Monogamy of highly symmetric states

Ion Nechita (LPT Toulouse)
R. Allerstorfer, M. Christandl, D. Grinko, M. Ozols, D. Rochette, P. Verduyn Lunel https://arxiv.org/abs/2309.16655

QuDATA Workshop, January 25th, 2024

Outline

We introduce the notion of graph-extendability

A bipartite symmetric quantum state $\rho=\bullet —$ is $G=$ 年。- -extendible if there exists a global state $\sigma=$ for all edges $e={ }_{\bullet \bullet} ; \in G$, the reduced state $\sigma_{e}={ }^{\circ}{ }^{\circ}$ is equal to ρ.

For given d and n, which highly symmetric states (such as Werner, Brauer, and isotropic states) on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ are G-extendible?

Separability of quantum states

Quantum entanglement

- Quantum states are unit trace positive semidefinite matrices [NC10, Wat18]: $\rho \in \mathcal{M}_{d}^{\text {sa }}(\mathbb{C})$ such that $\rho \geq 0, \operatorname{Tr} \rho=1$.
- A bipartite quantum state $\rho \in \mathcal{M}_{d}^{\text {sa }}(\mathbb{C}) \otimes \mathcal{M}_{d}^{\text {sa }}(\mathbb{C})$ is separable if it can be decomposed as a convex combination of product quantum states:

$$
\rho=\sum_{i} \alpha_{i} \otimes \beta_{i} \quad \text { with } \alpha_{i}, \beta_{i} \geq 0
$$

- A pure (i.e. unit rank) state $\rho=|x\rangle\langle x|$ is separable iff it is product:

$$
|x\rangle=|a\rangle \otimes|b\rangle
$$

- The maximally entangled state

$$
\left.\omega:=\frac{1}{d} \sum_{i, j=1}^{d}|i i\rangle\langle j j|=\frac{1}{d}\right)^{i}{ }^{\bullet}
$$

- Deciding whether a given state ρ is separable is an NP-hard problem [Guro3].

Detecting entanglement

- There exist various criteria to detect entanglement or separability

$$
\begin{gathered}
\rho \in \operatorname{SEP} \Longrightarrow \rho^{\Gamma}:=[\operatorname{id} \otimes \operatorname{transp}](\rho)=\sum_{i} \alpha_{i} \otimes \beta_{i}^{\top} \geq 0 \\
\left\|\rho-\frac{l}{d} \otimes \frac{l}{d}\right\|_{2} \leq \frac{1}{d \sqrt{d^{2}-1}} \Longrightarrow \rho \in \mathrm{SEP}
\end{gathered}
$$

- The DPS hierarchy [DPS02, DPS04] can certify entanglement using a sequence of semidefinite programs

$$
\begin{aligned}
\mathrm{EXT}_{k} & :=\left\{\rho_{A B}: \exists \sigma_{A B_{1} B_{2} \cdots B_{k}} \geq 0 \text { s.t. } \sigma_{A B_{i}}=\rho_{A B} \quad \forall i \in[k]\right\} \\
\text { all states } & =\mathrm{EXT}_{1} \supseteq \mathrm{EXT}_{2} \supseteq \cdots \supseteq \mathrm{EXT}_{k} \supseteq \cdots \supseteq \mathrm{EXT}_{\infty}=\mathrm{SEP}
\end{aligned}
$$

- Easy direction: if ρ is separable, $\rho=\sum_{i} \alpha_{i} \otimes \beta_{i} \rightsquigarrow$ take $\sigma=\sum_{i} \alpha_{i} \otimes \beta_{i}^{\otimes k}$
- Quantitative version [CKMRO7]:

$$
\rho \in \mathrm{EXT}_{k} \Longrightarrow \min _{\sigma \in \mathrm{SEP}}\|\rho-\sigma\|_{1} \leq \frac{4 d^{2}}{k}
$$

Graph extendability

Monogamy of entanglement \& exchangeability

- Monogamy is a fundamental property of quantum entanglement [KW04]. Informally, given 3 quantum parties Alice, Bob, and Charlie:

Alice cannot be maximally entangled with Bob and Charlie

$$
\nexists \rho_{A B C} \quad \text { s.t. } \quad \rho_{A B}=\omega \text { and } \rho_{A C}=\omega
$$

- Actually, we have more: given a quantum state $\rho_{A B C}$,

$$
\rho_{A B}=\omega \Longrightarrow \rho_{A B C}=\omega_{A B} \otimes \rho_{C}
$$

