
LA-1725
OCT 2 e 1954

THE MANIAC

LOS ALAMOS
SCIENTIFIC LABORATORY

Of The University Of California
Los Alamos, New Mexico

Contract W-7405-Eng. 36 With The
U. S. Atomic Energy Commission

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

-i-
JJ-

PREFACE

The construction program on the MANIAC was started in the summer
of 19^9 and the computer was completely tested in March, 1952. The
group of engineers is under the direction of J. Richardson and consisted,
at various times, of W. Orvedahl, E. Klein, H. Demuth, T. Gardiner,
H. Parsons, R. Merwin, and J. Breese. In addition, V. Gafke and
J. Caulfield provided considerable assistance. Since its completion,
solutions to many numerical problems have been computed.

There are several phases to the solution of a problem by an elec
tronic computer. First, there is the formulation of the problem itself
by the mathematician or theoretical physicist. Second, this is followed
by the detailed preparation of the problem by the programmer for the
specific computer. Finally, there is the actual running of the problem
on the computer. The present work is primarily an attempt to discuss in
some detail'the last two stages.

The volume consists of six chapters. Chapter I, Introduction, de
scribes some of the general features of the computer and defines the
field of activity associated with it. The treatment is intentionally
brief. The remaining chapters are devoted to an elaboration of the
salient points.

Chapter II, Coding and Flow Diagrams, is the "raison d'etre" of the
opus. Beginning with some elementary problems, it gradually takes the
reader through a coding preparation of some complex exercises. The
elements of a flow diagram are discussed.

Chapter III, Binary Arithmetic, discusses the various arithmetic
operations in terms of the binary system. By the time the reader finishes
this part, it is hoped he will regard the binary system as the "natural"
one for arithmetic.

Chapter IV, The Computer, is concerned with a simplified discussion
of the various components. The objective here is that some knowledge of
the engineering side of a computer is very useful to personnel running
problems on it. Aiding in the detection of malfunctions and in the locali
zation of them, the programmer helps the engineer in maintaining high per
formance of the computer.

-ii-

Chapter V, Descriptive Coding and Subroutines, describes the
methods of descriptive coding the the use of the computer itself to
aid the programmer in the preparation of problem codes. The discus
sion of subroutines finds a natural place here.

Chapter VI, Operating Procedures, essentially summarizes some of
the material of the earlier sections and describes systematically the
steps involved in automatic computational processes, including "which
buttons on the computer to press when".

Finally, an Appendix is included. It contains some optional and,
we hope, useful material.

John B. Jackson
N. Metropolis

Los Alamos, New Mexico
December 15> 1951•

V y : r.

Acknowledgements: To Mary Boswell, whose patience was excelled only
by Job, for typing (and re-typing) the manuscript; to Jean Cornell
for converting our sketches into neat drawings and figures; and to
all members of the MANIAC group who deluged us with criticisms, es
pecially Mark Wells.

J. B. J •
N. M.

Los Alamos, New Mexico
December 15, 1951.

Revised: July 16, 195^

I. INTRODUCTION L fl -) Us

We shall give first a brief description of the general features
and characteristics of the computer which has been constructed here.

(i) It is a general purpose computer in contradistinction to a
special purpose type. Its design engenders adequate flexibility to
handle a vide variety of mathematical problems. The special purpose
type may be much simpler in design and more direct in its application
to a particular type of problem, but it has its obvious limitations.
We do not discuss it further.

(ii) It is a digital, rather than an analogue, computer. Compu
ters have been built which use various analogy devices that correspond
to a continuous variable representation. In such analogy computers,
numerical information is expressed as measurements of some physical
quantity. Among other reasons, it may be mentioned that accuracy re
quirements argue for the digital type.

(iii) It is electronic (vacuum tubes) in character, as opposed to
electro-mechanical (relays). Although both methods are sufficiently
reliable, the former is many times faster. For the majority of prob
lems, where the number of operations involved is at least in the hun
dred thousand range, the difference in speed is quite serious.

The fqur basic arithmetical operations performed are addition,
subtraction, multiplication and division. In principle, one might
conceive of a simple computer that does only subtraction, and effects
the others by repeated application of that fundamental, operation.
This is not very practice!.. On the other hand, one might have argued
for including other operations in the basic list; e.g., square rooting,
as Indeed the ENIAC has included. It appears, however, that the fre
quency of occurrence of any of these does not warrant the added compli
cation in equipment, especially since these more complicated operations
can be effected by rather simple iterative procedures based on the four
fundamental operations.

Besides these four arithmetical processes, there are included a
few operations which are of a purely logical character, but first.

-2-

Some Remarks on Arithmetic
The handling of numerical quantities is done in a digital fashion.

The binary system is used for the representation of numbers rather than
the conventional decimal system. Everyone knows that in the latter sys
tem a number is expressed as a sum of powers of ten with individual co
factors 0 to 9; e.g.,

47.23 = 4-101 + 7*10° + 2-10*1 + 2*10"2

In a similar fashion a number may be expressed in the binary system by
powers of two with co-factors either 0 or 1; e.g.,

101.01 = 1-22 + 0-21 + 1.2° + 0-2-1 + 1*2~2

As in the decimal system, the binary point separates the terms with
positive exponents from those with negative exponents. The standard
capacity for handling numbers in the present computer is 39 numerical
bigits preceded by a sign bigit. (The word bigit is defined as binary
digit.) There is sufficient flexibility to permit rather easy treat
ment of those cases requiring higher precision.

For the various arithmetical operations in the computer, it is
assumed that the binary point lies immediately to the left of the first
numerical bigit, so that all numbers lie in the range

-1 ^ x < 1.
It may appear at first that this restriction places a considerable
additional burden on the preparation of a problem for the computer.
Actually, however, it is quite a simple matter to scale numbers to the
appropriate size beforehand, such that the result of any operation does
not exceed the allowed range. In those instances where it is not pos
sible to provide appropriate scaling factors in advance, one does have
recourse to procedures which adjust the sizes of numbers—the so-called
floating point routines.

As mentioned above, the first bigit on the left is used to indicate
the sign of a number. One possible convention that might be used would
be to say that bigit 0 in that location Indicates a positive quantity
and that a 1 is to be interpreted as a negative sign. However, it is
more convenient to do something different in the case of negative numbers.

-3-

In the computer, a negative number x is represented by its complement
c with respect to 2, namely

c = 2-|xl.
Since |x| <: 1,
£ will be in the range 1 < c < 2
so that the "sign" bigit will be 1 in every case of complementation.
For positive numbers it will always be 0. For example, suppose

x = -.101110101.... Oil;
then c = 1.010001010....101
is its representation in the computer. One observes that a very simple
method for obtaining the complement of a number with respect 2, is to
"reflect" the number, that is, to replace 0 with 1 and conversely,
then to add 1 in the extreme right place. Electronically, inter
changing 0 and 1 is easily done. As discussed in detail in later
sections, a "flip-flop", or "toggle", is an electronic device which
has two stable states; it is essentially a twin triode (a standard
type of vacuum tube); either one side is in a conducting state (and
its tube elements have one set of definite voltages) with the other side
non-conducting (cut-off, and its corresponding elements have smother set
of voltages) or the opposite situation obtains. It is a symmetrical
situation. Normally one examines the voltage level at some particular
point of the circuit, say the grid voltage of one of the triodes, and
assigns one voltage to the bigit 0 and the other to 1. To obtain the
complement of a number in a series of such flip-flops, one would merely
examine the opposite symmetrical point of the circuit of each flip-flop;
since, if a given flip-flop is in a state corresponding to a 1, the
other side of the flip-flop would have a voltage level at the corres
ponding point identified as a 0. Additional circuitry is required to
insert a 1 in the extreme right-hand position.

The notion of complement numbers is a very useful one. Subtrac
tion of two numbers can be replaced by addition. This is convenient
since the same electronic circuitry designed to effect addition suf
fices for the subtraction process. Instead of performing d = (a-b)
by direct subtraction techniques, one may add to a the complement of b.
That this yields the correct difference can be seen from the following:

Assume a, b > 0.
a + (2-b) = 2 + (a-b) = 10. + (a-b)

in binary form. If a > b, and since both a and b have absolute magni
tudes less than unity, the difference (a-b) is positive end less than
unity. The co-factor 1 of 2 does not appear in the computer, the
capacity of the computer has been exceeded and that bigit is lost.
The 0 co-factor of 2° does of course appear, and indicates that the
difference (a-b) is positive. In the event a <: b, our answer would be:

1 c d = 2 - (b-a) <c 2,
which is precisely the desired form for a negative difference, namely
the complement with respect to 2. Here the co-factor of 2° is appro
priately a 1. The cases where a and/or b are negative are left as
exercises for the curious students.

Principal Components
Although the computer functions as an entity, it is convenient to

speak of its various components. These are:
(i) arithmetic unit

(ii) memory
(iii) input-output
(iv) control

Arithmetic Unit
The arithmetic unit performs the operations of addition, subtrac

tion, multiplication and division in binary fashion. It is also con
cerned with such auxiliary operations as shifting of a number to the
left or right. Finally, it is associated with certain logical operations

In appearance the arithmetic unit is similar to the one in Princeton
A parallepiped structure of channel aluminum has six panels on each of
its two long sides. The outer panels in each case are reserved for con
trol chassis, the middle four are used for the arithmetic unit proper.
Three horizontal rows of arithmetical chassis are located on one of the
two principal sides. Each chassis contains two registers. The various
registers are designated Rl, R2,...R6, starting with the lowest. A
register is the residence, or temporary storage, of one of the numerical

-5-

factors in an aritbmeticeLL operation. In each such operation three
factors occur, so that at first it might he supposed that three regis
ters would suffice. However, the requirement of shifting in multipli
cation and division necessitates two more. These considerations account
for the first five registers; the last, R6, is used exclusively in asso
ciation with the control and does not participate in any of the basic
arithmetical operations, although physically it is located within the
arithmetic unit. Rl is the associated register for shifting a number
in R2, a principal register. Physically, the pair forms a chassis.
Similarly, R3 is associated with the principal register, R4. R5 is a
non-shifting register with respect to arithmetic operations.

Before discussing the four basic arithmetical operations, we
digress to consider the manner in which a number in one of the two
principal registers is shifted. To begin with, a register is an ensemble
of 40 "flip-flops", or "toggles", and as mentioned earlier, each flip-
flop has two stable states. One of these states represents the binary
digit 0 and the other the binary digit 1. The set of flip-flops may
then be used to represent a 39-bigit number and its sign.

There exists a variety of methods for electronically transferring
information contained in one set of toggles to another. For example,
suppose that a given toggle contains a 1 and it is desired to transfer
this information to a second toggle. By means of an interconnecting
"gate" tube, it is possible (as a result of a voltage change on the
gate tube) to set the receiving toggle to a 1, irrespective of its pre
vious state. Another scheme is to have first set the receiving toggle,
say to 0, as a separate operation. When the appropriate voltage change
is applied to the gate tube, the receiving toggle is set to a 1, other
wise it remains appropriately unchanged. This method is actually the
simpler of the two and is the one used. In common parlance we say
the receiving flip-flops are "cleared" to O's and I's are "gated in".
Clearly, O's and I's could be interchanged in the preceding statement
and provide an alternative scheme.

A flip-flop may be symbolically represented as a rectangle in the
form of two squares; the shading of one square may be said to corres
pond to a 0, the shading of the other to a 1. A gate tube is indicated
by a circle.

There is a set of gates -which connects the flip-flops of R2 to the
corresponding ones of Rl. These may be shown diagrammatically.

Before After

Rl has been previously cleared to O's. The information in R2 is 101.
When an appropriate voltage change is applied to the gate tubes, the
first flip-flop of Rl will change its state to represent a 1, the
second remains unchanged, and the third behaves like the first. Rl
will then have received the information 101.

There is a second set of gates which connects the flip-flops of
Rl with the flip-flops of R2 displaced one to the left.

Before After

-7-

R2 is cleared to O's. When these gates are opened, the information
in Rl is transferred to R2 displaced once to the left. Thus, by
these sequences of operations, a number originally in R2 is shifted
one place to the left.

Finally, there is a set of "diagonally-right" gates to provide
for a shift to the right. Repeated application of the sequence of
operations results in a shift by n places. It perhaps should be men
tioned that these three sets of gates are unilateral in action and
represent all of the interconnections between Rl and R2.

The four basic arithmetical operations are done in terms of simple
additions, with shifts where required. Subtraction of a number a is
performed by the addition of its complement. Multiplication is done by
the detection of the successive bigits of the multiplier, beginning
with the rightmost bigit. If the bigit is a 1, an addition of the mul
tiplicand to the partial product is performed followed by a shift of
the partial product one place to the right. A 0 multiplier bigit merely
shifts the partial product to the right by one, and the next multiplier
bigit is examined. For division, the so-called "non-restoring" scheme
is used. The complement of the divisor is added to the partial remain
der if the signs of the divisor and partial remainder agree; if the
signs disagree, the divisor is added directly. A 0 is indicated for
the corresponding quotient bigit in the first case, and a 1 for the
latter. Strictly speaking, -1 and not 0 is the appropriate bigit.
But -1 is indeed very inconvenient to represent in the computer. As
von Neumann first pointed out, the pseudo-quotient obtained in this
way is very simply related to the true quotient. We shall go into
details later.

The adder proper is physically located on the side opposite the
registers, and consists of two rows of chassis. One of the two inputs
is directly from the register R2. The second input is from R5« Here,
however, a choice is made between the number itself or its complement,
corresponding to the operation of addition or subtraction. The output
of the adder is transferred by means of a set of gates to Rl. R2 is
then cleared and the sum transferred from Rl to R2. Symbolically,

-8-

fRel

(Step I)
Selector

.Augend (or Complement)

ADDER
(Step I)

Addend
(Step 2)(Step 3)

Output

To recapitulate, the addition process (or subtraction) involves
adding to the number in R2 the number (or its complement) in R5. The
sum appears finally in R2. The fact that the sum replaces one of the
terms is very convenient for the multiplication and division processes,
where the sum is the partial product or the partial remainder, respec
tively. The multiplicand or the divisor resides accordingly in R5.

In the multiplication process the multiplier factor is in R4 and
the multiplicand is in R5. R2 is cleared initially. The 39th flip-
flop of R4 is examined. If it is a 1, an addition is ordered and the
first partial product is formed in R2. (in this first step, the trivial
sum of the multiplicand and O's is done.) The multiplier is now shifted
one place to the right, thus placing the next digit to be examined in
the end flip-flop of R4. Simultaneously, the partial, product in R2 is
also shifted one place to the right. In the event that the first
digit is a 0, the addition of course is not done but the shifting in
both R2 and R4 does take place. It will be noted that the multiplier
factor is gradually disappearing in R4. It is convenient, therefore.

to insert the bigits of the partial product that would otherwise be
lost as a result of the right shift in R2, into the leftmost flip-flop
of R4. Thus the right half of the complete product appears finally in
R4 and the significant portion in R2.

For division, the dividend is in R2 and the divisor in R5. A com
parison of signs is made and a direct addition is made for unlike signs
for like signs the complement of the divisor is sent to the adder.
Accordingly, a 0 or a 1 is introduced into the 39th flip-flop of R4.
Both R2 and R4 are shifted one place to the left. The sign of the
partial remainder is again compared with that of the divisor and the
process repeated 39 times. The quotient appears in R4, and the re
mainder in R2.

The following short table summarizes the above:

Addition a + b = Sum
Location R2 R5 R2

Subtraction a - b = Difference
R2 R5 R2

Multiplication a X b = Product Left + Product Right

R5 R4 R2 R4
Division a b = Quotient -t-Remainder

R2 R5 R4 R2

Memory
Thus far we have talked of the various arithmetical operations

without indicating how the numbers get tp the several registers ini
tially, or where the intermediate results are stored. Nor have we
said anything about the location of the sequence of orders associated
with a problem. The component of the computer associated with this

activity is described as the memory. Clearly, some of its desired
functions are:

(i) to receive and store information from the outside—sequences
of instructions as well as initial sets of numbers,

(ii) to transfer numbers upon instruction to the arithmetic unit,
(iii) to receive and retain intermediate results of a calculation

until needed at some later stage of the calculation,
(iv) to send instructions as needed to the control,
(v) to transfer the final results to the output mechanism for

external consumption.
We distinguish two levels of memory, internal and external. The

internal memory is more intimately related to the arithmetic unit and
control. It communicates directly with these two units and provides

«

individual numbers and instructions as needed.
Physically, the internal memory is an ensemble of 40 cathode-ray

tubes that act in concert, each tube simultaneously providing one
bigit of a 40-bigit number upon instruction. The access time, or
total time required to transfer a number from the internal memory to
the arithmetic unit, is less than ten micro-seconds. The capacity of
the internal memory is 1024 forty-bigit numbers; these may be arbi
trarily divided between numbers and instructions.

The location or reference in the internal memory of a particular
number or instruction is called its address. In our system of instruc
tions there is, associated with each instruction, a single address that
refers to a particular number to be called up and operated upon in the
arithmetic unit. An instruction consists therefore of a particular
operation specified by a group of bigits, together with an address
specified by another set of bigits. It turns out that less than 20
bigits are required for each complete instruction, so that it is con
venient to place two instructions in one memory location. We shall
amplify these remarks in the discussion of the control.

Normally, 40 bigits are used for the representation of a true
number. For those cases where sufficient accuracy is obtained from
20 bigits, including sign, there is sufficient flexibility to store

-11-

conveniently two 20-‘bigit numbers in one memory location; separation
talcing place when needed in the arithmetic unit by shifting.

The external memory is a magnetic drum. It communicates only with
the internal memory; therefore, when numbers stored on the magnetic
drum are to be used in computation, they are first sent into the elec
trostatic memory and operated upon from there. The drum has a capacity
of 10,000 forty-bigit numbers. Numbers are transferred between the
external and Internal memory in groups of fifty; hence the addressing
of numbers on the drum is by groups of fifty rather than as single num
bers. Any group of fifty numbers is stored serially along the circum
ference of the drum. Such a group of storage is called a drum track, and
there are 200 such tracks on the drum. The access time for the drum is
85 milliseconds per block of fifty words.

Input-Output
The set of coded symbols corresponding to the sequence of instruc

tions, together with the set of initial numbers and parameters, is first
punched on paper tape with the use of a modified flexowriter. A
second tape is then prepared, being punched independently of the first
but simultaneously compared with the first; this is merely a checking
procedure. The information is then transferred from the verified tape
to the internal memory by means of the input device.

The initial set of numbers on the tape is in coded-decimal form;
that is, each decimal character is represented by a tetrad of binary
digits. For example, the aggregate 1234567890 together with accompany
ing space symbols would appear on the tape as;

O O O
000000000000000 00 0000000

Guide Holes

Space I 234567890 Space

The punched holes correspond to the bigit 1 and unpunched positions
to 0. A sequence of such tetrads of binary digits is obviously not

the true binary representation of the corresponding decimal number;

decimal number 24
coded decimal 0010 0100
true binary 11000

Consequently, it is first necessary to convert the initial set of
coded-decimal numbers into true binaries. But this is a quite simple
algorithm which the computer can be directed to perform before enter
ing upon the problem proper. The initial set which must thus be con
verted is usually quite small compared to the number of numbers the
computer handles in the course of the problem, so that the time in
vested for the conversion is relatively negligible. Hie same remark
applies for the conversion from true binary to coded-decimal repre
sentation for the output process; it being still desirable to view
answers in decimal notation.

When the desired results are properly converted into coded-decimal
notation, they may be directed to the output. The output will simul
taneously print the results and punch them on teletype tape. This tape
is desirable in the event that the answers are to be reintroduced into
the computer.

It should be remarked that beginning with the second problem of
any given type it will not again be necessary to manual punch the
sequence of instructions. The original tape will be adequate. It is
only necessary to punch the new initial numbers and parameters. This
portion is usually a small fraction of the total. Finally, it should
be noted that the casual observer need never be aware of the fact that
internally the computer uses the binary representation for numbers.

Control
The control may be likened to a central nervous system. Its parts

spread out physically over the whole computer. It interconnects the
various other components and transfers information from one to the
other, as well as directs the operations associated with them
individually.

-13-

Among its various activities, it must:
(i) direct the input component to read information from the tele

type tape and transfer it to the internal memory,
(ii) conversely, direct the memory to transfer information to the

output tape and printer,
(iii) effect the basic arithmetic operations,
(iv) be able to start at some point in a sequence of orders, ex

tract the first order (from the internal memory), interpret and provide
pulses and voltage changes to the components concerned so as to execute
the particular order, and when finished proceed to the next order.

These activities are specified by a variety of orders.
In the present control scheme, a one-address system is used; that

is, associated with each order is an address referring to some memory
location which contains the number upon which the particular order
operates. For example, there are eight orders that transfer a number
from the memory to R2. The eight possibilities arise from the three
choices:

(1) Clear or do not clear R2 before adding number into it.
(2) Complement or do not complement the number being added to R2.
(3) Add the number or its magnitude.
These are the addition and subtraction orders. There are two mul

tiplication orders; one rounds off the product to 39 bigits, the other
provides a precise ?8 bigit product. There is one division order, one
order transferring a number from the memory to R4. There are ®ix
orders associated with transfers to the memory, a right and left shift,
print, read, and stop orders. Finally, there are a few logical orders
that involve an interruption of the present sequence of orders and a
transfer of control to some other sequence.

Eight bigits are used to designate an order. Twelve more are con
veniently available, of which ten are actually used at present, for the
address. Thus each order is 20 bigits, and two orders are equivalent
in storage to one true number. Word is used to describe a 40-bigit
aggregate; this may be either an order pair or a true number. A coder

-14-

is provided with the set of symbols that correspond to the various
orders. These code symbols are various pairs of the six letters,
A,B,...F.

Let us now attempt a summary by describing the various steps in
machine operation. Assume a tape has been prepared with instructions
and initial set of numbers. First the tape is fed into the input.
The tetrads are read into R5 in serial fashion. Ten tetrads, corres
ponding to either a true number or to two orders fill R5. A signal
is automatically provided that causes the contents of R5 to be trans
ferred to the first memory location; the second set of ten tetrads is
read into R5, etc. When the complete tape has been read into the
memory, the computer is ready to do business. The operator presses
a "start" button. The contents of the first memory location or first
word go to R6; these are the first two orders. The first one is ex
amined and executed, then the second. The next word goes to R6 and
the sequence continues. Flexibility exists which enables the sequence
to be interrupted at some point and the control transferred to some
other point in the sequence. For example, it may be desired to re
peat a sequence a fixed number of times before proceeding further, as
in some iteration scheme. This is conveniently handled by the logical
orders. In fact, it is possible to have the number of repetitions be
dependent on the fulfillment of some condition in the problem, so
that the number of repetitions varies from case to case. Finally,
the desired numerical quantities can be reconverted from binary to
binary-decimal form, and printed.

Problem Preparation end Operating Techniques
We conclude the present introductory chapter with a brief commen

tary on the various steps leading up to the execution of a problem by
the computer. The first step concerns the formulation of the problem
itself. One method would be simply the writing down of the various
equations and the various steps to be taken, tegether with the neces
sary explanatory remarks. This approach, although feasible, may often
become quite complicated and untractable. Instead we follow von Neumann

-15-

vho proposed the idea of a flow-diagram. This Is a very elegant,
logical and mathematical description of the problem to be computed.
It makes use of a set of conventionalized symbols to describe the
course of the control at every stage of the problem. Represented in
a very concise way are: (i) the purely mathematical operations, (ii) var
ious logical steps and decisions together with a precise indication of
the nature of the corresponding criteria, (iii) the contents of the rele
vant part of the memory at points where the question might naturally
arise.

The flow-diagram of a problem is prepared by the mathematician or
physicist. The symbols are few in number, their meanings simple enough
so that they are easily mastered. A flow-diagram may be drawn without
a specific computer in mind. In practice, however, one usually does
plan on the use of a specific computer and takes advantage of this fact
in his planning of a problem. A quite superficial knowledge of the
particular computer suffices. The important characteristics are:
(i) the capacity of the inner memory, (ii) the nature of the external
memory, (iii) the extent of the vocabulary, both arithmetical and
logical.

The next step in the preparation is the coding. This process
consists conveniently of two parts. In the first, the coder prepares a
sequence of instructions using a set of readily Interpretable symbols
that indicate the general nature of the operations. For example, say
at seme point in the sequence a number is in register R2 and it is in
tended to add to it another number at the moment residing somewhere in
the memory. A possible notation, and the one used here, is:

m -> Ah
where m indicates that a number in the memory is to be sent to R2. For
historical reasons, the letter A has been used as a symbol for R2; the
original intent being that R2 is the accumulator register, h indicates
that R2 is not to clear its contents before receiving from the memory
but to hold them for a true addition process. It is observed that the
specific binary symbols which the computer can Interpret are not used
yet, nor is the specific location of the number in the memory given.

-16-

There Is, however, some point to this preliminary step in the coding.
In the first place, there are likely to be several improvements or
modifications made before one is satisfied with the sequence of in
structions finally adopted for a given problem. This form is much
easier to follow, both from the point of making a sample hand calcu
lation (for checking purposes) as well as in trouble-shooting (in the
event this is necessary) after the problem has reached the computer.

The second step in the coding is a straightforward translitera
tion from the coder's notation to teletype symbols. This is routine.

A given large problem may often be divided into a set of smaller
problems. Some members of this set may occur frequently enough so
that it becomes worthwhile to have these portions coded in quite general
terms and, in a sense, treated as individual orders but on a somewhat
broader basis. For example. Integration by Simpson's Rule, or the in
version of an (n x n) matrix. These sub-routines, as they are conven
tionally called, would form a library of general orders. A problem at
hand would then first be decomposed into the sub-routines available
from the library, and the remainder coded from the basic individual
orders. Obviously some preparations are required for each individual
use of a sub-routine; in the case of the inversion of a matrix, the
location of the particular elements for the problem at hand must be
specified. Nevertheless, there is a great reduction in effort, espe
cially in checking.

-17-

II. CODING AND FLOW DIAGRAMS

Introduction
The computer can perform a set of ‘basic operations, both arithmetical

and logical. It may be desirable to keep the set small as added electronic
equipment (which is roughly proportional to the number of operations) in
creases the physical complexity of the computer and complicates maintenance.
A modest number of thirty-six operations have been chosen to comprise this
set. The choice, however, is fluid in that the set may be modified as the
need for change is shown.

We say that the computer has a language of its own, for it is able
to interpret and execute the given set of orders. We speak of the orders
as the vocabulary of the computer. Coding is the translation of the language
of the mathematician into the language of the computer.

The four fundamental arithmetic operations (addition, subtraction,
multiplication and division) cure a part of the vocabulary. All of the
arithmetic operations of the vocabulary, of which there are about twenty,
involve the four fundamental operations.

The first step in the preparation of any problem for the computer «
is to arrange the work so that the only arithmetic operations involved are
addition, subtraction, multiplication and division. In other words, the
problem must be reduced to a form in which it can be solved by numerical
procedures.

The usual mathematical formulation of the problems with which we shall
be concerned is a differential equation, or a coupled set of such equa
tions, together with a group of boundary (or initial) conditions. There
are other types of problems, but they occur less frequently.

The differential equations are of such complexity that analytical
methods are not known for obtaining their solutions. The only recourse
is to numerical procedures; therefore these problems are ideally suited
for the computer.

The first step in the solution of the problem is to replace the dif
ferential equations by a set of finite difference equations. We do not
discuss here the stability or convergence of such methods, but only mention
them as necessary considerations in writing the difference equations. In

-i8

such a process of translation, derivatives are replaced by difference
quotients, integrals by sums, transcendental functions by algebraic
functions, etc. The problem is now tractable in terms of the vocabulary
of the computer as it involves only the fundamental operations.

The next step toward a solution is the preparation of the flow
diagram. The flow diagram represents the path to be followed by the
computer in the solution of the problem. It represents this by sequences
of lines oriented with direction arrows. At points of the diagram where
confutation is to be performed, the lines are interrupted and boxes are
inserted that indicate the "local" confutation that is to be performed.
The diagram represents the purely mathematical operations, the logical
steps and decisions, and the relevant memory storage that is required.
Five kinds of boxes represent the desired information:

(i) The operation box
(ii) The alternative box

(iii) The substitution box
(iv) The assertion box
(v) The storage box

These are discussed in detail later.
When the flow diagram is confleted, the solution is at the coding

level; but before discussing the coding we first discuss some background
matters. Each of the thirty-six operations of the vocabulary is referred
to as an order. Each order has associated with it a number that specifies
the location in the memory of the number upon which the order is to
operate; e.g., in the multiply order the associated number specifies the
location in the memory of the multiplicand factor. This number location
is called an address. The memory contains 102k words. The addresses of
these words consist of the decimal numbers 0 through 1023. Binary-wise,
it requires ten bigits to express an address as 1023= 1111111111.
Eight bigits axe used for each order; hence eighteen bigits are necessary
for each order with its address. It is convenient, however, to allow
twenty bigits for their expression as twenty bigits comprise half of a
word. Each order with its associated address is called an instruction.
Two instructions are stored per word, giving the memory in principle a
capacity of 20k8 instructions. However, memory storage is ailso necessatry
for true numbers, so that in general there will be some combination of
instructions and numbers stored.

The computer uses a one-address system. Each instruction may refer
to at most one memory location. Some instructions involve only the
arithmetic unit and do not refer to the memory. In these instances the
address portion has a different function which is described later.

To illustrate the one-address system consider a simple example of
summing two numbers, a and b, which are residing in the memory: The sum
s = (a+b) is to be stored in the memory. Three instructions are required:

(i) An instruction to bring a into the arithmetic unit
(ii) An instruction to bring b into the arithmetic unit and to

form the sum s = (a+b)
(iii) An instruction to store s in the memory
If a is in the arithmetic unit as a result of some previous operation,

only the latter two instructions are needed. If a three-address system
were used, the above sequence could be expressed with one order which
specified all three addresses: the location of a, the location of b, and
the location at which s is to be stored. We defer any discussion of the
merits of the one-address system versus those of the multiple address type.

The process of coding involves writing down a sequence of instructions
to perform the operations indicated on the flow diagram with the desired
set of numbers.

The coding in all but the simplest of problems is not a linear se
quence. (That is, the control does not follow a unique path; at various
points in a problem several courses may be available.) Certain portions
of the coded sequence may be performed several times, whereas other sections
are omitted temporarily. The logical orders that have been included in the
vocabulary provide for such procedures. Furthermore, the coding is not a
static sequence in that it usually does not remain fixed throughout the
course of the problem. There are certain orders that allow portions of
the coding to be altered so that subsequent traversals through the sequence
give rise to a variety of patterns.

It is these dynamic and non-linear characteristics of the coding
which provide the desired flexibility for scientific computation but
which, on the other hand, give rise to complications in coding.

^2;

The remainder of this chapter presents a step-hy-step approach to
coding, beginning with very simple examples and systematically progressing
to examples of increasing complexity.

Before coding any actual examples we first discuss the vocabulary as
shown in Table I. It contains a list of the explicit orders with a de
scription of each. It will be noted that there are two types of symbols.
The first column gives the abbreviated logical symbol for each order,
while the second column gives the actual code for the computer.

Orders 1 through 8 are the addition and subtraction orders. All of
these involve R2 (the accumulator register) and a memory location that is
specified in the instruction. The first four of these orders clear R2
(set it to O’s) and then add (subtract) the specified word to the O's
in R2. The remaining four orders actually add (subtract) the contents
of the specified memory location to the number residing in R2. In a
sense, the first four orders sire communication orders (they do, however, also
allow the magnitude or complement of a number to be inserted) while the
latter four are true add or subtract orders.

Consider the example of forming the sum (difference) of two numbers,
a and b, and storing the sum s = (a + b), (difference s = a - b) in
the memory. Assume that a and b are residing in the memory, say at ad
dresses 1 said 2, respectively; and the sum (difference) is to be stored
in The instructions are:

1. m—»Ac 1 a to R2

2. m—»Ah _ s ~ a + b
(m—»Ah-) (s = a-b) to R2

3. A—»m 3 £ to 3 .
Each order has immediately following it the memory address to which

the instruction refers. In a column to the right of the instruction is
shown the action that takes place due to each instruction.

If the sum of more than two numbers is formed it is not necessary to
send each sum of two numbers into the memory said repeat the three orders.
A sum of several numbers may be formed in R2 which requires one additional
order for each new number added to the sum; only the final sum is sent to
the memory.

In orders 2, 4, 6, and 8 where subtraction is desired this is done by
taking the complement of the number with respect to 2 and then performing

-21-

1.
2.

3-

4.

5-
6.
7.
8.

9-
10.

11.

12.

13.
14.
15-

16.

17.
18.

TABLE I
(m is the word at address m in the memory)

(The word at its original position is never cleared)
Abbreviation Code
m—*Ac AA Replace the number in R2 by m.
m—►Ac- AB Replace the number in R2 by the complement (the

negative) of m.
m—*AcM AE Replace the number in R2 by the absolute value

of m.
m—►Ac-M AF Replace the number in R2 by the complement of

the absolute value of m.

m—►Ah BA Add m to the number in R2.
m—►Ah- BB Add to the number in R2 the complement of m.
m—(AhM HE Add to the number in R2 the absolute value of m.
m—►Ah-M BF Add to the number in R2 the complement of the

absolute value of m.

m— EB Replace the number in R4 by m.
X DA Clear R2 and multiply m by the number in R4. The

39 most significant bigits of the product appear
in R2. The 2~^ bigit position of R2 is set to 1.
R4 is set to O's.

X' DB Clear R2 and multiply m by the number in R4. The
left-hand 39 bigits appear in R2, the right-hand
39 bigits in R4. The sign bigit of R4 is set to 0.

DD Divide the number in R2 by m. The quotient appeaxs
in R4, two times the remainder appears in R2.

T CA Transfer the control to the left-hand order of m.
T' CB Transfer the control to the right-hand order of m.
C CC If the number in R2 is ^ 0, transfer the control

as in T, otherwise continue to next order in sequence
C CD If the number in R2 is ^ 0, transfer the control

as in Totherwise continue to next order in sequence

Q—»m EC Replace m by the number in R4.
A—>-m DC Replace m by the number in R2.

-22-

TABIE I (Cont.)

19- S— FA

20. S—*-m' FB

21. HS—*-m FC

22. HS—m' FD

Replace the address (bigits 8-19) of the left-
hand order of m by the 12 bigits 8-19 in R2.
Replace the address (bigits 28-39) of the right-
hand order of m by the 12 bigits 28-39 in R2.
Replace the left-hand 20 bigits (bigits 0-19) of
m by the 20 bigits 0-19 in R2.
Replace the right-hand 20 bigits (bigits 20-39)
of m by the 20 bigits 20-39 in R2.

23. Rn

2k. Ln

EE Right shift R2 and R4 n places where n is
specified in the address bigits of the order.
This replaces the contents of R2
and a , a. ••• a-n of R4 by \ • • • X , X, • * *o' 1 39 ^ o o 1
' ‘' SB-n’ Ss-n’ a“i X39-n+l’ ^39-i»2 ’'' >"39’
"o' °1 •" 039-n-

DE Left shift R2 and R4 n places where n is speci
fied in the address bigits of the order. This re
places the contents XQ, X^ • • • X^ of R2 and oo,

°1 "• "39 of Rk by V — V 0 ••• 0
"n’ Vl "• "39’ Xo> \ \-2‘ Vi'

25- a—»Ac EF Replace the number in R2 by the 12 address bigits
of this order (into positions 0-11 of R2).

26. a—►Ah DF Add to the number in R2 the 12 address bigits of
this order (into positions 0-11 of R2).

27. DS ED Set the sign bigit of the number in R2 to 0.
28. Flexo Print EA Print m on the page printer (slow speed).
29. Read FF Replace m by the next word to cone under the read

ing head of the paper tape reader.
30. FE (NOT PRESENTLY USED)
31. Punch OF Punch m on paper tape.
32. Sync Print CE To be used in a subroutine which simultaneously

prints 5i+1» ^±+2 ani^ 5i+3J i i® to ^ com
municated to the routine (high speed).

-23-

TABLE I (Concl.)

33- m—>D

3^. D—*n

35- Q—►t
36. t—HI

37. Stop

BD Read 50 successive words from the memory
starting with the word at the address speci
fied by bigits 8-19 of the instruction. Write
these 50 words into the drum on the track
specified by bigits 20-27. Then transfer the
control to the left-hand instruction of the
word at the address specified by the bigits
28-39.

BC Read the 50 words from the track of the drum
specified by bigits 20-27 of the instruction.
Write these voids into 50 successive memory
locations starting with the address specified
by bigits 8-19. Then transfer the control to
the left-hand instruction of the word at the
address specified by bigits 28-39.

AD Write the number in R4 onto the magnetic tape.
AC Replace the number in R4 by the first word to

come under the reading head of the magnetic
tape reader.

OFF Stop computation. (Pressing start next order
button will allow machine to continue in nor
mal sequence.)

NOTE: An address of 800 refers to the quotient register (R4) when
using orders 1 through 8; i.e., AA800 says replace the number
in R2 by the number in R4.

-24-

a normal addition. The complement scheme is described in detail in the
chapter on binary arithmetic. When an address 100000000000 which cor
responds to 2048 decimally is used with any of the orders 1 through 8,
it has the effect of treating R4 (the quotient register) as a memory posi
tion with the address 2048. The number residing in R4 can then be added
into R2 as described by any one of the orders 1 through 8.

Order 9 transmits a number from the memory to R4 (the quotient regis
ter). R4 does not have add facilities; hence a number being transmitted
to R4 replaces the number that is in R4.

Orders 10 and 11 are the two multiplication orders. Before either
of these orders may be given, the multiplier must be in R4 (either as
the result of some previous operation or by a preceding m~^>Q order).
The 39 most significant bigits of the product appear in R2. Order 10
gives only the 39 most significant bigits of the product rounded off.
Order 11 gives a full JQ bigit product; the rightmost 39 bigits appear
in R4. The multiply order supplies the multiplicand.

Order 12 is the divide order. It is assumed that the dividend is in
place in R2; the divide order itself provides the divisor. The quotient
is located in R4, and two times the remainder appears in R2.

Order 13 is a transfer order. This interrupts a sequence and causes
the computer to continue with another sequence beginning with the in
struction specified by the address part of the transfer instruction. As
an example of a transfer instruction, suppose that a sequence of in
structions is being performed and in the 25th step of the sequence a
transfer is encountered:

25 T 125

124
125

-25-

The transfer instruction has the address 125, so that the sequence
of code from 26 to 124 is omitted. The computer would execute Instruction
125 and continue sequentially from there.

Since an instruction word consists of two instructions and the flexi
bility of being able to transfer into either instruction of a word is de
sired, it is necessary to have two transfer orders to accomplish this.
This accounts for Order 14, the T' order, as well as Order 13. Hence, in
the above example, 25 may have read T 125 or T1 125, depending on whether
the transfer was desired to the left or right instruction of Instruction
Word 125.

The two conditional transfer orders, 15 and 16, either execute the
transfer as in the T orders discussed immediately above, or the orders
require no action, in which case the computer continues along the original
sequence. The conditional transfer is effective or not, depending on the
sign of the number, N, in R2 at the time the order is to be performed:
if N 0, the transfer does occur, and a new sequence of instructions is
started at the location specified by the address part of the instruction;
if N < 0, the computer continues with the original sequence of instructions.

Orders 17 and 18 are the two orders that send information from the
arithmetic unit to the memory. Order 17 transmits from R4 to the memory,
and 18 transmits from R2 to the memory. When any register or memory lo
cation sends information to any other register or memory location, the in
formation is still available at its original position.

Orders 19 through 22 are the substitution orders. These orders make
alterations in instructions. By means of 19 and 20, any instruction may
have its address changed. The new address is first formed in R2 and then
inserted into the desired instruction by means of a substitution order.
The use of the substitution orders is explained in detail in Problem 2.
The two half word substitution orders (Numbers 21 and 22) may alter whole
instructions rather than just the address. These two orders may also be
used in storing half precision numbers. The details of their use will be
covered by later examples.

Orders 23 and 24 are the right and left shift orders. They give a
means of dividing or multiplying by powers of 2 by shifting a number
right or left in R2; e.g., if a number a = 0.00001111 is residing in R2

-26-
kand it is desired to multiply this number by 2 , this can be effected

by a left shift of 4 places, which displaces the number 4 units to the
left.

a = 0.00001111
a x 2^ > 0.11110000

A right shift effects division by powers of 2 by displacing the number
to the right. In a left shift R4 may be considered an extension of R2
to the left; hence a number shifting left out of R2 fills into R4 begin-
nihg in the least significant end of R4. In a right shift R4 may be
considered an extension of R2 to the right and a number shifting right
out of R2 fills into R4 beginning in the most significant end of R4.
Since R2 and r4 are so interconnected for shifting operations, these
operations may be used for separating a multiplex of numbers occupying
one word. Either a left or right shift of 40 places will transfer
completely a number from R2 to R4.

Orders 25 and 26, a—>Ac and a—>Ah, treat their associated ad
dresses as true numbers. The addresses of these instructions are sent
into R2 (either a cleatring or an adding action) into bigit positions 0
through 11. Many times in the type of problem in which we will be in
terested there are small numerical constants of three significant declmatL
digits or less. Rather than use an entire memory location to store such
constants, they can often be expressed in the address position of an
a—>A Instruction. As an example consider that a quantity

2 . ax + bx
has been formed and is in R2. It is desired to add a constant term k
where k = .583. This may be expressed in the a—»Ah order as

p. ax -1- bx in R2
(iii) a—>Ah 583 ax2 + bx + (.583 = k) to R2

where .583 is expressed by its binary equivalent. Eleven bigits give
the same precision as 3*3 decimal digits, so any three-decimal digit
fraction may be expressed in the address position of an a—>A order.

-27-

The explanation of the remainder of the orders as given in Table I
is adequate; hence we return to the task at hand, the coding of typical
problem-examples.

The coding of a problem may be divided into two parts:
(i) The logical coding

(li) The computer (numerical) coding
Each of these parts involves several steps. At the present level of our
knowledge and skill, it seems convenient to have both a logical and a
numerical symbol for each order. The logical symbols are used in part (i),
while the numerical symbols are used in part (ii).

The logical symbol attempts to be a descriptive abbreviatfcn of the
action of that instruction; the associated memory location is preliminarily
specified by a combination of a letter and a number; the letter identifies
some group storage and the number identifies a member of that group; e.g.,
m—»Ac B.4 is interpreted as: Bring from the memory to the Accumulator
(R2), clearing the accumulator first, the number at memory location B.4.
One reason for not assigning specific numerical memory locations at the
outset of a problem is that the extent and disposition of the memory re
quirements are not immediately obvious. A set of logical symbols is more
meaningful to the coder than an abstract code; it expedites the actual cod
ing and facilitates checking.

The abstract coding is merely a transliteration from the logical
code to the numerical code. The numerical code is shown in the second
column from the left in Table I. Each order is represented by a com
bination of two of the letters, A,B,C,D,E,F, where each letter expresses
a tetrad (4) of bigits. These sore:

A 1010 D 1101
B 1011 E 1110
C 1100 F 1111

When the coding has been written in numerical form, the teletype tape
(which is the present means of putting the coded sequence into the memory
unit) is prepared. The actual coding examples are treated in the follow
ing pages.

-28-

Problem 1
We propose to form the rational function y with constant co

efficients where 2
ax + bx + c ^ " ex + f

Assume that x, a, b, c, e, and f are in the memory at known addresses.
As previously mentioned, the memory locations are denoted by capital
letters rather than using true number addresses; e.g., the notation
A.l: a implies that the quantity a is stored in the memory at address
A.l. The storage of the problem is:

A.l:a A.4:e
A.2:b A.5:f
A.3:£ A.6:x

and when y is formed it is to be stored in A. 7.
As a preparatory step in coding the problem, we form y by a

sequence of arithmetic operations in which each step involves only one
operation. Such a sequence is:

1. e*x
2. ex + f
3. a*x
4. ax + b
5. (ax + b)x26. ax + bx + c

2„ ax + bx + c7- » ■ ----ex + f
Since the computer can accomplish only one arithmetic operation at

a time, the above sequence is precisely the procedure that one must go
through in coding the problem, insofar as the arithmetic is concerned.

We now proceed with the coding. In the preliminary logical code,
each instruction is treated as a word rather than the actual case of
two instructions per word. The left-hand column is the code abbrevia
tion, and the next column indicates the operations that have taken place
in the arithmetic unit, while the last column is conveniently used for
memory storage. During the course of the problem, a storage location
in the memory is needed to store an intermediate value of the computa
tion. This position is denoted as B.l.

The sequence is:
1. m —»Q A.6 x to R4
2. X A. 4 e»x in R2
3. m—»Ah A. 5 ex + f in R2
4. A—»m B.l ex + f to B.l
5. m—>Q A.l a to R4
6. X A.6 a*x in R2
7. m—»Ah A.2 ax + b in R2
8. L40 ax + b to R4
9. X A.6 (ax + b)x in R2

10. m—>Ah A. 3 pax + bx + c in R2

11. • B.l
2 .ax + bx + c in R49 y ex + f

12. Q—»m A.7 y to A.7
Note that the denominator was formed before the numerator. If the reverse
had been the case, the numerator when formed would have been stored in,
say, B.l. When the denominator was formed it, too, would have been stored
in, say, B.2. The numerator would then be brought in and the division per
formed. Coding in this fashion, however, would have required two addition-
ad instructions and one word more storage in all making the coding two
words longer than it is at present.

Instruction 8 In the above sequence, which is L40, is a means of
communication from R2 to R4-. lAO shifts the entire word including the
sign from R2 to RU. If this were not available, it would be necessatry
to send the word from R2 to the memory and then from the memory to R4,
thus requiring one additional instruction.

Recaill that each instruction word in the memory actually contadns
two instructions. The next step of the coding is to arrange the sequence
of instructions into words* If we assume that the routine starts at
address 1 in the memory, the sequence then occupies memory locations
1 through 6 (since it contadns 12 instructions, 6 words are required).
At this time, the constants of the problem are given true memory ad
dresses. Since there are six such quantities (where each quantity com
prises one word), memory locations 7 through 12 are edlotted for these.
When ^ is formed it will be stored at address 13. One temporary loca
tion is needed which is designated as Ik.

The sequence becomes:
10
14
12
40
9

13

12. x
13.
14.

Memory locations 13 and 14 are used for quantities formed within the
routine; hence they must be empty or their contents must be irrelevant
at the time the sequence is to be executed by the computer.

When the coding is in final form such that the input teletype tape
is to be prepared, one has the instructions reduced to numerical form
and has available the true numerics for all of the involved quantities.
Assume, for example, that

a = .075329 e = .83291
b = .12391 f = .69736
c

The final coding is:
= .017326 X = .32915

1. EB012DA010 8. 0.123910000
2. BA011DC014 9. 0.017326000
3. EB007DA012 10. O.8329IOOOO
4. BA008DE040 11. 0.697360000
5. DA012BA009 12. 0.329150000
6. DD014EC013 13. 0.000000000

7. 0.07532900 14. 0.000000000

m—»Q 12 X
m—s>Ah 11 A—*m
m— 7 X
m—>Ah 8 L

X 12 m—»Ah
fr 14 Q—*m

7. a
8. b
9. c

10. e
11. f

-31-

Problem 2
We modify the preceding problem with a slight logical twist.

Assume that the calculation of the rational function £ is a part of
some larger problem and that x has been computed as part of a pre
vious routine and stored in some memory location other than the one
assigned to it (A.6 in the preceding example). Indeed, there may be a
series of such x values. Further, when £ is computed it Is to be stored,
not in A.7, but at some other memory location where it will be used in
subsequent parts of the calculation. In other words, we ask what modi
fications must be made to the sequence of instructions in Problem 1 in
order to render it moire flexible and assimilable in a larger problem.

One possibility is to reserve memory location A.6, not for storing
x itself as was done earlier, but instead to store the address at which
x may be found. A.6 does not contain x, but it does tell us where in
the memory x is located. Similarly, we may use A.7, not to store £ it
self, but to contain the address at which jr is to be stored when formed.

Suppose then, as a preceding part of some problem, x has been com
puted and stored in, say, memory location M.l; and we wish to use the
routine outlined in Problem 1 to calculate the rational function given
there with the stipulation that jr should be stored in N.l.

It is necessary to place the address M.l in location A.6 and ad
dress N.l in location A.7. Thus, in the course of the calculation,
when x is required, A.6 is consulted, giving the information where x
is actually located. Finally, A.7 provides the information where £ is
to be stored, namely in N.l. Thus, this rational function routine may
be used several times in the course of a large problem; each time, how
ever, it is necessary to provide the corresponding address for the lo
cations x and £.

Making these changes in this routine leads to the simplest illus
tration of using the substitution order. Without attempting to justify
the utility of it at this point, we proceed with the simple example.

Instructions 1 through 6 of the following code sequence are
the additional instructions required for the substitutions. The function
of these first instructions is to provide appropriate addresses to sub
sequent instructions that involve x and y. Recall that x resides at

-32-
location M.l, and the numerical value of M.l is at A.6. The preliminary
instructions thus involve taking the numerical quantity M.l from location
A.6 in the memory to the arithmetic unit. From there it may be inserted
into the address part of the instruction that first involves x. This
is accomplished by the substitution order. Repeated application of this
order introduces this same address into all the other instructions that
require it. In the example observe that Instruction 8 of the code is the
first instruction referring to x and requiring the particular address
where x resides. Two instructions, here taken to be 1 and 2, are re
quired to provide Instruction 8 with the appropriate address. These are:

(i) An instruction to transfer the contents of A.6, namely the
address of x, to the arithmetic unit;

(ii) A substitution order which has the effect of transferring
this address of x into Instruction 8.

Inasmuch as this address is also required for Instructions 11 and 15,
two more substitution orders. Instructions 3 and 4, are needed for them.
Finally, the address referring to the location of y is needed for In
struction 18; two more instructions, 5 and 6, accomplish this, thus ac
counting for the six preparatory instructions.

At the start of the problem. Instructions 8, 11, 15, and 18 have
blank addresses. After the control has proceeded through Instruction 6,
all of the instructions have the proper addresses.

The storage is as before, with the changes as noted above.

A.l: a
A.2: b
A.3: c
A.4: e
A.5: f
A.6: M.l
A.7: N.l
B.l:
M.l: X

N.l:

-33-

The coding is:

1. m—»Ac A.6 M.l to R2
2. S—»m 8 M.l to (8-19)8
3. S—>m 11 M.l to (8-19)U
k. S—*m 15 M.l to (8-19)15
5. m —♦Ac A.7 N.l to R2
6. S—»m 18 N.l to (8-19)18
7. m—*Q A. 4 e to Rk
8. X [] e*x in R2
9. m—»Ah A.5 ex + f in R2

10. A—►m B.l ex + f to B.l
11. m—»Q [] x to R4
12. X A.l a*x in R2
13. m—»Ah A.2 ax + b in R2
Ik. lAO ax + b to R^
15. X [] ax^ + bx in R2
16. m—►Ah A.3 2ax + bx + c in R2

17. B.l
2ax + bx + C In Rlly ' ex + f

18. Q—*m [] JT to N.l
In coding the problem into word form, the instructions into which

addresses axe being substituted may be either the left-hand or the right-
hand instruction of a word. In Table I, Orders 19 and 20 account for
this. They read:

"19. S—>m Replace the address (bigits 8-19) of the left-hand
order of u by the 12 bigits 8-19 in R2.

20. S—>m' Replace the address (bigits 28-39) of the right-hand
order of m by the 12 bigits 28-39 in R2."

Since it is desirable to substitute into either a left-hand or right-
hand instruction from an address which has been brought into R2, the fol
lowing custom in storing addresses is adopted: Consider an address x as
an integer which may assume values from 0 to 1023* Rather than storing
x, store

(*), = o-19. ,-39._ — . JWeo — —
where (x)q is called the memory position mark x. Since x is an integer,
when (x)o is brought into R2 the addresses are so positioned that either

►m or •m' may be used as required.

-34-

The instructions are now paired into words. There are 18 instructions
or 9 words which, if the coding starts at word 1, give instruction-words
from address 1 through 9* The numerics then start with address 10 and go
through address 17*

1. m—»Ac 15 S—»m
2. S —>m 6 S—»m
3. m—»Ac 16 S—>m'
4. m—»Q 13 X
5. m—»Ah 14 A—»m
6. m—>Q [] X
7. m—>Ah 11 L40
8. X [] m—>Ah
9. ♦ 17 Q—>m

•OH a
11. b
12. c
13. e
14. f
15. (M.l)0
16. (».1)0
17.
The storage has been changed to

4
8
9

C]

17
10

12
[]

include the appropriate values
(M.1)q and (N.l)o.

In the final coding. Instructions 41, 6, 8, and 9* may initially
be given any address as this address is irrelevant (the correct addresses
are supplied during the course of the computation). For uniformity, the
plan of initially setting these addresses to 0 is adopted.

-35-

Problem 3
The munibers and the numbers'l* “2> "3 “n ---—----- - hl’ ^)2, b3 n

are stored in the memory. It is desired to form the following product
>• b

sum n
kVi - Vl + a2b2 + • + a b n n

The storage of the a's and b's is arranged so that
A.l:a1, A.2:a2 ••• A.i:ai ••• A.n:an

and
B.l:b1, B.2:b2 B.i:b. ••• B.n:b i n

That is, the a's are stored consecutively in one section of the memory
and the b's are stored consecutively in another section. The sum, when
it is formed, is to be stored in the memory at address C.l.

If n = 1, the coding is trivial; it is:
1. m—»Q A.l to R4
2. X B.l a^b^ in R2
3. A—»m C.l albl bo C*^

The problem may be extended to n = 2 by adding the following instructions:
1^. m—»Q A.2 a2 to R4
5- X B.2 a2b2 in R2
6. m—»Ah C.l a^b^ + a2b2 in R2

- 7. A—»m C.l a1b1 + a_b to C.l
One method of extending the coding to the general case of n elements

in the sum is to have the first three Instructions followed by (n - 1) re
petitions of Instructions 4 through 7 with the appropriate A.i and B.i
being used in place of the A.2 and B.2. This method becomes very costly
with respect to available memory space as n becomes large, since each in
crease of n by 1 increases the code by four instructions.

The coding for the general case n is:
1. m — A.l a^ to R4
2. X B.l a1b1 in R2
3. A —»m C.l
4. m —*Q A.2 a2 to R4
5. X B.2 a2b2 in R2
6. m —>Ah C.l Vl + a2b2
7. A—♦m C.l

albl to C.l

in R2
albl + a2b2 to C*1

-36-
8. m —*Q A.3 a_ to R4
9. X B.3 a^b^ in R2

•
oH m—Ah C.l aibi +
n. A — C.l

+ in R2
albl + a'202 + a'^>3 t0 C*1

4i-4. m —Q A.i a^^ to R4
4i-3. X B.i a.b. in R2 i i
4i-2. m —>Ah C.l albl + a2b2
4i-l. A —»m C.l

+ a.b. in R2 i i
a^b^^ + &2*>2 + *** +ait)i'toC*1

4n-4. m— A.n a to R4 n
4n-3. X B.n a b in R2n n n
4n-2. m—> Ah C.l a,bn + a_b_ + ••• + a b = a.b.11 22 nn ..ii1=0.n
4n-l. A—s>m C.l a.b. to C.l i=i11
4n. STOP

By using this method, 4n instructions are needed. If n is large,
say 50-100> then 200 to 400 instructions or 100 to 200 vords of cocfing
are needed.

