
Autowrite: User’s Guide
(Still being written)

Irène Durand

Université de Bordeaux I
33405 Talence, France
idurand@labri.fr

1 Introduction

Autowrite is a tool for handling term rewrite systems and tree automata. It was originally
designed to check membership to Call-by-need (CBN) classes. For this purpose, it implements
the tree automata constructions used in [7, 3, 4, 8] and many useful operations on terms,
rewrite systems and tree automata. Now all these automata constructions are accessible from
the graphical interface which makes Autowrite also a tool for handling tree automata.

The graphical interface (still under construction) is written using FreeCLIM, the free
implementation of the CLIM specification. New functionnalities could be easily integrated
upon demand.

The Autowrite tool was used to check membership to CBNα for most of the examples
presented in [5] and [6]. The latest version was presented in [2].

2 Installation

The system has been compiled to run on a PC x86 under Linux. The graphical interface is
an X11 client so requires an X11 server.

The user should get the file Autowrite.tgz and install the system with the following com-
mands.

tar xzvf Autowrite.tgz

cd Autowrite

./INSTALL

The system is started by typing

./autowrite &

Use the Quit button to exit Autowrite.
The directory Autowrite contains a Data directory were the specifications are stored.

3 Specification Files

The user may specify a set of Autowrite objects (Trss, automata, termsets) related to a
common signature and set of variable, in a specification file whose name should have the
extension .txt.

An Autowrite specification file starts with the definition of a signature, eventually followed
by the definition of a set of variables. Next we may have in any order definitions of TRSs,
automata, termsets, each one of them associated with a distinct name.



Example: WRS.txt

Ops 0:0 s:1 +:2 *:2

Vars x y

TRS R

; addition

+(0,x) -> x

+(s(x),y) -> s(+(x,y))

; product

*(0,x) -> 0

*(s(x),y) -> +(*(x,y),y)

Automaton EVEN

States odd even

Final States even

Transitions

0 -> even

s(even) -> odd

s(odd) -> even

Termset RS 0 s(x)

Termset "T(F)" x

Term *(*(0,s(0)),+(0,s(0)))

Term *(o,+(0,s(0)))

Term *(*(0,s(0)),o)

Term s(s(s(0)))

3.1 Comments

Any part of a line located after the character ; is considered a comment and will be ignored.

3.2 Names

A name used for a symbol, a variable, a state, a trss or an automaton should not contain the
following characters ;, :, (, ), ", - unless the name is surrounded by " ". The names
o and @ are reserved (o represents the • symbol and @ is the extra symbol used to extend a
signature.

3.3 Symbols and signature

A symbol has a name and an arity separated by the character :.
A signature is introduced by the Ops keyword followed by a list of symbols.

3.4 Variables

The variables are introduced by the Vars keyword followed by a list of variables names which
should be disjoint from the symbol names.



3.5 Terms

A term is introduced by the Term keyword followed by the term. Terms are represented in
the usual infix notation and must be built upon the signature and the set of variables.

3.6 Trss

A trs is introduced by the TRS keyword followed by the name of the TRS and by the list of
rules.

Each rule has a left-handside and a right-handside separated by ->. Both the left-handside
and the right-handside are terms.

3.7 Automata

An automaton is introduced by the Automaton keyword followed by the name of the automa-
ton. Follow in that order states, final states and transitions.
The states are introduced by the States keyword followed by a list of the states names.
The final states are introduced by the Final States keyword followed by a list of the final
states names.
The transitions are introduced by the Transitions keyword followed by a list of transi-
tions. Each transition has a left-handside (a flat term with arguments being states) and a
right-handside (a state) separated by ->.

3.8 Termsets

A termset is introduced by the Termset keyword followed a list on terms (not necessarily
ground).

4 Using Autowrite

4.1 Generalities

The top pane of the Autowrite window is an interactor pane from which the user interacts
with the system. It prompts the user for commands and arguments.

At any time the user can get help about the current possibilities by clicking on the
right-button.

Commands are accessible either thru the command line using completion (achieved with
the <TAB> key or from the menus items. Some commands are also available from buttons.

All commands accessible are accessible by typing the command name (written on the
item) to the Command prompt. The latter is recommended as thru completion it will save
the user a lot of typing. Completion works for commands, data filenames, automaton names,
trs names, termset names.

The menu are there to remind the user of every possible command or for people who don’t
like to type. In any case, at the moment, arguments of commands need to be typed in the
interactor pane.

The Read commands are used to read Autowrite objects into the current specificationc
directly from the command line. The Load commands are used to load Autowrite objects into
the current specificationfrom a file. The Save commands are used to save Autowrite objects
into a file. The Retrieve commands are used to set the current Autowrite object with an
already computed object.