- A bipartite symmetric state ρ is called n-exchangeable if there exists a n-partite symmetric state σ such that $\rho=\operatorname{Tr}_{n-2} \sigma$
- The quantum de Finetti theorem [HM76, CFS02, KRO5, CKMRO7]: a bipartite state ρ is n-exchangable for every n iff

$$
\rho=\sum_{i} \alpha_{i} \otimes \alpha_{i}
$$

Main definition

A bipartite symmetric quantum state $\rho=\bullet —$ is $G=$ 货 ${ }^{\circ}$-extendible if there exists a global state $\sigma=$ on G such that for all edges $e={ }_{\bullet} ; \in G$, the reduced state $\sigma_{e}={ }^{\circ}{ }^{\circ}$ is equal to ρ.

- This notion generalizes the two previous ones:

$$
\begin{array}{r}
n \text {-extendibility: } \exists \sigma_{A B_{1} B_{2} \cdots B_{n}} \text { s.t. } \sigma_{A B_{i}}=\rho_{A B} \Longleftrightarrow K_{1, n} \text {-extendibility } \\
\text { n-exchangeability: } \exists \sigma_{A_{1} A_{2} \cdots A_{n}} \text { s.t. } \sigma_{A_{i} A_{j}}=\rho_{A B} \Longleftrightarrow K_{n} \text {-extendibility }
\end{array}
$$

- The property above can be formulated as a semidefinite program.

Main result

- Consider isotropic states

$$
\rho_{l}(d):=p \omega+(1-p) \frac{l}{d} \otimes \frac{l}{d}
$$

The largest p for which the isotropic state $\rho_{l}(d)$ is K_{n}-extendible is:

$$
p_{l}(n, d)= \begin{cases}\frac{1}{n-1+n \bmod 2} & \text { if } d>n \text { or either } d \text { or } n \text { is even } \\ \min \left\{\frac{2 d+1}{2 d n+1}, \frac{1}{n-1}\right\} & \text { if } n \geq d \text { and both } d \text { and } n \text { are odd }\end{cases}
$$

- Compare with optimal p for $K_{1, n}$-extensibility (\Longleftrightarrow quantum cloning [Kw99])

$$
p_{l}\left(K_{1, n}, d\right)=\frac{d+n}{n(d+1)}
$$

- Similar results for Werner states and for Brauer states

$$
\begin{aligned}
\rho_{W}(d) & :=p \frac{\Pi_{\mathrm{B}}}{\operatorname{Tr} \Pi_{\mathrm{B}}}+(1-p) \frac{\Pi_{\mathrm{\Phi}}}{\operatorname{Tr} \Pi_{\mathrm{\oplus}}}, \quad \rho_{B}(d):=p \omega+q \frac{\Pi_{\mathrm{B}}}{\operatorname{Tr} \Pi_{\mathrm{B}}}+(1-p-q)\left[\frac{\Pi_{\mathrm{\infty}}}{\operatorname{Tr} \Pi_{\mathrm{\oplus}}}-\omega\right] \\
\Pi_{\mathrm{B}} & :=\frac{l-F}{2}, \quad \Pi_{\mathrm{\infty}}:=\frac{l+F}{2}, \quad F:=\sum_{i, j=1}^{d}|i j\rangle\langle j i|=
\end{aligned}
$$

Proof techniques

LB for isotropic states: perfect matchings

- A perfect matching on a graph $G=(V, E)$ is a subset of edges from E, such that every vertex in V is contained in exactly one of those edges.
- There are $(2 n-1)$!! perfect matchings on $K_{2 n}$, and if e is an edge on $K_{2 n}$, then there are $(2 n-3)$!! perfect matchings on $K_{2 n}$ containing e.

- Let $E_{1}, \ldots, E_{(2 n-1)!!}$ be all the perfect matchings on $K_{2 n}$, and for each perfect matching E_{k}, define the quantum state $\rho^{(k)}$ on $K_{2 n}$ by

$$
\rho^{(k)}:=\bigotimes_{e \in E_{k}} \omega_{e} \quad \text { and } \quad \rho:=\frac{1}{(2 n-1)!!} \sum_{k=1}^{(2 n-1)!!} \rho^{(k)}
$$

- For any edge $e \in K_{2 n}$, we have

$$
\rho_{e}=\frac{1}{2 n-1} \omega+\left(1-\frac{1}{2 n-1}\right) \frac{l}{d^{2}} \quad \Longrightarrow \quad p_{l}(2 n, d) \geq \frac{1}{2 n-1} .
$$