Note, however, that the only changes in the coding for each i are
the changes in the addresses of the instructions (m—*Q A.i) and (X B.i),
and as i is increased by 1 the addresses of these two instructions are also
increased by 1.

If by some means the computer can be directed to go repeatedly through
the coding and at each traversal to increase by 1 the addresses of the in
structions (m—A.i) and (X B.i), the length of the total coding can be
shortened greatly. By means of the transfer orders a section of the coding
can be traversed as many times as is desired; and at each passage through
the coding the instructions (m—»Q A.i) and (X B.i) sure brought into the
arithmetic unit etnd 1 is sulded (in the correct address position) to each
of them. It is, of course, necessary to have available in the memory the

-37-

appropriate 1 to increase the addresses. It may be either 1 x
--?q1x2 or, in fact, both may be needed. At present we store 1x2

C.2, and fix upon m later in the coding. The sequence is:
1. m—>Q A.l a^ to R4
2. X B.l a^b^ in R2
3. A—>m C.l a^b to C.l
4. m—>Q A.2 a^ to R4
5. X B.2 a b in R2
6. m—»Ah C.l a,b, + Spb in R2
7. A—*m C.l albl + a2b2 to c*1
8. m—>Ac 4 (m—►Q A.2) to R2
9. m—*Ah C.2 (m—»Q A.2 + 1) in R2
10. A—HU 4 (m—*Q A.3) to 4
11. m—>Ac 5 (X B.2) to R2
12. m—»Ah C.2 (X B.2 + 1) in R2
13. A—«n 5 (X B.3) to 5
14. T 4

The first seven instructions are the same as before. Instructions
8, 9, and 10 bring Instruction 4 into the arithmetic unit, add 1 to its
address, and again store the instruction in 4, its correct location.
Instructions 11, 12, and 13 do the same to Instruction 5. Instruction 14
transfers the control back to Instruction 4 to traverse that section of
coding again (the necessary addresses have been increased by l).

The above sequence is not yet complete as it does not provide a
means of stopping the cyclic process when n is reached. By changing
the transfer order to a conditional transfer order and adding the follow
ing instructions, we introduce a means of knowing when the cyclic process
is finished. The number of traversals through the cyclic process is kept
track of by keeping a count in, say, location C.3, and for each passage
the count is increased by one and also examined to determine whether the
desired value has been reached. It is this examination which is performed
by the conditional transfer order. To initiate the count we store 2 x 2“m.
Since the first two terms of the product stun a^b^ + a^b^ are formed be
fore the counting process is initiated, these two terms are included in
the count by stcurbing the count at 2. When the count reaches n, instead
of transferring back to Instruction 4 the control goes along the other
branch of the conditional transfer instruction, and in this case terminates
with a stop order.

-38-
The additional coding is added, starting at Instruction 14.

14. m—*Ac c.3 2 x 2_m to R2
15. m—»Ah C.2 (2+1) x 2"m = 3 x 2~m in R2
16. A—►m C.3 3 x 2"m to C.3
2-m is needed; it is stored in C.4.
IT. m—»Ac C.4 n x 2“m to R2
18. m—»Ah- C.3 n x 2~m - 3 x 2~m in R2
19. C 4

•
0CM STOP

Note that the count in C.3 is increased just before it is subtracted
from n x 2”m. When the count becomes equal to n x 2-m, the subtraction
gives 0 (which is interpreted as positive) and the conditional transfer

■ thsends the control back to Instruction 4 to finish the n term of the pro
duct sum. The next time through the sequence the count is increased to
n + 1; the subtraction now gives a negative difference; and the conditional
transfer is not effective. The control then proceeds to Instruction 20 and
stops as is desired.

The coding is 20 instructions, which is 10 words. We start the se
quence at address 1; hence it occupies words 1 through 10, Four words
of storage are needed during the course of the problem; for these ad
dresses 11 through 14 are assigned. Let us set n to 100 and store the
a^'s in 16 through 115 and the b^’s in 116 through 215.

The sequence is:
1. m—»Q 16 X 116
2. A—«n 11 m —>Q 17
3- X 117 m—»Ah 11
4. A—>m 11 m—»Ac 2
5. n—»Ah 12 A—>m 2
6. m—»Ac 3 m—»Ah 15
7. A-7»m 3 m—»Ac 13
8. m—>Ah 12 A—nn. 13
9. m—*Ac 14 m—>Ah- 13

10. C 2 STOP
11. -

12. 1 x 2-39

13. 2 x 2”39
14. n x 2-39 = 100 x 2-39

15. 1 x 2”19

-39-

16. a1
17. a2

115. aioo
116. b
117. b2

215. b100
_19In words 12 and 15, 1x2 and 1x2 are stored. These are

both needed as the two instructions that have their addresses increased
are in opposite sides of their respective words.

The code sequence is reduced from 200 words to 15 words by being
able to use the same section of code repeatedly and altering addresses
of the instructions as the control proceeds through the code.

The use of substitution orders in this problem was purposely avoided.
As we shall presently see, the change in addresses could have been accom
plished more efficiently by their use. However, our purpose is not neces
sarily to illustrate the shortest method for coding a sequence but to
illustrate many methods so that a broad foundation may be laid for subse
quent work.

We adopt the nomenclature set forth by von Neumann and call any such
repetitive process (whether it be the above, or a solution of a partial
differential equation by successive approximations, or numerical integra
tion of a function by some stepwise method, or other iterative procedures)
a simple induction.

We have now reached the point where any further examples have a
great enough complexity to demand a systematic approach. This leads to
the discussion of the flow diagram.

-40-

Flov Diagram
The flow diagram, as the name implies, indicates the course of the

control through a coded sequence of instructions. As previously men
tioned, the flow diagram represents in a concise way

(i) The purely mathematical operations
(ii) The various logical steps and decisions together with a pre

cise indication of the corresponding criteria
(iii) The contents of the relevant parts of the memory where the

question might naturally arise
To facilitate the interpretation of such diagrams and to avoid

ambiguities, it is convenient to have a set of conventionalized symbols
associated with these flow diagrams.

The direction of motion of the control through the flow diagram is
indicated by lines oriented with arrows as in Figure 1. A simple in
duction is denoted by a closed loop as in Figure 2 and is called an
induction loop.

--------Vi-------- -

Figure 1. Figure 2.

Any non-looped segment of the flow diagram is described as a linear
section, while a looped segment is said to be non-linear.

By themselves the above lines are incomplete as they do not show
the arithmetic or logical processes that are involved. The arithmetical
operations are described in the operation boxes. Figure 3 shows the
symbolization of the operation box.

Figure 3

-41-

The operation box has one entrance and one exit for the control. The
contents of the box indicate the arithmetic operations and transfers
of information among the various storage locations that are to take
place vhen the control reaches that stage. Individually, an operation
box may be treated as a linear portion of the flow diagram, although
it may be an element of an induction loop. Each operation box of a
flow diagram is identified by an Arabic numeral.

The induction loop as shown in Figure 3 is not complete, as it
shows neither a point of entrance nor a point of exit.

To show the former, two or more paths of a flow diagram merge into
a common continuation as shown by the heavy lines of Figure 4. These
mergers are not unique to an induction loop for they are also useful
where several linear sequences have a common continuation.

Figure 4.

In order to effect an exit from an induction loop, use is made of
a second type of box called the alternative box (conditional transfer
box). The alternative box has one entrance, but two exits which are
labeled the positive (non-negative) and the negative exits. This box
specifies the criterion by which the control follows either one exit or
the other. The decision is usually based upon some mathematical ex
pression that is first formed in the Accumulator. In the coding, the
conditional transfer instruction is given immediately after the dis
criminating quantity has been formed in the Accumulator. If the quan
tity is positive or 0, the control proceeds along the so-called posi
tive branch, whereas if the quantity is negative, the negative branch
is followed. By convention, the positive branch corresponds to an
interruption of the sequence and a transfer of the control to the in
struction pair specified by the address part of the conditional transfer.
On the negative branch the control proceeds sequentially without inter
ruption. The alternative box may be associated with a linear sequence

of a flow diagram as well as with an induction loop; i.e., a linear
sequence may divide into two sequences, the choice of which may be
made by an alternative box. Figure 5 illustrates an alternative box
(emphasized by heavy lines) used in a linear sequence, and also in
association with an induction loop. The alternative box is identified
by an Arabic numeral, as is the operation box.

3

Figure 5
Since an alternative box is the means of exit from an induction

loop, it is the alternative box that indicates when the loop has been
traversed the appropriate number of times. The quantity upon which the
conditional transfer instruction is to act should then remain positive
until the loop has been traversed the correct number of times and then
this quantity is to become negative, (it may happen, at times, that it
is more advantageous for the negative branch to return through the loop,
with the positive branch providing the exit.) As an example:

If we are doing an iterative process to approximate some function-
say a trigonometric function, square root of a number, or some other such
scheme—then we know that the error in the approximation to the function
is less than the difference between any two successive approximations.
We then decide upon the accuracy, say 3, for the approximation to the
function. If we denote an approximate by S^, then the desired accuracy
is obtained when | - Si+J < d. Therefore, in such a process, if the
conditional transfer acts upon the quantity | - S^+^| - d, this quan
tity will be positive until the desired condition obtains.

An induction loop may involve a process in which the loop is to
be traversed a fixed number of times. For these processes a simple
counting procedure is used to determine the termination of the induction.

-43-

In the initial step of the induction the count is set to some starting
value (usually 0 or l). At each traversal of the loop the count, which
may be called i, is increased by 1. An upper limit to the count, which
is called I, is chosen, such that the quantity I-i first becomes
negative when the loop has been traversed the correct number -of times,
hence satisfying the required conditions.

In a linear sequence the alternative box often indicates a single
quantity which is the result of previous computation where the course
to be followed depends upon this quantity being positive or negative.
Figure 6 indicates several alternative boxes with their contents.

Figure 6.

By means of an alternative box an induction loop may be traversed
as many times as desired and then the control is advanced to the next
stage of a calculation. Each time the induction loop is traversed the
control essentially repeats a fixed sequence of orders. At each tra
versal, though, the control operates on a different set of numbers and
either sends the results to fixed memory positions each time, or else
sends the results to locations dependent upon the set of numbers being
operated upon. The operation boxes in an induction loop should contain
relationships that are valid in general for any traversal through the
loop; e.g., consider the iterative process for the square root of a
number u where u < 1 (we defer any mathematical discussion until later).
The first approximation Zq is chosen equal to 1, and the successive
ones given by

Z = 10
Zn = 2'1(Z + u/Z)
1 v o ' o

Z2 = 2"1(Z1 + u/Z^

Zi+1 = 2‘1(Zi + u/Zi)

-44-

The successive iterates are to be done in an induction loop where Zo
is an initial step apart from the loon. In the first traversed of
the loop

Z^ = 2 (Z + u/Z)

is computed. The next traversal, computes
Z2 = 2"1(Z1 + u/z^

the third traversal. Z^, and so on. How, then, with one set of equations
in eui operation box is the desired notation indicated for each traversal?
This is done in the following manner:

The contents of the operation box do not represent any specific tra
versal of the loop; hence an index is adopted that represents the general
traversal; e.g., for the square root the operation box would contain

zi+i = s'XWV.

This index is the variable of induction that describes the inductive pro
cess, for if

Z = 1o
Zi+1 - 2"1(Zi + u/Zj) (i = 0,1,2...)

then the process in question is completely described. Although the
operation box does give the general expression, a means is needed for
ascribing the appropriate value to the variable of induction for each
traversal. This is done by the substitution box. Its function is to
bring into agreement the notation of all quantities in which the vari
able of induction occurs with the notation that corresponds to a speci
fic traversal of the loop. In other words, the substitution box makes
the notation agree with the set of numbers upon which the succeeding
boxes act during the forthcoming traversal of the loop.

A substitution is indicated as a—*i. It is interpreted as
meaning that during the forthcoming interval and until a new substitu
tion is made, everywhere that i occurs it is to be replaced by a. This
first case is obvious enough. However, the substitutions are not re
stricted to constants replacing the variable of induction. In fact,
the substitution often contains some function of i; e.g., the substitu
tion of i+1 —+ i is used frequently. In the instance where the variable
i occurs in both members of the substitution, it may conveniently be

-1*5-

interpreted in the following way: For the i's that occur to the left
of the arrow the substitution from the preceding interval remains valid.
The quantities on the left of the arrow will then not contain i^ anywhere
in their expression and the substitution is made as described above;
e.g., suppose that a substitution a—*i has been indicated. After a
sequence of boxes a new substitution i+1—>i is then indicated. First
substitute a (the value of the immediately preceding substitution) for
the i that occurs to the left of the arrow. The substitution now reads
a+1—+i and we then proceed as in the above simple case. Hie next time
the control returns to this substitution box it would be interpreted as
(a+1) + 1 = a + 2-+i.

Note that substitution boxes do not involve any arithmetic operations
or transfers of numbers. They merely make changes in notation (trans
formations) such that the flow diagram indicates each stage of the compu
tation in a precise manner. The substitution box is identified by a
lower case Latin letter.

We continue with the square root example and illustrate the use of
substitution boxes. The flow diagram for the process is:

Figure 7.
(i) Operation box 1 initiates the induction by setting Zq = 1

and storing it in A.l
(ii) Substitution box b indicates that everywhere in the following

boxes up to the next substitution box wherever the variable of
induction i occurs it is to be replaced by 0.

(iii) As a result of box b, operation box 2 indicates that
= 2“1(Z + u/Z)

1 ' o 'o'

and Z^ is stored in A.l. The alternative box, box 3, indi
cates that the conditional transfer is to act upon |ZQ _ g-J " d*

-46

(iv) Box £ is a substitution box of the second type discussed in the
preceding paragraphs, namely the substitution i+1—>i. In the
interval leading into this box the substitution 0—►! was
valid. We replace the i to the left of the arrow by 0. The
substitution is then 1—Operation box 2 now indicates

Z2 = 2~1(Z1 + u/z^

and alternative box 3 indicates | Z^ - Z^ | - d. When substitution
box c is again traversed, it will indicate 2—>i, and the iter
ative process is advanced another step.

With the aid of the substitution box we have been able to describe
completely and precisely the desired inductive process.

Throughout the flow diagram many symbols and notations are introduced
(such as the variable of induction) that are relevant only in the flow
diagram and often for only isolated parts of the flow diagram. These
quantities are usually without any physical meaning apart from the
process that they are describing in the flow diagram. These quantities
are called bound variables. The Z*s of the square root routine are such
a variable. In passing from one section of the flow diagram to another
these bound variables may take on new significance in describing some
other process (such as the variable of induction i in the induction loop).
The concept of the substitution box is extended to cover substitutions
involving any bound variables.

There is one other box that is an integral part of the flow diagram;
it is the assertion box. Its usefulness stems from the fact that at cer
tain points of the flow diagram, bound variables may acquire a fixed
vadue with a fixed meaning; e.g., in the square root diagram when

- Z^ < d, then to sufficient accuracy = \/u, where u is the
number for which the square root is being extracted. Whenever such con
ditions are attained one may state this relationship by means of an
assertion box. Hence, if we aigain consider the flow diagram of the square
root routine and consider the negative branch which terminates the process,
we have:

3 #

Z; -Z;i+1 -8T Vu" =z i+i
+

Figure 8

-47-
When the control completes the process and proceeds along the negative
hrhnch, then is the desired ~\/u. This fact is stated in the
assertion box. The assertion box is identified by a crosshatch (#).

The discussion of the various boxes is completed by discussing the
storage boxes. There are tvo kinds of storage with which we are concerned.
In the first place, there will be a set of numbers that originate with
the problem and will remain unchanged throughout the course of the problem.
The storage necessary for this type of quantity is called static storage.
The storage requirement that originates from computation within the prob
lem is called dynamic storage. We are not concerned here with the static
storage as it is unchanged throughout a problem. However, at certain
points along the flow diagram it is convenient to indicate the contents
of the dynamic storage concerned with the local computation about to be
performed. The storage boxes are connected to the flow lines of the dia
gram by dotted lines. (These boxes are not an integral part of the flow
diagram.) In Figure 9 the flow diagram for the square root routine is shown
complete with storage boxes.

Z(f I to A.

Figure 9.

The examples indicate a complete set of storage boxes indicating all
relevant changes. In actual practice, however, the procedure will be to
indicate storage boxes only when they are useful and needed for clarity.

The substitutions indicated by the substitution boxes are also valid
for the storage boxes. Consider Figure 9: on either side of the substi
tution box b, a storage box is indicated. The storage box to the left of
Box b shows that A.l:Zo, while the box to the right of Box b shows that
A.l:Zi. If, however, 0 is substituted for the i as is indicated by Box b,
the two storage boxes agree, as they should at this time. Similarly, the
storage box immediately to the left of Box 2 is brought into agreement
with the storage box to the right of Box 2 each time substitution box c
is traversed.

-48-

Let us recapitulate at this time:
(i) The operation hox indicates the arithmetic operations and the

transfers of numbers that are to take place. In the arithmetic
operations the relationships are expressed by equality signs;

2i.e., y=ax +bx+c, y= f(x,t), or some other such expression.
The quantity that is being formed is always written as the left
member of the equation vhile all of the known values are included
in the right member of the equation. The operation box has sin ac
companying identifying letter or number. Arabic numerals are used
to identify such boxes.

(ii) The alternative box is associated with the conditional, transfer.
The conditioned transfer acts upon the quantity or quantities in
dicated in the box; and the control follows the positive exit or
negative exit, according as the transfer is effective or not. The
eiddress of the conditional transfer instruction must be the address
corresponding to the positive exit of the box; and immediately after
the conditional transfer instruction is the sequence that the nega
tive branch will follow.

(iii) The substitution box indicates changes that occur in bound variables.
These are changes in notation (or transformations, if you like) and
they do not involve any arithmetic operations or transfers of numbers.
The substitution box is usually concerned with the variable of in
duction in an inductive process; and by attributing successive values
to the variable of induction wherever it occurs in the general ex
pression of the process, the induction is completely described. The
contents of the substitution box are indicated with an arrow, such
as a—where this is read as substitute a for i.

(iv) The assertion box states an existing condition. At certain points
of the diagram a bound variable may acquire a fixed value. The asser
tion box merely states this fact.

(v) The storage box indicates the relevant storage locations of the quan
tities needed for computation in a sequence of operation boxes.
We have now completed the discussion of the important components of

the flow diagram. There are certain refinements to the flow diagram that
will be introduced as the need for them arises in the forthcoming examples.

Problem 4
We propose to extract the square root of a number u by means of

the iterative process
zi+1 - 2‘1(Zi + u/Zj) (i = 0,1,2 •••)

11m z = VS
i—*oo

Since the computer requires that all numbers be in the range -1 < x < 1,
u is restricted so that 0 ^ u< 1. At each step of the iterative process
the division u/Z^ must be performed. Since u < must hold for this
to be a legal operation, it must either be shown that this condition does
hold or else the necessary adjustments must be made (by coding) such that
the condition is true.

We propose to show the former as follows:
Zi+1 = 2’1(Zi + u/Z^ (Eq. 1)

zi+1 -vG" = zi/2 + -\/fi
= (1/2Z.XZ^ - 2ZiVu + u)

Zi+1 = (1/2Z^(Zi -yG)2 (Eq. 2)

Assume 0, then from (Eq. l) all > 0. Since all Z^> 0, the
right member of (Eq. 2) is positive; hence the left member is positive and

Zi+f> nA > u.

If Zq> u, which is done by setting Zq = 1, then all
ZjL> u

and the quotient u/z^ will not exceed the allowed limits of the computer.
In choosing Zq = 1, Z^ is formed as

Zj^ = 2"1 + 2"1u

which is used as the first step of the inductive scheme.
We must ascertain which Z^+^ is to terminate the induction. This

could be done by determining the number of iterations necessary to com-
-^9pute the worst case, namely u = 2 , and then traverse the induction

loop that fixed number of times, irrespective of the size of u. Let us,
however, do something slightly different.

We know u to within an error Au where
Au = E”1^"39 = 2"1*0

as this is an error introduced by the physical size of the computer
The error AvC in determining yfa is found as

u +Au = (/u +AV/G)^

u +Au = u + 2^/GAJu
neglecting second order terms. Hence,

AuAyu = 2^
For our case

€uE Ay/S = 2"4l//u, u/ 0
For u = 0 we have

Au = (V&)
2-1*0 =

The error £ varies from 2 u

eo “ 2
-20

-20

when u = 0 to 2
The iterative process should certainly stop •whenever

Z

-41 when u = 1.

i+1 -v/G^ € . v u
We propose to show that whenever

*t - z1+is 2'21
then

zi - y/i ^ eu

and the iterative process is complete.
First let us show that

Z±+1 -v/u< 1/2 (Zi ->/5).
Since al.1

iyG > u

Zi + U/Zi^ Zi +vA
1/2 (Zi + u/Z^ 1/2 (Zi +N/i)

then

-51-

The left-hand side is by the definition of the iterative process equal
to Zi+^; hence

Zi+1<l/2(Zi +v/u)
Zi+1 -n/u)

From this it follows that
Zi+1 ^Zi " Zi+1*

If the iterative process is terminated when
Z - Z. 2-^

then i+1
zi+i -^S2< «-21

and adding these two inequalities gives

Hence, from (Eq. 2)

we define

then

Since

and

z± < 2-20.

(Zj^-yu)2 = 2z1(zi+1- /i) ^2'1+0

£i “ Zi+1

2Z.€. ^ 2"40.
i i

v/u/Zi < 1

az^v/S/Zi)®!5 ^
ei S 2-kl/Si.

This completes the proof, for if the induction is stopped when
.-21Zi - Zi+1^ 2

then
-41

■*1+1 -vff = ^i^eu = 2 7^

as is desired.
Since the flow diagram has previously been discussed in detail,

we turn directly to the coding which is done with the aid of the flow
diagram.

-52-

Figure 10.
-1Storage locations are needed for u, for the number 2 , for the

-21number 2 , and a temporary location for intermediate results. These
are designated as

B.l: u .-21
.-1

B.3: 2
B.2: 2~~ BA:

and the Z's are stored in A.lj hence utilizing the same location for
the successive iterates.

In the initial coding each box is treated independently. The coding
is:
Box 1.

1. m —»Ac B.l u to R2
2. R 1 2"1(u) in R2

3. m —*Ah B.2 Z1 = 2"1(l+u) in
4. A—»m A.l

Box 2 .
1. m—»-Ac B.l u to R2
2. 4- A.l u/Zj. in R4
3. Q—»m B.4
4. m—>Ac B.4 u/Zi to R2
5. m—>Ah- A.l u/Zi - Z± in R2

Z1 to A.l

u/Zj^ to B.l<-

-53-

6. R 1
7. A—wn B.4
8. m—►Ah A.l
9. A —»m A.l

Box 3*
1. m —►Ac- B.4
2. m —»Ah- B.3
3. C Box 2,1
4. Stop

In Box 2, observe how
and u/Zi< 1, but it does

(Zi+l • Zi} = 2"1(u/zi “ zi) in R2
Z. , - Z. to B.U 1 i+1 ,iZ. , = 2 (u/Z. - Z.)+Z, = 2 (u/z. + Zj in R2i+l ' ' i iy i ' ' i 1'

Zi+1 to A.l

- Z. , to B21+1 -21
- Zi+1 - 2 in R2

Ji+1 is formed. It is known that Zi< 1

This, however, would require additional orders as 2 Z would have to— I ^be formed and stored before proceeding to 2~ (u/Z^), in order that the
addition of the two terms could take place at this time. It is more
efficient to form in ihe following way: since Z^ and u/Z^
are both positive, the difference

u/z. - Z. < 1.7 i i
Therefore, the difference is formed and shifted right 1 to obtain

2"1(u/Z. - Z.).

Observe that
Zi+1 - Zi = 2"1(u/Zi - Zi). (Eq. 3)

If Zi is now added to both members, then
Zi+1 = 2‘1(u/Zi - Zi) + Zi = 2"1(u/Zi + Zi).

Equation 3 above expresses the negative of the quantity Zi - Zi+1
desired for the discrimination in Box 3. Z. , - Z., is stored in B.4
so that it will be directly available for Box 3* In fact, if Z^^ had
not been formed by first forming and saving the quantity Z^i - Zi,
Zj , could not have been stored in A.l, as Z. would then still be i+1 7 i
needed for Box 3* This would mean that Z^^ would be sent to B.4 until
the completion of Box 3 at which time it could be sent to A.l. Again,
this would have required additional coding.

In pairing the instructions into words, we start the coding at
Word 1. No connecting instructions are needed between the boxes.
The total number of instructions is:

Box 1: 4 instructions
Box 2: 9
Box 3: 3

and a "stop" instruction : _1
total : 17 instructions

which require 9 words. Five words of storage are needed which account
for Words 10 through 14. The sequence is:

1. m —>Ac 10 R 1
2. m—*Ah 11 A—»m 13
3. m —»Ac 10 ♦ 13
4. Q —»m 14 m—*Ac 14
5. m—»Ah- 13 R 1
6. A—an 14 m—►Ah 13
7. A—>m 13 m—>Ac- 14
8. m—»Ah- 12 C 3
9. Stop

•
oH u

n. 2-1
12. 2-21

13.
14.

The conditional, transfer instruction in the right half of Word 8
transfers to the first instruction of Box 2. When the instructions are
paired, the first word of Box 2 becomes the left-hand instruction of Word 3;
hence the conditional transfer instruction is the transfer to the left-hand
instruction of Instruction-pair 3.

Before discussion of Problems 5 and 6, on the conversion of numbers
from one base system to another, some remarks should be made on the form
of input and output data. Although the computer operates with numbers ex
pressed in the binary base, the human operator is apt to find that he has,
through years of exposure, become firmly bound to the decimal number sys
tem. It is then certainly to the advantage of the operator to find some
means of communication to and from the machine that can be expressed in
decimal numbers. Before discussing the problems related to such a scheme,
we first make a few remarks on the input-output problem in general.

-55-

Even though we are at present mainly interested in input and out
put data in the decimal number system we do not wish to exclude input
and output as true binary numbers. In fact, whenever any data is printed
for subsequent consumption by the computer it should obviously remain in
the binary base; furthermore, it is both convenient and simple to have
instruction words coded in their true binary form. As we have more ex
perience with the computer and with binary numbers, our- dependence upon
the decimal system may wane, and we may find ourselves operating solely
with binary numbers. We first consider the input-output in the binary
system and from that develop the scheme for handling decimal numbers.

It is not practical to have the keyboard of the tape punch or the
type bars of the printer operate in true binary notation, for this would
mean that forty characters would have to be printed or punched per word;
and even though one needs to recognize only 0's and I's, it is difficult
to examine words forty characters long. Let us arrange the bigits into
groups of, say, three or four bigits and specify a character to identify
each unique combination. We choose groups of three or four since these
correspond to eight and sixteen unique characters, respectively, which
are each fairly close in number to the usual ten characters in the deci
mal system. Such choices shorten the word length from forty bigits to
either thirteen or ten characters, accordingly. For the present discus
sion, we fix upon groups of fours {tetrads) and identify each tetrad by
a single character. Since sixteen characters axe needed, we are really
operating in the hexadecimal (l6) number base. For those tetrads that
have single decimal digit equivalents, the corresponding decimal charac
ters are used to identify them. The remaining six tetrads are identified
by the letters A,B ••• F. Table II shows the hexadecimal characters
with their binary tetrad equivalents.

TABLE II
0 0000 b 0100 8 1000 c noo
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E mo
3 0011 7 0111 B ion F nn

The keyboard of the tape punch and the type bars of the page printer
have sixteen characters. In tape preparation, the conversion from hexa
decimal to binary is effected directly by the punching equipment. When
one of the sixteen keys of the keyboard is depressed the punch is set up

-56-
so that it punches the binary equivalent on the tape (in a tetrad of
bigits). Similarly, when printing is desired a tetrad of bigits actuates
the type bars and the hexadecimal equivalent is printed.

To return to the decimal input-output problem, we have at our dis
posal the first ten ordinal characters of the hexadecimal notation which
are identical to the ten decimal characters 0,1 ••• 9. To prepare a tape
of decimal information, we depress the keys corresponding to the individual
decimal characters of the desired number. The punch converts the decimal
characters into tetrads of bigits which give a "coded-decimal" representa
tion of the number. The coded-decimal form of a number is not identical
to the number's true binary equivalent. For example, consider the decimal
number 512* Its coded-decimal representation is 0101 0001 0010 while its
true binary representation is 1000000000. There is a very simple algorithm
by which we can convert the coded-decimal number into its true binary equi
valent. The output problem involves the converse. We need an algorithm by
which a true binary number can be converted into its coded-decimal, equi
valent so that the printer may produce the number in its decimal form. We
consider first the input problem—the conversion of a coded-decimal number
into its true binary equivalent.

Problem 5
Since a tetrad of bigits is used to represent a single decimal digit,

and since the standard word length is forty bigits, each word is comprised
of ten tetrads. The first tetrad on the left is used to indicate the sign
of a number. This means that the computer is able to store a nine digit
coded-decimal number with its sign. In following the present sign repre
sentation for binary numbers, the tetrad 0000 designates a positive num
ber and the tetrad 1111 designates a negative number. Negative coded-
decimal numbers are represented as signed numbers rather than as complement
numbers as used for negative binary numbers. As examples, a positive and a
negative coded-decimal number are shown.
+ .765432109: 0000 0111 0110 0101 0100 0011 0010 0001 0000 1001
- .543010678: 1111 0101 0100 0011 0000 0001 0000 0110 0111 1000

The conversion of coded-decimal number a' into the true binary number
a may be performed as follows: The absolute value of a' is, converted and
then the sign is determined. The absolute value is obtained by neglecting
the sign tetrad of a'. The sign tetrad comprises bigits (0 — 3)i hence

| a'| = bigits (4—39) of a' 0.<|a'|<l (Eq. 4)

-57-
Recall that each decimal digit treated as an integer is represented by
its true binary equivalent in the coded-decimal notation. The tetrad
represented by the bigits

(4i—ln+3) (i = 1,2 ••• 9)
beginning at the left of a' represents the decimal digit w.. The first
tetrad from the left corresponds to the 10 position, the second tetrad

_2to the 10 , and so on. Therefore,
(4i—4i+3) = 10"^ (i = 1,2 **• 9) (Eq. 5)

and furthermore, Q
|a'| = 10“^; (Eq. 6)

e.g., I a'I = .0111 0101 0110 1001 0001 0000 0100 0011 1000 = .756910438 =

= jfio'3^ = 7/l01+5/l02+6/l03+9/lo\l/l05+0/l06+Vl07+3/l08+8/l09.

Since each tetrad is, by itself, in true binary form if considered as an
integer, one method of converting the number is to divide each tetrad by
its appropriate power of 10 (expressed, of course, as a binary number)
and add the results of all such divisions; e.g., .25 is .0010 0101 in
coded-decimal form and to convert this to a true binary we perform the
steps

0010 . 0101 0010 0101 n m 1010 + (1010)(1010) = 1010 1100100 " * '
and 0.01 is the true binary form of the decimal number .25. However,
let us do something slightly different. Multiply and divide the right
member of (Eq. 6) by 10^* 2-3^. This gives

(Eq. 7)

The conversion may now be effected by multiplying each tetrad w. byg_i _39 110 • 2 , adding the products of all such multiplications, and then
dividing the resultant sum by 10^• 2”3^. Each tetrad w. has a co-

9-i 1factor, 10 , which is ten greater than the cofactor of the immediately
succeeding tetrad. The conversion from the coded decimal number ji* to
the binary number & is then described by the following inductive pro
cess

-58-

a = 0o
a, = 10a + 2~39w.

1 o
a_ = 10a.. +

2-3<
2 1

li+l = 10a. + 2-39w. i
i+1

a9 10a8 + 2~39w9

The tetrads are isolated with the aid of the left shift order.
First the magnitude of a* is formed by bringing a* into R2 (the
Accumulator) and effecting a left shift of 4. The portion of a’ left
in R2 is | a'| . R4 (the quotient register) is then set to 0. A subse
quent left shift by 4 now has the effect that w^ appears in the ex
treme right of R4. The first tetrad w^ has thus been separated from
the remaining tetrads, and since wn appears in the extreme right of
R4 it is 2 «■]_> as desired, a^ is now formed as:

-•5Qan = 10a + 2 J*\r-.1 o 1
Wg is isolated in the same manner as was w^ 'tl:ieri a2 is forme(3-^
and so on, until aQ is formed. A multiplication by ten at each stepy
cannot directly be done as this is an illegal operation, since allowed
multiplication factors must be in the range |x| <1. However, a multi
plication by ten may be simulated by doing a series of left shifts and
an addition for ■5lOaj^ = 2“^ + 2ai.

The inductive process may be written as:
a = 0o

a1+1 = 23ai + 2ai + 2“39wi+1 (i = 0,1 ••• 8)

a9
109. 2~39a

The 's are also formed by an inductive scheme where

w^ = 2^a'o (integer part) a'^ = 2^a'o (fractional part)

w2 = S^a^ (integer part) a'g = 2^a'^ (fractional part)

i+1
2^a' (integer part) a' i+1

2^a' (fractional part)

= 2^a' 8 (integer part) = 0 = 2 a'g (fractional part)

There remains finally the determination of the appropriate sign to
affix to the true binary number a. It is recalled that the extreme left
tetrad is reserved to denote the sign of a'. A sufficient method is to
examine the leftmost bigit of a'. If this is 0, a' > 0 and a is to be
positive. If the leftmost bigit of a' is a 1, then a'<" 0 and a is
to be formed as a complement.

The only operations that are performed on a*, the coded-decimal num
ber, are a series of left shifts by 4. To simplify the coding and flow
diagram, the number a* is treated as though the binary point is immedi
ately left of the first bigit position. In other words, the normal sign
bigit (the 2° position) is treated as a numerical bigit, in fact the
bigit position. After the first left shift of a* by 4, the first signi
ficant bigit of w^ is in the leftmost bigit position. After is
isolated by a left shift of 4 places, the first bigit of w^ is in the
leftmost bigit position, and so on with the remaining w's. The conse
quence of treating a' in this fashion is discussed in the coding of
the problem.

Since nine tetrads must be operated upon, the induction loop must be
traversed nine times. The method used for determining when to stop in the
induction is essentially to discriminate upon the quantity

I - i (l = 8; and i = 1, 2 ••• 9> successively)
When i = 9 (which corresponds to the completion of the 9 traversal of
the induction loop), the discrimination on (l - i) becomes negative for
the first time and the induction process is stopped as desired.

-60

The storage requirements are as follows: a' (the coded-decimal
number) is initially in the memory at address A.l. When a (the true
binary number) is formed it is to be stored at A.2. Storage is needed

q ..39for the numbers 0 and 10 «2 . These are stored in C.l and C.2, re
spectively. Four intermediate storage locations sire needed during the
course of the conversion. These are designated as B.l, B.2, B.3, and
B.4.

We axe now ready to draw the flow diagram and do the coding. The
flow diagram is shown in Figure 11.

In the flow diagram. Box 1 sets up the initial steps of the inductions
over a* and a. It sets

a'o = | a'| = 2^a' (fractional part)

a =0 o
as is indicated in the description of the induction on the preceding page.
This box also sets the upper limit 1=8 of the induction. Box b. Box 2,
and Box c complete the description of the induction. Box 2 forms

a'^+^ = 2^a'^ (fractional part)

2*^w^+1 = S^a'^ (integer part)

-■PQa.,, = 10a. + 2 w. ni+l i i+1
with Boxes b and c ascribing the appropriate values to the variable of
induction i^. In Box 3, the conditional transfer box, the quantity upon
which the discrimination is made is more conveniently I-(i+l) rather
than I-i as previously discussed. In discriminating upon I-(i+l),
i assumes the values 0,1 •••8. This is then equivalent to the discri
mination I-i where i = 1,2 •** 9« Box 4 forms (a) by dividing a^.

9 -39by Kr *2 . Finally, Boxes 5, 6, and 7 are concerned with determining
the correct sign for the true binary number a.

The coding is:
Box 1.

1. m—*Ac A.l a' to R2
2. L 4 a* = o M = 2^a' in R2
3- A—>m B.l a' to B.l0
4. a —+Ac 0 a = 0 o to R2
5. A —*m B.2 a to B.2
6. a—»Ac

3
1CVI
•CO OJcbii

H -11 to R2
0

7. A—»m B.3 I to B.3

it ?'2JI

CODED DECIMAL to BINARY CONVERSION

A.P o'
A.2 s a (when formed)

STORAGE

C.l! 0
C.2S I09*2"39

B. I • -
B.2: -
B.3 - -
B.4: -

IONHl

-62-

Box 2.
1. m—»Ac B.l a'^ to R2
2. m >Q C.l 0 to R4

3. L 4 2""^w^+^ = 2^a'^(int.pt.) to :
a’i+1 = 2^a’i(fract.pt.) in :

4. A—nil B.l a'i+l to
5. Q—*.m B.4 2-39v ^ i+1
6. m—>Ac B.2 a^ to R2

7. L 2 22a± in R2

8. m—>Ah B.2 22 a. + a. in R2 i 1
9. L 1 23a^ + 2ai in R2

10. m—>Ah B.4 ai+i = s\+ 2'39wi+i In 32

11. A—►m B.2 a1+i to :
12. m—►Ac B.3 I-i to R2

13. a—>Ah -1-2-11 I-i-1 in R2
14. A—►m B.3 I - (i+1)

Box 3*
1. m—*Ac B.3 I - (i+1) to R2
2. C 2,1

Box 4.
1. m —►Ac B.2 a^ to R2
2. ~ C.2 |aj = a^/l09.2~39 in R4
3. Q— B.2 |a| to B.2

Box 5.
1. m—►Ac A.l a» to R2
2. C 7,1

Box 6.
1. m—>-Ac- B.2 a = -(a| to R2
2. A—»m A.2 a to A.2

to B.4

Stop

-63-

a = |a| to R2
Box 7.

1. m—sAc B.2
2. A—»-m A.2 a to A.2
3. T 6,3

In the coding in Box 1 the a—>Ac order has been used in In
structions 4 and 6. Recall that this order replaces the number in R2
by the twelve address bigits of the instruction; i.e., R2 is cleared
to 0's and the twelve address bigits of the instruction a—>Ac are
added into R2 into positions 0 through 11. In Instruction 4, the num
ber 0 is desired in R2; hence the instruction a—>Ac has 0 as its
eiddress. Instruction 6 forms 1=8. Since the integer 8 cannot be
stored, we store S^”31 where m is at least 4 so that 8«2~m< 1.
The a—»Ac may be utilized to form I and save the word of storage
that would be needed initially to store the 8*2-in. Since 1^ is formed
in this manner we have the freedom of choosing 1=8•2-^, 8*2-^ ••• 8*2-^'.

for this case. In Box 2 where (l-i-1) is formed
-m

I is chosen as 8*2
the 1 that is subtracted must have the same cofactor 2 “ as does the I;
hence to do this the instruction a —>Ah is used with the associated
address being -l*2-‘*^" = FFF In hexadecimal notation.

In Box 2, the first five instructions are concerned with forming
2-39w * i+1 and i+1* Before the left shift of 4 is executed (instruc
tion 3), R4 must be set to 0. This is done because 2~39w^+^ is needed
by itself and if R4 were not 0 the left shift of 4 would place 2_39w^+^
into R4, but whatever number y that had been in R4 at the time of the
shift would merely be shifted left 4 places and R4 would contain
4 -39 -392 y + 2 rather than the desired 2 w^+^. For clarity, we show

in the following example how a left shift of 4 isolates each tetrad.
Suppose the number O.98 is to be converted into true binary form. In
coded-decimal form it first appears in R2 as the following sequence of
tetrads:

0.98*•• 0000 1001 1000*••
(+) (9) (8)

Normally, the leftmost bigit is reserved for the sign bigit. Inasmuch
as no arithmetic operations are to be performed on a'^ except for shift
ing to the left, it is convenient to disregard the usual function of the
leftmost position as corresponding to the sign bigit. The aim at this
point is merely to separate successively the various tetrads. The first

-64-

left shift of 4 produces in R2
a'0 = | a'| = 1001 1000* •*

The next time a left shift of 4 occurs, R2 contains
= 1000

Sinceand R4 has 00****0........ 1001.
is desired, one sees that in R4 the usual binary point convention is re
stored; namely, after the first bigit position. Hence the tetrad in R4
can participate in normal arithmetic operations.

If one had adhered strictly to the sign convention for R2, some
needless complications in the coding would have resulted.

Also in Box 2 we see that 2-^w^+^ in R4 must be sent to temporary
storage (instruction 5) before

ai+i - 23,i + 2ai

is formed in R2 (instructions 6 through 9)* This is necessary as R4
shifts in concert with R2, hence altering its contents.

The final coding is left as an exercise for the student, and the
conversion of a true binary number into its coded-decimal equivalent is
considered.

-65-

Problem 6
When the formal calculation of a problem on the computer is finished

the desired answers are to he converted from true binary form into coded-
decimal notation so that the teletype page printer produces the true deci
mal representation of the desired numbers.

We develop this conversion scheme in the following way: The true
binary number a is to be converted into its coded-decimal equivalent a'.
Since coded-decimal numbers are stored as signed numbers rather than comple
ment numbers, j a j is first converted to | a'| , and then the appropriate sign
is prefixed. Since j a | < 1, it has a decimal equivalent which may be writ
ten as

|a| = lO-1^ + ICT^Wg + ••• + 10“^w^. (Eq. 8)

The problem is to determine the w's. If 10|a| (multiplication by ten in
binary form) is formed, there is an integer part and a fractional part to
the number. We see from (Eq. 9) that the integer part corresponds to the
decimal digit w^.

10|a| = w1 + 10-1w2 + ••• + ICf^w^. (Eq. 9)

If the fractional part of lOJaj is now multiplied by ten, the integer part
is just w2, etc. The following inductive process to produce each of the
decimal digits is used:

ao
10ao
10a1

e

♦

10ai

w1 + ai
W2 + a2

w. , + a. , i+1 i+1

10a8 = w9 + a9
where the w^s are the binary equivalents of the decimal digits. In the
coded-decimal representation, each decimal digit is represented as a tetrad
of bigits; hence each w^ is separated as a tetrad of bigits. This is done
by multiplying by ten in the following way:

10ai = 21*(2";Lai + 2"^).

-66-

The left shift of 4 separates the integer part (wi+1) from the fractional
part (&i+1) by shifting into the quotient register (r4) as a tetrad
and leaving the fractional part in the accumulator (R2).

The coded-decimal number a' is formed by the following inductive
process:

a'.

■{
0 if a > 0
F*2~39 if a 0

+ 2"39v,2^a'o ^
2^^ + 2"39w2

a' = 24a' + 2”39w.

i+1 i i+l

+ 2'39^

= a9
Note that each w^ •39,.is desired as 2 which is precisely the

quantity that appears on the right in R4 as a result of the left shift of
4 places.

As in the previous problem the induction has nine steps; hence the
same index representation is used. The flow diagram is shown in Figure 12,
The required storage is indicated on the flow diagrao. The coding is:
Box 1.

1. m—»Ac
2. C

A.l
3,1

a to R2

Box 2.
1. m—+Ac C.l
2. A—nn B.l

a' = F x 2“39 to R2
o

a' to B.l o
Box 4.

1. m—>AcM A.l
2. A—»m B.2
3. a—*Ac 8*2"1;L
4. A—»m B.3

2‘1a =|a I to R2
° -12 a to B.2 o

1=8 to R2
I to B.3

FIG
.

12

47

BINARY to CODED DECIMAL CONVERSION

A.2sa

a = 0 to B.

B.2’* O;

a0 = lalto B.2
I = 8 to B.3

Oj+i = fracfional part of 24(2’lai+2"3a,) to B.2

2”39Wi s Integer part of 24(2',ai +2"3ai)
a-j., =24a,i + 2’39*W14.1 to B.l

STORAGE

A.l-a C.l ! Fx2’39 B.I*• — B.35 —
A.2:a'(when formed) C.2S0 B.2;— B.4: —

-68-

Box 5.
1. m—*Ac B.2 2"^ to R2

2. R2 2_3ai in R2

3. m—*Ah B.2 2_1a + 2"3ai in R2

4. m—►Q B.l a' to R4

5. L4 ai+1 = 2^(2”1ai + fract. pt. in R2

a* . = 2^a* + 2_3^w. ^ in R4
i+1 i i+1

6. Q—>m B.l af1+1 to B.l

7. R1 2_1ai+1 in R2

8. DS

9. A— B.2 2"1ai+1 to B.2

10. m—>Ac B.3 I-i to R2

11. a—►Ah -1.2-11 I-i-1 in R2

Box 6 •

1. C 4,4

Box 7 •
1. m—»Ac B.l a' to R2
2. A— A.2 a* to A.2
3. Stop

Box 3 •
1. m—*Ac C.2 0 to R2
2. A—►m B.l a' = 0 to B.l0
3. T 4,1

In Box 5 a^and a'i+1 are formed simultaneously. R4 is utilized
for 1a'i+^ and R2 for ai+^. This can be done since

a'i+i ■ 21|a,i + 2~^wi+1

ai+l = 2 (2 ai + 2 fractional part
are formed by a left shift of 4 and R2 and R4 shift in concert. As in

the previous problem (the conversion from coded-decimal form to binary
form) the binary point in R2 is treated as though it were immediately left
of the sign bigit. The reason for this is the same as in the previous ex
ample—the sign of R2 shifts with the number; hence, when the left shift
of 4 is performed, the sign position should contain the first bigit of the
w^+1 that is being isolated. There is, however, the complication intro
duced of having to shift the number to the right in forming the
quantity

2~1a. + 2~^a..
i i

Recall that in a right shift the sign bigit fills into the bigit positions
vacated by the shift. The quantity is a positive fraction; hence, in
shifting right, 0's should fill into the vacated positions. However, in
using the sign position as the first significant bigit of a^, whatever this
first bigit is, either a 1 or a 0, it will fill into the vacated positions.
This, then, would give an incorrect result if the first bigit were a 1. To
avoid this difficulty first form 2”1a which means that the sign position
no longer contains a significant bigit of a^ Then set the sign to 0 and
proceed in a normal fashion. In Box 4 where we first set

a = I a| o I I
we have really formed

2'\ = IH

since a has the normal binary point convention. In all subsequent steps
2"^a. n is formed by a right shift of 1 followed by a drop sign order (see
Box 5, Instructions 7 and 8). Instruction 1 of Box 5 brings 2 a. into-1 -R 1
the accumulator and the quantity 2 ai + 2 Ja^ is subsequently formed.
Instruction 4 places a^ into R4; and Instruction 5, the left shift of 4,
then forms a'i+i in snd a^+1 in R2* Instructions 7 and 8 then form
R^a^^ and prefix the correct positive sign.

Instructions 10 and 11 of Box 5 form (l-i-l) but note that the quantity
is not immediately stored. Since (l-i-l) is in R2, Box 6 consists only of
the conditional transfer instruction. Instead of the conditional transfer
instruction transferring to the first instruction of Box 5, it transfers to
the last instruction of Box 4. The last instruction of Box 4 is the in
struction that initially sent I to storage; hence that same instruction is
now used to store (l-i-l). This saves a needless duplication of a storage
order. In the previous conversion problem, the same scheme could have been

used. Compare the last two Instructions of Box 5 and 1 of Box 6 of
this problem with Instructions 12, 13, and 14 of Box 2 and nl 1 instructions
of Box 3 of the previous problem.

In coding the various boxes, they have been coded in the sequence that
corresponds to their correct position in the final coding. This sequence
is Boxes 1, 2, 4, 5, 6, 7, and finally, 3. Box 2 must immediately follow
Box 1 as it corresponds to the negative branch of the transfer. Then con
tinuing from Box 2, the flow lines go to Boxes 4, 5> 6, and 7. We may in
sert Box 3 after Box 7 since Box 3 is reached from Box 1 by the satisfied
conditional transfer, and then Instruction 3 of Box 3 sends the control to
Box 4 as is desired.

-71-

Problem 7
We propose to evaluate the integral (x)dx where a < 1. We

ass-ume that f(x) is continuous in the interval O^x^a and that the
value of the integral as well as the value of any intermediate steps of
the integration lies in the range of the computer. The value of the in
tegral is approximated by Simpson's method for stepwise integration. The
function f(x) is given at the equidistant values xq(=0), x^, x^ *•* x^.(=a).
The values f(x0) f(x) f(x^) ••• f(xj) are stored in the memory at I+l
consecutive storage locations. If x is taken as the interval between the
various x^'s, then Simpson’s Rule may be stated as
^af(x)dx + er =^^(xo)+4f(x1)+2f(x2)+l^f(x3)+ ••• +ltf(xI_1)+f(xI],

where £r is the error term. To evaluate an integral, by Simpson's Rule
f(x) must be determined at an odd number of x values (an even number
of Ax intervals).

The integral is evaluated by using the following inductive process:
0

I 1.1 + T
where (*0 = 0, Xj = a) to the desired accuracy.

The inductive scheme that is chosen to describe the integration is
perhaps neither the simplest in coding nor the shortest in computing time.
It is used principally because an Innovation is introduced into the flow
diagram.

-72-

Three decisions must be made in traversing the induction:

f(x^) is added to the partial summation.

As previously discussed, the conditional transfer instruction
allows the control to make a decision and follow one of two paths, dependent
upon the decision. To make three decisions as outlined above, two alterna
tive boxes could be used in sequence. However, let us approach the problem
in a slightly different manner.

(i) If i = 0 or I, then Ax3
(ii) If i is odd, then 4a x

3
(iii) If i is even, then 2Ax

3

Ax3 f.(x°)-The first time through the induction it is desired to form
Ax J Ax ^As -z- f(x) is formed, the next step of the induction is to form Ifc- f(x)° .Ax ^3 ‘'“o'........1 '3

and as f(x^) is operated on it is known that next 2-y is to be
formed. In fact, at each passage through the induction it is known what
the forthcoming traversal should form. Let us, then, represent three
operation boxes which for convenience we call Boxes 2, 3> and 4. Box 2
forms fA^; Box 3 forms f^); and Box k forms
Rather than use a sequence of alternative boxes to direct the control to
the correct operation box (Box 2, 3> or according as !_ = 0 or I,
i = odd, i = even ^ o nor l), a transfer instruction is used to which is
supplied, at the appropriate time, the various addresses corresponding to
the entrance points of Boxes 2, 3> or k. To simplify the discussion this
transfer instruction is called A. In the initial traversal of the induction,
\ is to have an address that sends the control to Box 2 where it forms
^y- f(xQ); hence in setting up the initial, step of the induction the address
corresponding to Box 2 is supplied to \. At the time that the control is
operating in Box 2, it is known that the next step of the induction should
form —y- f(x^) which corresponds to Box 3; hence as part of the operations
performed in Box 2 the address for Box 3 is supplied to A. Similarly,
when the control traverses Box 3 it is known that the next traversal of the

2 Ax^ f(xg); hence Box 3 supplies.induction should involve Box k which forms
among other things, the address of Box k to A* And when in Box k, the con
trol should return to Box 2 on the next traversal so A is supplied with
the address corresponding to Box 3. The final step of the induction is to
form
until i=I, at which time the last term is formed.

y fCxj). This is done by a discrimination on i-I, which is negative

-73-

The position of the flow diagram at which the transfer instruction \
occurs is represented by an interruption in the flow line with a circle con
taining the Greek letter The circle has one point of entrance but no
point of exit. See Figure 13. In general, the Greek letter is not restricted
to \ and any letter could be used. The various points to which the transfer
is to send the control are also represented by circles which contain the same
Greek letter as the transfer circle. These Greek letters are, however, in
dexed for identification. These circles have no point of entrance but one
point of exit as shown in Figure 14.

©-

Figure 13. Figure 14.

Such a set of symbols is said to represent a set of variable remote
connections.

The appropriate addresses are supplied to the transfer Xl in various
operation boxes by making use of the substitution instructions. The opera
tion is denoted as where we enclose the \^'s in circles to
show that they axe addresses which are concerned with variable remote con
nections. is interpreted as meaning that the address repre
sented by is to be supplied (substituted) into the transfer instruction \.

The flow diagram includes the use of the variable remote connections. The
flow diagram is shown in Figure 15.

At any step of the integration is used to represent the sum of the
terms in Simpson's Rule up to that point. When the integration is completed

represents the value of the integral to the desired accuracy.
Box 1 of the flow diagram sets ^ to 0 as an initial step for the

induction. The variable of induction i is set to 0. \ is set to so
that the first traversal of the induction will be through Box 2.

Immediately following Box 2, X is set to so that after going
through Box 2 the next traversal will correctly include Box 3. In Box 3, X
is set to X2 so that the following traversal includes Box 4, and so on until
the induction is completed. At each traversal of the induction only one of
the boxes, 2, 3* or is included.

A.1:2-
A.2:0

2,= 0 to A.I
0 to A.2 X=X2if i/Oorl, but i even

X = X, if i odd

cr, = ^2- f (xj) to A.3

X MX.

f(Xi) to A.3
A.I

X\ =5!i-i+ cr to A.I

i+l-Ii +1 to A.2

ST =i:T.l+^f(xT)toA.I

A.I-* ./fUJdx —

INTEGRATION by SIMPSON'S RULE

FIG. 15

-75-

Box 7 discriminates on the quantity i+l-I. This means that the con
ditional transfer is effective when i = 1-1. At this time) T , hasI-l <-
just been formed. The final step of the induction, the formation of ^
is done in Box 9.

Storage is needed to store the numbers corresponding to the addresses
^l , ^2 ' 1111686 addresses are stored as position marks and

B.l: (\1)0
B.2: (k2)o
B-3= (^>0

The following storage is also needed:
B.4: (1)
B.5: (I)
B.6: Ar

o
o

The values of f(x^) are stored in ■ 1+1 successive locations where C.O
stores C.l: f(x1) ••• C.i: f^) ••• C.I: fCx^.). The value of the
initial address C.O is needed and it is stored in

B.7: (C.0)o

as a position mark. Any particular value f(x^) is brought into the arith
metic unit by forming its address as

(C.i)o = (C.0)o + (i)o in R2
The address C.i is then substituted into the instruction which is to operate
upon the corresponding f(x^).