4.2 File Menu

From this menu, one can load a specification from a file or save the current specification to a
file.

4.3 Trs Menu

This menu gathers all commands related to the current TRS or to the left-handsides of the
current TRS.

Left-linearity One can check left-linearity for the current TRS R by using the Left-linearity
command.

Overlappingness One can check overlappingness for the current TRS R by using the Over-
lapping command.

Orthogonality One can check orthogonality for the current TRS R by using the Orthogo-
nality command.

Normal and external normal forms One can check whether the set of normal forms NFR

or the set of external normal forms ENFR are empty using the NF empty? and ENF empty?
commands. When the set is not empty, a term witnessing nonemptyness is shown.

Forward-branching One can check whether a system is forward-branching [1] by using
either the cubic algorithm derived from the characterization of forward-branching system or
the quadratic construction of a forward-branching index-tree. One can transform a forward-
branching TRS to a constructor system in CBNs using the two algorithms presented in [9].

4.4 Approx Trs Menu

This menu gathers all commands related to the current approximation of the current TRS
S = Rα.

Changing the current approximation With the Approximation Strong Approximation
Nv Approximation Linear Growing Approximation Growing commands, one can select the
current approximation α for the current TRS R. One may also use the Approximation item
of the Approx Trs menu and select in the pop-up-menu the desired approximation.

Membership to CBN One can check membership to CBNα for the current TRS R and
the current approximation α by using the Call-by-need command.

The answer is either “the TRS is in CBNα or “the TRS is not in CBNα; in the latter case
an “α-free-term” i.e. a term with no Rα-needed redex is shown.

The Call-by-need command checks membership to CBNα but with the signature extended
with a fresh constant symbol . Indeed a TRS may be in CBNα with the signature consiting of
all the symbols appearing in its rules but not in CBNα with the same signature extended by



just one fresh symbol. The preservation of membership thru “signature extension” has been
investigated in [5].

Note that the membership to CBNα problem having a double exponential time complexity,
may run for a very long time for big TRS.
Use the Stop button to stop the computation.

Preservation of the set of normalizable terms As shown in [5], the sets of terms of
T (F) that are normalizable may be augmented if the signature F is extended with just one
fresh constant symbol (for instance ). Using the command WN(S,G,F) = WN(S,F) one can
check whether signature extension preserves the set of normalizable terms. If this is not the
case, then a term witnessing that WN(Rα,G,F) 6⊆ WN(Rα,F) is shown.

The same can be done with R ∪ {• → •} as for the growing approximation we may have
WN(Rα,G,F) = WN(Rα,F) but WN•(Rα,G,F) 6⊆ WN•(Rα,F).
Use the command WNo(S,G,F) = WNo(S,F) for that purpose.

Arbitraryness The approximated TRS is arbitrary if there exists a term t ∈ T (F) such
that t →Rα,F∪{@} @. If the approximated TRS Rα is arbitrary a witness term t is given. One
can check whether the current approximated TRS Rα is arbitrary by using the Arbitrary
command of the Approx-TRS menu.

4.5 Term Menu

Redex positions With the Redexes command, one may get the redexes positions (according
to the current TRS) of the current term.

Needed redex positions With the Needed redexes command, one may get the needed-
redexes positions (according to the current approximation of the current TRS) of the current
term.

Normalizability With the Normalizability command, one may check whether a term is
normalizable with regard to the approximated TRS.
To check whether a redex in a term is needed in a term (according to the current TRS and
approximation), just enter the term where the redex has been replaced with the o symbol
and check whether it is normalizable.

Recognizability With the Recognizability command of the Term menu, one may check
whether the current term is recognized by the current automaton.

4.6 Termset

A termset is a set of (not necessarily ground) terms built upon the current signature and set
of variables.

Accessibility With the Accessibility command, one may check whether a termset is acces-
sible from the current term with regard to the current approximation.
To check accessibility to a single term, just enter a termset containing that term.



Termset automaton With the Termset automaton command, one may get obtain an
automaton recognizing the termset. With the Accessibility command one may check whether
the set of instances of the current termset is accessible from the current term using the current
approximation.

4.7 Reduction and Needed Reduction

The Reduction menu contains choices for reducing the current term.

Classical reduction One can perform a reduction step using either the leftmost-outermost
strategy or parallel-outermost strategy. The “Reduction to normal form” command applies
the parallel-outermost strategy until a normal form is reached Use the Stop button (or
command) to stop a looping computation.