UB for Werner states: symmetry

- Consider the simpler Werner states $p \cdot \Pi_{\mathrm{B}} / \operatorname{Tr} \Pi_{\mathrm{B}}+(1-p) \cdot \Pi_{\varpi} / \operatorname{Tr} \Pi_{\varpi}$.
- We want to solve, for a graph G with n vertices

$$
p_{W}(G, d):=\max _{\rho, p} p \text { s.t. } \quad \operatorname{Tr}\left[\Pi_{e} \rho\right]=p \quad \forall e \in E, \quad \operatorname{Tr} \rho=1, \quad \rho \geq 0
$$

where Π_{e} acts like Π_{\boxminus} on the tensor factors associated to the vertices of e and as the identity elsewhere; ρ is a state on $\left(\mathbb{C}^{d}\right)^{\otimes n}$.

- Given an optimal ρ, we can assume wlog that it has symmetry:

$$
\begin{aligned}
\forall U \in \mathcal{U}(d) & U^{\otimes n} \rho\left(U^{\otimes n}\right)^{*}=\rho \\
\forall \pi \in \mathfrak{S}_{n} & \pi . \rho=\rho
\end{aligned}
$$

with $\pi . A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n}:=A_{\pi^{-1}(1)} \otimes A x_{\pi^{-1}(2)} \otimes \cdots \otimes A_{\pi^{-1}(n)}$.

- By Schur-Weyl duality [Aub18, GO22, Bra37], we have

$$
\rho=\sum_{\substack{\lambda \vdash n \\ l(\lambda) \leq d}} \beta_{\lambda} \rho_{\lambda}
$$

where β_{λ} is a probability distribution $\left\{\beta_{\lambda}: \lambda \vdash n\right\}$ and ρ_{λ} are the normalized isotypical projectors.

Representation theory

- The groups $\mathcal{U}(d)$ and \mathfrak{S}_{n} act on $\left(\mathbb{C}^{d}\right)^{\otimes n}$:

$$
\begin{aligned}
& U .\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes \cdots \otimes\left|x_{n}\right\rangle:=U\left|x_{1}\right\rangle \otimes U\left|x_{2}\right\rangle \otimes \cdots \otimes U\left|x_{n}\right\rangle \\
& \pi \cdot\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes \cdots \otimes\left|x_{n}\right\rangle:=\left|x_{\pi^{-1}(1)}\right\rangle \otimes\left|x_{\pi^{-1}(2)}\right\rangle \otimes \cdots \otimes\left|x_{\pi^{-1}(n)}\right\rangle
\end{aligned}
$$

- Schur-Weyl duality: the algebras spanned by the matrices associated to these actions are mutual commutants of each other. Equivalently, the space $\left(\mathbb{C}^{d}\right)^{\otimes n}$ decomposes into isotypic sectors consisting of tensor products of irreps:

$$
\left(\mathbb{C}^{d}\right)^{\otimes n} \simeq \bigoplus_{\substack{\lambda-n \\ l(\lambda) \leq d}} V_{\lambda}^{(\mathcal{U})} \otimes V_{\lambda}^{(\mathfrak{G})}
$$

- Since an optimal ρ commutes is invariant w.r.t. both actions, it must act like the identity on each tensor factor, for every term of the direct sum.
- We have [CKMRO7] $\operatorname{Tr}_{[n] \backslash e} \rho_{\lambda}=\alpha_{\text {日 }}^{\lambda} \varepsilon_{\text {日 }}+\alpha_{\square}^{\lambda} \varepsilon_{\varpi}$, where

$$
\alpha_{\boxminus}^{\lambda}=\frac{s_{\boxminus}^{*}(\lambda)}{m_{d}(\Xi) n(n-1)},
$$

where $s_{\mu}^{*}(\lambda)$ is the shifted Schur function [0097] and $m_{d}(\lambda)=\operatorname{dim} V_{\lambda}^{(\mathcal{U})}$.