The coding is:
Box 1.
1. a—*Ac 0 0 to R2 « —
2. A—.m A.l 2. 1 =0 to A.l
3. A—«a A.2 0 to A.2
4. m—»Ac B.l OO to R2 v 1 0
5. S—»m 1,11 X1 to (8-19)11
6. m—*Ac B.7 (C.O) to R20
7. m—»Ah A.2 (c.i)o = (c.0)o + (i)Q in R2
8. S—*m 1,10

Ax C.i to (8-19)10
9. m— b.6 ■y to R4
10. X [c.i] f (xi) in R2
11. T U]

-76-

Box 2.
1. A—«n A.3

Box 5.
1. m—»Ac B.3 (\-) to R2 v 3 o
2. S—wn 1,11 \3 to(8-19)ll

Box 6.
1. m—»Ac A.3 ai to R2

2. m—>Ah A.l / . = / . . + o. in R2i i-l i r-
3. A—»m A.l 2^ to A.l

Box 7.
1. m—*Ac A.2 (i) to R2 ' 'o
2. m—>Ah B.4 (i+l) in R20
3. m—»Ah- B.5 (i+l-I)o in R2
k. C 9,1

Box 8.
1. m—►Ac A.2 (i) to R2 ' o
2. m—»Ah B.4 (i+l)o in R2
3. A—►m A.2 (i+l)o to A.2
4. T 1,6

Box 3.
1. L(2) a± = ^ f (x1) in R2
2. A—nn A.3 to A. 3
3. m—»Ac B.2 (\2)o to \2 to (8-19)11
4. S- >m 1,U
5. T 6,1

Box 4.
1. L(l) ai = f (xi) in R2
2. A—>01 A.3 to A.3
3. T 5,1

ro A.3

to A.3

-77-

Box 9. Ax1. m—»Q B.6 -j- to R4
A x2. X C.I y fCXj) in R2

3. m—»Ah A.l Y.J = fin 32

In Boxes 2, 3> and 4 the quantity ^y f(x^) is needed. Rather than

code this separately in qach box, it is coded immediately preceding the
variable transfer X. This is coded in Instructions 6 through 10 of Box 1.
The transfer instruction at the end of Box 8 transfers the control into In
struction 6 of Box 1 for this computation is to be done for all traversals
in the induction. The coding of Boxes 2, 3> and 4 starts with the quantity
^ f(xi) in R2.

There are 38 instructions in all. Pairing these into words gives 19
words of instructions.

The word coding is:
1. a—*Ac 000 A—►m 028
2. A—►m 029 m—►Ac 021
3. S—*m ' 006 m—►Ac 027
4. m—►Ah 029 S—►m* 005
5- m— 026 X [J
6. T' L] A—►m 030
7. m—»Ac 023 S—hh 006
8. m—Ac 030 m —►Ah 028
9. A—»m 028 m—►Ac 029
10. m—*Ah 024 m—*Ah- 025
11. C 018 m—►Ac 029
12. m—»Ah 024 A—►m 029
13. T» 003 L(2) 002
14. A—*m 030 m —»Ac 022
15. S—*m 006 T 008
16. c] L(l) 001
17. A—wa 030 T 007
18. m— 026 X (c.i)
19. m—►Ah 028 A—►m 028
20. Stop

-78-

21. <Vo ' (6>o
22. ("24 - (16)
23. <"3>o ■ (13)
24. Wo
25. Wo

2?. (C.0)q
28. A.l
29. A.2
30. A.3
The transfer instruction X must transfer the control at various

phases of the problem into Box 2, Instruction 1; into Box 3> Instruction 1;
and into Box h. Instruction 1. As the coding was done the transfer was
fixed as a prime transfer since Box 2, Instruction 1, and Box 3> Instruction 1
each were on the right side of their respective words. The first instruction
of Box k, however, naturally falls as the left side of an instruction word.
This meant that the left half of Word 16, the start of Box 4, was left blank
and Box 4 was started as the right-hand instruction. Perhaps by shifting
the arrangement of Boxes 3, 4, and 9 this could have been avoided.

A better method of avoiding this would be to use the half word substitu
tion instruction. In Words 21, 22, and 23, where the numerical values of
X^’s are stored, rather than storing just the addresses the following should
be stored:

21. (X,) = CBOO6CBOO61 o
22. (X2)q = CA016CA016
23. (*-3)0 = CB013CB013

Then by a half word substitution the order as well as the address of the trans
fer instruction may be altered. Box 4 would now start with the left-hand in
struction of Word 16 which saves the previously wasted half word.

In the right-hand instruction of Word 18, the address C.I is inserted
in parentheses. C.I is a known address, but for the example no numerical
values were assigned for the C.i storage, nor was the number of intervals
I determined. For this reason the C.I is indicated in parentheses rather
than as a numerical, address.

The addresses of the instructions in the word code are written as
three characters. Writing numerical addresses in this fashion tends to
avoid errors in transcribing the word code into the numerical code as
addresses are represented in the numerical code by three characters.

Problem 8
Although the computer operates with a fixed binary point, at

times it is advantageous to use a floating binary point. The float
ing point method (hereinafter referred to as FPM) allows each number
to be expressed as a fraction and a characteristic (an exponent).
For example the decimal number

7798.5^3210
or its equivalent

.7798543210 x 104
expressed in floating point notation would be

.7798543210, + 4
where the +4 is the positive exponent of 10 associated with the number.
Similarly, a binary number

1011.1001
expressed in floating point notation would be

.10111001, + 100
where the +100 is the positive exponent of 2 associated with the number.

The discussion here will pertain only to floating binary point
operation. Although the computer operates with binary numbers, there
are floating point schemes where the characteristic (exponent) may be
expressed to a base other than the base two, such as the more familiar
decimal base. Since the computer operates with binary numbers, it is
inherently easier to use the floating binary point scheme, or at least
a scheme where the base of the characteristic is a power of two, such
as the octal or hexadecimal base. For much of the floating point
operation a choice of expressing the characteristic to a base 16, 32,
or even 128 might simplify floating point procedures.

The need for FPM may arise where the ranges (the maximum and mini
mum) of the quantities entering into the computation are not known with
in reasonable limits; or where the range of the quantities is so great
that the scaling of numbers for fixed binary point operation causes un
due loss of the significant figures of the numbers. When a problem is
scaled for fixed point operation, the loss of significant figures caused
by the numbers becoming too small is as important a consideration as is
numbers becoming too large.

-81-

The use of the FPM is, in general, discouraged for must compu
tation as it greatly slovs down the effective computer speed. In
most problems, scaling may be accomplished without undue loss of
significant figures. In cases where the scaling is difficult to
accomplish, a scheme of self-adjusting scaling or the use of scaling
checks may be employed as an aid to scaling.

Addition is chosen as the example for FPM. The other operations
are accomplished by a somewhat similar scheme.

To add two numbers that are represented in floating point nota
tion, the exponents must first be made the same. This may be shown
by the following decimal example:

. -753, 3
•325, 2

These numbers are
.753 x lo|
.325 x icr

and for the numbers to be summed, the powers of 10 must be the same;
therefore,

.753 x 10|

.0325 x 103

.7855 x ioi
To do the operations in the computer, all numbers must be less

than 1. The smaller exponent must always be made equal to the larger
as this has the effect of making the number whose exponent is in
creased, smaller, which keeps it less than 1.

The addition operation is accomplished by the computer as follows:
(i) The exponents are compared. If they are not the same, the

smaller exponent is increased. The difference between the
exponents is the amount by which the smaller is increased.

(ii) For each increase of the exponent by 1, the number should be
multiplied by 2~ . A multiplication by 2~ corresponds to
the number being shifted right by 1.

(iii) After the smaller number has been adjusted, the addition is
done. The exponent of the sum is the same exponent as the
numbers, unless the sum is greater than 1. In this case
the sum is shifted right 1 and the exponent is increased by 1.

-82-

For example:
a = .11111101, 100
b = .10110010, 011
s

The exponent of b is 1 less than the exponent of a; there
fore b is shifted right 1, and 1 is added to its exponent.
Now

a = 0.11111101, 100
b = 0.01011001, 100
s = 1.01010110, 100

The sum of the two numbers is greater than 1 so s is
shifted right 1 and the exponent is increased by 1.

s = 0.10101011, 101
In the computer, if the sum of the numbers is greater than 1, it

cannot be adjusted simply by a right shift of 1 as indicated above
since the sign bigit propagates in a right shift. To avoid this dif
ficulty, the addend and augend are each shifted right by 1 and their
exponents increased by 1 before the addition is done. Then no spillage
can occur in the addition.

Numbers to be operated on by FPM are adjusted into a standard
form where the first significant bigit of the number is in the 2~^
bigit position. All fractions F are therefore in the range

1/2 < F < 1
Floating point numbers have 27 significant bigits which, with the sign
bigit, occupy bigit positions 0 through 27. Positions 28 through 39
of the word are used for storing the exponent, and a number and its
associated exponent are stored in one word. The 27 bigits of the num
ber correspond to about 8 decimal digits. The 12 bigits allowed for
the exponent are more than ample; however, 12 are used since the bigits
(28-39) may be conveniently manipulated by the s—»m' instruction.

Positive and negative exponents are allowed, and the 12 bigits
(28-39) for expressing the exponent n give a range

- 2048 <n c 2048
Negative exponents are represented as complement numbers. The first
bigit of the exponent is considered its sign bigit. The exponent n is
an integer and it is represented as n-2~

-83-

We propose to form the sum of two numbers a and b with exponents
Of and j3 , respectively. The fractions a and b are in standard nota
tion, that is

1/2 <: a, b < 1
After the addition, the sum s is adjusted to standard form.

As a first step of the procedure, a and b are each shifted right
by 1 and their respective exponents are increased by 1. This Insures
that the sum s = a + b <: 1.

The difference in the exponents is determined. If the difference
is greater than 27, the sum is set to the value of the number with the
larger exponent. A difference of more than 27 means that the smaller
exponent must be increased by at least 28, and the number associated
with the exponent must be shifted right the corresponding number of
places. Since the numbers are represented as a sign bigit and 27 sig
nificant bigits, a number shifted right by 28 places can make no con
tribution to the sum. If the difference in the exponents is less than
28, the smaller is adjusted to be equal to the larger. The sum of the
numbers is then formed and put in standard notation. We now examine
the flow diagram shown in Figure 16 . The storage of the problem is:

A.l: a (0-27)Of(28-39)
A.2: b (0-27) £(28-39)
A.3: s (0-27)<r(28-39)

Box 1 shifts a and b right 1 and increases each of the exponents.
Box 3 discriminates on the difference of the exponents to determine which
exponent is the greater. The problem is arranged so that the number
with the larger exponent must be in location B.l and its exponent must
be in B.3. If cr > £ no changes of storage need be made. If cr < £
then the positions of a and b are interchanged and£tl is put into B.3.
This is done in Box 4. Box 5 discriminates on the difference of the ex
ponents to see if this difference is greater than 27* If the difference
is greater than 27, the sum is set to a, the number with the larger ex
ponent. If the difference is less than 28, the sum is

s = a + 2‘ltf“^b

and the exponent is the exponent of a. A discrimination is made on the
sum s to see if it is in standard form. If it is not, the sum is shifted

-84-

Start

S = S:

S = a to A.3A.3: S (ISi -28)2'

or +1 —►0%

S to (0-27)A.3
<r to (28-39)A.3

S = a+2 b to A.3

<^>-2~ll=(jQ +1)2~11 to B.3

b' = 2"1 b to B.2

(cr+l)2-11 to B.3

(/3+I)2'm to B.4

FLOATING POINT ADDITION

FIG. 16

-85-
left vmtil the first significant bigit is in the 2*1 bigit position.
This is done in Boxes 7 and 8. Box 9 combines the sum and its ex
ponent and stores them in A.3.

The storage locations B.l, B.2, B.3, B.4, and B.5 are needed to
store intermediate values during the computation.

Rie coding is:
Box 1.
1. m—►Ac A.l a (0-27) ,cf(28-39) to R2
2. R(l) a* = 2_1a in R2
3. A--MB B.l a' to B.l
4. m—►Ac A.2 b(0-27) ,/Q(28-39) to R2
5- R(l) b' = 2_Ib in R2

6. A--MB B.2 b* to B.2
7. m—►Ac A.l a (0-27) ,0(28-39) to R2
8. L(28) CT-2-11 in R2
9. a—►Ah 2-11 (cr+l)2"i;L in R2
A. A—»m B.3 (of+l)2” to B.3
B. m—►Ac A.2 b(0-27) ,^3(28-39) to R2
C. L(28) /3.2-11 in R2
D. a—*Ah 2”11 ()9+l)2“11 in R2
E. A—►m B.4 (£+l)2_11 to B.4

Box 2 •
1. m—►Ac B.3 (of+l) -2-11 to R2
2. m ——>Ah- B.4 b=(cC-fi)2~11 in R2
3. A—►m B.5 a to B.5

Box 3 •
1. C 5,1 8 in R2

Box 4 •
1. m—►Q B.2 b' to R4
2. m—»Ac B.l a* to R2
3. Q >m B.l a = b1 to B.l
4. A—>m B.2 b = a' to B.2
5. m—►Ac B.4 V2"11 =(j8«-i)*2"11 to R2
6. A—►m B.3 <T0.2‘ to B.3

-86-

Box 5*
1. m—*AcM B.5
2. a—♦Ah -28*2
3. c 10,1

Box 6.
1. m—►AcM B.5
2. R(8)
3. S-MU 6,5
4. m—►Ac B.2
5. R(n) im

6. m—►Ah B.l
7. A—*m A.3

Box 7.
1. m—>AcM A.3
2. a—►Ah -2-1
3- c 9,1

Box 8.
1. m—►Ac A.3
2. L(l)
3 • A— ->1H A.3
4. m—>Ac B.3
5. a—►Ah -2-11
6. A—►a B.3
7. T 7,1

Box 9.
1. m—►Ac B.3
2. R(28)
3. S—►a* A.3
4. Stop

Box 10.
1. m—*Ac B.l
2. A—►a a.3
3. T 7,1

| 812_11 to R2
(|d|-28)2"11 in R2

(ai.2'11 to R2
|8|*2-19 in R2

|d| to (8-19)5
t to R22"^U in R2
s = a + 2"^b in R2
o

6o to A.3

ISj^j to R2
|si| - 1/2 in R2

to R2
s.= 2s. in R2 i+x 1
0i-2"11 to R2

to A.3

’fi - (-v1)2'11 R2
ff1+1*2“^ to B.3

ff-2"11 to R2
o*2"39 in R2

a to (28-39)A.3

a to R2
8O a to A.3

-87-

In the coding of Box 1, the exponent is not cleared out of positions
28 through 39* These positions do not affect the answer. Hie numbering
of the instructions in Box 1 is done hexadecimally. There are E in
structions which corresponds to 14 decimally.

In the coding of problems for the computer, the numbering is done
hexadecfinally; therefore in all further examples the numbering will be
hexadecimal.

In Box 9, where s and a are combined, £ is already residing in
A.3* £ is brought into R2 and shifted right by 28 so that it is in positions
28 through 39 of R2. It is then sent to A.3 by means of a substitution in
struction, and A.3 correctly contains

s(0-27), 0(28-39)
The floating point addition as set up would not be practical to in

corporate into a large problem where many such additions are done. As
coded, 49 instructions are used, several of which are lengthy shifts. In
floating point routines, time becomes a determining factor and the routines
must be constructed with that in mind. There are several ways in which the
time involved in the present routine could be shortened. However, we are
interested at this time in demonstrating floating point procedures without
attempting to develop the most satisfactory scheme.

The present problem does not take into account a method of handling
a number that is zero. A way of doing this is not to allow an exact zero,
but to say that zero is to be represented as the fraction l/2, with an
appropriate negative exponent. The negative exponent needs to be at least
28 smaller than the smallest exponent encountered in the problem concerned.
An addition would treat this number as zero in forming the sum. The fraction
part as l/2 is suggested so that all numbers are represented in the stand-
cud notation.

The code in final form contains 25 words since there are k-9 instructions.
If the code starts at zero, 25 words would occupy addresses 0 through 19,
hexadeclmally. B.l, B.2, B.3, b.4, and B.5 are the addresses 1A through
IE, and A.l, A.2, and A.3 are addresses IP, 20, 21, respectively.

-88-

The code is:
0. m—*-Ac OIF R(l) 001
1. A— 01A m—►Ac 020
2. R(l) 001 A— 01B
3. m—>Ac OIF L(28) 01C
k. aL-^Ah 001 A—>m 01C
5. m—»-Ac 020 L(28) 01C
6. a—x-Ah 001 A— 01D
7. m—»-Ac 01C m—>Ah- 01D
8. A—m 01E C OOC
9. m—>Q 01B m—^Ac 01A
A. Q— 01A A— 01B
B. m—»-Ac 01D A— 01C
C. m—>AcM 01E a—>Ah FE4-
D. C 018 m—►AcM 01E
E. R(28) 01C S—►IIl, OOF
F. m—>Ac 01B r(3) 000
10. m—»Ah 01A A—►m 021
11. m—>AcM 021 a—►•All COO
12. C 016 m—►•Ac 021
13. L(l) 001 A—► ni 021
Ik. m—»Ac 01C a—►Ah FFF
15. A—»m 01C T on
16. l o 01C R(28) 01C
17. S—»m' 021 Stop

•
00H m—*-Ac 01A A—►m 021

19. T on
1A.
IB.
1C.
ID.
IE.
IF. a,cf
20. b,)3
21. sfo

-89-

Instruction 5 of Box 6 becomes the right hand instruction of OOF.
The substitution instruction (Box 6, Instruction 3) that substitutes the
address into Instruction 5 of Box 6 must be an s—>m' instruction as
is indicated. Instruction 2 of Box 6 must be changed to R(28) rather
than R(8) to accommodate the s—.

Problem 9
The standard 40 bigit number (including sign) provides sufficient

accuracy for must computation; however, certain problems may arise
where added precision is necessary. To handle such cases, multiple
precision routines must be used. These routines effect the basic
operations with numbers that are 78, 117, or k*39 (k = 1, 2 • • • K)
bigits in length. For the present purpose, which is to illustrate
such methods, only double precision (numbers 78 bigits in length) is
considered.

In the treatment of multiple precision numbers, some convention
must be adopted for the sign bigits of the auxiliary components, the
principal component having of course the same form as the standard
size numbers. A convenient pattern is to set to 0 the sign bigits of
all auxiliary components. Hence, for the double precision number x>.0,
the representation is simply

x — x * + 2 39x11
where x' is the principal component and x" the auxiliary one.

For x < 0, it should be represented as a 78 bigit complement,
the sign bigit of the principal component being 1 and that of the
auxiliary being 0 by our convention. This implies that the two parts
of (2- x) are

2 - x' - 2-39 and
1 - x"

The example chosen is double precision division, for it in itself
includes a double precision multiplication and subtraction. The division
is performed by forming first the reciprocal of the divisor to double
precision, followed by a double precision multiplication with the
dividend. We first consider double precision addition, subtraction and
multiplication.

A double precision addition
s = x + y

is done by first adding the less significant components x" and y". The
sum may be greater than 1. Recall that x" and y" each had a sign bigit

-91-

of 0 so that a 1 in the sign position of this sum indicates spillage
rather than a negative number. This spillage corresponds to a carry
into the 2 position of the more significant part of the sum; there
fore, we may write

s" = x" + y" (mod l)
The more significant part of the sum is

s' = x' + y' +€ Q
_^Qf 2 if carry present o ~ V 0 if no carry present

Finally, the double precision sum is
s = s' + 2“39s"

In order to form a difference of two double precision numbers,
the complement of the number being subtracted is first obtained. An
addition is then performed as indicated above.

In the double precision multiplication, the product
p = xy

is to be formed. For simplicity of discussion, first assume x,y^ 0.
Algebraically, the multiplication is

p = (x* + 2~3^x")(y' + 2"’3^y")
__ x»yi ^ 2™3^x**y^ 2”^x,y" ^ 2™*^^x**y^

Each term on the right has 78 bigits, so we may write the product
(neglecting roundoff on the extreme right) as

p - (x'y1) • + 2""3^(x'y1)" + 2”3^c,,y,), + 2”3^(x,y,,),

P' = (x'y')’

p" = (x'y')" + (x'V)' + (x'y")'
p" is formed first. In the partial summing, carries may be produced that_-agmust be added into the 2 position of p*. The summing is done in two
steps as

s = gx'y')"* (xV)'] (modi)

(1 if carry present
0 if no carry presentwith

-92-

p" = [s + (xV)'] (mod 1)

(1 if carry present
0 if no carry present

This completes the multiplication for x,y>0 and
p" = (x'y*)" + (xV)’ + (xV)' - «0 -
p* = (x'y*)' + 2"39(eo + €l)

p = p' + 2"39p”

In order to treat the double precision multiplication when either
the multiplier or the multiplicand is negative, we refer to the algebraic
derivation of the multiplication. (See chapter on Binary Arithmetic.)
A product uv is formed as

p = (io + u)(
where

. _ ri if u is negative ^o - Vo if u is positive

1 + v)

The product expanded is

P = I, + | + f v + uo o 2 + u + uv

40 i+op = |v+2 u-u+u+uv+2 |* o o
p(mod 2) = £0V + 2 - u + u + uv

If u is negative, = 1 and a term v appears in the product. A
correction of (2-v) is then necessary. For simple precision, if v is
negative the terms (2-u) and u are generated during the multiplication
and precisely compensate each other; hence, no correction term is neces
sary when v is negative. This compensation is not exact in double pre
cision, and a small correction is required. Now in a double precision
multiplication

a correction term of
P = xy.

2 - y
is necessary if x is negative (indicated by the sign of x'). All inter
mediate products involving x' have a correction added, namely the comple
ment of the multiplicand. The terms involved are

(x'y')' and UV)1

-93-

The term (x'y')" of course does not suffer any correction, and the
corrections as done by the computer are, respectively,

(2-y*) and (2-y")
Combining these two terms appropriately one gets the correction as
done by the computer for a negative multiplier x, namely

2 - y' + 2"39(2-y")
The true correction, however, should be

2-y = 2-y'- 2“39 + 2’39(l-y")
The most significant part of the correction term is 2~39 too large. It
is adjusted by subtracting 2-39 from (x'y')'. The least significant
part of the correction term is 1 too large. It is adjusted by setting
the sign bigit of (x'y")' to 0. (Less pedagogically, but more concisely,_oQit may be said that the computer correction is too large by 2” , and

-•30 .this is compensated by subtracting 2 twice.)
A negative multiplier which necessitates the above additional cor

rections may be detected by examining the sign of (x'y")'. always
has a sign of 0; therefore, if

(x'y")^ 0, then x<0
and 2“39 is subtracted from (x'y')' and the sign of (x'y")' is set to 0.
If (x'y") ' > 0, then x > 0
and no correction is necessary. If

(x'y")' = 0
and if y" = 0
then x^ may be negative, and examining (x'y")' will not indicate this.
However, in such a case, the correction as done by the computer is the
precise one and no further steps are necessary.

When the multiplicand £ is negative, the terms (x'y')' and (x"y')'
suffer the standard correction by the computer (as a negative
multiplicand is indicated by the sign of y'). We have seen above that
the single multiplication process which forms the products (x'y')' and
(x"y*)' generates pairwise the terms

x', (2-x') and x", (2-x")
The first pair compensate precisely; the second pair is really

2“39(x"+2-x") = 2(2-39)

-9h-

Ab before, this quantity must be subtracted from the collection to
obtain the precise multiple product, and again this is accomplished

_OQby subtracting 2 from the more significant part and 1 from the
less significant part. If

(x"y,).< 0 then yl< 0
and 2~^ is subtracted from (x'y')* and the sign of (x'^')' is set to 0.
If 0 then no correction is needed.

A double precision product involving sill necessary correction terms
is done as follows:
Form (x'y”)*. If

Form (xV)'. If

(x'y")' < 0

(xV")1^ 0

(XV)' < 0

* = 2 o
-39

then set sign of (x^")' to 0.
€o " 0*

*1 " 2-39
then set sign of (x'^')1 io 0*
e1 = 0.(xV)' ^0

Form (x^*)' emd (x^1)". Then form the stun
s = (x’y")1 + (xV)’*

If

p" is formed as

If

p* is formed as

and

s=>l
s < 1

-■39Cg = 2 then set sign of £ to 0.
€2 = 0.

p" = (xV')" + s*

p"^ 1 6^ = 2”^ then set sign of p" to 0.
•S'0-P"< 1

p* = (xV')’ - €0 - €1+ €2 + €3

p = p* + 2_^p".
We now return to the division process. The double precision quotient

Q = x/y
is to be formed. As a first step the reciprocal of £ is obtained to Jd

-95-

found by the iterative scheme
i/y*
2Zi - yzl

l/y.

Such a scheme is error-squaring; therefore if the guess ZQ is precise
to 39 bigits, Z1 is precise to J8 bigits. The scheme is shown to be
error-squaring by the following:

Multiply both sides of the above equation by -y. This gives
-yz1+l = SZf + fzl

Adding 1 to both members gives
X - yZ1+1 . 1 - 2Zty + ySzl

- (i - yZi)2
(1-yZ) is the error in the i approximation. The error (l-yZ. .) is

^ th i+xthe error of the (i+l) approximation which as indicated above is the
square of the error of the i approximation.

The reciprocal of y cannot be determined directly as it is greater
than 1. Hence, the reciprocal of the scaled quantity 2 y is found where

l/2 ^ 2I)y|< 1, hence |(2nf^y)”^]< 1.
The unsealed quotient is obtained in two steps. First x may be multiplied
by 2n, inasmuch as |x| < |y|; after the division a left shift of two is
then performed. The first guess Zq is formed as

Zq = 2"2/2V Eq.(l)
Z is precise to 39 figures; consequently Z. is precise to 78 figures, o J.
Z^ involves a double precision multiplication in the term

The subtraction
2Z - 22-2nyZ 2

o o

figures. The reciprocal of y is
Z = o

lim
L—» oo

Ji+1
Ji+1

is not a true double precision subtraction as 2Z contains Just 39 figures.2 2 0A double precision complement of 2 *2 yZo must be taken however. Note
that a factor 22 is incorporated into the subtrahend in the above subtraction.

-96-

This is necessary because of the 2 ^ factor introduced in forming Z in
E<1* (l). Using the quotient

= Z1 * X
is formed by a double precision multiplication. Then

Q = 2Q1
Since Q is formed by a left shift of 2, only 76 bigits are determined
in Q rather than the desired 78.

We now discuss the flow diagram of Figures 17 and 18. Boxes 1 and
2 of the flow diagram adjust x and y so that

i/2$|y)<i
Box 4 stores y and into the four appropriate locations to be

used by the double precision multiplication routine. Since two double
precision multiplications are required and since they are at two different
locations on the flow diagram, the multiplication routine is arranged so
that it can be used from any of several places. Four locations are re
served for the factors in the multiplication and upon completing the multi
plication a variable remote connection is set as an exit point from the
routine. Box k also sets the exit from the multiplication as(<r)=
which corresponds to the first instruction of Box 5*

Box 5 forms and then sends Z^ and x to the appropriate locations
for the multiplication routine, and the exit is set as (^) = which
corresponds to the first instruction of Box 6.

Box 6 shifts left by 2 to give the desired Q.
The multiplication routine is contained in Boxes 7 through 14, num

bering hexadecimally. The boxes follow the multiplication procedure as
outlined; hence, no further discussion is necessary.

The storage of the problem is:
A.l:
A.2:

A.3: y‘
A.4: y"

The number 2-39 is needed, and it is stored in A.5 as
A.5: -2"39

The addresses and flT^ need to be stored. They are stored as posi
tion marks at addresses A.6 and A.7.

A.6:
A.7: (<r2)0

DOUBLE PRECISION DIVISION

FIG. 17

B-2- P

C.5= €,

p"= S+(uV')' to B.2

C.5: €

C.2: S

(uV)' toC.3

= 0 to C.5

S=(u" v'V+tu'vTtoC^

p' =(u,v'),+ €, to B.l

€, ~ €n+0 to C.5

(uV'VDS toC.3

6^= -2‘39to C.5
Set exit (or) to(orj)

(S) D S to C.2
= +2"39 to C.5

to C.5

DOUBLE PRECISION DIVISION

FIG 18

Ten words of intermediate storage are needed for the computation. This
storage is designated as

B.l C.l
B.2 C.2
B.3 C.3
B.U C.4
B.5 C.5

The coding is:
Box 1
1. m—»AcM A. 3 |y'lt°R2
2. a—»Ah -1/2 | |- 1/2 in R2
3. C 3,1

Box 2
1. m—>Ac A. 4 y" to R2
2. L(l) 2y^J in R2
3.
4.

m—>Q
L(l)

A. 3 y^ to R4
2(y^ + 2"39yMn)

5. Q—►m A.3
6. R(l)
7. DS
8. A—»m A. 4
9. m—>Ac A.2 x" to R2 n
A* L(l) 2x" in R2 n
B. m—yQ A.l x^ to R4
c. L(l) 2(x* + 2"39x”)

' n n'
D. Q—>m A.l
E. R(l)
F. DS
10. A—wn A.2
11. T 1,1

Box 3
1. a—»Ac 1/4 1/4 to R2
2. >• A.3 Zq = 1/4 ♦ y’
3. B.5

in R4 and R2
y'n+l toA'3

rnfl t0A-4

in R4 and R2
xn+l t0 A*1

xn+l toA-2

Z to B.5 o
in R4

-100-

Box 4
1. m—*Q A.3 y* to R4
2. Q—>m B.l y* to B.l
3. m— A. 4 y" to R4
4. Q— B.2 y" to B.2
5. hi— B.5 Z to r4 o

6. X' B.5 (!?)• in R2, (Z2)" in R4

7. A— B.3 <*o)’ to B.3

8. Q— B.4 (z2)" to B.4
9. m—>Ac A.6 to R2
A. T (fi)

Box 5
1.
2.
3-

m—>Ac
L(l)
m—»Q

B.2

B.l

(yZp" to R2
2(yZ^)" In R2
(yZ2)' to R4

4.
5-

L(2)
Q—mu B.l

22(yZ^)' in R4, 23(yZ2)''' in R2
(22yZ2)' to B.l

6. R(l) (22yZ2)" in R2
7-
8.

DS
A— B.2

(22yZ2)" in R2
(22yZ2)" to B.2

9- m—»Ac- B.l -(22yZ2)• to R2
A. m—»Ac A.5 -(22yZ?)' - 2-39 in R2
B.
c.

m—>Ah
m—*Ah

B.5
B.5

Z - (22yZ2)' - 2"39
O O o oZ'l - “o - (2

in
i _

R2
2*’39 in R2

D. A—mu B.l Z* to B,.1
E.
F.

m—>Ac-
DS

B.2 2 - (22yz|
Z’^ = 1

2y to R2
°- (22^)” in R2

10. A—wn B.2 Z" to B.2
11. m—»Ac A.l x' to R2
12. A—«n B.3 x' to B.3
13. m—*Ac A.2 x" to R2
14. A— B.4 x" to B.4
15- m—»Ac A.7 (cr2)o to R2
l6. T (/3>

-101-
Box 6
1. m—»Ac B.2 Qj to R2

2. L(l) 2QJ in R2

3. m— B.l in R4

4. L(2) Q* in R4, 2Q" in R2

5. Q— B.l Q' to B.l
6. R(l) Q" in R2

7. DS
8. A —>m B.2 Q" to B.2
9. Stop

Box 7
1. S— 12,4 (<r.) in R2 i o to (8-19)11,4
2. m—►Q B.l u* to R4
3. X' B.3 , (u'v')' in R2, (n’T')" in R4
4. A— C.l (uW*)’ to C.l
5. Q—►m C.2 (u*v*)*' to C.2

Box 8 -

1. m—>Q B.l u' to R4
2. X B.4 (u»v")V in R2
3. C 9,3

Box 9
1. m—>Q A. 5 € = -2"39 to R4

o
2. DS (u'v")^ in R2
3. A— c.3 (u'v")* to C.3
4. Q— c.5 €q to C.5

Box A
1. m—»Q B.2 u" to R4
2. X B.3 (u'V)' in R2
3. C B,3

-102-

Box B
1. m—»Q A.5
2. DS
3. A—»m C.4
4. m—*Ac C.5

5. m—>Ah 8006. A— C.5

Box C
1. m—»Ac C.4
2. m—>Ah C.2
3. A—►m C.2

Box D
1. C F,1

Box E
1. DS
2. A— C.2
3. m—>Ac c.5
4. m—>Ah- A.5
5- A—►m c.5

Box F
1. m—»Ac C.2
2. m—>Ah C. 3
3. A— B.2

Box 10
1. C 12,1

Box 11
1. DS
2. A—>m B.2
3. m—>Ac C.5
4. m—►Ah- A.55. A— c.5

-2"39 to R4
(u'VJ’DS in R2

(u'V)* to C.4
« to R2 o

= 6Q + (contents of R4)
to C.5

(u^v1)* to R2
S = (u’V)’ + (u’v')" in R2

S to C.2

(S)DS in R2

to R2
e2 = €1 + 2~39 in R2

S to C.2

«2 to C.5

S to R2
p" = S + (u’v")' in R2

p" to B.2

(p")DS in R2

«2 to R2
€3 = «2 + 2**39 in R2

p" to B.2

to C.5

-103-

Box 12
m—»Ac C.l
m—>Ah C.5

A— B.l
T [cr]

(x'y')' to R2
p' = (x'y1)' + in K2

p' to B.l

The double precision shift in Box 2 is done by placing twice the
less significant part of the number into R2. Its first significant bigit
is then in the sign position of R2. The more significant part of the num
ber is put into Rk. A left shift of 1 now shifts the 78 bigits correctly
as the sign bigit position of R2 fills into bigit position of R4.
The quantity in R4 is stored. The quantity in R2 is then shifted right 1
and the sign bigit is set to 0. This is done to keep the less significant
part of the number, the part in R2, in correct form.

In Box 5, the complement of 2 yZ^ is needed. Recall that the comple
ment of a 78 bigit number is

2 - 22yZQ2 = 2 -{(22yZo2)« + 2"39(22yZQ2)^

= 2 - (22yZo2)' - 2”39 + 2"39[l - (22yZo2)"]

Since the complement is to be added to a standard 39 bigit number, the
less significant part has only to be complemented as indicated and sent
into storage. The more significant part is complemented as indicated
and added to the 2Z and the result is sent to storage.o

In the multiplication routine (u'v")' and (uV)' are formed using
multiplication with round-off. This accounts for the possible contri-

-78butions from the neglected terms involving the coefficient 2~' . This
does not, however, always give a correct round-off.

Note that Box 13 is not coded. It is not necessary to code it if
the conditioned transfer of Box 8 goes to Box 9, Instruction 3« Since
(u'v")' is formed as a multiply with round-off, Rk contains 0. This 0
is set to and Instruction 4 of Box 9 stores it correctly. Instruction
3 of Box 9 stores the (u'v")'. Similarly, Box il< is not coded and the
conditioned transfer of Box A transfers into Instruction 3 of Box B.

Note the last two instructions of Box 4 and Box 5* Box 4 brings
(into R2 emd then transfers to the multiplication routine. Box 5
brings (into ^ and then transfers to the multiplication routine.

-104-

The first instruction of the multiplication routine then substitutes
the address or ^ as the case may be, into the transfer instruc
tion at the end of the multiplication routine.

There are, in all, 107 instructions in the code; which is 54 words.
The code is to start at Word 0; therefore Words 0 through 35# hexadecim-
ally, are the code. Words 36 through 3C are A.l through A.7# respectively.
Words 30 through 4l sure B.l through B.5# and Words 42 through 46 are C.l
through C.5, respectively.

The coding paired into words is:
0. m—sAcM O38 a—>Ah COO
1. C 0QA m—>Ac 039
2. L(l) 001 m—»Q 038
3. L(l) 001 Q—>m 038
4. R(l) 001 DS 000
5. A—*m 039 m—>Ac 037
6. L(l) 001 m— 036
7. L(l) 001 Q— 036
8. R(l) 001 DS 000
9. A—»m 037 T 000
A. a—»Ac 200 *• 038
B. Q—>m 04l m—>Q 038
c. Q—*m 03D m—>Q 039
D. Q—Mn 03E m—>Q 041
E. X* 04l A—>m 03F
F. Q—>m 040 m—>Ac 03B
10. T 020 m—»Ac 03E
11. L(l) 001 m— 03D
12. L(2) 002 Q—»m 03D
13. R(l) 001 DS 000
14. A— 03E m—>Ac- 03D

15. m—*Ah 03A m—»Ah 041
16. m—>Ah 041 A—>m 03D
17. m—>Ac- 03E DS 000
18. A—>m 03E m—»Ac 036

19. A—>m 03F m—>Ac 037
1A. A—»m 040 m—>Ac 03c
IB. T 020 0<ta 03E
1C. L(l) 001 m—>Q 03D

105
ID. L(2) 002 Q— 03D
IE. R(l) 001 DS 000
IF. A— 03E Stop
20. S— >m 035 m— 03D
21. X* 03F A—>m 042
22. Q— 043 m—>Q 03D
23. X 040 C 025
24. m—>Q 03A DS 000
25. A—>m 044 Q— 046
26. m—>Q 03E X 03F
27. C* 028 m—>Q 03A
28. DS 000 A— 045
29. m—>Ac 046 m—>Ah 800
2A. A— 046 m—>Ac 045
2B. m—>Ah 043 A—»m 043
2C. C 02F DS 000
2D. A— 043 m—>Ac 046
2E. m—>Ah- 03A A— 046
2F. m—>Ac 043 m—>Ah 044
30. A—>m 03E C 033
31. DS 000 A— 03E
32. m—>Ac 046 m—>Ah- 03A
33. A--Ml 046 m—>Ac 042
34. m—>Ah 046 A--Ml 03D
35. T* []
36. A.l X*
37. A.2 x"
38. A.3 y*
39. A. 4 y"
3A. A.5 -2-39 ppp ... FF
3B. A.6 (crl>o 0001000010
30. A.7 0001B0001B
3D. B.l 42. C.l
3E. B.2 ^3. C.2
3F. B.3 44. C.3
4o. B.4 ^5. c.4
41. B.5 46. c.5

-lo6-

Problem 10
The problems previously discussed have all been of an analytical

character where the efficiency of solution is dependent upon the speed
and flexibility of the arithmetic unit. We now consider a problem of
a combinatorial nature which falls into a class of problems where the
efficiency of solution depends on the flexibility of the logical con
trol. The problem is a simple sorting procedure.

A set of N numbers, subject to no degree of monotony whatever, is
to be sorted into a monotonic decreasing sequence. In order to simplify
the discussion, we asstime that the number of numbers to be sorted is

pN = 2
where P is a positive integer.

The sorting is accomplished by repeated meshings of groups of num
bers. Meshing is the process of combining groups of elements (numbers)
in a prescribed fashion. For the present sorting procedure we are
meshing groups two at a time. Two groups, each monotonic decreasing,
are meshed into a single monotonic decreasing group; e.g., groups £ and
1) of length b and c elements, respectively, (where the elements of t
and 7] are In a monotonic decreasing sequence) are meshed into a group

V = £+7)

of length b + c elements where V is also a monotonic decreasing sequence.
Since we have restricted the N numbers to be sorted to be

pN = 2
we may without further loss of generality say that any two groups to be
meshed are to contain the same number of elements.

The procedure is as follows: Consider the original sequence of num
bers as N groups, where each group contains one element. These N groups
are then meshed two at a time into N/2 groups each containing two elements.
The N/2 groups are meshed two at a time into N/4 groups each containing
four elements. This meshing process is continued until the sorting is
complete (one group of N elements is formed). In each of the meshings
the monotonic decreasing sequence is preserved. Hence, for the various
meshings there are N/2* groups of 2* elements each, where i (=1,2•••N/2)
specifies the particular meshing.

-107-

The meshing of two groups | and Tf is done as follows. Each
group contains J numbers and the numbers belong to and y be
long to 7} . The groups are monotonic decreasing so

where i,j (=1,2,**J)xi 5*1+1 “4 yj5yj+i
The groups | and 7) are to be meshed into a group v with elements

n (=1,2*•*2J)
called ▼ where n

v > v . in n+1
The elements x^ and y^ are compared. Then

if (1) xl5 yl’ vl - xi
or if (2) x1< V1 = yl

If (1) holds, then is compared with y^. Then

if (3) V2 = X2
or if W X2 < yl> V2 =

However, if (2) holds rather than (l), x^ is competed with y^. Then

if (5) S y2. v2 = xx
or if (6) *!< y2. V2 = y2

The meshing of elements :ici and y^ follows the above:

if (a) Xi^yj' vn - xi (n = i + j - 1)

or if (b) xi<yj. v = y. n
If (a) holds i and n are increased by 1 emd the process is repeated.
If (b) holds and n are increased by 1 emd the process is repeated.
The meshing continues until either all of the numbers or all of
the numbers y. are incorporated into V J The remaining elements of
the non-exhausted set are then directly included as the last elements
of V .

A meshing of two groups, each containing J elements, needs at most
2J - 1 comparisons of the elements to complete the meshing.

The number of elements involved in a sorting may often exceed the
capacity of the electrostatic memory; hence, we consider the problem
which requires the magnetic drum. However, we further simplify the dis
cussion and assume that each drum track contains 6k (=2^) words rather
than the actual 50 words.

-108-

Once the sorting procedure given here is understood, it is
easily generalized to any number of elements and to any number of
words per drum track; e.g., 50 in our instance.

The N numbers subject to no degree of monotony whatever are
stored on the drum on M consecutive tracks. The numbers on the drum
are considered as two sets, and Y^, where is the first N/2
numbers on the drum and Y is the remainder. X^ and Y^ each contain
N/2 groups of one number. The groups of X^ are meshed with the groups
of Y^ to form a set of N/2 groups of two numbers each. To accomplish
this initial step, the first track (64 numbers) of X^ and the first
track of Y^ are brought into the memory. The first number of X^ is
meshed with the first number of Y^ and the two are stored properly
in the electrostatic memory. This is repeated with the second elements
of the sets, and so on. When 64 numbers have been meshed into groups
of two, the 64 numbers are sent to the first drum track of the second
set of M tracks on the drum; when 64 more numbers have been meshed
they are then sent to the drum, and so on, until the entire set X^
has been meshed with Y^. Whenever the 64 numbers from either the
set X^ or Y^ have been exhausted, another track of 64 numbers of the
appropriate set is brought into the memory. The set consists of
N/2 groups (each of two elements) where each group is a monotonic de
creasing sequence.

The set is now considered as two sets X and Y^, where X^ is
the first N/2 numbers and Y^ the remaining numbers. X^ and Y^ each
contain N/4 groups (of two elements) and each group has the desired
monotony. The groups of the set X^ are meshed with the groups of the
set Yg to form a set of N/4 groups (of four elements) where each
group is a monotonic decreasing sequence.

We then have the following inductive process: Two sets of
numbers X and Y each contain N/2^ groups (of 2^"^ elements). The

P P
groups of Xp are meshed with the groups of Y^ to form the set V^,
where V contains N/2^ groups (of 2^ elements). The set X . is

-109-

the first N/2 numbers of V .and Y the remaining nmbers. X n and
/ p+1 p P*1 p P+1

Y^^ each contain N/^r groups (of 2V nvunbers).
For a further discussion and elaboration of the sorting procedure

we draw the flow diagram.
The flow diagram contains three induction loops. They are:
(i)

(ii)

(iii)

cycles. It is used in connection with the sets X and YP P

the induction concerned with the mesh cycles
that concerned with the meshing of a group within the sets
during any mesh cycle
that concerned with the transfer of elements between the
memory and the drum

Eleven distinct indices (variables of induction) are needed in
the flow diagram to describe the inductions.

The index p (=0,1,2••-P) describes the induction over the mesh
It keeps

account of the mesh cycle. £ has no relevance other than as an index,
and it need not be stored.

The index n (=1,2*••N), where N is the total number of elements
being sorted, indicates the current number of elements that have been
meshed during any mesh cycle p. It is also used in a discrimination
to indicate the completion of the p^*1 mesh cycle; therefore, n is a
stored quantity.

The indices i., j_, and k describe the induction concerned with the
meshing of the groups within the two sets.2The index k (=1,2,2 •••) indicates the number of elements in
the groups of the two sets X^ and Y^. k and £ are simply related:
during mesh cycle £ the number of elements in the groups within X
and Y is P k = 2 .

The indices i. and indicate the elements x. and y. of the groups
The indices i and j are used in discrimina-within the sets X and Y P P

tions with k to indicate the completion of the meshing of any two
groups within the sets; hence, i, j, and k are all stored quantities.
Rather than using i^ and as indices which range over i,j (=1,2* ••k).

-110-

we let i and ^ be such that i, j (=1,2* • »N/2). That is, and ^
range over the total number of elements of X and Y . The dis-p p
crimination of i^ and csumot then be done directly with the index
k, since they are not reset to 1 at the time they become equal to k;
in fact, they continue increasing until they reach N/2. To accomplish
the desired discrimination, an index K (=k, 2k, 3k«*»N/2) is intro
duced; and when

1 ^ i» J ^ k . then K = k
k+l^i, j < 2k then K = 2k

and so on, until K = N/2.
At the completion of each mesh cycle |>, the index k is doubled;

i.e., when £ is increased by 1 to become p»l, then k = 2^ is increased
to k - 2P+1. This index k is used to determine the completion of the

Psorting. The sorting is complete when p = P, at which time k = 2 = N;
hence, a discrimination on k - N becomes positive for the first time
when k = 2*>, and the process is terminated.

The indices V_, and n_^ are the indices describing the induction
concerned with the drum emd i', j', n* (=1,2*••64). The indices i' and
j' indicate when the 64 elements x^ or y^ which are in the memory are
meshed. They also keep account of which two elements of the 64 elements
x^ and y^ are being meshed. Whenever i* or j* reaches 64, a new track
of elements x or y., respectively, is brought from the drum into theJmemory. The index n' indicates the number of elements xi and y^ that
have been meshed and stored in locations in the memory. When n* reaches
its maximum value, the 64 elements which have been meshed and stored
in the electrostatic memory are subsequently sent to the drum. The in
dices i', j', and n' are needed in discriminations and in, addresses;
hence, they are stored numbers. There are three indices concerned with
the drum which are, in themselves, addresses. They are Tx, Ty, and Tv.
Tx is the address of the drum track which contains the 64 elements of

/

the set Xp that are to be sent into the memory. Ty is the correspond
ing drum address for Y . The index Tv is the address of the drum trackPupon which the 64 meshed elements are to be stored. Now that we have
defined the necessary indices, the flow diagram of Figure 19 may be
examined in detail.

-111-

In what follows, decimal and hexadecimal numbers both enter into
the discussion. The hexadecimal numbers usually refer to instructions
and box numbers, hence entering only in the role of "labels" or "names."
The decimal numbers are usually used where the numerical character of
the number is significant. However, at places where there might be
confusion if the number is intended to be decimal it is underlined.

Boxes 1, 2, and 3 set up the necessary indices. Boxes b, 5, 6, rJ)

8, 10, and 11 are the boxes of the meshing of the groups within the sets.
Box 12 is an alternative box that indicates when the N elements have all
been meshed. Boxes A, B, C, D, E, and F are the boxes concerned with the
transfer of numbers between the drum and the memory. Boxes 13, 15, and
16 set up necessary values at the completion of one meshing of the sets
X and Y in order to start the next cycle in the meshing. Box 14- deter-
P P

mines when the entire process is completed.
Box 1 sets the index k = (l)0 since the first meshing is in groups

of one element. It sets the initial drum addresses for Tx, Ty, and Tv.
It also sets the address <©=©• This is discussed in more detail

when Boxes 15 and 16 are discussed.
Box 2 sets up the indices k, j, n, i', j', and n'. These indices

are all set to (l) . This box also sends the contents of tracks Tx ando
Ty into the memory.

Box 3 sets up an index K = k.
Box 4 is the alternative box that indicates when all of the elements

y. of a particular group of the set Y have been meshed. Boxes 5 and 7 J P
indicate when all of the elements x^ of a particular group of the set X
have been meshed. If the elements of the two groups have not been ex
hausted, the control proceeds to Box 10 to determine which is the larger,
x or y..J

If x.> y , from Box 10 the control proceeds to Box 11, and v = x..j’ * n 1
i and i* are increased by (l)0* If from Box 10 the control pro
ceeds to Box 8, and v = y.. j and j' are increased by (l) .

n j o
If all of the elements of a particular group of the set Y are meshed

and stored, and the corresponding elements of the set X are not, the dis-3?
crimination of Box 4 is negative and that of Box 5 is still positive;
hence the control proceeds to Box 11, where the element v = x. is stored.n 1

64—n

k to D.B

2k to D.l

K+k to D.B

n+l to D.7
n' + l toD.A j +1 to D.6

j'+l to D.9

i + I to D.5

(i)0t° d.a
v, to v64 to Tv (Drum)

Tx=C0to D.2
Ty=C0+M/2toD.3
T„ = d„ to D.4

(D0to 0.8
Tx+I to D.2
Drum Tx+ I to X.l - X.64

(I)0 to D.9
Ty+I to D.3
DrumTv+l to Y.I-Y.64

Drum tracks
Cq to C0+M/2 =Xp

Cq+M/2+I to C^+M = Y1

(I)0to D.5, D.6, D.7, D.B,D.9,D.A
Drum Tx to X.l — X.64
Drum Tuto Y.l — Y.64Ttf = C0+ M/2 to D.3

Drum trocksTjjiXPtx^Xg, - -x^)
Drum trocksTy-- Yp(y, ,y2, •-y^)

D. Is k

- elements v,N/2+1* N/2+2

A SIMPLE SORTING PROCEDURE
FIG. 19

-113-

This condition ho Ids until all of the elements of the particular group
of the set have been incorporated into the meshed sequence. A
similar condition holds for the entry of the control from Box 7 to
Box 8. In this instance, the elements of a particular group of the
set X have all been exhausted and those of the set Y have not.P P

The Alternative Box 12 determines when N elements have been meshed.
The control proceeds to Box 13 when this obtains, and the control pro
ceeds to Box 4 when the meshing is not complete.

The Alternative Box A determines when 6k elements of Y have been
— P

meshed. If they have. Box B sends 6k new elements y. into the memory.<3
Box C and Box D determine if 6k elements of the set X are exhausted,— p

and if they are, 6k new elements x^ are sent to the memory.
Box E determines when 64.elements have been meshed and stored in

the memory. Box F subsequently stores the 6k elements onto the drum.
Box 14 terminates the sorting process when k = N. However, if the

sorting is not complete. Box 15 or Box 16 sets up the new initial drum
addresses for subsequent meshing. Recall that in Box 1 the address
® - © was set up. This means that upon the first traversal through

Box 14 the control proceeds to Box 15 as is desired. In Box 15 the ad
dress @ = ® is set up so that on the next traversal of Box 14 the

control proceeds to Box 16 where the address is restored, and
so on, until the sorting is complete. Upon the completion of either
Box 15 or Box 16, the control returns to Box 2, where the i, j, n, i',
j', and n* indices are reset to (l)Q in order to repeat the induction
process.

The storage needed for the problem is as follows: The quantity
(l) is needed and o B.l: (1)

21The four initial drum track addresses are stored, scaled by 2 and

B.2: co-2"27
B.3: (c + M/2)2“27
B.4: do-2"27
B.5: (d^ + M/2)2"27

-27 0The quantity 1*2 is needed for altering the drum track addresses said
B.6: 1*2‘27

Three memory addresses are needed. They are hase addresses for the
storage of the numbers x., y , and v ; and they are designated (X.o) ,

x j n o
(Y.0)q and (V.0)q. The storage is

B.7: (X.0)q
B.8: (Y.O) o
B.9: (V.O) o

where the address (X.i')0 = (X.0)q + and X.i1: xi> Similarly,
Y.j': Yj and V.n': vn. The number (64)Q is needed for discriminations and

B.A: (64)— o
The total number of elements N is needed and

B.B: (N)o
The drum instructions occupy full words where bigits 28-39 specify an
address to which the control transfers upon completion of the drum in
structions. The addresses for these transfers need to be stored. Four
such addresses are needed and they are

B.C: (Box 12, 1)2-39
B.D: (Box 2, 10)2"39
B.E: (Box 3, l)2-39
B.F: (Box E, l)2-39

The addresses (Qj and(jty are needed. They are stored as position marks in
B.XO: (0)
B-11:

Eleven words of intermediate storage are needed during the course of the
computation. They are designated as D.l, D.2 ••• D.9, D.A, D.B. The
required electrostatic storage for the numbers being meshed is 192 loca
tions; the drum storage is 2M tracks.

