4TPM205U: Array Algorithms : Sheet 2

Iterate using a while loop

Travaux dirigés

Exercice 1 - (Euclidean Division)

Let a be a non-negative integer $(a \geq 0)$ and b is a positive integer $(b>0)$. Perform the euclidean division (integer division) of a by b, to détermine the unique tuple of integers (q, r) such that $\mathrm{a}=\mathrm{bq}+\mathrm{r}$ and $0 \leq \mathrm{r}<\mathrm{b}$.

1. Write an algorithm of euclidean division by successive substractions. Run the algorithm for $\mathrm{a}=13$ and $\mathrm{b}=3$; for $\mathrm{a}=2$ and $\mathrm{b}=7$.
2. Determine, as a function of a and b, the number of basic operations performed (comparisons, additions, subtractions).
3. Write two fonctions reste (a, b) and quotient (a, b) which return respectively the remainder and the quotient of the integer division of a by b.

Exercice 2

Keeping in mind, in a radix (or base) b :

- the remainder of the division of n by b is equal to the value of the last digit of n (the digit on the right most of \mathfrak{n});
- the quotient of the integer division of n by b is equal to the value represented by the number n without its last digit.

Write a function sommeChiffres which returns the sum of decimal digits of an integer n passed as an argument.

Exercice 3 - Given the following function :

```
def mystere (n, x):
    while (n // x > x and x != 0) :
        n = n // 10
        x = x - 1
    return n
```

What is the value returned by mystere $(100,6) ?$ and by mystere $(1000,3)$?
Correct the condition of iteration so that the function never generates an error.

Exercice 4 - (Rolling a 6-face dice)

Let us assume that we have a function lancerDe() which simulates rolling a 6 -face dice : the call to this function returns an integer between 1 and 6 chosen in a uniform random fashion.

1. Write a function nbLancers6() which returns the number of times the dice has to be rolled to obtain a 6 . If the dice rolls a 1 , then a 5 , a 2 , and then a 6 , the function should return the value 4 .
2. We roll now two dices at a time. Write a function nbLancersDouble() which returns the number of times the dice has to be rolled to obtain a double (i.e., when both the dices roll the same value).
3. Write a function moyenneTentativesDouble(n) which calculates the average number of attempts to get a double, taken on a sample of n doubles obtained. For example, if n is 10 , we roll the dices to obtain a double 10 times and we calculate the average over the number of attempts for each of these 10 trials.
4. Write a function nbLancersPourSomme(n, value) which calculates the number of times n dices are rolled to obtain a sum of the dices equal to value. What happens if the value passed as the argument of the function is not in the domain of possible values of n dices?

Exercice 5 - (Racine carrée entière)

The sum of n first odd natural numbers is equal to the square of n.
For example, $1+3+5=3^{2}$. Another example, $1+3+5+7=4^{2}$, etc.
Deducing an algorithm to calculate the square root of a given positive integer ; calculate the number of additions and the comparisons performed.

