4TPM205U: Array Algorithms : Sheet 1

Iterate a given interval with the loop for

TP

In all the functions of the sheet, we implement the iterations utilizing the loop for.
Subsequently, each time a function calculates a result, it has to return it.

Exercice 1 - Let a and b be two integers, write a function affichePairs (a,b) which prints all the even numbers in the closed interval $[\mathrm{a}, \mathrm{b}]$.
Can you write the function using maximum one if instruction before the loop? (maximum implies that we might as well be able to do without using any. ...)

Exercice 2 - Let n be a natural number, write a function puissance (x, n) which calculates x^{n}.

Exercice 3 - Write and execute the function fibonacci(n) defined in the sheet 1 of TD. The function call fibonacci(9) must return 55 .

Exercice 4 - Write a function afficheTableMult (n) which prints a multiplication table of size n.

For example if n is 6 , it should display :

1	2	3	4	5	6
2	4	6	8	10	12
3	6	9	12	15	18
4	8	12	16	20	24
5	10	15	20	25	30
6	12	18	24	30	36

Exercice 5 - Write and execute the function sommeFactorielles (n) defined in Sheet 1 of TD. Test both the versions.

Exercice 6 - How do we calculate an approximation of $\sqrt{2}$? A simple method is to use the following sequence u_{n} :

$$
\begin{cases}u_{0} & =2 \\ u_{n+1} & =\frac{u_{n}}{2}+\frac{1}{u_{n}}\end{cases}
$$

With this method, the error between $\sqrt{2}$ and \mathfrak{u}_{n} reduces every iteration of the calculation.

1. Write a function $\operatorname{suite}(n)$ which calculates and returns the term u_{n}.
2. Use a loop to display the first 10 terms of the sequence. An approximated value of $\sqrt{2}$ is $1.414213562373095048[. .$.$] . It should be noted that the sequence converges towards this value,$ but without being able to reach it : the number of digits in the computer's value are limited!
3. More generally, to calculate \sqrt{x}, we can use the sequence

$$
\begin{cases}u_{0} & =x \\ u_{n+1} & =\frac{1}{2}\left(u_{n}+\frac{x}{u_{n}}\right)\end{cases}
$$

where u_{0} is a first rough estimate of \sqrt{x}.
Write a function sqrt (x) which returns an approximation of \sqrt{x} by calculating u_{10} while printing the intermediate values \mathfrak{u}_{i}. Test with $x=\{2,3,4,10\}$ and $\mathfrak{n}=10$.

Exercice 7 - More difficult exercice, to be attempted in the end.

We are looking for a number of 9 non-zero digits, such that :

- the number formed by the first digit is divisible par 1
- the number formed by the first two digits is divisible by 2
- the number formed by the first three digits is divisible by 3
- the number formed by the first four digits is divisible by 4
- the number formed by the first five digits is divisible by 5
- the number formed by the first six digits is divisible by 6
- the number formed by the first seven digits is divisible by 7
- the number formed by the first eight digits is divisible by 8
- the number formed by the first nine digits is divisible by 9

First digit is the left most digit of the number.

There are many such numbers and the least of them is 123252561 .
Without using any other iteration except the for loop (and trying to minimize the number of iterations), can we write a function (iterative!) that displays (and saves) all the numbers with the property described above?
(Suggestion : start by trying to write a function which looks for a number with three digits satisfying the first three conditions.)

