Although the described scheme complicates the print subroutine it 
is felt that the reliability obtained by including no new electronic 
gear certainly justifies the added complications of the coding.
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The matrix Is formed in the computer so that the first row cor
responds to the minus sign, the second row to the decimal point, the 
third row to digit 0, the fourth row to digit 1 ••• the 17th row to 
the letter E, and the 18th row to the letter F. The type is arranged 
on the print cylinder so that the sequence of printing the characters 
is F, E, D, C ••• 3, 2, 1, 0, •, This means that the words corres
ponding to the rows of the matrix must he brought into R2 beginning 
with row 18 (the letter F) and ending with row 1 (the minus sign).

The paper feed for the printer operates from top to bottom past 
the print cylinder. The first line printed then appears at the bottom 
of a column of lines. In order to have the first line printed appear 
at the top of a column of lines (as it customarily does) the type 
characters on the wheels have been inverted. If the mirror image of 
a ^0-digit aggregate is then printed it comes out of the printer in
verted, but upon turning the copy upright one has a conventional list
ing which for a column of lines would read from top to bottom and from 
left to right. To print a mirror Image of the aggregate the order of 
the columns of the array is reversed; i.e., the rightmost column cor
responds to the most significant digit and the leftmost column to the 
least significant digit. The 4x6 matrix of the previous example for 
the number 302132 should be formed as

11110 1 
110 111 
0 110 11 
10 1110

The print order is:
Sync Print CE To be used in a subroutine which prints simul

taneously mi, 2i+1, “i+2> 2i+3J — mus't
supplied to the routine.

The address bigits of the print instruction have no relevance with 
respect to the instruction.

An example of a Synchroprint routine is given as Problem 13 of 
Chapter II. There is, in addition to the high-speed printer, a modi
fied Teletype page printer that has an operating speed of 396 charac
ters (36 10-digit words and spaces) per minute. The printer is
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modified to l6 characters; the ordinal numbers 0,1,2 ••• 9, and the 
letters A,B,C ••• F. This printer is actuated by the print order 
"Flexoprint EA Print m on the page printer (slow speed)."

The reason for retaining this printer in addition to the Synchro
printer is that one may print directly any word in the memory. To 
print a word via the Synchroprinter involves a routine,while the Tele
type printer needs only an instruction. Whenever any volume of print
ing is desired, however, the faster Synchroprinter is used.

The Fiexowriter punch allows one to punch information from the 
computer onto paper tape for subsequent use. The punch is a modified 
Flexowriter punch for five hole paper tape. Its speed of operation is 
869 characters (79 10-digit words and accompanying spaces) per minute.

The punch order is:
"Punch CF Punch m on paper tape."
Due to the very slow speed of the punch, the magnetic tape is used 
whenever practicable for output needed in a form to be used as subse
quent input.

Control
The control is the agency which directs the various activities of 

the computer. Some parts of the control relate specifically to the 
detail operation of the various components, such as the memory control 
concerned with the regeneration of stored information. To some extent 
these have been discussed under the respective headings in previous 
sections. Here we propose to consider some of the more general fea
tures of the control.

The instructions for the computer are of the one-address type; 
i.e., an order is associated with a single address referring to some 
memory location that contains a number upon which the specific order 
is to operate. This system of instructions is much simpler in struc
ture than some proposed schemes for other computers. There have been 
proposals for four-address Instructions; the first two addresses speci
fying the two factors of an operation (say in multiplication, the mul
tiplicand and multiplier), the third referring to the destination for 
the result, and the last to the location in the memory of the next in
struction. We do not cite the various advantages for the several pro
posals except to remark that simplicity is a rather compelling argument.



The normal word length in the memory is 40 bigits. An instruction 
is 20 bigits, so that instructions are stored in pairs. Of the 20 
bigits, 8 are used for specifying the order, and 12 remain for the 
address. Actually 10 suffice with our present memory capacity of 
1024 (= 2^), so that 2 bigits are available for future expansion or 
for some other purpose.

The 8 bigits describing an order are initially punched onto a 
paper tape as two tetrads. In principle any of the 16 possibilities 
0,1,2...9> A,B...F might be vised for each tetrad. Thus a mag-innim of 
256 possibilities is available. Our present feeling is that the num
ber of useful orders will not exceed 36; thus only letters in pairs 
are used to designate an order. This is useful in coding.

let us begin at some point in the cycle of activity and describe 
the sequence of events that leads back to the same point; after that 
we indicate with the aid of some logical diagrams how some of these 
things are accomplished.

Assume that a pair of orders has Just been brought into R6. The 
order part of the left-hand instruction must be interpreted and the 
corresponding sequence of pulses and voltage changes provided. At the 
same time the address part is sent to the deflection adder of the mem
ory in preparation for communication with the memory. When this in
struction is completed, the control then examines the instruction re
siding in the right half of R6 and takes the necessary measures to 
execute it. In the meantime, the control counter is advanced by one 
so that when the right hand instruction is completed the next order 
pair can be brought to R6, and thus complete the cycle.

It Is convenient to subdivide this part of the control into three 
sections: The first is concerned with the interpretation of the eight 
bigits as a specific order, and Is called the order matrix. The sec
ond, called the operations control, provides a set of pulses for exe
cuting a given order. Hie third, the instruction control, deals with 
the "red tape" associated with doing the left half of an order pair, 
then the right half, and then seeking a new order pair.

The Order Matrix: Inasmuch as it has been decided to use only 
letters (and not Include decimal digits) to specify orders, each tet
rad of a pair begins with a 1 (letters correspond to the digits 10-15). 
Therefore, of the eight digits, only six are used to discriminate among



the various orders. To simplify the discussion, assume we are concerned 
with only two bigits. (The case for six is an obvious extension.) These 
two bigits are in two flip-flops of R6; and imagine further that in each 
flip-flop two wires tap in at symmetrical points of the flip-flop as 
shown diagrammatically in 
Figure 8. If I has a 0, A 
has a definite voltage V, 
and B has another definite 
voltage V; if I has a 1, 
the voltages are inter
changed, that on A is V 
and on B it is V. The 
voltages on C and D depend 
on the contents of II in 
precisely the same way.
Consider next a two level "and-gate" with the following properties:
If, and only if, the input voltages are both V, a signal is given to 
the output. We now construct four such "and-gates" with inputs from 
the set A,B,C,D; the specific connections are shown in the diagram. 
Clearly, if the contents of I and II are 0,0 the above condition is 
satisfied for only the topmost gate and a pulse is given out along 
the 0 output. Similarly, if the contents are 0,1 a pulse goes out 
along the 1 output, etc. To envisage the actual order matrix, ima
gine that there are 6 flip-flops with various connections to 36 "and- 
gates" of level six; i.e., six conditions must be satisfied to stimu
late an output. Thus from a series of bigits we actuate a unique 
line corresponding to that particular set.

The Operations Control: The operations control is essentially a 
pulse generator producing a sequence of seven pulses. Four of these 
pulses are of fixed length; the remaining three may be variable. The 
necessity for pulses of variable duration stems from the fact that 
the time required for certain operations is somewhat indeterminate.
For example, if an action cycle is required of the memory at some 
moment, it is necessary to wait until the memory completes its present 
regeneration cycle before going into action. Inasmuch as the waiting 
period is somewhat arbitrary, the time from the instant the action 
cycle is requested to completion is slightly indefinite. The comple

I TL

Fig. 8 A two stage order matrix.
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tion of the operation terminates the pulse and the operations control 
then generates the next pulse.

Some of the more complex orders require more than just one sequence 
of such pulses; hence one of the provisions made is to pemit the opera
tions control to go through its paces the required number of cycles. On 
the other hand, some of the simpler orders do not need the full comple
ment of seven pulses and, in the interest of speed, provision is made to 
terminate the sequence at some earlier point.

We now consider a very much simplified example of an order, by way 
of illustrating how an actuated line from the output of the order matrix 
and che signals from the operations control combine to execute the given
order. Say the order is a shift to the left by one place of a number
in R2. A series of "and-gates" of level two are connected to the out
put line from the order matrix that corresponds to this order. The 
output line is thus a common static input to all of these gates. The
second inputs are the various timed pulses from the operations control.
These connections are shown in Figure 9•

Start Signal From 
Jnstructions Control

Clear RI to zeros
Output Line 
From Order 
Matrix Gate "ones" vertically 

from R2-»* Rl

Clear R2 to zeros Operations
Control

Finish signal to Instructions 
“Control;also prevent 
subsequent pulses,

Gate "ones" diagonally 
left from RI-*-R2

t

Fig. 9 Gate connections for a simplified order.
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Vhen the first signal is produced, conditions at gate I are 
satisfied and an output signal is produced and is sent to the 
clear hus of Rl. Its effect is to set all the flip-flops of Rl 
to the 0 state. After a short delay, pulse is produced w-wd 
directed to gate II. This output sets those flip-flops of Rl to 
1 to match the corresponding flip-flops of R2 or, simply said,
I's are gated into Rl from R2 vertically. The subsequent steps 
are obvious.

The Instruction Control: It includes the following functions:
(i) Communication with the memory to obtain the next order pair. 

Signals must be given to clear R6, to send the address from the control 
counter to the deflection adder, and to transfer the order pair from 
the memory to R6.

(ii) Transfer of the order part of the left instruction to the 
order matrix and of the address to the deflection adder of the memory; 
upon completion to examine the instruction in the right half of R6.

(iii) Sending a start signal to the operations control.
(iv) In the event that the left order is a transfer order, the 

sequence is interrupted, the new order pair is brought into R6, and
a new sequence of instructions is started. There is also provision to 
skip the left order for those cases where the transfer is to begin a 
new sequence of instructions with the right half of an order pair.

(v) Finally, it must advance the control counter by one after 
each order pair, and also receive the finish signal from the opera
tions control.

In order to make convenient gate connections between the various 
functions of the control, a collection of vertical bus wires is acces
sible in the control panel immediately to the left of the registers.
A cross-sectional layout of the arrangement is shown in Figure 11. The 
notation is as follows:

C±RJ

RJRJ

clear RJ (j=l,2,...6) to i (i=0,l);
‘tiln timed signal (n=l,2,...6);

deft diagonally; 
gate i from RJ -*-RJ' either^right " ;

(straight;
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Hold
Finish

Set Trans FF

Set Rt Trans

Cycle Input 

Start Toggle

allows variation in length of tg and/or t^j 
finish signal from operations control to 
instruction control;
sets a flip-flop in instruction control to 
indicate transfer to new sequence of instruc
tions ;

FF sets a flip-flop in instruction control to
indicate transfer to new sequence beginning 
with right half;
input to operations control to repeat sequence 
of timed signals;

0 a special timed signal which permits cycling
operations control twice in a given order.
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Vertical Beees of Order Oates

•
C Rl o

•
C R4 o

•
ti

•
R1R2L^

•
R3R4L1

• • • • •
CjRl t2 R1R2Ro R3R4Rq

t • • • •
C R2 o coR5 t3 R2R1S1 R4R3S1

• • • • • • • • • • •
Adder • • • •

0-7 C,R2 8-19 20-2? C R5 28-39 o-7 t4 8-19 20-27 R1S 28-39 No. R4R5S, Comp.
B2 X R2 R2 X R2 R5 B5 K5 ° B5

•
X

• • • Adder
CoR3 MR5So t5 R1L0 R5R4Sq

• • • • e
Hold Set Trans FF t6 Write MR5Sq

• • • • eFinish Set Rt Trans FF Start Toggle "O" Cycle Input Finish

•p"iFigure 11
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V. DESCRIPTIVE CODING AND SUBROUTINES

Recall from Chapter II that the steps in the preparation of a 
code of a problem are:
1. The logical coding is first prepared. In this coding the logical 

rather than the computer symbols are used. Each box of the flow 
diagram is treated independently and the instructions within the 
box are numbered consecutively beginning with 1. Indexed Latin 
letters are used to indicate the addresses of the necessary stor
age of the problem.

2. The computer code is then prepared. In this coding the instructions 
are paired into words and these instruction words are sequenced and 
numbered (addressed) according to their subsequent residence in the 
memory. The computer symbols for the orders are written in place of 
the logical symbols. Numerical addresses are assigned to the storage* 
and the addresses of instructions referring to storage are modified 
accordingly.

3. The computer code is checked so that any errors may be corrected be
fore the code is punched onto paper tape for subsequent input to the 
computer.
As one examines these steps in detail, the question quite naturally 

arises as to whether the computer might be instructed to carry out part 
of the coding process. The question can be answered in the affirmative, 
and the purpose here is to describe a method for coding in which the com
puter is instructed to carry out all of Step 2 of the coding procedure.

The method is by no means unique. The motivation for its choice is 
found in the desire to use the computer as an aid in constructing a usable 
code which is tailored in the manner described in Chapter II, and to re
lieve the person preparing the code of much of the routine work involved, 
and possibly to reduce the number of errors.

The method in general is as follows: A logical code using a pre
scribed set of symbols and following a prescribed set of rules is pre
pared. These symbols identify the various kinds of storage of the problem 
(e.g., numerical constants or logical quantities) and the addresses of the 
various instructions of the problem. This logical code is checked for 
errors and after any needed corrections are inserted, a punched tape of
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this logical code is prepared. This tape is then used as input data by 
a routine designed to assemble a computer code from this material.

The assembly routine reads the individual instructions from the 
logical code tape and pairs these instructions properly into instruc
tion words; assigns addresses to these instruction words; and stores 
them into the proper location. The absolute (numerical) addresses of 
the storage of the problem are assigned by the assembly routine, and the 
instructions referring to this storage have their addresses translated 
accordingly. The addresses of instructions that do not refer to stor
age (i.e., instructions that refer to other instructions) are also 
translated into their absolute value. When this computer code is com
pletely assembled it is punched onto paper tape or written onto magnetic 
tape by the assembly routine; a printed copy is also produced.

This method of coding has been given the name descriptive coding 
since many of the identifying symbols used in the logical coding are 
descriptive in nature.^-

We now turn to the discussion of the descriptive coding, and we 
establish the necessary rules and define the symbols needed to carry 
out such a coding. The assembly routine is not discussed in detail 
since its complexities are beyond the scope of a manual of this type.

In the preparation of any code which is to be modified and assembled 
through an assembly routine, the flexibility of the coding (i.e., the 
freedom of choice of symbols and the amount and different kinds of in
formation which can be specified in a descriptive instruction) is de
pendent upon the number of bigits that are allowed to express each 
instruction. Clearly the more bigits allowed, the greater is the 
flexibility.

It was found that the normal instruction length of twenty bigits 
was adequate to achieve a code by means of such an assembly routine, 
which was comparable to a tailored code both in number of words of code 
and subsequent running time of the problem. The first two tetrads of the 
twenty bigits specify the order using the standard vocabulary symbols; 
the remaining three tetrads are for the address. There are two advan
tages in having the descriptive instructions conform as much as possible

The method was developed by Eugene H. Herbst, John B. Jackson, and 
Mark B. Wells, of the Los Alamos Electronic Computer Group.
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to the familiar logical instructions. First, by remaining within the 
framework of the logical coding, a relatively small number of new 
symbols and new miles for coding need to be introduced. Second, the 
work in preparing the descriptive code is no greater than the usual 
logical code and the labor of the tape preparation for the descriptive 
code is comparable to that involved in the preparation of the tape for 
a tailored computer code.

The descriptive coding is prepared from a flow diagram. No modi
fications of the flow diagram are necessary and it is as discussed in 
Chapter II.

In the descriptive coding (as in the usual logical coding) each box 
of the flow diagram is coded as though it were independent of the remain
der of the diagram. The only interdependence of boxes of coding is 
through transfer and substitution instructions. These sure discussed 
presently. The instructions written for each operation box are numbered 
consecutively, starting with 1, and the numbering is done hexadecimally, 
as shown in Example 1.
Example 1

y = ax + bx +c to D.OI z = y +y to D.02

Figure 1
Storage chart: B.01: x C.01: a

C.02: b
C.03: c

D.01: y
D.02: z

The coding is:
Box 1
1. m—»Q C.01
2. X B.01
3. m—►Ah C.02
4. L(40) 028
5. X B.01
6. m—>Ah C.03
7. A—»m D.01

a to R4
ax in R2
ax + b in R2
ax + b in Rk
ax2 + bx in R2 

py = ax + bx + c in R2
y to D.01
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Box 2
1. m— D.01 y to R4
2. X D.01 y2 in R2
3. m—>Ah D.01 z = y2 + y in R2
k. A—mu D.02 z to D.02

The addresses that can occur in instructions must he classified 
and a set of symbols may be used to represent each class so that the 
assembly routine may interpret and modify the various addresses cor
rectly. Addresses of instructions fall into four general classes.
They are:

(i) Addresses that refer to numerical storage.
(ii) Addresses that do not play a normal address role, as in 

R(n), L(n), a—»Ac, and a—>Ah instructions.
(iii) Address that refer to instructions within the same operation 

box.
(iv) Addresses that refer to instructions in other operation boxes. 

Each class may be divided into as many subclasses as is deemed necessary. 
Let us examine each class of addresses.

Recall that there are two kinds of storage requirements for a prob
lem, static storage and dynamic storage. The static storage is that 
storage which originates with the problem and remains unmodified through
out the course of the computation. The dynamic storage is that storage 
which originates from computation within the problem.

For simplicity of addressing, the static storage has been assigned 
the four symbols:

B. i i (= 1, 2 ••• FF)
7.i
C. i
A.i

255 words may be stored on each set of addresses. The sets have the 
following significance. B storage is that static storage which ori
ginates with the problem as Binary numbers; hence, any constants which 
are given in a problem as binary numbers are referred to by B.i ad
dresses, and are listed sequentially as B.i storage. J storage is 
very similar to B. storage in that the numbers to be stored in 7»1 
storage are also given in binary form. The storage has significance
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with respect to subroutines, and it is discussed more appropriately 
in the section on subroutines. The letter C designates static storage 
that is to originate with the problem as decimal numbers and is to be 
Converted to binary numbers by the assembly routine. The letter A 
designates the static storage that contains Addresses (numbers corres
ponding to addresses) which are to be used by substitution instructions 
in modifying other instructions during the course of the computation.

The symbol D.i i (= 1, 2**«FF)
is used for Dynamic storage and 255 words of D storage are allowed.

We now examine more closely the storage requirements of Example 1. 
We may assume that the number x is given as a binary numberj therefore 
it is placed in B storage and indicated as

B. 01: x
The constants, a, b, and c, are assumed to be numbers which are origin
ally given as decimal numbers and which are to be converted to binary 
numbers by the computer during the process of preparing the code through 
the assembly routine, a, b, and c are listed in C storage as

C. 01: a
C.02: b
C. 03: c

The dynamic storage consists of storage for the quantities £ and z 
which are formed during the computation; hence two dynamic storage 
locations are needed, and

D. 01: y
D.02: z

The second class of addresses, those that do not play a normal 
address role, have the proper numerical address inserted in the descrip
tive code; e.g.. Box 1, Instruction k, reads

4. L(40) 028
where 028 is the correct hexadecimal address for a left shift of forty 
places. As a further illustration consider the use of an a—»Ac in
struction to bring 2_ into R2. The instruction reads

a—►Ac 400
where 400 corresponds to 2”1 when brought into R2. If for any reason 
it is desirable to insert an instruction which contains an absolute ad
dress, such an address should be used in the descriptive coding (except
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in transfer and substitution instructions) and the assembly routine will 
not alter it; e.g., the instruction Q—>A (m—»A 800) has its special 
address 800 inserted in the descriptive coding.