The coding is:
Box 1
1. m—»Ac B.l (1)Q to R2
2. A—>m D.l (l)o to D.l
3. m—»Ac B.2 -27c • 2 ' to R2
4. A—*m D.2 T = c * 2“27 to D.2
5. m—>Ac B.3 (cq + M/2)2-27 X

to R2
0

6.
7-

A—*m
m—»Ac

D.3
B.4 d • 2"27 to R2

11

.H
* (cq + M/2)2‘27 to

-115-

Box 1 (Cont.)
9. m—>Ac B.10
A. S—>m 14,4

Box 2
1. m—+Ac B.l
2. A—+m D.5
3. A—>m D.6
4. A--MU d.7
5- A—wa D.8
6. A— D.9
7. A—mu D.A
8. m—*Ac D.2
9- m—^Ah B.D
A. HS—+m 2,F
B. m—>Ac D.3
c. m—+Ah B.E
D. HS—>m 2,11
£. D—+m X.l
F. [T 2,10 J

10. D— y.l
11. [t

y
3,1]

Box 3
1. m—»Ac D.l
2. A—*m D.B

Box 4
1. m—+Ac D.B
2. m—>Ah- D.6
3- C 7,1

Box 5
1. m—+Ac D.B
2. m—*Ah- D.5
3- C 11,1

Box 6
1. m—►Ac D.B
2. m—>Ah D.l
3- A—Ma D.B
4. T

(^1)o to R2
^ to (8-19)U,U

(1) to R2 o
(l)o to D.5
(1) to D.6
(l)o to d.7
(1) to D.8 o
(l)o to D.9
(1)q to D.A

Tx to R2
T + (Box 2,10)2~39 in R2
x

T to R2yTy + (Box 3,1)2“^ in R2

(X1 to x^) to 2L1 to X.64

(yl to y64^ to to Y‘6h

(k)Q to R2
(k) to D.B o

(K)q to R2
(K-j)o in R2

(K)q to R2
(K-i)o in R2

(K)q to R2
(K+k) in R2 o

(K+k) to D.B o

-116-

Box 7
1. m—>Ac D.B (K) to R2 o
2. m—»Ah- D.5 (K-i)o to R2
3. C 10,1

Box 8
1. m—>Ac B.8 (Y.O) to R2
2. m—»Ah D.9 (Y.j')o= (Y.0)o+ U')o i- R2

3- S— 8,D V t0 (8-19)8,D
4. m—>Ac D.6 (j)0 to R2
5* m—>Ah B.l (j+l)o in R2
6. A— D.6 (3*D0 to D.6
7. m—*Ac D.9 (j')0 to R2
8. m—>Ah B.l (j'+l)o in R2
9. A— D.9 (J'+Do to D.9
A. m—>Ac B.9 (V.O) to R2
B. m—>Ah D.A +

c
o
•
>_Itc•
>
(n')n in R2

C. S— 8,E V-n’ to (8-19)8,:
D. m—>Ac 0-j‘] v = y.
E. A— [V.n*] v to V, n .n'

Box 9
1. m—»Ac D.7 (n) to R2 o
2. m—>Ah B.l (n+l)Q in R2
3- A— D.7 (n+l)0 to D.7
4. m—>Ac D.A (n*) to R2
5- m—>Ah B.l (n+l) in R2 o
6. A— D.A (n'+l)0 to D.A

Box A
1. m—»Ac B.A
2. m—»Ah- D.9
3- C C,1

Box B

(64) to R2 — o
(64-j')o in R2

1. m—>Ac D.3
2. m—>Ah B.6
3- A— D.3

T to R2y
T +1 in R2y

T +1 to D.3 X J

-117-

Box B (Cont.)
4. m—>Ah B.F T + 1 + (Box E,l)2-39 in R2
5. HS—>m B,9
6. m—»Ac B.l (1)Q to R2
7. A— D.9 (l)o to D.9
8. D—»in Y.l (yi to yi+6^) to Y.l to y.64
9. pr + 1 E,l]

Box C
1. m—*Ac B.A (64) to R2
2. m—WUi- D.8 (64-i1) in R2
3. c E,1

Box D
1. m—»Ac D.2 T to R2

X

2. m—>Ah B.6 T +1 in R2
X

3« A—>m D.2 Tx + 1 in D.2
4. m—»Ah B.F Tx + 1 + (Box E,l) 2-39 in R2
5. HS— E,9
6. m—*-Ac B.l (1) to R20
7. A—»ni D.8 (1)Q to D.8
8. D— X.l (xA to x1+6^) to X.l to X.64
9. [t + 1 E,l]

Box E
1. m —»Ac B.A (64)q to R2
2. m—>Ah- D.A (64-n,)0 in R2
3. c 12,1

Box F
1. m—>Ac D.4 T to R2

V

2. m—>Ah B.6 Ty + 1 in R2
3. A—wn D.4 Ty + 1 to D.4
4. m—>Ah- B.6 T in R2v OQ5. m—>Ah B.C Ty + (Box 12,1)2”^ in R2
6. HS— 10, A
7- m—*Ac B.l (l)o to R2
8. A—►m D.A (1) to D.A
9. m—>D V.l (vn to V64* to Tv

> •
(- 12,l]

-118-

1. m- ->Ac B.7 (X.O) to R2O
2 • in— >Ah D.8 (x.i')o = (x.0)o + (i') in R20
3* S—>ni 10,7 X.i* to (8-19)10,7
4. m—»Ac B.& (Y.O) to R2O
5. m—sAh D.9 tt.j'Jo- (i.0)o + (j’)o in R2
6 • s— 10,8 Y. j' to (8-19)10,8
"7 • m —3>Ac [X.i’j xA to R2
8. m—>Ah- [Y.O'] x. - y. in R2 i J
9- C 11,1
A. T 8,1

Box 11
1 • m—^Ac B.7 (X.0)Q to R2
2. m—»Ah d.8 (x.i')o = (x.o)o + (i') in R20
3. S— 11, D X.i' to (8-19)11,D
4. m—>Ac B.9 (V.0)q to R2
5. m—»Ah D.A (V.n')o = (V.0)q + (n*) in R20
6 • S >m 11,E V.n* to (8-19)ll,E
7. m—>Ac D.5 (i) to R2O
8. m—>Ah B.l (i+1) in R20
9. A— D.5 (i+l)Q to D.5
A. m—>Ac d.8 (i') to R2O
B. m—>Ah B.l (i'+l)o in R2
C. A— D.8 (i'+l) to D.80
D. m—>Ac [x.i'] v = x. to R2 n i
E. A— [V.n'] v to V.n' n
F. T 9,1

Box 12
1. m—*Ac B.B (N) to R2O
2. m—>Ah- D.7 (N-n)o in R2
3. c 4,1

Box 13
1. m—»Ac D.l (k) to R20
2. L(l) 1 (2k)Q in R2
3. A—»m D.l (2k) to D.l ' 0

-119-

Box 14
1. m—>Ac D.l (k) to R2
2. m—>Ah-
3. c
4. T

B.B
16,A
r/ij

(k-N) in R20

Box 15
1. m—*Ac B.4 Tx = do‘ 2“2' to R2
2. A—*m D.2 T to D.2
3. m—*Ac b.5 Ty = (do + M/2)2"27 X

to R2
4. A—wn D.3 T to D.3
5 • m—»Ac B.2 T = c • 2-27 to R2

v 0
y

6. A—Mn D.4 T to D.4
V

?• m—*Ac B.ll (02)o to R2
8. S—>m
9. T

14,4
2,1

to (8-19)14,4

Box 16
1. m—*Ac B.2 c * 2-27 to R2
2. A—»m D.2 T = c • 2"27 to D.2
3. m—>Ac B.3 (c + M/2)2-27 to R2
4. A—»m D.3 T = (c + M/2)2~27 to
5. m—»Ac B.4 d -2~27 to R2 y 0

6. A—>m D.4
0 -27T = d • 2 to D.4v 0

7. m—»Ac B.10 (/31)0to R2
8. S—>m
9. T

14,4
2,1

to (8-19)14,4

A. Stop
Recall that the magnetic drum instructions each occupy a full word.

The drum instructions are:
"m—»D BD Read 50 successive words from the memory starting with

the word at the address specified by bigits 8-19 of
the instruction. Write these 50 words into the drum
on the track specified by bigits 20-27. Then transfer
the control to the left-hand instruction of the word
at the address specified by the bigits 28-39*

D—>m BC Read the 50 words from the track of the drum specified
by bigits 20-2? of the instruction. Write these words
into 50 successive memory locations starting with the
address specified by bigits 8-19. Then transfer the
control to the left-hand instruction of the word at
the address specified by bigits 28-39."

-120-

For the present problem we assume that 64 words are transferred, rather
than the ^0 expressed by the instructions.

Instructions E and F of Box 2 comprise a drum instruction. In the
final coding these two instructions must be in the same word. Instruc
tions E and F are interpreted as: Read 64 words from track Tx of the
drum, and write them into the memory at the addresses X.l through X.64;
then transfer the control to Instruction 10 of Box 2. This means that
Instruction 10 of Box 2 must appear on the left side of an instruction
word in the final coding.

Note that Instruction F of Box 2, the right-hand 20 bigits of the
drum instruction, is formed in R2 by Instructions 8 and 9 and then sent
to F by an HS—>m instruction. This is necessary since Tx is a variable
address, (in Box 2, Tx may be either cq or d0*) There is no instruction
that will modify only bigits 20-27 of a word in the memory, so one method
of altering the drum track address is to modify bigits 20-39 of the drum
instruction by an HS—>m instruction. This method necessitates storing
the address which is to constitute bigits 28-39> the transfer portion, of

-27the instruction. Instruction 8 of Box 2 brings the track Tx*2 into
R2. Instruction 9 adds to this the address of (Box 2, Instruction 10)2 0
The half-word substitution is then effected by Instruction A. In the
final coding this must be an HS—>m' instruction.

Instructions 10 and 11 of Box 2 also comprise a drum instruction
where the right-hand 20 bigits. Instruction 11, are generated as discussed
for the previous drum instruction.

Instructions 8 and 9 of Box B, Instructions 8 and 9 of Box D, and
Instructions 9 and A of Box F are drum instructions. Note in Box B and
Box D, where the coding would normally end with a transfer instruction to
send the control to Box E, Instruction 1, and in Box F, where the coding
would normally end with a transfer to Box 12, Instruction 1, that the
drum instruction performs this function. When possible then, it is use
ful to incorporate the drum instructions at points where transfers must
normally take place.

The drum instructions in Boxes B, D, and F are similar in treatment
to the previous discussion; hence the only further comment needed is
that the drum instruction in Box F is an m—>D instruction.

-121-

In the pairing of the coding into words one has to ascertain that
Box 2, Instructions E and 10; Box 3, Instruction 1, Box D, Instruction 8;
Box 12, Instruction 1; Box E, Instruction 1; and Box F, Instruction 9,
all are the left-hand instructions of their respective instruction words.

We begin the coding at Word 000. There are, in all, I53 instructions,
which is l6 l/2 code words. The code would normally occupy Words 000
through 04C hexadecimally. However, four "dummy"' instructions need to be
inserted to obtain the correct positioning of those instructions which
must begin on the left. This adds two words to the code, and it occupies
Words 000 through 04E.

The constant storage begins at 04F. The 17 words of B storage occupy
locations 04F through 05F. The 11 words of intermediate storage occupy
Words 060 through 06A.

The routine and storage occupy 107 words of the memory 000-06A.
Numerical values are inserted for the addresses (X.0)q, (Y.0)q and (V.0)q.
They are chosen as:

(X.O)0 = (06A)q

(Y.0)o - (0AA)q
(v.o)o - (0EA)0

The algebraic addresses are left for the drum tracks as they depend in
part on the total number of numbers being sorted. The quantity (N)q
which is the total number of numbers is also left in algebraic notation.

The coding, with the necessary "dummy" instructions, is:
0. m—»Ac 04F A—»m 060
1. m—>Ac 050 A—>m 06l
2. m—>Ac 051 A—^m 062
3. m—>Ac 052 A—>m O63
k. m—>Ac 05E HS—»m' 044
5- m—»Ac 04F A—>m 064
6. A—wn O65 A—>m 066
7. A—mil 067 A—wn 068
8. A—>m 069 m—*Ac 061
9- m—>Ah 05B HS—►m* 00c
A. m—»>Ac 062 m—*Ah 05C
B. HS—mu' 00D (D s 000) "dummy

-122-

c. D—»m o6b
D. D ■—-wn OAB
E. m—>Ac 060
F. m—*Ac 06A
10. C 014
11. m—*Ah- 064
12. m—>Ac 06A
IB- A—»m 06a
14. m—>Ac 06a
15. C 033
16. m—>Ah 068
17. m—»Ac 065
18. A—»m 065
19. m—*Ah 04F
IA. m—>Ac 057
IB. S—3>m 01c
1C. A—>m 000
ID. m—»Ah 04F
IE. m—»Ac 069
IF. A—>m 069
20. m—>Ah- 068
21. m—>Ac 062
22. A—>m 062
23. HS—»m' 025
24. A—»m 068
25. D—*m OAB
26. m—>Ac 058

ro
 —j • C 02c

28. m—>Ah 054
29- m—>Ah 05D
2A. m—»Ac 04f
2B. D—>m 06b
2C. m—>Ac 058
2D. C 040
2E. m—>Ah 054
2F. m—>Ah- 054

00000
00000

A—06A
m—>Ah- 065
m—>Ac 06A

c 038
m—sAh 060
T OOF

m—»Ah- 064
m—»-Ac O56
S—>m' OIB
m—>Ah 04F
m—»Ac 068
A—068
m—>Ah 069
m—>Ac OOO
m—>Ac 066
A—066
m—>Ah 04F
m—^Ac 058

C 026
m—»Ah 054
m —>Ah 05D
m—>Ac O^F
(D S 000) "dummy"

00000
m—>Ah- 067
m—>Ac 06l
A—»m 06l
HS—^m' 02B
A—>m 067

00000
m—»Ah- O69
m—*Ac 063
A—»m 063
m—>Ah 05A

-123-

30. HS—wn*
31. A—>m
32. m—>D
33. m—>Ac
34. S—>m
35. m—>Ah
36. m—>Ac
37. C
38. m—>Ac
39- S—
3A. m—>Ah
3B. m—?Ac
3C. A—>m
3D. m—>Ah
3E. m—>Ac
3F. T*
40. m—>Ac
41. C
42. L(l)
43. m—?Ac
44. C
45. m—>Ac
46. m—♦■Ac
47. m—>Ac
48. m—♦Ac
49. T
4A. A—»m
4B. A—*m
4C. A—>m
4D. HS—♦m'
4E. STOP
4F. (1)o
50. c •2-27
51. (co + M/2)2"27
52. d .2"27

o

m—yAc 04F
(D S 000) "dummy

00000
m-—>Ah 067
m—♦Ac 056
S—*m' 036
m—»Ah- 000
T» 015

m—♦Ah 067
m—♦Ac 057
S—►m' 03E
m—♦Ah 04F

I > 0 067
A—♦m 067
A—♦m 000
(00000) "dummy1
m—♦Ah- 066
m—>Ac 060
A-^m 060
m—►Ah- 059

T 000
A—♦m 061
A—►m 062
A—♦m O63
HS—►m' 044
m—♦Ac 050
m—♦Ac 051
m—♦Ac 052
m—♦Ac 05E

T 005

032
O69
OEB
055
036
068
000
038
055
03E
O69
064
o64
04f
000
01c
059
OOF
001
060
04e
052
053
050
05F
005
061
062
063.
044

-124-

53- (d + M/2)2~27

54. 1.2-27

55. (x.o) = (06A)0 0
56. (Y.0) = (OAA)0 0
57. (v.o) = (oea)0 0
58. (64) = (o4o)0 0
59- (N)0

5A. 12,1 = (040)2-39

5B. 2,10 = (OOD)2~39

5c. 3,1 = (OOE)2'39

5D. E,1 = (02C)2~39

5E. (/91)o = (CA045)
5F. ()Q2)o = (cb°49)

60. D.l
61. D.2

62. D.3

63. D.4

64. D.5

65. D.6
66. D.7

67. D.8
68. D.9

69. D.A
6A. D.B

o

o

The first drum instruction (Box 2, Instructions E and F) would not
normally have been in one word in the paired coding. A "dummy" instruc
tion, DSOOO, was inserted on the right-hand side of Word 00B in order to
position the drum instruction correctly in Word 00C. The right 20 bigits
of the drum instruction are not indicated as they are supplied from the
problem. In punching a tape, five 0's could be punched for right-hand
portion of Word 00C.

-125-

Upon positioning 00C correctly, the next drum instruction. Word 00D,
and the first instruction of Box 3, Word 00E, are in the correct position.

The drum instruction in Box B, Instructions 8 and 9, also needed a
"dummy" instruction inserted as the right-hand instruction of Word 024
to position the drum instruction correctly into Word 025* Similarly, the
drum instruction in Box F, Instructions 9 and A, needs a "dummy" instruc
tion inserted in the right-hand side of 031 to position the drum instruc
tion correctly into 032. Instructions! of Boxes 12 and E need to be left-
hand instructions since they are entered by the transfer portion of drum
instructions. Box E is in the correct position as it begins on the left
of Word 02C; however. Box 12 does not naturally begin on the left, hence
a dummy instruction (00000) is inserted into 03F' following the last in
struction of Box 11. Box 12 then begins on the left of Word 040 as is
desired. The dummy instruction may be inserted as all 0's since the in
struction is never executed by the control as Box 11 ends in a transfer
instruction.

(0^0 and (f&^)Q are stored as

05E: (iVo = (CA045)o
05F: (02)o = (CB049)o

rather than as addresses. This is done since the entrances © and
which are Box 15,1 and Box 16,1 do not both begin on the same side

of their respective words. The addresses © and (^) are supplied
to Box 14, Instruction 4 (Word 044') by an HS—^m' instruction; hence
the order as well as the address is modified appropriately.

The sorting procedure as presented is valid only if all of the num
bers have the same sign (i.e., either all positive or all negative). If
manbers of mixed sign are to be sorted. Box 10 would need to be modified
m numbers of opposite sign could presently cause spillage.

-126-

Problem 11
We evaluate and tabulate a sequence of values for sin x where the

argument x is not given in any systematic order. The values of x are
punched on paper tape for use in the sine computation. When sin x is
determined for each value of x, it is stored with its argument as one
word. The first 20 bigits (0-19) store x and bigits (20-39) store
sin x. The values of x and sin x are then printed and punched by the
flexowriter.

The method used for evaluating sin x is the Taylor's series ex
pansion of the function.

3 5 7. x-' x^ x'sin x = x--r-r+^T-=rT + •••

The following induction describes the series:

I3 ' II + °3

S* " + 0j+2

lim) = sin x
<j—►00 J

For the example it is assumed that 0 < x < 1, where x is in radians.
It then follows that sin x <1.

From the induction process it is seen that the formation of the
term o. p involves a division by (j+l)(j+2). Since ^ is an integer,
the division cannot be done directly. To allow this division, £ is
scaled by 2~n, determined by

2"nj < 1 Jmax
As the a. _ is desired as an unsealed quantity, the numerator is scaled
by the same factor as is the denominator which gives the resultant quo
tient unsealed. In order to preserve significant figures, ls
formed as follows:

°3 = "V 3-2

2
V2 = "0j (j+1 A j+2)

X

-127-

0j+2 = -a.
2 nx 2~nx

2-n(j+l) 2~n(j+2)

The induction is terminated when the difference between two suc
cessive terms is less than a predetermined amount & , where the size of
S is determined by the number of figures desired in the approximation
to sin x. The difference between two successive approximations is the
term a.. The discrimination is on the quantity

The absolute value of a. is used, since a. may be positive or<3 Jnegative.
The storage needed is as follows: The constants l*2"n and S

are stored at B.l and B.2, respectively. The number 1, representing
the total number of values of the argument x, is stored at B.3 as
1*2 and 1*2 m is stored at B.4 where 2 m is such that I’2~m< 1.
The values x^, x^, x^ ••• x^ are punched onto paper tape as input data.
Seven intermediate storage locations are needed. They are designated
as D.l, D.2 ••• D.7.

No explanatory remarks are needed for the flow diagram which is
shown in Figure 20, so we turn directly to the coding.

Box 1
1. m—^*Ac B.4 l-2‘m to R2
2. A—Mn D.7 l*2~m to D.7

Box 2
1. Read D.l x^ to D.l

Box 3
1. m—*Ac D.l x. to 1 R2 1
2. A—*m D.2 x^^ to D.2

3. A—»m D.3 1°i = x^ to D.3
4. R(n) n 2’nxi in R2
5. A—*m D.4 2"\ to D.4
6. m—»Ac B.l 1.2-“ to R2
7. A—>m D.5 l*2-n to D.5

-128-

I •2'm to D.7 Read X: to D.l

D.7: i-2

D.6:(0-l9)xj,(20-39)Sin xjPrint and Punch x-,, Sin X;

Xj to (0-19) D.6

Sin x; to (20-39) D.6

D.2-2

D.5-j-2

2j = Xj to D.2

«tJ = Xj to D.3

2*nXj to D.4

I •2’n to D.5

to D.3

SINE by TAYLOR’S SERIES EXPANSION

FIG. 20

-129-

j *2-n to R2
(j+l)2‘n in R2

-2_nxi to R2
xi■ -rrr- in R4 J+1

A ^ *
(j+l)2"n to R2
(j+2)2'n in R2

2-nx to R2

j+2 in Rl^

if2' I

(j+l)2'n to D.5

j Xi■°i j+T toD‘3

(j+2)2_n to D.5

j+2 = _2L_ . _2L_
i i j+1 j+2

j+2

in R2
a^2 to D.3

+ o' in R2

| o" | to R2
| | - in R2

j+2V to D.2

x± to R2

Box 4
1. m - ■ >Ac D.5
2. m—»Ah B.l
3. A—»m D.5
4. m—»Ac - D.4

5- -i- D.5

6. X D.3
7. A—vm D.3
8. m—>Ac D.5
9. m—>Ah B.l
A. A—>m D.5
B. m—>Ac D.4

C. D.5

D. X D.3
E. A— D.3

F. m—►Ah D.2

10. A—»m D.2

Box 5
1. m—>>AcM D.3
2. m—»Ah- B.2
3. C Box 4,1

Box 6
1. m—+Ac D.l
2. HS— D.6
3. m—>Ac D.2
4. R(20) 20
5- HS—►m' D.6

Box 7
1. Flexoprint D.6

2. Punch D.6

sin x. to R2 -20 12 sin x± in R2

x± to (0-19)0.6

sin x± to (20-39)0.6

(0-19)xi(20-39)sin Xi
to Printer

(0-19)x1(20-39)sin Xi
to Punch

-130

Box 8
1. m—jAc D.7 i.2-m to R2
2. m—*Ah- B-3 (i-l)2 -m in R2
3- C Box A,1

Box 9
1. m—*Ac d.7 1.2-* to R2
2. m—»Ah B.4 (i+l)2 -m in R2
3- A—»m D.7
4. T Box 2,1

Box A
1. Stop

(l+l)2~m to D.7

The coding needed in Box 2 is merely the read instruction. The
read instruction does the following:

Read the next word to come under the reading head of the
photo-electric reader and send the word to the memory at
the address specified with the instruction.

In Box 3, Instruction 4 specifies only a right shift of n places. In
an actual problem the scaling factor 2~n would be detemined and the
numerical value of n would be inserted as the address of the R(n) in
struction. Box 6 stores the x^^ and sin Xj^ into one word D.6 by making
use of the HS—>m and HS—♦m' instructions. Instruction 2 of Box 6
stores the first 20 bigits of x^ into bigits 0-19 of D.6. This in
struction does not alter bigits 20-39 of D.6. Instructions 4 and 5
store the first 20 bigits of sin x^ into bigits 20-39 of D.6. Since the
HS—»m' order replaces bigits 20-39 of m by bigits 20-39 of R2, the num
ber in R2 must be positioned so that the 20 bigits to be sent to m are
in bigits 20-39 of R2. Instruction 4 shifts sin x right 20 bigits so
that the 20 most significant bigits of sin x are in (20-39)R2. In
struction 5 is then an HS—mu’ D.6 which stores sin x into (20-39)D.6.
Box 7 requires two instructions, one to print D.6 and one to punch D.6

In this example the HS—»m and HS—*m’ instructions were used to
store half-precision (20 bigits) numbers, as compared to Problem 10
where they were used in modifying instructions.

-131-

The pairing of the code into words should present no difficulties.
If the code sequence is started at address 000 the paired coding is:

0. m—»Ac 019 A— 020
1. Read 01A m—»Ac 01A
2. A— 01B A— 01C
3- R(n) (n) A— 01D
4. m—WVc 016 A— OIE
5- m—>Ac OIE m—»Ah 016
6. A— 01E m—>Ac- 01D
7- » OIE X 01C
8. A— 01C m—>Ac OIE
9- m—>Ah 016 A— OIE
A. m—>Ac 01D »• OIE
B. X 01C A—>m 01C
C. m—>Ah 01B A— 01B
D. til—>AcM 01C m—>Ah- 017
E. C 005 l 0 01A
F. HS—Mn OIF m—>Ac 01B
ia 0OJ"k 014 HS-»m' OIF
1L FlexoprintOlF Punch OIF
12. m—>Ac 020 m—>Ah- 018
13. C* 015 m—vAc 020
14. m—»Ah 019 A—>m 020
15- T 001 Stop
l6. l*2-n
17, s
18. ! *2-m
19. l*2-m
IA.
IB.
IC.
ID.
IE.
IF.
20.

-132-

Problem 12
During the course of a lengthy computation it is desirable to

make a periodic record of the contents of the memory. This record
should be in a form that can be read back into the memory. Then, in
the event of a computer malfunction which causes a computational error,
one has only to read the last record of the memory contents back into
the computer and resume the computation. If such a record is not
available, the computation often has to be restarted from the beginning;
and several hours, or even several days, of computational time may be
lost. These periodic records of the memory contents help to keep the
time lost due to computational errors at a minimum.

Such periodic records also increase the flexibility of the com
puter, for it becomes a simple task to interrupt a problem at any stage
of the computation and start computation on a different problem. To in
terrupt a problem, one has only to record the memory contents and to
know the instruction with which the control is to resume the computation.
To resume, the record is read back into the memory and the control is
sent to the desired starting instruction.

A magnetic tape unit has been adapted to the computer as an auxili
ary input-output device for making these periodic records of the memory
contents. A further discussion of the magnetic tape unit and its opera
tional procedures is given in the chapter on operating procedures.

In this problem we outline two routines which are concerned with
the magnetic tape unit. The first of these routines transfers the con
tents of the memory except for the routine itself to the magnetic tape.
The second of the routines transfers the contents of the magnetic tape
into the memory at the addresses specified by the routine.
Routine 1: Memory to magnetic tape.

This routine reads successively the words in the memory beginning
with the first word beyond this routine and ending with the last word
(1023) of the memory. As these words are read from the memory they are
written onto the magnetic tape in a serial fashion beginning at a pre-
marked section of the magnetic tape (details are discussed in the chapter
on operating procedures).

A sum is formed of the contents of the memory (excluding this
routine). The sum is: 1023

S1
o

m.1

-133-

where c is the address of the first recorded word and m. is the word o x
at address ^ in the memory. This sum is recorded on the magnetic tape
immediately following the word miQ2y an<^ sum *s also printed.
The sum is formed as a checking procedure for the magnetic tape unit.
When the words on the tape are read back into the memory, the memory
is summed and this sum must agree with the sum made at the time the
contents of the memory were sent to the tape. If the two do not agree,
an error has occurred and the record sent to the tape has not been
transmitted correctly into the memory.

The inductive procedure should cause no difficulty, so we turn
directly to the flow diagram in Figure 21. Box 1 sets up the initial
values of the induction. Box 2 sends the word nu to the magnetic tape.
The partial.summation

L ■ l + m.
i — i-1

is also formed. Note in Box 2 the expression
[delay L(4-0)]

This has the following meaning: Each Q—»t instruction is preceded by
an L(kO) shift instruction. During the traversal of this routine by
the control, the magnetic tape is running continuously, and the L(lK))
instruction gives a certain spacing between words on the tape. This
spacing is necessary to insure accurate transmission at some later oc
casion of the data from the tape back into the memory. Again this is
discussed more thoroughly in the chapter on operating procedures.

Note in Alternative Box 3 how the induction is terminated. The
discrimination is upon

(M*i+l)2’^ where M*i(= cq, c0+1 ••• 1023)
Now when

and

However, when

M-i < 1023
M-i+K 1024

(M-i+l)2_10 < 1

M-i = 1023
which means that the last word in the memory has been sent to the
magnetic tape

M-i+1 1024

-134-

M.o = 0
= 0 to D.2

r

V.

D.l :(M.i)2"10
D. 2 • 2j.|
M. i : mj

2
[delay L(40)]

mj to tape
£j = 2i.jfm, to D.2
(M.i + l)2'l°to D.l

1
D.l •-(M.i+ l)2’10
D^sSj . '

(M.i+l) 2 10

#
3FF = i

I
(delay L(40)J

S, s 2) 3FFto tape

Print Si

MEMORY TO MAGNETIC TAPE

FIG. 2 1

-135-

and
(M.i+l)2"10 = 1

which appears in the computer as a negative number and the control
proceeds to Box k. This discrimination really allows the positive
discriminating quantity to increase until it exceeds for the first
time the allowed range for numbers in the computer. The effect to
the computer is a change in the sign bigit of the number upon which
the discrimination is made.

Box 4 sends the summation (3FF s 1023) to the tape and
also prints the Siam.

The only storage needed in the problem is for two intermediate
values of the computation. These values are the address M.i and the
partied, summation They are stored in D.l and D.2, respectively.

The coding of the problem is:
Box 1
1. a—»Ac 0 > = 0 to R2c -1 V-2. A—»m D.2 L „ = 0 to D.2
3- a—■►Ac c •2-10 (M.c)2"10 = c -2"10 to c -x

R2
4. A—mu

o
D.l

o (M.c)2~10 to D.l
Box 2
1. R(9) 9 (M.i)2‘19 in R2
2.
3-

S—>m
L(40)

2,5 M.i to (8-19)5

4. m—>Ac D.2 L !_! to *2
5- m—>Q [M.i] m^ to R4

6. m—»Ah 8oo Zi = Zi_i + mi r~

•
•

t—
CO

A—»>m
Q—*t

D.2 }_i to D.2
m. to tape1

9. m—jAc D.l (M.i)2_1° to R2

A.
Box 3
1.

a—»Ah
•

C

1.2-10 (M«i+1)2"10 = (M.i)2"10 + 1-2'10 in R2

Box 4
1. l(4o)
2.
3.

m—»Q
Q—»t

D.2 S =) to R41 ^-1023
to tape

4.
5-

Flexoprint D.2
Stop

S1 to printer

-136-
In Box 1 the starting address (c)2"’^ is stored as the address

portion of an a—*Ac instruction. The instruction clears R2 and
brings c0*2~ into positions 0-11 of R2. An a—*Ac instruction may
often be utilized in this manner for storing and forming addresses.

Since the address as formed is
(M-i)2~10

it cannot directly be used in conjunction with an S—»-m instruction,
as the bigits of an address to be substituted must appear in R2 as

(M.i)2"19 or (M.i)2"39
Instruction 1 of Box 2 shifts (M.i)2-1^ right by nine places so that
the bigits in R2 are

(M.i)2"19
Consequently, the instruction that receives this address must reside
on the left-hand side of the instruction-pair.

Instruction 6 of Box 2 adds m. to the quantity Z_ „ which is ini i-1
R2 as the result of Instruction 4. Instruction 6 reads

m—-►Ah 800
Recall that any of the add orders (orders 1-8 of the vocabulary. Table l)
treat R4 as a memory location with the address 2048 = 800 hexadecimally.
m—»Ah 800 adds the contents of R4 into R2. Now R4 contains mi as the
result of Instruction 5, so that

I i
+ m

i-1 i
is formed in R2 as desired.

Instruction 8 of Box 2 is the Q—*t instruction. The instruction
is

"Q—*t AD Write the number in R4 onto the magnetic tape."

The quantity nu to be sent to the tape is in R4 as the result of
Instruction 5 of Box 2. The address portion of the Q—>t instruction
has no relevance (the address is usually set to 000 for convenience;
it may, however, be set to any value).

instructions 9 and A of Box 2 form (M.i+l)2 in R2. Rather
than storing (M.i+l)2“10 into D.l, it is left in R2 for the discrimina
tion of Box 3, Instruction 1. The conditional transfer of Box 3, if
effective, sends the control to Box 1, Instruction 4, where the contents

-137-

of R2, (M.i+l)2-^ are sent to storage. We saw previously that upon
entry into Box 2 from Box 1, the quantity (M.i)2~ was in R2. Box 2
is also entered from the plus branch of Alternative Box 3> and from
this entry the quantity (M.i)2~^ is correctly in R2.

Box 4, Instructions 1, 2, and 3 send ^ on^° the magnetic
tape. Again, as in Box 2, an instruction L(40) precedes the Q—»t in
struction.

The routine as outlined is to be coded beginning with Word 000.
The paired coding occupies Words 000 through 009 and the storage needed
is designated as 00A and 00B. The initial address cq is then OOC. The
paired coding is:

0. a—>Ac 000 A—»m 00B
1. a—*Ac 018 A—»m 00A
2. R(9) 009 S—►m 004
3- L(4o) 028 m—►Ac 00B
4. m— [oooj m—*Ah 800
5- A—►m 00B Q—»t 000
6. m—►Ac OQA a—►Ah 002
7. C* 001 L(40) 028
8. m—►Q 00B Q—»t 000
9.
A.
B.

Flexoprint 00B Stop

The left-hand instruction of Word 001 sets up the initial address cq.

It is to be (OOC)2~^ which is (018)2"'^'; hence, the address of the in
struction is 018.
Routine 2: Magnetic tape to memory.

This routine is to be used in conjunction with Routine 1. It reads
successively the words from the magnetic tape (which had been written onto
the tape by utilizing Routine l) and writes them into the memory at the
addresses that they had originally occupied. Routine 1 sent Words OOC
through 3FF onto the tape; therefore, this routine reads the words from
the tape and writes them into the memory at the addresses OOC through 3FF-

-138

3FF = i

M.o = 0

(M.i+1)2

D.2 •• Si

D.l ;(M.i+1)2

S| (tape) to D.I
Print Sj
Print So=2'ap

^.,=0 to D.2

(M.c)210= C0*2"10to D.l

tape to M.i

MAGNETIC TAPE TO MEMORY

FIG. 2 2

-139-

After the vords
memory, a stun

where i (= 12, 13

m.

•• 1023) are sent to the

cQ = 12 (dec.)
o

is formed and printed. Also printed is the word Immediately following
m1023 °n ma£ne'tic "tape. The latter is S^, the sum of the memory
contents (hence the sum of the words on the tape) when the tape record
was made. The sums and are identical, if no errors have been made
by the computer or the magnetic tape. The procedures to be followed if

and S2 do not agree are outlined in the chapter on operating procedures
The flow diagram shown in Figure. 22 is so similar to the flow dia

gram of Routine 1 that we turn directly to the coding without further
comment.

The coding is:
Box 1

1. a—>Ac
2. A—»m D.2

X C-! * ° to 82 ^
► , to D.2

3. a—*Ac 0-1° c *2 (M.c)2"10 = c •2"10 - c
to R2

4. A—>m
0

D.l
0 (M.c)2"10 to D.

Box 2
1. R(9)
2. S—«a 2,5

(M.i)2~19 in R2
M.i to (8-19)5

3. S—>m 2,7 M.i to (8-19)7
k. t—»Q
5. Q—»m [M.i]

m^ to R4
m^ to M.i

6. m—»Ac D.2 2-i-1 to 82

7. m—»Ah [M.i] Xi - Xi-i + -i in R2
8. A—»m D.2) . to D.2
9. m—►Ac D.l (M.i)2~10 1

»
A. a—►Ah 1.2-10 (M-i+l)2"10 = (M-i)2-1° ^ _ o-10 . . + 1*2 in .

Box 3
1. C 1,4

Box 4
1. t—>Q
2. Q—Mn
3. Flexoprint D.l

S to R41
to D.l
to Printer

4. Flexoprint D.2 S2 to Printer
5. Stop

-iko

In the formation of each successive term of the partial summation
in Box 2, Instructions 6, 7, and 8, the contribution nu is added

from its memory location M.i rather than from RU where it also exists.
The checking obtained by this summing process is more complete than
if m^ were added from R4.

The t—instruction which is Instruction 4 of Box 2 and In
struction 1 of Box 4 is:

"t—AC Replace the number in R4 by the first word to come
under the reading head of the magnetic tape reader."

Again, as in the Q—*t instruction, the address of the instruction has
no relevance. Note that the L(4o) instruction which preceded each Q—»t
instruction is not used with the t—>Q instructions.

In the paired coding. Instructions 5 and 7 of Box 2 must be left-
hand instructions since the address M.i which is being substituted is
in R2 as

(M.i)2‘19
In Box 4, Instructions 3 and 4 print the summations and S^. A

visual check is then made of the numbers rather than allowing the com
puter to do the comparison. This has the added feature that these two
numbers printed may also be checked against the number which was
printed when the tape record was made.

This routine is coded into Address 000 and occupies Words 000
through 009. D.l and D.2 are designated as 00A and 00B, respectively.
Agnin, cq is OOC. The paired coding is:

0. a—*Ac 000 A—»m 00B
1. a—*Ac 018 A—»m OOA
2. R(9) 009 S—>m 004
3- S—wn 005 t1 ■> Q 000
4. Q—wa [OOO] m—»Ac 00B
5. m—*Ah [000J A—>m 00B
6. m—►Ac 00A a—*Ah 002
7. C 001 t—*Q 000
8. Q—►m 00A Flexoprint OOA
9- Flexoprint 00B Stop
A.
B.

We have in this problem taken the liberty of incorporating checking
features into the two related routines without either discussing the need
for such checking features or discussing what the procedures are if this
checking indicates an error in the transmission. This checking is such
an integral part of the routines which make use of the magnetic tape unit
that we do not feel that the routines should be presented without includ
ing them.

Problem 13
We develop a routine for the synchroprinter, the high-speed page

printer that has been adapted to the computer as a part of the output
equipment. The synchroprinter has a maximum operating speed of 36,000
characters per minute. The ordinal numbers 0, 1, 2 ••• 9i the letters
A, £ * *• F; a decimal point; and a minus sign are the eighteen distinct
characters that may be printed. A line at a time is printed, where a
line consists of 40 characters. Recall that the synchroprint order reads:
"Sync Print CE To be used in a subroutine which simultaneously

prints m^, m^+^, m^^ and mi+^; i is to be com
municated to the routine (high speed)."

Inasmuch as four words are printed simultaneously, it is not surprising
that a special routine is required. Further discussion of the synchro
printer is given in the chapters IV and VI on The Computer and Operating
Procedures, respectively.

In order to achieve the high speed of operation, the printer operates
as follows:

To print an aggregate of forty digits (a line) there are eighteen
distinct print cycles. All the F's of the aggregate are printed simul
taneously in Cycle 1, all the E*s of the aggregate are printed Simultane
ously in Cycle 2, and so on to Cycle 16 which prints all the 0's, to
Cycle 17 for the decimal points, and to Cycle 18 for the minus signs.
Since there are these eighteen distinct cycles, one has only to supply
the digital information which corresponds to the cycle. That is, during
Cycle 1, only the digital information for the F’s is needed, and so on.
This information is obviously binary. For Cycle 1 it is either to print
an F in a particular digit position, or not to print it. The line of
print is 40 digits and a register contains hO bigits, so a register may
supply the binary data (either print or do not print) to the printer for
each cycle. The register R2 is used for this purpose. During the i
print cycle i (= 1,2 18) an appropriate number which speciflee the
digit positions to be printed is brought into R2. A 0 in any position of

~ ththe number in R2 corresponds to the presence of the character of the 1

cycle in the respective digit position of the line, whereas a 1 indi
cates the absence of the corresponding character.

For simplicity of design, the paper feed is vertically down.
Hence, to achieve a conventional listing, the characters must be in
verted and left,right interchanged, so that the leftmost bigit of R2

-■30corresponds to the rightmost bigit of the print line while 2 of R2
corresponds to the leftmost bigit of the print line.

The procedure to print a line corresponding to four 10-digit (10-
tetrad) words is as follows:

The four words are fanned out into an 18 x 40 array which occupies
18 successive memory locations. The rows of the array (the eighteen
locations) correspond to the characters of the printer. The columns
of the array correspond to the digit position within the line of print.
The first row of the array corresponds to the minus sign, the second to
the decimal point, the third to the 0, the fourth to the 1, and so on,
through the l8th row which corresponds to the F. Column 0 corresponds
to digit position 39 of the line, column 1 to digit position 38, and so
on, through column 39> which corresponds to digit position 0 of the line.

We define an element of the array as a ., where i corresponds to** J
the row of the array and j corresponds to the column. If

, th
ij = 0

the i character is to be printed in column (digit position 39 - j).
If

ij = 1
the character is not to be printed. No column of the array may contain
more than one 0; that is, only one character may be printed in any
digit position. However, if a column contains I's only, then no character
is printed in the corresponding digit position.

The elements of the array are initially set to 1. The first tetrad
of the first word is examined and found to have the value i, then a 0
is inserted into the appropriate element a. ,Q. The second tetrad is

*■>
examined and a 0 is inserted into the corresponding element a^ ^g; and
so on, until the forty tetrads of the four words have been examined and
0 has been inserted into the appropriate elements of the array.

-JM-

The inductive process of fanning the four words into the array is
described as follows: The elements of the 18x40 array are initially
set to 1. The insertion of zeros into elements in the two rows of the
array corresponding to the minus sign and the decimal point is treated
apart from the induction. Hence, we may regard the rows as being
specified by the values of the tetrads with

0 <: i < F.
The tetrads of the words must be isolated to obtain the values i. They
are isolated as follows: The four words are specified as

k (=0,1,2,3).

In each word there are ten tetrads
Vn n

The induction for isolating the tetrads of any word is over the in
dex n and it is

Ck, -1 = \
Ck,n = 2^Ck,n-l (frac'tiorial part)
^n = 2\,n-l (inteSer ^t)

where 0 ^ n < 9*
After the row i is determined, the column ^ must be determined so that
the element a. . may be set to 0. The column ^ is easily seen to beX J
given by

j = 39 - (10k + n)
We specify the i row of the array as r^ Then after determining the
appropriate i and values we have only to perform the operation

to set the element a^ to 0.
The printing sequence proper,which is carried out after the array

is formed, may now be given. Within the sequence, each of the eighteen
print cycles is determined by a print order. The first print order
actuates the printer and the remaining seventeen print orders act in a
timing capacity to keep the printer and computer in synchronization.
Once the printer has been actuated it proceeds through its eighteen

-145-

cycles at a fixed rate independently of the computer. Each of the
seventeen print orders must be given before the printer is ready to
perform that particular cycle. The order has the effect that the
computer waits for the printer until the cycle is complete and then
proceeds to the next instruction of the sequence. The printer operates
at a speed of roughly 1.5 milliseconds between its print cycles. The
print sequence must have no more than 1.5 milliseconds elapse between
successive print orders.

Immediately preceding each print order, the appropriate word of
the array is brought into R2. Cycle 1 prints the F's so that Word 18
of the array is the first word to be brought into R2. It is followed
by a print order which actuates the printer and executes Cycle 1.
Word 17 of the array is brought in and the succeeding print order exe
cutes Cycle 2 and prints the E's. This continues until the eighteen
print cycles have been completed.

Even though the eighteen distinct characters may not all appear
in any given printed line, it is necessary that eighteen print orders
corresponding to the eighteen characters be given. Those characters
that do not appear have their respective row in the array containing
all I's so that nothing is printed during the corresponding print cycle.

We now turn to the flow diagram shown in Figure 23. The storage
needed is as follows: The four words m m.o' V m2’ 3
be printed are stored in D.l, D.2, D.3, and D.4, respectively. The
eighteen words needed for the array are designated (the addresses are
hexadecimal)t

and nu which are to

The following constants are needed

E .1: r_
E .2: r.
E.3: r0
E.4:

•

rl

•

•

!.12: rF
eded

B.l: -2~
B.2: 2"
B.3: 0

+ 2'19 + 2'39

Three initial addresses are stored. They are
B.4: (“•Do
B.5: (E.3>o
B.6: (E.12)O

(D.1)q is the base address for the four words to be printed. (E.3)q
is the base address to which i is added to form the address of r..- i
(E.12) is the base address used in the printing sequence. Four jwords
of intermediate storage are needed. They are designated as D.5, D.6,
D.7) and D.8.

Boxes 1, 2, and 3 of the flow diagram set the eighteen rows of
the array to all I's. Boxes 4 through A form a double induction that
records 0's into the appropriate elements a.. of the array. Boxes B,
C, D, and E are the print sequence proper.

Box 1 sets the initial index of 1*2 for storing I's into the
rows rr Box 2 stores -39-2 into the rows

r^ ^ where i (=0,1,2 17) decimally)
The discrimination of Box 3 is on

(I - i -
Immediately after

r = -2o

2)2*

-39
is stored, (i = 17) dec.) is increased by 1; hence the quantity

I - 1 - (i+l)2"7
is correctly negative for the first time as

I = 18-2 -7 dec.
Box 4 sets up the initial conditions for the induction over k. It

sends the initial address (D.l) to D.7 where it becomes (D.l+k) aso o
k = 0 initially. It also sends the number

-2"39 to D.5
where it is to become

-2 -J j = 39 - (10k + n)
k and n are both initially 0; hence is initially 39) as is desired.

Box 5 sets up the induction over n. The word m, becomes c, n,-11 -11 K -'L and N*2 is set to 9*2 . Box 6 forms c, and i by shifting c, ,k, n — J 0 k,n-l

-147-

A SYNCHROPRINTER ROUTINE

FIG.23

-11*8-

left four places,
priate element a^

Note that

i is in R4 as 2~^i and c, is in R2.
XI

is set to 0 by the operation
r± - 2~j to E.3+1

E*3 + i: r^ where i (=0,1*“F)

The appro-

E.l and E.2 contain r_ and r. of the array, and they do not enter into
this print routine, but they must exist as all I’s. Alternative Box 7
terminates the double induction and sends the control to the print
sequence. The discrimination is on

-2"J
This quantity appears negative to the computer until j = -1, at which
time -2~^ appears as 0 in the computer. It is then a positive number
with respect to discrimination and the control is sent to the start of
Box B. Note in Box 6 that is decreased to j - 1 after the operation

r± - 2~J to E.3+1

When «j = 0 the last step of the induction is completed and a 0 is stored
in the leftmost bigit of the row r^. ^ is then decreased to j" - 1 = -1
and the quantity

-2-j
becomes positive for the first time.

Boxes B, C, D, and E bring out the rows of the array and print
them, starting with r^, which corresponds to the character F, and de
creasing to rQ, which corresponds to character 0. Print orders are
given corresponding to the rows r. and r_, even though these characters
are not printed by the routine. After the print order for r_ has been
given, the discrimination of Box E is negative for the first time and
the routine terminates.

The coding of the routine is:
Box 1
1. a—»Ac 11*2“

Box 2
1. m—>Ah B.6
2. S—>m 2,4
3. m—»Q B.l

11-2"7(=17.2"7 dec.) to R2

(l-l)2-7 + (E.l)0 = 11*2~7 + (E.12)o in R2
E.I-i to (8-19)2,4

o-39 to R4

-149-

Box 2 (Cont.)
4. Q—wn [E.I-i] r. = -2~39 to E. I -

1
5. m—>Ah- B.2 (l-i-2)2“7 + (E. I -i-l) in R20

Box 3
1. C 2,2

Box 4
1. Q— D-5 -2~39 to D.5
2. m—>Ac B.4 (D.l) to R2 v 0
3. A—»m D.7 (D.l) to D.7 v 0

Box 5
1. m—j>Ac D.7 (D.k+l)o to R2
2. S—>m 5,5__ -11 ___-11 ^ -11

D.k+1 to (8-19)5,5
3. a—>Ac 9-2 N-2 = 9*2 to R2
4. A— D.6 W-2"11 to D.6
5. m—>Ac [D.k+lJ ‘x-r'V toR2
6. A—nn D.8 Ck,-1 toD-8

Box 6
1. m—>Ac D.8 c. , to R2k,n-l
2. m— B.3 0 to R4
3- L(4) 4 i-2'39 in R4; c,

k,n in R2
4. A—>m D.8 c, to D.8k,n
5. m—»Ac B.5 (E.3)q to R2

6. m—>Ah 800 E.3-2"19 + (E.3+i)2_39 in R2
7. S— 6,9 E.3+i to (8-19)6,9
8. S—wn 6,b E.3+1 to (8-19)6,B
9. m—>Ac fE-B+i] T. to R21
A. m—»Ah D.5 rj - 2"J in R2
B. A— [E.3+1] r - 2"‘3 to E.3+i
C. m—>Ac D.5 -2'^ to R2
D. L(l) 1 _2-(j-l) in
E. A—vm D.5 _2-(j-l) to D>5

Box 7
1. C B, 1

(

-150-

Box 8
1. m—►Ac D.6 (N-n)2-11 to R2
2. a—>Ah -2-11 (N-n-l)2"i;L in R2

3- A—*m d.6 (N-n-l)2-11 to D.6
Box 9
1. C 6,1

Box A
1. m—>Ac D.7 (D.k+l)o to R2
2. m—>Ah B.2 (D.k+2)Q in R2
3- A—wn D.7 (D.k+2)o to D.7
4. T 5,1

Box B
1. 01 a -711.2 11*2”'(= 17*2"' dec.) to R2

Box C
1. m—>Ah b.6 (l-l)2-7 + (E.l)0 = 11*2"' + (E.12)q in R2
2. S—*m C,4 E.I-i to (8-19)C,4
3- A—*m D.6 (l-i-l)2“2 * * * * 7 * + (E.I-i) to D.6
4. m—>Ac [E.I-i] o

r-j. A to R2
5- Syncprint

Box D
1. m—>Ac D.6 (l-i-l)2"7 + (E.I-1) to R2
2. m—>Ah- B.2 7 ^(l-i-2)2"' + (E.I-i-1) in R2

Box E
1. C C,2
2. Stop

_OQIn the induction storing -2 to all r., the register R2 is
—7 ^needed only in forming (l-i-l)2"' and in forming the addresses

(E.I-i) . These two operations may be performed simultaneously and
the quantities (l-i-l)2" and (E.I-i) are left in R2 throughout the

O _rt ninduction. Therefore the quantity 11•2~ (= 17*2" dec.) need only
be sent to R2 in Box 1, and it is not stored into D.6. During the
traversal of Box 2, R2 contains

(l-i-l)2'7 + (E.I-i)q
Instruction 5 subtracts the contents of B.2 from R2. B.2 contains
the constant „ „2"' + 2’ *9 + 2“39

-151-

80 that the subtraction gives
(l-i-2)2‘7 + (E.I-i-l)o

_OQin R2 as is desired. The quantity -2 that is sent to all addresses
E.I-1 is stored from R4. The only instruction needed in Box 3 is the_ r7conditional transfer as the quantity (l7-i-2)2 ' upon which the trans
fer acts is in R2 from Box 2.

In Box 4, Instruction 1 stores -2 ->7 to D.5 where it becomes -2
The quantity -2-^ exists in R4 as a result of Box 2.

Instruction 2 of Box 6 sends 0 to R4 and Instruction 3> an B(4),
isolates i in R4 as

2-39i
The quantity i*2~^ is added from R4 into the (E.3)0 in R2 by making use
of the m—»Ah 800 instruction where the address 800 refers to R4. In
structions 7 and 8 must both be S—>m' instructions in the final code
since the pertinent address in R2 is

(E.3+i)2"39
In Box C where the print order is given the scheme used in Box 2 of
having the index and the address in one word as

(l-i-l)2"7 + (E.I-i)o

is utilized. In this instance, however, the word cannot be left in R2
during the induction as the rows r^ to be printed must be brought into
R2. Instruction 5 is the print. Since i^ is initially 0 the rows of
the array rT . are correctly brought into R2 beginning with r_.J-—X J?

Box D subtracts 2~' + 2-'L'^ + 2-^
from

(l-i-l)2"7 + (E.I-i)
o

and leaves the result in R2. Box E then needs only the conditional
transfer order. As long as (l-i-2)2~7 is a positive number the transfer
sends the control to Instruction 2 of Box C.

-152-

The coding contains 4^ instructions, which is 24 l/g words. We
start the code at Word 000. Upon examination it is revealed that In
structions 9 and B of Box 6 naturally occur as left-hand instructions
in the final code. It is necessary for them to he on the right; there
fore a dummy instruction must he inserted for positioning. This gives
25 words of code which occupy addresses 000 through 018 in the memory.
The 18 words of the array occupy addresses 019 through 02A. The 6 words
of B storage are then in addresses 02B through 030, and the 8 words of
D storage are in addresses 031 through 038.

The coding is:
000 a—>Ac 110 m—>Ah 030
001 S-—>m 002 m—»-Q 02B
002 Q—wri 000 m—*Ah- 02C
003 C 001 Q—»m 035

004 m—>Ac 02E A—>m 037

005 m—»Ac 037 S—♦■m 007

006 a—»Ac 009 A >m 036
007 m—*Ac 000 A—»m 038
008 m—*Ac 038 m— 02D
009 L(4) 004 A--MU 038
00A m—*Ac 02F m—>Ah 800
00B S—ml' 00c S.-»m * 00D
00c (ds 000) m—>Ac 000
00D m—»Ah 035 A—»m 000
00E m—*Ac 035 L(l) 001
OOF A—Mn 035 C 014

010 m—»Ac O36 a—>Ah FFF
Oil A—*m 036 C 008
012 m;—>Ac 037 m—»Ah 02C
013 A—»m 037 T 005
014 a—»Ac 110 m—»Ah 030
015 S—*m 016 A—»m O36
016 m—>Ac 000 SyncprintOOO
017 m—»Ac 036 m—»Ah- 02C
018 C 015 Stop

-153-

019 r
01A r.
01B r0
01C rl
01D r2
01E r3
OIF
020 r5
021 r6
022 r7
023 r8
02k r9
025 rA
026 rB
02? rc
028 rD
029 rE
02A
02B B.l -2-39
02C B.2 2_T + 2_19 + 2"39
02D B.3 0
02E B.4 (D.l)o = (0003l)o
02F B.5 (E.3)o = (0001B)o
030 B.6 (E.12) = (0002A)0
031 D.l
032 D.2
033 D.3
034 D.4
035 D.5
036 D.6
037 D.7
O38 D.8

III. BINARY ARITHMETIC

We begin the study of arithmetic as it relates to the computer
by discussing (i) the allowed ranges of numbers and (ii) the treat
ment of negative numbers.

The allowed number range may be approached in two ways. There
is the so-called "floating binary point" method and the "fixed binary
point" method. We have adopted the latter approach; however, a few
cursory remarks may be made about the former.

The "floating binary point" allows each number to be expressed
as a fraction and a characteristic. That is, the binary number
1011.1101 would be expressed as (0.10111101, +100) where the 100 is
the positive exponent of 2 associated with the number. An argument
in favor of such a scheme is that it alleviates the scaling considera
tions at the coding stage which one otherwise encounters in working
with a fixed binary point. It is felt, however, that scaling is not
a serious problem and that the time spent in arranging suitable scale
factors is small in comparison to the total time spent in preparing
an interesting problem for the computer. Two definite arguments
against the floating binary point are: (i) It increases the complex
ity of the computer which in turn increases maintenance difficulties,
(ii) It increases the time necessary to perform each operation. In
many problems that are contemplated the time required for their solu
tion is a principal factor; hence advantages of speed are important.

In the "fixed binary point" method the binary point in the present
computer is taken between the first and second bigits from the left.
The binary point might have been fixed between any other bigit pair.
This fixed binary point places an upper limit on the size of a number
in the computer.

Since it is necessary to be able to distinguish between positive
and negative numbers, and since their treatment has a direct bearing
on the allowed range of numbers, we digress temporarily and discuss
the "sign" of a number.

Although there are many possibilities for the representation of
numbers in the computer, we consider the two most common ones:
(i) "signed" numbers and (ii) "complement" numbers. In the first

-155-

scheme the leftmost bigit would indicate the "sign". The sign
bigit would be a 0 or 1 according as the number is non-negative
or negative. In each instance the sign bigit is followed by the
actual numerical bigits. Clearly, in this case the magnitude of
all numbers would be less than 1.

In the second scheme of "complement" numbers, since

we write x as

2n+i 1,

x = 21 + 1 + x 2N+1;

then take for our representation of x

x(mod 2N+1) = + 1 + x.

For positive x, that is x ^ 0, the above equation gives:
/ , _N+lv -x(mod 2) — x.

If also, Jx|d, the leftmost bigit contains a 0 as in the preceding
scheme. For the negative values of x, 0> x> -1, the integral part
of the number’s representation is a sequence of 1's, (N+l) in length,
followed by a fractional part equal to (l-|xj). Since the computer
contains numbers modulo 2, it contedns the complete fractional part
and the first integer to the left of the binary point; hence the
leftmost bigit contains a 1. Therefore, in the complement scheme,
if Jxj < 1, the "sign" of a number may be identified by examining
the leftmost bigit. This is not a true "sign" and the bigit has
numerical significance. However, for convenience it is called the
sign bigit.

In either the "signed" number representation or the "complement"
number representation |x] <1, and the "sign" of the number is de
termined by the leftmost bigit.

Since the sign of a number is identified by examining the sign
bigit, we are naturally led to treating zero as positive for compu
tational purposes. Since a 1 in the sign bigit indicates a negative

-156-

number and since the sign bigit also has numerical significance,
one may interpret 1 in the sign bigit followed by all 0’s as the
integer -1 and operate with it accordingly. The allowed number
range in the computer is then -1< x< 1.

