

Département de Formation

Premier Cycle

Année 2001 – 2002 Session de Janvier 2002

GU: TCA UE: TCA101 Epreuve d'informatique

Date: 2002-01-14 Durée: 1,5h

Tous documents autorisés. Votre voisin n'est pas un document

Epreuve de M Strandh et M Musumbu

Exercice 1. (5p)

On suppose les nombres entiers représentés sur un octet avec leur signe. Soit x=01011010 et y=10100101

Question 1 Quels sont les nombres représentés par x et y en décimal?

Question 2 Donner la conversion de x et y en hexadécimal.

Question 3 Que vaut x + y en décimal?

Question 4 Soit n le nombre déduit de m en échangeant les 0 et les 1 dans leurs représentations binaires, comme dans l'exemple précédent avec x et y. Quelle est la relation qui lie m et n? Faire la preuve.

Question 4 La gestion de l'horloge interne des ordinateurs est assez simple. Elle consiste à incrementer un compteur à chaque seconde depuis le 1 janvier 1970. La valeur du compteur est un entier signé, codé sur 32 bits. Quelle année cette méthode risque de ne plus fonctionner?

Exercice 2. (5p)

Soit la procédure MAPLE suivante :

```
mystere := proc(A, B::integer)
local x, y, r;
    x := A;
    y := B;
    r := x - y;
    while r <> 0 do
        y := x;
        x := r;
        r := abs(x - y);
    od;
    x;
end
```

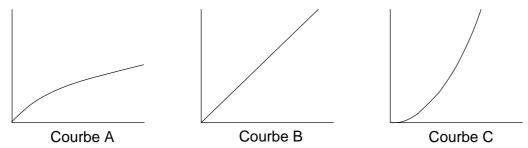
Rappel: la fonction abs retourne la valeur absolue d'un nombre.

Question 1 Simuler l'exécution de mystere (27,15); et mystere (31,14); à l'aide d'un tableau clair des valeurs successives des variables x,y et r.

Question 2

Que calcule cette procédure?

Question 3


Comment peut-on améliorer cette procédure ? $R\'{e}pondez$ de façon succinte, soit par un programme Maple, soit par une ou deux lignes de commentaires.

Exercice 3. (5p)

Voici trois procédures Maple, numérotées pr1, pr2 et pr3:

```
pr1 := proc(n)
  local p, i;
  i := n;
  p := 0;
  while i \iff 0 do
    if i \mod 2 = 1 then
      p := p + 1;
    fi;
    i := iquo(i, 2);
  od;
  p;
end;
pr2 := proc(1)
  local i, j, temp, 11;
  11 := 1;
  for i from 2 to nops(11) do
    for j from nops(ll) to i by -1 do
      if ll[j-1] > ll[j] then
        temp := ll[j-1];
        ll[j - 1] := ll[j];
        11[j] := temp;
      fi;
    od;
  od;
  11;
end;
pr3 := proc(n)
  local f, i;
  f := 1;
  for i from 1 to n do
    f := f * i;
  od;
  f;
end;
```

Les courbes suivantes donnent le temps d'exécution des trois procédures en fonction de la valeur du paramètre n (pr1 et pr3) ou du nombre d'éléments de la liste 1 (pr2).

Étant donné que l'échelle des courbes est linéaire, faire correspondre chaque procédure à une courbe.

Exercice 4. (5p)

Indiquer le degré d'acceptabilité pour chacun des courriers électroniques suivants (0 = inacceptable, 1 = moyen, 2 = OK)

- Un fichier Word à un ami ayant Word sur sa machine
- $\bullet\,$ Un fichier Excel à la secretaire du 1° cycle
- $\bullet\,$ Un fichier PDF à la secretaire du 1° cycle
- Un fichier PDF à un enseignant
- Un texte ISO-latin-1 à un utilisateur de Windows.

Word = traitement de texte de Microsoft

Excel = tableur de MicrosoftPDF = format ouvert de Adobe