The third class of addresses, those addresses of instructions that 
refer to other instructions Enclosed vithin the same operation box, are 
designated by the symbol E. Such an address

E.i i (= 1, 2 ... FF)
may range over 255 instructions of an operation box. This is a partial 
restriction on the number of instructions in an operation box. Although 
an operation box may have more than 255 instructions, no instruction may 
refer to any instruction beyond number 255 of the same operation box.
The E.i address is used primarily in substitution instructions. Such am 
address has special use with other instructions. In fact, we shall see 
in the discussion of subroutines that the E.i address is used in transfer 
instructions. The following example illustrates the use of E.i addresses.

Example 2
The flow diagram of Example 2 shows only that portion of an induction 

loop in which the sequence of quantities 2^ (i = 0,1*••I-l) are formed 
and stored in the memory at addresses D.20+1 hence

0 to D.OI
xn to D.02 Z;s ax,+b to D.20+1

Figure 2
B.01:
B.02:
B.03:

C.01: a D.01: i
C.02: b D.02: x±

D.20: zD.21: z°

D.20fi: z^

A.01: AAD2QAAD20
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The coding is:
Box 1.
1. m—»Q B.01 0 to
2. Q—>m D.01 0—»i to D.01
3. m— B.03 x to o
k. Q—»m D.02 x —»x. to D.02 o i

Box 2
1.

•

m—>Ac A.01 AAD20AAD20 to R2
2. m—*Ah D.01 AAD20+iAAD20+i in R2
3- S—»m E.07 D.20fi to address of

k. m— D.02 x^ to R4
Instruction 7

5- X C.01 axi in R2
6. m—>Ah C.02 + b in R2
7. A—>m

«
•

[D.20*i] z^ to D.20+i

Box 3
1.

•

•

m—>Ac D.01 (i)Q to R2
2. m—>Ah B.02 (i+l)o in R2
3. A— D.01 (i+l)j-^ (i)Q to D.01
k. T 02,1

In the storage required, the numbers 0, (l)0> and xq are originally 
stored as binary numbers; hence B storage is used. The numbers a said b 
are decimal numbers to be converted into binary numbers by the assembly 
routine; consequently they are stored in C storage. (i)Q and are 
stored in dynamic, D storage. We assume after the initial traversal 
that is sent to D.02 from a portion of the routine not shown. The 
choice of D.20 as the starting address for the is arbitrary, and 
any block of I locations would suffice for that D storage.

The A storage is used to store the initial address D.20 from which 
all addresses D.20+i are formed (instructions 1 and 2, Box 2). Note 
that D.20 is stored in A.01 as

A.01: AAD20AAD20.
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It is stored as an instruction-word where the two instructions are 
identical. This is true in general: that all A storage is stored 
as instruction-words where the two instructions of the word are
identical and the address of the instructions is the desired de
scriptive address. The choice of the order that appears in the in
struction word depends on the use of the particular word of A storage. 
The choice of the order AA in this instance is significant in that 
the assembly routine deletes the AA from each instruction at the time 
the D.20 is assigned its absolute value. For example, suppose that 
the absolute address corresponding to D.20 is 154. The A storage 
before and after modification by the assembly routine is:

A.01: AAD20AAD20 A.01: 0015400154
The order AA is the only order that is deleted from A storage when 
the storage is modified.

In the coding of Example 2, the first two instructions of Box 2 
form (D.20+i)o in R2. Instruction 3 reads

S—►m E.07
Hence, the address of Instruction 7 is replaced by the number in R2 
which is D.20+i. Note that the order S—»m is used rather than S—►m*. 
This is always the case, not only for S—nn but also for T, C, and 
HS—>m. All transfer and substitution instructions whose addresses 
refer to other instructions are coded as the unprimed order; that is,
the order that refers to a left-hand Instruction of an instruction-
word. The assembly routine then modifies the order if a modification 
is necessary.

The fourth class, those addresses of instructions that refer to 
instructions in other operation boxes, sure addresses of trsmsfer in
structions and substitution instructions. Transfer instructions and 
substitution instructions sire the only instructions whose addresses
may refer to instructions of other operation boxes than the one con
taining the instruction.

Transfer instructions act in two ways as connecting links between 
operation boxes. These are the fixed connection and the variable re
mote connection. We treat the fixed connections first.

A transfer instruction that is a fixed connection has as its ad
dress the operation boxnumber and the instruction number of that box
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Into which the tremsfer is to send the control. The first two of 
the three address tetrads are used for the operation box number. The 
remaining tetrad is used to specify the instruction number within the 
box. As an illustration. Instruction k, Box 2, of Example 2, reads

4. T 02,1
which is a transfer of the control to Box 2, Instruction 1.

Recall that on a flow diagram the flow lines enter at the begin
ning of a box. If the coding strictly followed the flow diagram, a 
transfer instruction would always be to the first instruction of an 
operation box. However, it has been shown in previous codings that 
it is often possible to save an instruction or two by transferring 
the control into one of the first few instructions of a box or one 
of the last few instructions of the preceding box (cf. Page 72,
Problem 6, Box 6, Instruction l).

A transfer can refer to any one of the first seven instructions 
of the operation box to which the transfer is effected, or it can re
fer to any one of the last seven instructions of the preceding box.
The operation box number specified in the address of a transfer in
struction is the box of the flow diagram which is entered by the flow 
line indicating the transfer. A number 1, 2, ••• 7 in the third ad
dress tetrad indicates a transfer into the corresponding instruction 
of the box. A number F(=-l), E(=-2), D(=-3) ••• 9(=-7) indicates a 
transfer into the corresponding instruction of the preceding box; e.g.,

CA20,3(T 20,3) reads: Transfer the control to Operation Box 20,
Instruction 3.

CA25,E(T 25,E) reads: Transfer the control to Operation Box 25,
Instruction -2, which is the next to last 
instruction of the preceding box. The 
preceding box is not necessarily Box 24.

The address of a conditional transfer instruction, where the (+) 
exit is a fixed connection, is formed in the same manner as the address 
of a transfer instruction.

Example 3 illustrates transfer instructions acting as fixed
connectors
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Example ^

I

- y to D.OI

Figure 3
C.01: a D.01: y
C.02: c D.02: x
C.03: e 
C.04: f

We assume that x
and is stored in D.02
Box 1.
1. *—+* C.01
2. X D.02
3- *—*Ah C.02
4. A—>m D.01

Box 2.
1. m—»Ac D.01
2. C 04,1

Box 3.
1. m—»Ac- D.01
2. A—Mn D.01

Box 4.
1. Stop

Box 5«
1. m— C.03
2. X D.02
3. m—fcAh C.04
4. T 02, F

s formed in a part c
The coding la:

a to R4
ax in R2
y « ax + c in R2

7 to B2

-7 to R2

e to R4 
ex in R2
7 « ax + f in R2

the routine not shovm

7 to D.01

-7 to D.01
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The conditional transfer instruction of Box 2 reads C 04,1 which 
is a conditional transfer to Box 4, Instruction 1. The transfer in
struction of Box 5 reads T 02,F which is a transfer to Box 2, Instruc
tion -1. This is a transfer to the last instruction of the preceding 
box, in this case Box 1.

Substitution instructions may also have an address consisting of an 
operation box number and an instruction number. However, the substitution 
instructions can modify any one of the first fifteen instructions of any 
operation box other than the box containing the substitution instruction. 
Note that this treatment differs from the transfer instructions.

Recall on a flow diagram that a set of variable remote connections 
is indicated by a Greek letter in a circle as an exit, and the same Greek 
letter with identifying subscripts in a circle at each entrance point.
See Figure 4.

Figure 4
In the preparation of a logical code, the transfer instruction indica
ting the exit written as

T [p]
is used to identify the particular remote exit. It is the location 

in the memory where the transfer order of the exit resides and not to be 
interpreted as the address part of the transfer instruction.

The addresses corresponding to the entrances (p^ , and are
provided to the exit [pj from the appropriate positions of the flow dia
gram (cf. Chapter II, Problem 7, pp. 53 ff). The various are supplied 
to T [p}by substitution instructions, S—mb.

In the descriptive coding each set of variable remote connections 
is represented by a symbol

F.i i(= 01,02 •••)
where the i is distinct for each set. (Greek letters do not exist
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in the vocabulary. We use them in the discussion and in flow diagrams 
for simplicity of notation.) These instructions concerned with such 
a set (both the transfer instruction which is the exit and the various 
substitution instructions which supply addresses to the transfer in
structions) have as their address the symbol F.i corresponding to 
the particular set. Example 4 illustrates this.
Example 4

®-+- 

©—
Since (5) and© are addresses they are to be stored 

as instruction words. However, for this example we do not 
A storage in detail, and we merely indicate

in A storage 
discuss the

We designate the 
coding is:
Box 1
1. m—»Ac A.01
2. S—>ni F.01
3- L(0) 000
4. T F.01

Box 2
1. m—>Ac A.02
2. S—*m FrOl
3- T 01,4

A.01: (A.)
oA.02: (A )2 oset of variable remote connections by F.01. The

(Aj to R2 v 1 o
A to address of F.01 1

(A ) to R2 d o
Ag to address of F.01

Instructions 2 and 4 of Box 1, and Instruction 3 of Box 2, are those 
instructions concerned with the set of variable remote connections F.01; 
hence they have as their address F.01. Note that Instruction 3 of Box 1 
is L(0). This insertion is necessary as no substitution instruction may 
modify the instruction Immediately following. The L(o) serves as a 
"dummy-do-nothing" instruction which separates by one the substitution 
instruction and the instruction that it is to modify.
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The and are indicated on the flow diagram as entrances
into operation boxes; therefore the addresses corresponding to 
and are usually the addresses of the first instruction of their 
indicated operation box. The address portion of the words in A stor
age corresponding to and are treated in the same manner as 
the address of a fixed connection transfer. Therefore, if cor
responds to Box 5, Instruction 1, the address portion of @ InA 
storage would be

A.01: ••• 05,1 ••• 05,1
The exit, T[x], of the variable remote connection must transfer 

the control at different stages of the problem to the various 
associated with the remote connection. The addresses corresponding 
to the are usually distinct. When the computer code is formed
by the assembly routine, there is no assurance that the instructions 
to which the refer will all occupy the same side of their respective
instruction words. In order that the T[x] shall have the flexibility 
that enables it to tremsfer the control to either side of an instruction 
word, the transfer order as well as the address must be modified. To 
accomplish this, each (X^ is stored as a transfer instruction, and 
the assembly routine modifies the order if necessary when the absolute 
address corresponding to is assigned. A half-word substitution
instruction, HS—>m, is then used rather than S—-»m, as indicated in 
Example 4, to supply to the exit T[x] the appropriate T (XJ . Example 5 
illustrates three sets of variable remote connections and the proper 
A storage associated with them.

Example 5
The necessary storage Is:

A.01: CA031CA031 D.01: x
A.02: CAO^lCAOVl
A.03: CA051CA051
A.04: CA061CA061
A.05: CC091CC091
A.06: CCQA1CCQA1
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I 3

5 ____ 9

©—H

Ve assume that x is foxmed in another part of the routine and 
stored in D.01. We designate by F.01 the set of variable remote con
nections ((?) , by F.02 the set (^) , and by F.03 the-set .
The coding is:
Box 1.

1. m—>Ac A.01
2. HS—>m F.01
3- L(0) 000
4. T F.01

Box 2.
1. m—->Ac A.02
2• HS— F.01
3. T 01,4

Box 3.
1. m—>Ac A.03
2. HS—s-a F.02
3. L(0) 000
4. T F.02

(CA03,l)o to R2

(CA04,l)o to R2

(CA05l)o to R2

CA03,1 to F.01

CA04,1 to F.01

CA05,1 to F.02
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Box 4.
1. m—*Ac A.04 (CA06,l)o to R2
2. HS—>m F.02
3. T 03,4

Box 5'1
1. m—»Ac A.05 (CC09,l)o to R2
2. HS—wa F.03

Box 7 •
1. m—»Ac D.01 x to R2
2. C F.03

Box 8 •
1. Stop

Box 6 •
1. m—»Ac A.06 (CC0A,l)o to R2
2. T 07, F

CA06,1 to F.02

CC09,1 to F.03

Instructions 2 and 4 of Box 1, and Instruction 2 of Box 2, 
are those concerned with the set of variable remote connections 
(cf^ = F.01; therefore, those instructions have the address F.01. Simi
larly, Instructions 2 and 4 of Box 3, and Instruction 2 of Box 4, have 
the address F.02; and Instruction 2 of Box 5, and Instruction 2 of Box 7> 
have the address F.03.

Instruction 2 of Box 7 is a conditional transfer instruction; hence 
those instruction words in storage which are to be substituted into it 
are themselves conditional transfer instructions as shown in A.05 and A.06.

Note the vise of the HS—»m instructions in the substitutions con
cerned with the variable remote connections.

The sequence in which the operation boxes are coded is 1, 2, 3, 4,
5, 7, 8, 6, which is the order in which the computer code is to be se
quenced. It is always true that the sequencing of the operation 
boxes in the descriptive coding must correspond to the sequencing neces
sary in the computer code regardless of the numbering of the boxes on 
the flow diagram. The number assigned to each box on the flow diagram 
is, however, the number to be used in the address of instructions refer- 
ring to the box.

In Box 6 of Example 5, Instruction 2 is a transfer to 07,F which is 
a transfer of the control into the last instruction of the box immediately



-220-

precedlng Box 7* In this case, the transfer is to Box 5> Instruction 2, 
since Box 5 is the box in the coded sequence which insediately precedes 
Box ?•

Tbe assembly routine treats the variable renote connections as 
follows: The A storage concerned is altered to its absolute address 
*Tvj the transfer order contained is aodified, if necessary. Whenever 
the assembly routine encounters a substitution instruction with an ad
dress F.i, the absolute address of the associated transfer instruction 
(the transfer Instruction with the same F.i address) is determined and 
that address is inserted into the substitution instruction.

It is often useful to be able to store numbers from R2 into D stor
age by using substitution instructions. To do this, the substitution 
Instruction is given the appropriate D.i address; however, the substi
tution order must be written as the desired primed or unprimed order.
For example, consider that bigits (20-39) of R2 are to be sent to bigits 
(20-39) of D.05. The descriptive instruction effecting this would be

HS—»m* D05 which is FDD05
Similarly, to store bigits (8-19) of R2 into bigits (8-I9) of D.OA, the 
instruction reads

S—D.OA which is FADOA 
In a substitution Instruction with a D address the assembly routine
never modifies the order part of the instruction.

Since the substitution instructions may have box numbers as addresses 
and since substitution instructions may refer to D storage, it Is necessary 
to restrict the total number of operation and alternative boxes of any
one problem to CF boxes, which decimally is 207 boxes in all.

There are occasions when it is necessary to know in advance whether 
an instruction is to occupy the left or right-hand instruction of a word 
in the computer code. In fact, it may be necessary to position certain 
Instructions on a fixed side of an instruction word; e.g., at the comple
tion of a drum instruction, the control is transferred to the left-hand 
instruction of the word specified by bigits (28-39) of the drum instruc
tion; hence, the instruction to which the transfer is desired must be 
in the left-hand side of its respective instruction word. Further, the 
drum instruction itself must occupy a full word in the computer code so
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that this instruction must always begin on the left. In order that in
structions, where necessary, can be positioned with the desired parity 
(i.e., left or right) a symbol is provided in the descriptive code so 
that the computer code of any operation box can be started on the left 
of an instruction word. As soon as the first instruction of a box is 
fixed on the left, the parity of all instructions within the box is 
known immediately. By inserting a "dummy-do-nothing" L(0) as a first 
instruction, one may change the parity of all succeeding instructions.

The descriptive code tape is composed of the descriptive coding 
and the static storage (i.e.. A, B, 7, and C storage) of the problem.
All of the descriptive coding and any identifying symbols for the tape 
which refer to the descriptive coding are punched as five character 
words. The C, B, and 7 storage and any corresponding identifying sym
bols are punched as ten character words.

The sequencing of the data on the code tape is as follows:
In order that the assembly routine can assign the absolute addresses 

to the various instructions and the storage, the initial absolute address 
for the code must be specified. It is the first word that is punched 
on the tape, and it is a five-character word. For example, if the 
assembled code is to begin at address 25E, the first word of the tape 
would be

0025E
A descriptive code may be assembled into an absolute code starting at 
any initial address with the restriction that the code with A, C, B, 
and 7 storage must not exceed address 37C (892 decimally).

Immediately following the initial address on the tape is the de
scriptive coding. The sequencing of the boxes of descriptive code as 
punched on the tape specifies the linear sequencing of the assembled 
code. Preceding the instructions of each box, the box number is 
punched onto the tape as a five-character word where the word consists
of three zeros followed by the box number. For example, consider a 
descriptive coding of two operation boxes where the assembled code is 
to begin at address 052. The descriptive coding and the corresponding 
code tape is:



-222

Box 1
1. m—>Ac D.01
2. in *Ah D. 02
3 • A >m D. 03

Box 2
1. m—B.01
2. X D.03
3. A—wn D.04

«o
&
in

«*uo
a.<n

«ooa.<0

«ooa.(O
Vo
ao.<n

oo
a.V)

«uoQ.(O
ooa.<n

0-»00052 00001 AADO I BAD02 DCD03 00002 EBB0I DAD03 DCD04

OOOOOOOOOOO OOO OOO OOO OOO OOO
oooeooooooaoooooooooooooooooooooooooooooooooo«oooooeo1 O OO OOO Q OO OOO O)

o® q ®®o o 8°o 0 o o 8 0 88 o o°o 800
rT

Starting ■ Box I 1 Code of Box I 
Address 1

1 Box 2 1 Code of Box 21

Figure 7
All of the instructions of the boxes with the corresponding box num
bers are punched onto the tape in this fashion. Recall that the boxes 
of code are not necessarily sequential, according to box number, but 
sequential according to linear ordering in the assembled code. The 
box number that precedes each box of instructions corresponds to the 
box number as shown on the flow diagram.

Immediately following the last instruction of the descriptive 
coding, the box numbers only of the associated subroutines are punched 
on the tape in the order corresponding to the linear sequencing of 
the subroutines in the assembled code. As before, these box numbers 
are five-character words. We defer any further discussion of this un
til the section on subroutines, at which point the reasons for listing 
the subroutine box numbers cure discussed.

The five-character word
00C00

follows the subroutine box numbers on the tape. If no subroutines are 
associated with the descriptive code, the word 00COO follows the last 
instruction of the descriptive coding. The word 00C00 indicates the 
completion of the descriptive coding.