All numbers are of the form:
x(mod 2N+1)

where N may be any suitably chosen value. For the discussion of
addition and subtraction it suffices to take N=0 and to consider
a negative number as represented by its complement with respect to
2. For the multiplication process, 39. The details are con
sidered presently. Since the computer contains numbers modulo 2,
we actually see x or (2-[x|) according as x is positive or negative,
and we refer either to the number or its complement with respect to
2. However, the existence of the (N+l) bigits left of the binary
point is implied.

Shifting
Shifting is one of the more basic operations the computer per

forms and perhaps should be the first of the arithmetic operations
discussed. The left and right shift provide a means of multiplying by
2n where -40.<n5~40.

Recall that x is represented as:

x(mod 2W4’‘L)

Performing a left shift of n places, 0 < n^ 40, gives:

which conforms with the adopted complement notation.

-157-

As previously stated, all numbers in the computer must have
a numeric value less than 1; therefore, for this "power" shift to
be a legitimate operation

2n|x|<l,
or |x| < 2"n
In the computer where the left shift takes place modulo 2, the sign
bigit is treated as a numerical bigit, and at each step of the
shift the 2”^ bigit shifts into the sign bigit. After an n-fold
shift where |x| < 2-n, the shifted number still has the proper sign
representation as is indicated by the algebraic representation.

There are other schemes of left shifting; for example, where
the sign is not affected and numerical bigits are lost from the 2-'
bigit position. For purposes of power shifting this scheme is com
parable to the scheme adopted. However, when one uses shifting
facilities to separate a multiplex of numbers stored as a 40-bigit
aggregate our scheme allows much more flexibility. This is not
the place for a discussion of non-standard operation; hence we de
lay the discussion of shifting as it applies to such cases until a
later time.

Performing a right shift of n places, 0^ n^ 40, gives:

2-nx

N - n

2"nx(mod 2W,+1)

2~n ^ ^ + 2-n(l+x)

L zl'n + 2'd + ^

^ 21 + (J” 2'i+2~n+2_nx)

N' > 0
N‘y 2i + (1+2“nx)
i=o

N> n

which conforms with our complement notation

-158-

Phenomenologically, one may say that in a right shift the sign
bigit fills into the bigit positions that are vacated by the shift.

_^oThe output to the right of the 2 position is still available else
where, hut is of no concern in the present discussion.

For examples of shifting, consider a left shift of k and a right
shift of 4 where x is in each case a negative number. A negative x
is used, as it provides the more interesting example. The shift ex
amples are considered modulo 2 as this is the computer representation.
(i) shift x left 4, x

. * 2 *-M
24(2-|x|)

2^2 - jxj)mod 2
signed number

-0.00001011
1.11110101
11111.01010000
1.01010000

-0.10110000
equivalent to the

(ii) shift right 4, x
k 2"|X|

2 (2-jxj)
gives 2”^(2-|x j)

signed number

-0.10101011
1.01010101
1.111101010101
i.inioioi

-0.00001011

then truncating
equivalent to the

In the right shift the resulting number may be in error by at most 1
in the rightmost position because of the truncation. One can reduce
this truncation error by introducing a "round-off" scheme in the
right shift.

Addition and Subtraction
Consider the sum S = (x+y). Not only must Jxj, JyJ < 1, but

jsj < 1. (x+y) is represented in complement notation as
JL . N N2 + l + x+ y 2 +1 + y = 2 y 2 +2 + (x+y)
3=b 3^0 fsro

N+l . N+l
)_ 2 + (l+x+y) = V 2 + (1+S).
i=o j^o

Hence S is of the same form as x and y. If (x+y) 0, then

(21 + (1+S) } mod 2N+1 r: S > 0.

-159-

If (x+y)< 0, then the result is:

J 2i+ (l-|S J).

In either case we have the correct interpretation. Since the result
is viewed modulo 2, we may set N=0 in the above equations without
affecting the results. Therefore, in addition and subtraction num
bers are of the form (2+u), where -1 ^ u < 1.

(2+x) + (2+y) = 4 + (x+y) = 4 + S
and if (x+y) > 0, then (4+S)mod 2= S. On the other hand, if
(X+y) < 0, then (4-|sj)mod 2— 2-|s). Therefore, the signs of x
and 2 do not alter the process and one may, by means of addition,
effect either sums or differences.

Clearly, if it is desired to form the difference (x-y) of two
numbers x and y where their representations are

Njr 21+ (i+x)
1=0

and t 21 + (1+y),
1=0

we must first represent -y in this notation which is

N
y 21 + (l-y).
i=o

NThis is referred to as the complement of y with respect to 2* . For
subtraction it suffices to be able to form the complement of numbers
with respect to 2.

To form the complement (2-y), write

2 - y = (2-2"n-y) + 2~n
where n is the rightmost bigit position. Since

n2 - 2"n = y 2-1,
1=0

(2-2_n-y) is the reflection of each bigit of y; that is, where there
is a 1 in £ there will be a 0 in (2-2-n-y). The complement is com
pleted by adding 2~n to the difference. For example,

2 - 2"12 = 1.1111 1111 1111
- y = -0.1101 QUO 1011

which reflects each bigit of y: 1.0010 1001 0100
Adding 1 into the rightmost bigit ___________________1
gives the complement 2-y 1.0010 1001 0101

-i6o-

This method of reflecting each bigit and adding 1 into the
rightmost bigit position is, in essence, the method by which the
computer forms complements.

Examples of addition and subtraction are:

(1) x = 0.00101011;

x + y =

(2) x = 0.10101101;

2 -
2 + (x-y) = 2 -

y = 0.01000111;

x = 0.00101011
y = 0.01000111
S = 0.01110010

y = 0.11010110;
x = 0.10101101
y = 1.00101010
Sj = 1.11010111

form S = x+y

form S = x - y

Multiplication
We consider the multiplication of y, a 39-bigit multiplicand and

sign, by x, a 39-bigit multiplier and sign. The product P is a 78-
bigit product and sign. It has previously been stated that |xj,
|y| <1; therefore it follows that |pj < 1. Here is an advantage of
placing the binary point to the left of the first numerical bigit.
If [x|, |y|> 1 were allowed, the product P could be greater than
either factor, and P would have its binary point in a position dif
ferent from either that of x or y.

To develop a multiplication scheme, consider two numbers x and
y where |x|, |y| < 1. Since the complement notation is used, their
product is:

p = (Jo2' + (1+^ (1/ +
= (l+x)(l+y)+(l+x)

= l+x + y + xy +

+ (1+y)
N

Xo
N . J2

-161-

Using the relation Nl21
= 2N+1 - 1,

One obtains: « •. ~N+1 0N+1P = l+x + y+ xy + 2 -1 + 2 x-

Collecting terms:
P =

Since

0N+1 n 0N+1 , _2N+2 _ -N+l , n-x+2 -1+2 y-y+2 - 2*2 + 1.

-2N+2 -N+l/ s 2 +2 (x+y) + xy.

,2N+2 2N+1
Xo2i + 1

rewrite the product as:
,N+1 2N+1

P = P^Cx+y) +)2 + (1+xy).

Either (x+y) = 0, or |x+y| > 2~^; hence, if we choose N=39> 2^^(x+y)
is either 0 or greater than 2. Since the computer contains numbers
modulo 2, P^fx+yjmod 2=0, and we see P as :

P mod 2=2 + xy,
the correct complement notation.

The scheme as outlined is not desirable for the computer as itliOconsiders x mod 2 which implies that the multiplication is a 7o-step
process rather than the conventional 39 steps.

One may modify the scheme so that it treats only the fractional
part (but not the sign bigit) of the multiplier x. Here, x has the
representation (£q+x) where |Q = 0 if x > 0 and = 1 if
x < 0; i.e., the complement of x with respect to 1 if x is negative.
By a procedure similar to the above, one finds

(S0«)(^S^l+y) = 2*°t0 + 2lt0x + iQy + xy.

Rewrite the product P as
P = + 240(x-2"39) + 2 + £oy + xy.

Then, as in the preceding case, consider P mod 2 and
P mod 2=2+ loy + xy.

If x :> 0, then = 0 and
P mod 2=2 + xy,

the correct product using complement notation. If x <: 0, then io = 1
and P mod 2 = 2 + y + xy.

-162-

Clearly, one needs to subtract y to gain the desired product. An
additional step is required in this scheme if the multiplier is
negative, namely adding the complement of the multiplicand y to the
product.

The multiplication is accomplished by examining the multiplier
a bigit at a time, beginning with the least significant bigit, and per
forming the indicated operation. If the multiplier bigit is a 1, the
multiplicand is added into the partial product; then the sum and multi
plier are shifted right one place. If the multiplier bigit is a 0,
the partial product and multiplier are merely shifted right one. Ihe
multiplication involves steps; the first 39 steps either add the
multiplicand to the partial product and shift the sum right one unit,
or merely shift the partial product right one unit according as the
examined bigit of the multiplier is 1 or 0. The 4<j step adds the
complement of the multiplicand to the partial product or does nothing
according as the sign bigit of the multiplier is 1 or 0.

The computer can only perform operations modulo 2; therefore some
liOway is needed of simulating the multiplicand modulo 2 . To find a

suitable method, we examine whether there is a simple relation between
the sign of the partial products, as viewed in the computer, and the
sign of the multiplicand for the scheme discussed immediately above.
We now prove that after the first 1 is encountered in the examination
of the successive bigits of the multiplier (prior to that the partial
product is zero), the signs of the multiplicand and the partial product
agree.

Assume the partial product p^ is of the form:
where |b j < 1;

O.T_
if the (i+lj bigit of the multiplier is a 1

2 21 + (2+b+y)

Now|b| < 1 and |y| <1; therefore |b+yj/2 = |b’J < 1 and

Eq. (1)

-163-

thFor the case where the (i+l) bigit of the multiplier is a 0, it is
easy to see that b’ of Eq. (l) is equal to b/2. The partial product
is originally 0, but after the first 1 appears in the multiplier, the
partial product p is:

2p + 1 + y lyl < i

p + 1 + y/2 ly/2| < 1

Therefore, by induction all succeeding partial products are of the
form:

pi - L2i ♦1 + ^ 1
i=o

Inasmuch as the various increments to the partial product all have
the same sign, namely that of the multiplicand, and since it has been
shown that |b'| <1 for all possibilities, it is clear that the sign
of the partial product agrees with that of the multiplicand (again,
after the first 1 appears in the multiplier). Hence, if it is arranged
so that this condition is satisfied in the course of multiplication as
done by the computer, then one has simulated the multiplicand modulo 2
and the above scheme may be adopted.

It turns out, however, that multiplication as done by the
computer may cause ihe sign bigit to change] consequently it must be
arranged to keep it invariant after the first 1 of the multiplier
appears. To see that the sign bigit may change if no precautions are
taken, consider the magnitude of the p^'s:

Pjl + y
Pj+y

Pi+1 = 2
iPj+yi < IPjj + lyl <■ 2

iPi+yi
2 <d 1

ipi+ii < 1.

where |y| 1

Since po = 0, "by induction all jp^j c 1. Although jp^ <: 1, 2 jp^
is not necessarily less than one, but 2 p^j < 2. At each step 2 jpj
is formed and then shifted right one unit. This implies that in form
ing 2pi one does not lose significant bigits of the partial product,
but the "sign'' bigit may be lost. The loss of the "sign1' bigit is the
result of the addition at each step being done modulo 2.

The multiplication of a 39-bigit number by a 39-bigit number gives
a 78-bigit product. When one is interested in single precision opera
tion, i.e., operation with 39-bigit numbers, the 78-bigit product is
rounded-off" to 39 bigits. That is, the 78-bigit product is approxi

mated by a 39-bigit product. There are several methods for doing
"round-off ' that are applicable to our needs. We have chosen for
multiplication the scheme in which all bigits beyond and including the
n*"*1 bigit are ignored and the n^*1 bigit is set to a 1. At this point
we do not plan to argue the validity of this round-off scheme. We
may, however, state that the scheme is unbiased, and it has a variance
of l/3'22n.

The multiplication may be summarized as follows: There are 39
steps in which the multiplier is examined a bigit at a time. At each
examination the multiplicand is added to the partial product or nothing
is done, according as the multiplier bigit is a 1 or a 0. In either
case the result is shifted right one unit and the process is repeated
for 39 steps. When the first 1 appears in the multiplier, the sign
bigit of the partial product is, on this and all subsequent steps,
set equal to the sign bigit of the multiplicand. The 4C; step either
adds in the complement of the multiplicand or does nothing, according
as the sign of the multiplier is a 1 or a 0. And at the end of the
UO^1 step the 39^ bigit of the product is set to a 1 if the multipli
cation is dene with round-off; or nothing is done if the multiplication
is without round-off.

We consider two examples of multiplication. For simplicity we use
three-bigit multipliers and multiplicands. Both examples are with nega
tive multiplicands as this affords the most interesting cases. The first

-165

example has a positive multiplier and the product is rounded-off to
three bigits. This round-off to three bigits, of course, tends to
give a more distorted product than would occur in the computer where
the product is rounded-off to 39 bigits. The second example has a
negative multiplier; hence, as a correction, the complement of the
multiplicand is added to the product in the last step. This example
considers multiplication without round-off.
Example 1:

x
xy

xy(ro)

0.111 = 7/8 y = 1.001 = -7/8
1.001111 =-49/64
1.001 = -7/8 (The round-off scheme used is to

set the 2~^ position to a 1. In
this instance it is a 1; hence
no change is made.)

(i)

(ii)

(iii)

(iv)

Step (i):

y = 1.001
p = 0.000*0
p = 0.000+y° = 1.001

2p. = 1.001p^ = 1.1001

p. = 1.1001
+y = 1.001
2p- =lL0.10ll
Pg = 1.01011

p = 1.01011+y^ = 1.001
2p =[i3o.oiiiip^ = 1.001111

x = 0.111 o

X1 = 0.011

Xg = 0.001

x^ = 0.000

1.001p = P3(ro)

Initially (pQ = 0). The rightmost bigit of the multiplier
is examined. Since it is a 1, £ is added to p to give
2?^ We have a negative multiplicand; hence, from this
step on, the sign of the partial product is set to the
sign of the multiplicand. 2p1 is shifted right one place

-166-

Step (ii):

Step (iii)
Step (iv):

to give p1, and the sign of p1 is set to a 1. xq is
shifted right one place to form x^, which again has a 1
in the rightmost position.
£ is added to p^ to form 2pg. (Note that in adding (y+p^,)
2pg is written as [1] 0.1011. The 1 does not exist in the
computer as it adds modulo 2; hence the 1 is shown in
■brackets and does not enter into the product.) 2pg is
shifted right to form p^, and the sign higit is set to a
1. x1 is shifted right to give x^.
Identical in procedure to Step (ii).
x^ is examined and the rightmost bigit (the original sign
of the multiplier) is a 0; hence no correction term is
needed. Round-off is indicated; hence the right-hand
three bigits are truncated and the 2 bigit is set to
a 1. In this instance it is a 1; therefore no action is
required.

Example 2:

xy
= 1.101 = -3/8 y = 1.011 = -5/8
= 0.001111 = 15/61

•o
 *
<*

o II
 II 1.011

0.000 xo = 1.101

(i)

ro
 +

H H
 1

O
II
 II

II
 II 0.000
1.011
I75IT
1.1011 x1 = 1.110

(ii)

■^2

1.1011
1.1011
1.11011 x = 1.111

(iii) p = 1.11011+y2 = 1.011
2p =[i]i.o6Iii
p^ = 1.100111 x = 1.111

(iv) =+(2-y) 3 = 1.100111
0.101

P =[U 0.001111
= 0.001111

-167-

Steps (i) and (iii): These are identical in procedure to the preced
ing example.

Step (ii): The multiplier bigit is a 0; hence p^ is shifted right
one unit to form p2.

Step (iv): The rightmost bigit of is a 1 indicating the comple
ment correction. (2-y) is added to p^ to give the cor
rect product, P. (if round-off had been indicated, the
right-hand three bigits would now be truncated and the
2 J bigit of the product set to a 1.

Division
The division scheme adopted for the computer is a pseudo-non

restoring scheme. Before discussing the scheme, we compare a true
non-restoring scheme with the more familiar restoring type of division.

For simplicity of discussion, we assert that x, the dividend, and
y, the divisor, are positive. Further we assert that for any division
scheme

lxl<:|y| < 1
(all numbers in the computer must be less than l).

In the restoring scheme, the divisor is continually subtracted
from the partial remainder (the dividend on the first step) until the
remainder is less than the divisor. The number of such subtractions
is then recorded in the appropriate position in the quotient. The
partial remainder is then shifted left one unit and the process is
repeated.

In the non-restoring scheme the divisor is subtracted from the
partial remainder (the dividend on the first step) until the partial
remainder becomes negative. The number of such subtractions is then
recorded in the appropriate position in the quotient. The partial re
mainder is then shifted left one unit, but now the divisor is added
to the partial remainder until the partial remainder again becomes a
positive quantity. The number of such additions is then appropriately
positioned and subtracted from the existing partial quotient.

-168-

These two sequences are then repeated ad infinitum with the sign
of the partial remainder being either positive or negative. The quo
tient is formed by a succession of additions and subtractions.

If we consider the binary base, a well ordered division may have
only one addition or subtraction for each fixed quotient position.
This may be seen most clearly by referring again to the restoring
scheme. If the dividend is initially less than the divisor, then for
any fixed quotient position there may be at most (m-l) subtractions
(where m is the number base) before the partial remainder becomes
smaller than the divisor. In the non-restoring scheme it is not neces
sary to have more than (m-l) subtractions or additions for a fixed
quotient position, as it suffices to know that the dividend is less
than the divisor. Since (m=2) for the binary case, one addition or
subtraction suffices for each quotient position.

An example of a well-ordered non-restoring division in binary form is

15M + 3 A = 5/16

1.111101
0.000011
0.000006

Collecting terms of the quotient gives:

1 x 2° + 1 x 2-^ = 1.0010
- (1x2"1+1x2"2+1x2'1;) = -(0.1101)

5/16 = 0.0101

Step (i): The sign of the divisor and dividend (partial remainder)
are the same. The first quotient position is chosen
as the 2° position; hence a 1 is recorded and the divisor

-169-

is subtracted from the dividend (the subtraction is done
using complement notation).

Step (ii): The partial remainder is now negative; hence its sign dif
fers from that of the divisor. -1 is recorded in the 2 ^
quotient position and the (divisor) x 2~^ is added to the
partial remainder. In the computer the partial remainder
is shifted left one unit rather than shifting the divisor
right one unit as it is added. In essence the two are
equivalent; however the former is more advantageous with
respect to computer operation.

Step (iii): The partial remainder is still negative, a -1 is inserted
-2 -2 into the 2~ quotient position, and the (divisor) x 2

Step (iv):

Step (v):

is added to the partial remainder.
The partial remainder is positive; hence a 1 is recorded
in the 2~^ position of the quotient and the (divisor) x
j-3 is subtracted from the partial remainder.
The partial remainder is negative, so -1 is recorded in

-4 / \ -4the 2 position of the quotient. The (divisor) x 2
is added to the partial remainder giving a new partial
remainder of 0 which terminates the division.

Step (vi): The indicated additions and subtractions in the quotient
are performed. The result is the desired quotient.

Note that the restriction of treating x and j as positive numbers
is not necessary in the non-restoring scheme as the sign of the partial
remainder (x, initially) may be either positive or negative. It is not
needed to know the specific sign of each factor but only the relation
between the sign of the divisor and dividend. Hence, in further dis
cussion no sign restrictions are necessary.

As each step of the quotient involves an addition or a subtraction,
the true non-restoring scheme would necessitate a second register that
had all the complications associated with the adding facilities. There
is, however, a simple relationship between the true non-restoring quo
tient that is written as a series of 1's and -1's and a pseudo-non
restoring quotient obtained by replacing the -1 by 0 wherever it occurs.
This relation, first shown by von Neumann, may be found as follows:

-170-

Write the true quotient Q in non-restoring fora as:

Q » 2 \ +2 + • • • +2 + ro 1 n n
vhere may he ±1 and r^ may he positive or negative. Using the
transformation X. = 2c -1 vhere c.= 0 if X. = -1 and c. = 1 if X. = 1, i i i i i i
one obtains:

Q = 2°(2c -1) + 2"l(2c1-l) + ... + 2"n(2c -l) + r
' o '1 v n n

= 2(2°c +2’^c.+...+2~nc) - (2°+2-1+...+2~n) + r
' o 1 n' ' ' n

o „-l

If we assert that the pseudo-quotient C is
C

then, since
C = 2°c + 2~1c. + ... + 2-nc ,

o 1 n7

.o ^-1(2u+2~'L+...+2"n) = n -i = -(2-2-n),

Q = 2C - 2 + 2'“ + r ,n7
2 + Q = 2C + 2"n + r .n

If ve fora the pseudo-quotient C, multiply it hy 2 (a simple left shift),
and add 2”n, the result is (2+Q) which is the correct complement nota-

n ^9tion with respect to 2. In our instance 2” = 2~:5~ (the rightmost higit
position).

-•90Hie 2 that is introduced is, in effect, round-off of the same
type as that used in multiplication.

The pseudo-non-restoring scheme is the one actually used in the
computer.

For an example of division, divide

Divisor
y = 1.001 = -7/8,

49/128 7 -7/8 = -7/16
Partial Remainder

x = rQ = 0.0110001 = 49/128,
Quotient

0

(i) r = 0.0110001
+y° = 1.001
r1 = 1.1000001 0.

2rl = 1 1.0000010+(2-y) 1
- 0.111

r2 = 1.1110010

2ro = 1 1.1100100
+(2-y) = 0.111

r3 ~ 0.1010100

2r
+y~’

= 0 1.0101000
= 1.001

r4 0.0111000

2r4
+y

= 0 0.1110000
= 1.001
= 0.0000000

s'

c = 0.1100
20 + 2"^ 1.1001 =

o.i

o.n

0.110

0.1100

(ii)

(iii)

(iv)

(v)

(vi)

Q -
Step (i): The sign of the partial remainder (dividend at this step)

and the sign of the divisor are different; hence the di
visor (y) is added to the partial remainder (r) and a 0
is recorded in the quotient.

Step (ii): The sign of r^ and y are the same; hence the complement
of y is added to 2r^ and a 1 is recorded in the quotient.

Step (iii): The sign of r^ and y are the same; hence the complement
of £ is added to and a 1 is recorded in the quotient.

Step (iv): The sign of r^ and y are different; hence y is added to
2r^ and a 0 is recorded in the quotient.

Step (v): The sign of r^ and y are different; hence y is added to
2r, and a 0 is recorded in the quotient, (r =0) so the 4 - 5
division steps are completed.

Step (vi): Shift C, the quotient resulting from the first 5 steps,
-4left one place and add 2 . This gives the true Q.

The computer would not terminate, as we have done, when the re
mainder is 0. It would carry the division out to 40 steps rather

-^9than and then insert a 1 into the 2 position. Obviously this
does not give an exact answer. In fact, the computer quotient for the
given example would be Q = 1.1000111.. .Ill, = -(j/l6 + 2~^).

-172-

IV THE COMPUTER

Block Diagram
In this part we discuss in more detail the various components of

the computer and the various interactions between them. We begin with
a simple block diagram of the computer;

Output

Arithmetic

Internal
Memory

External Memory

CONTROL

The block diagram shows the components with their various intercon
nections. Some of these connections are for logical (non-arithmetical)
operations and others to transfer numerical data from one component
to another. It is observed that the control is the central agency in
the organization and directs the operation of the other components.
It signals the input to read new information into the internal memory
and receives a signal when the operation is completed. The control
directs the internal memory to provide the next order to be executed;
further, it transfers numbers from the memory to the arithmetic unit,
and conversely. The control directs the transfer of numbers between
the internal and external memory. It supplies the sequence of pulses
and voltage changes to the arithmetic unit to effect the various
mathematical operations. Finally, it instructs the output to punch
a paper tape and print page information from the memory for external
use.

-173-

Arlthmetlc Unit
We follow the same pattern as in the Introduction and begin with

the arithmetic unit. A schematic cross-section of the arithmetic unit
proper is shown:

ARITHMETIC
GATE

CHASSIS

ADDER

Rig. 1 Schematic Cross-Section of Arithmetic Unit.
Circles with the small arrows indicate gate tubes,
or electronic switches. Also shown are the inter
connections for the addition process.

The six registers, Rl, R2,...R6, are mounted in pairs on three horizon
tal, three-dimensional chassis, a type proposed by Bigelow. It is
sometimes convenient to refer to the pair, Rl, R2, by the single let
ter A (for accumulator); R3, R1+ are designated by Q (for quotient
register). Rl and R3 provide a method for the shifting of numbers in
R2 and R4, respectively, so it is quite natural to think of the two
doublets of registers, A and Q, as single entities. However, R5 and
R6 are not so interconnected; in fact they perform quite different
functions. Nevertheless, it is compact to have them also Juxtaposed.

Opposite the three chassis of registers are three other sets, quite
similar in appearance. The lower two constitute the adder proper; the
topmost is called the arithmetic gate chassis.

We discuss first the registers. Each register is a set of bO
flip-flops. Between the two rows of flip-flops in a chassis are two
other rows of tubes. These are the so-called gate tubes (electronic

switches) and allow for four different types of switching action. (Each
tube contains two halves which can be used independently; such tubes
are sometimes called double triodes.)

A flip-flop is a relatively simple electronic circuit containing a
tube consisting of two separate parts, such that either one half is con
ducting current and the other is cut off, or the converse. These two
modes of operation correspond to two stable configurations, and one state
is said to represent a "0", the other a "1". A flip-flop is schematically
drawn as a rectangle of two squares, one being shaded to indicate con
duction. We adopt the following convention:

0 I

A small neon is connected to each flip-flop; "off" corresponds to a 0
and "on" to a 1.

As mentioned in the Introduction there are two alternative methods
for transferring information from one set of flip-flops to another.
Consider two sets of flip-flops, A and B. There exist circuits--gating
schemes—whereby it is possible to transfer information from A—in
dependent of the previous states of the individual flip-flops of B.
The alternative procedure would be to first reset all of B to 0's and
then cause only those flip-flops of B to be set to 1 whose correspond
ing flip-flops in A contain 1. Quite clearly, B could be first reset
(or "cleared") to all I's and then the 0's from A could be transferred
to the corresponding flip-flops of B. The latter method with both
schemes of "clearing" and gating is used in the computer.

We indicate diagrammatically how a number 0011*••0 in, say, R2
is shifted to the right by one binary place. Rl initially contains an
arbitrary number fran some previous operation. (See Figure below.)

As a result of the four steps, the number originally in R2 has been
shifted to the right by one binary place. It is observed that the left
most flip-flop of Rl, the flip-flop of the sign bigit, has an additional
gate leading to the "sign" flip-flop of R2, as is of course required

-175-

R2
0 0 I I • • • • 0 number to be

shifted right
by one place

• • • |
• • • arbitrary

number

Initial State

• • • •
• • • •

W/ I • • • • “11O' - ot O' ot • • • • of
Clear Bus

Step 1. Clear Rl to ZEROS by voltage pulse on Clear Bus.
Symbol* CoRI

Step 2. Flip-flops of R2 containing "l" cause corresponding
flip-flops of Rl to set to T‘ when voltage pulse is
applied to gate tubes.

Step 3. Clear R2 to I Symtol * C ■ R2

Clear Bus

-176-

Step 4. Flip-flops of
corresponding

Rl containing "o" cause

flip-flops of R2 to set to
II ^ II0 .

to propagate the sign bigit. With the aid of a third set of gate
tubes connected diagonally to the left, shifting to the left by one
binary place is essentially the same sequence as in the above, except
that in Step 4 the third set of gates would be pulsed.

It is convenient to label the sequence of toggles in a register
by 0,1,...39 starting from the left, so that there is a one-to-one
correspondence between a flip-flop and the magnitude of the exponent
of that binary place; e.g., 0R2 designates the sign flip-flop of R2,
(0-7)Rl refers to the first eight flip-flops of Rl.

The chassis with R3 and R4 has a similar set of gate connections.
In fact, whenever a shift occurs in A the same process occurs in Q;
both multiplication and division processes make use of the simultan
eous shifting. Furthermore, it is desirable in some Instances not to
lose the information which would otherwise disappear by truncation at
the ends of A. In order to retain the information, flip-flop 0R1 is
connected to 39R4, and the information being truncated at the left of
A is introduced at the right in Q. The information being truncated

-177-

at the left of Q is lost. Symbolically,

empyrean

0 12 3 4 37 38 39

Fig.2 Nature of left shift operation, showing
interconnection of A and Q.

The sign flip-flop of A, 0R2, is treated the same as the others of R2J
i.e., the original sign of a number in R2 gets shifted, along with the
numerical part. This type of shift operation facilitates the separa
tion of multiple stored numbers.

In the right shift operations, Q again acts as a reservoir for
the bigits spilling out of A. Here the bigits are introduced at the
left in Q, beginning with the "sign" flip-flop, ORU. Diagrammatically,

empyrean
0 12 3 4 37 38 39

Fig. 3 Nature of right shift operation

Thus we can Imagine that for the left shifts, Q is the continuation of

-178-

A on the left, and for the right shifts, Q is the extension of A on
the right. For the right shift operation, it is of course necessary
that the original sign bigit of R2 propagate. For example, a right
shift by five binary places of the complement number, say 1001...in R2,
results in 111111001.....

The Addition Process
A schematic drawing of the addition process is given in Figure 4.

ADDER

MEMORY

Fig. 4 Schematic cross-section of the arithmetic unit
that participates in the addition process. As
usual, circles Indicate gate tubes. The small
arrows represent symbolically the signals that
stimulate the gating action. The clearing ac
tions associated with each gating action are

not shown.

-179-

The 14-0 stages of the various registers are represented by simple squares.
As before, circles represent "gates". The two inputs to the adder are
from R2 and R5. R2 is statically connected to the adder, so that its
contents are always sent there, irrespective of whether or not an addi
tion operation is being pursued. The number to be added to that in R2
comes initially from some memory location into R5. The pulse, indicated
by 2 in Figure k, gates this number into the adder. There the sum is
formed. During this process, in preparation for receiving the sum, Rl
is cleared. Finally gating action 4 transfers the sum from Rl—»R2. This
latter gating action involves a displacement of the bigits to the right by
one. In order to keep the position of the binary point unchanged, gating
action 3 effects a shift of one to the left. An alternative scheme would
be to have gating action 3 bring the sum into Rl without any shift. Then
transfer to R2 with a right shift; return to Rl directly; but then go
back to R2 with a left shift. This doubling back costs two extra clear
ing and gating actions. In place of this we have introduced another set
of gates, in which the sum is brought into Rl displaced once to the left;
then a single transfer to R2 completes the process. It should be men-
tbned that it is necessary to have an extra flip-flop, eRl, beyond 0R1,
which connects to 0R2, the sign flip-flop of R2.

We have seen earlier that the subtraction d=(a-b) may be performed
by adding to a the complement of b. We have also indicated that the
complement information is quite naturally available in a set of flip-
flops. Indeed, if a set of gates is connected to the adder from the
side of the toggles opposite that normally used in addition, we can per
form subtraction. Gating action of Figure 4, transfers the comple
ment of the number in R5 to the adder; the result (here, the difference)
again appears finally in R2. Thus the addition and subtraction processes
differ only in the choice of gating action 2 or 5, respectively. When
ever the "complement" gate 5 is used it must, of course, be accompanied
by the insertion of a 1 into the 39th stage of the adder in order to
obtain the true complement of the number in R5. This insertion is
effected by stimulating a carry input into the 39th stage of the adder.

-180-

Multipllcation
Inasmuch as multiplication is a series of additions, the nature

of the addition process dictates in large part the role of the various
registers in the multiplication process. When the multiply order is
given, it is assumed that the multiplier factor is already residing
in R4 as a result of a preceding instruction or of an earlier arith
metical operation. The address associated with this order refers to
the memory location containing the multiplicand. The operation begins
with the transfer of the multiplicand from the memory to R5; simulta
neously R2 is cleared in preparation for the successive partial pro
ducts. We distinguish two types of multiplication:

(i) no round-off, in which the full 78 bigits and sign are
available, the significant portion appears in R2, and the right half
appears in R4;

(ii) round-off, in which the first 39 bigits rounded-off are in
R2. The remaining portion of the product is truncated.

In both types of multiplication the first step is the examination
of the bigit in the rightmost bigit of the multiplier. If it is
a 1, an addition of the multiplicand and the partial product (at first,
0) is performed. R2 and R4 are then shifted to the right by one place.
In the event that the bigit is a 0, R2 and R4 shift without an addi
tion. The succeeding bigit of the multiplier is now examined in R4
and an addition is performed if the bigit is 1. Because of the pre
ceding right shift of the partial product in R2, the direct addition
of the multiplicand to it is appropriately placed. Note that the
bigits being shifted out of R2 are no longer involved in the partial
product sum. In the case of "nro" (no round-off) they are introduced
into R4 at the left, where room is being made available by the right
shifting of the multiplier. In "ro" multiplication, R4 is empty at
the end of the process. The final step in the process involves the
"multiplicand correction” (as discussed in the section on binary
arithmetic) in the event the multiplier is negative, and the round
off procedure if the latter is indicated.

The successive additions that occur in forming the partial pro
ducts differ in one respect from the single addition process associated

-l8l-

with the addition orders. In the latter case it will he recalled
that the gate connection from the adder to Rl was such that the out
put of the adder was displaced one to the left, so that in the sub
sequent right-diagonal transfer from Rl—»R2 the binary point is
unchanged. In the multiplication process, a right shift of one is
precisely what is needed of the partial sum; hence the gating from
the adder to Rl is direct; i.e., the i stage of the adder is con-

tilnected to the i stage of Rl, and the subsequent transfer from
Rl—>-R2 introduces the desired right shift by one.

In the control panel immediately to the left of the adder chassis
is a six stage binary counter called the operations counter. At the
beginning of the multiplication process, this counter is set to 23/
and each cycle of the multiplication adds 1. It is arranged so that
the iterative routine is interrupted after the counter reaches 63,* i.e.,
the counter is filled with I's. The full counter then terminates the
routine, stimulates the multiplicand correction in the event of a nega
tive multiplier, and finally initiates the round-off procedure if in
dicated. The sign bigit of the multiplier is at this time residing in
39R4 and is detected there.

We conclude the discussion of the multiplication by an example
with "nro". The particular problem is

/ 13n , ru 143x = 255

in binary form: (-0.1101) x (-0.1011) = (0.10001111)

in complement form: (1.0011) x (1.0101) = (0.10001111)

The first row of the sketch shows the initial configuration. In
Step 1 we have included Rl and R3 to show their respective gate
connections to R2 and R4. There is no connection from the adder to
eRl; it is set to correspond to OR5. In the subsequent steps only
the principals, R2 and R4, are shown. In the example we assume that
the arithmetic unit has only 5 stages instead of the actual 40.

-182-

01234 01234 (unchanged)
R4| I |0l I loTH R5| I | 0101 rR2 0 0 0

Step I

R21 I 1 I | I |6To1 R4|l | I 1 I | Ofi Step 2

R2 0 I I R4 I I Step 3

R2 I I 0 I I R4 I I I I I Step 4

R2 0 I 0 0 0 R4 0 I I I I Step 5

Initial
State

At the end of Step U the Iterative procedure Is coapleted, ani the
sign of the Multiplier Is by nov at the extres* right flip-flop. Step 5
Is a true addition of the coaplenent of the multiplicand, inasmuch as
the multiplier is negative. Simultaneously R4 Is shifted to the right
by one so that the right half of the final product is properly posi
tioned. For reasons of uniformity 0R4 Is always set to 0 in this step,
irrespective of the true sign of the product.

If the multiplication were rounded-off, the rightmost flip-flop of
R2 would always be set to 1 and RU would contain all O's.

-183-

Division
We now discuss the various steps of the division process. It

will he recalled that we use a so-called "pseudo-non-restoring"
type of division rather than the usual "restoring" form. It is
assumed that the dividend is already in place in A as a result of a
previous instruction or operation. The first step is to transfer the
divisor from some memory location, specified hy the address part of
the divide instruction, to R5. The signs of the divisor and dividend
sure then compared. If they agree the complement of the divisor is
added to the dividend; and accordingly a 1 is set into 39R^> the regis
ter which eventually contains the whole of the quotient. On the other
hand, if the signs of the two terms differ, the divisor is added di
rectly to the dividend, and 39R^ is left undisturbed. Inasmuch as R4
was cleared to O's at the start, if 39R^ is left undisturbed this cor
responds to the Insertion of a 0. Q is then shifted one to the left.
By virtue of the gate connections used here, in particular the fact
that the transfer from Rl —> R2 is diagonally left, the partial remain
der appears in R2 already shifted to the left by one. Hie signs of
the partial remainder and the divisor are again compared and 39R^
again set appropriately. This process is done 40 times. In this
manner the pseudo-quotient is obtained. We have seen that the pseudo
quotient is simply related to the true quotient. Finally, the round
off is perfonned.

Inasmuch as the desired shift of the partial remainder is to the
left, it is necessary to have an extra flip-flop precede 0R2 in order
not to lose the sign of the partial remainder. It is designated as
eR2. Further, along with the preparatory step of securing the divisor,
it is necessary to set eR2 to agree with 0R2. At the completion of
the operation, Q contains the rounded-off quotient and A has twice the
remainder.

As an illustrative example, we consider a four-blgit division:
0.1001/-0.1101 = = 0.1001/1.0011

Binary Computer
At the start of the process, R2 contains the dividend, R5 the divisor,
and Bh is cleared to O's. eR2 is made the same ae 0R2, in this case
0. Hie first sign comparison of eR2 and 0R5 shows disagreement;
hence the contents of R5 are sent to the adder directly, and a 0 is

-im

partial remainder (quotient) (unchanged)

e 0 1 2 3 4
R2 0 | 0 0 0 1 R4 0 0 0 0 0 R5 1 0 0 11

e 0 I 2 3 4
R2

0 12 3 4

e 0 I 2 3 4
R2 00I0I0 R4 00010 Step 2

Step

R2 I I I 0 I 0 R4 0 0 I 0 0 Step 3

R2 0 0 I I I 0 R4 0 I 0 I 0 Step 4

R2 0 0 0 R4 I 0 I 0 I Step 5

Initial
State

-185-

set in the rightmost flip-flop of R4 and transferred, via R3, one place
to the left. In the second sign comparison, the signs agree and the com
plement of the contents of R5 is sent to the adder directly and a 1 ap
pears in R4, etc. At Step 5> R*4- contains 10100. (The last stage is
always 0 at the completion of intermediate steps.) The round-off pro
cedure corresponds to setting the rightmost flip-flop to 1, and the
quotient is 1.0101 (= -0.1011). Twice the remainder resides in R2 be
cause of the shift occurring in each addition process.

Memory
The memory (internal and external) component of the computer pro

vides the storage facility for numbers and instructions. The internal
memory is electrostatic storage and the external memory is magnetic drum
storage. In what follows reference to "memory" refers to the internal
memory and reference to "drum" implies external memory.

The memory consists of 40 cathode ray tubes (crt), commercially
available two inch tubes, type 2BP1. Each tube is mounted in a separate
metal container, together with some associated electronic circuitry.
The units have been designed so that they may be easily connected into
the computer, or easily removed in case of malfunction and replaced by
tested spares. The ensemble is located immediately above the arithmetic
unit.

Each unit of the memory communicates with one, and only one, stage
of the arithmetic unit; that is to say, the units of the memory are
connected in parallel with the 40 stages of the arithmetic component.

Each unit has a capacity of 1024 bigits. These are arranged in a
32 x 32 square array. If the various positions are numbered from 0 1023,
clearly it requires 10 bigits (2^ = 1024) to specify a location or, as it
is commonly called, an address. Once an address is specified, all units
switch to the corresponding position in their square arrays, and communi
cate simultaneously to the arithmetic unit the corresponding bigits.

Data sent to the memory, either initially as input material or
during the course of computation, must be continuously regenerated in
order to be retained effectively. Indeed, the cathode ray tubes are con
tinually regenerating the contained information unless interupted to go
through an action cycle when the arithmetic unit asks for a new order pair
or number, or else when the memory is to receive new information. After
the interruption the memory returns to regeneration.

-186-

Without entering into a discussion of the theory of storage
tubes, let us make a few simplified remarks on "writing" and "reading"
of information in crt.

(i) Writing: the prescription for inserting a 0 at some loca
tion is to turn the beam on for a few microseconds. To write a 1,
the beam is turned on for a few microseconds exactly as in writing a
0; but then the beam is displaced a few spot diameters and kept on a
few microseconds longer in the new position. In either case, the
procedure is Independent of what conditions existed beforehand; in
other words, there is nothing required that corresponds to erasing.

(ii) Reading: the beam is turned on for a few microseconds in
the undisplaced position. If a 0 is residing there, there will be a
small negative pulse on the pickup screen on the outside face of the
tube. On the other hand, if a 1 were there the pulse on the pickup
screen would be positive. These pulses are amplified and used to
set flip-flops accordingly. We discuss this presently; however, it
might be mentioned here that, in the event of a 0, the associated
negative pulse turns the beam off before it is displaced; hence the
0 at that spot is not destroyed and is available for repeated consul
tations. The positive pulse does not turn the beam off until the
beam is displaced; hence the 1 is Intact also.

A very much simplified logical diagram of the memory system is
shown in Figure 5.

Pickup
ScreenReading

RegenerationWriting
fromR!

Action
fromR2 Reset

Order Pair
Information

Abbreviations: D.A. deflection adder
R.C. regeneration counter
C.C. control counter

Fig. 5 Memory System.

-187-

Only one of the 40 cathode ray tubes with its associated amplifier
and flip-flop is shown. The deflection adder is a device that converts
a 10-bigit number into a pair of voltages which are applied to the de
flecting plates of the crt. There are three inputs (via gate tubes)
into the deflection adder. Normally, the regeneration counter is
sending its systematic addresses to it. When an action cycle is called
for, the deflection adder receives an address either from the control
counter or from R6 in preparation for activity at the location speci
fied by them.

In a regeneration cycle, an address from the regeneration counter
is sent to the deflection adder and there converted into a deflection
voltage on the crt. The electron beam is then turned on to read the
information at that spot. An amplified positive pulse from the pickup
plate, corresponding to a 1, will set the flip-flop and allow the beam
to stay on in its slightly displaced position; thus a 1 is rewritten
in that spot. If the pulse is negative, the flip-flop is not set; the
beam is turned off before it gets displaced; and a 0 is rewritten. In
the meantime, the regeneration counter is advanced by one; the flip-flop
is then reset; and the cycle is repeated for the succeeding spot. In
this way, the complete pattern is continuously regenerated.

At some point in this process let us assume that an action cycle
is demanded and that this action is to read a number from the memory to
the arithmetic unit, into either R5 or R6. There is an interlock (not
shown in the diagram) which allows the regeneration process to complete
the present cycle; but in the next cycle. Instead of gating an address
to the deflection adder from the regeneration counter, the address is
either taken from R6 or from the control counter, according as an order
is being executed or a new order pair is being asked for. Reading pro
ceeds and the flip-flop is either set to the 1 state or left undisturbed.
The information, in addition to being sent back into the crt, is also
gated into R5 or R6 aa desired, by means of the gates shown in the
diagram.

If the action cycle calls for writing into the memory, either from
R2 or R5, the corresponding gates are opened and again the flip-flop
is set or left undisturbed according as the bigit is 1 or 0. Here, too,
the flip-flop controls the length of time the beam is on, hence whether

-188-

It is to "write" a 1 or 0.
There exists a variety of possible paths of coimnunication between

the various registers of the arithmetic unit and the memory. Obviously,
R6 must be able to receive order pairs from the memory; it suffices that
this connection is unilateral. R2 must be able to send to and receive
from the memory; similarly, RU. Finally R5 needs to receive from the
memory (for example, in multiplication). The scheme adopted is shown
in Figures 6 and 7*

In the first are shown the
gate connections from the memory.
R6 connection is straightforward
and requires no additional com
ments. A number from the memory
is gated into R2 by first being
gated into R5, from there to the
adder, then to Rl, and finally to
B2; the last having been previous
ly cleared or not as desired. R4
communicates with the memory via H5-

The connections to the memory are shown in Figure ?• B2 and R5
communicate directly with the memory; R4 readies the memory via RJ.
There exists a certain amount of flexibility in the gate connections
from R2 and R5 to the memory. It is possible to send a composite word
to the memory, one part being from R2 and the remainder from R5« This
arrangement is useful in the substitution order where it is desired to
change the address part of an order
residing in the memory by an address
at the moment in R2. This is exe
cuted by first bringing all of the
word from the memory into R5, then
sending all but the old address
part back;, the new address being
supplied from R2, where the appro
priate set of 12 gates is opened.
Use is also made of this flexibili
ty of composition in the half-word
substitution.

ED
Fig. 7

Gate connections to the mem
ory from the arithmetic unit.

-189-

The external memory is a magnetic drum system built for the computer
by Engineering Research Associates, Inc., of St. Paul, Minnesota. The
drum proper is a precision cylinder whose surface carries a magnetizable
iron oxide. The cylinder is 8 l/2 inches in diameter and 15 inches in
length. The drum cylinder is completely enclosed in a housing on which
are mounted 202 magnetic heads for reading and writing information on
the drum. When in operation with the computer, the drum is continuously
rotating at 3^50 rpm. The drum is mounted with the associated electronic
gear in a 7 foot cabinet which is approximately 5 feet wide and 30 inches
deep.

The drum has a capacity of 10,000 forty-bigit words. However, these
words are not singly addressed and the communication between the drum
and the memory is in blocks of fifty words. The addressing is done by
200 drum tracks where each contains fifty words arranged serially around
the periphery of the cylinder. A separate magnetic head is associated
with each drum track. There are 202 magnetic heads in all; two of these
are for indexing purposes and the rest are concerned with the 200 storage
tracks.

Due to peculiarities in the ERA logical design of the drum, the
track addresses range from 0-255 with certain addresses being omitted.
Table III shows the correspondence between the ordinal numbers and the
actual track addresses. There are, however, routines in existence which
allow one to address the drum tracks sequentially as addresses 0-C7
(O-I99, decimally) in the process of coding. Since the communication
with the drum is by tracks where any block of 50 words comes from a single
track (one magnetic head), we observe that the drum is a serial storage
system in contrast to the parallel storage of the memory.

It requires between four and five revolutions of the drum to read
or write a track of words. The drum speed of 3^50 rpm gives a drum period
of 17 milliseconds, so that it requires between 68 to 85 milliseconds
for 50 words to be read from, or written onto, the drum. This is, on
the average, 78.5 milliseconds per 50 words.

The drum instructions each require a full word for their expression.
The drum orders are:

0 0 19 20 32 4o 4b 60

1 1 1A 21 33 41 4c 61
2 2 IB 22 34 42 4o 62

3 3 1C 23 35 43 4e 63
k k ID 24 36 44 4f 64
5 5 IE 25 37 45 50 65
6 6 IF 26 38 46 51 66

7 7 20 27 39 47 52 67
8 8 21 28 3A 48 53 68

9 9 22 29 3B 49 54 69
A A 23 2A 3C 4a 55 6a
B B 24 2B 3D 4b 56 6b
C C 25 2C 3E 4c 57 6c
D D 26 20 3F 40 58 6o
E E 27 2E 40 4e 59 6e
F F 28 2F 41 4f 5A 6f

10 10 29 30 42 50 5B 70
11 11 2A 31 43 51 5C 71
12 12 2B 32 44 52 5D 72
13 13 2C 33 45 5^ 5E 74
1^ 1* 20 3* 46 56 5F 76
15 15 2E 35 47 58 60 78
16 16 2F 36 48 5A 61 7A
17 17 30 37 49 5C 62 7C
18 18 31 38 4a 5E 63 7E

iTfl

64 80 7D AO 96 CO AF EO
65 81 7E A1 97 Cl BO El
66 82 7F A2 98 C2 B1 E2
67 83 80 A3 99 C3 B2 E3
68 84 81 A4 9A C4 B3 E4
69 85 82 A5 9B C5 B4 E5
6a 86 83 a6 9C c6 B5 e6
6b 87 84 A7 90 C7 b6 E7
6c 88 85 a8 9E C8 B7 E8
6o 89 86 A9 9F C9 b8 E9
6e 8a 87 AA AO CA B9 EA
6f 8b 88 AB A1 CB BA EB
70 8c 89 AC A2 CC BB EC
71 8o 8a AO A3 CD BC EO
72 8e 8b AE A4 CE BO EE
73 8f 8c AF A5 CF BE EF
74 90 8o BO A6 DO BF FO
75 91 8e B1 A7 01 CO FI
76 92 8f B2 A8 02 Cl F2
77 94 90 b4 A9 D3 C2 F3
78 95 91 B5 AA 04 C3 F4
79 98 92 B8 AB 08 C4 F8
7A 99 93 B9 AC D9 C5 F9
7B 9C 94 BC AO DA c6 FA
7C 90 95 BO AE OB C7 FB

in

-190-

-191-

"m—>D BD Read 50 successive words from the memory starting with
the word at address specified by bigits 8-19 of the
instruction. Write these 50 words into the drum on
the track specified by bigits 20-27. Then transfer
the control to the left-hand instruction of the word
at the address specified by the bigits 28-39*

D—►m BC Read the 50 words from the track of the drum specified
by bigits 20-27 of the instruction. Write these words
into 50 successive memory locations starting with the
address specified by bigits 8-19* Then transfer the
control to the left-hand instruction of the word at
the address specified by bigits 28-39."

An example of a drum instruction in hexadecimal notation is
BD 137 £2 2BF.

This is interpreted as: Read 50 words from the memory beginning with the
word at address 137* Write these 50 words into the drum at track 29.
Upon completion of the instruction the control transfers to the left-
hand instruction of the word at address 2BF in the memory.

During a drum instruction R4 serves as a transition register between
the parallel storage of the memory and the serial, storage of the drum.
That is, in transmitting to the drum each word is brought into R4 from
the memory (parallel) and then shifted out of R4 to the drum (serial).
In transmitting from the drum each word shifts into R4 (serial) and then
is stored from R4 into the memory (parallel).

In order to transmit 50 words between the memory and the drum there
must be a register or a counter which specifies the appropriate memory
addresses. The control counter is used for this purpose. This means
then that the control counter contains, at the completion of the trans
mission of the 5° words, the address of the 50th memory word concerned
with the instruction. This, in general, is not the address of the next
instruction word to be brought into R6; hence the drum instruction ends
in a transfer which sets the control counter to the desired address for
the next instruction word of the code sequence.

In the use of auxiliary equipment such as the drum, it is desirable
to incorporate some sort of checking feature. The checking of the drum
is by summing procedures similar to those used in loading. That is,
when 50 words are transmitted from the memory to the drum, a sum of the
words is formed and stored in an appropriate location. Upon transmitting
this track of information back into the memory, a sum is again formed

-192-

and checked against the previously formed sum. It was initially in
tended that this summing he done entirely hy programmed routine; however,
it was observed that summing could he done electronically on the D—»m
instruction with practically no additional equipment; hence this feature
was incorporated as follows: If in the D—>m instruction one writes the
initial memory address m as m + 800, the sum of the 50 words is accumu
lated in R2. R2 is not cleared to zero prior to the start of the sum
ming; hence the sum is added into the contents of R2. At the completion
of the instruction, the sum is left in R2 and may he checked with further
programming. One still needs the summing routine for the m—*D instruction.

Input-Output
The input component exists in two forms. There is the photo-electric

paper tape reader and the magnetic tape unit. All input to the computer
is initially via the photo-electric reader.

For input hy the photo-electric reader, information on the paper tape
is punched transversely in groups of four higits, called tetrads. Usually
a decimal digit or a logical character is represented hy a single tetrad.
For each separate decimal digit, the true binary representation is used
where a punched hole corresponds to a 1 and a blank to a 0. Clearly, the
true binary representation of a sequence of decimal digits is not given
hy the sequence of tetrads (cf. page 56)• However, the conversion to
the true binary number is quite simple and is done hy the computer
through a conversion routine before the actual computation starts.

We distinguish two methods of reading information from the paper
tape into the memory. There is, first, an initial loading process which
begins hy setting the control counter to the desired initial address.
Hie first word (10 tetrads) from the paper tape is transmitted hy the
reader into R5. The space symbol which terminates each word initiates
the transfer of the word from R5 to the memory location specified hy the
control counter. The control counter is advanced one, the second word
is read and transmitted to the second memory location, etc. The end
of the loading process is indicated hy the presence of two consecutive
space symbols. The control counter resets to the initial address, the
first order pair may then he brought into R6, and the problem started.

-193-

R5 has been made into a shifting register by making use of a short
term memory facility afforded by a simple resistance-capacity circuit
connected between each stage of R5* The speed of the photo-electric
reader is sufficiently slow compared to electronic speeds that it is
possible to scan the transverse series of holes of a tetrad, and still
have time to shift R5 four times per tetrad. In this way the parallel
information in tetradic form is converted into a strictly serial pattern.

The use of R5 in association with the reader affords two desirable
features. First, the functioning of the memory is divorced from that
of the arithmetic unit so that, in the event of some malfunction, iso
lation of th£ difficulty is greatly facilitated.. Second, since each
word passes through R5 en route to the memory, it may be added into R2
so that during the loading process R2 acts as an accumulator of partial
sums. At the completion of the loading the number residing in R2 is the
sum of the contents of the tape, and it may be compared with a known
correct value. This provides a useful preliminary check of the reader
and associated electronics.

The second method of reading from the paper tape is, of course,
the single read instruction which transfers a word (the next one in
the series) from the tape to the memory location specified by the ad
dress part of that instruction. The use of this instruction in a
small induction loop makes it possible to read whole blocks of words
from the tape to the memory.

The magnetic tape unit serves as an input and output device. The
magnetic tape drive is a standard audio-broadcast unit that was pur
chased from the Ampex Electric Corporation, San Carlos, California.
The tape drive with our own associated electronic gear is mounted in
a console cabinet of approximate dimensions 3 feet high by 2 feet wide
by 2 feet deep. The unit is used as a single channel serial system
where the magnetic tape reels contain 1200 feet of l/h inch wide Scotch
Sound Recording Tape.

The reels of magnetic tape are, in general, premarked into sections
which will accommodate 1024 forty-bigit words. There are fifteen such
sections on a 1200 foot reel. The markings dividing these sections are
short lengths made transparent by removing the magnetizable material
from the tape.

-194-

Since the unit is used only as an input-output device, there is no
automatic addressing of the fifteen marked sections, and there are only
manual searching facilities.

The manual searching is afforded hy a photo-cell hooked into the
tape drive mechanism and a fast forward and reverse for driving the tape.
The fast forward and reverse allows one to advance or reverse the tape
at a speed of roughly four seconds per block of 1024 words. The photo
cell actuates a brake whenever a transparent length of tape passes in
front of it. With this, one can then advance or reverse a tape as many
blocks as desired.

The operating speed of the tape is 15 inches per second. The pack
ing density of the tape is 72.6 zeros per Inch, or 57-1 ones per inch,
which is an average of 64.8 bigits per inch. The time required to record
a memory load onto the tape is 40.9 seconds, if the information is all
zeros, or 51 seconds if the information is all ones. This gives an
average record time of 45-9 seconds per memory load.

