University of Bordeaux — S&T College LST Math & CS 2nd Semester 2019-2020
4TPM205U: Array Algorithms : Sheet 1

Iterate a given interval with the for loop

Travaux dirigés

In all the functions of the sheet, we implement the iterations utilizing the loop for.

Exercice 1 — Consider the following functions :

def mysterel(a,b): def mystere2(a,b):
for i in range(a,b): for i in range(a,b,-1):
print(i) print(i)

1. What do the following function calls print :

i) mystere1(10,20) and mysterel(20,10) ?
i1) mystere2(10,20) and mystere2(20,10) ?

2. Let n be a natural number, write a function affichePairsPlusPetitsQue(n) which shows
all the even natural numbers strictly less than n.

3. Write a function existeDiviseur (k,a,b) which returns True if there exists a divisor of k in
the closed interval [a,b], and returns False otherwise.

Exercice 2 — Counsider a sequence defined by :

up =2
U, =3 X Up_1—1

Write a function suite(n) which takes as a parameter, an natural integer n and calculates (and
returns) the n'" term (n > 0) of the sequence.

Ezxample : the function call suite(4) must return 122.

Exercice 3 — Fibonacci sequence.
Write a function fibonacci(n) which calculates (and returns) the n'* term (n > 0) of the
Fibonacci sequence defined by :

Uy = Uy = 1

Un =Up—1 +Up—2

Exercice 4 — Factorial (iterative).
We define the factorial of a non-negative integer :

or=1=1
n>,nl=nxmMh—-1T)xnNn—-2)x---x2x1

Using this definition, write a function factorielle(n) which calculates (and returns) n!.



Exercice 5 — We would like to write a function sommeFactorielles(n) which calculates (and
returns) the sum 0! + 1! 4+2!+ ... +nl

1. Write a first version of sommeFactorielles(n) using the function factorielle written al-
ready.
How many multiplications are necessary to calculate sommeFactorielle(5) 7

2. Modify the previous version to calculate the result without using the call to the function
factorielle.
How many multiplications are necessary now, to calculate sommeFactorielle(5) ?

Moral : It is, generally, good to use the functions that are already written, but not neces-
sarily always. The goal is to write a readable code which performs significantly less number of
opérations.