The A storage punched as five-character words follows the word 
00C00 on the tape. For example, consider a descriptive coding where 
the A storage is

A.01: CA041CA041 
A.02: CC227CC227 
A.03: AADO5AADO5

The section of the descriptive tape corresponding to this would be:

Code

«>0 *0 8 O0a 0
a

0a i Oa</) tn in <n
8
£

8
5

00C00 CA04I CA04I CC227 CC227 AAD05 AA005 00E00

O OO 00 ,§9f__99____999- OOO Q0000000000000000000000000000000000000000000000of O POOP OO G OO O GG GG O0 o 0 o °°8 ^ GGo o °°o o °
End of 1 

Code ■
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j End of 
I A Storage

Following the A storage on the tape is the five-character word
0QE00

which indicates the end of the A storage. If there is no A storage 
the word 0QE00 immediately follows the word 00C00 on the tape.

The numerical storage of the problem is punched onto the tape 
following the word OQEOO. This storage is punched as ten-character 
words. Each group of storage is punched in order of ascending ad
dresses and is terminated by two adjacent spaces on the tape. The 
C storage is the first group of storage punched on the tape. The 
last word of C storage is followed by two adjacent spaces. The B 
storage is then punched on the tape and it is followed by two spaces. 
Next is the storage on the tape. The 2 storage terminates the 
descriptive code tape and at least five spaces must follow the last 
word of 7 storage on the tape.

At one stage in the evolution of the descriptive coding a word 
8000000000 was used in lieu of the two adjacent spaces separating the 
groups of numerical storage on the descriptive tape. Hence, between 
the C and B storage, between the B and 7 storage, and following 2 
storage, was the word 8000000000. The present assembly routine al
lows the use of this word 8000000000 in the aforementioned manner; 
therefore, this is an optional method of separating and identifying 
the groups of storage.
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In the event that a storage group is not used in a descriptive 
coding, the spaces signifying the end of the groups of storage are 
treated as follows:

The omission of J storage effects no changes and the last group 
of storage on the tape, whether it is C, B or J, is followed by at 
least five adjacent spaces.

If there is no C storage, the word 00E00 is followed by two spaces 
and then the B storage.

If there is' no B storage, one additional space symbol must be used 
in conjunction with the two adjacent space symbols signifying the end 
of the C storage (whether or not any C storage is actually present).
In other words, if B storage is omitted three adjacent spaces are used 
to signify the end of C storage and the absence of B storage.

In the alternative method where the word 8000000000 indicates the 
end of each group of storage, even though a group of storage is not 
present its terminating word is included on the tape to indicate the 
end of, or absence of, a particuleir group. Example 6 illustrates a 
three box code, and its descriptive code tape.
Example 6

The example forms an approximation to e-x for 0 < x <: 1 from the 
expression

-x .. e = lim
►oo

1 - 2n
1 + f-2n

where for this example we choose n = 32, and

-x _e rr
1 - 55
1 + 55

32

The flow diagram is:

Figure 9

to D.OI

to D.02

z = b+2 x to D.02

C.01: x . D.OI: 
B.01: b = 2 D.02:
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The coding is:
Box 1
1. m—>Ac C.01 x to R2
2. R(9) 009 2"9x in R2
3. A— D.OI 2“9x in D.OI
b. m—*Ah B.01 z = b + 2"9x in R2
5. A— D.02 z to D.02
6. m—»Ac B.01 h to R2
7. m—►Ah- D.OI 7 = 1)- 2"9x in R2
8. A— D.OI y to D.OI

Box 2
1. m—»Ac D.OI y to R2
2. 4- D.02 Q = y/z in R2
3. A—>m D.OI Q to D.OI

Box 3
1. m—>Q D.OI Q to R4
2. X D.OI Q2 in R2
3. A— D.OI Q2 to D.OI
k. m—*Q D.OI Q2 to R4 

»
5. X D.OI Q4 in R2 t
6. A— D.OI Q4 to D.OI
7. m—>Q D.OI Qi*’ to R4
8. X D.OI QT in R2

Q8 in R29. A— D.OI
A. m—>Q D.OI Q8 to R4
B. X D.OI Q16 to R4

Q16 to D.OIC. A—»m D.OI
D. m— D.OI Q16 to R4
E. X D.OI e"x * Q32 in R2
F. A— D.02 e"X to D.02

10. Stop

The code is to "be assembled starting at address 297. The descrip
tive code tape is shown in Figure 10. x in C.01 is set to 0.5 for the 
tape.
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Note- Tope is continuous^ but has been broken for illustrative purpose. 
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Since there are no subroutines associated with the code, the word OOCOO 
follows the last instruction of Box 3; and since there is no A storage 
the word 00E00 follows OOCOO. No J storage is contained in the coding; 
hence the five spaces follow the B storage.

As previously mentioned, there is a symbol which indicates to the 
assembly routine that the first instruction of a box is to be on the 
left side of an instruction pair. It is included in the word that 
specifies the box number and is the character 4 for the middle tetrad; 
e.g., suppose that in the code of Example 6, Box 2 is to begin as a 
left-hand instruction. The word on the descriptive tape specifying the 
box number would be

00402
When the code is processed by the assembly routine and a box number word 
with a 4 in the middle tetrad is encountered, the following occurs: If 
the last instruction of the previous box was assembled as a right-hand 
instruction, the first instruction of the box concerned naturally be
comes a left-hand instruction of its instruction-word, and the assembly 
routine proceeds accordingly. If the last instruction of the preceding 
box was assembled as a left-hand instruction, the assembly routine com
pletes the word by inserting a "dummy-do-nothing" instruction of L(o) 
into the right-hand instruction position. Hie first instruction of the 
box concerned is then assembled as a left-hand instruction of the suc
ceeding word. If the flow diagram indicates a transfer of the control 
to a box that must begin as a left-hand instruction, one cannot use
the flexibility and convenience afforded by a transfer into one of the
last seven instructions of the preceding box. This restriction arises
because of the "dummy" L(0) instruction that may be Inserted.

Another symbol may be incorporated in the word specifying the box 
number. This is a character 8 as the first tetrad of the word. This 
symbol causes the assembly routine to interrupt the assembly process and 
to stop the computer. The need for such a symbol is covered in the dis
cussion of methods of alteration of the descriptive code in the chapter 
on Operating Procedures.

A frequent occasion where it is necessary to have a box begin with 
a left-hand instruction is in the use of drum instructions which we 
now examine in detail.
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Tlie drum instruction, since it is a full word, necessitates special 
treatment both in the descriptive code and by the assembly routine. As 
previously mentioned, the drum instruction must be coded in the descrip
tive coding so that it naturally starts with the left-hand instruction 
of an instruction word in the assembled code. The drum Instruction is, 
however, coded as two descriptive instructions. The first Instruction 
is the drum order, and the descriptive address for the associated 
block of fifty words in the memory. The second instruction specifies 
the associated drum track in the order position and the address position 
contains the descriptive address for the transfer of the control upon 
completion of the drum instruction.

The descriptive address for the associated fifty words in the mem
ory may refer to any of the storage; hence it may be an A.l, C.l, B.i,
7.i. or D.i address; the address may be an E.i if it is desired to have 
the drum communicate with a block of fifty words contained in the same 
box as the drum instruction; the address may be inserted as an absolute 
address if desired; or the address may be supplied to the drum by a 
substitution instruction in conjunction with addresses in A storage.

The associated drum track address is either inserted into the 
descriptive coding as a pseudo-absolute address or is supplied from a 
coded routine. The pseudo-absolute addresses range from 00 to CJ, cor
responding to the two hundred tracks of the drum (0-199/ decimally). 
Unfortunately, the drum tracks are not addressed sequentially from 00 
through C7, but range from 00 through FF (0-255/ decimally^ hence the 
expression "pseudo-absolute" is used for inserted drum addresses. The 
assembly routine modifies the pseudo-absolute address to the actual 
value in the range 00 through FT. The address to which the control is 
to transfer upon completion of a drum instruction is treated in the 
same manner as are the addresses of transfer Instructions. The ad
dress may specify a box number and one of the first seven instructions 
of the box or one of the last seven instructions of the preceding box. 
The address may also be specified by an E.i address if the transfer 
is within the operation box containing the drum instruction. The 
transfer, however, is automatically to the left-hand instruction of 
a word; hence that instruction must be positioned appropriately.

We now give three examples (7, 8, and 9) illustrating the treat
ment of the drum instruction.
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Example 7
Three operation boxes are given. There are two drum instructions. 

One sends fifty words from D storage to the drum. The second reads 
fifty words from the drum into the just vacated D storage of the 
memory.

ihe flow diagram is:

Figure 11

D.0I-D.32: x, - X,
□.track C0-- y, - y50

D. track CO to D.0I-D.32

B.01: a D.OI - D.32 : X1 " x50B.02: b D.33: i
B.03: I D.34:

The coding is:
Box 1
1. m—»Ac B.03 I to R2
2. m—>Ah-• D.33 I - i in R2
3. C 07,1

Box 2
1. m—»D D.OI
2. 54 E.03
3. D—»m D.OI
4. CO 03,1

Box 3
1. m— D.OI y^^ to R4
2. X B.01 ay^ to R2
3. A—»m D.34
4. m >Q D.02 y2 to R4
5. X B.02 by2 to R2
6. m—»Ah D.34 Q = ay1 + by2
7. A—»m D.34

- x,^ to D.track 54 

yl " y50 t0 d*01-d*32

ay1 to D.34

in R2
Q to D.34
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Instructions 1, 2, 3, and 4 of Box 2 are the two drum instructions; 
hence Instructions 1 and 3 must he left-hand instructions in their re
spective instruction-words in the assembled code. This is done by ar
ranging Box 2 so that it begins with a left-hand instruction; i.e., on 
the descriptive code tape 00402 is punched for the box number word. In
struction 2 specifies that Track is the pseudo-track number. This 
is modified to Track 6£ (the absolute address) by the assembly routine. 
Ihe transfer indicated by the address of Instruction 2 is to E.03; hence 
the control is to transfer to Instruction 3 of Box 2. The instruction 
to which the transfer is effected must be on the left side in the 
assembled code and since Instruction 1, Box 2, begins on the left of a 
word. Instruction 3 does also. Instruction 4 of Box 2 specifies the 
pseudo-track number CO which the assembly routine modifies to FI, the 
corresponding absolute track address. Hie address specifies a transfer 
to Box 3, Instruction 1. Box 3 must then be coded so that it begins 
with a left-hand instruction. In this example we see that this is 
taken care of, since Box 2 ends with a right-hand instruction. If 
Box 3 did not naturally begin with a left-hand instruction, it would 
have to be so arranged by punching the box number for Box 3 as 00403. 
Example 8

In this example fifty words of code in the memory are to be re
placed by fifty words from the drum where the fifty memory words are 
contained in the same box as the drum instruction. Ifce quantity i, 
that eventually becomes the drum track number, is formed in a part of 
the routine not coded, and is stored in D.OI as

D.OI: i*2"27
The drum instruction upon completion is to transfer to the first in
struction of the fifty words which have been cal led into the memory.

The coding is:
Box 1

i*2-27 to R21. m—->Ac D.OI
2. A—->m D.02 i*2"27 to D.02
3. m—->Ac EOT D—>m E09 00E09 to R2
4. S—>m' D.02 E09 to (28-39)002
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5. m—>Ac D.02
6. HS—£08
7. D—E09
8. [00 E09]
9.

1(20-27 )E09(28-39) to R2
1(20-27) E09(28-39) to E07

A.
B.
C.

The descriptive tape has the box number 00401. Instructions 1, 2,
-273, and 4 form the drum track address. Instruction 2 sends i*2 to D.02. 

Instructions 3 and 4 then combine the address part (the address specify
ing the transfer) of the instruction with the track address in D.02.
Note that Instruction 4 is written as S—>m' D.02, It is written as
the primed instruction since the substitution is into the right-hand 
side of a word of D storage. (Note that this differs from the case 
where a substitution is made intcp instructions, cf. page 212) Since 
Instruction 1 of the box is on the left, the drum instruction (instruc
tion 7) and the instruction to which the transfer is effected (instruc
tion 9) are left-hand instructions as desired.
Example 9

In this example, fifty words of code on the drum are to replace 
fifty words of code in the memory, where both the words in the memory 
and those on the drum correspond to one or more complete boxes of code. 
Again, only the box containing the drum instruction is coded. We 
assume the words to be replaced in the memory begin with Box 2C, In
struction 1, and the drum track concerned has the pseudo-track number 
Al. The address corresponding to Box 2C, Instruction 1, is stored in 
A storage in a transfer or substitution instruction word and is

A.01: CA2C1CA2C1
The coding is:

Box 1
1. m—»Ac A.01
2. S—>m E.03
3. D--HM [20,1]
k. Al 54,1

CA2C1CA2C1 to R2
2C,1 to (8-19) Instr.3
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Instruction 1 brings the address for the drum instruction into R2. 
This address was stored in A.01 as part of a transfer instruction so 
that it could be stored as a box number and instruction number. In
struction 2 is an S—wn E.03 which supplies the address 2C,1 to In
struction 3> the drum instruction. Recall that a substitution instruc
tion is not supposed to substitute into an immediately following 
instruction. However, in this instance, we know that the drum instruc
tion begins as the left-hand instruction of a word; hence, the substitu
tion instruction cannot be in the same instruction word as the drum 
instruction and the substitution as indicated is permissible. The 
address written in the drum instruction is irrelevant; hence, any ad
dress may be placed there. Instruction 4 contains the pseudo-track 
address Al and the address of Box Instruction 1, to which the con
trol is to transfer upon completion of the drum instruction. Box 1 
must begin with a left-hand instruction to position the drum instruc
tion correctly; therefore, the Box 1 code word is

00401
Box 2C as it originally is coded must begin with a left-hand instruction; 
hence the Box 20 code word is

0042C
The control is to transfer to Box 54, Instruction 1, upon completion of 
the drum instruction; hence Box 54 must begin with a left-hand instruc
tion and its code word is

00454
The assembly routine modifies the pseudo-track number Al to the corres
ponding absolute track address, CB.

For a further discussion of the drum one should consult the chapter
on The Computer.

It is desirable to have a printed copy of the assembled code so 
that one may know the absolute addresses of the storage and the in
structions in order to "debug" the assembled code for subsequent run
ning. It is important that this printed copy is in a form that is 
easily read and understood. To produce such a copy a printing routine 
using the Synchroprinter has been included in the assembly routine. It 
provides the following data:
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The first line of the printed listing contains five 3-character 
numbers which are the absolute addresses corresponding to 

A.00 C.00 B.00 7.00 D.00
respectively. If any group of storage is not contained in the coding, 
the address for that group is the same as the initial address of the 
succeeding group. Consider that an assembled code has the following 
absolute initial addresses

A. 00 = 201 7.00 = 23B
C.00 = 205 D.00 = 2D5
B. 00 ■ 221

The first line of the listing would be
201 205 221 23B 2D5

Following the first line is the listing of the code proper. One has 
the option of a listing of five or six columns. The five-column list
ing contains, in order of columns from left to right on the page,

1. the box number
2. the descriptive instruction number
3. the absolute instruction-word number (address) as assigned by

the assembly routine
4. the instruction with its absolute address as assigned by the

assembly routine
5. the descriptive address of the instruction as coded in the

descriptive coding
The six-column listing contains the five columns as listed above 

and a sixth column that is:
6. the contents of the B or C storage specified in the address of

the instruction.
Following the listing of the code is a listing of A, C, B and 7 storage, 
respectively. The C, B, and 7 storage listing is a four-column listing 
where the columns are:

1. classification of storage
2. the descriptive address of the storage
3. the absolute location address as assigned by the assembly

routine
4. the numerical quemtity as stored at the address concerned 

Example 10 illustrates the 5-column page listing.
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Example 10
Consider the descriptive code of Example 1 and assume that it has 

"been assembled in the memory beginning at address 000. The listing 
given of the assembled routine is:

005 005 008 009
01 01 000 EB006 C01

02 DA009 B01
03 001 BA007 C02
04 DE028
05 002 DA009 B01
06 BA008 C03
0? 003 DCOOA D01

02 01 EBOOA D01
02 004 DAOOA D01
03 BAOOA D01
04 005 DCOOB D02

C 01 006 a
C 02 007 b
C 03 008 c
B 01 009 X

The code contains no A or 7 storage; hence the first line corres
ponds to

C.00 C.00 3.00 D.00 D.00
In lines 2 through 11, inclusive, the numbering in the first and second 
columns corresponds to the numbering on the descriptive coding. The 
third column contains absolute location addresses; hence each address 
corresponds to an instruction-pair in column 4; i.e., word 000 is

000: EB006DA009
The descriptive addresses as given in column 5 are the same as those 
in the instructions in the descriptive coding.

If we set a = 4040000000
b = 2190000000 
x = 4000000000

a 6-column listing of the first three instructions would be
01 01

02
000 EB006

DA009
C01
B01

4040000000
4000000000

03 001 BA007 C02 2190000000
• • • • •
• • • • •
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The contents of C01 and C02 as listed would be the converted number 
(the binary equivalent of the decimal input) in the C storage.

If the coding had contained A storage, for example 
A.01: CA02,1 CA02,1,

the listing of it would be
A 01 006 CB003CB003 02,1

where the first four columns are as before, and the" fifth column gives 
the relative address.

The method of descriptive coding is easily generalized to incor
porate the use of subroutines; hence it is appropriate that subroutines 
are discussed in conjunction with the descriptive coding.

As a person gains in experience in coding it becomes apparent to 
him that from one problem to another there are certain basic sequences 
of instructions that are very similar. For example, two different 
problems might, at some phase of their computation, involve taking the 
square root of some number or group of numbers. The two sequences of 
instructions for the square root would generally contain identical or
ders, while the corresponding addresses would be different. Routines 
such as the conversion routine as discussed in Chapter II would be an 
integral part of most problems, and from problem to problem these 
routines would differ only in the addresses of their instruction se
quences, while the order patterns would be the same. In fact, it is 
true that most of the routines coded in Chapter II would occur as 
parts of larger problems.

Since these routines or sections of code that repeatedly appear 
in problems can be coded in a way such that the addresses of the in
structions can easily be modified to any desired addresses, it becomes 
possible to incorporate such routines directly into the code of any 
problems without having to rewrite their instructions. We call any 
section of code a subroutine if it is coded in a way that it can be 
incorporated into any problem without having to rewrite the coding.
Consequently, a library of subroutines, or more precisely a library of 
punched tapes of subroutines, has been compiled. These punched tapes 
may be incorporated directly into any desired problem. There is a 
card indexing system for the library where each subroutine has a card 
on file which gives complete information about the particular routine. 
We defer further discussion of this and return to the coding of sub
routines.
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We have already discussed how any problem code, including all of 
its necessary storage, may be assembled from a descriptive code tape 
into any absolute addresses in the memory, excluding addresses 37C 
to 3FF* Further, we have seen how one can, by altering only the 
initial word on the tape, form different instruction sequences in the 
memory, where the order patterns are the same but the corresponding 
addresses differ. This is precisely the kind of thing that is desired 
for subroutines. Each subroutine is coded descriptively as though it 
were a problem complete with storage. In fact, each subroutine does 
constitute a complete problem, in the sense that it starts with cer
tain initial conditions and leads to a clearly defined conclusion.