The magnetic tape unit has no completely automatic load feature as
does the reader; hence all information from the magnetic tape is read
into the computer by a programmed routine. The tape order, reading from
tape to R4, is:
"t—»Q AC Replace the number in R4 by the first word to come under

the reading head of the magnetic tape reader."
To insure accurate reading of data from the tape to the computer, a

timing feature must be incorporated in the writing process, i.e., in the
computer to tape routine. This feature is a time delay between the trans
mission of successive words from the computer to the tape, and it is ac
complished by an L(40) instruction given prior to each Q—>t instruction.
This delay in recording on the magnetic tape gives adequate spacing be
tween words to insure proper transmitted, by the tape "call" routine
which does not include the L(4o) delay.

As in the drum, a checking feature has been incorporated into the
magnetic tape routines by summing. In the computer to tape routine, the
words sent to the tape are summed. The sum is printed and recorded on
the tape as the last word of the record. Upon "calling" the information
back into the computer via the tape to computer routine, the contents of
the tape are summed except for the last word. The sum is then compared
with the last word of the record; the last word being the sum formed
when the record was made.

-195-

Output from the computer may he accomplished by four mechanisms.
There is the magnetic tape already discussed, the Synchroprinter, a high
speed page printer; the Flexoprinter, a slow-speed page printer; and the
Flexopunch, a slow-speed tape punch. No further comments are needed for
the magnetic tape unit; hence we turn to the printers and punch.

The Synchroprinter is a high-speed page printer that was purchased
from the ANelex Corporation, Concord, New Hampshire. The Synchroprinter
and its associated electronic gear are mounted in a cabinet of approxi
mate dimensions 5 feet 6 inches high by 1 foot 10 inches wide by 1 foot
7 inches deep. The printer has a maximum operating speed of fifteen
lines per second which is 36,000 characters per minute.

The characters that may be printed are the ordinal numbers 0,1,2 •••
8,9; the letters A,B ••• F; a decimal point; and a minus sign. The
printer achieves its speed by printing a line at a time where a line con
sists of 40 characters; these may be four 10-digit numbers or any other
aggregate. The printer operates on the following principle: There are
40 type wheels, each containing the 18 available characters. The 40
wheels are rigidly mounted on a metal cylinder. All of the O's, I's,
2's, etc., of the 40 wheels are aligned. This cylinder rotates at a
constant speed whether the printer is being actuated or not. During any
one revolution of the cylinder a line may be printed. In printing an
aggregate of 1*0 characters all of the O's of the aggregate are printed
simultaneously, then the I's, the 2's, and so on, until after one revolu
tion of the type cylinder the 40 characters of the line are printed.

There are two apparent methods of operating such a printer.
Hie first is to supply the correct digital information to all 40
type wheels simultaneously and then allow each wheel to print at the
proper time. As is known, a 40-bigit register may represent only 10
coded-decimal or hexadecimal characters; hence to represent 40 such
characters, four standard registers would be needed. Although this
method is very simple from a coding viewpoint the electronic gear in
volved makes such a scheme prohibitive.

The second method and the one adopted for the printer involves
very little additional electronic equipment. Inasmuch as the O's of
a line are printed simultaneously and then the I's, the 2's, and so on.

-196-

only the O's digital Information needs to he supplied to the appropriate
type wheels when the O's are to he printed, and similarly for the re
maining digits. During the 0 print cycle the Information that needs
to he supplied to each type wheel is binary, I.e., either print or do
not print. Since a register contains 40 higits, and since a line for
the printer is 1(0 characters, a register may supply the necessary binary
information to the print wheels. The register R2 is used for this
purpose.

To print an aggregate of 1(0 digits, the 1(0 digits are first repre
sented hy an 18-row, l(0-column matrix (i.e., 18 consecutive memory
locations) where the rows represent the 18 characters present on a
print wheel, and the columns correspond to the digit position in the
aggregate. For electronic convenience a 0 in any element corresponds
to the presence of a digit and a 1 corresponds to the absence of that
digit. As an example, consider a 4-row, 6-column matrix where the
number 302132 is represented. It is:

0: 101111
1: 1110 11
2: 110110
3: 0 1110 1

where rows correspond to the digits 0 -»3 in order from top to bottom,
and the leftmost column corresponds to the most significant digit posi
tion. To represent an 18 x 40 array or matrix in the computer 18 words
of storage are required. After such an array has been formed a line
may be printed. Row 0 is brought into R2 for the 0 print cycle, row 1
for the 1 print cycle, row 2 for the 2 print cycle, and so on.

A timing problem is involved^ as only about 1.5 milliseconds exist
between adjoining print cycles once the printer is actuated. Hie print
order itself acts as a timing element. To print a line Ifi print orders
are given as part of a subroutine. The first of the 18 actuates the
printer and the rest act in a timing capacity. It is necessary that the
time elapsing between successive print orders be less than 1.5 milli
seconds, and for safety it is recommended that the time be kept somewhat
less. When each print order is given the appropriate row of the matrix
must be in R2.

Although the described scheme complicates the print subroutine it
is felt that the reliability obtained by including no new electronic
gear certainly justifies the added complications of the coding.

-197-

The matrix Is formed in the computer so that the first row cor
responds to the minus sign, the second row to the decimal point, the
third row to digit 0, the fourth row to digit 1 ••• the 17th row to
the letter E, and the 18th row to the letter F. The type is arranged
on the print cylinder so that the sequence of printing the characters
is F, E, D, C ••• 3, 2, 1, 0, •, This means that the words corres
ponding to the rows of the matrix must he brought into R2 beginning
with row 18 (the letter F) and ending with row 1 (the minus sign).

The paper feed for the printer operates from top to bottom past
the print cylinder. The first line printed then appears at the bottom
of a column of lines. In order to have the first line printed appear
at the top of a column of lines (as it customarily does) the type
characters on the wheels have been inverted. If the mirror image of
a ^0-digit aggregate is then printed it comes out of the printer in
verted, but upon turning the copy upright one has a conventional list
ing which for a column of lines would read from top to bottom and from
left to right. To print a mirror Image of the aggregate the order of
the columns of the array is reversed; i.e., the rightmost column cor
responds to the most significant digit and the leftmost column to the
least significant digit. The 4x6 matrix of the previous example for
the number 302132 should be formed as

11110 1
110 111
0 110 11
10 1110

The print order is:
Sync Print CE To be used in a subroutine which prints simul

taneously mi, 2i+1, “i+2> 2i+3J — mus't
supplied to the routine.

The address bigits of the print instruction have no relevance with
respect to the instruction.

An example of a Synchroprint routine is given as Problem 13 of
Chapter II. There is, in addition to the high-speed printer, a modi
fied Teletype page printer that has an operating speed of 396 charac
ters (36 10-digit words and spaces) per minute. The printer is

-198-

modified to l6 characters; the ordinal numbers 0,1,2 ••• 9, and the
letters A,B,C ••• F. This printer is actuated by the print order
"Flexoprint EA Print m on the page printer (slow speed)."

The reason for retaining this printer in addition to the Synchro
printer is that one may print directly any word in the memory. To
print a word via the Synchroprinter involves a routine,while the Tele
type printer needs only an instruction. Whenever any volume of print
ing is desired, however, the faster Synchroprinter is used.

The Fiexowriter punch allows one to punch information from the
computer onto paper tape for subsequent use. The punch is a modified
Flexowriter punch for five hole paper tape. Its speed of operation is
869 characters (79 10-digit words and accompanying spaces) per minute.

The punch order is:
"Punch CF Punch m on paper tape."
Due to the very slow speed of the punch, the magnetic tape is used
whenever practicable for output needed in a form to be used as subse
quent input.

Control
The control is the agency which directs the various activities of

the computer. Some parts of the control relate specifically to the
detail operation of the various components, such as the memory control
concerned with the regeneration of stored information. To some extent
these have been discussed under the respective headings in previous
sections. Here we propose to consider some of the more general fea
tures of the control.

The instructions for the computer are of the one-address type;
i.e., an order is associated with a single address referring to some
memory location that contains a number upon which the specific order
is to operate. This system of instructions is much simpler in struc
ture than some proposed schemes for other computers. There have been
proposals for four-address Instructions; the first two addresses speci
fying the two factors of an operation (say in multiplication, the mul
tiplicand and multiplier), the third referring to the destination for
the result, and the last to the location in the memory of the next in
struction. We do not cite the various advantages for the several pro
posals except to remark that simplicity is a rather compelling argument.

The normal word length in the memory is 40 bigits. An instruction
is 20 bigits, so that instructions are stored in pairs. Of the 20
bigits, 8 are used for specifying the order, and 12 remain for the
address. Actually 10 suffice with our present memory capacity of
1024 (= 2^), so that 2 bigits are available for future expansion or
for some other purpose.

The 8 bigits describing an order are initially punched onto a
paper tape as two tetrads. In principle any of the 16 possibilities
0,1,2...9> A,B...F might be vised for each tetrad. Thus a mag-innim of
256 possibilities is available. Our present feeling is that the num
ber of useful orders will not exceed 36; thus only letters in pairs
are used to designate an order. This is useful in coding.

let us begin at some point in the cycle of activity and describe
the sequence of events that leads back to the same point; after that
we indicate with the aid of some logical diagrams how some of these
things are accomplished.

Assume that a pair of orders has Just been brought into R6. The
order part of the left-hand instruction must be interpreted and the
corresponding sequence of pulses and voltage changes provided. At the
same time the address part is sent to the deflection adder of the mem
ory in preparation for communication with the memory. When this in
struction is completed, the control then examines the instruction re
siding in the right half of R6 and takes the necessary measures to
execute it. In the meantime, the control counter is advanced by one
so that when the right hand instruction is completed the next order
pair can be brought to R6, and thus complete the cycle.

It Is convenient to subdivide this part of the control into three
sections: The first is concerned with the interpretation of the eight
bigits as a specific order, and Is called the order matrix. The sec
ond, called the operations control, provides a set of pulses for exe
cuting a given order. Hie third, the instruction control, deals with
the "red tape" associated with doing the left half of an order pair,
then the right half, and then seeking a new order pair.

The Order Matrix: Inasmuch as it has been decided to use only
letters (and not Include decimal digits) to specify orders, each tet
rad of a pair begins with a 1 (letters correspond to the digits 10-15).
Therefore, of the eight digits, only six are used to discriminate among

the various orders. To simplify the discussion, assume we are concerned
with only two bigits. (The case for six is an obvious extension.) These
two bigits are in two flip-flops of R6; and imagine further that in each
flip-flop two wires tap in at symmetrical points of the flip-flop as
shown diagrammatically in
Figure 8. If I has a 0, A
has a definite voltage V,
and B has another definite
voltage V; if I has a 1,
the voltages are inter
changed, that on A is V
and on B it is V. The
voltages on C and D depend
on the contents of II in
precisely the same way.
Consider next a two level "and-gate" with the following properties:
If, and only if, the input voltages are both V, a signal is given to
the output. We now construct four such "and-gates" with inputs from
the set A,B,C,D; the specific connections are shown in the diagram.
Clearly, if the contents of I and II are 0,0 the above condition is
satisfied for only the topmost gate and a pulse is given out along
the 0 output. Similarly, if the contents are 0,1 a pulse goes out
along the 1 output, etc. To envisage the actual order matrix, ima
gine that there are 6 flip-flops with various connections to 36 "and-
gates" of level six; i.e., six conditions must be satisfied to stimu
late an output. Thus from a series of bigits we actuate a unique
line corresponding to that particular set.

The Operations Control: The operations control is essentially a
pulse generator producing a sequence of seven pulses. Four of these
pulses are of fixed length; the remaining three may be variable. The
necessity for pulses of variable duration stems from the fact that
the time required for certain operations is somewhat indeterminate.
For example, if an action cycle is required of the memory at some
moment, it is necessary to wait until the memory completes its present
regeneration cycle before going into action. Inasmuch as the waiting
period is somewhat arbitrary, the time from the instant the action
cycle is requested to completion is slightly indefinite. The comple

I TL

Fig. 8 A two stage order matrix.

-201-

tion of the operation terminates the pulse and the operations control
then generates the next pulse.

Some of the more complex orders require more than just one sequence
of such pulses; hence one of the provisions made is to pemit the opera
tions control to go through its paces the required number of cycles. On
the other hand, some of the simpler orders do not need the full comple
ment of seven pulses and, in the interest of speed, provision is made to
terminate the sequence at some earlier point.

We now consider a very much simplified example of an order, by way
of illustrating how an actuated line from the output of the order matrix
and che signals from the operations control combine to execute the given
order. Say the order is a shift to the left by one place of a number
in R2. A series of "and-gates" of level two are connected to the out
put line from the order matrix that corresponds to this order. The
output line is thus a common static input to all of these gates. The
second inputs are the various timed pulses from the operations control.
These connections are shown in Figure 9•

Start Signal From
Jnstructions Control

Clear RI to zeros
Output Line
From Order
Matrix Gate "ones" vertically

from R2-»* Rl

Clear R2 to zeros Operations
Control

Finish signal to Instructions
“Control;also prevent
subsequent pulses,

Gate "ones" diagonally
left from RI-*-R2

t

Fig. 9 Gate connections for a simplified order.

-202-

Vhen the first signal is produced, conditions at gate I are
satisfied and an output signal is produced and is sent to the
clear hus of Rl. Its effect is to set all the flip-flops of Rl
to the 0 state. After a short delay, pulse is produced w-wd
directed to gate II. This output sets those flip-flops of Rl to
1 to match the corresponding flip-flops of R2 or, simply said,
I's are gated into Rl from R2 vertically. The subsequent steps
are obvious.

The Instruction Control: It includes the following functions:
(i) Communication with the memory to obtain the next order pair.

Signals must be given to clear R6, to send the address from the control
counter to the deflection adder, and to transfer the order pair from
the memory to R6.

(ii) Transfer of the order part of the left instruction to the
order matrix and of the address to the deflection adder of the memory;
upon completion to examine the instruction in the right half of R6.

(iii) Sending a start signal to the operations control.
(iv) In the event that the left order is a transfer order, the

sequence is interrupted, the new order pair is brought into R6, and
a new sequence of instructions is started. There is also provision to
skip the left order for those cases where the transfer is to begin a
new sequence of instructions with the right half of an order pair.

(v) Finally, it must advance the control counter by one after
each order pair, and also receive the finish signal from the opera
tions control.

In order to make convenient gate connections between the various
functions of the control, a collection of vertical bus wires is acces
sible in the control panel immediately to the left of the registers.
A cross-sectional layout of the arrangement is shown in Figure 11. The
notation is as follows:

C±RJ

RJRJ

clear RJ (j=l,2,...6) to i (i=0,l);
‘tiln timed signal (n=l,2,...6);

deft diagonally;
gate i from RJ -*-RJ' either^right " ;

(straight;

-203-

Hold
Finish

Set Trans FF

Set Rt Trans

Cycle Input

Start Toggle

allows variation in length of tg and/or t^j
finish signal from operations control to
instruction control;
sets a flip-flop in instruction control to
indicate transfer to new sequence of instruc
tions ;

FF sets a flip-flop in instruction control to
indicate transfer to new sequence beginning
with right half;
input to operations control to repeat sequence
of timed signals;

0 a special timed signal which permits cycling
operations control twice in a given order.

20*f-

Vertical Beees of Order Oates

•
C Rl o

•
C R4 o

•
ti

•
R1R2L^

•
R3R4L1

• • • • •
CjRl t2 R1R2Ro R3R4Rq

t • • • •
C R2 o coR5 t3 R2R1S1 R4R3S1

• • • • • • • • • • •
Adder • • • •

0-7 C,R2 8-19 20-2? C R5 28-39 o-7 t4 8-19 20-27 R1S 28-39 No. R4R5S, Comp.
B2 X R2 R2 X R2 R5 B5 K5 ° B5

•
X

• • • Adder
CoR3 MR5So t5 R1L0 R5R4Sq

• • • • e
Hold Set Trans FF t6 Write MR5Sq

• • • • eFinish Set Rt Trans FF Start Toggle "O" Cycle Input Finish

•p"iFigure 11

-205-

V. DESCRIPTIVE CODING AND SUBROUTINES

Recall from Chapter II that the steps in the preparation of a
code of a problem are:
1. The logical coding is first prepared. In this coding the logical

rather than the computer symbols are used. Each box of the flow
diagram is treated independently and the instructions within the
box are numbered consecutively beginning with 1. Indexed Latin
letters are used to indicate the addresses of the necessary stor
age of the problem.

2. The computer code is then prepared. In this coding the instructions
are paired into words and these instruction words are sequenced and
numbered (addressed) according to their subsequent residence in the
memory. The computer symbols for the orders are written in place of
the logical symbols. Numerical addresses are assigned to the storage*
and the addresses of instructions referring to storage are modified
accordingly.

3. The computer code is checked so that any errors may be corrected be
fore the code is punched onto paper tape for subsequent input to the
computer.
As one examines these steps in detail, the question quite naturally

arises as to whether the computer might be instructed to carry out part
of the coding process. The question can be answered in the affirmative,
and the purpose here is to describe a method for coding in which the com
puter is instructed to carry out all of Step 2 of the coding procedure.

The method is by no means unique. The motivation for its choice is
found in the desire to use the computer as an aid in constructing a usable
code which is tailored in the manner described in Chapter II, and to re
lieve the person preparing the code of much of the routine work involved,
and possibly to reduce the number of errors.

The method in general is as follows: A logical code using a pre
scribed set of symbols and following a prescribed set of rules is pre
pared. These symbols identify the various kinds of storage of the problem
(e.g., numerical constants or logical quantities) and the addresses of the
various instructions of the problem. This logical code is checked for
errors and after any needed corrections are inserted, a punched tape of

-206-

this logical code is prepared. This tape is then used as input data by
a routine designed to assemble a computer code from this material.

The assembly routine reads the individual instructions from the
logical code tape and pairs these instructions properly into instruc
tion words; assigns addresses to these instruction words; and stores
them into the proper location. The absolute (numerical) addresses of
the storage of the problem are assigned by the assembly routine, and the
instructions referring to this storage have their addresses translated
accordingly. The addresses of instructions that do not refer to stor
age (i.e., instructions that refer to other instructions) are also
translated into their absolute value. When this computer code is com
pletely assembled it is punched onto paper tape or written onto magnetic
tape by the assembly routine; a printed copy is also produced.

This method of coding has been given the name descriptive coding
since many of the identifying symbols used in the logical coding are
descriptive in nature.^-

We now turn to the discussion of the descriptive coding, and we
establish the necessary rules and define the symbols needed to carry
out such a coding. The assembly routine is not discussed in detail
since its complexities are beyond the scope of a manual of this type.

In the preparation of any code which is to be modified and assembled
through an assembly routine, the flexibility of the coding (i.e., the
freedom of choice of symbols and the amount and different kinds of in
formation which can be specified in a descriptive instruction) is de
pendent upon the number of bigits that are allowed to express each
instruction. Clearly the more bigits allowed, the greater is the
flexibility.

It was found that the normal instruction length of twenty bigits
was adequate to achieve a code by means of such an assembly routine,
which was comparable to a tailored code both in number of words of code
and subsequent running time of the problem. The first two tetrads of the
twenty bigits specify the order using the standard vocabulary symbols;
the remaining three tetrads are for the address. There are two advan
tages in having the descriptive instructions conform as much as possible

The method was developed by Eugene H. Herbst, John B. Jackson, and
Mark B. Wells, of the Los Alamos Electronic Computer Group.

-207-

to the familiar logical instructions. First, by remaining within the
framework of the logical coding, a relatively small number of new
symbols and new miles for coding need to be introduced. Second, the
work in preparing the descriptive code is no greater than the usual
logical code and the labor of the tape preparation for the descriptive
code is comparable to that involved in the preparation of the tape for
a tailored computer code.

The descriptive coding is prepared from a flow diagram. No modi
fications of the flow diagram are necessary and it is as discussed in
Chapter II.

In the descriptive coding (as in the usual logical coding) each box
of the flow diagram is coded as though it were independent of the remain
der of the diagram. The only interdependence of boxes of coding is
through transfer and substitution instructions. These sure discussed
presently. The instructions written for each operation box are numbered
consecutively, starting with 1, and the numbering is done hexadecimally,
as shown in Example 1.
Example 1

y = ax + bx +c to D.OI z = y +y to D.02

Figure 1
Storage chart: B.01: x C.01: a

C.02: b
C.03: c

D.01: y
D.02: z

The coding is:
Box 1
1. m—»Q C.01
2. X B.01
3. m—►Ah C.02
4. L(40) 028
5. X B.01
6. m—>Ah C.03
7. A—»m D.01

a to R4
ax in R2
ax + b in R2
ax + b in Rk
ax2 + bx in R2

py = ax + bx + c in R2
y to D.01

-208-

Box 2
1. m— D.01 y to R4
2. X D.01 y2 in R2
3. m—>Ah D.01 z = y2 + y in R2
k. A—mu D.02 z to D.02

The addresses that can occur in instructions must he classified
and a set of symbols may be used to represent each class so that the
assembly routine may interpret and modify the various addresses cor
rectly. Addresses of instructions fall into four general classes.
They are:

(i) Addresses that refer to numerical storage.
(ii) Addresses that do not play a normal address role, as in

R(n), L(n), a—»Ac, and a—>Ah instructions.
(iii) Address that refer to instructions within the same operation

box.
(iv) Addresses that refer to instructions in other operation boxes.

Each class may be divided into as many subclasses as is deemed necessary.
Let us examine each class of addresses.

Recall that there are two kinds of storage requirements for a prob
lem, static storage and dynamic storage. The static storage is that
storage which originates with the problem and remains unmodified through
out the course of the computation. The dynamic storage is that storage
which originates from computation within the problem.

For simplicity of addressing, the static storage has been assigned
the four symbols:

B. i i (= 1, 2 ••• FF)
7.i
C. i
A.i

255 words may be stored on each set of addresses. The sets have the
following significance. B storage is that static storage which ori
ginates with the problem as Binary numbers; hence, any constants which
are given in a problem as binary numbers are referred to by B.i ad
dresses, and are listed sequentially as B.i storage. J storage is
very similar to B. storage in that the numbers to be stored in 7»1
storage are also given in binary form. The storage has significance

209

with respect to subroutines, and it is discussed more appropriately
in the section on subroutines. The letter C designates static storage
that is to originate with the problem as decimal numbers and is to be
Converted to binary numbers by the assembly routine. The letter A
designates the static storage that contains Addresses (numbers corres
ponding to addresses) which are to be used by substitution instructions
in modifying other instructions during the course of the computation.

The symbol D.i i (= 1, 2**«FF)
is used for Dynamic storage and 255 words of D storage are allowed.

We now examine more closely the storage requirements of Example 1.
We may assume that the number x is given as a binary numberj therefore
it is placed in B storage and indicated as

B. 01: x
The constants, a, b, and c, are assumed to be numbers which are origin
ally given as decimal numbers and which are to be converted to binary
numbers by the computer during the process of preparing the code through
the assembly routine, a, b, and c are listed in C storage as

C. 01: a
C.02: b
C. 03: c

The dynamic storage consists of storage for the quantities £ and z
which are formed during the computation; hence two dynamic storage
locations are needed, and

D. 01: y
D.02: z

The second class of addresses, those that do not play a normal
address role, have the proper numerical address inserted in the descrip
tive code; e.g.. Box 1, Instruction k, reads

4. L(40) 028
where 028 is the correct hexadecimal address for a left shift of forty
places. As a further illustration consider the use of an a—»Ac in
struction to bring 2_ into R2. The instruction reads

a—►Ac 400
where 400 corresponds to 2”1 when brought into R2. If for any reason
it is desirable to insert an instruction which contains an absolute ad
dress, such an address should be used in the descriptive coding (except

-210-

in transfer and substitution instructions) and the assembly routine will
not alter it; e.g., the instruction Q—>A (m—»A 800) has its special
address 800 inserted in the descriptive coding.

The third class of addresses, those addresses of instructions that
refer to other instructions Enclosed vithin the same operation box, are
designated by the symbol E. Such an address

E.i i (= 1, 2 ... FF)
may range over 255 instructions of an operation box. This is a partial
restriction on the number of instructions in an operation box. Although
an operation box may have more than 255 instructions, no instruction may
refer to any instruction beyond number 255 of the same operation box.
The E.i address is used primarily in substitution instructions. Such am
address has special use with other instructions. In fact, we shall see
in the discussion of subroutines that the E.i address is used in transfer
instructions. The following example illustrates the use of E.i addresses.

Example 2
The flow diagram of Example 2 shows only that portion of an induction

loop in which the sequence of quantities 2^ (i = 0,1*••I-l) are formed
and stored in the memory at addresses D.20+1 hence

0 to D.OI
xn to D.02 Z;s ax,+b to D.20+1

Figure 2
B.01:
B.02:
B.03:

C.01: a D.01: i
C.02: b D.02: x±

D.20: zD.21: z°

D.20fi: z^

A.01: AAD2QAAD20

-211-

The coding is:
Box 1.
1. m—»Q B.01 0 to
2. Q—>m D.01 0—»i to D.01
3. m— B.03 x to o
k. Q—»m D.02 x —»x. to D.02 o i

Box 2
1.

•

m—>Ac A.01 AAD20AAD20 to R2
2. m—*Ah D.01 AAD20+iAAD20+i in R2
3- S—»m E.07 D.20fi to address of

k. m— D.02 x^ to R4
Instruction 7

5- X C.01 axi in R2
6. m—>Ah C.02 + b in R2
7. A—>m

«
•

[D.20*i] z^ to D.20+i

Box 3
1.

•

•

m—>Ac D.01 (i)Q to R2
2. m—>Ah B.02 (i+l)o in R2
3. A— D.01 (i+l)j-^ (i)Q to D.01
k. T 02,1

In the storage required, the numbers 0, (l)0> and xq are originally
stored as binary numbers; hence B storage is used. The numbers a said b
are decimal numbers to be converted into binary numbers by the assembly
routine; consequently they are stored in C storage. (i)Q and are
stored in dynamic, D storage. We assume after the initial traversal
that is sent to D.02 from a portion of the routine not shown. The
choice of D.20 as the starting address for the is arbitrary, and
any block of I locations would suffice for that D storage.

The A storage is used to store the initial address D.20 from which
all addresses D.20+i are formed (instructions 1 and 2, Box 2). Note
that D.20 is stored in A.01 as

A.01: AAD20AAD20.

-212-

It is stored as an instruction-word where the two instructions are
identical. This is true in general: that all A storage is stored
as instruction-words where the two instructions of the word are
identical and the address of the instructions is the desired de
scriptive address. The choice of the order that appears in the in
struction word depends on the use of the particular word of A storage.
The choice of the order AA in this instance is significant in that
the assembly routine deletes the AA from each instruction at the time
the D.20 is assigned its absolute value. For example, suppose that
the absolute address corresponding to D.20 is 154. The A storage
before and after modification by the assembly routine is:

A.01: AAD20AAD20 A.01: 0015400154
The order AA is the only order that is deleted from A storage when
the storage is modified.

In the coding of Example 2, the first two instructions of Box 2
form (D.20+i)o in R2. Instruction 3 reads

S—►m E.07
Hence, the address of Instruction 7 is replaced by the number in R2
which is D.20+i. Note that the order S—»m is used rather than S—►m*.
This is always the case, not only for S—nn but also for T, C, and
HS—>m. All transfer and substitution instructions whose addresses
refer to other instructions are coded as the unprimed order; that is,
the order that refers to a left-hand Instruction of an instruction-
word. The assembly routine then modifies the order if a modification
is necessary.

The fourth class, those addresses of instructions that refer to
instructions in other operation boxes, sure addresses of trsmsfer in
structions and substitution instructions. Transfer instructions and
substitution instructions sire the only instructions whose addresses
may refer to instructions of other operation boxes than the one con
taining the instruction.

Transfer instructions act in two ways as connecting links between
operation boxes. These are the fixed connection and the variable re
mote connection. We treat the fixed connections first.

A transfer instruction that is a fixed connection has as its ad
dress the operation boxnumber and the instruction number of that box

-213-

Into which the tremsfer is to send the control. The first two of
the three address tetrads are used for the operation box number. The
remaining tetrad is used to specify the instruction number within the
box. As an illustration. Instruction k, Box 2, of Example 2, reads

4. T 02,1
which is a transfer of the control to Box 2, Instruction 1.

Recall that on a flow diagram the flow lines enter at the begin
ning of a box. If the coding strictly followed the flow diagram, a
transfer instruction would always be to the first instruction of an
operation box. However, it has been shown in previous codings that
it is often possible to save an instruction or two by transferring
the control into one of the first few instructions of a box or one
of the last few instructions of the preceding box (cf. Page 72,
Problem 6, Box 6, Instruction l).

A transfer can refer to any one of the first seven instructions
of the operation box to which the transfer is effected, or it can re
fer to any one of the last seven instructions of the preceding box.
The operation box number specified in the address of a transfer in
struction is the box of the flow diagram which is entered by the flow
line indicating the transfer. A number 1, 2, ••• 7 in the third ad
dress tetrad indicates a transfer into the corresponding instruction
of the box. A number F(=-l), E(=-2), D(=-3) ••• 9(=-7) indicates a
transfer into the corresponding instruction of the preceding box; e.g.,

CA20,3(T 20,3) reads: Transfer the control to Operation Box 20,
Instruction 3.

CA25,E(T 25,E) reads: Transfer the control to Operation Box 25,
Instruction -2, which is the next to last
instruction of the preceding box. The
preceding box is not necessarily Box 24.

The address of a conditional transfer instruction, where the (+)
exit is a fixed connection, is formed in the same manner as the address
of a transfer instruction.

Example 3 illustrates transfer instructions acting as fixed
connectors

-214

Example ^

I

- y to D.OI

Figure 3
C.01: a D.01: y
C.02: c D.02: x
C.03: e
C.04: f

We assume that x
and is stored in D.02
Box 1.
1. *—+* C.01
2. X D.02
3- *—*Ah C.02
4. A—>m D.01

Box 2.
1. m—»Ac D.01
2. C 04,1

Box 3.
1. m—»Ac- D.01
2. A—Mn D.01

Box 4.
1. Stop

Box 5«
1. m— C.03
2. X D.02
3. m—fcAh C.04
4. T 02, F

s formed in a part c
The coding la:

a to R4
ax in R2
y « ax + c in R2

7 to B2

-7 to R2

e to R4
ex in R2
7 « ax + f in R2

the routine not shovm

7 to D.01

-7 to D.01

-215-

The conditional transfer instruction of Box 2 reads C 04,1 which
is a conditional transfer to Box 4, Instruction 1. The transfer in
struction of Box 5 reads T 02,F which is a transfer to Box 2, Instruc
tion -1. This is a transfer to the last instruction of the preceding
box, in this case Box 1.

Substitution instructions may also have an address consisting of an
operation box number and an instruction number. However, the substitution
instructions can modify any one of the first fifteen instructions of any
operation box other than the box containing the substitution instruction.
Note that this treatment differs from the transfer instructions.

Recall on a flow diagram that a set of variable remote connections
is indicated by a Greek letter in a circle as an exit, and the same Greek
letter with identifying subscripts in a circle at each entrance point.
See Figure 4.

Figure 4
In the preparation of a logical code, the transfer instruction indica
ting the exit written as

T [p]
is used to identify the particular remote exit. It is the location

in the memory where the transfer order of the exit resides and not to be
interpreted as the address part of the transfer instruction.

The addresses corresponding to the entrances (p^ , and are
provided to the exit [pj from the appropriate positions of the flow dia
gram (cf. Chapter II, Problem 7, pp. 53 ff). The various are supplied
to T [p}by substitution instructions, S—mb.

In the descriptive coding each set of variable remote connections
is represented by a symbol

F.i i(= 01,02 •••)
where the i is distinct for each set. (Greek letters do not exist

-216-

in the vocabulary. We use them in the discussion and in flow diagrams
for simplicity of notation.) These instructions concerned with such
a set (both the transfer instruction which is the exit and the various
substitution instructions which supply addresses to the transfer in
structions) have as their address the symbol F.i corresponding to
the particular set. Example 4 illustrates this.
Example 4

®-+-

©—
Since (5) and© are addresses they are to be stored

as instruction words. However, for this example we do not
A storage in detail, and we merely indicate

in A storage
discuss the

We designate the
coding is:
Box 1
1. m—»Ac A.01
2. S—>ni F.01
3- L(0) 000
4. T F.01

Box 2
1. m—>Ac A.02
2. S—*m FrOl
3- T 01,4

A.01: (A.)
oA.02: (A)2 oset of variable remote connections by F.01. The

(Aj to R2 v 1 o
A to address of F.01 1

(A) to R2 d o
Ag to address of F.01

Instructions 2 and 4 of Box 1, and Instruction 3 of Box 2, are those
instructions concerned with the set of variable remote connections F.01;
hence they have as their address F.01. Note that Instruction 3 of Box 1
is L(0). This insertion is necessary as no substitution instruction may
modify the instruction Immediately following. The L(o) serves as a
"dummy-do-nothing" instruction which separates by one the substitution
instruction and the instruction that it is to modify.

-217-

The and are indicated on the flow diagram as entrances
into operation boxes; therefore the addresses corresponding to
and are usually the addresses of the first instruction of their
indicated operation box. The address portion of the words in A stor
age corresponding to and are treated in the same manner as
the address of a fixed connection transfer. Therefore, if cor
responds to Box 5, Instruction 1, the address portion of @ InA
storage would be

A.01: ••• 05,1 ••• 05,1
The exit, T[x], of the variable remote connection must transfer

the control at different stages of the problem to the various
associated with the remote connection. The addresses corresponding
to the are usually distinct. When the computer code is formed
by the assembly routine, there is no assurance that the instructions
to which the refer will all occupy the same side of their respective
instruction words. In order that the T[x] shall have the flexibility
that enables it to tremsfer the control to either side of an instruction
word, the transfer order as well as the address must be modified. To
accomplish this, each (X^ is stored as a transfer instruction, and
the assembly routine modifies the order if necessary when the absolute
address corresponding to is assigned. A half-word substitution
instruction, HS—>m, is then used rather than S—-»m, as indicated in
Example 4, to supply to the exit T[x] the appropriate T (XJ . Example 5
illustrates three sets of variable remote connections and the proper
A storage associated with them.

Example 5
The necessary storage Is:

A.01: CA031CA031 D.01: x
A.02: CAO^lCAOVl
A.03: CA051CA051
A.04: CA061CA061
A.05: CC091CC091
A.06: CCQA1CCQA1

-218-

I 3

5 ____ 9

©—H

Ve assume that x is foxmed in another part of the routine and
stored in D.01. We designate by F.01 the set of variable remote con
nections ((?) , by F.02 the set (^) , and by F.03 the-set .
The coding is:
Box 1.

1. m—>Ac A.01
2. HS—>m F.01
3- L(0) 000
4. T F.01

Box 2.
1. m—->Ac A.02
2• HS— F.01
3. T 01,4

Box 3.
1. m—>Ac A.03
2. HS—s-a F.02
3. L(0) 000
4. T F.02

(CA03,l)o to R2

(CA04,l)o to R2

(CA05l)o to R2

CA03,1 to F.01

CA04,1 to F.01

CA05,1 to F.02

-219

Box 4.
1. m—*Ac A.04 (CA06,l)o to R2
2. HS—>m F.02
3. T 03,4

Box 5'1
1. m—»Ac A.05 (CC09,l)o to R2
2. HS—wa F.03

Box 7 •
1. m—»Ac D.01 x to R2
2. C F.03

Box 8 •
1. Stop

Box 6 •
1. m—»Ac A.06 (CC0A,l)o to R2
2. T 07, F

CA06,1 to F.02

CC09,1 to F.03

Instructions 2 and 4 of Box 1, and Instruction 2 of Box 2,
are those concerned with the set of variable remote connections
(cf^ = F.01; therefore, those instructions have the address F.01. Simi
larly, Instructions 2 and 4 of Box 3, and Instruction 2 of Box 4, have
the address F.02; and Instruction 2 of Box 5, and Instruction 2 of Box 7>
have the address F.03.

Instruction 2 of Box 7 is a conditional transfer instruction; hence
those instruction words in storage which are to be substituted into it
are themselves conditional transfer instructions as shown in A.05 and A.06.

Note the vise of the HS—»m instructions in the substitutions con
cerned with the variable remote connections.

The sequence in which the operation boxes are coded is 1, 2, 3, 4,
5, 7, 8, 6, which is the order in which the computer code is to be se
quenced. It is always true that the sequencing of the operation
boxes in the descriptive coding must correspond to the sequencing neces
sary in the computer code regardless of the numbering of the boxes on
the flow diagram. The number assigned to each box on the flow diagram
is, however, the number to be used in the address of instructions refer-
ring to the box.

In Box 6 of Example 5, Instruction 2 is a transfer to 07,F which is
a transfer of the control into the last instruction of the box immediately

-220-

precedlng Box 7* In this case, the transfer is to Box 5> Instruction 2,
since Box 5 is the box in the coded sequence which insediately precedes
Box ?•

Tbe assembly routine treats the variable renote connections as
follows: The A storage concerned is altered to its absolute address
*Tvj the transfer order contained is aodified, if necessary. Whenever
the assembly routine encounters a substitution instruction with an ad
dress F.i, the absolute address of the associated transfer instruction
(the transfer Instruction with the same F.i address) is determined and
that address is inserted into the substitution instruction.

It is often useful to be able to store numbers from R2 into D stor
age by using substitution instructions. To do this, the substitution
Instruction is given the appropriate D.i address; however, the substi
tution order must be written as the desired primed or unprimed order.
For example, consider that bigits (20-39) of R2 are to be sent to bigits
(20-39) of D.05. The descriptive instruction effecting this would be

HS—»m* D05 which is FDD05
Similarly, to store bigits (8-19) of R2 into bigits (8-I9) of D.OA, the
instruction reads

S—D.OA which is FADOA
In a substitution Instruction with a D address the assembly routine
never modifies the order part of the instruction.

Since the substitution instructions may have box numbers as addresses
and since substitution instructions may refer to D storage, it Is necessary
to restrict the total number of operation and alternative boxes of any
one problem to CF boxes, which decimally is 207 boxes in all.

There are occasions when it is necessary to know in advance whether
an instruction is to occupy the left or right-hand instruction of a word
in the computer code. In fact, it may be necessary to position certain
Instructions on a fixed side of an instruction word; e.g., at the comple
tion of a drum instruction, the control is transferred to the left-hand
instruction of the word specified by bigits (28-39) of the drum instruc
tion; hence, the instruction to which the transfer is desired must be
in the left-hand side of its respective instruction word. Further, the
drum instruction itself must occupy a full word in the computer code so

-221-

that this instruction must always begin on the left. In order that in
structions, where necessary, can be positioned with the desired parity
(i.e., left or right) a symbol is provided in the descriptive code so
that the computer code of any operation box can be started on the left
of an instruction word. As soon as the first instruction of a box is
fixed on the left, the parity of all instructions within the box is
known immediately. By inserting a "dummy-do-nothing" L(0) as a first
instruction, one may change the parity of all succeeding instructions.

The descriptive code tape is composed of the descriptive coding
and the static storage (i.e.. A, B, 7, and C storage) of the problem.
All of the descriptive coding and any identifying symbols for the tape
which refer to the descriptive coding are punched as five character
words. The C, B, and 7 storage and any corresponding identifying sym
bols are punched as ten character words.

The sequencing of the data on the code tape is as follows:
In order that the assembly routine can assign the absolute addresses

to the various instructions and the storage, the initial absolute address
for the code must be specified. It is the first word that is punched
on the tape, and it is a five-character word. For example, if the
assembled code is to begin at address 25E, the first word of the tape
would be

0025E
A descriptive code may be assembled into an absolute code starting at
any initial address with the restriction that the code with A, C, B,
and 7 storage must not exceed address 37C (892 decimally).

Immediately following the initial address on the tape is the de
scriptive coding. The sequencing of the boxes of descriptive code as
punched on the tape specifies the linear sequencing of the assembled
code. Preceding the instructions of each box, the box number is
punched onto the tape as a five-character word where the word consists
of three zeros followed by the box number. For example, consider a
descriptive coding of two operation boxes where the assembled code is
to begin at address 052. The descriptive coding and the corresponding
code tape is:

-222

Box 1
1. m—>Ac D.01
2. in *Ah D. 02
3 • A >m D. 03

Box 2
1. m—B.01
2. X D.03
3. A—wn D.04

«o
&
in

«*uo
a.<n

«ooa.<0

«ooa.(O
Vo
ao.<n

oo
a.V)

«uoQ.(O
ooa.<n

0-»00052 00001 AADO I BAD02 DCD03 00002 EBB0I DAD03 DCD04

OOOOOOOOOOO OOO OOO OOO OOO OOO
oooeooooooaoooooooooooooooooooooooooooooooooo«oooooeo1 O OO OOO Q OO OOO O)

o® q ®®o o 8°o 0 o o 8 0 88 o o°o 800
rT

Starting ■ Box I 1 Code of Box I
Address 1

1 Box 2 1 Code of Box 21

Figure 7
All of the instructions of the boxes with the corresponding box num
bers are punched onto the tape in this fashion. Recall that the boxes
of code are not necessarily sequential, according to box number, but
sequential according to linear ordering in the assembled code. The
box number that precedes each box of instructions corresponds to the
box number as shown on the flow diagram.

Immediately following the last instruction of the descriptive
coding, the box numbers only of the associated subroutines are punched
on the tape in the order corresponding to the linear sequencing of
the subroutines in the assembled code. As before, these box numbers
are five-character words. We defer any further discussion of this un
til the section on subroutines, at which point the reasons for listing
the subroutine box numbers cure discussed.

The five-character word
00C00

follows the subroutine box numbers on the tape. If no subroutines are
associated with the descriptive code, the word 00COO follows the last
instruction of the descriptive coding. The word 00C00 indicates the
completion of the descriptive coding.

The A storage punched as five-character words follows the word
00C00 on the tape. For example, consider a descriptive coding where
the A storage is

A.01: CA041CA041
A.02: CC227CC227
A.03: AADO5AADO5

The section of the descriptive tape corresponding to this would be:

Code

«>0 *0 8 O0a 0
a

0a i Oa</) tn in <n
8
£

8
5

00C00 CA04I CA04I CC227 CC227 AAD05 AA005 00E00

O OO 00 ,§9f__99____999- OOO Q00of O POOP OO G OO O GG GG O0 o 0 o °°8 ^ GGo o °°o o °
End of 1

Code ■
A^ Storage

Figure 8.
j End of
I A Storage

Following the A storage on the tape is the five-character word
0QE00

which indicates the end of the A storage. If there is no A storage
the word 0QE00 immediately follows the word 00C00 on the tape.

The numerical storage of the problem is punched onto the tape
following the word OQEOO. This storage is punched as ten-character
words. Each group of storage is punched in order of ascending ad
dresses and is terminated by two adjacent spaces on the tape. The
C storage is the first group of storage punched on the tape. The
last word of C storage is followed by two adjacent spaces. The B
storage is then punched on the tape and it is followed by two spaces.
Next is the storage on the tape. The 2 storage terminates the
descriptive code tape and at least five spaces must follow the last
word of 7 storage on the tape.

At one stage in the evolution of the descriptive coding a word
8000000000 was used in lieu of the two adjacent spaces separating the
groups of numerical storage on the descriptive tape. Hence, between
the C and B storage, between the B and 7 storage, and following 2
storage, was the word 8000000000. The present assembly routine al
lows the use of this word 8000000000 in the aforementioned manner;
therefore, this is an optional method of separating and identifying
the groups of storage.

-22*-

In the event that a storage group is not used in a descriptive
coding, the spaces signifying the end of the groups of storage are
treated as follows:

The omission of J storage effects no changes and the last group
of storage on the tape, whether it is C, B or J, is followed by at
least five adjacent spaces.

If there is no C storage, the word 00E00 is followed by two spaces
and then the B storage.

If there is' no B storage, one additional space symbol must be used
in conjunction with the two adjacent space symbols signifying the end
of the C storage (whether or not any C storage is actually present).
In other words, if B storage is omitted three adjacent spaces are used
to signify the end of C storage and the absence of B storage.

In the alternative method where the word 8000000000 indicates the
end of each group of storage, even though a group of storage is not
present its terminating word is included on the tape to indicate the
end of, or absence of, a particuleir group. Example 6 illustrates a
three box code, and its descriptive code tape.
Example 6

The example forms an approximation to e-x for 0 < x <: 1 from the
expression

-x .. e = lim
►oo

1 - 2n
1 + f-2n

where for this example we choose n = 32, and

-x _e rr
1 - 55
1 + 55

32

The flow diagram is:

Figure 9

to D.OI

to D.02

z = b+2 x to D.02

C.01: x . D.OI:
B.01: b = 2 D.02:

-225

The coding is:
Box 1
1. m—>Ac C.01 x to R2
2. R(9) 009 2"9x in R2
3. A— D.OI 2“9x in D.OI
b. m—*Ah B.01 z = b + 2"9x in R2
5. A— D.02 z to D.02
6. m—»Ac B.01 h to R2
7. m—►Ah- D.OI 7 = 1)- 2"9x in R2
8. A— D.OI y to D.OI

Box 2
1. m—»Ac D.OI y to R2
2. 4- D.02 Q = y/z in R2
3. A—>m D.OI Q to D.OI

Box 3
1. m—>Q D.OI Q to R4
2. X D.OI Q2 in R2
3. A— D.OI Q2 to D.OI
k. m—*Q D.OI Q2 to R4

»
5. X D.OI Q4 in R2 t
6. A— D.OI Q4 to D.OI
7. m—>Q D.OI Qi*’ to R4
8. X D.OI QT in R2

Q8 in R29. A— D.OI
A. m—>Q D.OI Q8 to R4
B. X D.OI Q16 to R4

Q16 to D.OIC. A—»m D.OI
D. m— D.OI Q16 to R4
E. X D.OI e"x * Q32 in R2
F. A— D.02 e"X to D.02

10. Stop

The code is to "be assembled starting at address 297. The descrip
tive code tape is shown in Figure 10. x in C.01 is set to 0.5 for the
tape.

226-

Note- Tope is continuous^ but has been broken for illustrative purpose.

8a>ooa.
(O

oo.
(/>

a>oo
o.cn

a>ooQ.in
8
SCO

o
s

<n

oocx
<n

«>ooo.in

4>ooo.
tn

0-^00297 00001 AAC0I EE009 DCD0I BAB0I DCD02 AAB0I BBD0I DCD0I

ooQ.
(/>

ooooooooo
O OOO OO O OOO OOO OOO OOO OOO OOOfooooooooooooooooooooo oooooooo oooooooooooooooooOooooooooooooo

_ 6 O OO OOO OOO O OOO
O O OO OO OOO O OOO QQ

OO O O OOOOOOOOO OO OOO o o o o

Starting i Box I i
Address i i

Code of Box I

ooo.CO
a>o
&
CO

01ooa.CO
0>ooO.CO

oo
Q.CO

0»oo
o.CO

0)oo
Q.CO

01o
oQ.CO

8o
Q.

00002 AADOI DDD02 DCDOI 00003 EBDOI DADOI DCDOI EBDOI DADOI

*>o
oa.
V)

oooooooooo
OOO ooo ooo OOO ooo ooo OOO OOO

Oooo
O OOO OOO O O O O OOO O O O O

o OO o o OO o OO o
o o ooo ooo o ooooooooo oooooo

TI I
Box 2 I Code of Box 2 I Box 3 II l Code of Box 3

a>ooClin

Ooa.
<n

oo
o.in

a>oocxin

a>o
oQ.in

ooa.
cn

a>oo
Q.cn

a>ooo.
cn

ooa.cn

4)Ooa
cn

DCDOI EBDOI DADOI DCDOI EBDOI DADOI DCDOI EBDOI DADOI DCD02

, OOOOOOOOOO(OOO OOO OOO OOO ooo ooo ooo ooo ooo ooo/oo OOO O O O O OOO O O O O OOO O O O O OOOOO O OO O OO o o,ooo ooooooooo ooooooooo oo oooooo
Code of Box 3

4) 4» 4l 4> 41O O o o o O
O O o o o O:
a. a. Cl O. Q. a.
cn cn in cn cn cn

0F000 OOCOO 00E00 0500000000 4000000000

OO OOOOOO~ o ° _ ooooOOO O O O oO O fO O $
| End of !End of A j C Storage ! \ | B Storage !End of Tape

l i II Code (Storage!
End of C
Storage

FIG, 10

-227

Since there are no subroutines associated with the code, the word OOCOO
follows the last instruction of Box 3; and since there is no A storage
the word 00E00 follows OOCOO. No J storage is contained in the coding;
hence the five spaces follow the B storage.

As previously mentioned, there is a symbol which indicates to the
assembly routine that the first instruction of a box is to be on the
left side of an instruction pair. It is included in the word that
specifies the box number and is the character 4 for the middle tetrad;
e.g., suppose that in the code of Example 6, Box 2 is to begin as a
left-hand instruction. The word on the descriptive tape specifying the
box number would be

00402
When the code is processed by the assembly routine and a box number word
with a 4 in the middle tetrad is encountered, the following occurs: If
the last instruction of the previous box was assembled as a right-hand
instruction, the first instruction of the box concerned naturally be
comes a left-hand instruction of its instruction-word, and the assembly
routine proceeds accordingly. If the last instruction of the preceding
box was assembled as a left-hand instruction, the assembly routine com
pletes the word by inserting a "dummy-do-nothing" instruction of L(o)
into the right-hand instruction position. Hie first instruction of the
box concerned is then assembled as a left-hand instruction of the suc
ceeding word. If the flow diagram indicates a transfer of the control
to a box that must begin as a left-hand instruction, one cannot use
the flexibility and convenience afforded by a transfer into one of the
last seven instructions of the preceding box. This restriction arises
because of the "dummy" L(0) instruction that may be Inserted.

Another symbol may be incorporated in the word specifying the box
number. This is a character 8 as the first tetrad of the word. This
symbol causes the assembly routine to interrupt the assembly process and
to stop the computer. The need for such a symbol is covered in the dis
cussion of methods of alteration of the descriptive code in the chapter
on Operating Procedures.

A frequent occasion where it is necessary to have a box begin with
a left-hand instruction is in the use of drum instructions which we
now examine in detail.

-228-

Tlie drum instruction, since it is a full word, necessitates special
treatment both in the descriptive code and by the assembly routine. As
previously mentioned, the drum instruction must be coded in the descrip
tive coding so that it naturally starts with the left-hand instruction
of an instruction word in the assembled code. The drum Instruction is,
however, coded as two descriptive instructions. The first Instruction
is the drum order, and the descriptive address for the associated
block of fifty words in the memory. The second instruction specifies
the associated drum track in the order position and the address position
contains the descriptive address for the transfer of the control upon
completion of the drum instruction.

The descriptive address for the associated fifty words in the mem
ory may refer to any of the storage; hence it may be an A.l, C.l, B.i,
7.i. or D.i address; the address may be an E.i if it is desired to have
the drum communicate with a block of fifty words contained in the same
box as the drum instruction; the address may be inserted as an absolute
address if desired; or the address may be supplied to the drum by a
substitution instruction in conjunction with addresses in A storage.

The associated drum track address is either inserted into the
descriptive coding as a pseudo-absolute address or is supplied from a
coded routine. The pseudo-absolute addresses range from 00 to CJ, cor
responding to the two hundred tracks of the drum (0-199/ decimally).
Unfortunately, the drum tracks are not addressed sequentially from 00
through C7, but range from 00 through FF (0-255/ decimally^ hence the
expression "pseudo-absolute" is used for inserted drum addresses. The
assembly routine modifies the pseudo-absolute address to the actual
value in the range 00 through FT. The address to which the control is
to transfer upon completion of a drum instruction is treated in the
same manner as are the addresses of transfer Instructions. The ad
dress may specify a box number and one of the first seven instructions
of the box or one of the last seven instructions of the preceding box.
The address may also be specified by an E.i address if the transfer
is within the operation box containing the drum instruction. The
transfer, however, is automatically to the left-hand instruction of
a word; hence that instruction must be positioned appropriately.

We now give three examples (7, 8, and 9) illustrating the treat
ment of the drum instruction.

-229-

Example 7
Three operation boxes are given. There are two drum instructions.

One sends fifty words from D storage to the drum. The second reads
fifty words from the drum into the just vacated D storage of the
memory.

ihe flow diagram is:

Figure 11

D.0I-D.32: x, - X,
□.track C0-- y, - y50

D. track CO to D.0I-D.32

B.01: a D.OI - D.32 : X1 " x50B.02: b D.33: i
B.03: I D.34:

The coding is:
Box 1
1. m—»Ac B.03 I to R2
2. m—>Ah-• D.33 I - i in R2
3. C 07,1

Box 2
1. m—»D D.OI
2. 54 E.03
3. D—»m D.OI
4. CO 03,1

Box 3
1. m— D.OI y^^ to R4
2. X B.01 ay^ to R2
3. A—»m D.34
4. m >Q D.02 y2 to R4
5. X B.02 by2 to R2
6. m—»Ah D.34 Q = ay1 + by2
7. A—»m D.34

- x,^ to D.track 54

yl " y50 t0 d*01-d*32

ay1 to D.34

in R2
Q to D.34

230-

Instructions 1, 2, 3, and 4 of Box 2 are the two drum instructions;
hence Instructions 1 and 3 must he left-hand instructions in their re
spective instruction-words in the assembled code. This is done by ar
ranging Box 2 so that it begins with a left-hand instruction; i.e., on
the descriptive code tape 00402 is punched for the box number word. In
struction 2 specifies that Track is the pseudo-track number. This
is modified to Track 6£ (the absolute address) by the assembly routine.
Ihe transfer indicated by the address of Instruction 2 is to E.03; hence
the control is to transfer to Instruction 3 of Box 2. The instruction
to which the transfer is effected must be on the left side in the
assembled code and since Instruction 1, Box 2, begins on the left of a
word. Instruction 3 does also. Instruction 4 of Box 2 specifies the
pseudo-track number CO which the assembly routine modifies to FI, the
corresponding absolute track address. Hie address specifies a transfer
to Box 3, Instruction 1. Box 3 must then be coded so that it begins
with a left-hand instruction. In this example we see that this is
taken care of, since Box 2 ends with a right-hand instruction. If
Box 3 did not naturally begin with a left-hand instruction, it would
have to be so arranged by punching the box number for Box 3 as 00403.
Example 8

In this example fifty words of code in the memory are to be re
placed by fifty words from the drum where the fifty memory words are
contained in the same box as the drum instruction. Ifce quantity i,
that eventually becomes the drum track number, is formed in a part of
the routine not coded, and is stored in D.OI as

D.OI: i*2"27
The drum instruction upon completion is to transfer to the first in
struction of the fifty words which have been cal led into the memory.

The coding is:
Box 1

i*2-27 to R21. m—->Ac D.OI
2. A—->m D.02 i*2"27 to D.02
3. m—->Ac EOT D—>m E09 00E09 to R2
4. S—>m' D.02 E09 to (28-39)002

-231-

5. m—>Ac D.02
6. HS—£08
7. D—E09
8. [00 E09]
9.