Optimization

- Plugging the partial trace expression into the formula for p_{W}, in the case $G=K_{n}$, we obtain

$$
p_{W}(\rho)=\sum_{\substack{\lambda \vdash n \\ l(\lambda) \leq d}} \beta_{\lambda} \frac{d(\boxminus) s_{\boxminus}^{*}(\lambda)}{n(n-1)}
$$

- Since β_{λ} are probability weights, we need to maximize the expression above over partitions $\lambda \vdash n$ with $l(\lambda) \leq d$.
- Using a formula for the shifted Schur function [0097] we obtain

$$
p_{W}(n, d)=\max _{\substack{\lambda+n \\ l(\lambda) \leq d}} \frac{\sum_{d \geq i>j \geq 1} \lambda_{i}\left(\lambda_{j}+1\right)}{n(n-1)}
$$

- The optimal λ is the tallest approximate rectangle possible, and gives

$$
p_{W}(n, d)=\frac{d-1}{2 d} \cdot \frac{(n+k+d)(n-k)}{n(n-1)}+\frac{k(k-1)}{n(n-1)} \quad \text { where } k=n \bmod d
$$

- Clearly, if $d \geq n, p_{W}=1$ is achieved by $\lambda=1^{n}$, and ρ is the normalized projection on the anti-symmetric subspace $\Lambda^{n}\left(\mathbb{C}^{d}\right) \subseteq\left(\mathbb{C}^{d}\right)^{\otimes n}$.

Take home slide

Monogamy of highly symmetric states

A bipartite symmetric quantum state $\rho=\bullet \square$ is $G=\stackrel{0}{0} 0_{0}^{0}$-extendible if there exists a global state $\sigma=$ on G such that for all edges $e={ }_{\bullet} ; \in G$, the reduced state $\sigma_{e}={ }_{\bullet}^{\circ}$ is equal to ρ.

- For $G=K_{1, n}$ or $G=K_{m, n}$, we obtain the standard DPS hierarchy.
- For given d and n, we compute the value noise parameter p for which highly symmetric states (Werner, Brauer, isotropic) on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ are K_{n}-extendible

$$
\rho_{I}=p \cdot \frac{1}{d} \sum_{i j}|i i\rangle\langle j j|+(1-p) \cdot \frac{l}{d} \otimes \frac{l}{d}
$$

- G-extendibility of isotropic states for all n : separability vs. K_{n}-extendibility

Graph family	Form of ∞-extendible states	Range of p
$K_{1, n}$ or $K_{m, n}$	$\rho=\sum_{i} \alpha_{i} \otimes \beta_{i}$	$\left[\frac{-1}{d^{2}-1}, \frac{1}{d+1}\right]$
K_{n}	$\rho=\sum_{i} \alpha_{i} \otimes \alpha_{i}$	$\{0\}$

References

[Aub18] Guillaume Aubrun.
Schur-weyl duality, 2018.
[Bra37] Richard Brauer.
On algebras which are connected with the semisimple continuous groups.
Annals of Mathematics, pages 857-872, 1937.
[CFS02] Carlton M Caves, Christopher A Fuchs, and Rüdiger Schack.

Unknown quantum states: the quantum de finetti representation.
Journal of Mathematical Physics, 43(9):4537-4559, 2002.
[CKMR07] Matthias Christandl, Robert König, Graeme Mitchison, and Renato Renner.
One-and-a-half quantum de finetti theorems.
Communications in Mathematical Physics, 273(2):473-498, 2007.
[DPS02] Andrew C Doherty, Pablo A Parrilo, and Federico M Spedalieri.
Distinguishing separable and entangled states.
Physical Review Letters, 88(18):187904, 2002.
[DPS04] Andrew C Doherty, Pablo A Parrilo, and Federico M Spedalieri.
Complete family of separability criteria.
Physical Review A, 69(2):022308, 2004.
[GO22] Dmitry Grinko and Maris Ozols.
Linear programming with unitary-equivariant constraints. 2022.
[Gur03] Leonid Gurvits.

Classical deterministic complexity of edmonds' problem and quantum entanglement.
In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 10-19, 2003.

Robin L Hudson and Graham R Moody.
Locally normal symmetric states and an analogue of de finetti's theorem.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 33(4):343-351, 1976.
[KR05] Robert König and Renato Renner.
A de finetti representation for finite symmetric quantum states.
Journal of Mathematical physics, 46(12), 2005.
[KW99] Michael Keyl and Reinhard F Werner.
Optimal cloning of pure states, testing single clones. Journal of Mathematical Physics, 40(7):3283-3299, 1999.
[KW04] Masato Koashi and Andreas Winter.
Monogamy of quantum entanglement and other correlations.
Physical Review A, 69(2):022309, 2004.
Michael A Nielsen and Isaac L Chuang.
Quantum computation and quantum information.
Cambridge University Press, 2010.
[OO97] Andrei Okounkov and Grigori Olshanski.
Shifted schur functions.
Algebra i Analiz, 9(2):73-146, 1997.
John Watrous.

The Theory of Quantum Information.
Cambridge University Press, 2018.