The descriptive coding of a subroutine differs in several ways from 
the coding of a normal problem, and we now discuss these differences.
In the coding of a subroutine the boxes of code must be numbered con
secutively starting with 1, where the numbering corresponds to the 
linear sequencing of the boxes on the descriptive code tape. For ease 
of use it is desirable to code a subroutine as one box whenever 
practicable.

Only one set of variable remote connections is allowed, and this
set pertains to the exit from the subroutine. The details of this are 
discussed presently.

All of the static storage necessary in the subroutine is included 
on the descriptive code tape of the subroutine with the condition that 
neither A nor C storage is allowed. Any storage that would normally 
correspond to C storage is converted and stored in the subroutine as 
B or 7 storage. Storage that would normally correspond to A storage 
must have special treatment, in that the storage must exist as instruc
tions in the descriptive code. This is illustrated by later examples.

There are, in general, two kinds of dynamic storage associated 
with a subroutine. These are the dynamic storage that originates from 
within the code of the subroutine and the dynamic storage that origiriates 
in the problem apart from the subroutine, but is pertinent in the subrou
tine. Although this latter storage is static with respect to the sub
routine, it is, however, dynamic storage in the overall problem and is 
treated as such in the subroutine. For example, in a square root sub
routine, the dynamic storage originating from within the routine is the
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storage arising from intermediate values in the iterative process and 
the storage for the successive iterates. The dynamic storage arising 
apart from the routine is the storage for the number whose square root 
is desired. This number comes from the problem and is present at the 
time of entry into the square root subroutine.

All storage is addressed as in a problem. That is, the addresses 
of each group of B.i, 7.1, and D.i storage are consecutive addresses 
beginning with i = 01.

We now have the situation that a subroutine coded by the descriptive 
method with the above mentioned restrictions can be coded as an indepen
dent problem into any desired addresses in the memory. The next step 
is to have the assembly routine specify the desired addresses.

In the flow diagram of a problem, boxes should be included for the 
subroutines of the problem although they do not need to indicate in de
tail the computation of the subroutine. These boxes need to be assigned 
numbers on the flow diagram where the only restriction is that a sub
routine that contains several boxes must be assigned a corresponding 
group of consecutive numbers. The numbers assigned on the flow diagram 
to the boxes of subroutines will not, in general, be the same as those 
indicated on the subroutines' descriptive code tapes. Note that this 
differs from the treatment of the problem proper.

Recall that on the descriptive code tape the box numbers corres
ponding to the subroutines are first punched following the main prob
lem code and prior to the code word OOCOO. These box numbers corres
pond to the box numbers as assigned by the particular flow diagram.
They will replace the box numbers as given originally on the subroutine 
tapes.

We now describe the method by which the assembly routine integrates 
the subroutines into the problem. The descriptive tapes corresponding 
to the subroutines are arranged in the order in which they are to appear 
in the computer. It is recommended that a single tape containing all 
of the desired, properly analyzed subroutines be prepared from the 
separate tapes. After the descriptive tape of the problem, including 
storage, is initially processed by the assembly routine, the computer 
stops so that the subroutines may be inserted. The subroutine tape is 
placed in the reader and the assembly process is continued. The code 
of each subroutine is assembled in order following the code of the prob
lem. The storage associated with each subroutine is treated as follows:
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The static storage associated with each subroutine is included on 
its descriptive tape. The storage of each subroutine is not directly 
added to the storage of the problem as this, in general, would lead 
to duplication of storage. For example, the number 0 might be already 
stored in B storage in the problem, and in the B storage of several of 
the subroutines. The 0 need only be stored once, however, and the 
other storage of 0's is needless duplication. To circumvent this, as 
each word of B storage of a subroutine is incorporated into the storage 
of the problem, it is compared with all existing C and B storage in the 
problem; and if it is identical to any existing C or B storage it is 
not stored. However, all of the descriptive addresses of the subroutine 
that referred to the discarded word of storage are modified to refer to 
the already existing word. If the subroutine word of B storage is not 
identical with any existing £ or B storage in the problem, the word of 
storage of the subroutine is added to the existing B storage of the 
problem and the addresses of the pertinent instructions are accordingly 
modified. We see then that after the assembly process is completed 
there is no duplication of storage due to the B storage of subroutines. 
This, however, leads us to the meaninful purpose of 7 storage.

The 7 storage existing in a problem is not compared with the B 
storage of the incorporated subroutines. Any £ storage existing in 
subroutines is directly added to the existing 7 storage of the problem. 
The need for such a group of storage becomes apparent as one works 
with subroutines, and it is illustrated in a subroutine example.

This completes the discussion of how the subroutines are incor
porated into a problem and all that remains is to discuss the means of 
entry into and exit from these subroutines.

These connecting links of a subroutine are analogous to those of 
some of the orders of the vocabulary, so we first discuss the more 
familiar order in the vocabulary.

Consider, for the discussion, that a multiplication is to be per
formed. The multiplication order supplies the multiplicand, but the 
multiplier must be already in Rh. This latter fact is accomplished by 
coding that precedes the multiplicat±>n order. The sequencing by the 
control counter brings the multiplication instruction into R6, the 
control register, so that it can be performed. The address associated
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with the multiply order specifies the location of the multiplicand.
Upon the completion of the multiplication, the product resides in R2.
The exit from the multiplication is provided by the address which is 
in the control counter, the next instruction in the code sequence.
We naturally expect the entry into and exit from a subroutine to be 
more complex than for a simple multiplication since a subroutine is 
a sequence of instructions rather than a single instruction. How
ever, as in the multiplication order, the number or numbers that are 
to be operated upon by the subroutine must be in locations specified 
by the subroutine prior to entry into the routine, (in the multi
plication, the multiplier is in R4, the multiplicand is at the address 
of the instruction.) These connecting addresses are certain dynamic 
storage locations, D.i, and the precise D.i addresses are specified 
on the library index card of the subroutine. The necessary numbers 
are sent to the appropriate D.i addresses by code prior to entry of 
the subroutine. After the necessary numbers are stored, the actual 
entry into the subroutine is initiated.

The entry into a subroutine from any location in a problem is 
treated as a fixed connection. The box numbers of a subroutine are 
indicated on the flow diagram; hence one need only indicate a trans
fer to the starting box and instruction of the subroutine in question.

When the subroutine is performed, a number or set of numbers is 
formed as the results (the product in the multiplication is in R2).
These numbers are then stored in other D.i addresses specified by the 
subroutine. These D.i addresses are shown on the subroutine index 
card.

Prior to entry into the subroutine, the desired exit is estab
lished. At each point of entry it is known where the control is to 
proceed upon exit. This exit is established by a set of variable 
remote connections. The variable transfer is contained in the subroutine 
and follows the last pertinent instruction of the subroutine. Recall 
that associated with each set of variable remote connections is an F.i 
symbol used in addressing, and the variable transfer associated with 
the set has this F.i address. In the coding of a subroutine this 
variable exit is always coded as a transfer (T or C) with the address 
F00. The assembly routine then adjusts the F00 to the proper F.i



address. The F.i address for the subroutines follow in sequence the
F.i addresses of the problem proper. There are two methods by which 
substitution instructions may refer to the variable exit of a subroutine, 
and these methods are illustrated by the examples.

The fixed connection transfer which indicates the entry into the 
routine and the variable connection transfer (the address of which is 
established prior to entry) play the role in a subroutine that the 
control counter plays in the performance of a single instruction of an 
instruction sequence.

Upon exit from the subroutine (the return of the control to the 
problem proper) the results from the computation are in the specified
D.i addresses from which they may be used in the succeeding code, (in 
the multiplication the product is in R2 for subsequent use.)

We see that from the way subroutines are used in a problem there is 
a close analogy to the use of the standard vocabulary of the computer.
It is natural then,from the coding viewpoint, to consider the subroutines 
as a generalization of the computer vocabulary. The subroutine library 
index cards constitute the vocabulary of subroutines.

Two samples are now given in order to illustrate some actual sub- 
I'outines. Accompanying the subroutines are duplicates of their library 
index cards.
Subroutine S-251.1: Random Number Generation

The generation of the random numbers is accomplished by an iterative 
scheme which is called "The Middle Squaring Process". The process 
generates successive iterates from a given initial number. The present 
routine starts with a 38-bigit number and generates 38 bigit iterates.
The formation of the (i+l)s^ iterate from the i^*1 iterate is

xi+l = (20-57s
oThat is, the 38 bigit x when squared gives a j6 bigit product, x. ,X p X

and xi+1 is comprised of bigits (20-57) of x^~t where the 20th bigit 
corresponds to the P*"1 position of xi+1« All iterates are positive.
We illustrate the subroutine in conjunction with two boxes, corres
ponding to the code of the problem, that represent the point of entrance 
and the point of exit.
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The flow diagram is:

D.OI : Xi D.02: Xj

S25I.I RANDOM NUMBER GENERATION

D.OI: xi

Figure 12

The section of the flow diagram enclosed in the dotted lines 
would not normally be drawn in complete detail with a problem, but 
would be drawn as

S25I.I
Random Number 

Generation

Figure 13
The complete diagram is included now for clarity of coding. Boxes 1 
and 2 are coded in two ways to illustrate two alternative methods of 
entering a subroutine. Box 23 is the subroutine itself. The neces
sary static storage for the problem (Boxes 1, 2) is:

A.01: CA02,1 CA02,1
No £, B, or 7 storage is needed for the problem. Two D addresses,
D.OI and D.02, are used. D.OI contains x^ which was stored in D.OI
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at a portion of the problem prior to Box 1 and not shown on the flow 
diagram. We assume for the coding that three sets of variable remote 
connections exist in the problem proper (they are not shown on the 
flow diagram). The set of variable remote connections concerned with 
the subroutine is the fourth set and has the address F.04 associated 
with it. The coding of Box 1 and Box 2 is:
Box 1

A.01 CA021CA021 to R2
F.04
23,2

D.OI 
D.02

In Box 1 the address for the exit of the subroutine is brought 
into R2. This address is then substituted into the variable trans
fer F.04, the exit of the subroutine. Recall that the exit of the 
subroutine is originally coded with the address F00; however, the 
assembly routine modifies it to its correct F.i address, which in this 
case is F.04 (F.01, F.02, and F.03 exist in the problem proper). The 
fixed connection transfer is to the second instruction of the subroutine 
(CA23,2) rather than the first instruction. The reason for this is 
discussed after the code for the subroutine is illustrated.

The second way in which Boxes 1 and 2 may be coded is as follows:
Box 1

1. m—>Ac 
2 • HS—>m 
3. T 

Box 2
1. m—*Ac
2. A—>m

1. m—»Ac A.01 CA02,1 CA02,1 to R2
2. T 23,1

Box 2
1. m—»Ac D.OI
2. A—»m D.02

In Box 1, the address for the exit of the subroutine is brought 
into R2 and then, without effecting the substitution, the transfer to 
the subroutine into its first instruction is made. Without further 
comment let us examine the code of the subroutine proper.
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Subroutine Box 1
1. HS—>m F00
2. m-1— D01 X£ to R4
3. X* D01 x^ in R2 and R4
4. A—>ra D01 (0-39)x12 to D01
5. L(l) 001
6. m—>Ac D01 x^ in R2 and R4
7. R(22) 016 (18-57)Xi2 in R4
8. m—»Ac 800 (18-57) xi2 in R2
9. L(l) 001 (19-57) xi2 in R2
A. DS 000 Xi+1 = (20"57)xi2 in R2
B. A—>m D01 x^+^ to D01
c. T F00

We observe that the first instruction is a half-word substitution
to F00; that is, to the exit transfer. This accounts for the two methods 
of coding Box 1. In the first coding of Box 1, the substitution instruc
tion was performed prior to entry into the subroutine; hence the entry 
transfer was to the second instruction. In the second coding of Box 1, 
the instruction word comprising the exit from the subroutine is brought 
into R2 and then, without making the substitution, the transfer to the 
subroutine is effected. The exit word, however, still resides in R2 
and the initial instruction of the subroutine accomplishes the sub
stitution to establish the desired exit.

Instructions 2 and 3 form x^ as a 78-bigit number. Bigits
(20-57) are to be isolated by shifting. Recall that a double precision
product has a 0 in the sign position of R*. Instructions 4, 5, and 6
eliminate this 0 so that the subsequent right shift of 22 in Instruc-

2 2tion 7 combines the sections of x^ into R4 as (l8-57)x_^ . Instruc
tions 9 and A then complete the process by forming

*i+1 - □ *i2
Although the subroutine is indicated as Box 23 on the flow diagram, 

it is coded as Box 1 in its descriptive code. And, as previously men
tioned, the assembly routine makes the necessary adjustments of the box 
numbers of the subroutines.

As in this subroutine, all subroutines are coded so that the first 
instruction is

HS—»m F00



There are, subsequently, two methods of entry into the routine. If the 
exit to the subroutine is set up prior to entry into the routine, the
fixed connection transfer to the subroutine bypasses the first instruc
tion and enters into the second (the subroutine index card should be 
consulted for exceptions to this rule). Or if the instruction word for 
the exit to the routine is brought into R2 immediately prior to entry
into the routine, the transfer into the routine is to the first instruc
tion of the routine (again consult library index card for exceptions).

We include a copy of the library index card for the subroutine ex
ample, in order to illustrate the kinds of information listed. For com
plete details, the description of the subroutine library filing system 
should be consulted.

The card reads as follows:

S 251.1 RANDOM NUMBER GENERATION (Middle Squaring)
This routine forms a sequence of SS-bigit pseudo-random num

bers by a middle squaring process. The tested base number is sent 
to D.OI. The hexadecimal number 10BBBFA4DE gives 718,627 iterates 
and then degenerates to 0.
1. Number of operation boxes: 1
2. (a) Number of code words: 6 (dec.); 6 (hex.)

(b) Number of code words plus B and 7 storage: 6 (dec.); 6 (hex.)
3. D storage needed: D.OI
4. Prior to entry the operand must be sent to D.OI
5. (a) D.OI and R2 contain new random number upon exit 

(b) Input number is destroyed
6. Entry: Box 1, Instruction 1

Exit: CA
7. Legal spillage: Instructions 5 an<^ 9

We see that the card first gives a brief description of the routine.
Then, in order, it gives:
1. The number of operation boxes, so that the necessary box numbers may 

be assigned on the flow diagram.
2. (a) The number of code words, so that the words of code in the sub

routines may be included in estimates of problem code length.
(b) The number of code words plus B and 7 storage, so that total 

word length estimates of problem may be made.
3. D storage needed. This is important, since the D storage shown here 

must be empty or irrelevant upon entry into routine (except for that 
D storage which has numbers pertinent to routine).
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4. Numbers required for routine, and D storage to which they must be 
sent prior to entry into routine.

5. (a) D storage in which results are located upon exit from routine, 
(b) Limitations of routine.

6. (a) Instruction into which entry is made. If exit is set up prior
to entry into routine, the instruction into which entry is made 
is one beyond that listed.

(b) Specifies whether exit is CA or CC, so that corresponding orders 
may be stored as the exit words in A storage.

7. Legal spillage indicates which instructions in the routine allow num
bers to exceed the range -l-5~ n< 1. This information is useful in 
"debugging" procedures and is discussed elsewhere.

Subroutine 116.1: Integer Conversion from Binary to Decimal
This routine is used to convert a binary integer, N, scaled as 

.•soN*2 , into its decimal equivalent. The allowable range of N as an
integer is 0 < N c 10^.

Ihe conversion is effected by subtracting the binary equivalents
8 7 1of the successive powers of ten (i.e., 10 , 10' ••• 10 ) from N the 

appropriate number of times and recording the number of subtractions 
of each power of ten as a decimal digit in its proper position. The 
inductive process is:

N = No

Hie a^'s are in the range
0 < ai ^ 9

and each a. is chosen so that 1

but

The converted number is then 
a 108 + a.107 +1 cv-, .o 1X
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Each decimal digit is represented as a tetrad; hence the actual 
formation of the nine decimal digit integer is described as

w =00 4 -39w, = 2 w +2 0:7 .1 o
* 4 _"5Qw * = 2 w + 2 37i+1 * *

w9 = 2 w84 „-39wQ + 2 J^ar

SI 16.1 INTEGER CONVERSION

Figure 14



The necessary storage is:
•247.

B.01: Wo 7.01: 108*2"39 D.OI:
B.02: l.2-39 7.02: 107*2"39 D.02:

B.03: w II 00
o~̂

••
7.08: io1^"39 D.03:

D.Ok:
The flow diagram is drawn as a double induction loop. The primary- 
induction is over the index i and forms

i+l
N± - a^lO8”1 and

i+1
2^ + 2"39ai

The secondary induction is over the index and although the induction
index is on j, the end result of the induction is the formation of a^.

Note in the storage of the subroutine that the various powers of 
8 iten, 10 ” are stored in 7 storage. This means that these numbers

will be added to the £ storage of any problem containing the routine,
and they will be in eight consecutive locations. It is necessary that

8-ithe addresses be consecutive, since the appropriate 10 ” are located 
by an index

i (=0 ••• 7)

In order that the address 7«i may be formed, a base address 7•01 needs 
to be stored. This would normally be stored in A storage; since no A 
storage is allowed in subroutines, the base address is stored in the 
body of the code.

Although the flow diagram contains seven operation boxes, it is 
coded as one, as it is desirable to keep the number of boxes of a sub
routine to a minimum.

The coding is:
Subroutine Box 1
(box l) 1. HS—>m F00

2. a—»Ac 000 0 to R2
3. A—»m D.02 w = 00 w —» w. to D.020 1
k. A—»m D.03 0—+(i)o to D.03

(box 2) 5. m—»Ac E.23 (7.0l)o to R2
6. m—»Ah D.03 (7.01+i) in R2o
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7.
8.
9.

S— 

a—>Ac 

A—5m

E.OA
OOO
D.04

a =0 to R2 o

7.01+i to (8-19)A

• a. to D.04a
(box 3) A. m—>Q [7.01+i] lO8"1^"39 to R4

B. m—-»Ac D.01 (N -a .108"i)2"39 to R2 
(Ni-(aJ+l)l08’i)2'39 inc. m—-»Ah- 800

D. C E.1A _
N4+1 = N^IO8”1 in R2(box 4) E. m—5Ah 800

F. A— D.01 Vi
10. m—->Ac D.02 w to R21 ).

to D.01

11. L(4)

("box

(box

(bo>

12.
13.
14.
15.
16.

5) 17. 
18.
19.

6) ia.
IB.
IC.
ID.

