University of Bordeaux – S&T College

4TPM205U: Array Algorithms : Sheet 1

Iterate a given interval with the loop for

TΡ

In all the functions of the sheet, we implement the iterations utilizing the loop for. Subsequently, each time a function calculates a result, it has to return it.

Exercice 1 – Let \mathbf{a} and \mathbf{b} be two integers, write a function affichePairs(a,b) which prints all the even numbers in the *closed* interval [a, b].

Can you write the function using maximum one if instruction before the loop? (maximum implies that we might as well be able to do without using any. \ldots)

Exercice 2 – Let n be a natural number, write a function puissance(x,n) which calculates x^n .

Exercice 3 – Write and execute the function fibonacci(n) defined in the sheet 1 of TD. The function call fibonacci(9) must return 55.

Exercice 4 – Write a function afficheTableMult(n) which prints a multiplication table of size n.

For example if **n** is 6, it should display :

1	2	3	4	5	6
2	4	6	8	10	12
3	6	9	12	15	18
4	8	12	16	20	24
5	10	15	20	25	30
6	12	18	24	30	36

Exercice 5 – Write and execute the function sommeFactorielles(n) defined in Sheet 1 of TD. Test both the versions.

Exercice 6 – How do we calculate an approximation of $\sqrt{2}$? A simple method is to use the following sequence u_n :

$$\begin{cases} u_0 &= 2\\ u_{n+1} &= \frac{u_n}{2} + \frac{1}{u_n} \end{cases}$$

With this method, the error between $\sqrt{2}$ and u_n reduces every iteration of the calculation.

1. Write a function $\mathtt{suite(n)}$ which calculates and returns the term u_n .

- 2. Use a loop to display the first 10 terms of the sequence. An approximated value of $\sqrt{2}$ is 1.414213562373095048[...]. It should be noted that the sequence converges towards this value, but without being able to reach it : the number of digits in the computer's value are limited!
- 3. More generally, to calculate \sqrt{x} , we can use the sequence

$$\begin{cases} u_0 &= x \\ u_{n+1} &= \frac{1}{2}(u_n + \frac{x}{u_n}) \end{cases}$$

where u_0 is a first rough estimate of \sqrt{x} .

Write a function sqrt(x) which returns an approximation of \sqrt{x} by calculating u_{10} while printing the intermediate values u_i . Test with $x = \{2, 3, 4, 10\}$ and n = 10.

Exercice 7 – More difficult exercice, to be attempted in the end.

We are looking for a number of 9 non-zero digits, such that :

- the number formed by the first digit is divisible par 1
- the number formed by the first two digits is divisible by 2
- the number formed by the first three digits is divisible by 3
- the number formed by the first four digits is divisible by 4
- the number formed by the first five digits is divisible by 5
- the number formed by the first six digits is divisible by 6
- the number formed by the first seven digits is divisible by 7
- the number formed by the first eight digits is divisible by 8
- the number formed by the first nine digits is divisible by 9

First digit is the left most digit of the number.

There are many such numbers and the least of them is 123252561.

Without using any other iteration except the *for* loop (and trying to minimize the number of iterations), can we write a function (iterative!) that displays (and saves) all the numbers with the property described above?

(Suggestion : start by trying to write a function which looks for a number with three digits satisfying the first three conditions.)