Numéro d'anonymat	Numé	ro d	'anony	vmat	
-------------------	------	------	--------	------	--

Groupe:

Remplir l'en-tête de la copie, cacheter, et ne rien écrire d'autre sur la copie; porter les réponses directement sur le sujet, et glisser celui-ci dans la copie en fin d'épreuve. Ne pas oublier d'indiquer ci-dessus le numéro d'anonymat et le groupe.

Le sujet comporte 5 exercices et 7 pages, plus une page d'annexe. Aucun document n'est autorisé : les principales fonctions de manipulation des graphes sont rappelées sur la page 9, que vous pouvez détacher pour plus de facilité.

Exercice 1 On considère la fonction suivante :

```
def f(a,x):
    p = 1
    n = 0
    while p <= x:
        p = p * a
        n = n + 1
    return n</pre>
```

1. Simuler l'exécution de f (10,1234) en complétant le tableau suivant :

p	1
$\mid n \mid$	0

2. En général, que vaut f(10, x)?

3. On exécute le code suivant :

```
>>> for x in range(11):
    print (x, f(2,x))
```

Donner le résultat ci-contre (écrire sur deux colonnes si nécessaire) :

	A l'aide de la fonction f , écrire une fonction $g(n)$ qui calcule le nombre de chiffres de la représentation décimale de la factorielle $n!$
Exerc	ice 2 Dans cet exercice $g5$ désigne le graphe à 5 sommets tel que :
>>> f	For s in listeSommets(g5): listeAretesIncidentes(s)
[<arê [<arê [<arê< th=""><th>hte: 'e4' DA>, <arête: 'e1'="" ab="">] hte: 'e1' AB>, <arête: 'e2'="" bc="">, <arête: 'e7'="" db="">, <arête: 'e8'="" bc="">] hte: 'e8' BC>, <arête: 'e5'="" ce="">, <arête: 'e2'="" bc="">, <arête: 'e3'="" cd="">] hte: 'e3' CD>, <arête: 'e4'="" da="">, <arête: 'e6'="" ed="">, <arête: 'e7'="" db="">] hte: 'e5' CE>, <arête: 'e6'="" ed="">]</arête:></arête:></arête:></arête:></arête:></arête:></arête:></arête:></arête:></arête:></arête:></th></arê<></arê </arê 	hte: 'e4' DA>, <arête: 'e1'="" ab="">] hte: 'e1' AB>, <arête: 'e2'="" bc="">, <arête: 'e7'="" db="">, <arête: 'e8'="" bc="">] hte: 'e8' BC>, <arête: 'e5'="" ce="">, <arête: 'e2'="" bc="">, <arête: 'e3'="" cd="">] hte: 'e3' CD>, <arête: 'e4'="" da="">, <arête: 'e6'="" ed="">, <arête: 'e7'="" db="">] hte: 'e5' CE>, <arête: 'e6'="" ed="">]</arête:></arête:></arête:></arête:></arête:></arête:></arête:></arête:></arête:></arête:></arête:>
1.	Dessiner ce graphe. Est-ce un graphe planaire?
2.	Ce graphe est-il simple? Justifier la réponse :
3.	Ce graphe est-il Eulérien? Justifier la réponse :

On dispose des fonctions suivantes :

```
def areteIncidenteNonMarquee(s):
    for a in listeAretesIncidentes(s):
        if not estMarqueeArete(a):
            return a
    return None

def cycleSansIssue (s):
    c = [s]
    a = areteIncidenteNonMarquee(s)
    while a != None:
        marquerArete(a)
        s = sommetVoisin(s, a)
        c = c + [a, s]
        a = areteIncidenteNonMarquee(s)
    return c
```

En réponse à chacune des questions qui suivent on décrira comme d'habitude un cycle par une liste constituée alternativement de sommets et d'arêtes, par exemple :

$$[C, e_5, E, e_6, D, e_3, C]$$

4. Aucune arête n'est marquée et on calcule :

c1 = cycleSansIssue(sommetNom(g5,'A'))

Donner la valeur de c_1 :

$$c_1 = [$$

Attention : il y a une seule réponse correcte, effectuer le calcul avec soin, en utilisant les informations données en début d'exercice.