7) 1E. 
IF.
20. 
21. 
22.
23.
24.

m-
A-
m-

>Ah

»-Ac
m—*Ah 
A— 
m—>Ah- 

C 
T

A—

004 2 w in B2
0.04 w = 2^ + ai*2-39 in B2 
D.02 
D.03 
B.01
D. 03 
B.03
E. 1E 
E.05 
D.01

(i) to R2 o
(i+l) in R2 o

(i+l-l) in R2 o

wi+^ to D.02

(i+l)o to D.03

m—-*Ac D.04 a.J
m—>Ah B.02 aj-

T E.09
m—->Ac D.02 WI
L(4) 004
m—»Ah D.01 V7 :
A— D.02

(T»X F00

0 <1 7.01 '\ "A s-
a—->Ac 7.01 '/

(N± - (aj+l)l08“i)2"39 
to D.01

= a.+2 J
-39 in R2

2 wT in R2 
- o4„ 4. o .o"39

w to D.02

In the coding the box numbers as indicated on the flow diagram are 
indicated with the code for ease of discussion.

In (box l) the first instruction is the HS—F00 which is in 
all subroutines. Instruction the first instruction of (box 2) is 
m—»Ac E23. Instructions E23 and E24 each contain AA701 and it is
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desired that m—>Ac E23 bring E23 and E24 into R2 as
AA701 AA701.

To accomplish this, E23 and E24 must be assembled as one word and not 
as parts of two words. E23 has the same parity as the first instruc
tion of the subroutine; hence the subroutine is coded to begin as a 
left-hand instruction in the assembled code. This positions E23 and E24 
in the same word. The descriptive code tape of the subroutine begins with 
the word

00401
to accomplish this positioning.

Since the coding is done as one box, the transfer instructions which 
are fixed connectors contain E.i addresses rather than box number addresses. 
For example. Instruction D, which represents the conditional transfer from 
(box 3) to (box 6) on the flow diagram, is coded as C E.1A. Instruction 
EIA then corresponds to the first instruction of (box 6).

The index card for the subroutine is:
S 116.1 INTEGER CONVERSION

-39This routine converts any binary integer N, scaled as N«2 ,
to its decimal equivalent w by a scheme of subtracting powers of 
ten. N must be in the range 0 ^ N < 109.
1. Number of operation boxes: 1
2. (a) Number of words of code: 19 (dec.); 13 (hex.)

(b) Number of words of code and B and 7 storage: 30(dec.);lE(hex.)
3. D storage: D.01 D.04 _4. Prior to entry D.01 must contain N*2-^
5. (a) w is in D.02 and R2 upon exit

(b) N*2“39 is destroyed
6. (a) Entry: Box 1, Instruction 1

(b) Exit: CA
7. Legal spillage: none

= 108*2-39B.01: 0000100001 7.01: OOO5F5EIOO
B.02: 0000000001 7.02: OOOO98968O •

B.03: 0000800008 7.03: 00000F4240 t

7.04: OOOOOI86AO t
7.05: 0000002710 *

7.06: 00000003E8 «

7.07:
7.08:

0000000064
000000000A = lO1^"39

Since the subroutine library is dynamic and continually growing and
being improved, no attempt will be made here to catalogue the existing 
subroutines. However, in any problem being prepared for computation, the 
subroutine library should be consulted at the time the flow diagram is 
drawn in order that any desired subroutines might be incorporated into 
the problem.
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The composition of a subroutine descriptive code tape differs 
slightly from that of a regular problem. The first word (five charac
ter) on a subroutine tape is always a Box 1 code word

00001 or 00401,
the latter if the subroutine must start as a left-hand instruction.
The first instruction after this code word is always the substitution

FCFOO
This is followed by the descriptive code of the first box and all sub
sequent boxes punched as five-character words, as with a tape of a 
problem. Immediately following the last instruction of the routine is 
the code word

00E00
The code word 00C00 is omitted, since no A storage is allowed in a 
subroutine. Following the word 00E00, the B storage is punched on 
the tape. (Recall that no C storage is allowed.) The B storage is 
terminated by two adjacent spaces, and the 7 storage is punched following 
these two spaces. The last word of the tape (whether it is the end of 
7 storage, the end of B storage if no 7 storage is included, or the 
code word OOEOO if neither B nor 7 storage is needed) is followed by 
two adjacent spaces. If no B storage is needed and if 7 storage is 
present, the two adjacent spaces indicating the end of the B storage 
are nevertheless included immediately following the code word OOEOO. 
Example 11 illustrates sections of three subroutine tapes containing 
the storage and the appropriate spaces.
Example 11

Each tape begins with the last instruction of the subroutine which . 
for our example is the exit transfer, T F00.

The first subroutine has both B and 7 storage, namely 
B.01: 45FOOOOOOO 7.01: 39253645320)0 a> 01 <D 4> of a>0 0 O O 0 00Clcn 0a. 0a. 0 0 a. a.</) <n </) V) <n<n

Code -*CAFOO OOEOO 45F0000000 3925364532

O OOOO O O1 OOOOOOOOOO 000000000 o00 o 00000 o oo 00

00 00,
00000000000000000. O OOOO O OO OO OO OO OO

I Exit |End of j b Storage
J Code J

1 l111 1
tl 7 Storage | End of 

I l Tape

End of 
B Storage 

Figure 15.



The second subroutine has only 7 storage:
7.01: FU39B7CD32

a) «> a»<i)O O £2 O o oo a o o a aa. a. ci. o. a. a.
(/) cn co c/) co co

Code-*CAFOO OOEOO F439B7CD32

) O OO OOjOOO o O OO OO /
\oooooOooooooooooo oooooooool 
O O O OO OOO 'OO O O O OOO

I
^ W OOo oooo OO

Exit
I End Ofl I 7 
J Code JAl 7 Storage

I I >
End of 

B Storage

1 End of 
I Tape

Figure 16.
There is no storage for the third subroutine.

0)ooo.(/)
4) 0)0)u o oo o o
& Cl Cl

_ in CO </)
Code-►CAFOO OOEOO

o oo< OOO o
•oooooooeoooo O O

°§
i
IE x i t

JEnd of I End of 
■ Code [ Tape

Figure 17



-252-

VI. OPERATING PROCEDURES

In this chapter on operating procedures we present the discussion 
in four sections. First, the functions of the indicator lights and 
switches of the control panel are discussed so that one has at his dis
posal the necessary mechanics for operating the computer. The second 
and main section is the preparation and debugging of a problem. The 
discussion of the preparation begins with the descriptive code of the 
problem being complete. The code is carried through its assembly and 
then the debugging procedures are discussed. The third section re
turns to the discussion of the computer and it brings out in some de
tail the role of the various registers. The fourth section contains 
some miscellaneous information such as the "audio-monitor"; the "mem
ory monitors"; the magnetic tape and Synchroprinter procedures, etc.

In order to give one a better mental picture of the ensuing dis
cussion, Figures 1, 2, and 3 have been included. Figure 1 shows a 
floor layout of the computer and its auxiliary equipment. The figure 
is not drawn to scale but it serves to show all of the auxiliary equip
ment and its position relative to the computing unit. Figures 2 and 
3 give a schematic view of the front and back of the computer. These 
figures show the position of the various registers, the control system, 
and the electrostatic memory. Now, keeping these three figures in mind, 
we turn to the operating panel.

The operating panel has been kept in a simplified form for ease of 
operation. The panel consists of ten display lights and ten switches 
for setting the counter (shown as the control counter in Figure l); the 
memory clear switch (shown in Figure 2); two lights for the function 
gates (mounted atop the switch box shown in Figure l); and six operating 
switches (mounted on the switch box shown in Figure l) designated in 
order from, left to right as:

1. the load switch
2. the "red" breakpoint switch
3. the "green" breakpoint switch
4. the perform order switch
5. the manual-automatic switch
6. the start next order switch
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The display neons for the various registers have not been brought 
out to the panel but are physically located with their register. They 
are readily visible from the operating panel table. In line with this, 
the monitor tubes for visible memory display are mounted in the memory 
rack rather than on the operating panel (See Figures 2 and 3).

The control counter display lights and selector switches are laid 
out on a panel as shown in Figure 4.

Counter Lights

Set
Counter

Switch

1

* Push Button

Selector Switches - Toggle

Figure 4.

Hie control counter is the mechanism used to sequence the instruction- 
words. The control counter normally contains the address of the forth
coming instruction word to be brought into the R6 (control) register. 
Since the control counter handles addresses, it counts from 000 to 
3FF, which requires a ten-stage counter. Inasmuch as the counter is 
the sequencing mechanism, we easily see how transfer instructions are 
accomplished, namely that the address of the transfer Instruction is 
sent to the control counter. (The right-left selection is done through 
the function gates, which are discussed presently.) If the computer is 
stopped, the operator may manually effect a transfer of the control to 
any address by using the selector switches. The control counter (hence 
the control) is set to any desired address by setting the selector 
switches to the address and then depressing the "set counter1' switch.
The control counter lights indicate the address to which the counter is 
set.

In addition to being the control sequencing mechanism, the control 
counter is used in conjunction with the magnetic drum instructions. It 
indicates in sequence the fifty memory addresses associated with the
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instruction. The counter is also used in the loading process; here 
the counter indicates the address of the memory to which the next 
word from the reader is sent. We discuss the loading process presently.

Prior to using the computer, the operator usually clears (sets to 
all zeros) the memory of any previous code or data. The memory is 
cleared to zeros by depressing the "memory clear" switch located on
the front section of the computer in the upper right-hand corner of
the arithmetic unit frame. This switch is separated from the operating 
panel so that it will not be pushed inadvertently during the course of 
a computation. Its location is shown in Figure 2.

The two function gate lights are mounted on a panel immediately 
above the six operating switches. These are display lights for the 
function gates, a set of gates which allows, in turn, each instruction 
of the word in R6 to be connected into the control circuitry in older 
to be performed. The function gate lights Indicate which Instruction 
in R6 is connected into the control circuitry. When the left-hand 
light is on, the left-hand instruction in R6 Is connected into the 
control circuitry and, similarly, the right-hand light corresponds to 
the right-hand instruction. In general, if the computer is stopped 
and an instruction pair is in R6, the instruction corresponding to 
the function gate light setting has already been performed by the con
trol. The function gate lights are shown in Figure 5»

In a transfer instruction, the control selects the left or right 
side by opening the corresponding function gates. There is no switch 
for setting the gates manually, but as we shall see this is not necessary.

Function Gate Lights

Perform Manual Start 
Order Automatic Next 

Order
Red 0ff Green 

Break Points

Figure 5*
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We now turn to the six operating switches shown in Figure 5 and 
discuss first the "load" switch and the loading process. Prior to 
loading a tape into the memory, one first clears the memory to zeros 
by depressing the memory clear switch and then sets the tape in the 
photo-electric reader. When a tape of data is punched for use in 
the computer, the first word of the data should be preceded by five 
or six inches of blank tape (zeros). These zeros act as a leader for 
the tape. To place the tape in the reader, the lid of the reader is 
raised. Then the tape is inserted so that the leader is over the drive 
cylinder, yet no pertinent characters are beyond the reading holes.
The tape must be placed in the reader so that the space holes (fifth
holes) on the tape are nearest the hinged side of the lid. A sample 
tape is attached to the reader to avoid mistakes of this type. After 
the tape is inserted, the lid of the reader is closed. One should 
make certain that the lid latches when it is closed to assure proper 
operation.

After the tape is inserted, the control counter is set to the de
sired initial address for loading. In loading, although it is only 
necessary to set the selector switches of the counter, it is recom
mended that the set counter switch be depressed so that one can check 
the counter setting by the display lights as well as the selector 
switches. When the desired address is set into the counter, the load 
switch is set to the "up" position and the loading commences. The 
words from the tape are transmitted into successive memory positions 
beginning at the address set into the control counter.

After the tape has been loaded into the memory, the load switch
must be set to the "down" position. The computer will not operate if 
the load switch is not reset. The loading is terminated when two ad
jacent spaces on the tape being loaded are encountered by the reader; 
hence, any tape that is to be loaded into the memory must end with at 
least two adjacent spaces.

As the tape is loading into the memory, each word on the tape is 
transmitted into the R5 register, and from there into the memory. This 
fact allows a method of checking that the photoelectric reader circuitry 
is transmitting the information correctly from the tape. During the load
ing, a sum of the words from the tape is formed in R2. The first time
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that a tape is loaded, the sum as shovn in R2 should he recorded. It 
can he verified hy immediately reloading the tape. Once a correct sum 
of the tape has been recorded, the sum given hy all subsequent loadings 
must agree with the known correct sum. If it does not agree, there is 
a computer malfunction. The correct sum should he recorded on the box 
in which the tape is permanently stored. Remember, however, that a cor
rect sum in R2 at the completion of the loading does not guarantee 
that the information is correct in the memory; it only says that the 
reader and its associated equipment operated properly. The contents 
of the memory are checked hy a summing routine that must he incorporated 
in all problems. It is discussed later.

It is now worth noting several things that occur when the load, 
switch is set to the "up" position; naunely, the R6, R5, and R2 regis
ters first clear to zeros. The R6 register remains zeros throughout 
the loading. At the completion of the loading, R2 contains the sum of 
the tape, R5 contains the last word loaded from the tape, and R6 is 
zeros. Note that the loading process does not affect the contents of 
the R4 register. At the completion of the loading, the control counter 
automatically resets to the original address.

The "manual-automatic" switch, the "start-next-order" switch, and 
the "perform-order" switch are those directly concerned with the run
ning of the computer. We now discuss them.

The manual-automatic switch allows the computer to he operated so 
that it either stops upon the completion of each instruction or per
forms an entire instruction sequence without stopping. If the manual- 
automatic switch is in the "manual" position when the control performs
an instruction, the computer stops upon the completion of the instruc
tion. If the manual-automat1c switch is in the "automatic" position 
when the control performs an instruction, upon the completion of the
instruction the control proceeds to the next instruction in the se
quence to perform it, and so on, through the entire code sequence.

The start-next-order switch is normally used to start the computer. 
Recall that if the computer is not running the function gate light 
indicates which side of the instruction pair is connected into the con
trol circuitry. Depressing the start-next-order switch causes the 
next instruction in sequence to he performed. That is, if the start- 
next-order switch is depressed when the left-hand function-gate light
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Is on, the function gates are set for the right-hand instruction In
R6; the function gate lights change and the right-hand Instruction
In R6 Is performed by the control. If the start-next-order switch Is
depressed when the right-hand function-gate light is on, the control
brings the Instruction word located at the address specified In the
control counter into R6. The function gates and lights have mean-
while switched to the left-hand side of R6 and then the left-hand In
struction of the new word in R6 is performed by the control. The con
trol counter is advanced by one.

The perform-order switch is somewhat similar to the start-next- 
order switch in that it causes the control to execute an instruction 
contained in R6. However, depressing the perform-order switch causes 
that Instruction (indicated by the lighted function gate) connected
into the control circuitry to be performed rather than causing the next 
instruction in sequence to be performed. The perform-order switch takes 
on added significance in connection with the breakpoint switches and is 
discussed further with them.

Returning to the manual-automatic switch, we see that the "manual- 
automatic" settings apply to either the start-next-order or perform- 
order switches. If on "manual", the start-next-order switch allows one 
to proceed through the code sequence an instruction at a time, while 
the perform-order switch allows one to repeat an instruction as many 
times as is desired. If on "automatic", depressing either the start- 
next -order switch or the perform-order switch allows the control to 
proceed automaticolly through the code sequence. The latter, however, 
causes the control to perform the instruction previously connected into 
the control circuitry before proceeding through the instruction sequence.

The breakpoint switches allow one to insert conditional stops into 
a code by setting either the first or fifth bigit of an order to zero. 
Since all orders are composed of letter pairs (AA, BA, DD, etc.) the 
first and fifth blglts are normally one. Setting the first bigit of 
an order to zero corresponds to the insertion of a red breakpoint and
setting the fifth bigit to zero, a green breakpoint. The conditional 
stop arises from having a breakpoint switch in the "up" or "down" posi- 
tion. If either the red or green breakpoint switch is in the "up" (on)
position and the control brings into R6 an instruction which contains
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the corresponding breakpoint, the control stops the computer before the
the Instruction Is performed. The breakpointed Instruction Is, however,
connected Into the control circuitry as Indicated lay the function-gate
light setting. If either of the switches Is In the "down" (off) posi
tion when the control brings Into R6 an Instruction with a breakpoint 
corresponding to the "down” switch, the control performs the Instruction
as though it contained no breakpoint.

The perform-order switch is used in conjunction with the breakpoints 
because depressing the perform-order switch causes the instruction con
nected into the control circuitry to be performed even though this in
struction may contain breakpoints. If the control stops on a break- 
pointed instruction, it stops before the instruction is executed; hence 
the perform-order switch is the natural way of resuming operation. If 
the control is stopped at an instruction with a breakpoint and the start- 
next-order switch is depressed, the instruction containing the breakpoint 
is skipped (not performed) as the start-next-order switch executes the 
next instruction in sequence rather than the one already connected into 
the control circuitry.

With a knowledge of the operating switches at our disposal we now 
turn our attention to the code assembly and "debugging".

Recall that the absolute code is prepared in the computer by the 
assembly routine from the descriptive code tapes. These tapes are the 
problem and constant tape, and the subroutines tape or tapes. The 
assembly routine is an example of the category of codings called "helper- 
routines". A helper-routine is a routine, not incorporated directly as 
a part of the problem, which is used as an aid in the preparation, the
running or the analyses of a problem on the computer. A library of 
helper-routines has been compiled much in the fashion of the subroutine 
library. Rather than give an elaborate discussion of these routines 
we refer the reader to the helper-routine library file, and we mention 
them only as their need arises in the ensuing discussion.

The first step in the assembly of a code is the loading of the 
code assembly helper-routine. (This routine is appropriately named 
"The Coder".) The tape and necessary explanations for the assembly 
routine are obtained from the library. The code is transmitted into 
the memory beginning at the desired address (specified by the explanatory
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remarks) via the load process which is: the memory is cleared to zeros 
by depressing the memory-clear switch; the tape is set into the reader; 
the control counter selector switches are set to the desired starting 
address; and then the load switch is set to the "up" (load) position. 
After the assembly tape is loaded, the load switch is set to the "down" 
(off) position and the sum in R2 is checked against the sum as recorded 
on the assembly code tape box.

After the assembly routine is loaded and the sum is checked, the 
processing of the descriptive code tape begins. The descriptive code 
tape is placed in the photo-electric reader so that it is in position 
to be read into the computer by the assembly routine. The computer is 
started in operation by first setting the desired starting address into 
the control counter; second, setting the manual-automatic switch to 
the "automatic" position; and third, depressing the start-next-order 
switch to activate the control. The desired starting address is often 
contained in the control counter, since after loading the counter con
tains the initial load address.

After loading, to start the computer the right function-gate light
must be on. Depressing the start-next-order switch then brings in to 
R6 the instruction word specified by the address in the control counter, 
and the control proceeds executing the instructions in sequence. If 
the left function-gate light is on, at the completion of the loading 
one may switch the function gates by depressing the start-next-order 
switch. R6 is cleared to zeros by the loading; hence the switching of 
the function gates does not cause any action as there is no instruction 
in R6.