1(20-27)E09(28-39) to R2
1(20-27) E09(28-39) to E07

A.
B.
C.

The descriptive tape has the box number 00401. Instructions 1, 2,
-273, and 4 form the drum track address. Instruction 2 sends i*2 to D.02.

Instructions 3 and 4 then combine the address part (the address specify
ing the transfer) of the instruction with the track address in D.02.
Note that Instruction 4 is written as S—>m' D.02, It is written as
the primed instruction since the substitution is into the right-hand
side of a word of D storage. (Note that this differs from the case
where a substitution is made intcp instructions, cf. page 212) Since
Instruction 1 of the box is on the left, the drum instruction (instruc
tion 7) and the instruction to which the transfer is effected (instruc
tion 9) are left-hand instructions as desired.
Example 9

In this example, fifty words of code on the drum are to replace
fifty words of code in the memory, where both the words in the memory
and those on the drum correspond to one or more complete boxes of code.
Again, only the box containing the drum instruction is coded. We
assume the words to be replaced in the memory begin with Box 2C, In
struction 1, and the drum track concerned has the pseudo-track number
Al. The address corresponding to Box 2C, Instruction 1, is stored in
A storage in a transfer or substitution instruction word and is

A.01: CA2C1CA2C1
The coding is:

Box 1
1. m—»Ac A.01
2. S—>m E.03
3. D--HM [20,1]
k. Al 54,1

CA2C1CA2C1 to R2
2C,1 to (8-19) Instr.3

-232-

Instruction 1 brings the address for the drum instruction into R2.
This address was stored in A.01 as part of a transfer instruction so
that it could be stored as a box number and instruction number. In
struction 2 is an S—wn E.03 which supplies the address 2C,1 to In
struction 3> the drum instruction. Recall that a substitution instruc
tion is not supposed to substitute into an immediately following
instruction. However, in this instance, we know that the drum instruc
tion begins as the left-hand instruction of a word; hence, the substitu
tion instruction cannot be in the same instruction word as the drum
instruction and the substitution as indicated is permissible. The
address written in the drum instruction is irrelevant; hence, any ad
dress may be placed there. Instruction 4 contains the pseudo-track
address Al and the address of Box Instruction 1, to which the con
trol is to transfer upon completion of the drum instruction. Box 1
must begin with a left-hand instruction to position the drum instruc
tion correctly; therefore, the Box 1 code word is

00401
Box 2C as it originally is coded must begin with a left-hand instruction;
hence the Box 20 code word is

0042C
The control is to transfer to Box 54, Instruction 1, upon completion of
the drum instruction; hence Box 54 must begin with a left-hand instruc
tion and its code word is

00454
The assembly routine modifies the pseudo-track number Al to the corres
ponding absolute track address, CB.

For a further discussion of the drum one should consult the chapter
on The Computer.

It is desirable to have a printed copy of the assembled code so
that one may know the absolute addresses of the storage and the in
structions in order to "debug" the assembled code for subsequent run
ning. It is important that this printed copy is in a form that is
easily read and understood. To produce such a copy a printing routine
using the Synchroprinter has been included in the assembly routine. It
provides the following data:

-233-

The first line of the printed listing contains five 3-character
numbers which are the absolute addresses corresponding to

A.00 C.00 B.00 7.00 D.00
respectively. If any group of storage is not contained in the coding,
the address for that group is the same as the initial address of the
succeeding group. Consider that an assembled code has the following
absolute initial addresses

A. 00 = 201 7.00 = 23B
C.00 = 205 D.00 = 2D5
B. 00 ■ 221

The first line of the listing would be
201 205 221 23B 2D5

Following the first line is the listing of the code proper. One has
the option of a listing of five or six columns. The five-column list
ing contains, in order of columns from left to right on the page,

1. the box number
2. the descriptive instruction number
3. the absolute instruction-word number (address) as assigned by

the assembly routine
4. the instruction with its absolute address as assigned by the

assembly routine
5. the descriptive address of the instruction as coded in the

descriptive coding
The six-column listing contains the five columns as listed above

and a sixth column that is:
6. the contents of the B or C storage specified in the address of

the instruction.
Following the listing of the code is a listing of A, C, B and 7 storage,
respectively. The C, B, and 7 storage listing is a four-column listing
where the columns are:

1. classification of storage
2. the descriptive address of the storage
3. the absolute location address as assigned by the assembly

routine
4. the numerical quemtity as stored at the address concerned

Example 10 illustrates the 5-column page listing.

-234-

Example 10
Consider the descriptive code of Example 1 and assume that it has

"been assembled in the memory beginning at address 000. The listing
given of the assembled routine is:

005 005 008 009
01 01 000 EB006 C01

02 DA009 B01
03 001 BA007 C02
04 DE028
05 002 DA009 B01
06 BA008 C03
0? 003 DCOOA D01

02 01 EBOOA D01
02 004 DAOOA D01
03 BAOOA D01
04 005 DCOOB D02

C 01 006 a
C 02 007 b
C 03 008 c
B 01 009 X

The code contains no A or 7 storage; hence the first line corres
ponds to

C.00 C.00 3.00 D.00 D.00
In lines 2 through 11, inclusive, the numbering in the first and second
columns corresponds to the numbering on the descriptive coding. The
third column contains absolute location addresses; hence each address
corresponds to an instruction-pair in column 4; i.e., word 000 is

000: EB006DA009
The descriptive addresses as given in column 5 are the same as those
in the instructions in the descriptive coding.

If we set a = 4040000000
b = 2190000000
x = 4000000000

a 6-column listing of the first three instructions would be
01 01

02
000 EB006

DA009
C01
B01

4040000000
4000000000

03 001 BA007 C02 2190000000
• • • • •
• • • • •

-235-

The contents of C01 and C02 as listed would be the converted number
(the binary equivalent of the decimal input) in the C storage.

If the coding had contained A storage, for example
A.01: CA02,1 CA02,1,

the listing of it would be
A 01 006 CB003CB003 02,1

where the first four columns are as before, and the" fifth column gives
the relative address.

The method of descriptive coding is easily generalized to incor
porate the use of subroutines; hence it is appropriate that subroutines
are discussed in conjunction with the descriptive coding.

As a person gains in experience in coding it becomes apparent to
him that from one problem to another there are certain basic sequences
of instructions that are very similar. For example, two different
problems might, at some phase of their computation, involve taking the
square root of some number or group of numbers. The two sequences of
instructions for the square root would generally contain identical or
ders, while the corresponding addresses would be different. Routines
such as the conversion routine as discussed in Chapter II would be an
integral part of most problems, and from problem to problem these
routines would differ only in the addresses of their instruction se
quences, while the order patterns would be the same. In fact, it is
true that most of the routines coded in Chapter II would occur as
parts of larger problems.

Since these routines or sections of code that repeatedly appear
in problems can be coded in a way such that the addresses of the in
structions can easily be modified to any desired addresses, it becomes
possible to incorporate such routines directly into the code of any
problems without having to rewrite their instructions. We call any
section of code a subroutine if it is coded in a way that it can be
incorporated into any problem without having to rewrite the coding.
Consequently, a library of subroutines, or more precisely a library of
punched tapes of subroutines, has been compiled. These punched tapes
may be incorporated directly into any desired problem. There is a
card indexing system for the library where each subroutine has a card
on file which gives complete information about the particular routine.
We defer further discussion of this and return to the coding of sub
routines.

-236-

We have already discussed how any problem code, including all of
its necessary storage, may be assembled from a descriptive code tape
into any absolute addresses in the memory, excluding addresses 37C
to 3FF* Further, we have seen how one can, by altering only the
initial word on the tape, form different instruction sequences in the
memory, where the order patterns are the same but the corresponding
addresses differ. This is precisely the kind of thing that is desired
for subroutines. Each subroutine is coded descriptively as though it
were a problem complete with storage. In fact, each subroutine does
constitute a complete problem, in the sense that it starts with cer
tain initial conditions and leads to a clearly defined conclusion.

The descriptive coding of a subroutine differs in several ways from
the coding of a normal problem, and we now discuss these differences.
In the coding of a subroutine the boxes of code must be numbered con
secutively starting with 1, where the numbering corresponds to the
linear sequencing of the boxes on the descriptive code tape. For ease
of use it is desirable to code a subroutine as one box whenever
practicable.

Only one set of variable remote connections is allowed, and this
set pertains to the exit from the subroutine. The details of this are
discussed presently.

All of the static storage necessary in the subroutine is included
on the descriptive code tape of the subroutine with the condition that
neither A nor C storage is allowed. Any storage that would normally
correspond to C storage is converted and stored in the subroutine as
B or 7 storage. Storage that would normally correspond to A storage
must have special treatment, in that the storage must exist as instruc
tions in the descriptive code. This is illustrated by later examples.

There are, in general, two kinds of dynamic storage associated
with a subroutine. These are the dynamic storage that originates from
within the code of the subroutine and the dynamic storage that origiriates
in the problem apart from the subroutine, but is pertinent in the subrou
tine. Although this latter storage is static with respect to the sub
routine, it is, however, dynamic storage in the overall problem and is
treated as such in the subroutine. For example, in a square root sub
routine, the dynamic storage originating from within the routine is the

-237-

storage arising from intermediate values in the iterative process and
the storage for the successive iterates. The dynamic storage arising
apart from the routine is the storage for the number whose square root
is desired. This number comes from the problem and is present at the
time of entry into the square root subroutine.

All storage is addressed as in a problem. That is, the addresses
of each group of B.i, 7.1, and D.i storage are consecutive addresses
beginning with i = 01.

We now have the situation that a subroutine coded by the descriptive
method with the above mentioned restrictions can be coded as an indepen
dent problem into any desired addresses in the memory. The next step
is to have the assembly routine specify the desired addresses.

In the flow diagram of a problem, boxes should be included for the
subroutines of the problem although they do not need to indicate in de
tail the computation of the subroutine. These boxes need to be assigned
numbers on the flow diagram where the only restriction is that a sub
routine that contains several boxes must be assigned a corresponding
group of consecutive numbers. The numbers assigned on the flow diagram
to the boxes of subroutines will not, in general, be the same as those
indicated on the subroutines' descriptive code tapes. Note that this
differs from the treatment of the problem proper.

Recall that on the descriptive code tape the box numbers corres
ponding to the subroutines are first punched following the main prob
lem code and prior to the code word OOCOO. These box numbers corres
pond to the box numbers as assigned by the particular flow diagram.
They will replace the box numbers as given originally on the subroutine
tapes.

We now describe the method by which the assembly routine integrates
the subroutines into the problem. The descriptive tapes corresponding
to the subroutines are arranged in the order in which they are to appear
in the computer. It is recommended that a single tape containing all
of the desired, properly analyzed subroutines be prepared from the
separate tapes. After the descriptive tape of the problem, including
storage, is initially processed by the assembly routine, the computer
stops so that the subroutines may be inserted. The subroutine tape is
placed in the reader and the assembly process is continued. The code
of each subroutine is assembled in order following the code of the prob
lem. The storage associated with each subroutine is treated as follows:

-238-

The static storage associated with each subroutine is included on
its descriptive tape. The storage of each subroutine is not directly
added to the storage of the problem as this, in general, would lead
to duplication of storage. For example, the number 0 might be already
stored in B storage in the problem, and in the B storage of several of
the subroutines. The 0 need only be stored once, however, and the
other storage of 0's is needless duplication. To circumvent this, as
each word of B storage of a subroutine is incorporated into the storage
of the problem, it is compared with all existing C and B storage in the
problem; and if it is identical to any existing C or B storage it is
not stored. However, all of the descriptive addresses of the subroutine
that referred to the discarded word of storage are modified to refer to
the already existing word. If the subroutine word of B storage is not
identical with any existing £ or B storage in the problem, the word of
storage of the subroutine is added to the existing B storage of the
problem and the addresses of the pertinent instructions are accordingly
modified. We see then that after the assembly process is completed
there is no duplication of storage due to the B storage of subroutines.
This, however, leads us to the meaninful purpose of 7 storage.

The 7 storage existing in a problem is not compared with the B
storage of the incorporated subroutines. Any £ storage existing in
subroutines is directly added to the existing 7 storage of the problem.
The need for such a group of storage becomes apparent as one works
with subroutines, and it is illustrated in a subroutine example.

This completes the discussion of how the subroutines are incor
porated into a problem and all that remains is to discuss the means of
entry into and exit from these subroutines.

These connecting links of a subroutine are analogous to those of
some of the orders of the vocabulary, so we first discuss the more
familiar order in the vocabulary.

Consider, for the discussion, that a multiplication is to be per
formed. The multiplication order supplies the multiplicand, but the
multiplier must be already in Rh. This latter fact is accomplished by
coding that precedes the multiplicat±>n order. The sequencing by the
control counter brings the multiplication instruction into R6, the
control register, so that it can be performed. The address associated

-239-

with the multiply order specifies the location of the multiplicand.
Upon the completion of the multiplication, the product resides in R2.
The exit from the multiplication is provided by the address which is
in the control counter, the next instruction in the code sequence.
We naturally expect the entry into and exit from a subroutine to be
more complex than for a simple multiplication since a subroutine is
a sequence of instructions rather than a single instruction. How
ever, as in the multiplication order, the number or numbers that are
to be operated upon by the subroutine must be in locations specified
by the subroutine prior to entry into the routine, (in the multi
plication, the multiplier is in R4, the multiplicand is at the address
of the instruction.) These connecting addresses are certain dynamic
storage locations, D.i, and the precise D.i addresses are specified
on the library index card of the subroutine. The necessary numbers
are sent to the appropriate D.i addresses by code prior to entry of
the subroutine. After the necessary numbers are stored, the actual
entry into the subroutine is initiated.

The entry into a subroutine from any location in a problem is
treated as a fixed connection. The box numbers of a subroutine are
indicated on the flow diagram; hence one need only indicate a trans
fer to the starting box and instruction of the subroutine in question.

When the subroutine is performed, a number or set of numbers is
formed as the results (the product in the multiplication is in R2).
These numbers are then stored in other D.i addresses specified by the
subroutine. These D.i addresses are shown on the subroutine index
card.

Prior to entry into the subroutine, the desired exit is estab
lished. At each point of entry it is known where the control is to
proceed upon exit. This exit is established by a set of variable
remote connections. The variable transfer is contained in the subroutine
and follows the last pertinent instruction of the subroutine. Recall
that associated with each set of variable remote connections is an F.i
symbol used in addressing, and the variable transfer associated with
the set has this F.i address. In the coding of a subroutine this
variable exit is always coded as a transfer (T or C) with the address
F00. The assembly routine then adjusts the F00 to the proper F.i

address. The F.i address for the subroutines follow in sequence the
F.i addresses of the problem proper. There are two methods by which
substitution instructions may refer to the variable exit of a subroutine,
and these methods are illustrated by the examples.

The fixed connection transfer which indicates the entry into the
routine and the variable connection transfer (the address of which is
established prior to entry) play the role in a subroutine that the
control counter plays in the performance of a single instruction of an
instruction sequence.

Upon exit from the subroutine (the return of the control to the
problem proper) the results from the computation are in the specified
D.i addresses from which they may be used in the succeeding code, (in
the multiplication the product is in R2 for subsequent use.)

We see that from the way subroutines are used in a problem there is
a close analogy to the use of the standard vocabulary of the computer.
It is natural then,from the coding viewpoint, to consider the subroutines
as a generalization of the computer vocabulary. The subroutine library
index cards constitute the vocabulary of subroutines.

Two samples are now given in order to illustrate some actual sub-
I'outines. Accompanying the subroutines are duplicates of their library
index cards.
Subroutine S-251.1: Random Number Generation

The generation of the random numbers is accomplished by an iterative
scheme which is called "The Middle Squaring Process". The process
generates successive iterates from a given initial number. The present
routine starts with a 38-bigit number and generates 38 bigit iterates.
The formation of the (i+l)s^ iterate from the i^*1 iterate is

xi+l = (20-57s
oThat is, the 38 bigit x when squared gives a j6 bigit product, x. ,X p X

and xi+1 is comprised of bigits (20-57) of x^~t where the 20th bigit
corresponds to the P*"1 position of xi+1« All iterates are positive.
We illustrate the subroutine in conjunction with two boxes, corres
ponding to the code of the problem, that represent the point of entrance
and the point of exit.

-241-

The flow diagram is:

D.OI : Xi D.02: Xj

S25I.I RANDOM NUMBER GENERATION

D.OI: xi

Figure 12

The section of the flow diagram enclosed in the dotted lines
would not normally be drawn in complete detail with a problem, but
would be drawn as

S25I.I
Random Number

Generation

Figure 13
The complete diagram is included now for clarity of coding. Boxes 1
and 2 are coded in two ways to illustrate two alternative methods of
entering a subroutine. Box 23 is the subroutine itself. The neces
sary static storage for the problem (Boxes 1, 2) is:

A.01: CA02,1 CA02,1
No £, B, or 7 storage is needed for the problem. Two D addresses,
D.OI and D.02, are used. D.OI contains x^ which was stored in D.OI

-242-

at a portion of the problem prior to Box 1 and not shown on the flow
diagram. We assume for the coding that three sets of variable remote
connections exist in the problem proper (they are not shown on the
flow diagram). The set of variable remote connections concerned with
the subroutine is the fourth set and has the address F.04 associated
with it. The coding of Box 1 and Box 2 is:
Box 1

A.01 CA021CA021 to R2
F.04
23,2

D.OI
D.02

In Box 1 the address for the exit of the subroutine is brought
into R2. This address is then substituted into the variable trans
fer F.04, the exit of the subroutine. Recall that the exit of the
subroutine is originally coded with the address F00; however, the
assembly routine modifies it to its correct F.i address, which in this
case is F.04 (F.01, F.02, and F.03 exist in the problem proper). The
fixed connection transfer is to the second instruction of the subroutine
(CA23,2) rather than the first instruction. The reason for this is
discussed after the code for the subroutine is illustrated.

The second way in which Boxes 1 and 2 may be coded is as follows:
Box 1

1. m—>Ac
2 • HS—>m
3. T

Box 2
1. m—*Ac
2. A—>m

1. m—»Ac A.01 CA02,1 CA02,1 to R2
2. T 23,1

Box 2
1. m—»Ac D.OI
2. A—»m D.02

In Box 1, the address for the exit of the subroutine is brought
into R2 and then, without effecting the substitution, the transfer to
the subroutine into its first instruction is made. Without further
comment let us examine the code of the subroutine proper.

-2*3-

Subroutine Box 1
1. HS—>m F00
2. m-1— D01 X£ to R4
3. X* D01 x^ in R2 and R4
4. A—>ra D01 (0-39)x12 to D01
5. L(l) 001
6. m—>Ac D01 x^ in R2 and R4
7. R(22) 016 (18-57)Xi2 in R4
8. m—»Ac 800 (18-57) xi2 in R2
9. L(l) 001 (19-57) xi2 in R2
A. DS 000 Xi+1 = (20"57)xi2 in R2
B. A—>m D01 x^+^ to D01
c. T F00

We observe that the first instruction is a half-word substitution
to F00; that is, to the exit transfer. This accounts for the two methods
of coding Box 1. In the first coding of Box 1, the substitution instruc
tion was performed prior to entry into the subroutine; hence the entry
transfer was to the second instruction. In the second coding of Box 1,
the instruction word comprising the exit from the subroutine is brought
into R2 and then, without making the substitution, the transfer to the
subroutine is effected. The exit word, however, still resides in R2
and the initial instruction of the subroutine accomplishes the sub
stitution to establish the desired exit.

Instructions 2 and 3 form x^ as a 78-bigit number. Bigits
(20-57) are to be isolated by shifting. Recall that a double precision
product has a 0 in the sign position of R*. Instructions 4, 5, and 6
eliminate this 0 so that the subsequent right shift of 22 in Instruc-

2 2tion 7 combines the sections of x^ into R4 as (l8-57)x_^ . Instruc
tions 9 and A then complete the process by forming

*i+1 - □ *i2
Although the subroutine is indicated as Box 23 on the flow diagram,

it is coded as Box 1 in its descriptive code. And, as previously men
tioned, the assembly routine makes the necessary adjustments of the box
numbers of the subroutines.

As in this subroutine, all subroutines are coded so that the first
instruction is

HS—»m F00

There are, subsequently, two methods of entry into the routine. If the
exit to the subroutine is set up prior to entry into the routine, the
fixed connection transfer to the subroutine bypasses the first instruc
tion and enters into the second (the subroutine index card should be
consulted for exceptions to this rule). Or if the instruction word for
the exit to the routine is brought into R2 immediately prior to entry
into the routine, the transfer into the routine is to the first instruc
tion of the routine (again consult library index card for exceptions).

We include a copy of the library index card for the subroutine ex
ample, in order to illustrate the kinds of information listed. For com
plete details, the description of the subroutine library filing system
should be consulted.

The card reads as follows:

S 251.1 RANDOM NUMBER GENERATION (Middle Squaring)
This routine forms a sequence of SS-bigit pseudo-random num

bers by a middle squaring process. The tested base number is sent
to D.OI. The hexadecimal number 10BBBFA4DE gives 718,627 iterates
and then degenerates to 0.
1. Number of operation boxes: 1
2. (a) Number of code words: 6 (dec.); 6 (hex.)

(b) Number of code words plus B and 7 storage: 6 (dec.); 6 (hex.)
3. D storage needed: D.OI
4. Prior to entry the operand must be sent to D.OI
5. (a) D.OI and R2 contain new random number upon exit

(b) Input number is destroyed
6. Entry: Box 1, Instruction 1

Exit: CA
7. Legal spillage: Instructions 5 an<^ 9

We see that the card first gives a brief description of the routine.
Then, in order, it gives:
1. The number of operation boxes, so that the necessary box numbers may

be assigned on the flow diagram.
2. (a) The number of code words, so that the words of code in the sub

routines may be included in estimates of problem code length.
(b) The number of code words plus B and 7 storage, so that total

word length estimates of problem may be made.
3. D storage needed. This is important, since the D storage shown here

must be empty or irrelevant upon entry into routine (except for that
D storage which has numbers pertinent to routine).

-245-

4. Numbers required for routine, and D storage to which they must be
sent prior to entry into routine.

5. (a) D storage in which results are located upon exit from routine,
(b) Limitations of routine.

6. (a) Instruction into which entry is made. If exit is set up prior
to entry into routine, the instruction into which entry is made
is one beyond that listed.

(b) Specifies whether exit is CA or CC, so that corresponding orders
may be stored as the exit words in A storage.

7. Legal spillage indicates which instructions in the routine allow num
bers to exceed the range -l-5~ n< 1. This information is useful in
"debugging" procedures and is discussed elsewhere.

Subroutine 116.1: Integer Conversion from Binary to Decimal
This routine is used to convert a binary integer, N, scaled as

.•soN*2 , into its decimal equivalent. The allowable range of N as an
integer is 0 < N c 10^.

Ihe conversion is effected by subtracting the binary equivalents
8 7 1of the successive powers of ten (i.e., 10 , 10' ••• 10) from N the

appropriate number of times and recording the number of subtractions
of each power of ten as a decimal digit in its proper position. The
inductive process is:

N = No

Hie a^'s are in the range
0 < ai ^ 9

and each a. is chosen so that 1

but

The converted number is then
a 108 + a.107 +1 cv-, .o 1X

-246.

Each decimal digit is represented as a tetrad; hence the actual
formation of the nine decimal digit integer is described as

w =00 4 -39w, = 2 w +2 0:7 .1 o
* 4 _"5Qw * = 2 w + 2 37i+1 * *

w9 = 2 w84 „-39wQ + 2 J^ar

SI 16.1 INTEGER CONVERSION

Figure 14

The necessary storage is:
•247.

B.01: Wo 7.01: 108*2"39 D.OI:
B.02: l.2-39 7.02: 107*2"39 D.02:

B.03: w II 00
o~̂

••
7.08: io1^"39 D.03:

D.Ok:
The flow diagram is drawn as a double induction loop. The primary-
induction is over the index i and forms

i+l
N± - a^lO8”1 and

i+1
2^ + 2"39ai

The secondary induction is over the index and although the induction
index is on j, the end result of the induction is the formation of a^.

Note in the storage of the subroutine that the various powers of
8 iten, 10 ” are stored in 7 storage. This means that these numbers

will be added to the £ storage of any problem containing the routine,
and they will be in eight consecutive locations. It is necessary that

8-ithe addresses be consecutive, since the appropriate 10 ” are located
by an index

i (=0 ••• 7)

In order that the address 7«i may be formed, a base address 7•01 needs
to be stored. This would normally be stored in A storage; since no A
storage is allowed in subroutines, the base address is stored in the
body of the code.

Although the flow diagram contains seven operation boxes, it is
coded as one, as it is desirable to keep the number of boxes of a sub
routine to a minimum.

The coding is:
Subroutine Box 1
(box l) 1. HS—>m F00

2. a—»Ac 000 0 to R2
3. A—»m D.02 w = 00 w —» w. to D.020 1
k. A—»m D.03 0—+(i)o to D.03

(box 2) 5. m—»Ac E.23 (7.0l)o to R2
6. m—»Ah D.03 (7.01+i) in R2o

-248-

7.
8.
9.

S—

a—>Ac

A—5m

E.OA
OOO
D.04

a =0 to R2 o

7.01+i to (8-19)A

• a. to D.04a
(box 3) A. m—>Q [7.01+i] lO8"1^"39 to R4

B. m—-»Ac D.01 (N -a .108"i)2"39 to R2
(Ni-(aJ+l)l08’i)2'39 inc. m—-»Ah- 800

D. C E.1A _
N4+1 = N^IO8”1 in R2(box 4) E. m—5Ah 800

F. A— D.01 Vi
10. m—->Ac D.02 w to R21).

to D.01

11. L(4)

("box

(box

(bo>

12.
13.
14.
15.
16.

5) 17.
18.
19.

6) ia.
IB.
IC.
ID.

7) 1E.
IF.
20.
21.
22.
23.
24.

m-
A-
m-

>Ah

»-Ac
m—*Ah
A—
m—>Ah-

C
T

A—

004 2 w in B2
0.04 w = 2^ + ai*2-39 in B2
D.02
D.03
B.01
D. 03
B.03
E. 1E
E.05
D.01

(i) to R2 o
(i+l) in R2 o

(i+l-l) in R2 o

wi+^ to D.02

(i+l)o to D.03

m—-*Ac D.04 a.J
m—>Ah B.02 aj-

T E.09
m—->Ac D.02 WI
L(4) 004
m—»Ah D.01 V7 :
A— D.02

(T»X F00

0 <1 7.01 '\ "A s-
a—->Ac 7.01 '/

(N± - (aj+l)l08“i)2"39
to D.01

= a.+2 J
-39 in R2

2 wT in R2
- o4„ 4. o .o"39

w to D.02

In the coding the box numbers as indicated on the flow diagram are
indicated with the code for ease of discussion.

In (box l) the first instruction is the HS—F00 which is in
all subroutines. Instruction the first instruction of (box 2) is
m—»Ac E23. Instructions E23 and E24 each contain AA701 and it is

-249-

desired that m—>Ac E23 bring E23 and E24 into R2 as
AA701 AA701.

To accomplish this, E23 and E24 must be assembled as one word and not
as parts of two words. E23 has the same parity as the first instruc
tion of the subroutine; hence the subroutine is coded to begin as a
left-hand instruction in the assembled code. This positions E23 and E24
in the same word. The descriptive code tape of the subroutine begins with
the word

00401
to accomplish this positioning.

Since the coding is done as one box, the transfer instructions which
are fixed connectors contain E.i addresses rather than box number addresses.
For example. Instruction D, which represents the conditional transfer from
(box 3) to (box 6) on the flow diagram, is coded as C E.1A. Instruction
EIA then corresponds to the first instruction of (box 6).

The index card for the subroutine is:
S 116.1 INTEGER CONVERSION

-39This routine converts any binary integer N, scaled as N«2 ,
to its decimal equivalent w by a scheme of subtracting powers of
ten. N must be in the range 0 ^ N < 109.
1. Number of operation boxes: 1
2. (a) Number of words of code: 19 (dec.); 13 (hex.)

(b) Number of words of code and B and 7 storage: 30(dec.);lE(hex.)
3. D storage: D.01 D.04 _4. Prior to entry D.01 must contain N*2-^
5. (a) w is in D.02 and R2 upon exit

(b) N*2“39 is destroyed
6. (a) Entry: Box 1, Instruction 1

(b) Exit: CA
7. Legal spillage: none

= 108*2-39B.01: 0000100001 7.01: OOO5F5EIOO
B.02: 0000000001 7.02: OOOO98968O •

B.03: 0000800008 7.03: 00000F4240 t

7.04: OOOOOI86AO t
7.05: 0000002710 *

7.06: 00000003E8 «

7.07:
7.08:

0000000064
000000000A = lO1^"39

Since the subroutine library is dynamic and continually growing and
being improved, no attempt will be made here to catalogue the existing
subroutines. However, in any problem being prepared for computation, the
subroutine library should be consulted at the time the flow diagram is
drawn in order that any desired subroutines might be incorporated into
the problem.

-250-

The composition of a subroutine descriptive code tape differs
slightly from that of a regular problem. The first word (five charac
ter) on a subroutine tape is always a Box 1 code word

00001 or 00401,
the latter if the subroutine must start as a left-hand instruction.
The first instruction after this code word is always the substitution

FCFOO
This is followed by the descriptive code of the first box and all sub
sequent boxes punched as five-character words, as with a tape of a
problem. Immediately following the last instruction of the routine is
the code word

00E00
The code word 00C00 is omitted, since no A storage is allowed in a
subroutine. Following the word 00E00, the B storage is punched on
the tape. (Recall that no C storage is allowed.) The B storage is
terminated by two adjacent spaces, and the 7 storage is punched following
these two spaces. The last word of the tape (whether it is the end of
7 storage, the end of B storage if no 7 storage is included, or the
code word OOEOO if neither B nor 7 storage is needed) is followed by
two adjacent spaces. If no B storage is needed and if 7 storage is
present, the two adjacent spaces indicating the end of the B storage
are nevertheless included immediately following the code word OOEOO.
Example 11 illustrates sections of three subroutine tapes containing
the storage and the appropriate spaces.
Example 11

Each tape begins with the last instruction of the subroutine which .
for our example is the exit transfer, T F00.

The first subroutine has both B and 7 storage, namely
B.01: 45FOOOOOOO 7.01: 39253645320)0 a> 01 <D 4> of a>0 0 O O 0 00Clcn 0a. 0a. 0 0 a. a.</) <n </) V) <n<n

Code -*CAFOO OOEOO 45F0000000 3925364532

O OOOO O O1 OOOOOOOOOO 000000000 o00 o 00000 o oo 00

00 00,
00000000000000000. O OOOO O OO OO OO OO OO

I Exit |End of j b Storage
J Code J

1 l111 1
tl 7 Storage | End of

I l Tape

End of
B Storage

Figure 15.

The second subroutine has only 7 storage:
7.01: FU39B7CD32

a) «> a»<i)O O £2 O o oo a o o a aa. a. ci. o. a. a.
(/) cn co c/) co co

Code-*CAFOO OOEOO F439B7CD32

) O OO OOjOOO o O OO OO /
\oooooOooooooooooo oooooooool
O O O OO OOO 'OO O O O OOO

I
^ W OOo oooo OO

Exit
I End Ofl I 7
J Code JAl 7 Storage

I I >
End of

B Storage

1 End of
I Tape

Figure 16.
There is no storage for the third subroutine.

0)ooo.(/)
4) 0)0)u o oo o o
& Cl Cl

_ in CO </)
Code-►CAFOO OOEOO

o oo< OOO o
•oooooooeoooo O O

°§
i
IE x i t

JEnd of I End of
■ Code [Tape

Figure 17

-252-

VI. OPERATING PROCEDURES

In this chapter on operating procedures we present the discussion
in four sections. First, the functions of the indicator lights and
switches of the control panel are discussed so that one has at his dis
posal the necessary mechanics for operating the computer. The second
and main section is the preparation and debugging of a problem. The
discussion of the preparation begins with the descriptive code of the
problem being complete. The code is carried through its assembly and
then the debugging procedures are discussed. The third section re
turns to the discussion of the computer and it brings out in some de
tail the role of the various registers. The fourth section contains
some miscellaneous information such as the "audio-monitor"; the "mem
ory monitors"; the magnetic tape and Synchroprinter procedures, etc.

In order to give one a better mental picture of the ensuing dis
cussion, Figures 1, 2, and 3 have been included. Figure 1 shows a
floor layout of the computer and its auxiliary equipment. The figure
is not drawn to scale but it serves to show all of the auxiliary equip
ment and its position relative to the computing unit. Figures 2 and
3 give a schematic view of the front and back of the computer. These
figures show the position of the various registers, the control system,
and the electrostatic memory. Now, keeping these three figures in mind,
we turn to the operating panel.

The operating panel has been kept in a simplified form for ease of
operation. The panel consists of ten display lights and ten switches
for setting the counter (shown as the control counter in Figure l); the
memory clear switch (shown in Figure 2); two lights for the function
gates (mounted atop the switch box shown in Figure l); and six operating
switches (mounted on the switch box shown in Figure l) designated in
order from, left to right as:

1. the load switch
2. the "red" breakpoint switch
3. the "green" breakpoint switch
4. the perform order switch
5. the manual-automatic switch
6. the start next order switch

CIRCUIT POWER
BREAKERS CONTROL

PANEL

VARIAC

HIGH
VOLTAGE
POWER
SUPPLY

253

COMPUTER MAGNETIC DRUM

J>witch Box

Control Counter READER
AMPEX
RECORDER

CONTROL TABLE

FAST
PRINTER

PUNCH and

SLOW PRINTER

FLOOR LAYOUT of COMPUTER and AUXILIARY EQUIPMENT

FIG. I

roVJloj

t 4

1

?Sf-
FRONT t'J'l-

k. II M 1 1 1 1 1 1 M 1 1 1 II 1 1 k.

c
o
2

Memory Storage Units o
2

0 | 2 | 4 | 6|8 | 10 | 12 | 14 | 16 | IS | 20 | 22| 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38
Memory Clear

Switch

■T\

ro

Arithmetic Unit

Control

V

A

V
R6

R5

R4

R3

R2

R I

A

V

A

Memory Unit

Control

355

REAR F' 'J~3
*

i i i i II II nn1 1 1 1 1 1 1 1 1 W
O

eo
2

Memory Storage Units co
2

39 | 37 | 35 | 33 | 31 | 29 | 27 | 25 | 23 21 | 19 17 | 15 | 13 | II | 9 | 7 | 5 | 3 | 1

O
OJ

Control

V V V
Arithmetic Gates

Complement Gates (Located behind other chassis)

Adder

Adder

JH. A A

Arithmetic Unit
Control

i * 41 t i

-255-

-256-

The display neons for the various registers have not been brought
out to the panel but are physically located with their register. They
are readily visible from the operating panel table. In line with this,
the monitor tubes for visible memory display are mounted in the memory
rack rather than on the operating panel (See Figures 2 and 3).

The control counter display lights and selector switches are laid
out on a panel as shown in Figure 4.

Counter Lights

Set
Counter

Switch

1

* Push Button

Selector Switches - Toggle

Figure 4.

Hie control counter is the mechanism used to sequence the instruction-
words. The control counter normally contains the address of the forth
coming instruction word to be brought into the R6 (control) register.
Since the control counter handles addresses, it counts from 000 to
3FF, which requires a ten-stage counter. Inasmuch as the counter is
the sequencing mechanism, we easily see how transfer instructions are
accomplished, namely that the address of the transfer Instruction is
sent to the control counter. (The right-left selection is done through
the function gates, which are discussed presently.) If the computer is
stopped, the operator may manually effect a transfer of the control to
any address by using the selector switches. The control counter (hence
the control) is set to any desired address by setting the selector
switches to the address and then depressing the "set counter1' switch.
The control counter lights indicate the address to which the counter is
set.

In addition to being the control sequencing mechanism, the control
counter is used in conjunction with the magnetic drum instructions. It
indicates in sequence the fifty memory addresses associated with the

-257-

instruction. The counter is also used in the loading process; here
the counter indicates the address of the memory to which the next
word from the reader is sent. We discuss the loading process presently.

Prior to using the computer, the operator usually clears (sets to
all zeros) the memory of any previous code or data. The memory is
cleared to zeros by depressing the "memory clear" switch located on
the front section of the computer in the upper right-hand corner of
the arithmetic unit frame. This switch is separated from the operating
panel so that it will not be pushed inadvertently during the course of
a computation. Its location is shown in Figure 2.

The two function gate lights are mounted on a panel immediately
above the six operating switches. These are display lights for the
function gates, a set of gates which allows, in turn, each instruction
of the word in R6 to be connected into the control circuitry in older
to be performed. The function gate lights Indicate which Instruction
in R6 is connected into the control circuitry. When the left-hand
light is on, the left-hand instruction in R6 Is connected into the
control circuitry and, similarly, the right-hand light corresponds to
the right-hand instruction. In general, if the computer is stopped
and an instruction pair is in R6, the instruction corresponding to
the function gate light setting has already been performed by the con
trol. The function gate lights are shown in Figure 5»

In a transfer instruction, the control selects the left or right
side by opening the corresponding function gates. There is no switch
for setting the gates manually, but as we shall see this is not necessary.

Function Gate Lights

Perform Manual Start
Order Automatic Next

Order
Red 0ff Green

Break Points

Figure 5*

-258

We now turn to the six operating switches shown in Figure 5 and
discuss first the "load" switch and the loading process. Prior to
loading a tape into the memory, one first clears the memory to zeros
by depressing the memory clear switch and then sets the tape in the
photo-electric reader. When a tape of data is punched for use in
the computer, the first word of the data should be preceded by five
or six inches of blank tape (zeros). These zeros act as a leader for
the tape. To place the tape in the reader, the lid of the reader is
raised. Then the tape is inserted so that the leader is over the drive
cylinder, yet no pertinent characters are beyond the reading holes.
The tape must be placed in the reader so that the space holes (fifth
holes) on the tape are nearest the hinged side of the lid. A sample
tape is attached to the reader to avoid mistakes of this type. After
the tape is inserted, the lid of the reader is closed. One should
make certain that the lid latches when it is closed to assure proper
operation.

After the tape is inserted, the control counter is set to the de
sired initial address for loading. In loading, although it is only
necessary to set the selector switches of the counter, it is recom
mended that the set counter switch be depressed so that one can check
the counter setting by the display lights as well as the selector
switches. When the desired address is set into the counter, the load
switch is set to the "up" position and the loading commences. The
words from the tape are transmitted into successive memory positions
beginning at the address set into the control counter.

After the tape has been loaded into the memory, the load switch
must be set to the "down" position. The computer will not operate if
the load switch is not reset. The loading is terminated when two ad
jacent spaces on the tape being loaded are encountered by the reader;
hence, any tape that is to be loaded into the memory must end with at
least two adjacent spaces.

As the tape is loading into the memory, each word on the tape is
transmitted into the R5 register, and from there into the memory. This
fact allows a method of checking that the photoelectric reader circuitry
is transmitting the information correctly from the tape. During the load
ing, a sum of the words from the tape is formed in R2. The first time

-259

that a tape is loaded, the sum as shovn in R2 should he recorded. It
can he verified hy immediately reloading the tape. Once a correct sum
of the tape has been recorded, the sum given hy all subsequent loadings
must agree with the known correct sum. If it does not agree, there is
a computer malfunction. The correct sum should he recorded on the box
in which the tape is permanently stored. Remember, however, that a cor
rect sum in R2 at the completion of the loading does not guarantee
that the information is correct in the memory; it only says that the
reader and its associated equipment operated properly. The contents
of the memory are checked hy a summing routine that must he incorporated
in all problems. It is discussed later.

It is now worth noting several things that occur when the load,
switch is set to the "up" position; naunely, the R6, R5, and R2 regis
ters first clear to zeros. The R6 register remains zeros throughout
the loading. At the completion of the loading, R2 contains the sum of
the tape, R5 contains the last word loaded from the tape, and R6 is
zeros. Note that the loading process does not affect the contents of
the R4 register. At the completion of the loading, the control counter
automatically resets to the original address.

The "manual-automatic" switch, the "start-next-order" switch, and
the "perform-order" switch are those directly concerned with the run
ning of the computer. We now discuss them.

The manual-automatic switch allows the computer to he operated so
that it either stops upon the completion of each instruction or per
forms an entire instruction sequence without stopping. If the manual-
automatic switch is in the "manual" position when the control performs
an instruction, the computer stops upon the completion of the instruc
tion. If the manual-automat1c switch is in the "automatic" position
when the control performs an instruction, upon the completion of the
instruction the control proceeds to the next instruction in the se
quence to perform it, and so on, through the entire code sequence.

The start-next-order switch is normally used to start the computer.
Recall that if the computer is not running the function gate light
indicates which side of the instruction pair is connected into the con
trol circuitry. Depressing the start-next-order switch causes the
next instruction in sequence to he performed. That is, if the start-
next-order switch is depressed when the left-hand function-gate light

-260

Is on, the function gates are set for the right-hand instruction In
R6; the function gate lights change and the right-hand Instruction
In R6 Is performed by the control. If the start-next-order switch Is
depressed when the right-hand function-gate light is on, the control
brings the Instruction word located at the address specified In the
control counter into R6. The function gates and lights have mean-
while switched to the left-hand side of R6 and then the left-hand In
struction of the new word in R6 is performed by the control. The con
trol counter is advanced by one.

The perform-order switch is somewhat similar to the start-next-
order switch in that it causes the control to execute an instruction
contained in R6. However, depressing the perform-order switch causes
that Instruction (indicated by the lighted function gate) connected
into the control circuitry to be performed rather than causing the next
instruction in sequence to be performed. The perform-order switch takes
on added significance in connection with the breakpoint switches and is
discussed further with them.

Returning to the manual-automatic switch, we see that the "manual-
automatic" settings apply to either the start-next-order or perform-
order switches. If on "manual", the start-next-order switch allows one
to proceed through the code sequence an instruction at a time, while
the perform-order switch allows one to repeat an instruction as many
times as is desired. If on "automatic", depressing either the start-
next -order switch or the perform-order switch allows the control to
proceed automaticolly through the code sequence. The latter, however,
causes the control to perform the instruction previously connected into
the control circuitry before proceeding through the instruction sequence.

The breakpoint switches allow one to insert conditional stops into
a code by setting either the first or fifth bigit of an order to zero.
Since all orders are composed of letter pairs (AA, BA, DD, etc.) the
first and fifth blglts are normally one. Setting the first bigit of
an order to zero corresponds to the insertion of a red breakpoint and
setting the fifth bigit to zero, a green breakpoint. The conditional
stop arises from having a breakpoint switch in the "up" or "down" posi-
tion. If either the red or green breakpoint switch is in the "up" (on)
position and the control brings into R6 an instruction which contains

-261-

the corresponding breakpoint, the control stops the computer before the
the Instruction Is performed. The breakpointed Instruction Is, however,
connected Into the control circuitry as Indicated lay the function-gate
light setting. If either of the switches Is In the "down" (off) posi
tion when the control brings Into R6 an Instruction with a breakpoint
corresponding to the "down” switch, the control performs the Instruction
as though it contained no breakpoint.

The perform-order switch is used in conjunction with the breakpoints
because depressing the perform-order switch causes the instruction con
nected into the control circuitry to be performed even though this in
struction may contain breakpoints. If the control stops on a break-
pointed instruction, it stops before the instruction is executed; hence
the perform-order switch is the natural way of resuming operation. If
the control is stopped at an instruction with a breakpoint and the start-
next-order switch is depressed, the instruction containing the breakpoint
is skipped (not performed) as the start-next-order switch executes the
next instruction in sequence rather than the one already connected into
the control circuitry.

With a knowledge of the operating switches at our disposal we now
turn our attention to the code assembly and "debugging".

Recall that the absolute code is prepared in the computer by the
assembly routine from the descriptive code tapes. These tapes are the
problem and constant tape, and the subroutines tape or tapes. The
assembly routine is an example of the category of codings called "helper-
routines". A helper-routine is a routine, not incorporated directly as
a part of the problem, which is used as an aid in the preparation, the
running or the analyses of a problem on the computer. A library of
helper-routines has been compiled much in the fashion of the subroutine
library. Rather than give an elaborate discussion of these routines
we refer the reader to the helper-routine library file, and we mention
them only as their need arises in the ensuing discussion.

The first step in the assembly of a code is the loading of the
code assembly helper-routine. (This routine is appropriately named
"The Coder".) The tape and necessary explanations for the assembly
routine are obtained from the library. The code is transmitted into
the memory beginning at the desired address (specified by the explanatory

-262-

remarks) via the load process which is: the memory is cleared to zeros
by depressing the memory-clear switch; the tape is set into the reader;
the control counter selector switches are set to the desired starting
address; and then the load switch is set to the "up" (load) position.
After the assembly tape is loaded, the load switch is set to the "down"
(off) position and the sum in R2 is checked against the sum as recorded
on the assembly code tape box.

After the assembly routine is loaded and the sum is checked, the
processing of the descriptive code tape begins. The descriptive code
tape is placed in the photo-electric reader so that it is in position
to be read into the computer by the assembly routine. The computer is
started in operation by first setting the desired starting address into
the control counter; second, setting the manual-automatic switch to
the "automatic" position; and third, depressing the start-next-order
switch to activate the control. The desired starting address is often
contained in the control counter, since after loading the counter con
tains the initial load address.

After loading, to start the computer the right function-gate light
must be on. Depressing the start-next-order switch then brings in to
R6 the instruction word specified by the address in the control counter,
and the control proceeds executing the instructions in sequence. If
the left function-gate light is on, at the completion of the loading
one may switch the function gates by depressing the start-next-order
switch. R6 is cleared to zeros by the loading; hence the switching of
the function gates does not cause any action as there is no instruction
in R6.

The first group of instructions of the assembly code comprises a
summing routine which forms a sum of the memory contents and checks this
sum against the sum as left in R2 from the loading process. (Any prob
lem which is to be run on the computer should contain such a summing
routine.) If the sums do not agree, the computer stops at a programmed
stop, since disagreement of the sums implies a canputer malfunction.
If the sums agree, the control proceeds automatically and the data from
the descriptive tape is read and processed through the assembly routine.
At the completion of the reading of the descriptive code tape, the con
trol comes to a coded stop in order that the subroutines tape may be in
serted into the reader. After this tape is inserted, depressing the

-263

start-next-order switch causes the assembly of the absolute code to be
carried to completion. During the processing of the code, a code list
ing (see Chapter V, pp. 232 ff.) is carried out. Upon the completion
of the assembly, the absolute code may either be recorded onto magnetic
tape or punched onto paper tape for subsequent use. The choice of the
medium for recording the absolute code is made by selecting the appro
priate assembly routine code tape, as there is one code which contains
as a subroutine a magnetic tape recording, and smother which contains
a tape punch subroutine. However, in either situation the particular
auxiliary equipment should be readied prior to the start of the assembly
process.

After the assembly of the absolute code is completed with either
the record on magnetic tape or a punched paper tape (for what follows
we assume that the absolute code is on magnetic tape), "debugging" of
the assembled code begins.

As a person gains experience in coding, he soon realizes that des
pite the great care exercised in the fomulatlon and coding of a prob
lem, errors are apt to occur. Before a problem can be run any existing
errors must be detected and corrected. The process of eliminating errors
from the mathematical formulation and the coding of a problem is called
"debugging". As a person becomes familiar with coding and the computer,
he will naturally develop his own "debugging" habits. The purpose here
then, rather than to specify a rigid set of rules, is to discuss a
general procedure that will assist a person in developing desirable
debugging patterns.

In a problem of any complexity, the hunting for and detection of
errors completely apart from the computer is a very difficult, if not
impossible, task. In order to make the task of error hunting a tractable
one, the computer is utilized.

Clearly, one approach for using the computer in debugging is to
run the problem as though it contained no errors (this is often done
with small problems). If there are no errors, this indeed is the fast
est approach to debugging. However, if errors are present, the answers
Indicated upon the completion of the problem, if the control was even
able to proceed to the end, would be Incorrect; and one would have no
idea where or why the errors occurred, so that such running time (which
might be rather lengthy) would not be particularly useful in localizing
any errors.

-264-

Another approach would he to perform each instruction in the code
sequence on manual operation and to record the result of each operation
so that it Could he verified hy hand methods. Such an approach would
certainly find all existing errors, hut the amount of computer time in
volved in such a debugging method is much greater than it need he.

The recommended approach combines the two extremes. The code
of the problem is divided into several sections and the control performs
each of these sections automatically, stopping upon the completion of
each one. The division of the code of a problem into these sections is
accomplished hy inserting conditional stops into the code hy means of
breakpoints. These stops are inserted at locations in the code where
the results of pertinent computation are available. Enough of these
stops should he inserted so that sufficient data of the problem are
recorded to allow one to perform a hand check if necessary. The con
trol then performs automatically one of the short sections of code and
stops at the designated instruction. Hie pertinent data from the pre
ceding computation are recorded, and then the computer is restarted and
the control performs the next code section, and so on, until all of
the desired data are accumulated. This occurs when the control has
proceeded through all of the code sequence at least once, or when it
is observed that some of the data are in error. In either case, the
problem is removed from the computer and the data are studied and
verified.

If the accumulated data indicate the existence of errors, any
particular error may be isolated to one of the short code sections by
making a hand check of the results and observing in which section the
error first appears. Once an error has been isolated to a section of
code, that section of code is checked visually to see if the cause of
the error may be easily located. If it cannot, that section of the
code in which the error occurs is further subdivided and the problem
is returned to the computer where the offending section is examined in
greater detail in order to pin down the error. As soon as the error
is located, it is corrected and then further debugging may proceed. This
process is continued until all errors are removed from the coding, at
which time the problem is ready to be run. We now discuss these matters
in more detail.

-265-

After the absolute code is assembled and placed on magnetic tape,
the problem is removed from the computer in preparation for debugging.
This preparation Involves a visual check of the code listing to detect
any obvious errors, either from the coding or from the assembly pro
cess. After the listing is checked, the code is divided into sections
for breakpoints. The breakpoints are to be inserted into orders of
instructions where pertinent data are available in the arithmetic unit.
The actual insertion of the breakpoints into the desired instructions
in the assembled code may be accomplished by a Breakpoint Insertion
helper-routine. One needs to specify to this helper-routine the ad
dress of the Instruction receiving the breakpoint and whether the
breakpoint to be inserted is "red" or "green". The details for accom
plishing this are discussed in the helper-routine file.

There is an alternative method for inserting breakpoints which is
perhaps more desirable than the one just outlined. This alternative
is to decide upon the disposition of the breakpoints during the prepa
ration of the descriptive code and to punch the orders on the des
criptive code tape with the breakpoints inserted. The assembly routine
accepts and modifies properly instructions whose orders contain break
points. As an example, an instruction m—>Ac B.01, if it were to
contain a "red" breakpoint would be punched as 2AB01 rather than AAB01.
Similarly, ~ D01 with a "green" breakpoint would be punched as D5D01
rather than DDD01.

If the breakpoints are included during the descriptive coding,
they exist on the magnetic tape record of the absolute code. If they
are inserted by the Breakpoint Insertion routine, the absolute code
from the magnetic tape must be called into the computer; the breakpoints
are then inserted by the Insertion helper-routine, and a subsequent re
cord of the code with breakpoints is made onto the magnetic tape, ihe
calling from and recording onto magnetic tape is accomplished by
Magnetic Tape helper-routines, two of which were illustrated in Prob
lem 12 of Chapter II. As soon as the breakpoints are inserted, one
begins the debugging proper.

The most effective way of observing the data at the various break
points is to have the desired data printed. To do this, one again calls
on a helper-routine. The particular‘routine used here is in a class of

-266-
interpretive helper-routines and is the so-called Breakpoint Monitor
helper-routine.

An interpretive routine is any routine which interprets and
causes to be performed any desired instruction sequence which is
residing in the memory. Such routines act in a sense as a generalized
control.

During the process of interpreting and performing an instruction
sequence, an interpretive routine may perform many other functions, the
extent of which is limited only by the capacity of the memory of the
computer and the ingenuity of the person preparing such routines.

For the Breakpoint Monitor routine the desired interpretation is
a very simple one, namely whether an instruction contains a breakpoint.
For an order containing a breakpoint, the interpretive routine first
causes the instruction to be performed and then the following data are
printed as four words:

Word 1: The address at which the instruction containing
the breakpoint resides, and the instruction itself.

Word 2: The contents of the R4 register
Word 3: The contents of the R2 register.
Word 4: The contents of the memory at the address specified

in the instruction.
Words 2 and 3 give the contents after the instruction is performed
and Word 4 gives the contents before the instruction is performed.
Note, then, that the breakpoints are inserted into instructions which
when performed give the desired data in the arithmetic unit. R2 or
R4 contain the result from any arithmetic operation while the appro
priate memory location contains one of the two operators entering into
the operation.

There are many other interpretative routines similar to the
Breakpoint Monitor (it was chosen only as a convenient example) and one
should check the library file to ascertain which of these routines is
best suited for his specific purpose.

Sometimes breakpoints are used to check that the control reaches
a certain instruction in the problem and for this the numbers printed
from the various registers may be unimportant for debugging; hence only
the first word printed in the listing would have relevance.

-267-

In the Breakpoint Monitor routine, as in similar routines, one
has the option of having the data printed as either decimal numbers
or as hexadecimal numbers. The first word, i.e., the address and the
instruction, is always printed as a hexadecimal number, since it would
appear as nonsense as a decimal number.

To utilize the Breakpoint Monitor routine, one inserts the desired
breakpoints into the absolute code. The absolute code and the Break
point Monitor routine are then loaded into the memory. Note that,
since both routines are in the memory, the Breakpoint Monitor routine
must be loaded into a set of addresses which are not relevant to the
code being debugged. Breakpoint Monitor routines are coded beginning
at a variety of addresses so that this is usually possible without un
due red tape. If, however, one has an assembled code to be debugged
which fills the memory, he has recourse to a generalized monitoring
routine which utilizes the magnetic drum. It is not, however, dis
cussed here.

The first step of the monitoring process is to specify the ini
tial address of the code to the monitor routine (for details see the
helper-routine library file). The control counter is set to the initial
address of the monitor routine and then the computer is started. The
data for the debugging is printed by the Synchroprinter, four words
(discussed above) to a line.

As soon as one has collected a sufficient amount of data, the
problem is removed from the computer and examined at leisure away
from the computer.

It may happen that the breakpoints are not reached in the expected
sequence, or even that the first one is not reached. We defer the dis
cussion of the procedure to be followed when this happens.

So now, assuming that the breakpoints were reached, we have the
data which is now examined to determine whether or not the numbers
listed are the desired numbers. First, a cursory examination is made
for any obvious errors. For example, a number known to be always
positive may have been computed and printed as a negative number. Or
perhaps the orders of magnitude of the numbers of the computaton are
known and a visual check suffices to determine this.