Needed reduction One can perform a needed-reduction step using the leftmost-outermost
needed redex. The “Needed reduction to normal form” command applies the needed strategy
until a normal form is reached (may loop if term does not have a normal form).
Use the Stop button (or command) to stop a looping computation.

4.8 TRS Automata

The TRS Automata menu, gathers commands to compute automata related to the left-
handsides of the current TRS or to its approximation. The Redex automaton , Reducible
automaton , Nf automaton compute the automata recognizing the sets of redexes, reducible
terms, normal forms.

We have the possibilities of computing Toyama’s or Jacquemard’s CRα,L automaton rec-
ognizing (→∗

Rα

)[L] with either

– L = NF: command Automaton C NF ,

– L = L(AA): command Automaton C A ,
– L = L(AS): command Automaton C S , S being the instances of the current termset.

We can also compute the automaton D(Rα,F) which recognizes the set of reducible terms
without Rα-needed redex: command Automaton D .

4.9 Automata

From this menu one can build new automata from existing ones. For instance compute the
complement of the current automaton (Complement automaton ), complete the current au-
tomaton (Complete automaton ), compute the intersection (or the union) of the current
automaton with an existing one (Intersect automaton , Union automaton ).

4.10 Automaton

The operations of this menu apply to the current automaton. Most of these operations check
a property of the current automaton like:



– “does it recognize the empty language?” (Empty automaton? ),

– “is it included into another automaton” (Inclusion automaton ),

– “is it equal (recognizes the same language) to another automaton” (Equality automaton
),

– “is its intersection with another automaton empty” (Intersection emptiness ).

5 How to exit if Autowrite crashes

In that case, you should end up in the Lisp debugger. Just type (cl::quit) to exit Lisp.

6 Example of a session

Command: Load Spec
spec filename: WRS.txt
Command: Nf Automaton
Command: Redex Automaton
Command: Reducible Automaton
Command: Complement Automaton
Command: Equality Automaton
equality with automaton: nf
Command: Retrieve automaton
automaton name: redex
Command: Inclusion automaton
inclusion in automaton: reducible
Command: Empty intersection?
emptyness of intersection with automaton: nf
Command: Intersection automaton
Intersection with automaton: nf
Command: Empty automaton?
Command: Load Spec
spec filename: S04.txt
Command: Call by need
Command: Approximation Nv
Command: Call by need
Command: Call by need Extra
Command: Redexes
Command: Needed redexes
Command: Automaton D
Command: Recognized by automaton
Command: Retrieve spec
spec name: WRS.txt
Command: Termset automaton
Command: Accessibility automaton
Command: Needed reduction step
Command: Needed reduction to nf
Command: Retrieve term



term: *(*(0,s(0)),+(0,s(0)))
Command: Parallel outermost step

7 Snapshots of a session

Figures 1, 2 and 3 at the end of the document show some snapshots of the graphical interface.

References

1. I. Durand. Bounded, strongly sequential and forward-branching term rewriting systems. Journal of Symbolic

Computation, 18:319–352, 1994.
2. I. Durand. Autowrite: A tool for term rewrite systems and tree automata. In Workshop on Rewriting

Strategies, Electronics Notes in Theorical Computer Science, Aachen, June 2004. To appear in ENTCS.
3. I. Durand and A. Middeldorp. Decidable call by need computations in term rewriting (extended abstract).

In Proceedings of the 14th International Conference on Automated Deduction, volume 1249 of Lecture Notes

in Artificial Intelligence, pages 4–18, 1997.
4. I. Durand and A. Middeldorp. On the complexity of deciding call-by-need. Technical Report 1194-98,

LaBRI, Université de Bordeaux I, 1998.
5. I. Durand and A. Middeldorp. On the modularity of deciding call-by-need. In Proceedings of the Internation

Conference on Foundations of Software Science and Computation Structures, volume 2030 of Lecture Notes

in Computer Science, pages 199–213, 2001.
6. I. Durand and Aart Middeldorp. Decidable call-by-need computations in term rewriting. Information and

Computation, 196:95–126, 2005.
7. F. Jacquemard. Decidable approximations of term rewriting systems. In Proceedings of the 7th International

Conference on Rewriting Techniques and Applications, volume 1103 of Lecture Notes in Computer Science,
pages 362–376, 1996.

8. T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting systems. Information and

Computation, 178(2):499–514, 2002.
9. B. Salinier and R. Strandh. Efficient simulation of forward-branching systems. Journal of Symbolic Com-

putation, 1996.



Fig. 1. Operations on the current term and the current automaton



Fig. 2. Boolean operations on automata



Fig. 3. Call by need queries