The first group of instructions of the assembly code comprises a 
summing routine which forms a sum of the memory contents and checks this 
sum against the sum as left in R2 from the loading process. (Any prob
lem which is to be run on the computer should contain such a summing 
routine.) If the sums do not agree, the computer stops at a programmed 
stop, since disagreement of the sums implies a canputer malfunction.
If the sums agree, the control proceeds automatically and the data from 
the descriptive tape is read and processed through the assembly routine. 
At the completion of the reading of the descriptive code tape, the con
trol comes to a coded stop in order that the subroutines tape may be in
serted into the reader. After this tape is inserted, depressing the
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start-next-order switch causes the assembly of the absolute code to be 
carried to completion. During the processing of the code, a code list
ing (see Chapter V, pp. 232 ff.) is carried out. Upon the completion 
of the assembly, the absolute code may either be recorded onto magnetic 
tape or punched onto paper tape for subsequent use. The choice of the 
medium for recording the absolute code is made by selecting the appro
priate assembly routine code tape, as there is one code which contains 
as a subroutine a magnetic tape recording, and smother which contains 
a tape punch subroutine. However, in either situation the particular 
auxiliary equipment should be readied prior to the start of the assembly 
process.

After the assembly of the absolute code is completed with either 
the record on magnetic tape or a punched paper tape (for what follows 
we assume that the absolute code is on magnetic tape), "debugging" of 
the assembled code begins.

As a person gains experience in coding, he soon realizes that des
pite the great care exercised in the fomulatlon and coding of a prob
lem, errors are apt to occur. Before a problem can be run any existing 
errors must be detected and corrected. The process of eliminating errors 
from the mathematical formulation and the coding of a problem is called
"debugging". As a person becomes familiar with coding and the computer, 
he will naturally develop his own "debugging" habits. The purpose here 
then, rather than to specify a rigid set of rules, is to discuss a 
general procedure that will assist a person in developing desirable 
debugging patterns.

In a problem of any complexity, the hunting for and detection of 
errors completely apart from the computer is a very difficult, if not 
impossible, task. In order to make the task of error hunting a tractable 
one, the computer is utilized.

Clearly, one approach for using the computer in debugging is to 
run the problem as though it contained no errors (this is often done 
with small problems). If there are no errors, this indeed is the fast
est approach to debugging. However, if errors are present, the answers 
Indicated upon the completion of the problem, if the control was even 
able to proceed to the end, would be Incorrect; and one would have no 
idea where or why the errors occurred, so that such running time (which 
might be rather lengthy) would not be particularly useful in localizing 
any errors.
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Another approach would he to perform each instruction in the code 
sequence on manual operation and to record the result of each operation 
so that it Could he verified hy hand methods. Such an approach would 
certainly find all existing errors, hut the amount of computer time in
volved in such a debugging method is much greater than it need he.

The recommended approach combines the two extremes. The code 
of the problem is divided into several sections and the control performs 
each of these sections automatically, stopping upon the completion of 
each one. The division of the code of a problem into these sections is 
accomplished hy inserting conditional stops into the code hy means of 
breakpoints. These stops are inserted at locations in the code where 
the results of pertinent computation are available. Enough of these 
stops should he inserted so that sufficient data of the problem are 
recorded to allow one to perform a hand check if necessary. The con
trol then performs automatically one of the short sections of code and 
stops at the designated instruction. Hie pertinent data from the pre
ceding computation are recorded, and then the computer is restarted and 
the control performs the next code section, and so on, until all of 
the desired data are accumulated. This occurs when the control has 
proceeded through all of the code sequence at least once, or when it 
is observed that some of the data are in error. In either case, the 
problem is removed from the computer and the data are studied and 
verified.

If the accumulated data indicate the existence of errors, any 
particular error may be isolated to one of the short code sections by 
making a hand check of the results and observing in which section the 
error first appears. Once an error has been isolated to a section of 
code, that section of code is checked visually to see if the cause of 
the error may be easily located. If it cannot, that section of the 
code in which the error occurs is further subdivided and the problem 
is returned to the computer where the offending section is examined in 
greater detail in order to pin down the error. As soon as the error 
is located, it is corrected and then further debugging may proceed. This 
process is continued until all errors are removed from the coding, at 
which time the problem is ready to be run. We now discuss these matters 
in more detail.
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After the absolute code is assembled and placed on magnetic tape, 
the problem is removed from the computer in preparation for debugging. 
This preparation Involves a visual check of the code listing to detect 
any obvious errors, either from the coding or from the assembly pro
cess. After the listing is checked, the code is divided into sections 
for breakpoints. The breakpoints are to be inserted into orders of 
instructions where pertinent data are available in the arithmetic unit. 
The actual insertion of the breakpoints into the desired instructions 
in the assembled code may be accomplished by a Breakpoint Insertion 
helper-routine. One needs to specify to this helper-routine the ad
dress of the Instruction receiving the breakpoint and whether the 
breakpoint to be inserted is "red" or "green". The details for accom
plishing this are discussed in the helper-routine file.

There is an alternative method for inserting breakpoints which is 
perhaps more desirable than the one just outlined. This alternative 
is to decide upon the disposition of the breakpoints during the prepa
ration of the descriptive code and to punch the orders on the des
criptive code tape with the breakpoints inserted. The assembly routine 
accepts and modifies properly instructions whose orders contain break
points. As an example, an instruction m—>Ac B.01, if it were to 
contain a "red" breakpoint would be punched as 2AB01 rather than AAB01. 
Similarly, ~ D01 with a "green" breakpoint would be punched as D5D01 
rather than DDD01.

If the breakpoints are included during the descriptive coding, 
they exist on the magnetic tape record of the absolute code. If they 
are inserted by the Breakpoint Insertion routine, the absolute code 
from the magnetic tape must be called into the computer; the breakpoints 
are then inserted by the Insertion helper-routine, and a subsequent re
cord of the code with breakpoints is made onto the magnetic tape, ihe 
calling from and recording onto magnetic tape is accomplished by 
Magnetic Tape helper-routines, two of which were illustrated in Prob
lem 12 of Chapter II. As soon as the breakpoints are inserted, one 
begins the debugging proper.

The most effective way of observing the data at the various break
points is to have the desired data printed. To do this, one again calls 
on a helper-routine. The particular‘routine used here is in a class of
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interpretive helper-routines and is the so-called Breakpoint Monitor 
helper-routine.

An interpretive routine is any routine which interprets and 
causes to be performed any desired instruction sequence which is 
residing in the memory. Such routines act in a sense as a generalized 
control.

During the process of interpreting and performing an instruction 
sequence, an interpretive routine may perform many other functions, the 
extent of which is limited only by the capacity of the memory of the 
computer and the ingenuity of the person preparing such routines.

For the Breakpoint Monitor routine the desired interpretation is 
a very simple one, namely whether an instruction contains a breakpoint. 
For an order containing a breakpoint, the interpretive routine first 
causes the instruction to be performed and then the following data are 
printed as four words:

Word 1: The address at which the instruction containing
the breakpoint resides, and the instruction itself.

Word 2: The contents of the R4 register
Word 3: The contents of the R2 register.
Word 4: The contents of the memory at the address specified

in the instruction.
Words 2 and 3 give the contents after the instruction is performed 
and Word 4 gives the contents before the instruction is performed.
Note, then, that the breakpoints are inserted into instructions which 
when performed give the desired data in the arithmetic unit. R2 or 
R4 contain the result from any arithmetic operation while the appro
priate memory location contains one of the two operators entering into 
the operation.

There are many other interpretative routines similar to the 
Breakpoint Monitor (it was chosen only as a convenient example) and one 
should check the library file to ascertain which of these routines is 
best suited for his specific purpose.

Sometimes breakpoints are used to check that the control reaches 
a certain instruction in the problem and for this the numbers printed 
from the various registers may be unimportant for debugging; hence only 
the first word printed in the listing would have relevance.
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In the Breakpoint Monitor routine, as in similar routines, one 
has the option of having the data printed as either decimal numbers 
or as hexadecimal numbers. The first word, i.e., the address and the 
instruction, is always printed as a hexadecimal number, since it would 
appear as nonsense as a decimal number.

To utilize the Breakpoint Monitor routine, one inserts the desired 
breakpoints into the absolute code. The absolute code and the Break
point Monitor routine are then loaded into the memory. Note that, 
since both routines are in the memory, the Breakpoint Monitor routine 
must be loaded into a set of addresses which are not relevant to the 
code being debugged. Breakpoint Monitor routines are coded beginning 
at a variety of addresses so that this is usually possible without un
due red tape. If, however, one has an assembled code to be debugged 
which fills the memory, he has recourse to a generalized monitoring 
routine which utilizes the magnetic drum. It is not, however, dis
cussed here.

The first step of the monitoring process is to specify the ini
tial address of the code to the monitor routine (for details see the 
helper-routine library file). The control counter is set to the initial 
address of the monitor routine and then the computer is started. The 
data for the debugging is printed by the Synchroprinter, four words 
(discussed above) to a line.

As soon as one has collected a sufficient amount of data, the 
problem is removed from the computer and examined at leisure away 
from the computer.

It may happen that the breakpoints are not reached in the expected 
sequence, or even that the first one is not reached. We defer the dis
cussion of the procedure to be followed when this happens.

So now, assuming that the breakpoints were reached, we have the 
data which is now examined to determine whether or not the numbers 
listed are the desired numbers. First, a cursory examination is made 
for any obvious errors. For example, a number known to be always 
positive may have been computed and printed as a negative number. Or 
perhaps the orders of magnitude of the numbers of the computaton are 
known and a visual check suffices to determine this.
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If the cursory check does not indicate any troubles, a hand compu
tation is made using the same data as for the listing. The hand check 
may often use shortcuts in that some of the numbers computed are 
knpvn; e.g., the values for sin x, —^/x, etc. may be found in tables.
The comparison should agree except for truncation and round-off dif
ferences. Sometimes approximate values suffice for checking purposes.
If no errors have occurred, the debugging of the portion of the code 
for which the data was obtained is complete. If an error is detected 
from the cursory examination one must set about isolating it to one 
of the sections of code between breakpoints. At first, one attempts 
to isolate the error by a visual check of the numbers leading to the 
error, and if this fails a hand check of the results in the region of 
suspect will Isolate it.

Once an error is isolated to a particular section of code, the 
instructions in that section are examined in detail to see if the 
cause of the error may be observed. If it is found, that trouble is 
over. If it is not observed, one may divide the section of code by 
further breakpoints, so that the section may be monitored in greater 
detail upon returning to the computer. However, at this point, if 
the section of Instructions is fairly short, as it should be, rather 
than doing further breakpoint monitoring one has recourse to another 
helper-routine for debugging, called the Auto-Monitor routine. It is 
discussed presently.

If the first error detected does not alter subsequent results too 
drastically, the programmer continues his checking process for other 
errors so that before returning to the -computer as many errors as 
practicable are detected and corrected?

Since the absolute code of the problem exists only on magnetic tape 
one makes the actual corrections at the next session with the computer. 
However, prior to this a permanent written record is made of each error 
as it is detected. This record should contain at least the following:

1. The addresses of the incorrect words.
2. The incorrect words as they appear on the magnetic tape.
3. Hie number of the particular magnetic record on which 

they appear incorrectly (as will be seen later each re
cord of an absolute code is on a numbered section of a 
spool of magnetic tape).

4. The correct words as they are to be inserted. And if any 
additional words are added, the addresses at which they 
are added.
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said recorded the corrected absolute code onto magnetic tape, the fol
lowing Information Is added to the record.

5. The date on which the correction is made.
6. The number of the magnetic tape section on which the cor- 

ted code resides.
In addition to the six items mentioned, any comments which the program
mer feels are pertinent to the corrections should also be included.

There are, in general, two kinds of corrections that need to be 
made. The first is the easy kind which can be corrected by changing 
only those words in error without having to add additional coding.
This kind of correction causes relatively few headaches. The second 
kind are those corrections where the number of words necessary to make 
the correction exceeds the number of words in error. In short, additional 
coding must be added. So we have found one of the ticklish parts of the 
debugging, and unfortunately many of the errors encountered are of this 
kind. For clarity we give an example of such a correction and indicate 
how it is carried out.

An error is found in the sequence of code words beginning, say, 
at address 050. “Hie faulty coding is

050. m—>Q 271 X 272
051. X 273 A—>m 27^
052.

The sequence is supposed to form xyz and store it at
274: xyz

where x, y, and z reside in locations 271, 272, and 273, respectively.
Now as the result of Instruction 50', the product xy is in R2. Instruc
tion 51 Is incorrectly a multiply instruction because the multiplier 
xy has not yet been placed in R4. Since all of the Instructions in 
the sequence are needed, there is clearly no place to insert the neces
sary L(4o) instruction to send the number xy from R2 to R4, or if it is 
not desirable to use L(4o), two instructions A—275, *—275 
needed where 275 is an available location at this time.

In order to make the correction one must have available somewhere 
in the memory 1 l/2 consecutive words. Assume that such space is avail
able beginning at address 379. The corrections to be inserted axe:
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050. m—»Q 271 T 379

•

HUAO X 273 A—*m 21k
052.

379. X 272 L(40) 028
37A. T 051

The right-hand side of Word 50 is changed to a transfer to 379* The 
first instruction of 379 performs the multiplication formerly done in 
50'. 379' then shifts xy from the R2 register to the R4 register, so 
that it is in proper position as a multiplier. The next instruction 
then sends the control back to 051 where the multiplication by z is 
now correctly performed.

An alternative scheme of inserting the correction is to revert 
to the descriptive coding and actually recode in descriptive coding 
the operation box in which the error occurs. A corrected tape for 
this box is then punched. By making use of an 800XX symbol (a trivial 
change) incorporated in the "box number" code word on the descriptive 
tape, the assembly process may be stopped prior to the assembly of 
the code of any box and the code for new boxes or corrected boxes 
may be inserted. The entire problem is then reassembled by the 
assembly routine with the desired insertions of now or corrected boxes. 
At first glance the recoding of a box and the reassembly of the entire 
problem may seem rather a drastic way of eliminating an error; however, 
experience has shown that one of the most fruitful sources of errors 
in coding arises from the insertion of corrections for previous errors,
and this recoding and reassembly virtually does away with such errors. 
One has only to examine and work with a highly complex problem to under
stand this. It should be mentioned that the reassembly process is 
quite easy and rapid.

When one returns to the computer to insert the corrections, he re
assembles the code if the latter scheme is adopted. If the former is 
adopted, he has previously punched small tapes containing the desired 
corrections. Then after the absolute code is read into the memory, 
these corrections are loaded into the desired locations. Each se
quential group of corrections consists of one tape; hence several such 
tapes are often needed. Several groups of corrections may, however, all
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be placed on one tape with double spaces on the tape separating the 
various groups. For example, the correction of the example discussed 
above would consist of two groups. The first consists of Word 050 
which is

EB271CA379
followed with a double space. Immediately following the double space 
the words beginning at 379 would be punched. They are:

DA272DE028
CA05100000

which is also followed by a double space. The correction tape is then 
loaded into the desired locations, namely addresses 050 and 379* When 
all of the corrections have been inserted, the problem is again recorded 
on magnetic tape so that an absolute code containing the corrections is 
available on tape. Note that all of these magnetic records discussed 
are distinct. That is, one should not destroy previous records of the 
problem when making a new one, and certainly not the immediately pre
ceding record.

We are now ready to resume debugging, with the corrected code. We 
do this by first returning to our original breakpoint monitor scheme 
and printing the data for all of the breakpoints that had previously 
been listed. This is done to make certain that none of the changes 
and insertions in the code has molested any part of the code which 
was previously correct. In addition, the data pertaining to the cor
rections are printed. We have left from the previous debugging session 
those errors which were not found while off of the machine. If the 
method of Inserting more breakpoints is used one has only to let the 
data be printed. However as previously mentioned, it is often advisable 
to resort to an Auto-Monitor helper-routine.

The Auto-Monitor routine is an interpretive routine which allows 
the results of each instruction to be printed. The data printed for 
each Instruction are Identical to those for the Breakpoint Monitor 
routine. When one comes to the section of code in which the error 
exists, he switches to the Auto-Monitor routine and lists the results 
of the computation for all of the instructions in that section. To 
switch from the Breakpoint Monitor to the Auto-Monitor routine one
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loads the Auto-Monitor routine into the memory and specifies to it the 
desired starting address for monitoring. One should consult the 
library file for specific operating instructions. Upon the completion 
of the desired auto-monitoring, one may revert to the Breakpoint Monitor 
routine.

The Auto-Monitor routine is recommended to track down the error of 
the kind previously mentioned in which no breakpoints were ever reached 
or else reached in the wrong sequence, by the Breakpoint Monitor routine. 
One begins auto-monitoring at the start of the problem (or at the point 
of "no return"). This soon leads to the source of the trouble.

It is worth noting here that, since the Auto-Monitor and Breakpoint 
Monitor routines have a similar function, they may actually be incorporated 
as one routine where one need only make minor adjustments in order to 
switch from one to the other.

There are other helper-routines which one has as an aid to debugging 
other than the monitoring routines. We mention only a few of them in 
passing.

There is a Scaling Check routine which examines the results of all 
operations to see that numbers do not exceed the allowable range of 
-1 ^x < 1.

There are various address and instruction search routines which scan 
the code and pick out all instructions containing any specified address, 
or pick out all instructions containing any specified order, or pick out 
any specified instruction.

Routines exist for comparing the contents of any magnetic tape re
cord either against any other, or the contents of the memory, or the con
tents of the magnetic drum.

There are address altering routines which modify the addresses of 
any section of code in any manner desired.

Graph plotting routines are available for plotting data to see if 
they look reasonable.

There are routines which allow all operations on the computer to 
be done in duplicate in the event that one suspects a computer malfunction 
as the source of an error. Normally our standard test routines disclose
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the garden variety of computer errors, but on rare occasions an in
frequent intermittent may depend on particular numbers. In this in
stance there is some point to using these "duplicating" routines.

Many routines which cannot be used directly in debugging may still 
be of service. These are routines that can compute various functions 
and tabulate the results so that they can be compared with results in 
the problem being debugged.

The scope of helper-routines is too great to enumerate in detail 
here. However, it is suggested that, prior to the debugging of any 
code, the programmer should become familiar with helper-routines and 
their function as an aid to debugging.

We have thus completed the debugging of the absolute code. It should 
be mentioned, however, that the preceding discussion has not attempted 
to cover debugging in any detail, since such a discussion is not within 
the scope of a manual of this type, and apart from a general approach 
each code to be debugged presents new situations. Skill in debugging 
comes only through actual experience and a meticulous care on the part 
of the programmer at all stages of the problem preparation and the de
bugging. The next step then is naturally enough the actual running of 
the problem with the debugged code.

The procedure that one goes through in starting the problem should 
be somewhat familiar by now. The debugged code is called into the 
memory from the magnetic tape where it resides. After the code is in 
the memory, the control counter is set to the desired starting address, 
and the problem is started by depressing the "start-next-order" switch.

When at all possible, the code of a problem should be set up so 
that shortly after the computation begins, a few intermediate computa
tion results, where the correct results are known, would be printed.
In this way there is some assurance that the computer is starting its 
computation correctly.

Since many of the problems contemplated require anywhere from 
several hours to several days of computation time, it is necessary that 
intermediate records of the problem (code and numbers) be made so 
that in the event of computer malfunction it is not necessary to start 
the problem from the beginning. One has only to return to the last 
correct record of the problem and resume from there.. Also in lengthy
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computations the code should be constructed so that intermediate re
sults of the problem are periodically printed, so that they may be 
examined in order to see if they are reasonable. This is a check on 
the formulation of the problem as well as on the computer.

