
Le premier ordinateur

2007-2008

Zones fonctionnelles

- l'unité arithmétique et logique (l'unité de calcul)
- les registres (zone de stockage des données)
- les séquenceur (zone dirigeant le tout)

Calcul et mémorisation

- la zone de calcul
 - l'UAL effectue les opérations mathématiques
 - l'UAL prend les opérandes des opérations depuis les registres
 - l'UAL renvoie les résultats dans les registres
- la zone de stockage
 - les registres sont la zone de stockage interne du processeur
 - plus rapide qu'un accès en mémoire
 - pour alimenter les registres, le processeur cherche les données en mémoire principale
 - la circulation des données s'effectue via les bus

Séquenceur

- les registres et l'UAL sont régis par des commandes
- le séquenceur récupère les instructions stockées dans la mémoire principale
- ces instructions sont décodées puis envoyées au registre d'instructions
- Il décide alors quels sont les transferts de données nécessaires et les commandes à envoyer.
- Le travail du séquenceur est régi par une horloge (plus l'horloge est rapide, plus le séquenceur et donc le processeur travaillent vite)

Les instructions

- Le processeur exécute les instructions se trouvant en mémoire principale
- ces instructions sont stockées en codes numériques
- langage assembleur : traduction "mnémoniques" des codes numériques
- on programme avec des langages évolués (C, C++, Java, etc.) qui sont assemblés par le compilateur.

Exemples de commandes assembleur

Instructions de chargement et de stockage

	LDIMM xx	Load immediate xx	$xx \rightarrow R0$	La valeur xx est placée dans le registre R0		
	LD xx	Load xx	$MEM[xx] \rightarrow R0$	La valeur contenue à l'adresse xx est copiée dans le		
				registre R0		
	ST xx	Store xx	$R1 \rightarrow MEM[xx]$	La valeur du registre R1 est copiée à l'adresse xx		
	Instructions concernant l'Unité Arithmétique et Logique					
ı	COPY	Сору	$R0 \rightarrow R1$	Les bits Z, N, C et V de l'UAL sont mis à jour		
	SHL	Shift left	décalage à gauche(R1) → R1	Le bit de poids fort est copié dans la retenue (C)		
				Les bits Z,N et V de l'UAL sont mis à jour		
	SHR	Shift right	décalage à droite(R1) → R1	Le bit de poids faible est copié dans la retenue(C)		
		_		Les bits Z, N et V de l'UAL sont mis à jour		
	ADD	Add	$R1 + R0 \rightarrow R1$	Les bits Z, N, C et V de l'UAL sont mis à jour		
	SUB	Sub	R1 - R0 → R1	Les bits Z, N, C et V de l'UAL sont mis à jour		
	AND	And	R1 et R0 → R1	Les bits Z, N, C et V de l'UAL sont mis à jour		
	OR	Or	R0 ou R1 \rightarrow R1	Les bits Z, N, C et V de l'UAL sont mis à jour		
	NOT	Not	non R1 \rightarrow R1	Les bits Z, N, C et V de l'UAL sont mis à jour		

Instructions de saut en mémoire centrale

(Les sauts conditionnels dépendent du résultat de la dernière instruction exécutée par l'UAL)

(200 oddio corrationi de perident de receitat de la derniere mondener					
JAL xx	Jump always	aller à l'adresse xx	Γ		
JN xx	Jump negative	si négatif aller à l'adresse xx	ı		
JZ xx	Jump zero	si zéro aller à l'adresse xx	ı		
JC xx	Jump carry	si retenue aller à l'adresse xx	ı		
JV xx	Jump overflow	si débordement aller à	ı		
		l'adresse xx	ı		

