Construction de circuits combinatoires

- Plusieurs critères possibles :
 - Le moins de transistors possible
 - Le moins de consommation d'énergie possible
 - Le plus rapide possible
- Spécification d'un circuit
 - Table de vérité
 - Formule logique

2007-2008

Spécification : Formule Logique

Constantes: 0, 1

Variables: x, y, z, ...

Opérateurs : +,,.

loi	forme "et"	forme "ou"
identité	1x = x	0+x=x
nullité	0x = 0	1 + x = 1
idempotence	xx = x	x + x = x
inversion	$x\overline{x}=0$	$x + \overline{x} = 1$
commutativité	xy = yx	x + y = y + x
associativité	(xy)z=x(yz)	(x+y)+z=x+(y+z)
distributivité	x + yz = (x + y)(x + z)	x(y+z)=xy+xz
absorption	x(x+y)=x	x + xy = x
de Morgan	$\overline{xy} = \overline{x} + \overline{y}$	$\overline{x+y}=\overline{x}.\overline{y}$

Spécification : Table de vérité

 Pour toute combinaison des entrées, donner la valeur de sortie:

X	У	Z	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

 Souvent, une spécification complète n'est pas nécessaire:

_	Х	У	z	out
-	0	0	0	0
	0	0	1	1
	0	1	0	0
	0	1	1	-
	1	0	0	-
	1	0	1	1
	1	1	0	0
	1	1	1	1

Abréviation de la table de vérité

 Souvent la valeur de sortie est identique pour plusieurs combinaisons d'entrées:

<i>X</i> ₁	X 2	X 3	X 4	X 5	У
0	0	-	-	-	1
0	1	-	-	-	0
1	0	-	-	0	0
1	0	-	-	1	1
1	1	0	-	-	1
1	1	1	-	-	0

 Il est possible d'avoir des valeurs de sorties non précisées dans une table abrégée:

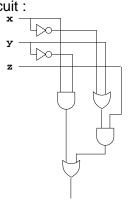
<i>X</i> ₁	X 2	X 3	x_4	X 5	У
0	0	-	-	-	1
0	1	-	-	-	0
1	0	-	-	0	-
1	0	-	-	1	1
1	1	0	-	-	-
1	1	1	-	-	0

Méthode générale de construction d'un circuit combinatoire

- Si la table de vérité n'existe pas, la construire
- Première couche :
 Pour chaque ligne de la table dont la valeur de sortie est 1,
 - mettre une porte non-et, avec une entrée normale pour un 1,
 - et une entrée inversée pour un 0
- Deuxième couche :
 Mettre une porte non-et avec en entrée les sorties de la première couche

4 🗇 🕨

Exemple de construction générale


Réaliser un circuit combinatoire à partir de la formule logique:

$$t=x\overline{y}+z(\overline{x}+y)$$

Table de vérité:

X	У	Z	t
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

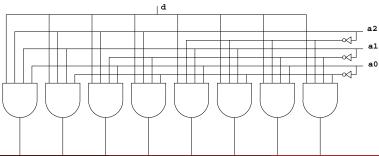
le circuit :

Exemple où la méthode générale est inadaptée


- Circuit avec n entrées "adresses" et 2ⁿ entrées "données"
- L'adresse permet de choisir l'une des entrées "données"
- Table de vérité (abrégée) (n = 3):

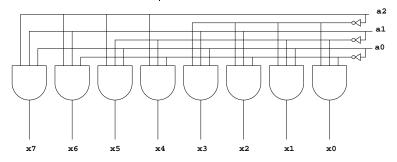
a_2		a_0									out
0										С	
0	0	1								-	
0	1									-	
0	1									-	
1	0					С	-	-	-	-	С
1	0	1	-							-	
1	1	0	-							-	
1	1	1	С	-	-	-	-	-	-	-	С

- La table de vérité non abrégée a 2048 lignes dont 1024 avec out =
 1
- Donc le circuit construit avec la méthode générale a 1025 portes


7 / 10

Le circuit du multiplexeur

Démultiplexeur


a_2	a_1	a_0	d	X 7	X 6	X 5	X_4	X 3	X 2	X 1	X 0
0	0	0	С	0	0	0	0	0	0	0	С
0	0	1	С	0	0	0	0	0	0	С	0
0	1	0	С	0	0	0	0	0	С	0	0
0	1	1	С	0	0	0	0	С	0	0	0
1	0	0	С	0	0	0	С	0	0	0	0
1	0	1	С	0	0	С	0	0	0	0	0
1	1	0	С	0	С	0	0	0	0	0	0
1	1	1	С	С	0	0	0	0	0	0	0

Décodeur

a	2		a_0								
()	0	0	0	0	0	0	0	0	0	1
)	0	1	0	0	0	0	0	0	1	0
()	1	0	0	0	0	0	0	1	0	0
()	1	1	0	0	0	0	1	0	0	0
•	l	0	0	0	0	0	1	0	0	0	0
•	l	0	1	0	0	1	0	0	0	0	0
•	l	1	0 1	0	1	0	0	0	0	0	0
•	l	1	1	1	0	0	0	0	0	0	0