The periodic records of the problem are made on magnetic tape.
The entire contents of the memory are recorded onto the magnetic tape; 
hence in order to start a problem from any record one has only to call 
the magnetic tape section into the memory and then set the control 
counter to the address of the instruction Immediately following the 
last instruction of the code performed before the record was made.
This instruction is, of course, known for each record; and, in fact, 
it usually does not vary from one to smother. Experience has shown 
that a magnetic record of the memory contents should be made about 
every 20-25 minutes to insure a maximum of effective computation time.
It is desirable that some intemediate results be printed shortly after 
a record is made. Then, in the event that a problem has to be restarted 
there will soon softer be some printed results which may be checked against 
those printed when the record was made. This insures that the computa
tion is starting correctly.

The routines which perform these magnetic recording exist as sub
routines as well as helper-routines, so that if desired they may be 
directly incorporated as an integral part of a problem. A variety of 
print routines exist that are easily included in a problem to print 
the intermediate and final results. As suggested above, one of the 
reasons that the periodic magnetic tape records of the problem are 
made is in anticipation of any computer malfunction. A computer mal
function might manifest itself in any one of several ways. For example, 
a set of intermediate results that are printed might be in error. Such 
errors may be detected by inspection, by taking differences of the re
sults, by the plotting of graphs, by programmed integral checks, etc.
In addition to such manifestations, a malfunction may occur by a non
sense instruction being brought into R6, the control register, and the 
computer stops. Or yet another type of malfunction might manifest 
itself in that the control becomes stuck in an instruction loop. That 
is, the control is being cycled through a fixed section of the code 
rather than following the correct path. If the loop through which the
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control Is cycling has relatively few instructions, it can actually be 
observed on any one of the "memory monitor scopes". These are discussed 
later. If the cycle is relatively long, it may not be detected for some 
time, namely when one tries to print results.

In the event that a computer malfunction is detected, the following 
procedure is recommended:

If the trouble occurs very shortly after operation has begun, the 
first suspect for the error would be that it was a human error. That 
is, either in loading the code and any data that might be needed, or in 
making any alterations of data, or in the setting of addresses into the 
control counter, the operator may have made some sort of an error. Hence, 
one should try to restart the computation without making any other checks. 
If similar trouble seems to repeat, one then follows the same procedure 
as for malfunctions that appear after the computation has been underway 
for some time. It is:

If a malfunction appears that is evidently not from a human source, 
the problem being computed is removed from the computer and the basic 
computer test problems are run to see if they detect the malfunction.
Every operator of the computer should become intimately familiar with 
these test problems so that he can run them and interpret properly any 
results which might indicate a malfunction.

We discuss these test problems only briefly here. There is a so- 
called "Inversion Test” which checks that the memory is operating properly. 
A "Vocabulary Test" is a general test of all of the orders to see if any 
of them are failing. This test will detect any consistent errors. For 
the more aggravating intermittent variety there are specific tests that 
attempt to test more exhaustively each kind of order with a wide variety 
of numbers. In any test in which a malfunction occurs, data are printed 
that indicate the nature of the malfunction. As soon as a malfunction is 
detected by a test routine, the engineering staff should be called to fix 
the trouble. In the event that the test problems do not indicate any er
rors but the troubles still persist in the problem, the engineers should 
be called. If the trouble is manifested by Incorrect results which can 
be duplicated, and if the test problems do not Indicate computer trouble, 
one should begin to suspect that there is some incorrect information on
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the magnetic tape dump from which the problem was started, or an even 
more disastrous thing—one should begin to suspect that perhaps the 
code is not in reality debugged.

In computer malfunctions, the operator should be able to assist the 
engineers in localizing the source of trouble. To do this one certainly 
must completely understand the function of the various registers and the 
control counter. Such an understanding also helps one operate the com
puter more effectively at all times. We now discuss these matters where 
part of what follows is review and part is presented for the first time.

We discuss the registers first starting with R6, the control register. 
During the loading process, R6 contains zeros. During the operation of 
the computer, R6 contains the instruction-word that is being acted upon 
by the control. One may, in general, determine the address in the mem
ory of any instruction-word contained in R6 by examining the control 
counter. The control counter contains the address of the next word to 
be brought into R6. This is one address greater than the word in R6 un
less either the control has just executed a transfer instruction or the 
counter has been set manually. Whenever a "nonsense” word in R6 stops 
the computer, the address less one in the control counter always indicates 
the location of this nonsense word in the memory, and it should be so 
checked.

The R5 register has many functions,which we discuss in turn. During 
the loading process, words pass through R5 en route to the memory, and at 
the completion of any loading, R5 should contain the word on the tape 
immediately preceding the double space. Any word which is brought into 
the arithmetic unit passes through R5. Hence, at the completion of any 
such operation, R5 contains the word from the location specified by the 
address of the instruction. Orders 1-12, as shown in Table I, page 21, 
are of this kind. The following orders also affect R5. After a Q—*m 
instruction, R5 should contain the same word as R4. After an a —»Ac 
or a—*Ah instruction, R5 should contain in positions (O-ll) the number 
which is equivalent to the address portion of the a—>A instruction.
Upon the completion of a read instruction, the word also resides in R5 
as well as in the memory. Now upon completion of Instructions 19-22, of 
Table I, the substitution instructions, R5 contains the word into which 
the substitution is being made, as it appears before the substitution is 
effected. Note that an A—->m instruction does not involve R5.
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We discuss the registers R4 and R3 together since R3 is an auxiliary 
register for R4 (R^s Q). Neither is affected by the loading process. 
When a number enters R4 via an m—»Q instruction, R4 contains the number 
from the location specified by the address. The contents of R3> however, 
are Irrelevant and may be anything depending upon past instructions. 
However, if a number enters R4 from any other source (viz., X, -f-, L(n), 
or R(n) instructions), R3 contains the same information as R4 displaced 
one position left or right except perhaps for the sign position and the 
2 ^ position. In the X and R(n) operations the number in R3 is dis
placed to the left of the one in R4, while in ~ and L(n) operations the 
number in R3 is displaced to the right.

The magnetic tape instructions and the magnetic drum instructions 
use R4 and R3, and consequently upon completion of t—»m or D—*m, R4 
contains the last reference word. R5 will also contain the same word.
R5 contains the last reference word of m—>t and m—as well. On the 
instructions where R4 contains the last reference word, R3 contains the 
same word displaced once to the right except for sign.

R2 and R1 also work in conjunction; however, any time a word is in
R2 from any instruction, the same word, except perhaps for sign position

-39and 2 J position, is in R1 displaced either one unit right or left.
Upon the completion of loading, R2 contains the sum of the contents 

of the tape. Upon the completion of a D—»m instruction with address 
in+800, R2 contains the sum of the fifty words read from the drum to the 
memory.

Upon the completion of any of the add orders, a—►Ac, a—*Ah, X,
R(n); R1 contains the same number as the R2 register displaced once to 
the left. Upon the completion of -7-, L(n); R1 contains R2 displaced 
once to the right.

Upon the completion of a syncprint order (not considering the sub
routine in which it is contained) R2 contains all ones. In this Instance, 
and only in this instance, R1 may have completely foreign numbers to 
those of R2.

If a computer malfunction is suspected, the contents of the various 
registers should be closely observed, and if there is any deviation from 
the above-mentioned situations the discrepancies should be recorded, as 
they may aid in the detection of the malfunction.
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As previously mentioned, the control counter is the mechanism used 
for the sequencing of instructions. The control counter always contains 
the address of the next word to he brought into R6, the control register. 
The control counter may be manually set to any desired address. While 
the computer is running, the control counter advances sequentially ex
cept when transfer or satisfied conditional transfer instructions are 
executed. These instructions set the control counter to the same address 
as that contained in the instruction. The control counter has several 
special functions which are:

In loading, the control counter is the sequencing mechanism. The 
control counter is first set to the desired initial address. Then the 
contents of the tape being loaded are sent to the memory into sequential 
addresses beginning with the initial one. Upon the completion of the 
loading, the control counter resets to the initial address.

In the drum instruction, the control counter indicates the fifty 
sequential memory addresses concerned with the instruction. At the out
set of the instruction the counter is set to the memory address contained 
in the instruction. When the fiftieth word is transmitted, the counter 
contains the corresponding memory address. Since this is not, in general, 
the desired address for the next instruction, the drum instruction ends 
by setting the control counter to the address contained in bigits (28-39) 
of the drum instruction.

As with the registers, when a computer malfunction is suspected, the 
control counter should be observed to ascertain that its behavior cor
responds to that given above.

We complete the chapter now with brief discussions of the "audio- 
monitor", the memory monitors, the magnetic tape, the Synchroprinter, the 
computer "turn-off” and emergency procedures, and a brief comment on the 
method of time scheduling for the computer.

The "audio-monitor" is an amplifier and a loud-speaker that taps in
to the circuitry of the function gates. The frequency with which the 
function gates change (i.e., flip from left to right as successive in
structions are performed) while the computer is running on automatic 
operation is in the audio-range. The amplifier merely amplifies and 
transmits these frequencies to the loud-speaker and hence into audible 
noise. The use for such a piece of equipment lies in the fact that in
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many problems that are run on the computer the code patterns established 
by the various induction loops of the problem give rise to distinctive 
and easily detectable noise patterns. A person familiar with the noise 
patterns of a problem can often tell when there has been a computer mal
function if the malfunction manifests itself by the control altering its 
path through the code sequence. This circumstance causes a change in 
the noise pattern of the problem. A volume control switch allows one 
to control the audio-monitor and, if desired, the volume may be 
turned down.

The memory monitors consist of four three-inch cathode ray tubes. 
These tubes allow one to observe the contents of any of the forty memory 
tubes. The monitor tubes are mounted at each end of both banks of mem
ory tubes as shown in Figures 2 and 3. There are six selector switches, 
four mounted directly under the central storage units of the front stor
age bank and two similarly mounted on the back side of the computer.
The selector switches are eleven place switches, allowing an "off" posi
tion and the display of any of ten memory tubes by a monitor tube.
Since there are four switches on the front, two connected to each of 
the front monitors, one can observe any of the forty memory units. The 
two left-hand switches select units (0-19) while the two right-hand 
switches select (20-39). However, each monitor tube may display only 
one unit at a time and care should be exercised that the two selector 
switches connected to a single monitor tube are not both set to a unit
as this causes erroneous information to be stored into the memory
units concerned. The two selector switches on the rear bank may only 
monitor that bank, the odd-numbered memory units as shown in Figure 3* 
The left-hand switch can monitor 21, 23> 25 ••• 39, and the right-hand 
switch can monitor 1, 3, 5 19*

The memory raster, as one views the monitor tube, is as shown in 
Figure 6. A bright spot at any position of the raster corresponds to 
a 1, while a faint spot corresponds to a 0.

As a problem is running, the code patterns due to induction loops 
often cause certain portions of the code to be performed more frequently 
than others. The memory locations concerned are then consulted more 
frequently, and these regions of higher consultation show a brighter 
intensity on the monitor tube than neighboring regions. One may then
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be able to determine, by observing a monitor tube, when certain sections 
of the code are being traversed. As with the "audio-monitor" and its noise 
patterns, the memory monitor often displays distinctive code patterns. If 
the computer malfunctions in a way that the display pattern is altered, 
this is often observable.

The magnetic tape unit has previously been discussed in Chapter II, 
Problem 12, and in Chapter IV; so that what is said here will pertain 
mostly to the operation of the unit.

Recall that the unit is a single channel serial system where the 
magnetic tape reels contain 1200 feet of l/4 inch wide Scotch Sound Re
cording Tape. These reels of tape are, in general, pre-marked into sec
tions, each of which will accommodate 1024 forty-bigit words. There 
are fifteen such sections to a reel and the markings dividing these sec
tions are short lengths made transparent by removing the magnetizable 
material from the tape. A photo-cell in circuit with a fast forward and 
reverse mechanism affords the only searching facilities (manual). The 
tape may be advanced or reversed at a speed of roughly four seconds per 
block of 1024 words, and the photo-cell actuates a brake whenever a trans
parent section of tape,indicating a separation of the 1024 word blocks, 
passes through it.

In order to use the magnetic tape, one first threads the desired 
reel of tape onto the tape drive mechanism. Second, the tape is advanced 
to the start of the desired 1024 word block. Third, the tape unit 
switches are set so that the unit can then be operated by the control of 
the computer through the magnetic tape routines (cf. Chapter II, Problem 12) 
We now discuss these steps in detail.

The tape drive as it appears atop the console cabinet is shown in 
Figure 7- The different parts are clearly marked and need no explanation; 
hence with the aid of this diagram we turn to the tape threading procedure. 
To thread tape
1. Remove the caps from both tape reel spindles.
2. Place the reel of tape on the left spindle. It is called the rewind 

reel. The tape feeds from this reel in the direction indicated by 
the diagram.

3. Set the forward-reverse-normal switch, hereafter called the setting 
switch, to the normal position.

4. Open the head housing door.
5. Unwind a length of tape and thread it as indicated in Figure 7*
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6. Wind several turns around the take-up reel. Wind the take-up reel 
until the take-up arm is in the position shown.

7. Replace the caps on the spindles. (Do not remove or replace caps 
while the tape unit is running.)

8. Close the head housing door. The tape is now ready to be advanced 
to the first transparent section, the starting position for the 
first block of information.
In order to have the tape In correct position to record or replay 

a block of storage, all that is necessary is that the transparent sec
tion of the tape identifying the start of the block must be visible in 
the region of tape between the two reels.
To advance or back up tape to start of desired tape section
1. Turn the setting switch to the desired direction of motion of the 

tape.
2. Open the head housing door; the tape advances in the desired 

direction. When a transparent section passes by the photo-cell, 
the tape stops. The braking is not instantaneous, and the trans
parent section may travel as much as 15 feet during the stopping 
process.

3. Turn setting switch to the opposite direction of the previous motion.
4. Depress the manual start button. This starts the tape moving in the 

direction shown by the setting switch. The transparent section of 
the tape again actuates the braking action when it passes through 
the photo-cell. This time the overshoot is less.

5. Repeat steps 3 and 4 until the transparent section lies in the region 
between the two reels. This is the desired starting position.

6. Turn the setting switch to the normal position and close the head 
housing door.

7. The tape is now ready to operate - either record or play back.
If it is desired to back up or advance the tape more than one block of 
words, at the end of step 2 press the manual start button without changing 
the setting switch. Repeat this until the desired block of information is 
reached. The procedure is then the same as previously noted starting at 
step 3.
To record or replay
1. The transparent section identifying the desired block must be in the 

region between the two reels.
2. The head housing door must be closed.
3. The setting switch must be in the normal position.
4. The take-up arm must be in the position indicated in Figure 7.
5. The red indicator light must be off.
6. When steps 1 through 5 are completed the tape is ready to be operated 

automatically upon instruction from the computer.
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The indicator lights have the following significance:
i. The amber light indicates that the power is on. If this light

is "off", call an engineer for assistance,
ii. The red light is "on" in any of the following circumstances.

a. The head housing door is open
b. The setting switch is in the reverse or forward position.
c. The take-up arm is not in correct position.
d. It is "on" while the tape is running during a recording or 

a play back.
If, in setting the tape to record or replay, the red light remains 

"on" after steps 1 through 4 have been completed correctly, call an en
gineer for assistance.

The Synchroprinter has previously been discussed in Chapter II, 
Problem 13, and in Chapter IV; so that, as with the magnetic tape, the 
remarks here pertain to operating procedures.

Recall that the Synchroprinter prints a line at a time; each line 
may contain 40 characters. The maximum speed of operation is 15 lines 
per second, or 36,000 characters per minute. This print order must be 
used in a routine (cf. Chapter II, Problem 13) which does the following: 
The four words to be printed are fanned into an array of eighteen words 
in the memory. During a print cycle, eighteen print orders are given. 
The first print order activates the printer and the remaining seventeen 
act in a timing capacity synchronizing the printer and the computer. 
Prior to each print order of the cycle, the appropriate word of the ar
ray is brought into R2.

In the discussion of the operation of the printer, we assume that 
the printer routine has been properly incorporated into the problem and 
discuss only the mechanics concerned with the printer unit.

Five switches are located on the front of the printer cabinet.
Hiese are:

i. the motor switch
ii. the filament switch

iii. the plate switch
iv. the thyratron switch

V. the paper advance switch
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The filament switch and the plate switch are always to be in the
"on" position. If this is not the case, one should not attempt to 
operate the printer, and an engineer should be called for assistance.

When the printer is to be used, the positions of the motor switch 
and thyratron switch should be checked. If they are in the "on" position 
the printer is ready to operate. If they are in the "off" position, the 
following is done: (The order is important.) First, the motor switch is 
turned to the "on" position and then the thyratron switch is turned to
the "on" position.

The thyratron switch controls a bank of 40 thyratron tubes that are 
used for triggering the 40 print hammers. A thyratron tube is a gas dis
charge tube rather than a vacuum tube, and it permits the high current 
necessary for triggering the print hammers. Once a thyratron has been 
discharged, its plate voltage must be cut off in order to reset it to 
the non-conducting state. The triggering of the print hammer momentarily 
causes the plate voltage to be cut off so that the thyratron is reset. 
However, the circuitry is such that the triggering of any print hammer 
twice in a print cycle will cause its associated thyratron to stay in the 
discharge state, making any further triggering impossible. Attached to 
each thyratron is a neon bulb which is lighted whenever the thyratron is 
in the discharge state. These neons are visible through a glass panel 
immediately below the thyratron switch. Whenever a thyratron remains in 
its discharge state, as indicated by its lighted neon, it may be reset by
turning the thyratron switch "off" momentarily and then turning it "on"
again. If, in the "turn-on" procedure for the printer, some of the thyra- 
trons discharge, as indicated by their associated neon being lighted, the 
above procedure is carried out for resetting them.

A thyratron should never be left in the discharge state, and as
soon as such a condition is known the above reset procedure should be
carried out.

During operation, the only times that a thyratron can be left in the 
discharge condition are:

i. when more than, or less than, the required 18 print orders are 
given in a print cycle

ii. when a print hammer has been triggered more than once per print 
cycle
when there has been some computer malfunction effecting the printeriii.
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(i) and (ii) may be caused by an improperly coded print routine.
If the computer is stopped during a print cycle, and if a print order
is in R6, connected into the control circuitry, the computer cannot be
restarted without danger of leaving seme of the thyratrons in the dis
charged state. Restarting resumes the print orders, and with the control 
in the middle of the routine less than eighteen print orders will be exe
cuted by the control. If the computer is stopped during a print cycle, 
and if an order other than the print order is in R6, one should again
check the thyratron neons, as there is danger that some thyratrons may be
in the discharge state.

If any thyratrons are in the discharge state and an attempt is made
to use the printer, the print hammers associated with the discharged
thyratrons cannot be triggered; hence no characters will be printed in
the corresponding columns.