5. Sans démarquer les arêtes marquées lors du calcul précédent, on calcule maintenant :

c2 = cycleSansIssue(sommetNom(g5,'B'))

Donner la valeur de c_2 :

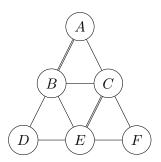
$$c_2 = [$$

6. Donner le cycle Eulérien c_3 qui résulte des deux calculs précédents (attention, donner un cycle eulérien quelconque ne rapportera aucun point):

```
c_3 = [
```

7. On démarque toutes les arêtes et on calcule à nouveau :

c4 = cycleSansIssue(sommetNom(g5,'B'))

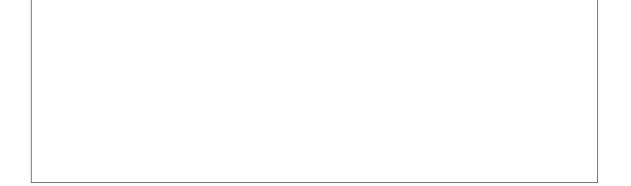

Donner la valeur de c_4 :

```
c_4 = [
```

Exercice 3

Les arêtes marquées d'un graphe G forment un couplage si elles sont deux à deux disjointes; autrement dit chaque sommet est l'extrémité d'au plus une arête marquée. Un sommet est dit saturé s'il possède une arête incidente marquée.

Par exemple dans le graphe T ci-contre les arêtes marquées AB et CE forment un couplage, et les sommets saturés sont A,B,C,E.


1. Dessiner un couplage du graphe T avec trois arêtes marquées :

1			
1			
1			
1			
1			
1			

2. Écrire une fonction $\mathtt{sature}(\mathtt{s})$ qui retourne True ou False selon que le sommet s est saturé ou non :

3. Une arête est dite libre si aucune de ses extrémités n'est saturée. On reprend l'exemple donné en début d'exercice (les arêtes marquées sont AB et CE) : existe-t-il des arêtes libres dans T? Justifier la réponse.

4. Écrire une fonction areteLibre(s) qui retourne une arête libre issue du sommet s s'il en existe une, et None sinon. Note: si s est saturé, la fonction retourne donc None.

5. On construit un couplage en appliquant l'algorithme suivant : pour chaque sommet s du graphe G on marque une arête libre issue de s s'il en existe une. Appliquer cet algorithme à la grille ci-dessous, en supposant qu'on parcourt les sommets dans l'ordre de leurs numéros, et qu'on choisit l'arête libre qui va vers le sommet de plus petit numéro. Attention: détailler à côté du dessin l'action effectuée pour chacun des neuf sommets :

orte quelle	arête sont o	de couleurs d	ous les somm	ire une fonct	
porte quelle	arête sont o	de couleurs d		ire une fonct	
orte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
porte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
porte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
porte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
porte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
orte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
orte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
porte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
porte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
orte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
orte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	
rte quelle	arête sont o	de couleurs d	ifférentes. Écr	ire une fonct	

	écessairement une chaine relia	iécessairement une chaine reliant x à y (c'est-	que si un graphe contient exactement deux sommets x et y décessairement une chaine reliant x à y (c'est-à-dire qu'ils sonte connexe).

Exercice 5 Rappel : une composante connexe G' d'un graphe G est une partie connexe de G dont aucun sommet n'est relié au reste de G, autrement dit une partie isolée de G, que l'on peut donc aussi considérer comme un graphe. G est ainsi la réunion de ses composantes connexes (il

Annexe

Liste des fonctions disponibles pour manipuler les graphes ; cette feuille n'est pas à rendre avec le devoir, ne rien écrire dessus.

L'argument G est un graphe	
listeSommets(G)	retourne la $liste$ des $sommets$ de G .
nbSommets(G)	retourne le $nombre$ de $sommets$ de G .
sommetNom(G,etiquette)	retourne le $sommet$ de G désigné par son nom (éti-
	quette). Exemple: sommetNom (Europe, 'Italie').
sommetNumero(G,i)	retourne le $sommet$ numéro i dans G ; la numérotation
	commence à 0.

L'argument s est un sommet	
listeVoisins(s)	retourne la $liste$ des $voisins$ de s .
degre(s)	retourne le $degré$ de s .
nomSommet(s)	retourne le nom (étiquette) de s .
colorierSommet(s,c)	colorie s avec la couleur c . Exemples de couleurs :
	'red', 'green', 'blue', None.
couleurSommet(s)	retourne la $couleur$ de s .
marquerSommet(s)	
demarquerSommet(s)	marque ou démarque s .
estMarqueSommet(s)	retourne True si s est marqué, False sinon.
listeAretesIncidentes(s)	retourne la liste des arêtes incidentes à s.
sommetVoisin(s,a)	retourne le voisin de s en suivant l'arête a .

L'argument a est une arête	
nomArete(a)	retourne le nom (étiquette) de a.
marquerArete(a)	
demarquerArete(a)	marque ou démarque a .
estMarqueeArete(a)	retourne True si a est marquée, False sinon.