4TPM205U: Array Algorithms : Sheet 1

Iterate a given interval with the for loop

Travaux dirigés

In all the functions of the sheet, we implement the iterations utilizing the loop for.
Exercice 1 - Consider the following functions :

```
def mystere1(a,b):
    for i in range(a,b):
        print(i)
```

```
def mystere2(a,b):
```

def mystere2(a,b):
for i in range(a,b,-1):
for i in range(a,b,-1):
print(i)

```
        print(i)
```

1. What do the following function calls print :
i) mystere $1(10,20)$ and mystere $1(20,10)$?
ii) mystere $2(10,20)$ and mystere $2(20,10)$?
2. Let n be a natural number, write a function affichePairsPlusPetitsQue (n) which shows all the even natural numbers strictly less than n.
3. Write a function existeDiviseur ($\mathrm{k}, \mathrm{a}, \mathrm{b}$) which returns True if there exists a divisor of k in the closed interval $\llbracket a, b \rrbracket$, and returns False otherwise.

Exercice 2 - Consider a sequence defined by :

$$
\left\{\begin{array}{l}
u_{0}=2 \\
u_{n}=3 \times u_{n-1}-1
\end{array}\right.
$$

Write a function suite(n) which takes as a parameter, an natural integer n and calculates (and returns) the $n^{\text {th }}$ term ($n \geq 0$) of the sequence.

Example : the function call suite(4) must return 122.
Exercice 3 - Fibonacci sequence.
Write a function fibonacci(n) which calculates (and returns) the $n^{\text {th }}$ term ($n \geq 0$) of the Fibonacci sequence defined by :

$$
\left\{\begin{array}{l}
u_{0}=u_{1}=1 \\
\mathfrak{u}_{n}=u_{n-1}+u_{n-2}
\end{array}\right.
$$

Exercice 4 - Factorial (iterative).
We define the factorial of a non-negative integer :

$$
\left\{\begin{array}{l}
0!=1!=1 \\
\forall n>1, n!=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1
\end{array}\right.
$$

Using this definition, write a function factorielle (n) which calculates (and returns) n !.

Exercice 5 - We would like to write a function sommeFactorielles(n) which calculates (and returns) the sum $0!+1!+2!+\ldots+n!$.

1. Write a first version of sommeFactorielles(n) using the function factorielle written already.
How many multiplications are necessary to calculate sommeFactorielle(5)?
2. Modify the previous version to calculate the result without using the call to the function factorielle.
How many multiplications are necessary now, to calculate sommeFactorielle(5)?

Moral : It is, generally, good to use the functions that are already written, but not necessarily always. The goal is to write a readable code which performs significantly less number of opérations.