The "paper advance switch" allows one to manually advance the paper 
so that printed material may be removed from the printer. Depressing 
the switch causes the paper to advance and it will continue to do so as 
long as the switch is held in the depressed state. Note that for manually 
advancing the paper, one should always use the paper advance switch, since 
advancing the paper by merely pulling it causes the printer ribbon to be
come misaligned.

The "turn-on" and "turn-off" procedures for the computer naturally 
seem to be more in the domain of the engineers rather than that of the 
programmers; however, the turn-off procedure has been simplified to the 
extent that the programmers can do it.

In order to turn off the computer, one must set certain of the 
switches located on the Memory High Voltage Power Supply shown in 
Figure 8, the Switch Gear Panel shown in Figures 9 and 10, and the 
Magnetic Drum Control Panel shown in Figure 11. The relative position 
of these panels with respect to the computer proper is shown in Figure 1.

The "turn-off" procedure in its proper sequence is the following:
On the High Voltage Power Supply (Figure 8)

Depress "off" button. (Leave filament switch in "on" position, 
however.)
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On the Switch Gear Panel (Figures 9 and 10)
1. Turn DC "off" by depressing DC off switch located between the DC (red) 

and standby (green) lights.
2. Set bat+ery-generator switch into "down" position.
3. Set battery-series switch into "down" position.
4. Turn off generators by depressing the stop (red) switches for the 

positive and negative generators. These switches are each located 
immediately above its corresponding positive or negative rield 
Rheostat.

5- Turn the filament variac down (turn the wheel counter clockwise as 
far as it will go). The variac is located between the memory high 
voltage power supply and the overload relay of the power supply con
trol panels as shown in Figure 1.

6. Depress the stop switch located between the filament (white) and 
standby (green) lights.

7. Turn the Emergency switch to the "off" position.
On the Magnetic Drum Control Panel (Figure 11)
1. Set the "chassis filament" switch to "off" position.
2. Set the "regulator filament" switch to "off" position.

Note: Do not set any drum switches other than the two indicated 
by 1. and 2.

In the event of an emergency, such as smoke or flame emitting from 
the computer, the emergency "turn-off" procedure is:
Emergency Turn Off
1. Set the emergency switch on the switch gear panel to the "off" 

position.
2. Immediately call an engineer.

In the discussion of"debugging" procedures, the emphasis was placed 
on using the computer effectively;when a reasonable amount of data has 
been obtained from the monitoring or as soon as an error has been detected 
during the monitoring, the problem whould be removed from the computer 
and the data studied away from the computer. This procedure naturally 
leads to the following questions: What is the length of time that one 
should spend with the computer per debugging session? And, how should 
the time on the computer be scheduled so that debugging sessions are co
ordinated in a way which utilizes the computer efficiently? At the pre
sent stage of the art there seems to be no clear cut answer to either of 
these questions. Our present attempt to answer them stems for experience 
gained during the past several years of operation.
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It seems that a person will accomplish more in several short sessions 
than in a long session of the same total time, if the time between the 
short sessions allows him to study and digest the results. As a conse
quence, thirty minutes is the maximum time for any debugging period; how
ever, shorter periods are recommended. Instead of arranging a schedule 
according to the clock, a programmer decides on each occasion when to 
terminate his debugging session.

Since a debugging session may range anywhere from about five to 
thirty minutes, and since the exact length of the period is left to the 
discretion of the programmer, this has brought about the following ar
rangement: Debugging periods on the computer are scheduled sequentially 
during the normal working hours. This is the time when most programners 
are available. A debugging schedule is compiled; however, no specific 
time is allotted to any person. The list only serves to indicate the 
order in which the debugging periods are scheduled and, as mentioned 
above, the length of each period is determined by the programmer while 
he is debugging. It is the responsibility of those on the schedule to 
be available when their debugging period occurs.

As soon as the debugging periods are over, the running of problems 
is scheduled. Debugging time is not normally scheduled beyond the com
pletion of the regular work day which is 5:00 PM. This means, then, 
that most of the problem running time is allotted in the hours between 
5:00 PM and 8:00 AM the following day. Problem running time can, of 
course, be scheduled for fixed periods; hence there is no need, as in 
debugging, for all on the list to be available prior to their scheduled 
time.
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APPENDIX I 
SCALING OF NUMBERS

Numbers handled by the computer must be in the range
M < i (i)

Hie numbers that occur in the course of a numerical computation are 
usually not so contained. As a result it is necessary in going to 
automatic computation to change some, if not all, of the fundamental 
set of units. The process of making these linear transfonnations is 
called scaling. Consider the following very simple example:
Suppose one were interested in the distance in centimeters of free 
fall for times lasting to 100 seconds; i.e..

S = 1/2 g t2 (2)
where S is the distance, g = 980 cm/sec^ is the gravitational ac
celeration, and t the time. In order to restrict the range of these 
quantities so that they satisfy Condition (l), one makes the follow
ing transfonnations

Y =
(3)

For convenience, one uses powers of two. Quite clearly T > y are 
contained in the proper range. Using (3) one finds

S = 1/2(21<V )(27T )2
- 1/2 22V2

Hence, if the transformation
-2ka = 2 S

is made, one obtains
a = 1/2 yr2

where all the quantities as seen by the computer are now well contained.
The three transformations are not, of course, independent since

only the dimensions of length and time are involved. An alternate way
of expressing the above is to say that time is measured in units of 
7 2k2 sec. and length is units of 2 cm. In reviewing a scaled number in 

a register, one may very easily unscale the number by Imagining that
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the binary point is shifted appropriately from its normal position 
(between 0 and 1 stages). In the above example, the unsealed time 
is found by considering the binary point moved 7 places to the right.

One chooses the minimum amount of change in units in order to 
have the maximum accuracy. Sometimes the variations in the quantities 
are so violent that it is necessary to make successive transfonnations 
in order to maintain sufficient accuracy. Nevertheless, this is 
usually much faster than appealing to floating point routines.
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APPENDIX II.

VERTICAL BUSES

The vertical buses of the order gates, as discussed in Chapter IV, 
pages 202-20U, Figure 11, have been modified and are shown below as 
Figures 1, 2, 3, and 4. Figure 11, of Chapter IV, illustrated the 
original arrangement of the vertical buses on the front and back section 
of the arithmetic unit control. As a result of several modifications 
across time, we now require the four figures, one for the front side of 
the control (Figure l) and three for the back side (Figures 2, 3, and 4). 
The motivation was to simplify the control system. It was found de
sirable to incorporate a few new buses and, in order to do this, a more 
efficient distribution of buses was necessary. That is, although all of 
the buses as shown in Figure 11, of Chapter TV, are necessary, they 
were not all needed on both the front and back control section; e.g., 
C0R4, C0R1, RlR2Li, etc., were not used for any order gates on the front 
section; and, similarly, (0-7)R2, (8-19)R2, (20-27)R2, etc., were not 
necessary on the back section.
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VERTICAL ORDER BUSES
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AEPEBDIX III

SINGULAR ARITHMETIC OPERATIONS

In a division operation involving numerator x and denominator £ 
there are certain combinations that violate the condition |xj < |y|, 
but nevertheless give rise to interesting and often useful results.
Ve call such division operations singular operations. Some of the im
portant results are:

i. -1 < x<: 1, y = 0 then

il. a special case of (i) is x = y = 0
Q = ^—>2 - 2'39 = 1.1111 *•*11

iii. x = y > 0 then
Q = ^-(l - 2"39) = 1.0000 •*•01

iv. x = y < 0 then
Q = ^1 - 2*39 = 0.1111 ••*11

x
V. x = -y > 0 then

Q = --*1 - 2"39 = 0.1111 •••11 -x
vi. -x = y :> 0 then

Q = “2->-(l - 2~39) = 1.0000 ••*01
y

then

Recall from the discussion of binary arithmetic in Chapter III that 
the alloved number range is -1 x < 1. This implies that -1 (a 1 in the 
sign position followed by all O's) admits valid operations. In the ad
dition process this is obviously the case. In division, if the numerator 
x = -1, the quotient is meaningless except for the cases (i and iv) where 
the denominator y = 0 and y = -1.

However, in division, if the denominator y = -1, one obtains the norm
ally expected quotient; e.g..

vii. x > 0, y = -1
Q = > 2 - x - 2“39
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viii. x < 0, y = -1

ix. the special case for x = 0, y = -1
Q = 2 - 2"39 = 1.1111 •••11

For the multiplication operation -1 is admissahle as one and only 
one of the factors, and

x. x = -1, y > 0 
p = xy—*2 - y

xi. x = -1, y CO 
P = xy—*|y|

The treatment of -1 is symmetric with respect to the multiplier and 
multiplicand. If

xii. x = y = -1
p = xy 1 + 2"39 = 1.0000 *••01

We see that the multiplication p = xy where x = y = -1 does not 
give the correct product and hence is an exception to the rule admit
ting -1 as a legitimate number.

Returning to the division operation, there is one other fact 
worth noting; namely, if a division is exact with fewer than 39 quotient 
bigits, and if x,y >0, and if

Q = - and Q' = — y -y
are formed, then

Q = Q' + 2“38

Similarly, if x,y > 0, and if
Q = — and Q* = -y -y

are formed, then
|Q| = (Q'| - 2"38
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CONTROL
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236
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236 ff.

235 ff*
221 ff., 250-251
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Substitution instructions, 210- 
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Transfer instructions, fixed 
connectors, 212-215 

Transfer instructions, variable 
connectors, 212, 215-220 
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Examples of, 168-169, 170-171, 

I83-I85
Logical discussion of, I83-I85 
Order, 21, 29 

Double precision operation 
General, 90 
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Division, 90-105 
Multiplication, 91-9^
Shifting, 103 
Subtraction, 90-91, 95 
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Drum track, 189
Dummy Instruction, 77, 78

E-addresses (Descriptive coding) 210 
Examples of, 210-211 

Engineering Research Associates, 189 
Errors in Code (Debugging)

Correction of, 269 ff.
Detection of, 263 ff.
Record of, 268 

Error-squaring, 95 
Exponential calculation routine,

224 ff.
External memory (see Magnetic Drum)
F-addresses (Descriptive coding)

215 ff.
Example of, 217 ff.
Subroutines, 239-240 

Filament variac, 291 
Finite difference equation, 17 
Fixed binary point, 154 ff.
Fixed connection transfer (Descrip

tive coding) 212 ff.
Example of, 214 
Subroutines, 247 ff.

Flexowriter punch (Input-output) 198 
Flip-flop, 3, 174
Floating binary point (see Floating 
point method)

Floating point method, 8O-89, 154 
FLOW DIAGRAM 

General, 15, 18 
Alternative box, 4l ff., 48 
Assertion box, 46-48 
Flow line, 40 
Operation box, 40 ff., 48 
Storage box, 4-7-48 
Substitution box, 44 ff., 48 

Function gates, 257, 259-260 
Indicator lights, 257

Gate, 5-7
Gate tubes, 173-174
Gating, 174-176
General purpose computer, 1
Half-word substitution orders, 22, 

25, 78, 115, 120
Heed, housing (Magnetic tape) 281 
Helper-routines, 261 ff.
Hexadecimal numbers, 55
High voltage power supply, 286-287
Induction, 39-40 
INPUT-OUTPUT

General, 11, 172 
Flexowriter Punch, 198
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INPUT-OUTPUT (Cont.)
Logical discussion, 192-198 
Magnetic tape, 132-141, 193-194, 

281-284
Photo-electric reader, 192-193 
Synchroprinter, 142-153, 195-197, 
284-286

Teletype page printer, 197-198 
Instruction, 18 
Instruction control, 202-203 
Integer conversion routine, bi
nary to coded decimal, 254 ff. 

Integration by Simpson's rule, 71 ff* 
Internal memory (see Memory) 
Interpretive routine, 266

Load process, 192-193, 258-259 
Load switch, 252, 258-259 
Logical coding, 27 
Logical symbol, 27
Magnetic drum 

General, 11, 172 
Addressing of, 189-190 
Capacity of, 189 
Characteristics of, 189 
Checking procedures, 191-192 
Logical discussion, 189-192 

Magnetic drum control panel, 286, 
290-291

Magnetic drum orders, 11, 23, 107 ff*, 
115, 120
Treatment in descriptive coding, 

228-232
Magnetic head, 189 
Magnetic tape (input-output) 

Characteristics of, 194 
Logical discussion of, 193-195 
Operation of, 281-284 
Head housing, 281 
Manual start switch, 282 
Photo-cell brake, 282 
Rewind reel, 282 
Setting switch, 281 
Take-up arm, 282 
Take-up reel, 282 
Tape drive, 281 
Tape reel spindle, 281 

Routines for, 132-141 
Searching facilities for, 194 

Malfunction, computer, 132, 274 ff. 
Manual-automatic switch 252, 259,

260

MEMORY, electrostatic 
General, 9 ff•
Gate connections to, 188 
Logical discussion of, I85-I92 

Memory clear switch, 252, 257 
Memory monitor, 279 
Memory position mark, 33 
Memory raster, 279-280 
Meshing, 106 ff.
Monotonic decreasing sequence, 106 
MULTIPLICATION

General, 1, 7, 8-19 
Arithmetic of, I6O-I67 
Corrections from negative multi

plier, 161-162 
Examples of, 165-167 
Logical discussion of, 180-182 
Orders of, 21, 24

Negative numbers, 2, 3, 154 ff.,159 
Numbers

Binary, 2, 154 ff.
Coded-decimal, 11 ff., 56 ff. 
Complement, 2, 3> 154 ff., 159 
Hexadecimal, 55 
Negative, 2, 3> 154 ff., 159 
Signed, 154 ff.

Number range, 2, 155-156
One address system, 13, 19, 198 
OPERATING PANEL, 252 ff.
Breakpoint switches, 252, 260 ff. 
Control counter display lights 
and setter, 252, 256 

Function gate lights, 257 
Load switch, 252, 258-259
Manual-automatic switch, 252, 

259-260
Memory clear switch, 252, 257 
Perform-order switch, 252, 260- 

261
Start-next-order switch, 252,

259 ff.
Operating techniques, 14 
Operation box (Flow diagram) 40 ff., 

48
Operations control, 200-202 
Operations counter, 181 
Order, 13, 18, 199 
Order matrix, 199> 201 
Output (see Input-output)
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Parallel operation of memory,

I85
Periodic problem record, 27k 
Perform-order switch (operating 

panel) 252, 260-261 
Photo-cell brake (Magnetic tape) 

282
Photo-electric reader (input- 

output) 192-193
Position mark (see Memory posi

tion mark)
Print order, 22 
Printers (Input-output)

Synchroprinter, fast, 142-153, 
195-197, 284-286 

Teletype printer, slow, 197-198 
Problem preparation, 14, 261 ff. 
Pseudo-drum track address (Des

criptive coding) 228 
Pseudo-non-restoring division 

(see Division)
Punch (see Flexowriter punch)

Quotient register, 5, 8, 9, 173, 
277

Random number generation sub
routine, 240 ff.

Read order, 22 
Reading, memory, 186 
Reciprocal by iteration, 94-95 
Record, magnetic tape, 132 
Regeneration, 185 
Regeneration cycle (memory con

trol) 186
Regeneration counter (memory 

control) 186
Register (Arithmetic unit) R1-R2, 

accumulator, 5 ff., 173, 277
R3-R4, quotient register, 5, 8, 

9, 173, 277 
R5, 5, 8, 9, 173, 276 
R6, 5, 8, 9, 173, 276

Remainder, division, 185 
Rewind reel (Magnetic tape) 282 
Round-off
Multiplication, 164-166 
Example of, 165-166 

Division, 170

Seven (7) storage (Descriptive 
coding) 208-209 
Examples of, 246-247 
Subroutines, 236-238 

SHIFTING
General, 5 ff.
Arithmetic of, I56-I58 
Double precision, 99, 103 
Logical discussion of, 174-178 
Orders of, 22, 25 ff.

Sign of a number, 154 ff.
Simpson's rule (see Integration)
Sin x calculation routine, 126-131 
Sorting routine, 106-125 
Square-root calculation routine, 1, 

49-54
Start-next-order switch (Operating 
panel) 252, 259 ff.

Storage 
Dynamic, 47 
Static, 47
(see Descriptive coding)

Storage box (Flow diagram) 47-48 
SUBROUTINE (Descriptive coding) 16, 

235 ff.
Assigning box numbers to, 237 
A-storage of, 236 
B-storage of, 236, 238 
C-storage of, 236 
Code tape of, 250-251 
D-storage of, 236-237 
Entry into, 238 ff.
Exit from, 238 ff.

Substitution box (Flow diagram)
44 ff., 48

Substitution orders, 22, 25, 31, 34, 
75-76, 77, 86,
Treatment in descriptive coding) 
210-212, 215-220

Subtraction (addition) 1, 3-4, 7 ff• 
Arithmetic of, I58-I6O 
Logical discussion of, 179 

Summing routine, 262 
Switch gear panel, 286, 288, 289, 291 
Synchroprinter (Input-output) 
Actuation of, 144 
Array, 143
Characteristics of, 195 
Logical discussion of, 195-197 
Malfunctions of operating pro

cedures, 195-196, 284-286 
Paper feed, 143, 284, 286 
Print cycle, 142 
Routine, 142-153
Thyratrons and associated switch, 

284-286
Switch gear panel, 286, 288-289, 291
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Take-up arm (Magnetic tape) 282 
Take-up reel (Magnetic tape) 282 
Tape drive (Magnetic tape) 281 
Tape leader, 258
Tape reel spindle (Magnetic tape) 
281

Tape symbols, 11
Taylor series expansion of sin x,

126
Teletype page printer (input-output) 

197-198
Tetrad, 27, 192
Thyratron (Synchroprinter) 285 
Toggle (see Flip-flop)
Transfer orders, 21, 24-25, 36 ff.,
68, 69

Transfer orders, descriptive coding 
Fixed connection, 212-215 
Variable connection, 215-220

Illustrations of orders in routines 
(cont.)
Read, 127, 131 
Punch, 129, 131 
Syncprint, 150, 152 
m->D, 117, 123 
D->m, 115, 122 
Q->t, 135, 137 
t —> Q,

Word, 13
Writing, in memory, 186

Variable of Induction, 43 ff.
Variable remote connections, 72-73,

96 ff.
In Descriptive coding, 215-220 
In Subroutines, 236 

Vocabulary, 17, 20 ff.
Table, 21-23
Illustrations of orders in routines 
m—5>Ac, 33 
m Ac-, 52 
m ->AcM, 66 
m->Ah, 29, 30 
m -> Ah-, 52 
m Ah 800, 136 

29, 30
X 29, 30
X' 100 

29, 30
T 36 ff., 77 
T* 77 
C 54 
C 38 

Q->m, 29, 30 
A ->m, 29, 30
s-y*, 33, 34
S~>m', 33, 34
HS-^m, 78, 115, 129, 131
HS-> m', 78, 115, 121, 129, 131
R(n), 52, 86
L(n), 29, 60, 85
a-»Ae, 60, 77, 88, 148, 152
a Ah, 13, 85, 86, 88
DS, 68
Flexoprint, 129, 131


