4TPM205U: Array Algorithms: Sheet 2

Iterate using a while loop

Travaux dirigés sur machine

Download the file http://dept-info.labri.fr/ENSEIGNEMENT/algotab/src/tp02.py It has the functions used for the tests. You can add the functions asked here to the same file.

Exercice 1

1. Test the function sommeChiffres discussed in TD.
2. Write a function sommeChiffresRangPair which returns the sum of the digits in the even positions of an integer n passed as an argument (the right most digit is considered to be at position 0). For example, if n is 5741 , the function returns 8 , which is $7+1$.
3. Write a function which returns the sum of digits in the odd positions of an integer n passed as an argument. This function should call the function sommeChiffresRangPair. Test these last two functions by executing the function provided in the file tp02.py.

Exercice 2 - Write and test the functions discussed in the TD, simulating the rolling of dices : nbLancers6(), nbLancersDouble(), moyenneTentativesDouble(n) and nbLancersPourSomme(n, value).

The function lancerDe(), which returns randomly an integer between 1 and 6 , is provided in the file tp02.py. It uses a function belonging to the module random of python.

Exercice 3 - An integer n is divisible by 11 if the sum of its digits in the even positions and the sum of the digits in the odd positions leave the same remainder when divided by 11. For example, if n is 387958948949 , your function should return True because the sum of its digits in the even positions and in the odd positions make respectively 47 and 36 , and $(47 \bmod 11)=3=(36 \bmod 11)$.

Use this property to write a boolean function multipleDeOnze (n) which, without using the operator \% nor the function reste, returns True if n is a multiple of 11 and False otherwise. To do this, note the mathematical property $(a \bmod k)=(b \bmod k)$ if and only if $a-b$ is divisible by k.

Exercice 4

1. Write a function racineEntiere implementing the algorithm discussed in the sheet TD\#2.
2. Use this function to write a function racineApprochee (n, d) returns the value approximated to $10^{-\mathrm{d}}$ closer to $\sqrt{\mathrm{n}}$. For example, racineApprochee $(2,1)$ returns 1.4 and racineApprochee $(2,3)$ returns 1.414.

Execute the function testeRacineCarree provided in the file tp02.py.

Exercice complémentaire 1 - (Multiplication alexandrine)

To multiply two natural integers x and y, we repeat, as long as y is not zero, the following double operations : multiplu x by 2 and divide y by 2 (integer quotient). the result is equal to the sum of the multiples of x corresponding to the odd quotients of y (the initial tuple included).

This determines the following :

$$
\left\{\begin{array}{l}
\left(x_{0}, y_{0}\right)=(x, y) \\
\left(x_{n+1}, y_{n+1}\right)=\left(2 x_{n},\left\lfloor\frac{y_{n}}{2}\right\rfloor\right)
\end{array}\right.
$$

where $\left\lfloor\frac{a}{b}\right\rfloor$ denotes mathematically the integer division of $a b y$.
the product $x y$ is equal to the sum of x_{n} where y_{n} is odd.

1. Run the algorithm to calculate 7×9 (given the table of succesive values of n, x_{n} and y_{n}).
2. Write a function multiplicationAlexandrine implementing this algorithm.

Determine, as a function of x and of y, the number of basic operations peformed (multiplications by 2 , divisions by 2 , comparisons, additions).
3. In terms of the alexandrine multiplication model, imagine an algorithm that calculates x^{n}.

Exercice complémentaire 2 - (Convergence of the approximation of square root)

Exercise 6 of the TD machine machine of the first week asks to write the function sqrt (x) (which returns an approximation of \sqrt{x}) and test it with the values $x=\{2,3,4,10\}$ and $\mathfrak{n}=10$.

Test it now with $x=1000$.
We see that the convergence is slow, we are not sure that 10 iterations are enough to get a good approximation of the square root. Replace the loop for with a loop while, continuing the calculations as long as the difference between two consecutive terms is greater than 0.0000001 . Test it with $x=100,000$.