-268-

If the cursory check does not indicate any troubles, a hand compu
tation is made using the same data as for the listing. The hand check
may often use shortcuts in that some of the numbers computed are
knpvn; e.g., the values for sin x, —^/x, etc. may be found in tables.
The comparison should agree except for truncation and round-off dif
ferences. Sometimes approximate values suffice for checking purposes.
If no errors have occurred, the debugging of the portion of the code
for which the data was obtained is complete. If an error is detected
from the cursory examination one must set about isolating it to one
of the sections of code between breakpoints. At first, one attempts
to isolate the error by a visual check of the numbers leading to the
error, and if this fails a hand check of the results in the region of
suspect will Isolate it.

Once an error is isolated to a particular section of code, the
instructions in that section are examined in detail to see if the
cause of the error may be observed. If it is found, that trouble is
over. If it is not observed, one may divide the section of code by
further breakpoints, so that the section may be monitored in greater
detail upon returning to the computer. However, at this point, if
the section of Instructions is fairly short, as it should be, rather
than doing further breakpoint monitoring one has recourse to another
helper-routine for debugging, called the Auto-Monitor routine. It is
discussed presently.

If the first error detected does not alter subsequent results too
drastically, the programmer continues his checking process for other
errors so that before returning to the -computer as many errors as
practicable are detected and corrected?

Since the absolute code of the problem exists only on magnetic tape
one makes the actual corrections at the next session with the computer.
However, prior to this a permanent written record is made of each error
as it is detected. This record should contain at least the following:

1. The addresses of the incorrect words.
2. The incorrect words as they appear on the magnetic tape.
3. Hie number of the particular magnetic record on which

they appear incorrectly (as will be seen later each re
cord of an absolute code is on a numbered section of a
spool of magnetic tape).

4. The correct words as they are to be inserted. And if any
additional words are added, the addresses at which they
are added.

Then after one has returned to the computer and made the corrections
said recorded the corrected absolute code onto magnetic tape, the fol
lowing Information Is added to the record.

5. The date on which the correction is made.
6. The number of the magnetic tape section on which the cor-

ted code resides.
In addition to the six items mentioned, any comments which the program
mer feels are pertinent to the corrections should also be included.

There are, in general, two kinds of corrections that need to be
made. The first is the easy kind which can be corrected by changing
only those words in error without having to add additional coding.
This kind of correction causes relatively few headaches. The second
kind are those corrections where the number of words necessary to make
the correction exceeds the number of words in error. In short, additional
coding must be added. So we have found one of the ticklish parts of the
debugging, and unfortunately many of the errors encountered are of this
kind. For clarity we give an example of such a correction and indicate
how it is carried out.

An error is found in the sequence of code words beginning, say,
at address 050. “Hie faulty coding is

050. m—>Q 271 X 272
051. X 273 A—>m 27^
052.

The sequence is supposed to form xyz and store it at
274: xyz

where x, y, and z reside in locations 271, 272, and 273, respectively.
Now as the result of Instruction 50', the product xy is in R2. Instruc
tion 51 Is incorrectly a multiply instruction because the multiplier
xy has not yet been placed in R4. Since all of the Instructions in
the sequence are needed, there is clearly no place to insert the neces
sary L(4o) instruction to send the number xy from R2 to R4, or if it is
not desirable to use L(4o), two instructions A—275, *—275
needed where 275 is an available location at this time.

In order to make the correction one must have available somewhere
in the memory 1 l/2 consecutive words. Assume that such space is avail
able beginning at address 379. The corrections to be inserted axe:

-270

050. m—»Q 271 T 379

•

HUAO X 273 A—*m 21k
052.

379. X 272 L(40) 028
37A. T 051

The right-hand side of Word 50 is changed to a transfer to 379* The
first instruction of 379 performs the multiplication formerly done in
50'. 379' then shifts xy from the R2 register to the R4 register, so
that it is in proper position as a multiplier. The next instruction
then sends the control back to 051 where the multiplication by z is
now correctly performed.

An alternative scheme of inserting the correction is to revert
to the descriptive coding and actually recode in descriptive coding
the operation box in which the error occurs. A corrected tape for
this box is then punched. By making use of an 800XX symbol (a trivial
change) incorporated in the "box number" code word on the descriptive
tape, the assembly process may be stopped prior to the assembly of
the code of any box and the code for new boxes or corrected boxes
may be inserted. The entire problem is then reassembled by the
assembly routine with the desired insertions of now or corrected boxes.
At first glance the recoding of a box and the reassembly of the entire
problem may seem rather a drastic way of eliminating an error; however,
experience has shown that one of the most fruitful sources of errors
in coding arises from the insertion of corrections for previous errors,
and this recoding and reassembly virtually does away with such errors.
One has only to examine and work with a highly complex problem to under
stand this. It should be mentioned that the reassembly process is
quite easy and rapid.

When one returns to the computer to insert the corrections, he re
assembles the code if the latter scheme is adopted. If the former is
adopted, he has previously punched small tapes containing the desired
corrections. Then after the absolute code is read into the memory,
these corrections are loaded into the desired locations. Each se
quential group of corrections consists of one tape; hence several such
tapes are often needed. Several groups of corrections may, however, all

-271-

be placed on one tape with double spaces on the tape separating the
various groups. For example, the correction of the example discussed
above would consist of two groups. The first consists of Word 050
which is

EB271CA379
followed with a double space. Immediately following the double space
the words beginning at 379 would be punched. They are:

DA272DE028
CA05100000

which is also followed by a double space. The correction tape is then
loaded into the desired locations, namely addresses 050 and 379* When
all of the corrections have been inserted, the problem is again recorded
on magnetic tape so that an absolute code containing the corrections is
available on tape. Note that all of these magnetic records discussed
are distinct. That is, one should not destroy previous records of the
problem when making a new one, and certainly not the immediately pre
ceding record.

We are now ready to resume debugging, with the corrected code. We
do this by first returning to our original breakpoint monitor scheme
and printing the data for all of the breakpoints that had previously
been listed. This is done to make certain that none of the changes
and insertions in the code has molested any part of the code which
was previously correct. In addition, the data pertaining to the cor
rections are printed. We have left from the previous debugging session
those errors which were not found while off of the machine. If the
method of Inserting more breakpoints is used one has only to let the
data be printed. However as previously mentioned, it is often advisable
to resort to an Auto-Monitor helper-routine.

The Auto-Monitor routine is an interpretive routine which allows
the results of each instruction to be printed. The data printed for
each Instruction are Identical to those for the Breakpoint Monitor
routine. When one comes to the section of code in which the error
exists, he switches to the Auto-Monitor routine and lists the results
of the computation for all of the instructions in that section. To
switch from the Breakpoint Monitor to the Auto-Monitor routine one

-272

loads the Auto-Monitor routine into the memory and specifies to it the
desired starting address for monitoring. One should consult the
library file for specific operating instructions. Upon the completion
of the desired auto-monitoring, one may revert to the Breakpoint Monitor
routine.

The Auto-Monitor routine is recommended to track down the error of
the kind previously mentioned in which no breakpoints were ever reached
or else reached in the wrong sequence, by the Breakpoint Monitor routine.
One begins auto-monitoring at the start of the problem (or at the point
of "no return"). This soon leads to the source of the trouble.

It is worth noting here that, since the Auto-Monitor and Breakpoint
Monitor routines have a similar function, they may actually be incorporated
as one routine where one need only make minor adjustments in order to
switch from one to the other.

There are other helper-routines which one has as an aid to debugging
other than the monitoring routines. We mention only a few of them in
passing.

There is a Scaling Check routine which examines the results of all
operations to see that numbers do not exceed the allowable range of
-1 ^x < 1.

There are various address and instruction search routines which scan
the code and pick out all instructions containing any specified address,
or pick out all instructions containing any specified order, or pick out
any specified instruction.

Routines exist for comparing the contents of any magnetic tape re
cord either against any other, or the contents of the memory, or the con
tents of the magnetic drum.

There are address altering routines which modify the addresses of
any section of code in any manner desired.

Graph plotting routines are available for plotting data to see if
they look reasonable.

There are routines which allow all operations on the computer to
be done in duplicate in the event that one suspects a computer malfunction
as the source of an error. Normally our standard test routines disclose

-273-

the garden variety of computer errors, but on rare occasions an in
frequent intermittent may depend on particular numbers. In this in
stance there is some point to using these "duplicating" routines.

Many routines which cannot be used directly in debugging may still
be of service. These are routines that can compute various functions
and tabulate the results so that they can be compared with results in
the problem being debugged.

The scope of helper-routines is too great to enumerate in detail
here. However, it is suggested that, prior to the debugging of any
code, the programmer should become familiar with helper-routines and
their function as an aid to debugging.

We have thus completed the debugging of the absolute code. It should
be mentioned, however, that the preceding discussion has not attempted
to cover debugging in any detail, since such a discussion is not within
the scope of a manual of this type, and apart from a general approach
each code to be debugged presents new situations. Skill in debugging
comes only through actual experience and a meticulous care on the part
of the programmer at all stages of the problem preparation and the de
bugging. The next step then is naturally enough the actual running of
the problem with the debugged code.

The procedure that one goes through in starting the problem should
be somewhat familiar by now. The debugged code is called into the
memory from the magnetic tape where it resides. After the code is in
the memory, the control counter is set to the desired starting address,
and the problem is started by depressing the "start-next-order" switch.

When at all possible, the code of a problem should be set up so
that shortly after the computation begins, a few intermediate computa
tion results, where the correct results are known, would be printed.
In this way there is some assurance that the computer is starting its
computation correctly.

Since many of the problems contemplated require anywhere from
several hours to several days of computation time, it is necessary that
intermediate records of the problem (code and numbers) be made so
that in the event of computer malfunction it is not necessary to start
the problem from the beginning. One has only to return to the last
correct record of the problem and resume from there.. Also in lengthy

-274-

computations the code should be constructed so that intermediate re
sults of the problem are periodically printed, so that they may be
examined in order to see if they are reasonable. This is a check on
the formulation of the problem as well as on the computer.

The periodic records of the problem are made on magnetic tape.
The entire contents of the memory are recorded onto the magnetic tape;
hence in order to start a problem from any record one has only to call
the magnetic tape section into the memory and then set the control
counter to the address of the instruction Immediately following the
last instruction of the code performed before the record was made.
This instruction is, of course, known for each record; and, in fact,
it usually does not vary from one to smother. Experience has shown
that a magnetic record of the memory contents should be made about
every 20-25 minutes to insure a maximum of effective computation time.
It is desirable that some intemediate results be printed shortly after
a record is made. Then, in the event that a problem has to be restarted
there will soon softer be some printed results which may be checked against
those printed when the record was made. This insures that the computa
tion is starting correctly.

The routines which perform these magnetic recording exist as sub
routines as well as helper-routines, so that if desired they may be
directly incorporated as an integral part of a problem. A variety of
print routines exist that are easily included in a problem to print
the intermediate and final results. As suggested above, one of the
reasons that the periodic magnetic tape records of the problem are
made is in anticipation of any computer malfunction. A computer mal
function might manifest itself in any one of several ways. For example,
a set of intermediate results that are printed might be in error. Such
errors may be detected by inspection, by taking differences of the re
sults, by the plotting of graphs, by programmed integral checks, etc.
In addition to such manifestations, a malfunction may occur by a non
sense instruction being brought into R6, the control register, and the
computer stops. Or yet another type of malfunction might manifest
itself in that the control becomes stuck in an instruction loop. That
is, the control is being cycled through a fixed section of the code
rather than following the correct path. If the loop through which the

-275-

control Is cycling has relatively few instructions, it can actually be
observed on any one of the "memory monitor scopes". These are discussed
later. If the cycle is relatively long, it may not be detected for some
time, namely when one tries to print results.

In the event that a computer malfunction is detected, the following
procedure is recommended:

If the trouble occurs very shortly after operation has begun, the
first suspect for the error would be that it was a human error. That
is, either in loading the code and any data that might be needed, or in
making any alterations of data, or in the setting of addresses into the
control counter, the operator may have made some sort of an error. Hence,
one should try to restart the computation without making any other checks.
If similar trouble seems to repeat, one then follows the same procedure
as for malfunctions that appear after the computation has been underway
for some time. It is:

If a malfunction appears that is evidently not from a human source,
the problem being computed is removed from the computer and the basic
computer test problems are run to see if they detect the malfunction.
Every operator of the computer should become intimately familiar with
these test problems so that he can run them and interpret properly any
results which might indicate a malfunction.

We discuss these test problems only briefly here. There is a so-
called "Inversion Test” which checks that the memory is operating properly.
A "Vocabulary Test" is a general test of all of the orders to see if any
of them are failing. This test will detect any consistent errors. For
the more aggravating intermittent variety there are specific tests that
attempt to test more exhaustively each kind of order with a wide variety
of numbers. In any test in which a malfunction occurs, data are printed
that indicate the nature of the malfunction. As soon as a malfunction is
detected by a test routine, the engineering staff should be called to fix
the trouble. In the event that the test problems do not indicate any er
rors but the troubles still persist in the problem, the engineers should
be called. If the trouble is manifested by Incorrect results which can
be duplicated, and if the test problems do not Indicate computer trouble,
one should begin to suspect that there is some incorrect information on

-276-

the magnetic tape dump from which the problem was started, or an even
more disastrous thing—one should begin to suspect that perhaps the
code is not in reality debugged.

In computer malfunctions, the operator should be able to assist the
engineers in localizing the source of trouble. To do this one certainly
must completely understand the function of the various registers and the
control counter. Such an understanding also helps one operate the com
puter more effectively at all times. We now discuss these matters where
part of what follows is review and part is presented for the first time.

We discuss the registers first starting with R6, the control register.
During the loading process, R6 contains zeros. During the operation of
the computer, R6 contains the instruction-word that is being acted upon
by the control. One may, in general, determine the address in the mem
ory of any instruction-word contained in R6 by examining the control
counter. The control counter contains the address of the next word to
be brought into R6. This is one address greater than the word in R6 un
less either the control has just executed a transfer instruction or the
counter has been set manually. Whenever a "nonsense” word in R6 stops
the computer, the address less one in the control counter always indicates
the location of this nonsense word in the memory, and it should be so
checked.

The R5 register has many functions,which we discuss in turn. During
the loading process, words pass through R5 en route to the memory, and at
the completion of any loading, R5 should contain the word on the tape
immediately preceding the double space. Any word which is brought into
the arithmetic unit passes through R5. Hence, at the completion of any
such operation, R5 contains the word from the location specified by the
address of the instruction. Orders 1-12, as shown in Table I, page 21,
are of this kind. The following orders also affect R5. After a Q—*m
instruction, R5 should contain the same word as R4. After an a —»Ac
or a—*Ah instruction, R5 should contain in positions (O-ll) the number
which is equivalent to the address portion of the a—>A instruction.
Upon the completion of a read instruction, the word also resides in R5
as well as in the memory. Now upon completion of Instructions 19-22, of
Table I, the substitution instructions, R5 contains the word into which
the substitution is being made, as it appears before the substitution is
effected. Note that an A—->m instruction does not involve R5.

-277-

We discuss the registers R4 and R3 together since R3 is an auxiliary
register for R4 (R^s Q). Neither is affected by the loading process.
When a number enters R4 via an m—»Q instruction, R4 contains the number
from the location specified by the address. The contents of R3> however,
are Irrelevant and may be anything depending upon past instructions.
However, if a number enters R4 from any other source (viz., X, -f-, L(n),
or R(n) instructions), R3 contains the same information as R4 displaced
one position left or right except perhaps for the sign position and the
2 ^ position. In the X and R(n) operations the number in R3 is dis
placed to the left of the one in R4, while in ~ and L(n) operations the
number in R3 is displaced to the right.

The magnetic tape instructions and the magnetic drum instructions
use R4 and R3, and consequently upon completion of t—»m or D—*m, R4
contains the last reference word. R5 will also contain the same word.
R5 contains the last reference word of m—>t and m—as well. On the
instructions where R4 contains the last reference word, R3 contains the
same word displaced once to the right except for sign.

R2 and R1 also work in conjunction; however, any time a word is in
R2 from any instruction, the same word, except perhaps for sign position

-39and 2 J position, is in R1 displaced either one unit right or left.
Upon the completion of loading, R2 contains the sum of the contents

of the tape. Upon the completion of a D—»m instruction with address
in+800, R2 contains the sum of the fifty words read from the drum to the
memory.

Upon the completion of any of the add orders, a—►Ac, a—*Ah, X,
R(n); R1 contains the same number as the R2 register displaced once to
the left. Upon the completion of -7-, L(n); R1 contains R2 displaced
once to the right.

Upon the completion of a syncprint order (not considering the sub
routine in which it is contained) R2 contains all ones. In this Instance,
and only in this instance, R1 may have completely foreign numbers to
those of R2.

If a computer malfunction is suspected, the contents of the various
registers should be closely observed, and if there is any deviation from
the above-mentioned situations the discrepancies should be recorded, as
they may aid in the detection of the malfunction.

-278-

As previously mentioned, the control counter is the mechanism used
for the sequencing of instructions. The control counter always contains
the address of the next word to he brought into R6, the control register.
The control counter may be manually set to any desired address. While
the computer is running, the control counter advances sequentially ex
cept when transfer or satisfied conditional transfer instructions are
executed. These instructions set the control counter to the same address
as that contained in the instruction. The control counter has several
special functions which are:

In loading, the control counter is the sequencing mechanism. The
control counter is first set to the desired initial address. Then the
contents of the tape being loaded are sent to the memory into sequential
addresses beginning with the initial one. Upon the completion of the
loading, the control counter resets to the initial address.

In the drum instruction, the control counter indicates the fifty
sequential memory addresses concerned with the instruction. At the out
set of the instruction the counter is set to the memory address contained
in the instruction. When the fiftieth word is transmitted, the counter
contains the corresponding memory address. Since this is not, in general,
the desired address for the next instruction, the drum instruction ends
by setting the control counter to the address contained in bigits (28-39)
of the drum instruction.

As with the registers, when a computer malfunction is suspected, the
control counter should be observed to ascertain that its behavior cor
responds to that given above.

We complete the chapter now with brief discussions of the "audio-
monitor", the memory monitors, the magnetic tape, the Synchroprinter, the
computer "turn-off” and emergency procedures, and a brief comment on the
method of time scheduling for the computer.

The "audio-monitor" is an amplifier and a loud-speaker that taps in
to the circuitry of the function gates. The frequency with which the
function gates change (i.e., flip from left to right as successive in
structions are performed) while the computer is running on automatic
operation is in the audio-range. The amplifier merely amplifies and
transmits these frequencies to the loud-speaker and hence into audible
noise. The use for such a piece of equipment lies in the fact that in

-279-

many problems that are run on the computer the code patterns established
by the various induction loops of the problem give rise to distinctive
and easily detectable noise patterns. A person familiar with the noise
patterns of a problem can often tell when there has been a computer mal
function if the malfunction manifests itself by the control altering its
path through the code sequence. This circumstance causes a change in
the noise pattern of the problem. A volume control switch allows one
to control the audio-monitor and, if desired, the volume may be
turned down.

The memory monitors consist of four three-inch cathode ray tubes.
These tubes allow one to observe the contents of any of the forty memory
tubes. The monitor tubes are mounted at each end of both banks of mem
ory tubes as shown in Figures 2 and 3. There are six selector switches,
four mounted directly under the central storage units of the front stor
age bank and two similarly mounted on the back side of the computer.
The selector switches are eleven place switches, allowing an "off" posi
tion and the display of any of ten memory tubes by a monitor tube.
Since there are four switches on the front, two connected to each of
the front monitors, one can observe any of the forty memory units. The
two left-hand switches select units (0-19) while the two right-hand
switches select (20-39). However, each monitor tube may display only
one unit at a time and care should be exercised that the two selector
switches connected to a single monitor tube are not both set to a unit
as this causes erroneous information to be stored into the memory
units concerned. The two selector switches on the rear bank may only
monitor that bank, the odd-numbered memory units as shown in Figure 3*
The left-hand switch can monitor 21, 23> 25 ••• 39, and the right-hand
switch can monitor 1, 3, 5 19*

The memory raster, as one views the monitor tube, is as shown in
Figure 6. A bright spot at any position of the raster corresponds to
a 1, while a faint spot corresponds to a 0.

As a problem is running, the code patterns due to induction loops
often cause certain portions of the code to be performed more frequently
than others. The memory locations concerned are then consulted more
frequently, and these regions of higher consultation show a brighter
intensity on the monitor tube than neighboring regions. One may then

280

3C0 380 340 300 2C0 280 240 200
3E0 3A0 360 320 2E0 2A0 260 220

ICO 180 140 100 CO 80 40
IEO I AO 160 120 EO AO 60 20

I 0
I I

I 2
I 3

I 4
I 5

I 6
I 7

I 8
I 9

I A
I B

I C
I 0

I E
I F

I I I I l I 10

12
13

14
15
16

17
18

19

IA
IB

3FF 3BF 37 F 33F 2FF 2BF 27F 23F3DF 39F 35F 3 IF 2DF 29F 25F 2 IFF IBF I7F I3F F IDF I9F I5F I

ID

IE
IF

FF BF 7F 3F F DF 9F 5F IF

MEMORY RASTER

FIG. 6

-281-

be able to determine, by observing a monitor tube, when certain sections
of the code are being traversed. As with the "audio-monitor" and its noise
patterns, the memory monitor often displays distinctive code patterns. If
the computer malfunctions in a way that the display pattern is altered,
this is often observable.

The magnetic tape unit has previously been discussed in Chapter II,
Problem 12, and in Chapter IV; so that what is said here will pertain
mostly to the operation of the unit.

Recall that the unit is a single channel serial system where the
magnetic tape reels contain 1200 feet of l/4 inch wide Scotch Sound Re
cording Tape. These reels of tape are, in general, pre-marked into sec
tions, each of which will accommodate 1024 forty-bigit words. There
are fifteen such sections to a reel and the markings dividing these sec
tions are short lengths made transparent by removing the magnetizable
material from the tape. A photo-cell in circuit with a fast forward and
reverse mechanism affords the only searching facilities (manual). The
tape may be advanced or reversed at a speed of roughly four seconds per
block of 1024 words, and the photo-cell actuates a brake whenever a trans
parent section of tape,indicating a separation of the 1024 word blocks,
passes through it.

In order to use the magnetic tape, one first threads the desired
reel of tape onto the tape drive mechanism. Second, the tape is advanced
to the start of the desired 1024 word block. Third, the tape unit
switches are set so that the unit can then be operated by the control of
the computer through the magnetic tape routines (cf. Chapter II, Problem 12)
We now discuss these steps in detail.

The tape drive as it appears atop the console cabinet is shown in
Figure 7- The different parts are clearly marked and need no explanation;
hence with the aid of this diagram we turn to the tape threading procedure.
To thread tape
1. Remove the caps from both tape reel spindles.
2. Place the reel of tape on the left spindle. It is called the rewind

reel. The tape feeds from this reel in the direction indicated by
the diagram.

3. Set the forward-reverse-normal switch, hereafter called the setting
switch, to the normal position.

4. Open the head housing door.
5. Unwind a length of tape and thread it as indicated in Figure 7*

FIG.

F*7

Rewind Reel Take-up Reel
(Not to be Removed)

Photo-cell
Stopping
Mechanism

Take-up Arm
Forward

Reverse
Normal

Amber Light

Red Light Manual Start
Switch

Head Housing

i
roOD
rui

Setting Switch

-283-

6. Wind several turns around the take-up reel. Wind the take-up reel
until the take-up arm is in the position shown.

7. Replace the caps on the spindles. (Do not remove or replace caps
while the tape unit is running.)

8. Close the head housing door. The tape is now ready to be advanced
to the first transparent section, the starting position for the
first block of information.
In order to have the tape In correct position to record or replay

a block of storage, all that is necessary is that the transparent sec
tion of the tape identifying the start of the block must be visible in
the region of tape between the two reels.
To advance or back up tape to start of desired tape section
1. Turn the setting switch to the desired direction of motion of the

tape.
2. Open the head housing door; the tape advances in the desired

direction. When a transparent section passes by the photo-cell,
the tape stops. The braking is not instantaneous, and the trans
parent section may travel as much as 15 feet during the stopping
process.

3. Turn setting switch to the opposite direction of the previous motion.
4. Depress the manual start button. This starts the tape moving in the

direction shown by the setting switch. The transparent section of
the tape again actuates the braking action when it passes through
the photo-cell. This time the overshoot is less.

5. Repeat steps 3 and 4 until the transparent section lies in the region
between the two reels. This is the desired starting position.

6. Turn the setting switch to the normal position and close the head
housing door.

7. The tape is now ready to operate - either record or play back.
If it is desired to back up or advance the tape more than one block of
words, at the end of step 2 press the manual start button without changing
the setting switch. Repeat this until the desired block of information is
reached. The procedure is then the same as previously noted starting at
step 3.
To record or replay
1. The transparent section identifying the desired block must be in the

region between the two reels.
2. The head housing door must be closed.
3. The setting switch must be in the normal position.
4. The take-up arm must be in the position indicated in Figure 7.
5. The red indicator light must be off.
6. When steps 1 through 5 are completed the tape is ready to be operated

automatically upon instruction from the computer.

-284-

The indicator lights have the following significance:
i. The amber light indicates that the power is on. If this light

is "off", call an engineer for assistance,
ii. The red light is "on" in any of the following circumstances.

a. The head housing door is open
b. The setting switch is in the reverse or forward position.
c. The take-up arm is not in correct position.
d. It is "on" while the tape is running during a recording or

a play back.
If, in setting the tape to record or replay, the red light remains

"on" after steps 1 through 4 have been completed correctly, call an en
gineer for assistance.

The Synchroprinter has previously been discussed in Chapter II,
Problem 13, and in Chapter IV; so that, as with the magnetic tape, the
remarks here pertain to operating procedures.

Recall that the Synchroprinter prints a line at a time; each line
may contain 40 characters. The maximum speed of operation is 15 lines
per second, or 36,000 characters per minute. This print order must be
used in a routine (cf. Chapter II, Problem 13) which does the following:
The four words to be printed are fanned into an array of eighteen words
in the memory. During a print cycle, eighteen print orders are given.
The first print order activates the printer and the remaining seventeen
act in a timing capacity synchronizing the printer and the computer.
Prior to each print order of the cycle, the appropriate word of the ar
ray is brought into R2.

In the discussion of the operation of the printer, we assume that
the printer routine has been properly incorporated into the problem and
discuss only the mechanics concerned with the printer unit.

Five switches are located on the front of the printer cabinet.
Hiese are:

i. the motor switch
ii. the filament switch

iii. the plate switch
iv. the thyratron switch

V. the paper advance switch

-285-

The filament switch and the plate switch are always to be in the
"on" position. If this is not the case, one should not attempt to
operate the printer, and an engineer should be called for assistance.

When the printer is to be used, the positions of the motor switch
and thyratron switch should be checked. If they are in the "on" position
the printer is ready to operate. If they are in the "off" position, the
following is done: (The order is important.) First, the motor switch is
turned to the "on" position and then the thyratron switch is turned to
the "on" position.

The thyratron switch controls a bank of 40 thyratron tubes that are
used for triggering the 40 print hammers. A thyratron tube is a gas dis
charge tube rather than a vacuum tube, and it permits the high current
necessary for triggering the print hammers. Once a thyratron has been
discharged, its plate voltage must be cut off in order to reset it to
the non-conducting state. The triggering of the print hammer momentarily
causes the plate voltage to be cut off so that the thyratron is reset.
However, the circuitry is such that the triggering of any print hammer
twice in a print cycle will cause its associated thyratron to stay in the
discharge state, making any further triggering impossible. Attached to
each thyratron is a neon bulb which is lighted whenever the thyratron is
in the discharge state. These neons are visible through a glass panel
immediately below the thyratron switch. Whenever a thyratron remains in
its discharge state, as indicated by its lighted neon, it may be reset by
turning the thyratron switch "off" momentarily and then turning it "on"
again. If, in the "turn-on" procedure for the printer, some of the thyra-
trons discharge, as indicated by their associated neon being lighted, the
above procedure is carried out for resetting them.

A thyratron should never be left in the discharge state, and as
soon as such a condition is known the above reset procedure should be
carried out.

During operation, the only times that a thyratron can be left in the
discharge condition are:

i. when more than, or less than, the required 18 print orders are
given in a print cycle

ii. when a print hammer has been triggered more than once per print
cycle
when there has been some computer malfunction effecting the printeriii.

-286-

(i) and (ii) may be caused by an improperly coded print routine.
If the computer is stopped during a print cycle, and if a print order
is in R6, connected into the control circuitry, the computer cannot be
restarted without danger of leaving seme of the thyratrons in the dis
charged state. Restarting resumes the print orders, and with the control
in the middle of the routine less than eighteen print orders will be exe
cuted by the control. If the computer is stopped during a print cycle,
and if an order other than the print order is in R6, one should again
check the thyratron neons, as there is danger that some thyratrons may be
in the discharge state.

If any thyratrons are in the discharge state and an attempt is made
to use the printer, the print hammers associated with the discharged
thyratrons cannot be triggered; hence no characters will be printed in
the corresponding columns.

The "paper advance switch" allows one to manually advance the paper
so that printed material may be removed from the printer. Depressing
the switch causes the paper to advance and it will continue to do so as
long as the switch is held in the depressed state. Note that for manually
advancing the paper, one should always use the paper advance switch, since
advancing the paper by merely pulling it causes the printer ribbon to be
come misaligned.

The "turn-on" and "turn-off" procedures for the computer naturally
seem to be more in the domain of the engineers rather than that of the
programmers; however, the turn-off procedure has been simplified to the
extent that the programmers can do it.

In order to turn off the computer, one must set certain of the
switches located on the Memory High Voltage Power Supply shown in
Figure 8, the Switch Gear Panel shown in Figures 9 and 10, and the
Magnetic Drum Control Panel shown in Figure 11. The relative position
of these panels with respect to the computer proper is shown in Figure 1.

The "turn-off" procedure in its proper sequence is the following:
On the High Voltage Power Supply (Figure 8)

Depress "off" button. (Leave filament switch in "on" position,
however.)

-287-

HIGH VOLTAGE POWER SUPPLY

FILAMENTS READY HIGH VOLTAGE

ON OFF
O O
O O

RESETVOLTAGE
ADJUST

HIGH VOLTAGE POWER SUPPLY

FIG. 8

-288-

Overload Relays

Compensation
Ammeters

Voltage
Regulator

Generator
Voltmeters

Switchgear

Positive Field
Rheostat

Voltage
Regulator

Negative Field
Rheostat

POWER SUPPLY CONTROL
PANELS

FIG, 9

iPOSITI' iNEGATI'

generator voltmeter panel- power supply

EMERGENCY

BAT 6ND SWITCHGEAR

FILAMENT TIMER BAT GENPOS GEN BAT PHASE

NEG GEN BAT BAT SERIES
FILAMENTS STANDBY

START STOP DC OFF DC ON

SWITCHGEAR PANEL-POWER SUPPLY

FIG. 10

-290-

o o

oooooooo

O O O O O
Reduced Chassis Regulator D.C.
Filament Filament Filament Control

DRUM CONTROL PANEL

FIG. I I

-291-

On the Switch Gear Panel (Figures 9 and 10)
1. Turn DC "off" by depressing DC off switch located between the DC (red)

and standby (green) lights.
2. Set bat+ery-generator switch into "down" position.
3. Set battery-series switch into "down" position.
4. Turn off generators by depressing the stop (red) switches for the

positive and negative generators. These switches are each located
immediately above its corresponding positive or negative rield
Rheostat.

5- Turn the filament variac down (turn the wheel counter clockwise as
far as it will go). The variac is located between the memory high
voltage power supply and the overload relay of the power supply con
trol panels as shown in Figure 1.

6. Depress the stop switch located between the filament (white) and
standby (green) lights.

7. Turn the Emergency switch to the "off" position.
On the Magnetic Drum Control Panel (Figure 11)
1. Set the "chassis filament" switch to "off" position.
2. Set the "regulator filament" switch to "off" position.

Note: Do not set any drum switches other than the two indicated
by 1. and 2.

In the event of an emergency, such as smoke or flame emitting from
the computer, the emergency "turn-off" procedure is:
Emergency Turn Off
1. Set the emergency switch on the switch gear panel to the "off"

position.
2. Immediately call an engineer.

In the discussion of"debugging" procedures, the emphasis was placed
on using the computer effectively;when a reasonable amount of data has
been obtained from the monitoring or as soon as an error has been detected
during the monitoring, the problem whould be removed from the computer
and the data studied away from the computer. This procedure naturally
leads to the following questions: What is the length of time that one
should spend with the computer per debugging session? And, how should
the time on the computer be scheduled so that debugging sessions are co
ordinated in a way which utilizes the computer efficiently? At the pre
sent stage of the art there seems to be no clear cut answer to either of
these questions. Our present attempt to answer them stems for experience
gained during the past several years of operation.

-292-

It seems that a person will accomplish more in several short sessions
than in a long session of the same total time, if the time between the
short sessions allows him to study and digest the results. As a conse
quence, thirty minutes is the maximum time for any debugging period; how
ever, shorter periods are recommended. Instead of arranging a schedule
according to the clock, a programmer decides on each occasion when to
terminate his debugging session.

Since a debugging session may range anywhere from about five to
thirty minutes, and since the exact length of the period is left to the
discretion of the programmer, this has brought about the following ar
rangement: Debugging periods on the computer are scheduled sequentially
during the normal working hours. This is the time when most programners
are available. A debugging schedule is compiled; however, no specific
time is allotted to any person. The list only serves to indicate the
order in which the debugging periods are scheduled and, as mentioned
above, the length of each period is determined by the programmer while
he is debugging. It is the responsibility of those on the schedule to
be available when their debugging period occurs.

As soon as the debugging periods are over, the running of problems
is scheduled. Debugging time is not normally scheduled beyond the com
pletion of the regular work day which is 5:00 PM. This means, then,
that most of the problem running time is allotted in the hours between
5:00 PM and 8:00 AM the following day. Problem running time can, of
course, be scheduled for fixed periods; hence there is no need, as in
debugging, for all on the list to be available prior to their scheduled
time.

-293-

APPENDIX I
SCALING OF NUMBERS

Numbers handled by the computer must be in the range
M < i (i)

Hie numbers that occur in the course of a numerical computation are
usually not so contained. As a result it is necessary in going to
automatic computation to change some, if not all, of the fundamental
set of units. The process of making these linear transfonnations is
called scaling. Consider the following very simple example:
Suppose one were interested in the distance in centimeters of free
fall for times lasting to 100 seconds; i.e..

S = 1/2 g t2 (2)
where S is the distance, g = 980 cm/sec^ is the gravitational ac
celeration, and t the time. In order to restrict the range of these
quantities so that they satisfy Condition (l), one makes the follow
ing transfonnations

Y =
(3)

For convenience, one uses powers of two. Quite clearly T > y are
contained in the proper range. Using (3) one finds

S = 1/2(21<V)(27T)2
- 1/2 22V2

Hence, if the transformation
-2ka = 2 S

is made, one obtains
a = 1/2 yr2

where all the quantities as seen by the computer are now well contained.
The three transformations are not, of course, independent since

only the dimensions of length and time are involved. An alternate way
of expressing the above is to say that time is measured in units of
7 2k2 sec. and length is units of 2 cm. In reviewing a scaled number in

a register, one may very easily unscale the number by Imagining that

•294-

the binary point is shifted appropriately from its normal position
(between 0 and 1 stages). In the above example, the unsealed time
is found by considering the binary point moved 7 places to the right.

One chooses the minimum amount of change in units in order to
have the maximum accuracy. Sometimes the variations in the quantities
are so violent that it is necessary to make successive transfonnations
in order to maintain sufficient accuracy. Nevertheless, this is
usually much faster than appealing to floating point routines.

-295-

APPENDIX II.

VERTICAL BUSES

The vertical buses of the order gates, as discussed in Chapter IV,
pages 202-20U, Figure 11, have been modified and are shown below as
Figures 1, 2, 3, and 4. Figure 11, of Chapter IV, illustrated the
original arrangement of the vertical buses on the front and back section
of the arithmetic unit control. As a result of several modifications
across time, we now require the four figures, one for the front side of
the control (Figure l) and three for the back side (Figures 2, 3, and 4).
The motivation was to simplify the control system. It was found de
sirable to incorporate a few new buses and, in order to do this, a more
efficient distribution of buses was necessary. That is, although all of
the buses as shown in Figure 11, of Chapter TV, are necessary, they
were not all needed on both the front and back control section; e.g.,
C0R4, C0R1, RlR2Li, etc., were not used for any order gates on the front
section; and, similarly, (0-7)R2, (8-19)R2, (20-27)R2, etc., were not
necessary on the back section.

O 03

VERTICAL ORDER BUSES

FRONT

• •
t3' Set Op Ctr

to 23
CC Count t2» tl

• • •
cm ClKli t2 R1R2R0 Op Ctr

Count

• • •
C0R2 C0R5 t3

• •
-7 C1R2 8-19

R2

• • • • • •
20-27 C1R5 28-39 0-7 tU 8-19
R2 R2 R5 R5

• • •
20-2? Cycle 28-39
R5 Operations R$

Control

• • • •
Number RijR5Sl Complement Add

Delay

•
Address

• • •
Adder

•
800;-30v m-*R5 t5 R1L0 RSRliSO

• • • e •
Hold Set CC

to AB
t6 Write m-^RS

• • • • •
Finish Right Address Load Finish
Order Transfer 800= Ov -50v Order

i ;« , l 1 I ■Figure 1. # ‘ ‘
•

-296-

Start
Toggle
n 0«

P?7

VERTICAL OKDER BUSES

REAR
• • •

C0R1 CORU tl

• • •
C1R1 C1RU t2

• • •
COR2 COR5 t3

• • • • •
C1R2 Set Op C1R5

Cntr to 23
t2' tli

• • •
C0R3 m-*R5

• •
Hold t6

• • •
Finish Cycle

Operations
Control

Add
Delay

• •
R1R2L1 R3RUL1

• •
R1R2RO R3RkR0

• •
R2R1S1 RhR3Sl

• • • • •
Op Cntr Adder Op Cntr Number
Count R1SO 62= Ov

• •
Adder
R1LO

CC Count

• •
Address Address
800= Ov 800=-30v

Cycle
Input

i • ’ r

Complement

Figure 2

-297-

^2

VERTICAL ORDER BUSES
LOWER SECTION

REAR

• • • • • • • • • •
COR1 C1R2 CORli C0R5 tl t2 R2R1S1 R1R2L1 RIR3S1 R3RUL1

• • • • • • • • • •
cm COR3 CIRii C1R5 t3 Set CC

to AB
Adder
R1SO

R1R2RO R3RIRO

• • • • • • • • • •
C0R2 Hold Set Op

Cntr to 23
Add
Delay

t2« tl Adder
R1LO

Address
800= -30y

CC Count Complement

• • • • • • • • • •
Address
R5 Gate

Finish m-^R^ Cycle
Operations
Control

t5 t6 Op Cntr
Count

Address
800= Or

Number

Figure 3.

-298-

\

£2?
HORIZONTAL ORDER BUSES

REAR

• • • • •
Clear
Drum

Address
Complement Set Op

Cntr to 23
Cycle

Operations
Control

• e • • •
m-»-R5 Number Load=

-50v

• •
R5R4SO

e • e
R1R2R0

• • • • •
ab-*»r5
Gate

P.4R5S1 Op Ctr
Count

Adder
R1L0

• • • • • •
C1R6 Address

800± Ov
C1RU Address

800=-30v
Control
Counter
Count

•
t6

e
t2»

•
Finish

•
C1R2

• •

•
t5

0
C1R5

•
Set CC
to AB

e
C0R2

• •

• • • • • •
th C0R5 Hold C1R1

Figure 4

-299-

-300-

AEPEBDIX III

SINGULAR ARITHMETIC OPERATIONS

In a division operation involving numerator x and denominator £
there are certain combinations that violate the condition |xj < |y|,
but nevertheless give rise to interesting and often useful results.
Ve call such division operations singular operations. Some of the im
portant results are:

i. -1 < x<: 1, y = 0 then

il. a special case of (i) is x = y = 0
Q = ^—>2 - 2'39 = 1.1111 *•*11

iii. x = y > 0 then
Q = ^-(l - 2"39) = 1.0000 •*•01

iv. x = y < 0 then
Q = ^1 - 2*39 = 0.1111 ••*11

x
V. x = -y > 0 then

Q = --*1 - 2"39 = 0.1111 •••11 -x
vi. -x = y :> 0 then

Q = “2->-(l - 2~39) = 1.0000 ••*01
y

then

Recall from the discussion of binary arithmetic in Chapter III that
the alloved number range is -1 x < 1. This implies that -1 (a 1 in the
sign position followed by all O's) admits valid operations. In the ad
dition process this is obviously the case. In division, if the numerator
x = -1, the quotient is meaningless except for the cases (i and iv) where
the denominator y = 0 and y = -1.

However, in division, if the denominator y = -1, one obtains the norm
ally expected quotient; e.g..

vii. x > 0, y = -1
Q = > 2 - x - 2“39

-301-

viii. x < 0, y = -1

ix. the special case for x = 0, y = -1
Q = 2 - 2"39 = 1.1111 •••11

For the multiplication operation -1 is admissahle as one and only
one of the factors, and

x. x = -1, y > 0
p = xy—*2 - y

xi. x = -1, y CO
P = xy—*|y|

The treatment of -1 is symmetric with respect to the multiplier and
multiplicand. If

xii. x = y = -1
p = xy 1 + 2"39 = 1.0000 *••01

We see that the multiplication p = xy where x = y = -1 does not
give the correct product and hence is an exception to the rule admit
ting -1 as a legitimate number.

Returning to the division operation, there is one other fact
worth noting; namely, if a division is exact with fewer than 39 quotient
bigits, and if x,y >0, and if

Q = - and Q' = — y -y
are formed, then

Q = Q' + 2“38

Similarly, if x,y > 0, and if
Q = — and Q* = -y -y

are formed, then
|Q| = (Q'| - 2"38

-302-

INDEX

A-storage (Descriptive coding)
210 ft., 217 ff.
Examples of, 210, 217
Subroutines, 236

Absolute addressing (Descriptive
coding) 206, 209-210

Accumulator (R2 register) 15, 113
Action cycle, 185, 187
Adder (Arithmetic unit) 7, 173
ADDITION

General, 1, 7 ff.
Arithmetic, I58-I6O
Logical diagram, 178
Logical discussion, 178-179
Orders, 20

Address, 10, 18
Alternative box (Flow diagram)

41 ff., 48
Ampex Electric Corporation, 193
Analogue computer (Computer) 1
ANelex Corporation, 195
ARITHMETIC

General, 2, I54-I56
Addition, I58-I6O
Division, 167-171
Multiplication, 160-167
Shifting, 156-158
Subtraction, I58-I6O

Arithmetic gate chassis, 173
ARITHMETIC UNIT

General, 4-9, 173-185
Adder, 7, 8, 173
Arithmetic gate chassis, 173
Control, 13, 198-204
Gate connections from
memory, 188

Registers
R1-R2 (Accunulator), 5-7, 8,

9, 173, 277R3-R4 (Quotient register), 5,
8, 9, 173, 277

R5, 5, 8, 9, 173, 276
R6, 5, 8, 9, 113, 216

Assertion box (Flow diagram) 46-48
Assembly routine ("The Coder")

206, 261
Audio-monitor, 278-279
Auto-Monitor routine (Helper-

routine) 271 ft-

B-storage (Descriptive coding)
208
Examples of, 209-210
Subroutines, 236, 238

Bigit, 2
Binary arithmetic (see Arithmetic)
Binary numbers, 2, 154 ff.
Bit (see Bigit)
Bound variable, 46
Breakpoint, 260 ff.

Insertion routine, 265
Monitor routine, 266 ff.
Switches, 252, 260 ff.

C-storage (Descriptive coding)
208-209
Examples of, 209
Subroutines, 236

Cathode ray tube, 185
Characteristic, 80
Checking procedures
Magnetic tape, 133, 141, 194
Magnetic drum, 191-192
Reader, loading, 193

Clear, 5, 174
Code addressing, hexadecimal, 88-89
Code listing (Descriptive coding)
233 ff.

Code sequence, 29-30
Code tape (Descriptive coding) 221 ff.
Coded-decimal numbers, 11 ff. 56 ff.
"Coder" (see Assembly routine)
Coding, 15, 17, 19

Logical, 27, 205
Computer 27, 30

Complement number, 3
Computer, 172-205
Analogue, 1
Block diagram of, 172
Digital, 1

Conditional transfer, 21, 25
Conditional transfer box (see Alter
native box)

CONTROL
General, 12 ff., 172 ff.
Arithmetic unit control, 198-204
Logical discussion of, 198-204
Memory control, 185 ff.

-303-

Control counter, 256 ff., 278
Setter switches, 252, 256
Display lights, 252, 256

Conversion of numbers
Binary to hexadecimal, 56
Binary to coded-decimal, 65 ff.
Coded-decimal to binary, 56 ff.
Hexadecimal to binary, 55

D-storage (Descriptive coding)
208, 209
Example of, 209
Subroutines, 236-237

Debugging, 263 ff.
Deflection adder (Memory control)

186-187
DESCRIPTIVE CODING, 205-250
Absolute addressing, 206, 209-210
E-addresses, 210-211
F-addresses, 215 ff*
Fixing parity of Instructions,
Storage

210 ff.,
208 ff.,
208 ff..

A-storage,
B-storage,
C-storage,
D-storage, 208 ff.,
7-storage, 208 ff..

Subroutines, 16,
Tape composition,
Treatment of

227
236217 ff*,

236, 238
236
236-237
236 ff.

235 ff*
221 ff., 250-251

Drum instructions, 228-232
Substitution instructions, 210-
212, 215-220

Transfer instructions, fixed
connectors, 212-215

Transfer instructions, variable
connectors, 212, 215-220

Digital computer, 1
DIVISION

General, 1, 7, 9
Arithmetic of, 167-171
Examples of, 168-169, 170-171,

I83-I85
Logical discussion of, I83-I85
Order, 21, 29

Double precision operation
General, 90
Addition, 90-91
Division, 90-105
Multiplication, 91-9^
Shifting, 103
Subtraction, 90-91, 95

Drum (see Magnetic Drum)
Drum track, 189
Dummy Instruction, 77, 78

E-addresses (Descriptive coding) 210
Examples of, 210-211

Engineering Research Associates, 189
Errors in Code (Debugging)

Correction of, 269 ff.
Detection of, 263 ff.
Record of, 268

Error-squaring, 95
Exponential calculation routine,

224 ff.
External memory (see Magnetic Drum)
F-addresses (Descriptive coding)

215 ff.
Example of, 217 ff.
Subroutines, 239-240

Filament variac, 291
Finite difference equation, 17
Fixed binary point, 154 ff.
Fixed connection transfer (Descrip

tive coding) 212 ff.
Example of, 214
Subroutines, 247 ff.

Flexowriter punch (Input-output) 198
Flip-flop, 3, 174
Floating binary point (see Floating
point method)

Floating point method, 8O-89, 154
FLOW DIAGRAM

General, 15, 18
Alternative box, 4l ff., 48
Assertion box, 46-48
Flow line, 40
Operation box, 40 ff., 48
Storage box, 4-7-48
Substitution box, 44 ff., 48

Function gates, 257, 259-260
Indicator lights, 257

Gate, 5-7
Gate tubes, 173-174
Gating, 174-176
General purpose computer, 1
Half-word substitution orders, 22,

25, 78, 115, 120
Heed, housing (Magnetic tape) 281
Helper-routines, 261 ff.
Hexadecimal numbers, 55
High voltage power supply, 286-287
Induction, 39-40
INPUT-OUTPUT

General, 11, 172
Flexowriter Punch, 198

-30b-

INPUT-OUTPUT (Cont.)
Logical discussion, 192-198
Magnetic tape, 132-141, 193-194,

281-284
Photo-electric reader, 192-193
Synchroprinter, 142-153, 195-197,
284-286

Teletype page printer, 197-198
Instruction, 18
Instruction control, 202-203
Integer conversion routine, bi
nary to coded decimal, 254 ff.

Integration by Simpson's rule, 71 ff*
Internal memory (see Memory)
Interpretive routine, 266

Load process, 192-193, 258-259
Load switch, 252, 258-259
Logical coding, 27
Logical symbol, 27
Magnetic drum

General, 11, 172
Addressing of, 189-190
Capacity of, 189
Characteristics of, 189
Checking procedures, 191-192
Logical discussion, 189-192

Magnetic drum control panel, 286,
290-291

Magnetic drum orders, 11, 23, 107 ff*,
115, 120
Treatment in descriptive coding,

228-232
Magnetic head, 189
Magnetic tape (input-output)

Characteristics of, 194
Logical discussion of, 193-195
Operation of, 281-284
Head housing, 281
Manual start switch, 282
Photo-cell brake, 282
Rewind reel, 282
Setting switch, 281
Take-up arm, 282
Take-up reel, 282
Tape drive, 281
Tape reel spindle, 281

Routines for, 132-141
Searching facilities for, 194

Malfunction, computer, 132, 274 ff.
Manual-automatic switch 252, 259,

260

MEMORY, electrostatic
General, 9 ff•
Gate connections to, 188
Logical discussion of, I85-I92

Memory clear switch, 252, 257
Memory monitor, 279
Memory position mark, 33
Memory raster, 279-280
Meshing, 106 ff.
Monotonic decreasing sequence, 106
MULTIPLICATION

General, 1, 7, 8-19
Arithmetic of, I6O-I67
Corrections from negative multi

plier, 161-162
Examples of, 165-167
Logical discussion of, 180-182
Orders of, 21, 24

Negative numbers, 2, 3, 154 ff.,159
Numbers

Binary, 2, 154 ff.
Coded-decimal, 11 ff., 56 ff.
Complement, 2, 3> 154 ff., 159
Hexadecimal, 55
Negative, 2, 3> 154 ff., 159
Signed, 154 ff.

Number range, 2, 155-156
One address system, 13, 19, 198
OPERATING PANEL, 252 ff.
Breakpoint switches, 252, 260 ff.
Control counter display lights
and setter, 252, 256

Function gate lights, 257
Load switch, 252, 258-259
Manual-automatic switch, 252,

259-260
Memory clear switch, 252, 257
Perform-order switch, 252, 260-

261
Start-next-order switch, 252,

259 ff.
Operating techniques, 14
Operation box (Flow diagram) 40 ff.,

48
Operations control, 200-202
Operations counter, 181
Order, 13, 18, 199
Order matrix, 199> 201
Output (see Input-output)

-305-
Parallel operation of memory,

I85
Periodic problem record, 27k
Perform-order switch (operating

panel) 252, 260-261
Photo-cell brake (Magnetic tape)

282
Photo-electric reader (input-

output) 192-193
Position mark (see Memory posi

tion mark)
Print order, 22
Printers (Input-output)

Synchroprinter, fast, 142-153,
195-197, 284-286

Teletype printer, slow, 197-198
Problem preparation, 14, 261 ff.
Pseudo-drum track address (Des

criptive coding) 228
Pseudo-non-restoring division

(see Division)
Punch (see Flexowriter punch)

Quotient register, 5, 8, 9, 173,
277

Random number generation sub
routine, 240 ff.

Read order, 22
Reading, memory, 186
Reciprocal by iteration, 94-95
Record, magnetic tape, 132
Regeneration, 185
Regeneration cycle (memory con

trol) 186
Regeneration counter (memory

control) 186
Register (Arithmetic unit) R1-R2,

accumulator, 5 ff., 173, 277
R3-R4, quotient register, 5, 8,

9, 173, 277
R5, 5, 8, 9, 173, 276
R6, 5, 8, 9, 173, 276

Remainder, division, 185
Rewind reel (Magnetic tape) 282
Round-off
Multiplication, 164-166
Example of, 165-166

Division, 170

Seven (7) storage (Descriptive
coding) 208-209
Examples of, 246-247
Subroutines, 236-238

SHIFTING
General, 5 ff.
Arithmetic of, I56-I58
Double precision, 99, 103
Logical discussion of, 174-178
Orders of, 22, 25 ff.

Sign of a number, 154 ff.
Simpson's rule (see Integration)
Sin x calculation routine, 126-131
Sorting routine, 106-125
Square-root calculation routine, 1,

49-54
Start-next-order switch (Operating
panel) 252, 259 ff.

Storage
Dynamic, 47
Static, 47
(see Descriptive coding)

Storage box (Flow diagram) 47-48
SUBROUTINE (Descriptive coding) 16,

235 ff.
Assigning box numbers to, 237
A-storage of, 236
B-storage of, 236, 238
C-storage of, 236
Code tape of, 250-251
D-storage of, 236-237
Entry into, 238 ff.
Exit from, 238 ff.

Substitution box (Flow diagram)
44 ff., 48

Substitution orders, 22, 25, 31, 34,
75-76, 77, 86,
Treatment in descriptive coding)
210-212, 215-220

Subtraction (addition) 1, 3-4, 7 ff•
Arithmetic of, I58-I6O
Logical discussion of, 179

Summing routine, 262
Switch gear panel, 286, 288, 289, 291
Synchroprinter (Input-output)
Actuation of, 144
Array, 143
Characteristics of, 195
Logical discussion of, 195-197
Malfunctions of operating pro

cedures, 195-196, 284-286
Paper feed, 143, 284, 286
Print cycle, 142
Routine, 142-153
Thyratrons and associated switch,

284-286
Switch gear panel, 286, 288-289, 291

-306-
Take-up arm (Magnetic tape) 282
Take-up reel (Magnetic tape) 282
Tape drive (Magnetic tape) 281
Tape leader, 258
Tape reel spindle (Magnetic tape)
281

Tape symbols, 11
Taylor series expansion of sin x,

126
Teletype page printer (input-output)

197-198
Tetrad, 27, 192
Thyratron (Synchroprinter) 285
Toggle (see Flip-flop)
Transfer orders, 21, 24-25, 36 ff.,
68, 69

Transfer orders, descriptive coding
Fixed connection, 212-215
Variable connection, 215-220

Illustrations of orders in routines
(cont.)
Read, 127, 131
Punch, 129, 131
Syncprint, 150, 152
m->D, 117, 123
D->m, 115, 122
Q->t, 135, 137
t —> Q,

Word, 13
Writing, in memory, 186

Variable of Induction, 43 ff.
Variable remote connections, 72-73,

96 ff.
In Descriptive coding, 215-220
In Subroutines, 236

Vocabulary, 17, 20 ff.
Table, 21-23
Illustrations of orders in routines
m—5>Ac, 33
m Ac-, 52
m ->AcM, 66
m->Ah, 29, 30
m -> Ah-, 52
m Ah 800, 136

29, 30
X 29, 30
X' 100

29, 30
T 36 ff., 77
T* 77
C 54
C 38

Q->m, 29, 30
A ->m, 29, 30
s-y*, 33, 34
S~>m', 33, 34
HS-^m, 78, 115, 129, 131
HS-> m', 78, 115, 121, 129, 131
R(n), 52, 86
L(n), 29, 60, 85
a-»Ae, 60, 77, 88, 148, 152
a Ah, 13, 85, 86, 88
DS, 68
Flexoprint, 129, 131

